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Abstract. This paper introduces fully computable two-sided bounds
on the eigenvalues of the Laplace operator on arbitrarily coarse
meshes based on some approximation of the corresponding eigen-
function in the nonconforming Crouzeix-Raviart finite element space
plus some postprocessing. The efficiency of the guaranteed error
bounds involves the global mesh-size and is proven for the large
class of graded meshes. Numerical examples demonstrate the reli-
ability of the guaranteed error control even with an inexact solve
of the algebraic eigenvalue problem. This motivates an adaptive
algorithm which monitors the discretisation error, the maximal
mesh-size, and the algebraic eigenvalue error. The accuracy of the
guaranteed eigenvalue bounds is surprisingly high with efficiency
indices as small as 1.4.

1. Introduction

The well-established Rayleigh-Ritz principle for the algebraic as well
as for the continuous eigenvalues of the Laplacian,

−∆u = λu for u ∈ V \{0} := H1
0 (Ω)\{0},(1.1)

immediately results in upper bounds of the eigenvalues by Rayleigh
quotients

λ1 ≤ R(v) := |||v|||2/‖v‖2 for any v ∈ V \{0}.(1.2)

Standard notation on Lebesgue and Sobolev spaces and norms is adopted
throughout this paper and, for brevity, ‖·‖ := ‖·‖L2(Ω) denotes the L2

norm and |||·||| := ‖∇·‖L2(Ω) := |·|H1(Ω) denote the H1 semi-norm for the
entire bounded polygonal Lipschitz domain Ω. Although λ1 in (1.2)
denotes the first exact eigenvalue of (1.1), the well-established min-
max principle applies to the higher eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . .
Since upper bounds are easily obtained by conforming discretisations
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Figure 1.1. Criss (left), criss-cross (middle) and union-
jack (right) triangulations of the unit square in 2, 4, and
8 congruent triangles.

via (1.2), the computation of lower bounds is of high interest and
we solely mention the mile-stones [For55, Wei56, AD04] for asymp-
totic lower bounds in the sense that they provide guaranteed bounds
under the assumption that the global mesh-size is sufficiently small.
Unfortunately, the minimal mesh-size required to deduce some guar-
anteed lower eigenvalue bound is not quantified in the current litera-
ture – so nobody knows whether some mesh allows some guaranteed
bound or not. This paper establishes guaranteed lower bounds even for
very coarse triangulations like those of Figure 1.1 for the unit square
Ω = (0, 1)2 with only two triangles. For the three meshes of Figure 1.1,
clearly in the pre-asymptotic range of convergence, Theorem 3.1 of this
paper provides the guaranteed bounds

2.3371≤λ1≤32, 4.2594≤λ1≤24, and 6.6182≤λ1≤22.0397(1.3)

for the first exact eigenvalue λ1 = 2π2 = 19.7392 despite the coarse
discretisation with just 1, 4, or 8 degrees of freedom in a Crouzeix-
Raviart nonconforming finite element discretisation (CR-NCFEM); cf.
Example 3.7 and 3.10 below for more details.

To the best knowledge of the authors, any other a posteriori er-
ror control requires some (unquantified) sufficiently small global mesh-
size [CG11, DDP12, DPR03]; for an a priori error analysis see [BO91,
SF73]. The asymptotic convergence of the conforming FEM is pre-
sented in [CG11, GMZ09, GG09] and the asymptotic quasi-optimal
convergence and complexity in [CG12b, DRSZ08, DXZ08]. Recently,
[HHL11] proves asymptotic lower bounds of several nonconforming
FEM and higher order elliptic operators. The main results of this
paper are by no means restricted to the present case and work for 3D
as well as for biharmonic eigenvalue problems [CG12a].

To describe the main results of this paper, let T be an arbitrar-
ily coarse shape-regular triangulation of the polygonal domain Ω into
triangles with set E of edges and let

CR1
0(T ) := {v ∈ P1(T ) | v is continuous at mid(E)

and v = 0 at mid(E(∂Ω))}
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Figure 1.2. Crouzeix-Raviart finite element.

denote the Crouzeix-Raviart nonconforming FEM spaces for the piece-
wise first-order polynomials

P1(T ) :=
{
v ∈ L2(Ω) | ∀T ∈ T , v|T is affine

}
.

The degrees of freedom for a triangle are depicted in Figure 1.2. Sup-
pose that (λ̃CR,1, ũCR,1) ∈ R×CR1

0(T ) is some computed approximation
of the smallest exact eigenvalue λ1 of the associated algebraic eigen-
value problem with the stiffness matrix A, the (diagonal) mass matrix

B, and the algebraic residual r := AũCR,1 − λ̃CR,1BũCR,1 for the alge-
braic eigenvector ũCR,1. Suppose that the first approximated discrete

eigenvalue λ̃CR,1 is closer to the first discrete eigenvalue λCR,1 than to
the second discrete eigenvalue (which has to be guaranteed by alge-

braic eigenvalue analysis) and that ‖r‖B−1 < λ̃CR,1. The numerical
experiments of Section 6 show that for the simple first eigenvalue the
algebraic separation condition is not critical, but a cluster of eigenval-
ues may lead to difficulties with this separation condition on the level of
the algebraic eigensolve. The first main result, in Theorem 3.1 below,
implies

λ̃CR,1 − ‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
≤ λ1 ≤ R(ICMũCR,1).

Since λ̃CR,1 is the nearest approximation to λCR,1, the algebraic residual
r yields an upper bound for the discrete eigenvalue error in Lemma 3.8.
Moreover, H := maxT∈T diam(T ) denotes the maximal mesh-size and
ICM denotes the interpolation operator of Section 3 which ensures
ICMũCR,1 6≡ 0 to define the Rayleigh quotient. The explicit constant κ
reads κ2 := (1/8 + j−2

1,1) ≤ 0.1932 for the first positive root j1,1 of the
Bessel function of the first kind.

Note that the nonconforming eigenvalue for the first two meshes of
Figure 1.1 reads λCR,1 = 24 and is larger than the solution λ = 2π2.
This novel observation shows that the nonconforming eigenvalue by it-
self does not always provide some lower bound for arbitrarily coarse
meshes in contrast to the lower bound given in this paper. The asymp-
totic a posteriori error control of [AD04] does not provide those error
bounds.

The second main result, Theorem 4.1, guarantees efficiency in the
sense that the difference of the upper and lower bound is bounded by
the error for the large class of graded meshes.
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The lower bound is generalised to higher eigenvalues under some
explicit given mesh-size restriction plus the aforementioned separation
condition. Together with a conforming approximation for an upper
bound, the bounds for the higher eigenvalues are also efficient.

The efficiency for graded meshes motivates the development of an
adaptive algorithm that balances the finite element error and the global
mesh-size H in order to reduce the difference of the upper and lower
eigenvalue bounds.

The remaining parts of this paper are organised as follows. Section 2
presents the model problem (1.1) and the necessary notation. Section 3
proves the explicit lower and upper bounds for the smallest eigenvalue
based on the nonconforming discrete eigenvalue as well as on its ap-
proximation. The efficiency of the resulting a posteriori error estima-
tor follows in Section 4. Section 5 establishes some bounds for higher
eigenvalues and their efficiency. Section 6 presents some adaptive algo-
rithm which monitors the discretisation error, the maximal mesh-size,
and the algebraic eigenvalue error and verifies the theoretical results in
some numerical experiments. An empirical comparison of conforming
and nonconforming discretisations is included as well. Since the con-
sistent mass matrix is diagonal, nonconforming discretisations are of
particular attraction in practise.

