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1 Introduction

Natural gas is currently one of the most important sources of energy in the world. It is
used for electricity generation, but also to provide heating or to power vehicles. According
to Eurostat data, natural gas accounted for 22.6 % of the total energy consumed by end
users accross the European Union.
Due to this, it is very important to guarantee the supply of natural gas from its production
sites to the end users. As natural gas is not suited for transport in small vessels (like
trucks or tank ships, for example), this supply takes place through large networks of gas
pipelines. In these networks gas is injected at nodes and flows at a high pressure through
some pipes, and at a lower pressure at others to supply consumers. It is therefore very
important to have tools that can model adequately this type of networks.
One question we pose ourselves is the following: given a network and a load (a set of
injections and withdrawals of gas at some of the nodes), is it possible to move the gas
throughout the network in such a way that enough gas injected at supply points can be
withdrawn to satisfy the demands of the nodes representing end users? If the answer to
this question is positive, the load is said to be feasible. Because of European regulations
(see Regulation (EC) No 715/2009), the operators of the network (known as Transmission
System Operators, or TSOs) are required to be different and independent from the energy
companies that use the network to transport the gas. The procedure used to move gas
through the network is based around nominations: a gas supplier nominates ahead of
time a series of nodes alongside a balanced injection and extraction of gas at some of
them (meaning that the amount of gas injected into the system equals the amount of
gas extracted). On the specified day, however, the supplier can choose to decrease that
nomination. It is the duty of the TSO to ensure that the final load is still feasible so
that the contract can be fulfilled.
We will study this nomination problem. Our goal will be, starting from a given gas
network, to determine whether a given load is feasible, and how would the gas flow
through the network in that case. A comprehensive overview of possible approaches to
solve this problem can be found in Pfetsch et al. 2015.
After an adequate modeling of the gas flow, the problem can be reduced to finding a
solution to a system of multivariate equations. To solve this system we study the theory
of Gröbner basis, which will allow us to triangularize the system so that a solution can
be found by finding roots of univariate polynomials.
Note that we will work with networks for gas transportation, but the general idea of
using Gröbner basis to treat graphs with cycles can be extended further to other types
of problems, for instance in electrical circuits (where this idea was already being used in
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1 Introduction

the 1990s) or networks for Hydrogen transportation. More generally, the techniques of
Gröbner basis and triangular sets are useful tools to find accurate solutions of systems
of polynomial equations in several variables, regardless of where the specific equations
appear.

Objectives

The main objective of this thesis is to study the theoretical and practical limits of the
Gröbner basis approach, in terms of the size and the topology of the network but also
depending on the choice of coefficients. This allows us to determine bounds in the network
in order for our algorithm to be competitive.
In order to study the sources of error in the algorithm, we use Gröbner systems to
compute condition numbers of systems, and give arguments to support that the shape of
the ideals we work with is optimal. We also introduce the concept of parametric ideals to
work with networks with unknown flow directions while avoiding the need to loop over
all possible directions. To solve these parametric ideals faster we make use of the theory
of triangular sets.
Our main contribution is a topological reduction scheme designed to find a solution of a
large problem by reducing it, solving several subproblems and then merging the different
solutions together to obtain a solution for the larger problem.

Outline

Let us summarize the structure of the rest of this work. In chapter 2 we show how
to derive a system of equations for the gas flow depending only on the flow through
the fundamental cycles of the network, which allows us to reduce the dimension of the
problem. The algebraic tools are developped in chapter 3, where the concept of Gröbner
basis is introduced and studied. In chapter 4 we test the limits of the method by looking
at the performance and the potential sources of error for the algorithm. Finally, in
chapter 5, a multi-step reduction process is proposed and studied.
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2 Gas networks
We start by introducing the basic theory of gas networks, obtaining the equations that
govern the flow through pipes as well as the pressure at different points of the network.
We will always limit ourselves to the particular case of balanced, stationary, isothermal
gas networks. Balanced means that the sum of the inputs equals the sum of the outputs,
so we limit ourselves to moving gas and do not store it. Stationary (also known as steady
state) means that the inputs will be fixed numbers, and not be dependent on time, and
that we are at a point of time where the flows through the network have stabilized and
are also constant. Isothermal means that the gas will be at a constant temperature (in
particular, at the standard condition of 273.15 K).

2.1 Network description
We will first explain which elements constitute a gas network. While in real life there
are many components serving different functions, we will limit ourselves to just a few of
them.

• The most basic elements are nodes and pipes. Pipes are the basic structure through
which the gas flows from one place to another, nodes are points at which one can
access the pipe and therefore either introduce gas into the network or remove it, as
well as junctions between two or more pipes.

• Valves control the activation state of the pipe on which they are installed. If the
valve corresponding to a pipe is open, the pipe will function normally, as if the
valve did not exist. If, on the other hand, the valve is closed, then there will be no
flow through that pipe.

• Control valves act like normal valves, but with additional security measures. First
of all, it forces the gas to flow through the pipe in one direction, otherwise it closes.
Whenever the flow exceeds a preset value (which could be a safety limit), the valve
closes too. Finally, it forces the pressure to be within given bounds: in particular,
it guarantees that the outgoing pressure will always be above a certain value, thus
limiting the pressure loss.

• Compressors increase the pressure of the gas, to counter the pressure lost when
the gas is moved around. Unlike control valves, they can increase the pressure to a
value above the incoming pressure of the gas, and are therefore used to ensure that
along a long pipe the pressure is always kept above certain levels. They will also
force a direction on the flow of the gas. See Hiller and Walther 2017 for a large
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2 Gas networks

survey on compressor stations.

We will work with models that consist only of nodes and pipes. For valves, we will
suppose that they are always open, and therefore they can be reduced to a standard pipe.
Otherwise, we will simply remove the pipe on which they are located from the model.
For control valves and compressors, we will consider them as if they were simple pipes.
In order to describe our networks we use the tools of graph theory. A network instance
becomes a graph 𝐺 = (𝑉 ∗, 𝐸) where the vertices 𝑉 ∗ are the nodes of the network and the
edges 𝐸 are the pipes. We will use those names interchangeably. We will also assume that
our graph 𝐺 is connected; otherwise, one could simply treat each component separately.
Since we are dealing with flow through pipes, it makes sense to also consider an associated
directed graph ⃗𝐺 = (𝑉 ∗, 𝐴) with the same vertices but a set 𝐴 of arcs, with |𝐴| = |𝐸|.
Ideally one would define this digraph by orienting every edge in 𝐸 according to the
direction of the gas flow. However, this direction is not known to us beforehand, so we
have to find another way.
To get a directed graph, we start by building a tree 𝒯 by performing a depth-first search
on the graph, starting at a root node 𝑟 ∈ 𝑉 ∗ that we fix. This gives us a predecessor
function

𝑝 6 𝑉 ∗ − { 𝑟 } ⟶ 𝑉 ∗,
𝑢 ⟼ 𝑝(𝑢),

that associates to each vertex 𝑢 the previous vertex in the order defined by the depth-first
search (so, the previous vertex in the path linking 𝑟 to 𝑢 in 𝒯).
Lemma 2.1. For any edge 𝑎 = (𝑢, 𝑣) ∈ 𝐸(𝐺), we must have that there is some natural
number 𝑛 such that either 𝑝𝑛(𝑢) = 𝑣 or 𝑝𝑛(𝑣) = 𝑢.

Proof. Assume 𝑢 appears first in the depth-first search, and let us place ourselves in the
moment where the algorithm has chosen 𝑢. Then, since we are going for depth-first and
𝑢 has an edge to 𝑣, we know that before the algorithm leaves 𝑢 it will have added to 𝒯
either the edge (𝑢, 𝑣) or a path 𝑃 linking the two vertices. But then either 𝑝(𝑣) = 𝑢 or,
if 𝑃 is formed by 𝑛 edges, 𝑝𝑛(𝑣) = 𝑢.

The previous lemma says that we can orient any edge (𝑢, 𝑣) to get the arc

⃗𝑎 = (𝑝𝑛(𝑣), 𝑣) ∈ 𝐴( ⃗𝐺),

if 𝑢 appears first, or with the inverted direction if 𝑣 appears first.
Lemma 2.2. The graph ⃗𝐺 constructed this way is acyclic.

Proof. Assume 𝑢1 → 𝑢2 → … → 𝑢𝑘 → 𝑢1 is a cycle. Then

𝑢1 = 𝑝𝑛1(𝑢2) = 𝑝𝑛1(𝑝𝑛2(𝑢3)) = ⋯ = 𝑝𝑛1(𝑝𝑛2(⋯ 𝑝𝑛𝑘(𝑢1))) = 𝑝𝑛1+⋯+𝑛𝑘(𝑢1),

meaning 𝑢1 is a predecessor of itself, which is impossible.
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2.2 Flow modelling through a pipe

To any graph representing a network we associate a series of quantities representing the
flow of gas, as well as its pressure. Any vertex and any arc has an associated volumetric
gas flow, measured in m3 s−1 (other units of volume per time are of course possible). As
mentioned before, for vertices this is called the load (since it refers to the amount of gas
we add or remove from the system), and is denoted by 𝑞nom

𝑣 for the junction 𝑣. For edges,
this is the volumetric flow rate, and we denote it by 𝑄0,𝑎 for arc 𝑎. We can also measure
the pressure at every node 𝑣, which we denote by 𝑝𝑣, and which we measure in Pa. Note
that the pressure of the gas along a pipe varies, which is crucial for the model.
Of course the flows are in general real numbers, and the pressure is always positive. This
means that we get vectors

𝑝∗ = (𝑝𝑢1
, … , 𝑝𝑢|𝑉 |

) ∈ ℝ|𝑉 |
≥0 ,

𝑞nom∗ = (𝑞nom
𝑢1

, … , 𝑞nom
𝑢|𝑉 |

) ∈ ℝ|𝑉 |,

𝑄0 = (𝑄0,𝑎1
, … , 𝑄0,𝑎|𝐴|

) ∈ ℝ|𝐴|

that define the state of the network. If the flow 𝑄0,𝑎 at arc 𝑎 is positive, it means that
the gas flows in the direction of the arc ⃗𝐺; if it is negative, the flow goes against the
direction. If the load at a node is positive it means that we remove that volume of gas
from the system at that point; if it is negative it means we insert it. If the load is zero,
then the vertex acts as a simple junction between several pipes, and there is no gas
inserted or removed.
Since we wish for our network to be stationary, we must require additionally that

∑
𝑢∈𝑉

𝑞nom
𝑢 = 0 ⟺ 𝟙T𝑞nom = 0. (2.1)

This means that one of the loads is redundant. To simplify, we will choose the node 𝑟
that we have taken as the root for 𝒯 and ignore its load as it can be derived from the
rest of the system.

2.2 Flow modelling through a pipe
As it could be expected, it is not easy to model how the gas flows through a pipe. This
depends on many variables related to the pipe geometry (diameter, slope) or the pipe
construction (friction), as well as to considerations about the gas itself (its viscosity).
Broadly, for a pipe 𝑎 = (𝑢, 𝑣) along the 𝑥 axis one would have a system

𝐴
𝜕𝜌
𝜕𝑡 +

𝜕𝑞
𝜕𝑥 = 0, (2.2)

𝜕𝑝
𝜕𝑥 + 𝜆

|𝑣|𝑣
2𝐷 𝜌 +

1
𝐴

𝜕𝑞
𝜕𝑡 + 𝑔𝜌𝑠 +

1
𝐴

𝜕𝜌𝑣2

𝜕𝑥 = 0. (2.3)

where 𝐴 and 𝐷 are the area of the section of the pipe and its diameter, respectively, 𝜌 is
the density of the gas, 𝑞 is the mass flow, 𝜆 is the friction factor, 𝑣 is the velocity of the
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2 Gas networks

gas through the pipe, 𝑔 is the acceleration due to gravity, and 𝑠 is the slope of the pipe.
Since our network is stationary, all the time derivatives vanish, and therefore eq. (2.2)
gives

𝜕𝑞
𝜕𝑥 = 0.

This means that the mass flow through the entire length of the pipe (given by 𝑥) is
constant (this justifies a fortiori the definition of 𝑄0,𝑎 as a real number and not a function
of the position along the pipe, because 𝑄0,𝑎 = 𝑞/𝜌0 where 𝜌0 is the density of the gas
under normal conditions, of 273.15 K and 101 325 Pa). We assume that our model is
isothermal (meaning that the gas is always at the same temperature at every point of the
network) and planar (meaning that there is no height difference at any point, so 𝑠 = 0).
We ignore the last term of the second equation since it gives a very small contribution,
and arrive to

𝜕𝑝
𝜕𝑥 + 𝜆

|𝑣|𝑣
2𝐷 𝜌 = 0

The flow satisfies 𝐴𝜌𝑣 = 𝑞, as 𝐴𝑣 is the volumetric flow through a section of area 𝐴 of
the pipe and 𝜌 translates the volume into mass. Since 𝑞 = 𝜌0𝑄0,𝑎, we get

𝜕𝑝
𝜕𝑥 = −𝜆

𝑄0,𝑎|𝑄0,𝑎|
2𝐷𝜌 .

Further simplifications of the remaining 𝜌 term lead to

2𝑝
𝜕𝑝
𝜕𝑥 = −𝜓|𝑄0,𝑎|𝑄0,𝑎

where 𝜓 depends on many parameters of the gas and the pipes. Integrating, this gives

𝑝2
𝑣 − 𝑝2

𝑢 = −𝜙|𝑄0,𝑎|𝑄0,𝑎, (2.4)

where 𝑢 and 𝑣 are the start and end, respectively, nodes of the pipe. This means that,
while the flow remains constant, the pipe causes a pressure drop between the start and
end nodes. We call 𝜙 the pressure drop coefficient.

2.3 Flow throughout the network
The former equation relates pressures to flow. We still need to relate flows through pipes
and through junctions, and we do so by looking at mass conservation. At each junction
𝑣 one has

𝑞𝑣 = ∑
head(𝑎)=𝑣

𝑄0,𝑎 − ∑
tail(𝑎)=𝑣

𝑄0,𝑎, (2.5)

that is, in order for the network to be balanced, the net sum of gas flow to junction 𝑣
must be exactly what we remove/insert from it. This in practice is equivalent to the role
of Kirchhoff’s law of currents in the analysis of electrical circuits.
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2.3 Flow throughout the network

Remark 2.3. Kirchhoff’s loop rule, stating that the sum of voltages along a cycle adds
up to zero, would be equivalent to saying that the pressure drop of the gas between two
nodes is independent of the path taken by the gas.

To model the entire network, we use the incidence matrix 𝒜∗ of the graph ⃗𝐺. This matrix
is defined as

𝒜∗ = (𝑎𝑖,𝑗) ∈ ℝ|𝑉 ∗|×|𝐸|, 𝑎𝑖,𝑗 =
⎧
{
⎨
{
⎩

+1 if head(𝑎𝑗) = 𝑢𝑖,
−1 if tail(𝑎𝑗) = 𝑢𝑖,

0 otherwise.

Lemma 2.4. The rank of 𝒜∗ is |𝑉 ∗| − 1.

Proof. Consider the |𝑉 ∗| − 1 columns representing the arcs of the tree 𝒯. For any other
column associated to an arc ⃗𝑎, we know this arc will be part of an (unoriented) cycle.
Therefore, if ⃗𝑎 = (𝑢, 𝑣), it is possible to find a path joining 𝑢 and 𝑣 by picking the
smallest values of 𝑛 and 𝑚 such that 𝑝𝑛(𝑢) = 𝑝𝑚(𝑣) = 𝑤, and joining the path 𝑤 → 𝑣
with the inverted path 𝑢 → 𝑤. This allows us to write the column associated to ⃗𝑎 as the
sum of the columns in the 𝑤 → 𝑣 path minus the columns in the 𝑤 → 𝑢, giving that the
arcs of 𝒯 are a generating set, and hence rank(𝒜∗) ≤ 𝑛 − 1.
What remains is showing that this set is independent, which is clear: let 𝒜1, … , 𝒜𝑟 be
the columns corresponding to the arcs of 𝒯, and assume

0 =
𝑟

∑
𝑖=1

𝜆𝑖𝒜𝑖.

That relation in particular has to hold component-wise. If 𝑣𝑗 is a leaf in the tree (and
there must be at least one leaf in any tree), and 𝒜𝑘 is the column corresponding to
the only arc going to that leaf, we obtain by limiting the equation above to row 𝑗 the
equation

𝑟
∑
𝑖=1

𝜆𝑖𝒜𝑗,𝑖 = 𝜆𝑘𝒜𝑗,𝑘 = 0 ⟹ 𝜆𝑘 = 0.

Assuming without loss of generality that 𝑘 = 𝑟, we arrive to

0 =
𝑟−1
∑
𝑖=1

𝜆𝑖𝒜𝑖,

and repeating the process for new leaves of the tree after deleting 𝑣𝑗 we obtain

𝜆1 = 𝜆2 = ⋯ = 𝜆𝑟 = 0,

therefore proving the independence.

Since the rank of 𝒜∗ is |𝑉 ∗| − 1, we define a new matrix 𝒜 to be equal to 𝒜∗ but with
the row related to 𝑟 deleted. If 𝑉 = 𝑉 ∗ − { 𝑟 } , then rank(𝒜) = |𝑉 |. We arrange the
matrix as

𝒜 = [ 𝒜𝐵 ∣ 𝒜𝑁 ],

7



2 Gas networks

with the subindex 𝐵 (standing for basis) meaning that we take the arcs stemming from
the edges of 𝒯. Since it was a tree on a graph with |𝑉 ∗| vertices, there are |𝑉 | such edges
and hence 𝒜𝐵 ∈ ℝ|𝑉 |×|𝑉 |.
Corollary 2.5. The matrix 𝒜𝐵 is nonsingular.

Proof. Simply note that in lemma 2.4 we already showed that the columns of 𝒜𝐵 form a
basis of the space that 𝒜∗ spans, and the arguments hold the same for 𝒜.

Keeping with this convention, we define 𝑝 and 𝑞nom from its starred siblings by removing
the value corresponding to the root node, either 𝑝𝑟 or 𝑞nom

𝑟 . We also define 𝜙 ∈ ℝ|𝐴| to
be the vector of pressure drops at every arc, and Φ = diag(𝜙).
If we look at the construction of the incidence matrix and eq. (2.5) it is clear that

𝒜∗𝑄0 = 𝑞nom∗.