Throughout this paper, A . B abbreviates the inequality A ≤ CB
for some constant C that does not depend on the mesh-sizes but only
on some lower bound of the minimal interior angle in T .

2. Notation and Preliminaries

The weak formulation of the model problem (1.1) looks for the eigen-
pair (λ, u) ∈ R× V with b(u, u) = 1 and

a(u, v) = λb(u, v) for all v ∈ V := H1
0 (Ω).

Here and throughout this paper, the scalar products a(·, ·) and b(·, ·)
read

a(u, v) :=

ˆ
Ω

∇u · ∇v dx and b(u, v) :=

ˆ
Ω

uv dx for all u, v ∈ V

and induce the norms |||·||| := a(·, ·)1/2 on V and ‖·‖ := b(·, ·)1/2 =
‖·‖L2(Ω) on L2(Ω).

The eigenvalue problem is symmetric and positive definite and there
exist countably many positive eigenvalues with no finite accumulation
point [BO91]. The eigenvalues can be ordered

0 < λ1 < λ2 ≤ λ3 ≤ . . .

and there exist some orthonormal basis (u1, u2, u3, . . .) of corresponding
eigenvectors. Section 3 focuses on the computation of the first eigen-
value λ1 which is simple [Eva00, Section 6.5, Theorem 2]. The min-max
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principle reduces for the smallest eigenvalue to

λ1 = min
v∈V \{0}

R(v) with the Rayleigh quotient R(v) := a(v, v)/b(v, v).

Let T be a regular triangulation in the sense of Ciarlet of the bounded
2D Lipschitz domain Ω into at least two triangles such that all T ∈ T
are closed triangles with positive area |T | and two distinct intersecting
triangles T1, T2 ∈ T share either one common edge or one common
node. Let E denote the set of all edges (E(Ω) of interior edges) of the
triangulation T , let mid(E) be the midpoint and hE the length of an
edge E ∈ E . Let hT := diam(T ), H := maxT∈T hT and hT ∈ P0(T )
piecewise defined as hT |T = hT . Let [·]E := (·)|T+ − (·)|T− denote the
jump across an interior edge E ∈ E(Ω) with E = T+ ∩ T−, T± ∈ T ,
and [·]E := (·) for E ⊂ ∂Ω. Let N denote the set of all nodes (N (Ω)
of interior nodes) in the triangulation T .

The conforming finite element space is defined by VC(T ) := H1
0 (Ω)∩

P1(T ). In the following let Π0 denote the L2 projection onto piecewise
constants P0(T ) as well as P0(T ;Rn).

For all interior edges E ∈ E(Ω), the edge-oriented basis function ψE
is defined by

ψE(mid(E)) = 1 and ψE(mid(F )) = 0 for all F ∈ E\E.

Then CR1
0(T ) = span{ψE |E ∈ E(Ω)} * V and the nonconforming

discrete eigenvalue problem reads: Find an eigenpair (λCR, uCR) ∈ R×
CR1

0(T ) with b(uCR, uCR) = 1 and

aNC(uCR, vCR) = λCRb(uCR, vCR) for all vCR ∈ CR1
0(T ).

The nonconforming bilinear form aNC,

aNC(uCR, vCR) :=
∑
T∈T

ˆ
T

∇uCR · ∇vCR dx for all uCR, vCR ∈ CR1
0(T ),

induces the mesh-dependent norm |||.|||NC := aNC(·, ·)1/2 and the Rayleigh
quotient

RNC(vCR) := aNC(vCR, vCR)/‖vCR‖2 for all vCR ∈ CR1
0(T )\{0}.

The nonconforming interpolant INC : V → CR1
0(T ) is defined for any

v ∈ V by

INCv(mid(E)) :=
1

|E|

ˆ
E

v ds for all E ∈ E .

The proof of the L2 error estimate below is essentially contained in
[CGR12].

Theorem 2.1 (L2 interpolation error estimate). Any v ∈ H1
0 (Ω) sat-

isfies

‖v − INCv‖ ≤ κH|||v − INCv|||NC.
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Proof. The proof reduces to the corresponding estimate on a single
triangle T . Let f ∈ H1(T ) satisfy

´
E
fds = 0 on the triangle T =

conv({P}∪E) with an edgeE opposite to the vertex P . Then Lemma 2.2
in [CGR12] proves for the first positive root j1,1 of the Bessel function
J1 of the first kind that the following holds:

‖f‖L2(T ) ≤
√

max
x∈E
|P − x|2/8 + h2

T/j
2
1,1 |f |H1(T ).

The choice f := v − INCv concludes the proof. �

3. Explicit bounds for the smallest eigenvalue

This section is devoted to the proof of the explicit bounds for the
first eigenvalue λ1. Recall that H is the maximal diameter in the
triangulation T and that κ is some universal constant.

Theorem 3.1. Let (λ̃CR,1, ũCR,1) ∈ R×CR1
0(T ) be an approximation of

the eigenpair (λ1, u1) of the smallest eigenvalue with ‖ũCR,1‖L2(Ω) = 1

and with algebraic residual r := AũCR,1−λ̃CR,1BũCR,1 and let ICMũCR,1

be the quasi-interpolant of ũCR,1 from Definition 3.3 below. Suppose

separation of λ̃CR,1 from the remaining discrete spectrum in the sense

that λ̃CR,1 is closer to the smallest discrete eigenvalue λCR,1 than to

any other discrete eigenvalue and suppose that ‖r‖B−1 < λ̃CR,1. Then
it holds that

λ̃CR,1 − ‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
≤ λ1 ≤ R(ICMũCR,1).

The remaining part of this section is devoted to the proof of Theo-
rem 3.1. The point of departure is the particular case of exact solve.

Theorem 3.2 (Lower bound for exact solve). The first exact eigen-
value λ1 and the first discrete eigenvalue λCR,1 satisfy

λCR,1

1 + κ2λCR,1H2
≤ λ1.

Proof. The Pythagoras theorem in L2(Ω;R2) reads

λ1 = a(u1, u1) = ‖∇u1‖2 = ‖∇u1 − Π0∇u1‖2 + ‖Π0∇u1‖2.

An integration by parts on one triangle T ∈ T and
´
E

(v−INCv) ds = 0,
for all v ∈ V and E ∈ E , show that

|T |Π0∇v|T =

ˆ
T

∇v dx =

ˆ
∂T

vνT ds

=

ˆ
∂T

(INCv)νT ds =

ˆ
T

∇(INCv) dx = |T |∇(INCv|T ).



GUARANTEED LOWER BOUNDS FOR EIGENVALUES 7

This proves the known identity for the piecewise defined gradient (∇NC ·)|T :=
∇(·|T ):

Π0∇v = ∇NC(INCv).(3.1)

The combination with the aforementioned Pythagoras identity reads

λ1 = |||u1 − INCu1|||2NC + |||INCu1|||2NC.

The min-max principle on the discrete eigenvalue problem allows the
estimate

λCR,1‖INCu1‖2 ≤ |||INCu1|||2NC.

The combination of the previous results leads to

|||u1 − INCu1|||2NC + λCR,1‖INCu1‖2 ≤ λ1.(3.2)

Some elementary algebra based on ‖u1‖ = 1 and the binomial expan-
sion yield

1 + ‖u1 − INCu1‖2 − 2‖u1 − INCu1‖
≤ 1 + ‖u1 − INCu1‖2 − 2b(u1 − INCu1, u1) = ‖INCu1‖2.

Set s = α/(1 + α) with α := κ2H2λCR,1. This results in

1 + ‖u1 − INCu1‖2 − 2s‖u1 − INCu1‖ − 2(1− s)‖u1 − INCu1‖ ≤ ‖INCu1‖2.

The Young inequality 2s‖u1 − INCu1‖ ≤ s2 + ‖u1 − INCu1‖2 leads to

1− s2 − 2(1− s)‖u1 − INCu1‖ ≤ ‖INCu1‖2.

The a priori estimate of Theorem 2.1 plus another Young inequality

2|||u1 − INCu1|||NC ≤ t+ |||u1 − INCu1|||2NC/t

for t := (1− s)κHλCR,1 > 0 result in

1− s2 − (1− s)2H2κ2λCR,1 −
|||u1 − INCu1|||2NC

λCR,1

≤ ‖INCu1‖2.(3.3)

The combination of (3.2) and (3.3) proves

λCR,1

(
(1− s2)− ((1− s)κH)2 λCR,1

)
≤ λ1.

This and the definition of s lead to
λCR,1

1 + κ2H2λCR,1

≤ λ1. �

For the analysis of an upper bound, notice that the min-max princi-
ple for the smallest eigenvalue shows

λ1 = min
v∈V \{0}

R(v) ≤ R(w) for any w ∈ VC(T )\{0}.

Thus, any conforming approximation close to the nonconforming eigen-
function provides a guaranteed upper bound. The postprocessing of
[CM13] provides such a sufficiently accurate conforming interpolation
ICM : CR1

0(T ) → VC(T ∗) for the red-refined triangulation T ∗ :=
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z ω∗z

ωz

Figure 3.1. Patch ωz of T (solid lines) with refined
patch ω∗z (grey) of the sub-triangulation T ∗ := red(T )
(solid and dashed lines).

red(T ) of T into triangles depicted in Figure 3.1. (The red-refined
triangulation red(T ) results from dividing each triangle in T into 4
congruent sub-triangles by connecting the midpoints of the edges by
straight lines.)

Definition 3.3. For all nodes z in the red-refined triangulation T ∗ =
red(T ) and vCR ∈ CR1

0(T ), set

ICMvCR(z) :=

 0 if z lies on the boundary ∂Ω,
vCR(z) if z is the midpoint of an edge E ∈ E(Ω),
vmin(z) if z ∈ N (Ω),

where the average vmin(z) in the interior node z ∈ N (Ω) in the coarse
triangulation T is determined locally on nodal patches ω∗z covered by
the triangles T ∗(z) := {T ∈ T ∗ | z ∈ N (T )} of the red-refined triangu-
lation T ∗ of Figure 3.1. Let

Wz := {w ∈ P1(T ∗(z)) ∩ C(ω∗z) | w = vCR on ∂ω∗z}
denote the one-dimensional piecewise affine space of continuous func-
tions on ω∗z with prescribed boundary values on ∂ω∗z . The function vmin
in Wz is the unique minimizer of

min
w∈Wz

∑
T∈T ∗(z)

‖∇(vCR − w)‖2
L2(T ).(3.4)

Lemma 3.4. Any Crouzeix-Raviart function vCR ∈ CR1
0(T ) with its

jump of the tangential derivative [∂vCR/∂s]E across an edge E satisfies

|||vCR − ICMvCR|||2NC .
∑
E∈E

hE‖[∂vCR/∂s]E‖
2
L2(E) . min

v∈V
|||vCR − v|||2NC.

Proof. The design of the interpolant ICM shows that

‖∇(vCR − ICMvCR)‖2
L2(T4) = 0



GUARANTEED LOWER BOUNDS FOR EIGENVALUES 9

for those centred triangles T4 ∈ T ∗ with all three nodes of T4 as mid-
points of edges in the coarse triangulation T . Let z ∈ N denote some
node of T and set E∗(z) := {F ∈ E∗ | z ∈ N ∗(F )} for the smaller
edges in the patch ω∗z which share z in the red-refined triangulation T ∗
of Figure 3.1. Consider the two semi-norms ρ1 and ρ2 defined, for all
vCR ∈ CR1

0(T )|ω∗
z

:= {vCR|ω∗
z

: vCR ∈ CR1
0(T )}, by

ρ1(vCR) := ‖∇(vCR − ICMvCR)‖L2(ω∗
z ),

ρ2(vCR)2 :=
∑

F∈E∗(z)

hF‖[∂vCR/∂s]F‖
2
L2(F ).

In the first step one shows for some constant C(z) that

ρ1(vCR) ≤ C(z)ρ2(vCR) for all vCR ∈ CR1
0(T )|ω∗

z
.(3.5)

To do so, suppose that ρ2(vCR) = 0. Then it holds that vCR|ω∗
z
∈

C(ω∗z) ∩ P1(ω∗z). For an interior node z, it follows that (ICMvCR)(z) =
vCR(z) and so ρ1(vCR) = 0. For a boundary node z, ρ2(vCR) = 0
implies hF‖∂vCR/∂s‖2

L2(F ) = 0 and so vCR vanishes along F ∈ E∗(z)

with F ⊂ ∂Ω. This implies ICMvCR(z) = 0 and so ρ1(vCR) = 0. Hence,
in either case ρ2(vCR) = 0 implies ρ1(vCR) = 0. The equivalence-
of-norms argument on the finite-dimensional vector space CR1

0(T )|ω∗
z

proves (3.5) with some constant C(z).
The second step verifies that C(z) . 1 with some standard scaling

argument; hence the details are omitted.
In step three, the sum of all estimates (3.5) and the fact that vCR

equals ICMvCR on all centred triangles in the red-refinement T ∗, show
that

|||vCR − ICMvCR|||2NC =
∑
z∈N

‖∇(vCR − ICMvCR)‖2
L2(ω∗

z )

≤
(

max
z∈N

C(z)

)∑
E∈E

hE‖[∂vCR/∂s]E‖
2
L2(E).

This concludes the proof of the first inequality.
The second inequality∑

E∈E

hE‖[∂vCR/∂s]E‖
2
L2(E) . min

v∈V
|||vCR − v|||2NC

can be found in the context of efficiency of a posteriori error estimates
for nonconforming schemes [DDPV96, CELH12]. �

Lemma 3.5. ICM : CR1
0(T )→ P1(T ∗)∩C0(Ω) is linear and uniformly

bounded in the sense that

‖ICM‖ := sup
vCR∈CR1

0(T )\{0}
|||ICMvCR|||/|||vCR|||NC . 1.

Proof. The critical value vmin(z) of the minimising function vmin ∈
P1(T ∗(z)) of (3.4) for an interior node z ∈ N (Ω) is computed from the
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one-dimensional linear equation obtained from the optimality condi-
tion: The piecewise affine nodal basis function ϕ∗z associated with the
node z ∈ N ∗ in the refined triangulation T ∗ satisfies∑

T∈T ∗(z)

ˆ
T

∇ϕ∗z · ∇(vmin − vCR)dx = 0.