This system is overdefined since 𝒜∗ does not have full rank, therefore it is equivalent to
the system

𝒜𝑄0 = 𝑞nom (2.6)
since we can lift any solution due to eq. (2.1).
We have similarly that eq. (2.4) leads to

(𝒜∗)T(𝑝∗)2 = −Φ|𝑄0|𝑄0. (2.7)

Here, (𝑝∗)2 is the vector of the squared pressures, and similarly for |𝑄0|𝑄0, meaning that
we perform the operations element-wise. If we consider the system

𝒜𝑄0 = 𝑞nom,
(𝒜∗)T(𝑝∗)2 = −Φ|𝑄0|𝑄0,

we have |𝑉 | + |𝐸| equations and |𝑉 ∗| + |𝐸| variables. This difference is because we have
removed the equation for 𝑞nom

𝑟 , that could be deduced from the others. To solve the
issue of the system being underdefined, we also set the pressure 𝑝𝑟 at the root. Then the
previous equation is equivalent to the equations

𝒜T
𝑟,𝐵𝑝2

𝑟 + 𝒜T
𝐵𝑝2 = −Φ𝐵|𝑄0,𝐵|𝑄0,𝐵 (2.8)

and
𝒜T

𝑟,𝑁𝑝2
𝑟 + 𝒜T

𝑁𝑝2 = −Φ𝑁|𝑄0,𝑁|𝑄0,𝑁 (2.9)
by considering for instance that 𝑟 is the first node and hence the first row 𝒜𝑟 is removed
from 𝒜∗ to get 𝒜, giving

𝒜∗ = [ 𝒜𝑟
𝒜𝐵 𝒜𝑁

] ⟹ (𝒜∗)T = [ 𝒜T
𝑟,𝐵 𝒜T

𝐵
𝒜T

𝑟,𝑁 𝒜T
𝑁

] ,

and performing the block-matrix multiplication.
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2.3 Flow throughout the network

Rearranging eq. (2.8) then leads to

𝑝2 = −(𝒜T
𝐵)−1𝒜T

𝑟,𝐵𝑝2
𝑟 − (𝒜T

𝐵)−1Φ𝐵|𝑄0,𝐵|𝑄0,𝐵.

Since 𝒜∗ is an incidence matrix, there is only one +1 and one −1 in each column, hence

𝟙T𝒜∗ = 0 ⟹ 𝟙T [ 𝒜𝑟,𝐵
𝒜𝐵

] = 0 ⟹ 𝒜𝑟,𝐵 = −𝟙T𝒜𝐵, 𝒜𝑟,𝑁 = −𝟙T𝒜𝑁.

We therefore get the simplified equation

𝑝2 = 𝟙𝑝2
𝑟 − (𝒜T

𝐵)−1Φ𝐵|𝑄0,𝐵|𝑄0,𝐵. (2.10)

If we substitute back into eq. (2.9) we obtain

𝒜T
𝑟,𝑁𝑝2

𝑟 + 𝒜T
𝑁𝟙T𝑝2

𝑟 − 𝒜T
𝑁(𝒜T

𝐵)−1Φ𝐵|𝑄0,𝐵|𝑄0,𝐵 = −Φ𝑁|𝑄0,𝑁|𝑄0,𝑁.

The first two terms cancel each other by rewriting 𝒜T
𝑟,𝑁, and we are left with

𝒜T
𝑁(𝒜T

𝐵)−1Φ𝐵|𝑄0,𝐵|𝑄0,𝐵 = Φ𝑁|𝑄0,𝑁|𝑄0,𝑁. (2.11)

Going back to eq. (2.6), we have

𝒜𝑄0 = 𝑞nom ⟹ 𝒜𝐵𝑄0,𝐵 + 𝒜𝑁𝑄0,𝑁 = 𝑞nom ⟹ 𝑄0,𝐵 = 𝒜−1
𝐵 (𝑞nom − 𝒜𝑁𝑄0,𝑁).

Note that 𝒜𝐵 is invertible due to corollary 2.5.
If we now define

𝑔 6 ℝ|𝑉 | × ℝ|𝐴|−|𝒯| ⟶ ℝ|𝑉 |,
(𝑠, 𝑡) ⟼ (𝒜−1

𝐵 )TΦ𝐵|𝒜−1
𝐵 (𝑠 − 𝒜𝑁𝑡)|𝒜−1

𝐵 (𝑠 − 𝒜𝑁𝑡),

we get that the eq. (2.11) is equivalent to

𝒜T
𝑁𝑔(𝑞nom, 𝑄0,𝑁) = Φ𝑁|𝑄0,𝑁|𝑄0,𝑁.

We can therefore state the following theorem.
Theorem 2.6. For a gas network with load vector 𝑞nom, let

𝐹(𝑧) = 𝒜T
𝑁𝑔(𝑞nom, 𝑧) − Φ𝑁|𝑧|𝑧.

If ̂𝑧 is root of 𝐹, then the vector 𝑄0 with

𝑄0,𝑁 = ̂𝑧,
𝑄0,𝐵 = 𝒜−1

𝐵 (𝑞nom − 𝒜𝑁 ̂𝑧).

is the vector of flows of the network.

The proof of the theorem is immediate from the previous discussion.
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2 Gas networks

Remark 2.7. The equation 𝐹(𝑧) = 0 has a unique solution over the real numbers; a
proof can be found in Ríos Mercado et al. 2002, § 4.
Remark 2.8. From the construction of 𝒜 one gets that every column of 𝒜𝑁 corresponds
to an arc added to the tree, and therefore an arc that creates an undirected cycle in
the graph 𝐺. We call any such cycle a fundamental cycle. Therefore from the previous
theorem we obtain that in order to get a solution for the entire network it is enough to
look at the fundamental cycles, and then finding the rest of the flows can be done by
simple linear algebra.

Note that, while a solution for 𝐹(𝑧) leads to a set of flows and pressures that satisfy
eqs. (2.2) and (2.3), this is not enough to guarantee that it’s an actual solution for the
network. Indeed, the network will always have some additional constraints on the flow
through the pipes and the pressure at nodes associated with the physical capabilities
of the pipes and the junctions. In particular, one should expect that the pipes have a
maximum volumetric flow rate, and that the pressure at nodes is restricted to a certain
interval for safety reasons. However, we will not mention these conditions, and instead
focus in finding the solution of 𝐹(𝑧).
Example 2.9. Let us consider a simple network given by the graph

𝑞1

𝑞2

𝑞3

𝑞4 𝑞5

𝑎1

𝑎2 𝑎3

𝑎4
𝑎5

𝑎6

The tree 𝒯 is formed by the vertices 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5 visited in that order, therefore the
two fundamental cycles are formed by 𝑎5 and 𝑎6, that will become 𝑧1 and 𝑧2 respectively.
The arcs in the graph follow the orientation induced by 𝒯. The matrix 𝒜 will be given
by

𝒜 =
⎛⎜⎜⎜⎜⎜
⎝

+1 −1 0 0 0 0
0 +1 −1 0 +1 0
0 0 +1 −1 0 +1
0 0 0 +1 0 0

⎞⎟⎟⎟⎟⎟
⎠

.

The right hand side of the system of equations will simply consist of 𝜙5|𝑧1|𝑧1 and 𝜙6|𝑧2|𝑧2.
For the right hand side, note that

𝑞 − 𝒜𝑁𝑧 =
⎛⎜⎜⎜⎜⎜
⎝

𝑞2
𝑞3 − 𝑧1
𝑞4 − 𝑧2

𝑞5

⎞⎟⎟⎟⎟⎟
⎠

⟹ 𝒜−1
𝐵 (𝑞 − 𝒜𝑁𝑧) =

⎛⎜⎜⎜⎜⎜
⎝

𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2
𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2

𝑞4 + 𝑞5 − 𝑧2
𝑞5

⎞⎟⎟⎟⎟⎟
⎠

.
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2.3 Flow throughout the network

We also have that

𝒜T
𝑁(𝒜−1

𝐵 )TΦ𝐵 = (1 1 0 0
1 1 1 0)

⎛⎜⎜⎜⎜⎜
⎝

𝜙1
𝜙2
𝜙3
𝜙4

⎞⎟⎟⎟⎟⎟
⎠

= (𝜙1 𝜙2 0 0
𝜙1 𝜙2 𝜙3 0) .

This leads to the overall system

𝜙5|𝑧1|𝑧1 = 𝜙1|𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2|(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)
+ 𝜙2|𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2|(𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2),

𝜙6|𝑧2|𝑧2 = 𝜙1|𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2|(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)
+ 𝜙2|𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2|(𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)
+ 𝜙3|𝑞4 + 𝑞5 − 𝑧2|(𝑞4 + 𝑞5 − 𝑧2).

Note that this system is independent of 𝜙4, as expected since it is not part of any cycle,
and moreover 𝑞5 appears only with 𝑞4 and not alone. In the construction of 𝒜−1

𝐵 (𝑞−𝒜𝑁𝑧),
which gives the flows 𝑄0,𝑁, the last component is simply the load at 𝑞5, as that will
always be the flow independently of the values in the rest of the network. The elements of
𝑄0,𝑁 can also be described simply: for instance, for 𝑄0,𝑎3

representing the flow through
𝑎3, one sees that this flow equals the loads at 𝑞4 and 𝑞5 that the pipe has to supply,
minus the flow through 𝑧2 that is also supplying those nodes. So the formula simply
reads 𝑄0,𝑎3

+ 𝑄0,𝑎6
= 𝑞4 + 𝑞5 = 𝑞4 + 𝑄0,𝑎4

, equivalent to

𝑞4 = 𝑄0,𝑎3
+ 𝑄0,𝑎6

− 𝑄0,𝑎4
.

This is simply a reformulation of eq. (2.5).
Remark 2.10. It is possible to arrive to different models for the gas flow, depending on
the treatment of the system in eqs. (2.2) and (2.3). For instance, in Ekhtiari et al. 2019,
they work with nodes at different heights (meaning that 𝑠 ≠ 0), and arrive to

𝑝2
𝑢 − 𝑝2

𝑣 = 𝜙𝑎|𝑄0,𝑎|𝑄0,𝑎 + 𝜓𝑎(𝑝𝑢 + 𝑝𝑣)2.

The issue is the fact that one gets a cross product 𝑝𝑢𝑝𝑣 when squaring out the sum,
which means that one cannot have an equation linear in 𝑝2. In Pfetsch et al. 2015, some
pipes are considered to be compressors. In those cases, one lets 𝜙𝑎 = 0 and defines
Δ𝑎 = 𝑝2

𝑣 − 𝑝2
𝑢. Then one gets

𝒜T
𝑁(𝒜T

𝐵)−1 (Φ𝐵|𝒜−1
𝐵 (𝑞 − 𝒜𝑁𝑧)|(𝒜−1

𝐵 (𝑞 − 𝒜𝑁𝑧)) − Δ𝐵) = Φ𝑁|𝑧|𝑧 − Δ𝑁.

But then the choice of Δ is unclear: one could also solve for Δ by considering the
equations of a compressor station, but the system also becomes non-polynomial.

11



2 Gas networks

2.4 Obtaining a polynomial system
We are tasked with solving a system of equations of the form

𝒜T
𝑁(𝒜−1

𝐵 )TΦ𝐵|𝒜−1
𝐵 (𝑞nom − 𝒜𝑁𝑧)|(𝒜−1

𝐵 (𝑞nom − 𝒜𝑁𝑧)) = Φ𝑁|𝑧|𝑧.

The problem is that our idea is solving the equation using polynomial solvers, therefore
we have to remove the absolute values.
To do so, we consider a vector 𝑠 ∈ { +1, −1 } |𝐴| that represents the sign of the associated
flow, so that

𝑠𝑎𝑄2
0,𝑎 = |𝑄0,𝑎|𝑄0,𝑎.

If we divide 𝑠 as (𝑠𝐵, 𝑠𝑁) as before, it is clear that 𝑠𝑁𝑧2 = |𝑧|𝑧 (where again the operation
is considered component-wise). Moreover, note that

𝑄0,𝐵 = 𝒜−1
𝐵 (𝑞nom − 𝒜𝑁𝑧),

therefore we can remove the absolute value in the left hand side by multiplying with 𝑠𝐵.
We then get

𝒜T
𝑁(𝒜−1

𝐵 )TΦ𝐵 diag(𝑠𝐵)(𝒜−1
𝐵 (𝑞nom − 𝒜𝑁𝑧))2 = Φ𝑁 diag(𝑠𝑁)𝑧2. (2.12)

The issue is that eq. (2.12) has, in general, more solutions than the system we want to
solve. The reason for this is that, although if we set (𝑠𝑁)𝑖 = 1 it means we are solving
for 𝑧𝑖 ≥ 0, it is entirely possible that a solver will find a solution where 𝑧𝑖 < 0. To get
around this problem, one can simply check that, for a solution ̂𝑧, the signs are consistent,
meaning that

diag(𝑠𝑁) ̂𝑧 ≥ 0, diag(𝑠𝐵)𝒜−1
𝐵 (𝑞nom − 𝒜𝑁 ̂𝑧) ≥ 0.

Although many solutions are possible in eq. (2.12), only one of them will satisfy the
inequalities above, since that solution will also be a valid solution in the system defined
in theorem 2.6. And as that system can only have one equation, so will ours.
Example 2.11. Repeating the previous example, one would get the system

𝜙5𝑠5𝑧2
1 = 𝜙1𝑠1(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)2 + 𝜙2𝑠2(𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)2,

𝜙6𝑠6𝑧2
2 = 𝜙1𝑠1(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)2 + 𝜙2𝑠2(𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2)2

+ 𝜙3𝑠3(𝑞4 + 𝑞5 − 𝑧2)2,

alongside the restrictions 𝑠5𝑧1 ≥ 0, 𝑠6𝑧2 ≥ 0, 𝑠4𝑞5 ≥ 0 and

𝑠1(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2) ≥ 0,
𝑠2(𝑞3 + 𝑞4 + 𝑞5 − 𝑧1 − 𝑧2) ≥ 0,

𝑠3(𝑞4 + 𝑞5 − 𝑧2) ≥ 0.

By choosing values for 𝑠, the system becomes polynomial, and the restrictions can be
checked in order to find if the solutions are valid. Again, once the load 𝑞5 is fixed, the
direction 𝑠4 is fixed.
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3 Gröbner basis

From the previous chapter we know that computing a solution (meaning a flow distribution
through the network) for a given gas network boils down to finding a solution of a set of
quadratic equations given by eq. (2.12).
To find such solutions we will use Gröbner bases, which are one of the most important
tools in computational algebra. The main idea is that a Gröbner basis, with respect to
a given ordering, will give an equivalent but more useful representation of the system
that allows us to find global solutions by considering equations with a smaller number of
variables first.
This of course comes at a price: although the description and the algorithms for computing
Gröbner bases are straightforward, they are provably expspace (so they require both
exponential time and memory, see Bardet 2002), which means they scale badly when the
size of the network increases.

3.1 The ideal membership problem

We will now broadly follow Cox, Little, and O’Shea 2015 in the presentation of the theory
of Gröbner bases. Let us start by recalling some definitions.
Definition 3.1 (Rings). A ring (𝑅, +, ⋅) is an Abelian group (𝑅, +) with an additional
associative binary operation ⋅ 6 𝑅 × 𝑅 → 𝑅 with identity 1 such that 1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎,
and where ⋅ distributes over + as

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐, (𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐.

Definition 3.2 (Fields). A field 𝐾 is a ring where the operation × has an inverse.

We will consider three fields at the same time. First, we would like to be working over ℝ,
since the values of loads, flows and pressures will be real numbers. However, as we are
working with computers, it’s more practical to work over ℚ, so that if we have 𝑟 ∈ ℝ
written as

𝑟 = 𝑧 × 10𝑒

with 𝑧 and 𝑒 both integers (due to the limitations of working with a computer with
limited precision) we can consider instead

𝑞 =
𝑧

10−𝑒 ∈ ℚ.
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3 Gröbner basis

Finally, since for many questions of algebraic geometry it is more convenient to work
over an algebraically closed field, we will sometimes consider our problem to be in ℂ.
The ring of choice for us will be the ring of polynomials in 𝑛 variables, denoted by

𝑅 = 𝐾[𝑥1, … , 𝑥𝑛].

Definition 3.3 (Ideals). An ideal 𝐼 ⊆ 𝑅 of a ring 𝑅 is a subset that is itself a ring, and
such that 𝑅 × 𝐼 ⊆ 𝐼. Given elements 𝑟1, 𝑟2, … , 𝑟𝑘 of the ring, we can define the ideal
they generate as

𝐼 = ⟨𝑟1, … , 𝑟𝑘⟩ = {
𝑘

∑
𝑖=1

𝑎𝑖𝑟𝑖 ∣ 𝑎𝑖 ∈ 𝑅 }

Now we want to consider ideals 𝐼 in 𝑅 = 𝐾[𝑥1, … , 𝑥𝑛]. We can in general write them as

𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩

where the 𝑓𝑖 are polynomials in 𝑛 variables. This is a consequence of the following
theorem.
Theorem 3.4 (Hilbert’s basis theorem). Any ideal 𝐼 of 𝑅 = 𝐾[𝑥1, … , 𝑥𝑛] can be written
as

𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩

for some 𝑓𝑖 ∈ 𝑅.

Note that in general (for other rings) this is not true, since some ideals may have infinitely
many generators. For rings of polynomials over a field, however, every ideal has a finite
set of generators.
Despite the simplicity of the description of 𝐼, some questions are really hard to answer.
A clear example is, given 𝐼 and 𝐽 two ideals over the same field, to find whether 𝐼 = 𝐽.
Other is the one we will focus on: given an element 𝑓 and an ideal 𝐼 of a ring 𝑅, to
establish whether 𝑓 ∈ 𝐼. The theory of Gröbner basis can provide a solution to both of
these problems.
To get a picture of the path that we are going to follow it is interesting to consider a
one-dimensional case, so work with ideals in ℚ[𝑥]. Since this is a principal ideal domain,
all ideals are of the form

𝐼 = ⟨𝑓(𝑥)⟩ ⊂ ℚ[𝑥].

If we’re given a set of generators 𝑓1, … , 𝑓𝑘 of the ideal, then

⟨𝑓1, … , 𝑓𝑘⟩ = ⟨gcd(𝑓1, … , 𝑓𝑖)⟩.

Bézout’s identity implies that the greatest common divisor 𝑑(𝑥) is a member of the ideal,
since it gives

𝑑(𝑥) =
𝑘

∑
𝑖=1

𝛼𝑖(𝑥)𝑓𝑖(𝑥).
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In the other direction, if 𝑓𝑖(𝑥) = 𝑑(𝑥)𝑔𝑖(𝑥), then
𝑘

∑
𝑖=1

𝑎𝑖(𝑥)𝑓𝑖(𝑥) = 𝑑(𝑥)
𝑘

∑
𝑖=1

𝑎𝑖(𝑥)𝑔𝑖(𝑥).

Then, in order to test whether 𝑓(𝑥) is in the ideal generated by the 𝑓𝑖, it is enough to
check whether 𝑑(𝑥) divides 𝑓(𝑥). Our goal is to find a similar characterization for the
multivariate case.

3.1.1 Monomial ordering

We want to establish some analogue of the Euclidean division of univariate polynomials.
However, in the one dimensional case it is easy to compare polynomials by looking at
their degree: when more monomials are involved, this becomes more complicated. We
therefore have to define monomial orderings. This amounts to establishing an order in
ℕ𝑛, since we can write

𝑥𝑎1
1 𝑥𝑎𝑥

2 ⋯ 𝑥𝑎𝑛𝑛 = 𝑥𝛼, 𝛼 = (𝑎1, … , 𝑎𝑛) ∈ ℕ𝑛.

and then compare monomials by looking at 𝛼 (and forgetting about the coefficients 𝑐𝛼).
Then

𝛼 > 𝛽 in ℕ𝑛 ⟺ 𝑥𝛼 > 𝑥𝛽 in 𝐾[𝑥1, … , 𝑥𝑛].
Of course, our ordering 𝛼 must have some sensible properties: it has to be a total
ordering (meaning that any two monomials can be compared) and it has to be transitive.
Moreover, we must have

𝑥𝛼 > 𝑥𝛽 ⟹ 𝑥𝛼𝑥𝛾 > 𝑥𝛽𝑥𝛾.
It also has to be a well-ordering (so every set has a smallest element).
Definition 3.5 (Lexicographic ordering). Given 𝛼 and 𝛽 in ℕ𝑛, we say 𝛼 >lex 𝛽 if the
first component of 𝛼 − 𝛽 is positive.