(This follows from the implementation of the boundary values on ∂ω∗z
and the ansatz of the remaining vmin(z)ϕ∗z.) This design shows that
ICM : CR1

0(T )→ P1(T ∗)∩C0(Ω) is a linear operator. Lemma 3.4 plus
some triangle inequality shows the boundedness of ICM: Indeed, any
vCR ∈ CR1

0(T ) satisfies

|||ICMvCR||| ≤ |||vCR − ICMvCR|||NC + |||vCR|||NC

. min
v∈V
|||vCR − v|||NC + |||vCR|||NC . |||vCR|||NC. �

Lemma 3.6 (Upper bound). The conforming interpolation ICMvCR ∈
VC(T ∗) of any nonconforming function vCR ∈ CR1

0(T ), which is nor-
malised by ‖vCR‖ = 1, satisfies

λ1 ≤ R(ICMvCR).

Proof. Since ‖vCR‖ = 1, (ICMvCR)(mid(E)) = vCR(mid(E)) 6= 0 for at
least one edge E ∈ E . Hence, ICMvCR 6≡ 0. Therefore, the assertion fol-
lows immediately from the continuous Rayleigh-Ritz principle without
any extra condition. �

Example 3.7. For the three triangulations of the unit square Ω = (0, 1)2

depicted in Figure 1.1, the first exact eigenvalue reads λ1 = 2π2 =
19.7392 and is smaller than the first discrete conforming eigenvalue
λC,1 = 24 from the related one-dimensional algebraic eigenvalue prob-
lem for the criss-cross and the union-jack triangulations. The criss and
the criss-cross triangulations of Figure 1.1 lead to the discrete noncon-
forming eigenvalue λCR,1 = 24. The nonconforming eigenvalue approxi-
mation of the smallest eigenvalue for the union-jack triangulation reads
λCR,1 = 18.3344 up to some truncation error of finite machine preci-
sion from the iterative algebraic eigenvalue solver and is empirically
below the exact eigenvalue. Theorem 3.1 leads to the guaranteed error
bounds (1.3). Note that for the union-jack pattern, the proposed con-
forming interpolation on the red-refined triangulation T ∗ provides an
upper bound which is strictly smaller than the conforming eigenvalue
λC,1 = 24 for the coarse mesh T .

Since the algebraic eigenvalue problems are solved iteratively, the
algebraic eigenvalue error has to be considered as well. The algebraic
eigenvalue problem reads

AuCR = λCRBuCR
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for the coefficient vector uCR ≡ (uCR(mid(E)) : E ∈ E(Ω)) of the dis-
crete solution

uCR =
∑

E∈E(Ω)

uCR(E)ψE

for the edge-oriented basis (ψE |E ∈ E(Ω)) of CR1
0(T ). Set ‖x‖M :=√

xTMx for some SPD matrix M .

Lemma 3.8 ([Par98, Theorem 15.9.1]). Let (λ̃CR, ũCR) be an approxi-

mated algebraic eigenpair such that λ̃CR is closer to some λCR than to
any other discrete eigenvalue. Suppose that the coefficient vector ũCR

is normalised with respect to B, ‖BũCR‖B−1 = ‖ũCR‖B = 1. Then the

algebraic residual r := AũCR − λ̃CRBũCR satisfies

|λCR − λ̃CR| ≤ ‖r‖B−1 . �

Remark 3.9. The local mass matrix of the CR-NCFEM for some T ∈ T
equals |T |/3 times the 3 × 3 identity matrix I3×3. Hence, the global
mass matrix B is diagonal and the residual norm ‖r‖B−1 of the error
bound is directly computable.

Proof of Theorem 3.1. Lemma 3.8 and the monotonicity of t/(1+κ2H2t)

in t > 0 allows to formally replace λCR,1 in Theorem 3.2 with λ̃CR,1 −
‖r‖B−1 for λ̃CR,1 > ‖r‖B−1 which proves the lower bound. The upper
bound is proven in Lemma 3.6. �

Example 3.10. Since the iterative solution of the underlying discrete
algebraic eigenvalue problem dominates the overall computational costs
in general, the truncation error in the iterative solution may be much
larger than machine precision. For example, the Rayleigh quotient
for the starting vector (1, . . . , 1) ∈ R8 of the union-jack triangulation
of Figure 1.1 (discussed also in Example 3.7) yields the nonconforming

eigenvalue approximation λ̃CR,1 = 24 and the corresponding guaranteed
bounds

6.9360 ≤ λ1 ≤ 24.

This is competitive with the bounds (1.3) from much more expensive
eigenvalue computations.

4. Efficiency for graded meshes

This section is devoted to the efficiency of the eigenvalue estimate of
Theorem 3.1 with the difference of its upper and lower bounds

η := R(ICMũCR,1)− λ̃CR,1 − ‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
.(4.1)

Efficiency means that this length η of the interval is bounded in terms
of the error and will be proven in the following theorem for the class
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of graded meshes. (Graded meshes will be defined in the second half
of this section.)

Theorem 4.1. For all graded meshes the estimate of Theorem 3.1 is
efficient in the sense that the difference η of the upper and lower bounds
satisfies

η . (1 +H2λ̃CR,1)|||u1 − ũCR,1|||2NC

+H2
(
(λ1 − λCR,1)2 + λ1λCR,1‖u1 − uCR,1‖2

)
+ |λ1 − λ̃CR,1|+ ‖A(uCR,1 − ũCR,1)‖B−1

+ λCR,1‖uCR,1 − ũCR,1‖+ |λCR,1 − λ̃CR,1|.

The remaining parts of this section are devoted to the proof of The-
orem 4.1. The first results hold on arbitrary shape-regular meshes.

Lemma 4.2. The difference η from (4.1) of the lower and upper eigen-
value bounds satisfies

η . (1 +H2λ̃CR,1)|||u1 − ũCR,1|||2NC + |λ1 − λ̃CR,1|+ λ̃2
CR,1H

2

+ ‖A(uCR,1 − ũCR,1)‖B−1 + λCR,1‖uCR,1 − ũCR,1‖+ |λCR,1 − λ̃CR,1|.

Proof. Some preliminary manipulations in step one of this proof show

η = R(ICMũCR,1)− λ1 + λ1 −
λ̃CR,1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2

+
‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2

≤ R(ICMũCR,1)− λ1 + |λ1 − λ̃CR,1|

+ λ̃CR,1
κ2(λ̃CR,1 − ‖r‖B−1)H2

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
+ ‖r‖B−1

≤ R(ICMũCR,1)− λ1 + |λ1 − λ̃CR,1|+ λ̃2
CR,1κ

2H2 + ‖r‖B−1 .

(4.2)

Step two will be the proof of

R(ICMũCR,1)− λ1 . (1 +H2λ̃CR,1)|||u1 − ũCR,1|||2NC.(4.3)

Elementary algebra reveals for ṽC := ICMũCR,1/‖ICMũCR,1‖ that

R(ICMũCR,1)− λ1 = |||ṽC |||2 − |||u1|||2 = |||u1 − ṽC |||2 + 2a(u1, ṽC − u1).

Since VC(T ∗) ⊂ V and ‖u1‖ = 1 = ‖ṽC‖ it follows that

2a(u1, ṽC − u1) = −2λ1 + 2λ1b(u1, ṽC) = −λ1‖u1 − ṽC‖2 ≤ 0.

This shows that

R(ICMũCR,1)− λ1 ≤ 2|||ũCR,1 − ṽC |||2NC + 2|||u1 − ũCR,1|||2NC.
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The Young inequality leads to

|||ũCR,1 − ṽC |||2NC = |||ũCR,1 − ICMũCR,1 + ICMũCR,1(1− 1/‖ICMũCR,1‖)|||2NC

≤ 2|||ũCR,1 − ICMũCR,1|||2NC + 2(‖ICMũCR,1‖ − 1)2R(ICMũCR,1).