It is easy to show that this is indeed an ordering: the only thing one has to check is

𝑥𝛼 >lex 𝑥𝛽 ⟹ 𝑥𝛼𝑥𝛾 >lex 𝑥𝛽𝑥𝛾.

But indeed,

𝑥𝛼 >lex 𝑥𝛽 ⟹ 𝛼 − 𝛽 > 0
⟹ (𝛼 + 𝛾) − (𝛽 + 𝛾) > 0
⟹ 𝑥𝛼𝑥𝛾 >lex 𝑥𝛽𝑥𝛾,

since the product of monomials is equivalent to the sum of their degrees.
The lexicographic ordering works by always giving more weight to having more higher
degrees of the initial variables. So, in 𝐾[𝑥1, 𝑥2, 𝑥3],

𝑥2
1 >lex 𝑥1 >lex 𝑥𝑛

2 𝑥𝑚
3 .

There are of course other choices of ordering.
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3 Gröbner basis

• The graded lexicographic ordering first looks at the total degree of the monomials
and orders them accordingly, and then resolves ties by looking at the lexicographic
ordering of monomials with equal total degree, so

𝑥2
1𝑥2 >grlex 𝑥1𝑥2

2 >grlex 𝑥2
1 >grlex 𝑥2

2.

• The graded reverse lexicographic order takes a different approach. The first thing
to do is ranking monomials by their degree. Then, to compare them, we look at
the last variable 𝑥𝑛 and take as higher the one with lowest exponent. In case of
a tie, whe look at 𝑥𝑛−1, and so on. This means that 𝑥1𝑥2

2𝑥3 >grevlex 𝑥2
1𝑥2

3. For
example, this gives

𝑥2
1 >grevlex 𝑥1𝑥2 >grevlex 𝑥2

2 >grevlex 𝑥1𝑥3 >grevlex 𝑥2𝑥3 >grevlex 𝑥2
3,

the main difference being that 𝑥2
2 >grevlex 𝑥1𝑥3 despite the first term not having

any 𝑥1 term.
We will however use mostly the lexicographic ordering.
Remark 3.6. The choice of ordering is actually crucial for the computation of a Gröbner
basis, and some orderings (in particular >grevlex) are much faster than the others. In
general one could say that the lexicographic ordering is the worse for computation,
since it is the one that gives more information about the inner structure of the ideal.
Unfortunately, it is the one we need to use.

Once we have a choice of ordering, we can define some analogues of the univariate
polynomials.
Definition 3.7. Let 𝑓 = ∑ 𝑎𝛼𝑥𝛼 be a polynomial, and choose some monomial order >.
We define:

1. The multidegree of 𝑓 as

multideg(𝑓) = max> { 𝛼 ∈ ℕ𝑛 ∣ 𝑎𝛼 ≠ 0 } .

2. The leading coefficient of 𝑓 as

lc(𝑓) = 𝑎multideg(𝑓).

3. The leading monomial of 𝑓 as

lm(𝑓) = 𝑥multideg(𝑓).

4. The leading term of 𝑓 as
lt(𝑓) = lc(𝑓) lm(𝑓).

We have the following properties for multideg.
Lemma 3.8. For 𝑓, 𝑔 ∈ 𝐾[𝑥1, … , 𝑥𝑛], we have

1. multideg(𝑓𝑔) = multideg(𝑓) + multideg(𝑔).
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3.1 The ideal membership problem

2. multideg(𝑓 + 𝑔) ≤ max(multideg(𝑓), multideg(𝑔)).

Proof. First note that

𝑓𝑔 = (∑
𝛼

𝑎𝛼𝑥𝛼)(∑
𝛽

𝑏𝛽𝑥𝛽) = ∑
𝛼,𝛽

𝑎𝛼𝑏𝛽𝑥𝛼+𝛽.

Then one clearly has

multideg(𝑓𝑔) ≥ multideg(𝑓) + multideg(𝑔)

by taking the term lt(𝑓) lt(𝑔). Moreover, for any monomial, one has

multideg(𝑥𝛼+𝛽) = 𝛼 + 𝛽 = multideg(𝑥𝛼) + multideg(𝑥𝛽),

meaning that, for any monomial of the product, its multidegree will be bounded by the
sum of the multidegrees of the original polynomials, giving the opposite inequality. For
the inequality with the sum, we write

𝑓 + 𝑔 = ∑
𝛾

(𝑎𝛾 + 𝑏𝛾)𝑥𝛾.

Then if 𝑎𝛾 + 𝑏𝛾 ≠ 0 it means either of the two terms is nonzero, so assuming it is 𝑎𝛾
without loss of generality gives

multideg(𝑓 + 𝑔) = 𝛾 ⟹ multideg(𝑓) ≥ 𝛾,

and adding the inequality for 𝑏𝛾 ≠ 0 gives the result.

Note that the inequality for the sum arises from the fact that the leading terms in 𝑓 and
𝑔 might cancel each other.
Remark 3.9. In particular, lemma 3.8 implies that multideg is a non-Archimedean
norm in 𝐾[𝑥1, … , 𝑥𝑛].

3.1.2 Division algorithms

As mentioned before, the key idea for the one-dimensional case rests on the idea of
divisibility and the greatest common divisor. In one dimension it is easy to simply use
Euclid’s algorithm: by the recursion

gcd(𝑓1, … , 𝑓𝑘) = gcd(𝑓1, gcd(𝑓2, … , 𝑓𝑘))

it suffices to calculate the gcd of two polynomials, which is easy to do in a way completely
analogous to the case of integers. For the case of many variables, there is an analogue to
the division algorithm.
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3 Gröbner basis

Theorem 3.10. Given a monomial order > in 𝐾[𝑥1, … , 𝑥𝑛], and a set 𝑓1, … 𝑓𝑠 of
polynomials, one can write every other polynomial 𝑓 as

𝑓 = 𝑞1𝑓1 + ⋯ + 𝑞𝑠𝑓𝑠 + 𝑟

where the 𝑞𝑖 and 𝑟 are all polynomials and 𝑟 is either 0 or all its monomials are not
divisible by lt(𝑓1), … , lt(𝑓𝑠). Then 𝑟 is the remainder of the division, and

multideg(𝑓) ≥ multideg(𝑞𝑖𝑓𝑖).

Just like in the Euclidean case, the proof here is actually constructive: one can give an
algorithm to calculate the 𝑞𝑖 and 𝑟. Note that 𝑟 is not uniquely determined.

Proof. We have the procedure described in algorithm 1.

Algorithm 1 Division algorithm in 𝐾[𝑥1, … , 𝑥𝑛]
Require: 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛]
Require: { 𝑓1, … , 𝑓𝑠 } ⊂ 𝑘[𝑥1, … , 𝑥𝑛]

1: 𝑞1, … , 𝑞𝑠, 𝑟 ← 0
2: 𝑝 ← 𝑓
3: while 𝑝 ≠ 0 do
4: 𝑖 ← 1
5: division ← false
6: while 𝑖 ≤ 𝑠 and division = false do
7: if lt(𝑓𝑖) ∣ lt(𝑝) then
8: 𝑞𝑖 ← 𝑞𝑖 + lt(𝑝)/ lt(𝑓𝑖)
9: 𝑝 ← 𝑝 − (lt(𝑝)/ lt(𝑓𝑖))𝑓𝑖

10: division ← true
11: else
12: 𝑖 ← 𝑖 + 1
13: if division = false then
14: 𝑟 ← 𝑟 + lt(𝑝)
15: 𝑝 ← 𝑝 − lt(𝑝)

First, note that at every step one has

𝑓 = 𝑞1𝑓1 + ⋯ + 𝑞𝑠𝑓𝑠 + 𝑝 + 𝑟.

In the beginning this is because 𝑝 = 𝑓 and the rest are zeroes. After every step, either
we add and substract 𝑓𝑖(lt(𝑝)/ lt(𝑓𝑖)), if the division occurs, or we add and substract
lt(𝑝) otherwise.
Note that the while loop goes on until 𝑝 vanishes, which does in finitely many steps.
Indeed, every pass of the loop takes care of the leading term of 𝑝, and either adds it to a
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quotient 𝑞𝑖 or sends it to the remainder 𝑟. This is clear in the second case; in the first
note that we are doing

𝑝′ = 𝑝 −
lt(𝑝)
lt(𝑓𝑖)

𝑓𝑖

and we have
lt(

lt(𝑝)
lt(𝑓𝑖)

𝑓𝑖) = lt(𝑝)

This means that the algorithm terminates, and the number of steps is the number of
monomials of the input 𝑓. Hence, when 𝑝 = 0 is reached, the algorithm breaks and

𝑓 = 𝑞1𝑓1 + ⋯ + 𝑞𝑠𝑓𝑠 + 𝑟

holds.
Now, clearly every monomial in 𝑟 is not divisible by any of the lt(𝑓𝑖), otherwise it would
have been added to 𝑞𝑖 in the step before. Finally, note that

multideg(𝑞𝑖𝑓𝑖) = multideg(𝑞𝑖) + multideg(𝑓𝑖)
= multideg(lt(𝑝′)/ lt(𝑓𝑖)) + multideg(𝑓𝑖)
= multideg(𝑝′)

where 𝑝′ is one of the temporary values of 𝑝. And, since we are always removing the
leading terms of 𝑝,

multideg(𝑓) = multideg(𝑝) ≥ multideg(𝑝′) = multideg(𝑞𝑖𝑓𝑖).

This may give hope for an answer of the ideal membership problem, in a similar way
to what happens in the one-dimensional case: given 𝑓 and 𝐼 = ⟨𝑓1, … , 𝑓𝑠⟩, perform the
division and, if 𝑟 = 0, 𝑓 ∈ 𝐼. While this holds, it is also possible to have elements of the
ideal that leave nonzero remainder, so a more precise analysis is needed.

3.1.3 Leading terms and ideal membership

Let us start working towards our goal: solving the ideal membership problem.
Definition 3.11. Let 𝐼 be an ideal and > an ordering.

1. We define

lt(𝐼) = { 𝑐𝑥𝛼 ∣ there is some 𝑓 ∈ 𝐼 − {0} with lt(𝑓) = 𝑐𝑥𝛼 } ,

the set of leading terms of 𝐼.
2. We define ⟨lt(𝐼)⟩ to be the ideal generated by the previous set.

Recall that the division algorithm is influenced essentially by the leading terms of the
polynomials (as in the conditions for the remainder). Note that

⟨lt(𝑓1), … , lt(𝑓𝑘)⟩ ⊆ ⟨lt(⟨𝑓1, … , 𝑓𝑘⟩)⟩,

but in general we do not have equality.
We have the following interesting result.
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Proposition 3.12. For an ideal 𝐼, there are 𝑔1, … , 𝑔𝑡 ∈ 𝐼 such that

⟨lt(𝐼)⟩ = ⟨lt(𝑔1), … , lt(𝑔𝑡)⟩.

Moreover, 𝐼 = ⟨𝑔1, … , 𝑔𝑡⟩.

The proof relies on Dickson’s Lemma, which is quite technical, so we omit it. This
proposition gives us exactly what we need.
Definition 3.13. A subset 𝐺 = { 𝑔1, … , 𝑔𝑡 } of an ideal 𝐼 ⊂ 𝐾[𝑥1, … , 𝑥𝑛] is called a
Gröbner basis if

⟨lt(𝐼)⟩ = ⟨lt(𝑔1), … , lt(𝑔𝑡)⟩.

By the previous proposition, every ideal has a Gröbner basis.
Remark 3.14. Despite their name, Gröbner bases were first defined by Bruno Buchberger
in his Ph.D. thesis, and were named after his advisor Wolfgang Gröbner. Note that
they appeared previously in the work of the Russian mathematician Nikolai Maximovich
Gjunter, but went unnoticed – see also Renshukh, Roloff, and Rasputin 1987.

Why is this what we want? Take an element 𝑓 ∈ 𝐾[𝑥1, … , 𝑥𝑛] and divide it by 𝐺 to get

𝑓 = 𝑞1𝑔1 + 𝑞2𝑔2 + ⋯ + 𝑞𝑡𝑔𝑡 + 𝑟.

We already know that 𝑟 = 0 implies that 𝑓 ∈ 𝐼. On the other direction, assume 𝑓 ∈ 𝐼.
Then

𝑟 = 𝑓 − 𝑞1𝑔1 − ⋯ − 𝑞𝑡𝑔𝑡 ∈ 𝐼,

since ideals are closed under addition. But then, if 𝑟 ≠ 0, we have that

lt(𝑟) ∈ ⟨lt(𝐼)⟩ = ⟨lt(𝑔1), … , lt(𝑔𝑡)⟩,

so that lt(𝑟) is divisible by some lt(𝑔𝑖). However, this contradicts our division algorithm,
hence 𝑟 = 0. This means that

𝑓 ∈ 𝐼 ⟺ 𝑟 = 0,

which solves in a simple way the ideal membership problem.
While not explicit, note that the choice of an ordering is present throughout all the steps
since it is required to define the leading term.
Overall, this means that the problem of ideal membership can be solved by computing a
Gröbner basis of the ideal.

3.1.4 Elimination theory

Let us now take a detour towards algebraic geometry. Given an ideal 𝐼, we define

𝑉 (𝐼) = { (𝑎1, … , 𝑎𝑛) ∈ 𝐾𝑛 ∣ 𝑓(𝑎1, … , 𝑎𝑛) = 0 ∀𝑓 ∈ 𝐼 } ⊂ 𝐾𝑛.
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This is called the variety generated by 𝐼, and it is a fundamental tool. If 𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩,
to describe the variety it is enough to check for roots of the system

⎧
{
{
⎨
{
{
⎩

𝑓1 = 0,
𝑓2 = 0,

⋮
𝑓𝑘 = 0.

Clearly all elements of 𝑉 (𝐼) are solutions to this system, as the 𝑓𝑖 are in particular a set
of elements of 𝐼. And on the other direction, if 𝑎 is a solution of the system, then for
𝑓 ∈ 𝐼 one has

𝑓 =
𝑘

∑
𝑖=1

𝑞𝑖𝑓𝑖 ⟹ 𝑓(𝑎) =
𝑘

∑
𝑖=1

𝑞𝑖(𝑎)𝑓𝑖(𝑎) =
𝑘

∑
𝑖=1

𝑞𝑖(𝑎) ⋅ 0 = 0

This means that solving the system of equations is equivalent to describing the associated
variety that the ideal generates. To see why this matters, let us look at an example.
Example 3.15. Consider the system of equations

𝑥2
1 + 𝑥2 + 𝑥3 = 1,

𝑥1 + 𝑥2
2 + 𝑥3 = 1,

𝑥1 + 𝑥2 + 𝑥2
3 = 1.

To the system we associate the ideal

𝐼 = ⟨𝑥2
1 + 𝑥2 + 𝑥3 − 1, 𝑥1 + 𝑥2

2 + 𝑥3 − 1, 𝑥1 + 𝑥2 + 𝑥2
3 − 1⟩,

and compute its Gröbner basis with respect to >lex to get

𝑔1 = 𝑥1 + 𝑥2 + 𝑥2
3 − 1,

𝑔2 = 𝑥2
2 − 𝑥2 − 𝑥2

3 + 𝑥3,
𝑔3 = 2𝑥2𝑥2

3 + 𝑥4
3 − 𝑥2

3,
𝑔4 = 𝑥6

3 − 4𝑥4
3 + 4𝑥3

3 − 𝑥2
3.

Now note that any element of 𝑉 (𝐼), which is any solution of the original system, will
also be a solution of the system

𝑔1 = 0, 𝑔2 = 0, 𝑔3 = 0, 𝑔4 = 0

since the Gröbner basis also generates the ideal. But now note that the fourth equation
is actually an univariate polynomial,

𝑔4 = 𝑥2
3(𝑥3 − 1)2(𝑥2

3 + 2𝑥3 − 1) = 0
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and can be easily solved (in this case factorized, in others, by using some one-dimensional
polynomial solver). Then we can substitute the possible solutions 𝑎3 ∈ 𝐾 back to 𝑔3 to
find possible values 𝑎2 of 𝑥2, and work upwards to find global solutions

(𝑎1, 𝑎2, 𝑎3) ∈ 𝑉 (𝐼) ⊂ 𝐾3.

This means that the original system is reduced to finding solutions of univariate polyno-
mials.

The goal now is showing that this behaviour is not just luck. To do so we need the
elimination and extension theorems.
Definition 3.16. For an ideal 𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩, we define the ℓ-th elimination ideal to be

𝐼ℓ = 𝐼 ∩ 𝐾[𝑥ℓ+1, … 𝑥𝑛].

Under this definition, the elimination ideal 𝐼ℓ consists of all those polynomials in the
ideal that are independent of the first ℓ variables. For the previous example, one would
have 𝐼1 = ⟨𝑔2, 𝑔3, 𝑔4⟩ and 𝐼2 = ⟨𝑔4⟩.
Theorem 3.17 (Elimination Theorem). Let 𝐼 be an ideal and 𝐺 a Gröbner basis with
respect to >lex. Then

𝐺ℓ = 𝐺 ∩ 𝐾[𝑥ℓ+1, … , 𝑥𝑛]

is a Gröbner basis of 𝐼ℓ.

This theorem tells us that a (Gröbner) basis of the ℓ-th elimination ideal can be found
by simply taking the elements of 𝐺 that don’t contain the first ℓ variables. Note
that using >lex is not really fundamental here: all we need is an order that satisfies
𝑥1 > 𝑥2 > ⋯ > 𝑥𝑛.
Imagine the variety 𝑉 (𝐼) generated by some ideal 𝐼 as a subset of the 𝑛-dimensional space.
Then one could consider that what the above theorem is saying is that 𝐺ℓ describes the
variety 𝑉ℓ defined as the projection of the original variety. This would mean, in particular,
that any point of 𝑉 (𝐼ℓ) is the projection of some point in 𝑉 (𝐼). Unfortunately, this is
not true, but it’s really close.
Theorem 3.18 (Extension Theorem). Let 𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩ be an ideal in ℂ[𝑥1, … , 𝑥𝑛]
and let 𝐼1 be its first elimination ideal. Assume

𝑓𝑖 = 𝑐𝑖(𝑥2, … , 𝑥𝑛)𝑥𝑛𝑖
1 + other terms with smaller 𝑥1-degree.

Then, if a partial solution (𝑎2, … , 𝑎𝑛) ∈ 𝑉 (𝐼1) is not in 𝑉 (⟨𝑐1, … , 𝑐𝑘⟩) (meaning that is not
a common zero of all coefficients 𝑐𝑖), it can be extended to a solution (𝑎1, … , 𝑎𝑛) ∈ 𝑉 (𝐼).