Since ‖ũCR,1‖ = 1, an inverse triangle inequality shows

(‖ICMũCR,1‖ − 1)2 = (‖ICMũCR,1‖ − ‖ũCR,1‖)2 ≤ ‖ũCR,1 − ICMũCR,1‖2.

Note that (ũCR,1 − ICMũCR,1)|T4 ≡ 0 on each centred triangle T4 in
T ∗. For the remaining triangles T ∈ T ∗ of the patches ω∗z for nodes
z ∈ N (Ω), it holds that (ũCR,1−ICMũCR,1)|E ≡ 0 on the edges E with
E ⊂ ∂ω∗z . Hence, the Friedrich’s inequality shows, for those triangles

‖ũCR,1 − ICMũCR,1‖L2(T ) ≤ hT‖∇(ũCR,1 − ICMũCR,1)‖L2(T ).

The summation over all triangles yields

‖ũCR,1 − ICMũCR,1‖ . H|||ũCR,1 − ICMũCR,1|||NC.(4.4)

The remaining term H2R(ICMũCR,1) is bounded by 16H2λ̃CR,1 because
of the uniform boundedness of ICM in Lemma 3.5 and the inequality of
the discrete norms ‖ũCR,1‖2 ≤ 16‖ICMũCR,1‖2. The proof of the latter
estimate considers the centred triangle T4 of the fine triangulation T ∗
with (ICMũCR,1)|T4 = ũCR,1|T4 . Set x := (ũCR,1(mid(Ej)))j=1,2,3 ∈ R3

of the three edges E1, E2, E3 of T and compute (with the Rayleigh
quotient ≥ 1 of the displayed 3× 3 matrix)

‖ICMũCR,1‖2
L2(T4) =

|T |
48
xT

 2 1 1
1 2 1
1 1 2

x ≥ |T |
48
x·x = ‖ũCR,1‖2

L2(T )/16.

Finally, the estimate

|||ũCR,1 − ICMũCR,1|||2NC .
∑
E∈E

hE‖[∂ũCR,1/∂s]E‖
2
L2(E) . min

v∈V
|||ũCR,1 − v|||2NC

from Lemma 3.4 concludes the proof of (4.3) in step two.
Step three will be the proof of

‖r‖B−1 ≤ ‖A(uCR,1 − ũCR,1)‖B−1

+ λCR,1‖uCR,1 − ũCR,1‖+ |λCR,1 − λ̃CR,1|.
(4.5)

The definition of the algebraic residual r := AũCR,1− λ̃CR,1BũCR,1 plus
the triangle inequality yield

‖r‖B−1 = ‖AũCR,1 −AuCR,1 + λCR,1BuCR,1 − λCR,1BũCR,1

+ λCR,1BũCR,1 − λ̃CR,1BũCR,1‖B−1 .

This and the triangle inequality prove (4.5) in step three.
Step four is the finish of the proof. Indeed, the combination of (4.2)–

(4.5) concludes the proof of Lemma 4.2. �
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ξ1

ξ1

ξ3

ξ3

ξ4

ξ4

ξJ(θ)

ξJ(θ)
ω

K(J(θ))

Figure 4.1. Reference triangle Tref with 3/2-graded
sub-triangles for N = 4.

The following estimate is proven with the same arguments as in the
conforming case and is reported in [DDP12] for the nonconforming
CR-NCFEM.

Lemma 4.3 ([DDP12]). Let (λCR, uCR) ∈ R × CR1
0(T ) be a discrete

eigenpair of the eigenpair (λ, u), then it holds that

‖hT λCRuCR‖2 . |||u− uCR|||2NC +H2
(
(λ− λCR)2 + λλCR‖u− uCR‖2

)
.

�

The second half of this section concerns the somehow surprising re-
sult of Theorem 4.4 for graded meshes which are described in the fol-
lowing.

Given a polygonal domain with a coarse triangulation T0 into trian-
gles called macro elements (which specify the geometry), the domain
Ω will be covered by piecewise affine images of the graded mesh on the
reference triangle Tref with vertices (0, 0), (1, 0), and (0, 1). Provided
the coarse triangulation satisfies the condition that each triangle has
at most one vertex as a corner of ∂Ω, then the grading parameter β
can be different for each such corner of ∂Ω and β := 1 for all those
macro triangles without a vertex at a corner of ∂Ω. One verifies di-
rectly that the structured mesh is a (shape) regular triangulation. On
each element K ∈ T0, the mesh of the reference triangle is obtained
by an affine transformation. The graded mesh on the macro element
Tref of Figure 4.1 is generated as follows: Given some grading param-
eter β > 0 and given an integer N ≥ 2, set ξj := (j/N)β and draw
line segments aligned to the anti-diagonal through (0, ξj) and (ξj, 0)
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for j = 0, 1, . . . , N . Each of these line segments is divided into j uni-
form edges and so define the set of nodes (0, 0) and (j − k, k)ξj/j for
k = 0, . . . , j and j = 1, . . . , N . The triangles are then given by the
vertices ξj/j(j − k, k) and ξj/j(j − k − 1, k + 1) aligned with the anti-
diagonal and the vertex ξj−1/(j − 1)(j − k− 1, k) on the finer segment
and ξj+1/(j + 1)(j − k, k + 1) on the coarser neighbouring segment.
The smallest triangle reads conv{(0, 0), (0, ξ1), (ξ1, 0)} with diameter√

2ξ1 ≈ N−β. The largest triangles have diameter H ≈ N−1.

Theorem 4.4. Any function f ∈ L2(Ω)\{0} and any graded triangu-
lation T of Ω satisfy

‖hT f‖ ≈ 1/N.

The equivalence constant C(f) in the assertion 1/N ≤ C(f)‖hT f‖
depends on f .

Proof. The first inequality follows from

‖hT f‖ ≤ H‖f‖ ≈ ‖f‖/N.

To verify the reverse inequality, consider one triangle K ∈ T0. Some
affine diffeomorphism (which depends only on T0) maps K onto Tref
and some transformation shows that it suffices to verify the asser-
tion on Tref . Without loss of generality, let f ∈ L2(Tref )\{0} satisfy
|f | ≥ ε > 0 on a set ω of measure |ω| > 0. Let the volume frac-
tion θ := |ω|/|Tref | of ω in Tref be fixed and consider the question
where ω ⊂ Tref of fixed area |ω| = θ/2 may be located to minimise
the term

´
Tref∩ω

h2
T dx. Figure 4.1 illustrates the situation where ω

is placed where hT is small. In the end, one deduces that for some
index J(θ) (which is maximal with ξ2

J(θ) ≤ θ), the minimising set ω in-

cludes the sub-triangle K(J(θ)) := conv{(0, 0), (ξJ(θ), 0), (0, ξJ(θ))} and
the induced sub-triangulation T (K(J(θ))). Hence,

‖hT ‖L2(K(J(θ)) ≤ ‖hT ‖L2(ω) ≤
1

ε
‖hT f‖L2(ω) ≤

1

ε
‖hT f‖L2(Ω).

Thus it remains to prove

N−1 . ‖hT ‖L2(K(J(θ)).

Since the j-th diagonal layer consists of 2j − 1 triangles, it holds that

J(θ)∑
j=1

(2j − 1)

(
jβ − (j − 1)β

Nβ

)4

.
∑

T∈T (K(J(θ)))

ˆ
T

h2
T dx.