This means that we can almost always extend solutions of elimination ideals to get
full solutions. This extension does not have to be a bijection (imagine, for instance, a
line collapsing into a point when taking its projection), and we also might get complex
solutions instead of just real (since neither ℚ nor ℝ are algebraically closed). For this
theorem to hold we explicitely need to be working over an algebraically closed field.
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Remark 3.19. The condition of the partial solution not vanishing at all coefficients
could be removed if we were working in the projective space, but this is not interesting
for us.

The above theorems show that the theory of Gröbner basis provides an effective way of
solving polynomial systems of equations by reducing them into alternative systems in
fewer dimensions.

3.2 Gröbner basis algorithms
So far we have shown how Gröbner bases allow us to translate potentially hard algebraic
problems into much simpler ones. Of course, this is only of use if the computation of a
Gröbner basis is faster than solving these problems directly. This turns out to be the
case.
The first algorithm for the computation of the Gröbner basis of an ideal was published
by Buchberger himself in his dissertation. To start, given a set 𝑆 of polynomials, we
denote by

𝑓𝑆

the remainder of the division of the polynomial 𝑓 by the elements of 𝑆. We then define
the 𝑆-polynomial.
Definition 3.20. Let 𝑓, 𝑔 be nonzero polynomials.

1. If multideg(𝑓) = 𝛼 and multideg(𝑔) = 𝛽, then let

𝛾𝑖 = max(𝛼𝑖, 𝛽𝑖), 𝛾 = (𝛾1, … , 𝛾𝑛).

We say 𝑥𝛾 = lcm(lm(𝑓), lm(𝑔)) is the least common multiple of lm(𝑓) and lm(𝑔).
2. The 𝑆-polynomial of 𝑓 and 𝑔 is defined as

𝑆(𝑓, 𝑔) =
𝑥𝛾

lt(𝑓)
𝑓 −

𝑥𝛾

lt(𝑔)
𝑔.

Note that the quotients are indeed polynomials, as the leading term divides the least
common multiple by its construction. One can see from the definition that the 𝑆-
polynomial will remove the leading terms of both 𝑓 and 𝑔. The key reason for this
definition is the following.
Theorem 3.21 (Buchberger’s Criterion). A basis 𝐺 = { 𝑔1, … , 𝑔𝑘 } of an ideal is a
Gröbner basis if and only if

𝑆(𝑓𝑖, 𝑓𝑗)𝐺 = 0 ∀ 𝑖 ≠ 𝑗.

Since it is easy to both calculate the 𝑆-polynomials and the remainder of the divisions
algorithmically, this gives us a good option to check whether a given basis is or not a
Gröbner basis. The idea is then to forcefully create a set 𝐺 that satisfies this criterion.
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For a set 𝐺 and two elements 𝑓𝑖 and 𝑓𝑗, compute

𝑔 = 𝑆(𝑓𝑖, 𝑓𝑗)𝐺.

If 𝑔 is zero there is nothing to do since we are in the path towards a Gröbner basis already.
Otherwise, consider 𝐺′ = 𝐺 ∪ { 𝑔 } . Clearly they generate the same ideal, as

𝑔 = 𝑆(𝑓𝑖, 𝑓𝑗) −
𝑘

∑
𝑟=1

𝑞𝑟𝑓𝑟,

so 𝑔 was in the ideal already. Moreover, 𝑆(𝑓𝑖, 𝑓𝑗)𝐺′ is now zero (since we have added the
remainder). This leads to Buchberger’s Algorithm, in algorithm 2.

Algorithm 2 Buchberger’s Algorithm
Require: 𝐹 = { 𝑓1, … , 𝑓𝑘 }

1: 𝐺 ← 𝐹
2: repeat
3: 𝐺′ ← 𝐺
4: for { 𝑝, 𝑞 } ⊂ 𝐺′, 𝑝 ≠ 𝑞 do
5: 𝑟 ← 𝑆(𝑝, 𝑞)𝐺′

6: if 𝑟 = 0 then
7: 𝐺 ← 𝐺 ∪ { 𝑟 }
8: until 𝐺 = 𝐺′

9: return 𝐺

Theorem 3.22. Buchberger’s Algorithm computes the Gröbner basis of an ideal ⟨𝑓1, … , 𝑓𝑘⟩.

Of course this algorithm is far from optimal. The main reason is that we are repeating
many divisions of 𝑆-polynomials that should be zero for a Gröbner basis. This is actually
a lengthy calculation, and there are two main ways to reduce the number of times we do
it:

1. Improving our choice of 𝑆 so that it can be computed more efficiently.
2. Adding memory to avoid comparing the same couple of polynomials over and over.

Improvements in these parts give rise to more efficient Buchberger-like algorithms.
However, there are other methods. The most well-known are those by Jean-Charles
Faugère, known as 𝐹4 (J.-C. Faugère 1999) and 𝐹5 (J.-C. Faugère 2002). The strategy is,
very broadly, to start by computing Gröbner basis of a smaller set of generators, and
then when adding a new one to use sparse matrices to work in parallel.
As is always the case, the performance of any algorithm depends on the ordering we
choose. In particular, the lexicographic ordering is usually the slowest, while the >grevlex
order is the fastest. One common option when computing a lexicographic Gröbner basis
is then to start by computing a >grevlex basis and then use a conversion algorithm to
transform it into a >lex basis (an example is the FGLM algorithm, see J. C. Faugère et al.
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1993; Cox, Little, and O’Shea 1998). This two-step process can usually be at worst in the
same order of complexity of computing the lexicographic ordering from the beginning.
Finally, let us note that the Gröbner basis associated to an ideal is not unique. Indeed,
one could keep adding polynomials 𝑔 such that lt(𝑔) ∈ ⟨lt(𝐼)⟩ to the basis. In practice
this means that an algorithm like Buchberger’s, based on adding remainders of many
𝑆-polynomials, will lead to a Gröbner basis with too many elements. A solution is
considering reduced Gröbner basis.
Definition 3.23. A Gröbner basis 𝐺 of an ideal 𝐼 is said to be reduced if

1. All polynomials 𝑝 ∈ 𝐺 are monic (so lc(𝑝) = 1), and
2. For all 𝑝 ∈ 𝐺, no monomial 𝑚 of 𝑝 satisfies 𝑚 ∈ ⟨lt(𝐺 − {𝑝})⟩.

The first condition is there for the sake of uniqueness, since we can just divide by the
leading term. The second means that all elements of 𝐺 that do not add anything (because
they are already in the ideal generated by the other elements) can be removed, and for
the elements 𝑝 that are important, the monomials that are in the ideal generated by the
other leading terms can be removed and substituted with another expression of lower
degree and not in the ideal. And indeed this leads to compact representation, as well as
to the following uniqueness theorem.
Theorem 3.24. Every ideal 𝐼 ≠ {0} has a unique reduced Gröbner basis.

This means that the problem of comparing two ideals 𝐼 and 𝐽 to see if they are equal
can be reduced to finding a Gröbner basis for each and then checking if they are equal.
While the computation of a Gröbner basis allows us to solve systems of polynomial
equations faster than with other methods, it is still very slow: depending on the algorithm
and the ordering it can go from exponential at best up to doubly exponential. For the
lexicographic ordering we have a lower bound of 𝑛32𝒪(𝑛3) operations. In Bardet, J.-C.
Faugère, and Salvy 2015, a lower bound of at least 24.29𝑛 is given for the 𝐹5 algorithm
with >grevlex ordering, which is the best situation one could expect. Although translating
such a basis into a lexicographic can be expensive (even exponential, depending on the
ideal), it is still faster than the direct computation (in J. C. Faugère et al. 1993 one can
find an analysis of the performance of the algorithm when the growth of the coefficients
is taken into consideration).

3.3 Triangular sets
Another approach to the solution of systems of polynomial equations is triangular sets.
First note that the theory of elimination is really similar to the way of solving systems of
linear equations by building a triangular matrix, and in fact the latter can be considered
a special case of the former.
The idea behind triangular sets is, starting from a set 𝐹 of equations, to build a family
𝑇1, … , 𝑇𝑘 of sets of equations satisfying

𝑉 (⟨𝐹⟩) = 𝑉 (⟨𝑇1⟩) ∪ ⋯ ∪ 𝑉 (⟨𝑇𝑘⟩).
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3 Gröbner basis

We present now a simple outlook on the theory of triangular sets, following Aubry, Lazard,
and Moreno Maza 1999. We start from a ring

𝑅𝑛 = 𝐾[𝑥1, … , 𝑥𝑛]

and, for 𝑝 ∈ 𝑅𝑛, we define mvar(𝑝) to be the greatest variable appearing in 𝑝 with
respect to the lexicographic ordering. If mvar(𝑝) = 𝑥𝑖, then

𝑝 ∈ 𝐾[𝑥𝑛, … , 𝑥𝑖+1][𝑥𝑖].

Remark 3.25. We will use the lexicographic ordering with 𝑥1 > 𝑥2 > ⋯ > 𝑥𝑛 to follow
the theory of Gröbner basis. In most of the literature about triangular sets, however,
this order is inverted.

The definition of what constitutes a triangular set is really broad.
Definition 3.26. A subset 𝑇 of 𝑅𝑛 is called a triangular set if no element of 𝑇 is a
complex number, and if for all different pairs 𝑝, 𝑞 ∈ 𝑇 we have mvar(𝑝) = mvar(𝑞).

Therefore a set is triangular if a variable 𝑥𝑖 appears as the main variable only in one of
the equations, and in the rest either it doesn’t appear at all or it is part of the coefficients
of the main variable. This gives it a “triangular shape”, similar to the case of matrices.
Under this definition, a Gröbner basis 𝐺 could constitute an example of a triangular set,
but this is not always the case. For instance, example 3.15 shows a computed Gröbner
basis where two of the elements 𝑔2 and 𝑔3 share mvar(𝑔2) = mvar(𝑔3) = 𝑥2. The
definition being so broad means that different algorithms to compute triangular sets will
arrive to different (albeit all valid) sets.
Example 3.27. Consider the polynomials

{ 𝑐1𝑐2 − 𝑠1𝑠2 + 𝑐1 − 𝑎, 𝑠1𝑐2 + 𝑐1𝑠2 + 𝑠1 − 𝑏, 𝑐2
1 + 𝑠2

1 − 1, 𝑐2
2 + 𝑠2

2 − 1 } ,

for the variable ordering 𝑐2 > 𝑠2 > 𝑐1 > 𝑠1 > 𝑏 > 𝑎. A possible computed decomposition
into triangular sets gives

𝑇1 = {(4𝑏2 + 4𝑎2)𝑠2
1 + (−4𝑏3 − 4𝑎2𝑏)𝑠1 + 𝑏4 + 2𝑎2𝑏2 + 𝑎4 − 4𝑎2,

2𝑎𝑐1 + 2𝑏𝑠1 − 𝑏2 − 𝑎2,
2𝑎𝑠2 + (2𝑏2 + 2𝑎2)𝑠1 − 𝑏3 − 𝑎2𝑏,
2𝑐2 − 𝑏2 − 𝑎2 + 2},

𝑇2 = {𝑎, 2𝑠1 − 𝑏, 4𝑐2
1 + 𝑏2 − 4, 𝑠2 − 𝑏𝑐1, 2𝑐2 − 𝑏2 + 2},

𝑇3 = {𝑎, 𝑏, 𝑐2
1 + 𝑠2

1 − 1, 𝑠2, 𝑐2 + 1}.

The last set 𝑇3 gives 𝑎 = 𝑏 = 0, and from there one can easily find the values of the other
variables. The set 𝑇2 gives 𝑎 = 0, with 𝑏 being a free parameter. And for 𝑇1 the values
of 𝑎 and 𝑏 can be fixed to find a solution.

There are many approaches to finding sets 𝑇𝑖. In Aubry and Moreno Maza 1999, several
methods are compared (including Lazard’s method, which creates the decomposition in
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3.3 Triangular sets

the example above). For our systems, however, the lexicographic Gröbner basis methods
will work faster than triangular sets algorithms.
Do note however that it’s possible to use triangular sets to extend the usefulness of
Gröbner basis, by computing the sets starting from a Gröbner basis using Möller’s
algorithm (see Möller 1993). This decomposition will lead to a number of systems of
shape

𝑡𝑛(𝑥𝑛) = 𝑥𝑑𝑛𝑛 +
𝑑𝑛−1

∑
𝑖=1

𝑔𝑛,𝑖𝑥𝑖
𝑛 ∈ 𝐾[𝑥𝑛]

𝑡𝑛−1(𝑥𝑛−1, 𝑥𝑛) = 𝑥𝑑𝑛−1
𝑛−1 +

𝑑𝑛−1−1

∑
𝑖=1

𝑔𝑛−1,𝑖(𝑥𝑛)𝑥𝑖
𝑛−1 ∈ 𝐾[𝑥𝑛, 𝑥𝑛−1]

⋮

𝑡1(𝑥1, … , 𝑥𝑛) = 𝑥𝑑1
1 +

𝑑1−1

∑
𝑖=1

𝑔1,𝑖(𝑥2, … , 𝑥𝑛)𝑥𝑖
1 ∈ 𝐾[𝑥𝑛, 𝑥𝑛−1, … , 𝑥1].

where mvar(𝑡𝑖) = 𝑥𝑖, which form a triangular set. Of course it will now be very simple
to solve this type of systems starting from the first equation. This achieves a full
triangularization of our ideal. In comparison with simply taking a Gröbner basis, note
that elimination ideals may be generated by adding several polynomials with the same
main variable. This means that sometimes to pass from one elimination ideal to the
next we may have to solve a system of polynomial equations in one variable, which is
not desirable. Möller’s algorithm solves this problem by breaking the Gröbner basis into
several triangular sets.
Example 3.28. Going back to example 3.15, we had reached a system

𝑔1 = 𝑥1 + 𝑥2 + 𝑥2
3 − 1,

𝑔2 = 𝑥2
2 − 𝑥2 − 𝑥2

3 + 𝑥3,
𝑔3 = 2𝑥2𝑥2

3 + 𝑥4
3 − 𝑥2

3,
𝑔4 = 𝑥6

3 − 4𝑥4
3 + 4𝑥3

3 − 𝑥2
3.

Unfortunately, once we fix a value for 𝑥3, we have to solve equations 𝑔2 and 𝑔3 for
𝑥2 simultaneously. If we instead compute now a triangular set over that basis (using
Hillebrand 2018) we obtain the two triangular sets

𝑇1 =
⎧
{
⎨
{
⎩

𝑥2
3,

𝑥2
2 − 𝑥2 + 𝑥3,

𝑥1 + 𝑥2 − 1.

𝑇2 =
⎧
{
⎨
{
⎩

𝑥4
3 − 4𝑥2

3 + 4𝑥3 + 1,
2𝑥2 + 𝑥2

3 − 1,
2𝑥1 + 𝑥2

3 − 1.
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3 Gröbner basis

The sets are fully triangularized and we now only have to solve univariate polynomials
at each step. Note that 𝑇1 and 𝑇2 differ mainly in the choice of which elements of the
decomposition of 𝑔4 one takes.

This type of decomposition will be useful for us in section 4.3.1.

3.4 The Multivariate Quadratic problem
The goal of solving the system defined by the gas network is in particular an instance of
the more general multivariate quadratic (MQ) problem (finding all solutions of a system
of 𝑚 quadratic polynomials in 𝑛 over some field 𝐾), as from the definition it can be seen
that all equations in the system have degree at most two. Although it is simpler than
the general case of solving a system of polynomial equations, due to the degree being
bounded, this problem is still np-complete.
This type of problems has received attention in the last years during the search for
post-quantum cryptography cryptosystems (although they were first defined as far back
as the 1980s, see for instance Matsumoto and Imai 1988). As a result of the efforts to
break this type of schemes, some methods have appeared. The problem for us is that,
since cryptographic protocols are based on finite fields (either 𝔽𝑝 for some large prime 𝑝
or (𝔽2)𝑛 for a medium value of 𝑛) they cannot be applied directly to our instance.
Moreover, the fact that we have a system of equations with the same number of equations
𝑚 as the number of variables 𝑛 is problematic. For cases where 𝑚 ≥ 𝜀𝑛2 one can apply
the linearization technique, by defining new variables 𝑦𝑖𝑗 = 𝑧𝑖𝑧𝑗 and solving the original
system, which becomes linear. If the number of equations is 𝑚 ≥ 𝑛(𝑛 + 1)/2 + 𝑛, the
above system can be solved exactly. Otherwise, the method of relinearization (see Kipnis
and Shamir 1999) allows us to go down to 𝜀 ≈ 1/10. Even further improvements are
possible, as long as 𝑚 > 𝑛 (see Courtois et al. 2000).
However, it can be shown that many methods for solving the MQ problem are actually
instances of the 𝐹4 and 𝐹5 algorithm, so there is no improvement by using them as
compared to simply opting for the Gröbner-based method (an overview of this can be
found in Thomae and Wolf 2010). Therefore by constraining ourselves to the use of
Faugère-based algorithms we are not losing much efficiency (and the bigger problem is
the fact that 𝑛 = 𝑚 in our system).
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4 Solving gas networks
We will now focus on the main topic of interest. Recall that we have to solve a system of
equations given by

𝒜T
𝑁(𝒜−1

𝐵 )TΦ𝐵 diag(𝑠𝐵)(𝒜−1
𝐵 (𝑞nom − 𝒜𝑁𝑧))

2
= Φ𝑁 diag(𝑠𝑁)𝑧2, (4.1)

where 𝑧 is the flow through the fundamental cycles of the system, and Φ and 𝑠 represent
the pressure drop coefficients and the pipe flow signs, respectively.
Once we have the values of 𝑧 it is possible to calculate the rest of the gas flows as

𝑄0,𝐵 = 𝒜−1
𝐵 (𝑞nom − 𝒜𝑁𝑧).

And since 𝑠 is the vector of signs of the flows 𝑄0, our solution will only be valid if the
signs of 𝑠 and 𝑄0 are equal.
However, this comparison happens a fortiori, because to calculate the values of 𝑧 we need
to start from a given vector of signs. The simplest option is simply to iterate over all
possible signs, that is, through all elements of the set { +1, −1 } |𝐴|.

Algorithm 3 Network solver.
1: for 𝑠 ∈ { +1, −1 } |𝐴| do
2: 𝑍 ← solutions of eq. (4.1) using Gröbner basis
3: for 𝑧 ∈ 𝑍 do
4: 𝑄0,𝐵 ← 𝒜−1

𝐵 (𝑞nom − 𝒜𝑁𝑧)
5: 𝑄0,𝑁 ← 𝑧
6: 𝑄0 ← [ 𝑄0,𝐵 ∣ 𝑄0,𝑁 ]
7: if diag(𝑠)𝑄0 ≥ 0 then
8: return 𝑄0

9: return no solution found

Remark 4.1. The calculation of the Gröbner basis of an ideal is always sequential,
therefore it can not be paralellized. However, the inner loop depends only on the value of
𝑠, and not on anything else. This means that it is possible to implement the algorithm
with the outer loop in parallel, so that it can benefit from multicore processors.
Moreover, note that there are no benefits in using GPUs. While Faugère’s algorithm
does involve some matrix operations (in particular with potentially sparse matrices), the
improvement one could achieve fades when compared to the possibility of using modern
CPUs with potentially dozens of (much faster) cores.

29



4 Solving gas networks

Remark 4.2. The main step in algorithm 3 is finding the set of solutions of eq. (4.1).
The advantage of using a Gröbner approach is that, whenever the system has no solution,
the solver will tell us so even faster than what it would take for it to find a solution.
Indeed, for an ideal 𝐼 ⊂ ℂ[𝑥1, … , 𝑥𝑛] we have

𝑉 (𝐼) = ∅ ⟹ 1 ∈ 𝐼.

Note that we need to be working over the complex numbers (or any other algebraically
closed field). This is essentially the statement of the weak Nullstellensatz. Therefore, if
eq. (4.1) has no solutions, the Gröbner basis of its associated ideal will simpy be {1},
and we will detect this really fast.

We have stated (and will state) many results that are useful only for varieties of dimension
zero. In particular, this means that the variety will have a finite number of elements
(which we need, as our algorithm does not work if there are infinitely many solutions).
Note that we can write our variety as

𝑉 = 𝑉 (𝐼) = 𝑉 (𝐹1) ∩ ⋯ ∩ 𝑉 (𝐹𝑛) ⊂ 𝐾𝑛,

where the 𝐹𝑖 are the components of the system of equations we have to solve (see
Shafarevich 2013). Since, for each 𝐹𝑖, we know that 𝐹𝑖 ≠ 0, we get that dim(𝑉 (𝐹𝑖)) =
𝑛 − 1, so we are working with the intersection of 𝑛 hypersurfaces. Moreover, we know
that

dim(𝑉 (𝐹𝑖) ∩ 𝑉 (𝐹𝑗)) = dim(𝑉 (𝐹𝑖)) − 1 if 𝐹𝑗|𝑉 (𝐹𝑖) ≠ 0,

so as long as no variety is contained in another, the dimension of the intersection will be

dim(𝑉 (𝐹1) ∩ ⋯ 𝑉 (𝐹𝑛)) = dim(𝑉 (𝐹1) ∩ ⋯ ∩ 𝑉 (𝐹𝑛−1)) − 1
⋮
= dim(𝑉 (𝐹1)) − (𝑛 − 1) = 0.

The condition we have is essentially that the 𝐹𝑖 are independent from each other, meaning
that there is no 𝐹𝑗 such that 𝑉 (𝐹𝑖) ⊂ 𝑉 (𝐹𝑗). This should always be the case in our
equations, since otherwise it would mean that one of the equations depends on the others.
If, for instance, 𝐹1 depends on the others, then we could remove it and the system would
not change, but that would imply that the behaviour of the gas network is independent
of the coefficient (𝜙𝑁)1, which does not make sense. Of course there can be isolated cases
where this reasoning does not apply (for instance by making all loads and all pressure
drop coefficients be zero), but we simply discard those pathological cases.

4.1 Limits of the Gröbner solver
Let us start by studying to what extent can the previous algorithm be applied, in terms
of size of the network (so dimension of 𝑞) and number of cycles (dimension of 𝑧). Note
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4.1 Limits of the Gröbner solver

Table 4.1. Timing comparison for the solution of different networks with different sets of
parameters: 𝟙 (all ones), ℤ (integer loads), ℚ (rational loads), 𝑈 (loads uniform in the
unit interval) and 𝒩 (normal loads). The values above are the average of 100 samples
(only 10 for †, only 1 for ‡), the values below in (brackets) are the standard deviation.

Network Nodes Cycles Timing (s)
shape 𝟙 ℤ ℚ 𝑈 𝒩

3 1 0.0170
(0.0018)

0.0172
(0.0013)

0.0161
(0.0020)

0.0199
(0.0012)

0.0198
(0.0010)

5 1 0.0180
(0.0009)

0.0182
(0.0011)

0.0180
(0.0012)

0.0239
(0.0014)

0.0228
(0.0016)

11 1 0.0208
(0.0127)

0.0210
(0.0012)

0.0211
(0.0024)

0.0359
(0.0102)

0.0345
(0.0011)

4 2 0.0296
(0.0020)

0.0304
(0.0015)

0.0292
(0.0039)

0.0434
(0.0042)

0.0433
(0.0015)

5 2 0.0313
(0.0023)

0.0314
(0.0018)

0.0303
(0.0041)

0.0492
(0.0035)

0.0490
(0.0018)

4 3 0.0538
(0.0015)

0.0749
(0.0016)

0.0655
(0.0216)

0.1105
(0.0021)

0.1094
(0.0020)

5 3 0.0701
(0.0022)

0.0765
(0.0023)

0.0736
(0.0127)

0.1256
(0.0049)

0.1268
(0.0088)

9 3 0.0715
(0.0016)

0.0782
(0.0016)

0.0781
(0.0019)

0.1723
(0.0045)

0.1707
(0.0023)

5 4 0.1743
(0.0040)

0.6611
(0.0262)

0.6186
(0.1371)

1.0050
(0.0366)

1.0260
(0.0493)

8 4 0.1858
(0.0054)

0.6267
(0.0215)

0.6058
(0.0229)

0.9648
(0.0381)

0.9969
(0.0556)

5 5 0.6404
(0.0114)

40.018†

(1.6983)
34.243†

(11.529)
55.352†

(1.6037)
57.716†

(3.6540)

6 5 0.8259
(0.0057)

38.085†

(1.3471)
36.303†

(2.1699)
50.399†

(2.6935)
50.401†

(3.4210)

5 6 7.9876†

(0.0313)
2520.3‡ 2294.6‡ 3384.3‡ 3384.8‡
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4 Solving gas networks

that we will always count only the number of fundamental cycles of the network (that is,
cycles produced by adding an edge to the tree 𝒯).
In all of the cases we simply took 𝑠 = 𝟙, regardless of the geometry of the network or
how many flow directions were possible. A comparison of the timings for several different
networks can be found in table 4.1. The different parameters are as follows:

• For 𝟙, both the loads 𝑞nom and the pressure drop coefficients 𝜙 are set to 1.
• For ℤ, the loads are chosen to be integers in the set {−10, −9, … , 9, 10}, while the

pressure drops are random natural numbers in the set {103, … , 106}.
• For ℚ, the loads are random rational numbers 𝑝/𝑞 with 𝑝 and 𝑞 taken from the

interval {104, 105}, the pressure drops are as in ℤ.
• For 𝑈, the loads are taken from a uniform distribution 𝑈(0, 1), the pressure drops

are as in ℤ.
• For 𝒩, the loads are taken from a normal distribution 𝒩(0, 1), the pressure drops

are as in ℤ.
For the last network, the times shown correspond to only one sample.
Remark 4.3. All computations (here and on the rest of this thesis) were done using
SageMath (see The Sage Developers 2020) as the backbone and interfacing to Singular
(see Decker et al. 2020). The timings were calculated in a computer running Linux
(Ubuntu 18.04 on a 4.15.0 kernel), with an Intel® Xeon® E5-2620 v2 processor and 8
GB of RAM. To compute the solutions of a system of equations we used the Singular
function lex_solve (see Wenk and Pohl 2019).

There are several conclusions that can be drawn from table 4.1. The first is that the
biggest factor in the runtime is the number of cycles. Once it is fixed, increasing the
number of nodes of the network leads only to a moderate increase in the time it takes to
find a solution. This could be expected beforehand, as the size of the system we have
to solve remains the same: what the addition of new nodes means is mostly that the
coefficients of the polynomials will become more convoluted (the other consequence, the
increase in the number of flow directions, is not reflected here).
For a fixed network, the fastest runtime was of course achieved for the simplest choice
of setting all parameters to one. For the other choices, they seem to be coupled: both
ℤ and ℚ showed similar results, and similarly for 𝑈 and 𝒩. The relationship between
ℤ and ℚ could be simply because whatever the choice of parameters it is likely that
one will find large fractions in the Gröbner basis. Therefore taking either small integers
or large fractions does not lead to an increase in the ‘complexity’ of the resulting basis.
For 𝑈 and 𝒩, however, the fact that they are transformed into large rationals (meaning
that, if written as 𝑝/𝑞, both the numerator and the denominator will be very large) to
account for their precision as floating point numbers does have a significant effect on
the construction of the Gröbner basis. This difference is more clear as one considers
larger examples: for the network with 6 nodes and 5 cycles, using normal loads leads to
a 6000 % increase in running time when compared to the simple version.
It may be interesting to highlight one difference: in ℤ and 𝒩 both positive and negative
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4.1 Limits of the Gröbner solver

loads are added, while in ℚ and 𝑈 all loads are positive, meaning that the network has
only one entry point. However, this does not seem to lead to any significant difference.
Finally, the results show clearly the issue with exponential behaviour. Although the
smaller networks are able to perform really fast, for the slightly bigger ones an extra
cycle can lead to a stark increase in running time. The series of networks with five nodes
and an increasing number of fundamental cycles shows a good example, with a 10×
increase going from three to five cycles and another 10× increase by adding an extra
cycle in the simplest case with all parameters set to 1. When the loads and pressure
drops are changed, the time required to obtain a solution explodes after the fourth cycle.
This means that, in a realistic setting where the pressure drop coefficients and the loads
are floating point number, networks with more than four fundamental cycles should not
be solved using Gröbner-based methods.
There are other issues arising from the computation of Gröbner basis. The first is related
to the degree of the resulting Gröbner basis. The resulting Gröbner basis of an ideal
𝐼 ⊂ 𝐾[𝑥1, … , 𝑥𝑛] generated by polynomials of degrees 𝑑 is bounded by

((𝑛 + 1)(𝑑 + 1))
(𝑛+1)2𝑉 (𝐼)+1

.

In our particular case, this would lead to a (3(𝑛 + 1))2(𝑛+1) upper bound for the degree
of the Gröbner basis. This is just an upper bound, but in practice the degree of the
resulting polynomials behave exponentially. Indeed, according to Lazard 1983, one should
expect that, if 𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩ with degrees deg(𝑓𝑖) = 𝑑𝑖 sorted from biggest to smallest,
then the degree deg(𝐼) of the Gröbner basis satisfies

deg(𝐼) ≤ 𝑑1 ⋅ ⋯ ⋅ 𝑑𝑛−dim 𝑉 (𝐼).

But, in the particular case where 𝑘 = 𝑛 − dim 𝑉 (𝐼), the inequality becomes an equality,
giving for our ideals that deg(𝐼) = 2𝑛 (although this comes with an almost always
attached). In section 4.2.1 this behaviour will be seen.
The other problem comes from the size of the coefficients. The cancellation of leading
terms produced by considering 𝑆-polynomials also introduces products and divisions by
leading coefficients, which adds up to complicate the resulting polynomials. For instance,
if we take as graph the complete graph 𝐾4 on four vertices, with all parameters (pressure
drops, loads and directions) being set to one, we obtain a system

𝐹1 = 2𝑧2
1 + 4𝑧1𝑧2 + 4𝑧1𝑧3 − 12𝑧1 + 2𝑧2

2 + 2𝑧2𝑧3 − 10𝑧2 + 2𝑧2
3 − 6𝑧3 + 14,

𝐹2 = 2𝑧2
1 + 4𝑧1𝑧2 + 2𝑧1𝑧3 − 10𝑧1 + 𝑧2

2 + 2𝑧2𝑧3 − 10𝑧2 + 𝑧2
3 − 4𝑧3 + 13,

𝐹3 = 2𝑧2
1 + 2𝑧1𝑧2 + 4𝑧1𝑧3 − 6𝑧1 + 𝑧2

2 + 2𝑧2𝑧3 − 4𝑧2 + 𝑧2
3 − 6𝑧3 + 5,

with Gröbner basis

𝑔1 = 𝑧1 −
896

22815𝑧6
3 +

368
2535𝑧5

3 −
568

22815𝑧4
3 +

376
22815𝑧3

3 +
782
7605𝑧2

3 − 1,

𝑔2 = 𝑧2 +
46

22815𝑧6
3 +

392
2535𝑧5

3 −
11347
22815𝑧4

3 −
23519
91260𝑧3

3 +
17567
30420𝑧2

3 − 1,
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𝑔3 = 𝑧7
3 − 3𝑧6

3 −
5
2𝑧5

3 +
83
8 𝑧4

3 −
15
4 𝑧3

3 −
117
8 𝑧2

3.

The coefficients of the 𝑔 polynomials are much more convoluted than those of 𝐹, despite the
relative simplicity of the equations. This last system of polynomials has length(𝐼) = 213,
where by length we simply mean the amount of characters needed to write it out in the
most simplified way. If we calculate in the same way the length of the Gröbner basis
associated to the ideal of the same network but with pressure drops

𝜙 = (532632, 488351, 966319, 102511, 724872, 456706)

chosen at random, we get length(𝐼) = 12541. If we further complicate it by setting

𝑞nom = (0.90584491, 0.39104003, 0.67354593),

also chosen randomly, then we get length(𝐼) = 26134. Therefore even for very small
networks the coefficients explode. In particular, note that the Gröbner basis will have at
most 26 monomials (due to the conditions on deg(𝐼) and the Shape Lemma which will
be seen below), therefore the average coefficient size per monomial for the last basis will
be of 1000 characters.

4.2 Stability of the computations
So far, we have an algorithm that we know works, meaning that it finds the correct
solution in finite time. However, in practice there may be problems arising from the
implementation of the algorithm. The first of them is time, as we know. The second is
due to the inability of the computer to perform exact arithmetic.
There are two ways that this type of errors can appear.

1. The computation of the Gröbner basis is generally based on the computation
of many 𝑆-polynomials and their remainders. This is effective because of the
cancellation of the main terms (see Sasaki and Kako 2010, § 2 for an in-depth
analysis of how different cancellations can happen). However, when the coefficients
of the polynomials are very small (such that their difference may be in the order of
magnitude of the floating-point accuracy of our computer) there may be unwanted
cancellation of terms that leads to potentially large errors in further computations.

2. Once we have found the Gröbner basis of the ideal, what we have is a reformulation
of the original system of equations that has the same solutions. The issue is that
this system of equations will potentially be of a much higher degree compared to the
original, and with more complex coefficients. While numerical solvers can reliably
find all roots of a univariate polynomial up to a very high degree of precision, even
the smallest error in the approximation of the solutions can create a cascade effect:
the next polynomials to be solved (after the solved variable is substituted) will be
incorrect (since the value of the substitution introduces an error), leading to an
increased error.
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4.2.1 Floating point errors

The first problem has been studied on many occasions. A common approach is setting
an infinitesimal quantity 𝜀 such that 𝜀𝑚 = 0, which can be used by working in the ring

�̂� = 𝑅�⟨𝜀𝑚⟩,

and then using it to take care of quantities that are under the floating point of the
computer. This makes it possible to define an extended Gröbner basis that accounts for
small perturbations, as in Kondratyev, Stetter, and Winkler 2004. Other methods can
be found in Sasaki and Kako 2007, Sec. 3.
The easiest solution to this problem is refraining from using floating point numbers at all.
In particular, we can assume that all of the coefficients are rational numbers, and perform
exact arithmetic to avoid issues with an engine that is powerful enough to handle them.
The price we pay is, as explained above, that the size of the coefficients (understood not
as the value, but the space needed to store them) becomes bigger and bigger.
In practice, in the construction of the system of equations we have to solve, the problem
does not come from the values of the pressure drop coefficients 𝜙, since these tend to be
large integers and therefore it is easier to work with them. Instead, the problem comes
from the load vector 𝑞nom that has the potentially small floating point numbers, that we
may not want to turn into rational numbers. A possible solution can then be solving the
equation with the unknown values as parameters.
Consider the ring

�̂� = ℚ[𝑞nom
1 , … , 𝑞nom

|𝑉 | ][𝑧1, … , 𝑧𝑛]

of polynomials in 𝑧 with coefficients that can depend on 𝑞. For 𝑓 ∈ �̂�, and a vector 𝑞 of
loads, let

𝜋𝑞(𝑓) = 𝑓(𝑞, 𝑧) ∈ ℚ[𝑧1, … , 𝑧𝑛]
be the result of the substitution of the loads in the system. One would hope that, if

𝐼 = ⟨𝑓1, … , 𝑓𝑘⟩ ⊂ �̂�

is an ideal with Gröbner basis { 𝑔1, … , 𝑔𝑡 } , then a basis for the system

𝐼𝑞 = ⟨𝜋𝑞(𝑓1), … , 𝜋𝑞(𝑓𝑘)⟩ ⊂ ℚ[𝑧1, … , 𝑧𝑛]

would be given by { 𝜋𝑞(𝑔1), … , 𝜋𝑞(𝑔𝑡) } . While that is not the case, there is a close
enough result from Weispfenning 1992.
Definition 4.4. Let 𝒢 = { (𝑉𝑖, 𝐺𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑛 } , where the 𝑉𝑖 are algebraic sets that
cover ℚ|𝑉 | and the 𝐺𝑖 ⊂ ℚ[𝑧1, … , 𝑧𝑛] are sets of polynomials, and let ≺ be a term order
with 𝑞 ≺ 𝑧, meaning that any term with coefficients in 𝑞 is bigger than a term without
them. We say that 𝒢 is a comprehensive Gröbner system (or simply a Gröbner system)
if, for all values 𝑞 = (𝑞1, … , 𝑞|𝑉 |) ∈ ℚ|𝑉 |, we have that, if 𝑞 ∈ 𝑉𝑖, then

𝐺𝑞 = { 𝜋𝑞(𝑔) ∣ 𝑔 ∈ 𝐺𝑖 }

is a Gröbner basis in ℚ[𝑧1, … , 𝑧𝑛] with respect to the order induced by ≺.
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This means that, instead of having to compute the Gröbner basis of a system for every
possible vector 𝑞 of loads, one has to first compute the Gröbner system and then just
find to which set 𝑉𝑖 does 𝑞 belong. Each tuple (𝑉𝑖, 𝐺𝑖) is called a branch, and for the
algorithms we will work with we will have 𝑉𝑖 = 𝑉 (𝐸𝑖) − 𝑉 (𝑁𝑖), with 𝐸𝑖 and 𝑁𝑖 ideals
in ℚ[𝑞1, … , 𝑞|𝑉 |]
Of course, this is only useful insofar there are algorithms that allow one to compute the
Gröbner system associated to an ideal. But that is the case: an algorithm can be found
in Kapur, Sun, and Wang 2010, and it is also implemented in Singular (see Montes
and Schoenemann 2018).
Remark 4.5. In Nitsche 2018, the idea of Gröbner systems is used to obtain parametriza-
tions 𝑧(𝑞) of the flows through the cycle, leading to a parametric representation of the
set of feasible loads.