The binomial expansion shows

J(θ)∑
j=1

(
jβ − (j − 1)β

Nβ

)4

≈
J(θ)∑
j=1

(
jβ−1β

Nβ

)4

.
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This leads to

β4

N2

J(θ)∑
j=1

(
j

N

)4β−3

N−1 =

J(θ)∑
j=1

j

(
jβ−1β

Nβ

)4

.
J(θ)∑
j=1

(2j − 1)

(
jβ − (j − 1)β

Nβ

)4

.

Since J(θ) = N 2β
√

2|K(J(θ))|, the sum on the right-hand side is a

Riemann sum over the interval [0, 2β
√

2|K(J(θ))|]. Since β ≥ 1,

β4

N2

J(θ)∑
j=1

(
j

N

)4β−3

N−1 ≈ β4

N2

ˆ 2β
√

2|K(J(θ))|

0

x4β−3dx

=
β4(2|K(J(θ))|)(2β−1)/β

N2(4β − 2)
≈ 1

N2
.

This proves the assertion for N ≥ N0 and sufficiently large N0 so that
J(θ) ≥ 1. For 1 ≤ N ≤ N0, N‖hT f‖ ≥ N1−β‖f‖ is bounded from
below in terms of N0. This concludes the proof for all N ∈ N. �

Proof of Theorem 4.1. The assertion follows from Lemma 4.2, Theo-
rem 4.4, and Lemma 4.3. �

5. Error bounds for higher eigenvalues

This section is devoted to some computable lower bounds of higher
eigenvalues. It is emphasised that λJ could be a multiple eigenvalue
and λJ could even be a part of a cluster without any separation (on the
continuous level); cf. Example 5.3 below. However, any clustering of
discrete eigenvalues may have some disastrous effect on the smallness
of the discrete residual r in the algebraic eigenvalue problem.

Theorem 5.1. Suppose that the separation condition

H <
(√

1 + 1/J − 1
)
/(κλ

1/2
J )

holds for the J-th exact eigenvalue λJ . Let (λ̃CR,J , ũCR,J) ∈ R ×
CR1

0(T ) with ‖ũCR,J‖L2(Ω) = 1 and algebraic residual r := AũCR,J −
λ̃CR,JBũCR,J approximate the J-th eigenpair (λJ , uJ). Suppose separa-

tion of λ̃CR,J from the remaining discrete spectrum in the sense that

λ̃CR,J is closer to the discrete eigenvalue λCR,J than to any other dis-

crete eigenvalues and that ‖r‖B−1 < λ̃CR,J . Then it holds that

λ̃CR,J − ‖r‖B−1

1 + κ2(λ̃CR,J − ‖r‖B−1)H2
≤ λJ ≤ max

ξ∈RJ\{0}
R

(
J∑
j=1

ξjICMũCR,j

)
.
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The difference of the upper and lower bounds

ηJ := max
ξ∈RJ\{0}

R

(
J∑
j=1

ξjICMũCR,j

)
− λ̃CR,J − ‖r‖B−1

1 + κ2(λ̃CR,J − ‖r‖B−1)H2
(5.1)

is efficient in the sense that

ηJ .(
1 +H2 max

ξ∈RJ\{0}
R

(
J∑
j=1

ξjICMũCR,j

))
max

ξ∈RJ\{0}
|||uJ −

J∑
j=1

ξjũCR,j|||NC

+ |λJ − λ̃CR,J |+H2
(
(λJ − λCR,J)2 + λJλCR,J‖uJ − uCR,J‖2

)
+ ‖A(uCR,J − ũCR,J)‖B−1 + λCR,J‖uCR,J − ũCR,J‖+ |λCR,J − λ̃CR,J |.

The proofs start with the linear independence of nonconforming in-
terpolants.

Lemma 5.2. Let (u1, . . . , uJ) be some b-orthonormal basis of exact
eigenvectors in V for the exact first J eigenvalues 0 < λ1 < λ2 ≤
. . . ≤ λJ on the continuous level. For any global mesh-size H <(√

1 + 1/J − 1
)
/(κλ

1/2
J ), the nonconforming interpolants INCu1, . . . ,

INCuJ are linear independent.

Proof. For any j = 1, . . . , J , Theorem 2.1 shows

‖uj−INCuj‖≤κH|||uj−INCuj|||NC≤κH|||uj|||NC≤κHλ1/2
j =:dj.(5.2)

With the Kronecker δjk = 1 for j = k and δjk = 0 for j 6= k, this
implies

|b(INCuj, INCuk)− δjk| = |b(INCuj, INCuk)− b(uj, uk)|
= |−b(uj − INCuj, INCuk)− b(uj, uk − INCuk)|
= |b(uj − INCuj, uk − INCuk)− b(uj − INCuj, uk)− b(uj, uk − INCuk)|
≤ ‖uj − INCuj‖‖uk − INCuk‖+ ‖uj − INCuj‖+ ‖uk − INCuk‖
≤ djdk + dj + dk.

Some calculations show that H <
(√

1 + 1/J − 1
)
/(κλ

1/2
J ) leads to

J
max
j=1

(
J∑
k=1

(djdk + dj + dk)

)
< 1.

The Gershgorin theorem shows that the eigenvalues of

(b(INCuj, INCuk))j,k=1,...,J

are all positive. �
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Proof of the lower bound in Theorem 5.1 for r ≡ 0. Lemma 5.2 guar-
antees that

INCu1, . . . , INCuJ
are linearly independent. The Rayleigh-Ritz principle on the discrete
level states that the discrete eigenvalue λCR,J of number J equals

λCR,J = min
VJ⊂CR1

0(T ),dim(VJ )=J
max

v∈VJ\{0}
RNC(v).

Therein, the notation dim(VJ) = J abbreviates that the minimum is
taken over all subspaces of CR1

0(T ) of dimension J . Since INCu1, . . . ,
INCuJ are linear independent, there exist some real coefficients ξ1, . . . , ξJ
such that the Rayleigh quotient is maximised in

VJ := span{INCu1, . . . , INCuJ}.
This leads to

λCR,J ≤ RNC

(
J∑
j=1

ξjINCuj

)
.(5.3)

One may assume without loss of generality that

J∑
j=1

ξ2
j = 1.

Let v :=
∑J

j=1 ξjuj and observe ‖v‖2 =
∑J

j=1 ξ
2
j = 1. Since ∇NC(v −

INCv) is L2 orthogonal to ∇NCINCv, the Pythagoras theorem reads

|||v − INCv|||2NC + |||INCv|||2NC = |||v|||2.
The orthogonality of the eigenfunctions shows

|||v|||2 = |||
J∑
j=1

ξjuj|||2 =
J∑
j=1

ξ2
j |||uj|||2 =

J∑
j=1

ξ2
jλj.

The combination of the aforementioned equalities results in

|||v − INCv|||2NC + |||INCv|||2NC =
J∑
j=1

ξ2
jλj ≤ λJ .

Together with (5.3) in the form of

λCR,J‖INCv‖2 ≤ |||INCv|||2NC,

the previous estimate yields

|||v − INCv|||2NC + λCR,J‖INCv‖2 ≤ λJ .