Having a Gröbner system allows us to study the conditioning of our system, as in Montes
1998; Montes and Castro 1995. Consider the following simple example.
Example 4.6. Consider the simple network formed only by a triangle, with the following
variables:

𝑞1

𝑞3

𝑞2

𝑎1 = 𝑧1

𝑎2

𝑎3

We let all pressure drops be 1, and denote by the dashed line the pipe whose flow we
will calculate (that is, 𝑄0,𝑁). A Gröbner system in this case consists of only one couple
(𝑉 , 𝐺), with 𝑉 being therefore the entire space ℚ2 (recall that 𝑞1 = −𝑞2 − 𝑞3 is omitted).
The associated Gröbner basis is simply the polynomial

𝑧2
1 + (−4𝑞2 − 2𝑞3) 𝑧1 + 2𝑞2

2 + 2𝑞2𝑞3 + 𝑞2
3,

which is a quadratic polynomial on 𝑧1. If we let

𝐴 = 1, 𝐵(𝑞2, 𝑞3) = −4𝑞2 − 2𝑞3, 𝐶(𝑞2, 𝑞3) = 2𝑞2
2 + 2𝑞2𝑞3 + 𝑞2

3

we obtain

𝑧1 =
−𝐵(𝑞2, 𝑞3) ± √𝐵(𝑞2, 𝑞3)2 − 4𝐶(𝑞2, 𝑞3)

2
= 2𝑞2 + 𝑞3 ± √2𝑞2(𝑞2 + 𝑞3).

We can now compute the condition number of the system, by computing the derivatives
𝜕𝑧1
𝜕𝑞2

= 2 ±
2𝑞2 + 𝑞3

√2𝑞2(𝑞2 + 𝑞3)
,
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𝜕𝑧1
𝜕𝑞3

= 1 ±
𝑞2

√2𝑞2(𝑞2 + 𝑞3)
.

Then we get

𝐶(𝑧1, 𝑞2) = ∣
𝑞2
𝑧1

∣∣
𝜕𝑧1
𝜕𝑞2

∣ =
2 ±

2𝑞2 + 𝑞3

√2𝑞2(𝑞2 + 𝑞3)

2 +
𝑞3
𝑞2

+ √2 + 2
𝑞3
𝑞2

.

If we assume that 𝑞2 ∼ 𝑞3, we would have

𝐶(𝑧1, 𝑞2) ∼
2 ± 3/2

2 + 1 +
√

4
=

2
5 ±

3
10,

which is a relatively low number. A similar calculation can be made for 𝐶(𝑧1, 𝑞3).
Therefore the system is stable, in the sense that the flow 𝑧1 will not change drastically
with changes in the loads, as long as the loads are similar.
Example 4.7. For a more challenging task, let us considered the example in Gotzes,
Nitsche, and Schultz 2017, § 4. The network has the shape

𝑞0

𝑞1

𝑞2

𝑞3

𝑎1

𝑎2

𝑎3𝑧1 = 𝑎4

𝑎5 = 𝑧2

Unlike in the previous example, this time we set 𝜙 = (1, 1, 100, 1, 1). In the notation of
the previous paper, we will work on Orientation II (and, in the notation of Nitsche 2018,
§ 7, we will be in Direction 1). We take the first branch of the Gröbner system, and get
the polynomials

𝑔1 = (4𝑞2
1 + 8𝑞1𝑞2 + 16𝑞1𝑞3 + 4𝑞2

2 + 16𝑞2𝑞3 + 16𝑞2
3)𝑧2

2
+ (4𝑞3

1 + 4𝑞2
1𝑞2 − 4𝑞1𝑞2

2 − 24𝑞1𝑞2𝑞3 − 24𝑞1𝑞2
3 − 4𝑞3

2 − 24𝑞2
2𝑞3 − 40𝑞2𝑞2

3 − 24𝑞2
3)𝑧2

+ 𝑞4
1 − 2𝑞2

1𝑞2
2 − 4𝑞2

1𝑞2𝑞3 + 8𝑞1𝑞2𝑞2
3 + 8𝑞1𝑞3

3 + 𝑞4
2 + 4𝑞3

2𝑞3 + 12𝑞2
2𝑞2

3 + 16𝑞2𝑞2
3 + 8𝑞4

3,
𝑔2 = (2𝑞1 + 2𝑞2 + 2𝑞3)𝑧1 − 2𝑞3𝑧2 − 𝑞2

1 − 2𝑞1𝑞2 − 2𝑞1𝑞3 − 𝑞2
2 − 2𝑞2𝑞3,

corresponding to the system

0 = 𝐴(𝑞1, 𝑞2, 𝑞3)𝑧2
2 + 𝐵(𝑞1, 𝑞2, 𝑞3)𝑧2 + 𝐶(𝑞1, 𝑞2, 𝑞3),

0 = 𝑀(𝑞1, 𝑞2, 𝑞3)𝑧1 + 𝑁(𝑞1, 𝑞2, 𝑞3, 𝑧2).
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Table 4.2. Timing comparison between the computation of a Gröbner system for different
networks with different values for the pressure drop coefficients 𝜙. The values above are
the average of 1000 samples, the values below in (brackets) are the standard deviation.

Network Number of Number of Timing (s)
shape nodes cycles 𝜙 = 𝟙 𝜙 ∈ ℕ

3 1 0.01722
(0.00212)

0.01831
(0.00275)

11 1 0.02112
(0.00206)

0.02118
(0.00248)

4 2 0.03610
(0.01485)

0.04513
(0.00813)

8 1 0.04631
(0.00356)

0.06377
(0.01021)

It is therefore trivial to solve for 𝑧2 and 𝑧1. To compute the partial derivatives, there
is not much to do when working with 𝑧2; for 𝑧1, in particular with 𝑁(𝑞1, 𝑞2, 𝑞3, 𝑧2) we
simply use the fact that

𝜕𝑓(𝑧2)
𝜕𝑞𝑖

=
𝜕𝑓(𝑠(𝑞1, 𝑞2, 𝑞3))

𝜕𝑞𝑖
=

𝜕𝑓(𝑠)
𝜕𝑠

𝜕𝑠(𝑞1, 𝑞2, 𝑞3)
𝜕𝑞𝑖

=
𝜕𝑓(𝑠)

𝜕𝑠
𝜕𝑧2
𝜕𝑞𝑖

.

This allows us to compute 𝐶 = 𝐶(𝑧𝑖, 𝑞𝑗), obtaining, for 𝑞 = (10, 100, 10), the matrix

𝐶 = (0.09430 1.05609 0.03821
0.06874 0.80760 0.12364) .

In this case, for example, this tells us that if we increase the load 𝑞3 of the rightmost
node, we can expect the load to increase more on the 𝑧2 pipe than on the 𝑧1 (so that
most of the flow would come from the (𝑞0, 𝑞1, 𝑞3) path).

Although we know that there are algorithms to compute a Gröbner system, it is important
to know how long can this take. Of course, we can expect it to be more expensive than
simply computing the Gröbner basis for a set of values of 𝑞. In table 4.2 a comparison
of different networks is shown, alongside the time it took to find a Gröbner system (for
the simplest problem with three fundamental cycles, the complete graph 𝐾4, no solution
could be found even after several days). For all of the systems we simply solved for one
direction; in a realistic scenario one would need to solve as many systems as possible
flow directions there are.
There were two scenarios to find a Gröbner system. The first one, 𝜙 = 𝟙, involves simply
setting all pressure drops to one. For the second, 𝜙 ∈ ℕ, we choose each pressure drop
from a uniform distribution over the set {1, 2, … , 10000}. For each of them table 4.2
shows the average and standard deviation of the time taken over 1000 samples.
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𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

Figure 4.1. Graphs for the degree comparison.

4.2.2 Approximation errors

For this second problem, it may be worth looking at some practical examples. Consider
the graphs 𝐺1, 𝐺2, 𝐺3, 𝐺4 and 𝐺5, with 1 to 5 fundamental cycles, as in fig. 4.1. We let
all coefficients (𝑞nom, 𝜙 and 𝑠) be simply one, for simplicity. If we compute the Gröbner
basis and look at the last polynomial 𝑔−1 (the one eliminating the last variable) we get

𝑔−1(𝐺1) = 𝑧2
1 − 6𝑧1 + 5,

𝑔−1(𝐺2) = 𝑧4
2 + 12𝑧3

2 + 18𝑧2
2 + 9,

𝑔−1(𝐺3) = 𝑧7
3 − 3𝑧6

3 −
5
2𝑧5

3 +
83
8 𝑧4

3 −
15
4 𝑧3

3 −
117
8 𝑧2

3,

𝑔−1(𝐺4) = 𝑧16
4 +

34693728
105313 𝑧15

4 +
4469888320

105313 𝑧14
4 + ⋯ +

609004552192
8101 𝑧2

4,

𝑔−1(𝐺5) = 𝑧32
5 + ⋯ +

22334709456027247610838975
396908347641439

One can clearly see that the degree of the last polynomial gets bigger and bigger. This is
something that happens in virtually every computation of Gröbner basis, due to the fact
that the computation of the 𝑆-polynomial, while cancelling the leading term, increases
the other terms by multiplying them with another monomial, and this may not disappear
when taking the remainder of the division by the other elements of the basis.
Imagine the system has a total of 𝑑 solutions, which we write as

𝑧(1) = (𝑧(1)
1 , … , 𝑧(1)

𝑛 ), … , 𝑧(𝑑) = (𝑧(𝑑)
1 , … , 𝑧(𝑑)

𝑛 ).

Then the polynomial

𝑝𝑛(𝑧𝑛) =
𝑑

∏
𝑖=1

(𝑧(𝑖)
𝑛 − 𝑧𝑛)

is the one generated by the last coordinate of all roots of the original system of equations.
Therefore

𝑝𝑛(𝑧𝑛)𝑚 ∈ 𝐼𝑛−1 ∩ 𝐾[𝑧𝑛] = ⟨𝑔−1(𝑧𝑛)⟩,
where 𝐼𝑛−1 is the last elimination ideal. The fact that one has to take an exponent 𝑚 for
𝑝−1 to be in the ideal is due to Hilbert’s Nullstellensatz. But this implies that all roots
of 𝑔−1 are also roots of 𝑝−1 so, if all the 𝑧(𝑖)

𝑛 are different, we have that deg(𝑔−1) ≥ 𝑑.
Therefore, if the system has many equations with many solutions the last generator will
be of higher degree.
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These polynomials are of relatively high degree, and although it is not hard to get precise
numerical solution any error, as mentioned before, could be multiplied when solving the
other variables.
Example 4.8. Consider the network given by the graph in fig. 4.2. This graph has five
fundamental cycles. We fix the pressure drop coefficients in all pipes to be 1, and consider
100 random networks by choosing the coefficients randomly from a normal multivariate
𝑞nom ∼ 𝒩(1, 5 ⋅ Id4). We obtain a total of 652 solutions. For each solution, we compute
the mean squared error as follows: if

𝐹(𝑧) = (𝐹1(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5), … , 𝐹5(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5))

is the formulation of the system of eq. (4.1), and ̂𝑧 = ( ̂𝑧1, … , ̂𝑧5) is the solution computed
by the algorithm, then we define

MSE( ̂𝑧) =
1
5

5
∑
𝑖=1

|𝐹 ( ̂𝑧𝑖)|
2,

the mean square error of ̂𝑧. Essentially, MSE( ̂𝑧) tells us how close the solution computed
via the Gröbner basis elimination method is from being a solution of the original system.
If 𝐸 is the result of calculating the mean squared error of all solutions, we obtain

𝜇(𝐸) = 1.378 75 × 10−17, 𝜇(− log(𝐸)) = 25.8581,
𝜎(𝐸) = 2.461 28 × 10−16, 𝜎(− log(𝐸)) = 1.710 67,

min(𝐸) = 8.283 03 × 10−31, min(− log(𝐸)) = 14.2350,
max(𝐸) = 5.820 34 × 10−15, max(− log(𝐸)) = 30.0818,

median(𝐸) = 1.111 22 × 10−26, median(− log(𝐸)) = 25.9542.

We also provide the values for − log(MSE), since the distribution is highly skewed by
some of the values.
However, consider this same system for the specific set of parameters

𝑞2 = −7.77600224, 𝑞3 = 0.45935455, 𝑞4 = −0.24251548, 𝑞5 = 5.27920738.

On a first glance this set of parameters has nothing particular; however, it leads to a
solution ̂𝑧 with

MSE( ̂𝑧) = 0.157.

Compared to the previous values, this is a really high error. Note that in this case the
system gives rise to a Gröbner basis that has a good shape, as in the Shape Lemma
below, hence the problem comes from the numerical error introduced when solving a
polynomial of very high degree.

There is a particular case in which we can guarantee that at least the numerical error
will not create a cascade effect and generate even bigger errors.
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Figure 4.2. Network from example 4.8.

Theorem 4.9 (Shape Lemma). Let 𝐼 be a radical, zero-dimensional ideal in ℂ[𝑧1, … , 𝑧𝑛]
such that the last coordinate of all the 𝑑 points in 𝑉 (𝐼) is different. Then a >lex basis of
𝐼 is given by

{ 𝑧1 − 𝑔1(𝑧𝑛), … , 𝑧𝑛−1 − 𝑔𝑛−1(𝑧𝑛), 𝑔𝑛(𝑧𝑛) } ,

where deg(𝑔𝑛) = 𝑑 and deg(𝑔𝑖) < 𝑑 for 1 ≤ 𝑖 ≤ 𝑛 − 1.

For a proof of the theorem one can check Becker et al. 1994.
The meaning for us is that, under some circumstances, the problem of the error in the
calculations of 𝑧𝑛, 𝑧𝑛−1 down to 𝑧1 being propagated disappears, since the values of 𝑧𝑖
for 1 ≤ 𝑖 ≤ 𝑛 − 1 depend only on 𝑧𝑛 and not on each other.
From the definition, one should expect our Gröbner basis to have this good shape. From
a theoretical point of view, all points having different last coordinate makes sense: if we
fix the last coordinate we’re left with a polynomial system with one more equation than
variables. The system is therefore overdetermined, and solutions to this system, if they
exist, should be scarce, so it would be unlikely to find two solutions for this fixed last
variable. Testing also supports this conclusion: we performed random tests for various
systems with integer loads between 1 and 106, and loads taken either from a uniform
distribution 𝑞 ∼ 𝑈(0, 1) or from a normal distribution 𝑞 ∼ 𝒩(0, 1). In all tests, the
resulting Gröbner basis had the wanted shape.
Unfortunately, there are cases where this fails. In Nitsche 2018, § 7, an example is
computed where one of the Gröbner basis resulting from a Gröbner system has an
unwanted shape. In that particular case, it stems from a “bad choice” of the loads 𝑞.
And indeed one could imagine that the previous argument about an underdefined system
fails if additional term cancellations appear due to the choice of loads. In terms of the
Gröbner system, this would mean that we could expect the first (and biggest) branch of
the system to be

𝑉1 = ℚ𝑛 − 𝑉 (𝑁𝑖)

with 𝑉 (𝑁𝑖) a small variety (in practical terms all algebraic varieties are small) defined
by a set of equations that produce (unwanted) cancellation of 𝑧 terms in the definition of
the system.
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4.3 Finding the flow directions
In algorithm 3, iterating over all possible signs and then solving the corresponding
equations gives us an 𝒪(2|𝐴|) extra layer of complexity, which is of course very undesirable.
There are two possible ways to reduce the number of flow directions one has to consider.
The first is simply looking at the inherent restrictions of the network. While we are only
considering nodes and pipes, our network will also have control valves and compressors
that we have just simplified. This type of components has inherent restrictions that force
the gas to flow in one particular direction, therefore fixing the flow through some of the
pipes which include the components.
For the second, we will start from the work in Nitsche 2018, Prp. 5.7.
Proposition 4.10. Let 𝐺 be a graph representing a given network, 𝒯 a depth-first tree
rooted in the reference node 𝑟, ⃗𝐺 the orientation of 𝐺 with respect to 𝒯 and 𝑄0 a vector
of flows. Then:

1. degout
gas(𝑢) ≥ 1 for all entry nodes with 𝑞nom

𝑢 < 0.
2. degin

gas(𝑢) ≥ 1 for all exit nodes with 𝑞nom
𝑢 > 0.

3. Either deggas(𝑢) = 0, or degin
gas(𝑢) > 0 and degout

gas(𝑢) > 0 for all innodes with
𝑞nom

𝑢 = 0.
4. There are no cycles in ⃗𝐺 directed with respect to the gas flow.

Here, the ‘gas’ subtitle means the graph 𝐺 oriented in the direction of the gas flow. The
original proposition has some more conditions for a possible flow when there is only a
single entry node (or equivalently a single exit node), but we will not cover them here.

Proof.
1. We have

𝑞nom
𝑢 = ∑

headgas(𝑎)=𝑢
|𝑄0,𝑎| − ∑

tailgas(𝑎)=𝑢
|𝑄0,𝑎|.

If degout
gas(𝑢) = 0, the second sum will be empty, so we are left with a sum with only

positive terms, leading to

0 > 𝑞nom
𝑢 = ∑

headgas(𝑎)=𝑢
|𝑄0,𝑎| ≥ 0,

giving a contradiction.
2. The proof is just as above, just changing the signs.
3. In this case we have

0 = 𝑞nom
𝑢 = ∑

headgas(𝑎)=𝑢
|𝑄0,𝑎| − ∑

tailgas(𝑎)=𝑢
|𝑄0,𝑎|,

so either both sums are empty or both have at least one element, which gives the
statement of the proposition. Let the cycle be given by vertices (𝑢1, 𝑢2, … , 𝑢𝑛, 𝑢1)
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4.3 Finding the flow directions

and edges 𝑎1 = (𝑢1, 𝑢2), … , 𝑎𝑛 = (𝑢𝑛, 𝑢1), with all flows positive. Then

0 =
𝑛

∑
𝑖=1

𝑝2
𝑢𝑖+1

− 𝑝2
𝑢𝑖

=
𝑛

∑
𝑖=1

(−𝜙𝑎𝑖
𝑄2

0,𝑎𝑖
) = −

𝑛
∑
𝑖=1

𝜙𝑎𝑖
𝑄2

0,𝑎𝑖
.

Since everything inside the sum is positive, the only way for the equality to hold is
to have 𝜙 = 0, which we discard since it has no physical meaning to us, or to have
no actual flow throughout the cycle.

The above result allows us to define a strictly smaller set of possible flow directions,

𝒮 ⊂ { +1, −1 } |𝐴|.

The computation of this set is hard in general, because the number of pipes with fixed
flow directions may be small and the conditions on the degree of incoming and outcoming
edges at every node may not be useful whenever the graph is highly connected.
Proposition 4.11. By abuse of notation, let 𝒮(𝐺) be the number of possible flow
directions of the graph, i.e. the size of the set 𝒮 associated to ⃗𝐺. Assume that there is
only one entry node 𝑟, with degin

gas(𝑟) = 0, and that all other nodes are exit nodes. Then
1. 𝒮(𝒯) = 1 for any tree.
2. 𝒮(𝐶𝑛) = 𝑛 − 1 for a cycle graph.
3. 𝒮(𝑊𝑛) = 2𝑛−1 for a wheel graph, if the entry node 𝑟 is at the center.
4. 𝒮(𝐾𝑛) = (𝑛 − 1)! for a complete graph.

Proof.
1. For an intuitive proof, look at a single leaf. If it is the root node 𝑟, the flow through

the connecting edge must go outwards to the rest of the tree; otherwise the flow
goes inwards to ensure that the exit node gets gas. Therefore we can remove all
leaves and look at the parent. Repeating this process gets us the result.
Alternatively, the proof for Nitsche 2018, Prp. 5.7.(v) gives us that the flow through
edges that are not in a cycle are directed away from the node 𝑟. Since every edge
in a tree is not part of a cycle, this means that the flow through every edge is
predetermined.

2. Let the vertices be 𝑢1 = 𝑟, 𝑢2, … , 𝑢𝑛, with 𝑎𝑖 = (𝑢𝑖, 𝑢𝑖+1). We can immediately
settle the direction of 𝑎1 since it flows outwards from 𝑟. We can then choose a
direction for 𝑎2. If ⃗𝑎2 = (𝑢2, 𝑢3), we jump to choosing 𝑎3. But if ⃗𝑎2 = (𝑢3, 𝑢2),
there are no more choices, and every other edge will be ⃗𝑎𝑖 = (𝑎𝑖+1, 𝑎𝑖) for 𝑖 ≥ 3,
since otherwise a vertex in the middle would have no incoming edges.
Therefore any viable direction will be a directed path from 𝑢1 to 𝑢𝑘 in the two
possible ways around the cycle. Therefore the amount of possible directions is the
number of choices for 𝑘, which is 𝑛 − 1.

3. Let the vertices of the graph 𝑊𝑛+1 be 𝑟, 𝑢1, … , 𝑢𝑛. Then all edges 𝑎𝑖 = (𝑟, 𝑢𝑖) have
a fixed direction, away from 𝑟. The remaining 𝑛 vertices 𝑏𝑗 = (𝑢𝑗, 𝑢𝑗+1) can be
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4 Solving gas networks

ordered arbitrarily, giving a total number of 2𝑛 possibilities. However, we have to
discard those that lead to cycles. But since the 𝑎𝑖 are all ordered outwards, the only
possible cycles would be having ⃗𝑏𝑗 = (𝑢𝑗, 𝑢𝑗+1) for all 𝑗 or the other way around,
giving two combinatios that we have to remove, and leading to 𝒮(𝑊𝑛+1) = 2𝑛 − 2,
which is equivalent to what was claimed.

4. Similarly with the case of wheels, we can remove from the picture the first vertex
as all directions are fixed, and what we get is a smaller complete graph 𝐾𝑛−1. We
want to orient all edges in this subgraph such that no cycles appear (because no
cycles including the root vertex are possible). One can show that every acyclic
graph has an acyclic ordering of its vertices, where acyclic ordering means that if
⃗𝑎 = (𝑢𝑖, 𝑢𝑗) then 𝑖 < 𝑗, see for instance Bang-Jensen and Gutin 2001, Prp. 1.4.3.

Similarly, for any ordering of the vertices we can create an acyclic graph: if the
order is 𝑢𝑡1

< ⋯ < 𝑢𝑡𝑛−1
, create vertices ⃗𝑎𝑖𝑗 = (𝑢𝑡𝑖

, 𝑢𝑡𝑗
) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1.

The above implies that an acyclic complete graph on 𝑛 − 1 vertices is equivalent to
an ordering of { 1, … , 𝑛 − 1 } . Since there are (𝑛 − 1)! such orderings, one gets
the result 𝒮(𝐾𝑛) = (𝑛 − 1)!.

Remark 4.12. For the case of trees, one does not even need to consider the direction of
the flows. Looking back to eq. (2.6), we have

𝒜𝑄0 = 𝑞nom,

but 𝒜 is now a nonsingular square matrix, so we can get the network flows directly.

Note that the vertex connectivity is respectively 𝜅(𝑇 ) = 1, 𝜅(𝐶𝑛) = 2, 𝜅(𝑊𝑛) = 3 and
𝜅(𝐾𝑛) = 𝑛 − 1, for 𝑛 ≥ 4. The values for the edge connectivity 𝜆 are all equal. This
means that even a small increase in connectivity can cause an explosion in the potential
size of 𝒮 if we do not have additional information. The hope, however, is the fact that
for graphs with small connectivity the size is relatively small, and in particular in the
case of trees.
Proposition 4.13. Let 𝐺 be a graph with edge connectivity 𝜆(𝐺) = 1, and divide it
into subgraphs 𝐺1 and 𝐺2 such that there is only one edge 𝑎 between them. Then

𝒮(𝐺) ≤ 𝒮(𝐺1)𝒮(𝐺2).

Proof. One has the trivial inequality 𝒮(𝐺) ≤ 2𝒮(𝐺1)𝒮(𝐺2) by splitting every set of flow
directions into a flow direction for each of 𝐺1 and 𝐺2, with the factor of two coming from
the two possible directions for ⃗𝑎. However, there is only a possible direction for 𝑎: let

𝑞nom
1 = ∑

𝑢∈𝑉 (𝐺1)
𝑞nom

𝑢 , 𝑞nom
2 = ∑

𝑢∈𝑉 (𝐺2)
𝑞nom

𝑢 .

Since the network is supposed to be balanced, 𝑞1 = −𝑞2. If, without loss of generality,
𝑞1 < 0 < 𝑞2, we must have that the flow of ⃗𝑎 goes from 𝐺1 to 𝐺2. Therefore this direction
is fixed, which means that one can decompose a flow direction of 𝐺 into one in 𝐺1 and
other in 𝐺2. This then gives

𝒮(𝐺) ≤ 𝒮(𝐺1)𝒮(𝐺2).
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4.3 Finding the flow directions

One could give a similar result for graphs with vertex connectivity 𝜅(𝐺) = 1. One could
even go further: this result is not only about the number of flow directions 𝒮(𝐺), but
the argument can also be applied to say that the two subnetworks 𝐺1 and 𝐺2 can be
solved separately, and once the flows have been found they can be patched together to
get a solution for 𝐺. Therefore, solving a network with edge connectivity 𝜆(𝐺) = 1 is as
hard as solving its subnetworks. This is the starting point for the reduction method in
chapter 5.

4.3.1 Parametrized flow directions

For now we have been looking at the set 𝒮 and solving for 𝑧 once the directions have been
fixed. However, there is another possible approach. Consider instead the polynomial ring
to be

𝑅𝑠 = 𝐾[𝑠1, … , 𝑠|𝐴|, 𝑧1, … , 𝑧𝑛]

where the 𝑠𝑖 variables are associated to each edge. The main condition on the directions
is the fact that 𝑠𝑖 ∈ { +1, −1 } , which we could encode by working in the ring

𝑅𝑠�⟨𝑠2
1 − 1, … , 𝑠2

|𝐴| − 1⟩ = 𝑅𝑠�𝐼𝑠
.

The ideal which we quotient enforces 𝑠2
𝑖 − 1 = 0, which implies 𝑠𝑖 = ±1. If we define the

system of equations which we are trying to solve as

𝐼 = ⟨𝒜T
𝑁(𝒜−1

𝐵 )TΦ𝐵 diag(𝑠𝐵)(𝐴−1
𝐵 (𝑞nom − 𝒜𝑁𝑧))

2
− Φ𝑁 diag(𝑠𝑁)𝑧2⟩,

we can find the solutions with the corresponding signs in the variety

𝑉𝑅𝑠
(𝐼 + 𝐼𝑠).

The addition of ideals is simply the set of elements that are the sum of elements in each
ideal. This variety is essentially equivalent to the system

𝒜T
𝑁(𝒜−1

𝐵 )TΦ𝐵 diag(𝑠𝐵)(𝐴−1
𝐵 (𝑞nom − 𝒜𝑁𝑧))

2
= Φ𝑁 diag(𝑠𝑁)𝑧2,

𝑠2 = 𝟙.

The solution (𝑠, 𝑧) of this system will give us both the flow values and the orientation of
the network. Of course this would be really desirable since it removes all the previous
discussion. The question then becomes whether this is practical: is the increase in
computational time required to solve this expanded system worth it compared to checking
|𝒮| many smaller systems?
Remark 4.14. There is no need to consider the parametric signs 𝑠𝑖 for all variables.
According to the discussion above one may be able to fix some of the signs, and therefore
reduce the size of 𝑅𝑠. This in turn will lead to a faster execution time.
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4 Solving gas networks

The first thing one has to examine is the ordering of variables. The inner ordering is not
really important (that is, whether 𝑠1 > 𝑠2 or viceversa). However, the choice of 𝑠𝑖 > 𝑧𝑗
or 𝑧𝑖 > 𝑠𝑗 does matter. We call these orderings >df and >ef, respectively, meaning either
directions first or edges first. What would each ordering mean?

• If using >df, in the elimination process the last equations would be polynomials in
𝑧, and we would start with values for the flow before finding the direction of the
gas. More specifically, one could imagine that we would get numerical values for
the flow that would be valid for diferent orientations.

• If using >ef, the last equations will involve only equations in 𝑠. Then the process
of finding solutions will start by fixing more and more flow directions, and then
finding the appropriate flows. This also means that the last equations, with fewer
variables, may force some flow directions: for instance, some 𝑠𝑖 would be fixed
independently of the other directions.

For a very simple case, consider the smallest possible network with 3 nodes and 3 edges.
Let the pressure drop coefficients be all 1, and set the loads of the nodes that are not the
root to +1. The equation one has to solve is

𝑓 = −𝑠1𝑧2
1 + 𝑠2𝑧2

1 − 6𝑠2𝑧1 + 9𝑠2 + 𝑠3𝑧2
1 − 2𝑠3𝑧1 + 𝑠3,

and we add the conditions

𝑠2
1 − 1, 𝑠2

2 − 1, 𝑠2
3 − 1.

If we calculate the Gröbner basis of the ideal the results are as follows. For the >df
ordering, one gets the system

𝑔1 = 𝑠1 − 𝑠2 +
53
300𝑠3𝑧6

1 −
53
50𝑠3𝑧5

1 +
109
900𝑠3𝑧4

1 +
1481
225 𝑠3𝑧3

1 −
15559
900 𝑠3𝑧2

1

+
8363
450 𝑠3𝑧1 −

427
60 𝑠3,

𝑔2 = 𝑠2
2 − 1, 𝑠2𝑧1 − 𝑠2 −

1
1200𝑠3𝑧6

1 +
11
120𝑠3𝑧5

1 −
1613
3600𝑠3𝑧4

1 −
113
300𝑠3𝑧3

1

+
10487
3600 𝑠3𝑧2

1 −
629
120𝑠3𝑧1 +

49
16𝑠3,

𝑔3 = 𝑠2
3 − 1,

𝑔4 = 𝑧7
1 − 7𝑧6

1 +
23
3 𝑧5

1 +
95
3 𝑧4

1 −
419
3 𝑧3

1 +
709
3 𝑧2

1 − 205𝑧1 + 75

If we instead take the >ef ordering, we get

𝑔1 = 𝑧2
1 − 2𝑧1𝑠1𝑠3 − 2𝑧1𝑠2𝑠3 − 2𝑧1 −

2
3𝑠1𝑠2 +

7
3𝑠1𝑠3 +

5
3𝑠2𝑠3 +

5
3,

𝑔2 = 𝑠2
1 − 1,

𝑔3 = 𝑠2
2 − 1,
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𝑔4 = 𝑠2
3 − 1.

The first thing one notes is that a lot of the elements of the basis are simply the
conditions. Note that the set of conditions by themselves forms a Gröbner basis of the
ideal it generates: indeed,

𝑆(𝑠2
𝑖 − 1, 𝑠2

𝑗 − 1) =
𝑠2

𝑖 𝑠2
𝑗

𝑠2
𝑖

(𝑠2
𝑖 − 1) −

𝑠2
𝑖 𝑠2

𝑗

𝑠𝑗

2

(𝑠2
𝑗 − 1)

= 𝑠2
𝑖 − 𝑠2

𝑗 .

And if we apply the division algorithm to the 𝑆-polynomial, one gets the remainder zero.
Therefore the important information for the Gröbner basis comes from the interaction
of 𝑓 and each condition. And if we come back to the idea of elimination, it makes all
the sense that the conditions will appear untouched at the end, since any univariate
polynomial in 𝐼 ∩ 𝐾[𝑠3] will be a multiple of 𝑠2

3 − 1.
Something similar happens if we instead consider a cycle with four elements. The
polynomial we have to solve is

−𝑧2
1𝑠1 + 𝑧2

1𝑠2 + 𝑧2
1𝑠3 + 𝑧2

1𝑠4 − 6𝑧1𝑠2 − 2𝑧1𝑠3 − 4𝑧1𝑠4 + 9𝑠2 + 𝑠3 + 4𝑠4,

to which we have to add the usual direction conditions. For the >df ordering we get a
basis

𝑔1 = 𝑠1 − 𝑠2 −
128
2205𝑠4𝑧10

1 +
709
833𝑠4𝑧9

1 −
11401
2142 𝑠4𝑧8

1 +
277699
14994 𝑠4𝑧7

1 −
5592479
149940 𝑠4𝑧6

1

+
5302123
149940 𝑠4𝑧5

1 +
81395
4284 𝑠4𝑧4

1 −
449543
4284 𝑠4𝑧3

1 +
1183597

8330 𝑠4𝑧2
1 −

6999161
74970 𝑠4𝑧1 +

45032
1785 𝑠4,

𝑔2 = 𝑠2
2 − 1,

𝑔3 = 𝑠2𝑧1 −
3
2𝑠2 +

11
49𝑠4𝑧10

1 −
1501
441 𝑠4𝑧9

1 +
39469
1764 𝑠4𝑧8

1 −
5263
63 𝑠4𝑧7

1 +
659273
3528 𝑠4𝑧6

1

−
779677
3528 𝑠4𝑧5

1 −
23927
3528 𝑠4𝑧4

1 +
1710137

3528 𝑠4𝑧3
1 −

1433251
1764 𝑠4𝑧2

1 +
53617

84 𝑠4𝑧1 −
419
2 𝑠4,

𝑔4 = 𝑠3 +
3874
765 𝑠4𝑧10

1 −
3874
51 𝑠4𝑧9

1 +
151075

306 𝑠4𝑧8
1 −

92954
51 𝑠4𝑧7

1 +
12328571

3060 𝑠4𝑧6
1

−
1594463

340 𝑠4𝑧5
1 −

165485
612 𝑠4𝑧4

1 +
2137693

204 𝑠4𝑧3
1 −

2953803
170 𝑠4𝑧2

1 +
2311491

170 𝑠4𝑧1 −
379247

85 𝑠4,

𝑔5 = 𝑠2
4 − 1,

𝑔6 = 𝑧11
1 −

33
2 𝑧10

1 + 120𝑧9
1 −

2025
4 𝑧8

1 + 1336𝑧7
1 − 2121𝑧6

1 + 1338𝑧5
1 +

8595
4 𝑧4

1

− 6539𝑧3
1 + 7839𝑧2

1 − 4914𝑧1 + 1323
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And for the >ef ordering, one gets

𝑔1 = 𝑧2
1 −

3
2𝑧1𝑠1𝑠4 +

1
2𝑧1𝑠2𝑠3 − 2𝑧1𝑠2𝑠4 − 3𝑧1 −

9
8𝑠1𝑠2 +

5
16𝑠1𝑠3 +

41
16𝑠1𝑠4

−
17
16𝑠2𝑠3 +

43
16𝑠2𝑠4 +

1
8𝑠3𝑠4 +

7
2,

𝑔2 = 𝑧1𝑠1𝑠2 − 𝑧1𝑠1𝑠4 + 𝑧1𝑠2𝑠3 − 𝑧1𝑠3𝑠4 −
3
2𝑠1𝑠2 +

3
2𝑠1𝑠4 −

3
2𝑠2𝑠3 +

3
2𝑠3𝑠4,

𝑔3 = 𝑧1𝑠1𝑠3 − 𝑧1𝑠1𝑠4 + 𝑧1𝑠2𝑠3 − 𝑧1𝑠2𝑠4 −
3
2𝑠1𝑠3 +

3
2𝑠1𝑠4 −

3
2𝑠2𝑠3 +

3
2𝑠2𝑠4,

𝑔4 = 𝑠2
1 − 1,

𝑔5 = 𝑠1𝑠2𝑠3 + 𝑠1𝑠2𝑠4 − 𝑠1𝑠3𝑠4 − 𝑠1 + 𝑠2𝑠3𝑠4 + 𝑠2 − 𝑠3 − 𝑠4,
𝑔6 = 𝑠2

2 − 1,
𝑔7 = 𝑠2

3 − 1,
𝑔8 = 𝑠2

4 − 1.

(4.2)

The same phenomenom appears again, with the conditions appearing at the end, and in
fact can be seen if we consider longer cycles.
The question is now: does this difference in Gröbner basis lead to an improvement in
running time? From a theoretical point of view, the answer should be yes. If we start
solving the system from the last equation and work our way upwards, as in the extension
process, the first few equations one has to solve are trivial: all give either a +1 or a
−1. And once we have given values to some 𝑠𝑖, we arrive to the equations involving 𝑧
variables which will be of a relatively low degree.
On the other hand, when the last equations are the ones related to the edge flows, those
high-degree polynomials have to be solved first. In the last example we see that 𝑔6 has
degree 11, which means we have to start by finding up to 11 roots (which will potentially
be real numbers) and then retrace the steps to solve for 𝑠𝑖. An added inconvenience
is that the equations we have to solve to find the 𝑠𝑖 are harder than the conditions
(although they are still of low degree), and it is not trivial to get either +1 or −1. In a
worst case scenario, one could even have errors stemming from the computation of the
roots of 𝑧1 as floating point numbers leading to 𝑠𝑖 not being either +1 or −1, but some
close values instead.
Remark 4.15. At the beginning of this section we mentioned that the naïve approach
of trying the 2|𝐴| combinatios of signs was not effective, and yet when choosing the
>ef ordering that is more or less what we do in the extension step, by solving for the
conditions first. This is not a contradiction however: with this method we start by
finding a Gröbner basis for the extended system, and then we start trying combinations
of directions. This means that the most time-consuming process happens only once,
instead of 2|𝐴| times for all possible vectors 𝑠.

Indeed, experimental data supports that the choice of >ef is better: in table 4.3 the
timings to solve several networks with the two different orderings are displayed. One
can see that >df is a better choice. Further testing with an increased number of edges
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4.3 Finding the flow directions

Table 4.3. Timing comparison between for the solution of different networks using either
>df or >ef, with all coefficients set to 1. Average of 10 samples.