Since ‖v‖2 = 1, the Cauchy inequality followed by the binomial expan-
sion implies

1 + ‖v − INCv‖2 − 2‖v − INCv‖
≤ 1 + ‖v − INCv‖2 − 2b(v − INCv, v) = ‖INCv‖2.
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Following the proof of Theorem 3.1 with the substitution of u1 by v
eventually results in

λCR,J

1 + κ2λCR,JH2
≤ λJ . �

Proof of the lower bound in Theorem 5.1 for r 6≡ 0. Lemma 3.8 and the
monotonicity of t/(1 + κ2H2t) in t > 0 allows the substitution of λCR

by λ̃CR,J − ‖r‖B−1 for λ̃CR,J > ‖r‖B−1 . �

Proof of the upper bound in Theorem 5.1. Let ũCR,1, . . . , ũCR,J be the
first J approximated discrete orthonormal eigenfunctions.

Since ICMũCR,1 ≡ ũCR,1 on each centred triangle of T ∗ with all ver-
tices as midpoints of edges in E(T ), the functions ICMũCR,1, . . . , ICMũCR,J

are linear independent. Thus, there exist some maximising coefficients
ξj with

∑J
j=1 ξ

2
j = 1 such that

λJ = min
VJ⊂V,dim(VJ )=J

max
v∈VJ\{0}

R(v) ≤ R

(
J∑
j=1

ξjICMũCR,j

)
. �

Proof of efficiency in Theorem 5.1. The proof of efficiency of the dif-
ference of the upper and lower bounds in (5.1) follows from some modi-
fications of the arguments of Lemmas 4.2, 4.3 and Theorem 4.4. There-
fore the remaining parts of this proof only sketch the main steps. The
arguments in (4.2) lead to

ηJ ≤ max
ξ∈RJ\{0}

R

(
J∑
j=1

ξjICMũCR,j

)
− λJ + |λJ − λ̃CR,J |+ λ̃2

CR,Jκ
2H2 + ‖r‖B−1 .

(5.4)

Suppose that ξ1, . . . , ξJ denote some coefficients of a maximiser ṽC
in the Rayleigh quotient of (5.4), ṽC :=

∑J
j=1 ξjICMũCR,j, and set

ṽCR :=
∑J

j=1 ξjũCR,j. Here, the arguments of step two in the proof of
Lemma 4.2 lead to

R(ṽC)− λJ . |||uJ − ṽCR|||NC + |||ṽCR − ṽC |||NC + (‖ṽC‖ − 1)2R(ṽC).

Since ũCR,1, . . . , ũCR,J is orthonormal and, without loss of generality,
ξ2

1 + . . .+ ξ2
J = 1, it holds that ‖ṽCR‖ = 1 and

(‖ṽC‖ − 1)2 ≤ ‖ṽCR − ṽC‖2.

The discrete scaling argument of (4.4) implies

‖ṽCR − ṽC‖ . H|||ṽCR − ṽC |||NC.

The linearity of ICM from Lemma 3.5, ṽCR− ṽC = ṽCR−ICMṽCR, plus
Lemma 3.4 show that

|||ṽCR − ṽC |||NC . |||uJ − ṽCR|||NC.
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The arguments of steps three and four in the proof of Lemma 4.2 plus
Lemma 4.3 and Theorem 4.4 conclude the proof of the efficiency. �

Example 5.3. The criss-cross triangulation of Figure 1.1 leads to the
matrices A = 4 I4×4 = B/24 for the 4 × 4-dimensional identity ma-
trix I4×4. Any vector uCR ∈ R4 is eigenvector with r ≡ 0 to the
eigenvalue λCR = 24 of multiplicity four. For J = 2 one may choose
the basis (uCR,1, uCR,2) proportional to (1, 1, 1, 1) and (1, 1, 1, 0) that
leads to the bounds 4.2594 ≤ λ2 ≤ 72. Note that the exact second
and third eigenvalues λ2 = λ3 = 5π2 = 49.348 coincide. The condition

H <
(√

3/2− 1
)
/(κπ

√
5) is violated, but some elementary direct con-

siderations with u2 and u3 on the continuous level and the positivity
of u1 imply that INCu1 and INCu2 are linearly independent. There-
fore, the aforementioned eigenvalue bounds for λ2 are guaranteed. The
eigenvalue bounds are remarkable in that J = 2 cuts a cluster of eigen-
values on the continuous level (λ2 = λ3) as well as on the discrete level
(λCR,1 = . . . = λCR,4).

Remark 5.4. Note that Lemma 5.2 provides an explicit bound for the
global mesh-size that leads so the separation condition in Theorem 5.1
but does not need any regularity assumption of the eigenfunctions.
Elliptic regularity for some convex domain Ω [Gri85, Theorem 4.3.1.4]
shows

‖D2uJ‖ = ‖∆uJ‖ = λJ‖uJ‖ = λJ .

Since (3.1), the Poincaré inequality on a triangle T ∈ T [LS10] reads

‖∇(uJ − INCuJ)‖2
L2(T ) ≤ h2

T/j
2
1,1‖D2uJ‖2

L2(T ).

The square roots of the sum of all those inequalities reads

|||uJ − INCuJ |||NC ≤ H/j1,1‖D2uJ‖L2(Ω).

This and Theorem 2.1 plus the aforementioned elliptic regularity esti-
mate shows

‖uJ − INCuJ‖ ≤ κH|||uJ − INCuJ |||NC ≤ κH2/j1,1‖D2uJ‖ ≤ κH2λJ/j1,1.

This leads to the improved separation condition

H2 < j1,1

(√
1 + 1/J − 1

)
/(κλJ)

for higher eigenvalues on convex domains in Theorem 5.1. The reduced
elliptic regularity allows a similar proof with rather unknown constants
from ‖uJ‖Hs(Ω) ≤ C(s)‖λJuJ‖.

6. Numerical Experiments

This section presents an adaptive algorithm and provides some nu-
merical examples for the unit square, the L-shaped domain, and two
isospectral domains.
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Figure 6.1. Refinement rules: sub-triangles with cor-
responding reference edges depicted with a second edge.

N 16 56 208 800
λ2,` − λ1,` 12.0964 25.4691 28.5894 29.3549

N 3136 12416 49408 197120
λ2,` − λ1,` 29.5454 29.5930 29.6048 29.6078

Table 6.1. Spectral gap for the smallest eigenvalue of
the unit square for different meshes with N = |E`(Ω)|
degrees of freedom.

6.1. Adaptive finite element algorithm. The basic adaptive finite
element method (AFEM) starts from an initial coarse triangulation T0

and generates a sequence of nested triangulations T0, T1, . . . with cor-
responding nonnested nonconforming spaces (CR1

0(T`))` in successive
loops of the form

Solve −→ Estimate −→ Mark −→ Refine.

Input. T0, 0 < θ ≤ 1, τ > 0.

Solve. Input: Approximation (λ̃1,`, ũ1,`) ∈ R × CR1
0(T`) on the trian-

gulation T`.
Repeat

Run one iteration step of the preconditioned inverse iteration
(PINVIT) [KN03] with one V-cycle multigrid iteration with
Richardson smoother [Bre99] as a preconditioner

until

‖r`‖B−1
`
≤ min{λ̃1,`, τ}, r` := A`ũ1,` − λ̃1,`B`ũ1,`,

and if 1 > κ4(λ̃1,` − ‖r`‖B−1
`

)2H4
` until η2 ≤ max{η1, η3}.
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Estimate. The error estimate of Theorem 3.1 reads

|λ1 − λ̃1,`| ≤ η1 + η2 + η3

with

η1 :=
λ̃1,`κ

2(λ̃1,` − ‖r`‖B−1
`

)H2
`

1− κ4(λ̃1,` − ‖r`‖B−1
`

)2H4
`

,

η2 :=
‖r`‖B−1

`

1 + κ2(λ̃1,` − ‖r`‖B−1
`

)H2
`

,

η3 := R(ICMũ1,`)−
λ̃1,`

1− κ4(λ̃1,` − ‖r`‖B−1
`

)2H4
`

.

Mark. The mesh-refinement selects a set of edges M` ⊆ E` with the
goal to balance the contributions η1 + η2 + η3 as follows
(a) If 1 ≤ κ4(λ̃1,` − ‖r`‖B−1

`
)2H4

` or η1 > max{η2, η3} then

M` := ∪{E ∈ E` : |E| = H`}.
(b) Else if η3 ≥ max{η1, η2}, then the set of marked edgesM` ⊆ E` is
of minimal cardinality that fulfils the bulk criterion [Dör96]:

θ
∑
E∈E`

η2
` (E) ≤

∑
E∈M`

η2
` (E) for η2

` (E) := hE‖[∂ũ1,`/∂s]‖2
L2(E).

Refine. Given the setM` ⊆ E` of marked edges, the refinement T`+1 is
computed as a minimal regular triangulation such that M` ⊆ E`\E`+1

and each triangle is refined by one of the rules from Figure 6.1.

6.2. Unit square. Consider the model problem (1.1) on the unit square
Ω = (0, 1)2 with the smallest eigenvalue λ1 = 2π2.

The first experiment in Table 6.1 investigates the critical algebraic
condition on the spectral gap λ2,` − λ1,`. The results are computed for
a sequence of red-refined meshes and the ARPACK [LSY98] solver (im-
plemented in the Matlab function ’eigs’) with tolerance up to machine
precision. The spectral gap is relatively large even for coarse meshes
and motivates the choice τ = 1.

Figure 6.2 verifies that the lower and upper bounds of Theorem 3.1
are empirically lower and upper eigenvalue bounds and presents some
perturbed bounds as well. The perturbed bounds are obtained from a
perturbed eigenvector

ũ1,` = u1,` + rand(0, 1)/(dim(CR1
0(T`))λ1,`),

where u1,` is computed with ARPACK up to machine precision. The
perturbed eigenvalue is the Rayleigh quotient of the perturbed eigen-
vector. Note that the numerical results show that for the first mesh
the perturbation is too large such that a different eigenvalue is approx-
imated and the lower bound does not hold.
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Figure 6.2. Computed and randomly perturbed upper
and lower bounds on the smallest eigenvalue of the unit
square

Figure 6.3 compares the accuracy of the nonconforming and the con-
forming FEMs on uniform red-refined meshes. The first observation is
that the nonconforming eigenvalue error |λ1 − λCR,1| is smaller than
the conforming eigenvalue error |λ1− λC,1| displayed versus its degrees
of freedoms N := dim(VC). The comparison of the conforming eigen-
value error |λ1 − λC,1| and the error for the postprocessing λCM,1 :=
R(ICMuCR,1), |λ1 − λCM,1|, both plotted versus N = dim(CR1

0(T )),
shows that the proposed interpolation on the red-refined mesh leads to
better upper bounds than a conforming approximation on the coarse
mesh.

6.3. L-shaped domain. Consider the model problem (1.1) on the L-
shaped domain Ω = (−1, 1)2\([0, 1]×[−1, 0]) with λ1 = 9.6397238440219
[TB06].

Figure 6.4 compares the eigenvalue error for the mean value µ of
the upper and lower eigenvalue bounds in Theorem 3.1 to its upper
bound η/2. Uniform red-refined meshes with ARPACK result in sub-
optimal convergence of the estimator η/2 as expected for the singular
eigenfunction but lead to a surprising super-convergence of the error
|λ1−µ|. The surprising super-convergence of |λ1−µ| might result from
some super-convergence phenomena on this highly structured grid, cf.
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Figure 6.3. Convergence history for the unit square for
different eigenvalue errors
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Figure 6.5. Efficiency indices for the L-shaped domain

[WZ09] for super-convergence phenomena of eigenvalues. For graded
meshes with ARPACK the empirical convergence rate is optimal and
for the proposed adaptive algorithm it is asymptotically optimal. The
eigenvalue error of the adaptive algorithm is not monotone which re-
sults from the fact that the algorithm starts with uniform refinements
at the beginning an therefore the error matches the super-convergent
error. Afterwards one step of uniform refinement is followed by one step
of adaptive refinement that destroys the mesh-symmetry and therefore
the super-convergence. As a result the error gets closer and closer to
the quasi-optimal error for graded meshes. In contrast to that the er-
ror bound η/2 is monotonically decreasing. This illustrates the mixed
adaptive strategy with respect to the algebraic eigenvalue error, the
global mesh-size, and the approximation error and provides numerical
evidence for the superiority of adaptive mesh-refinement.

Figure 6.5 displays the efficiency indices Ieff := (η/2)/|λ1−µ|. Clearly,
for uniform meshes one observes the mentioned efficiency gap. The val-
ues for graded and adaptive meshes are between 1 and 2 and tend to
1.4. Since η/2 is a guaranteed upper bound, all values are greater or
equal to one.

6.4. Isospectral domains. Consider the model problem (1.1) on the
two isospectral domains of Figure 6.6 with the approximation of the
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Figure 6.6. Two isospectral domains

lower bounds
N left domain right domain

186 8.484029241600799 8.484029241600801
708 22.079541883464980 22.079541883464987

2760 40.139305042643208 40.139305042643237
10896 49.823736249152233 49.823736249152240
43296 53.022275017108896 53.022275017108903

172608 53.889870459421545 53.889870459421537
689280 54.112360562895724 54.112360562895560

2754816 54.168723796821510 54.168723796821538
11014656 54.183012990240513 54.183012990240186

upper bounds
N left domain right domain

186 114.2653311991490 114.2653311991488
708 64.397132862386258 64.397132862387565

2760 56.619351329573185 56.619351329573249
10896 54.818424684560334 54.818424684560306
43296 54.352753736838082 54.352753736838132

172608 54.231273697990432 54.231273697990602
689280 54.199573365120656 54.199573365121147

2754816 54.191162363149061 54.191162363147861
11014656 54.188868310930701 54.188868310929948

Table 6.2. Bounds for λ50 = 54.187936 for the isospec-
tral domains of Figure 6.6

50-th eigenvalue λ50 = 54.187936 [TB06]. For the numerical experi-
ments, both domains are triangulated similarly with the same num-
ber of triangles. The experiments show for uniform red-refinements
and ARPACK that both domains lead to the same eigenvalue approx-
imations up to machine precision. Table 6.2 verifies empirically the
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theoretical upper and lower bounds of Theorem 5.1 and shows that
also the computed upper and lower bounds are equal up to machine
precision for both domains. An interesting observation on the max-
imising Rayleigh quotient in Theorem 5.1 is that the maximum of
R(ξ1ICMũCR,1 + . . . + ξ50ICMũCR,50) is obtained for ξ1 = . . . = ξ49 = 0
and ξ50 = 1 in all displayed numerical experiments. The separation con-
dition of Theorem 5.1 leads in this example with J = 50 to H < 0.007
which is satisfied for the triangulations in the last and second last entry
of Table 6.2. Remark 5.4 illustrates that this condition is coarse but
explicit constants for the nonconvex domain at hand require more in-
sight which is compensated by this strong separation condition in this
paper.
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