Network Number of Number of Number of Timing (s)
shape nodes cycles directions >df >ef

3 1 3 0.099111 0.095982

6 1 6 1.476457 1.078483

4 2 5 1.623969 1.292350

5 2 6 239.9154 6.431786

supports this conclusion.
Once we have settled for the ordering, the next thing we look at is our approach to
building a solution. Instead of simply computing the Gröbner basis, we will go one step
ahead and also compute a triangular decomposition, as in section 3.3.
The question to answer is then why is this decomposition not useful in the previous cases. If
we look at the systems arising only from the network (that is, without parametric 𝑠 terms)
we expect them to have the shape predicted by the Shape Lemma (see theorem 4.9).
In particular, they would directly form a triangular set, and would allow for a fast
calculation of all terms. But in our new networks this is no longer the case. For instance,
in the system with one cycle and four edges, with Gröbner basis given in eq. (4.2), even
once the values of (𝑠1, 𝑠2, 𝑠3, 𝑠4) has been established, we are left with a system of three
equations in 𝑧1. Although this case is trivial to solve since all equations will be of low
degree, one can see that for a larger number of cycles this will create complications,
and the process of simply testing solutions will not work as well. The introduction of
an additional step for the calculation of triangular systems allows us to step over this
inconvenience.
In table 4.4, a comparison of the time required to find the solutions to different networks
can be found. In this case, the >ef order was used, and the solver used an additional
step to build a triangular set after computing the Gröbner basis (the Singular function
used is solve, from Wenk and Pohl 2019). A comparison with table 4.3 shows that using
triangular sets leads to a much better performance.
Unsurprisingly, the exponential nature of the Gröbner basis algorithms leads to a big
increase in the timings whenever we either increase the number of nodes or the number
of cycles. In this setting, more nodes usually means more directions, because if 𝐶 is the
set of fundamental cycles we have

|𝑆| = |𝐴| − |𝒯| = |𝐴| − (|𝑉 | − 1) ⟹ |𝐴| = |𝑆| + |𝑉 | − 1

so 𝑠 ∈ 𝐾 |𝐴| will be of higher dimension. Meanwhile, more cycles means more 𝑧 values
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4 Solving gas networks

Table 4.4. Timing comparison for the solution of different networks using Gröbner basis
and triangular sets. Average of 10 samples.
Network Number of Number of Number of Timing (s)

shape nodes cycles directions 𝑞 = 𝟙 𝑞 ∼ 𝑈(0, 1)

3 1 3 0.053925 0.059505

4 1 4 0.095676 0.126080

5 1 5 0.269690 0.384535

6 1 6 0.606041 14.55476

4 2 5 0.627715 4.163850

5 2 6 5.593009 230.7818

6 2 7 114.6725 -

4 3 6 583.7949 -

to solve. Due to the simple nature of the restrictions for 𝑠, namely 𝑠2
𝑖 − 1 = 0, the

additional edges do not cause as big of a problem as the additional cycles.
The choice of the loads does also play an important role. For random loads, taken from a
uniform distribution on the interval [0, 1), the time it takes to find a solution is notably
increased. For the last two graphs, no solution could be found in reasonable time (over
an hour).
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5 Network reduction
The previous chapter tells us that, while the Gröbner-based method to find the flows
of a gas network is very powerful, it fails when the size starts increasing. In particular,
for even moderate networks (for instance with four fundamental cycles), the resulting
problem is intractable.
To solve this problem, we turn to the idea of network reduction. This means that, instead
of dealing with the full system, we reduce the size to get to a smaller problem, of a size
that is solvable for us. Once the coarsest network is solved, the flows obtained are fixed
and used to solve the finer networks.
Our approach is based on a topological reduction, similar to Ríos Mercado et al. 2002
(although without looking at the optimization problem), so we simplify the network and
not the underlying system of equations.
We will consider that we start from an instance of the problem, given by the tuple
(𝐺, 𝑞nom∗, 𝜙, 𝑝𝑟). Here, 𝐺 = (𝑉 ∗, 𝐸) is the graph representing the geometry of the
network, 𝑞nom∗ ∈ (ℝ ∪ {−∞})|𝑉 ∗| is the set of loads at every node, 𝜙 ∈ ℝ|𝐸| is the set of
pressure drops at every pipe and 𝑝𝑟 is the reference pressure.
We have changed the definition of 𝑞nom∗ to allow for −∞ values. The nodes that have
this −∞ load are understood to act as reservoirs. If only one node 𝑢 has −∞ load, then
we can simply redefine the load to be

𝑞nom
𝑢 = − ∑

𝑣≠𝑢
𝑞nom

𝑣 ,

and then use 𝑢 as the root 𝑟 of the graph. For the case where many nodes 𝑢1, … , 𝑢𝑘
have −∞ load, we explain in section 5.1.4 how to proceed. To be consistent, we assume
that 𝑝𝑟 gives us the pressure value of the gas at all entry points, so at all nodes that have
initial −∞ load.
For cases where all loads are known, we will only consider graphs where the edge
connectivity 𝜆(𝐺) is bigger than one. If the edge connectivity is 1, by the analysis in
section 4.3 one can study the two resulting subgraphs separately.

5.1 Topological reductions
The first thing we have to describe is our method for reducing the size of the networks in
consideration. There are roughly four steps:

1. Remove the parts of the network that can be deduced from the rest.
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5 Network reduction

2. Identify appropriate complex subgraphs of the original network, and substitute
them with something simpler.

3. Solve the simplified network.
4. Use the information obtained from the previous solution to find the gas flow through

the subgraphs we simplified.
The first step, pruning, is detailed in section 5.1.1. The second step involves deleting
both fundamental cycles (section 5.1.2) and long paths (section 5.1.3). The third step is
simply applying the methods of chapter 4, but we also mention in section 5.1.4 how to
deal with networks without fixed inputs. And for the fourth step, we can either solve the
subgraphs directly or further reduce them by applying this same scheme.

5.1.1 Pruning

The first step of the process is removing all leaves. We saw before that trees have their
directions uniquely determined, and we can just derive the flows directly from the values
of 𝑞nom. For example, let us assume that we have a leaf 𝑢, with an edge 𝑎 = (𝑢, 𝑣). If
𝑞nom

𝑢 > 0, then we know that

⃗𝑎 = (𝑢, 𝑣), 𝑄0,𝑎 = 𝑞nom
𝑢 .

Therefore we can simply remove both 𝑢 and 𝑎, and replace 𝑞nom
𝑣 with 𝑞nom

𝑣 + 𝑞nom
𝑢 .

Starting from an instance (𝐺, 𝑞nom∗, 𝜙, 𝑝𝑟), we repeat this process until the resulting
graph has no more leaves. The exception is supply nodes 𝑢 with load 𝑞nom

𝑢 = −∞, that
are considered separately in order to improve the precision of the system. After the
pruning process, we arrive to an instance (𝐺𝑝, 𝑞nom∗

𝑝 , 𝜙, 𝑝𝑟). Note that the pressure drop
coefficients and the root node pressure stay the same, and the only changes in 𝑞nom∗ are
in the coefficients of nodes that were adjacent to a leaf that has been removed.
Example 5.1. Consider the following simple network:

𝑞1
𝑞2

𝑞3

𝑞4

𝑎

We can remove the leaf formed by the node 𝑞1 and the edge 𝑎, by redefining 𝑞′
2 = 𝑞2 + 𝑞1.

If 𝑞1 > 0, the flow must go from against the direction of 𝑎, and we will have 𝑄0,𝑎 = −𝑞1.
If 𝑞1 < 0, the flow will follow 𝑎, and 𝑄0,𝑎 = 𝑞1. In both cases, there is no error introduced
by considering the reduced network.
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5.1 Topological reductions

5.1.2 Cycle collapse

In order to reduce the number of cycles of the network, which is directly related to the
number of variables (and therefore to the complexity) of the system we want to solve, we
collapse some of them. To do so, if 𝐺𝑐 is the subgraph that defines the cycle that we
want, we remove it and substitute it with a node 𝑢 such that

𝑞nom
𝑢 = ∑

𝑣∈𝐺𝑐

𝑞nom
𝑣 .

For every vertex of the remaining graph, if there was an edge between that vertex and
𝐺𝑐 we add a vertex between the vertex and 𝑢.
There are some heuristics to take into consideration:

• It is possible to remove several cycles at the same time, and is in fact preferred. If
the cycle to be removed shares an edge with another fundamental cycle, it is better
to collapse both of them at the same time.

• Similarly, when collapsing cycles, one has to take into consideration the possibility
of an external node 𝑣 being connected to two different vertices of 𝐺𝑐. This would
lead to two (𝑢, 𝑣) edges, which is not desirable, and therefore should be avoided.
However, note that for this situation to happen, we must have that 𝑣 is already in a
fundamental cycle containing an edge of 𝐺𝑐, and by the above should be collapsed
too.

• It is preferable if all the loads of the vertices in 𝐺𝑐 are known. This is the case in
general, but should be noted nonetheless.

If (𝐺, 𝑞nom∗, 𝜙, 𝑝𝑟) is our instance of the graph, let 𝒞 = { 𝐶1, … , 𝐶𝑘 } be the set of
cycles we want to remove. We contract all edges in the cycles of 𝒞 to obtain a graph
𝐺𝑐 = 𝐺/𝒞, where “/” means edge contraction. Note that we take the convention that
edge contraction will not create several edges between two nodes, so the result will not be
a multigraph. We then arrive to an instance (𝐺𝑐, 𝑞nom∗

𝑐 , 𝜙, 𝑝𝑟) where the values of 𝜙 are
unchanged but, for every cycle 𝐶𝑖, if 𝑢𝑖 is the vertex to which all others collapse we let

𝑞nom
𝑢𝑖

= ∑
𝑣∈𝑉 (𝐶𝑖)

𝑞nom
𝑣 .

We also get an additional 𝑘 instances of problems of the 𝐶𝑖 networks. The pressure
drops are the same, but the cycles do not have to be balanced. Therefore we need
additional information. So we instead consider the problems 𝐶𝑖 ∪ 𝛿(𝐶𝑖) where we add
the neighbours, and then we take, for each 𝑢 ∈ 𝛿(𝐶𝑖), the load

𝑞nom
𝑢 = − ∑

𝑎=(𝑢,𝑣𝑖)
𝑣𝑖∈𝐶𝑖

𝑄0,𝑎.

This gives us the 𝑘 modified instances (𝐶𝑖 ∪ 𝛿(𝐶𝑖), 𝑞nom
𝐶𝑖

, 𝜙, 𝑝𝑟).
The underlying problem however is that, whenever the cycle has more than one entry
point (meaning it is connected by pipes to more than one outside node) we will shorten
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5 Network reduction

the paths between those nodes, and we have no compensation for the pressure drop that
would happen when the gas crosses the cycle but will not be modeled, since there is no
such thing as pressure drop at a node.
Example 5.2. We now look at the following network:

𝑞1 𝑞2

𝑞3 𝑞4
𝑞5

𝑞6

𝑞7

𝑞8

We want to collapse the cycle 𝐶 = (𝑐1, 𝑐2, 𝑐3, 𝑐4). This leads to the following two
networks:

𝑞1 𝑞2

𝑞3 𝑞4
𝑞′

5

𝑎 𝑏
𝑞′

3 𝑞′
4

𝑞5

𝑞6

𝑞7

𝑞8

We start by solving the left one, where 𝑞′
5 = 𝑞5 + 𝑞6 + 𝑞7 + 𝑞8. This gives us all the flows

around the large cycle, including flows 𝑄0,𝑎 and 𝑄0,𝑏. We then set 𝑞′
3 = −𝑄0,𝑎 as well

as 𝑞′
4 = −𝑄0,𝑏, and solve the subsystem of 𝐶 ∪ 𝛿(𝐶) to get the flows around this cycle.

Once this is done, all flows around the network are established, and hence we have a
solution.

5.1.3 Path simplification

Whenever we have a long path, it is desirable to shorten it. The reason is not that the
computation of the flows becomes harder, since the number of cycles (which is the main
factor in making the problem difficult to solve) remains unchanged. The improvement
comes from the fact that it removes directions to consider.
As one could expect, if we have a path with vertices (𝑢1, … , 𝑢𝑛) and edges 𝑎𝑖 = (𝑢𝑖, 𝑢𝑖+1)
for 1 ≤ 𝑖 ≤ 𝑛 − 1, we can substitute it by considering instead the path (𝑢1, 𝑣, 𝑢𝑛) with

𝑞nom
𝑣 =

𝑛−1
∑
𝑖=2

𝑞nom
𝑖 .

We then add edges 𝑏1 = (𝑢1, 𝑣) and 𝑏𝑛 = (𝑣, 𝑢𝑛) to connect this extra vertex to the rest
of the network.
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5.1 Topological reductions

The question arising now is how to define the pressure drop coefficients 𝜙𝑏1
and 𝜙𝑏𝑛

. The
problem is there is no good answer. If there were no entry node among the 𝑢𝑖 and we
knew the flow direction of each edge we could determine it. If all the flow goes straight
from 𝑢1 to 𝑢𝑘, and from 𝑢𝑛 to 𝑢𝑘 too, one has

𝑝2
1 − 𝑝2

𝑘 =
𝑘−1
∑
𝑖=1

𝑝2
𝑖 − 𝑝2

𝑖+1

= −
𝑘−1
∑
𝑖=1

𝜙𝑎𝑖
(𝑄2

0,𝑏1
−

𝑖
∑
𝑗=2

𝑞𝑗)
2

= −𝜙𝑏1
𝑄2

0,𝑏1

which gives us

𝜙𝑏1
=

𝑘
∑
𝑖=1

𝜙𝑘(1 −
𝑖

∑
𝑗=2

𝑞𝑗

𝑄0,𝑏1

)
2
.

We will always have
𝑄0,𝑏1

≥ 𝑞2 + 𝑞3 + ⋯ + 𝑞𝑘−1,
which means that the pressure drop coefficients in the simplified edge is the sum of the
pressure drops for each pipe, multiplied by a factor that accounts for the reduced flow
due to exits at every node. But still we have

𝜙𝑏1
= 𝜙𝑏1

(𝑄0,𝑏1
),

so it is not really practical as we will not know the flow before needing the pressure drops.
As a compromise, a (simple) possible choice may be taking

𝜙𝑏1
=

𝑛−1
∑
𝑖=1

𝜙𝑎𝑖

𝑖 , 𝜙𝑏𝑛
=

𝑛−1
∑
𝑖=1

𝜙𝑎𝑛−𝑖

𝑛 − 𝑖.

Once the coarse system has been solved, we get both directions and values. In particular,
we know that

|𝑄0,𝑎1
| = |𝑄0,𝑏1

| and |𝑄0,𝑎𝑛−1
| = |𝑄0,𝑏𝑛

|,
and we also know their directions. This allows us to consider instead the path (𝑢2, … , 𝑢𝑛−1)
with 𝑞𝑢2

being now 𝑞𝑢2
± 𝑄0,𝑏1

(the sign depending on the direction of the gas through
𝑏1) and 𝑞𝑢𝑛−1

becoming 𝑞𝑢𝑛−1
± 𝑄0,𝑏𝑛

. Then we simply have a tree, and we can apply
the pruning procedure to find all the flows and directions.
To sum up, we have an instance (𝐺, 𝑞nom∗, 𝜙, 𝑝𝑟) and a set 𝒫 = { 𝑃1, … , 𝑃𝑘 } of paths
that we want to simplify. If 𝑃 = (𝑢1, … , 𝑢𝑛) ∈ 𝒫 we define 𝑃 int = (𝑢2, … , 𝑢𝑛−1), as well
as

𝒫int = { 𝑃 int
𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑘 } .

We then obtain a new instance by considering the graph 𝐺𝑠 = 𝐺/𝒫int. As in the case of
the cycles one gets, for 𝑢𝑃𝑖

a vertex representing 𝑃 int
𝑖 , that

𝑞nom
𝑢𝑃𝑖

= ∑
𝑣∈𝑃 int

𝑖

𝑞nom
𝑣 .
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5 Network reduction

With respect to the pressure drop coefficients, we get a new vector 𝜙𝑝. The edges that
have been left untouched keep the same value of 𝜙, and for the edges in the paths that
have been collapsed, we choose some new values. This choice is specific to the problem.
We therefore get the new instance (𝐺𝑝, 𝑞nom

𝑝 , 𝜙𝑝, 𝑝𝑟).
As before, this process creates 𝑘 additional subproblems (𝑃𝑖, 𝑞nom

𝑃𝑖
, 𝜙, 𝑝𝑟). For any of

these problems, 𝜙 stays the same. If 𝑃𝑖 = (𝑢𝑖,1, … , 𝑢𝑖,𝑛), the loads are unchanged for
the values in the middle. For the extremes, we get 𝑞𝑢𝑖,1

= −𝑄0,𝑎, for ⃗𝑎 = (𝑢1, 𝑢𝑃𝑖
) in

the reduced instance, and similarly for 𝑞𝑢𝑖,𝑛
.

Example 5.3. Consider the following network:

𝑎1

𝑎2

𝑎3

𝑎4

𝑏1

𝑏2

𝑏3

𝑏4
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5

We want to collapse the path 𝑃 = (𝑎4, 𝑢1, … , 𝑢5, 𝑏4). We do so by considering an edge
in the middle and getting

𝑎1

𝑎2

𝑎3

𝑎4

𝑏1

𝑏2

𝑏3

𝑏4
𝑢

The issue then becomes the choice of 𝜙 for the (𝑎4, 𝑢) and (𝑢, 𝑏4) edges – any of the
strategies mentioned before could be attempted, depending on the knowledge we have
about how we can expect the gas to flow through the system. Once this smaller system
is solved, it is trivial to solve the path since there is only one possible direction for the
flows.

5.1.4 Dealing with unknown gas inputs

Up until now we’ve been working with balanced networks, meaning that as much gas
is injected into the system as is taken out. In practical terms, however, this does not
have to be the case. For instance, one could assume that the exit loads 𝑞nom

+ are not
fixed, but instead drawn according to some distribution 𝑋, which could depend on many
factors (like weather or time of the day). And to satisfy that demand there would be gas
injected at different entry points and at a fixed pressure. These entry points would act
as reservoirs, and we assume they always have enough capacity to deal with the demand.
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5.1 Topological reductions

Remark 5.4. The opposite case is also possible: a gas network could have a several tanks
distributed throughout the network to act as reservoirs and store extra gas whenever the
demand is smaller than the compromised amount of gas entered into the network.

To know how much gas is injected into the system at each entry point, we define an
additional artificial entry node 𝑟, which we will set as the root. For each of the entry
nodes 𝑢1, … , 𝑢𝑛 of the original system we add a pipe ⃗𝑎𝑖 = (𝑟, 𝑢𝑖). All the gas will enter
the system at 𝑟 and will then be distributed as needed to the entry points. Since these
are virtual pipes, we let 𝜙𝑎𝑖

= 0.
Remark 5.5. The choice of 𝜙𝑎𝑖

= 0 is the only one that makes sense, since those pipes
do not exist in reality and any other choice would mean that in a way we give priority to
one of the reservoirs (the one with smallest pressure drop). Because of this it’s important
not to remove leaves containing entry nodes of unknown load in the pruning step. If one
does that, what happens is that entry nodes become isolated, and pipes linking them
become inactive. This makes sense: the reason why all the demand of a single node
would not come from the closest supply is that bigger flows increase the pressure drop
quadratically, and therefore it is more convenient to balance the flows to prevent such
losses. But if we set the pressure drop to zero, suddenly the best option becomes to have
exit nodes connected to only one entry.

Once we get a solution for this modified instance, we can come back to the original
problem by setting 𝑞𝑢𝑖

= −|𝑄0,𝑎𝑖
|. The gas flow from the root 𝑟 will be in a way

optimized.
Example 5.6. Considering a network consisting only of one long path of pipes and
nodes, as below:

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7

In the depicted network, the squares represent the source nodes with unknown loads (so
that 𝑞1 = 𝑞7 = −∞), while all nodes in the middles are sinks. One could simply supply
everything from one of the nodes and cut off the other, but that would mean that a lot of
pressure would be lost after the gas travels through the entire network, so it is a better
option to supply from both endpoints. To find how much gas should come from each
source, we consider the network

𝑟

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7

𝑎1 𝑎7

where the upper node has been artificially added, with load

𝑞𝑟 = −
6

∑
𝑖=2

𝑞𝑖
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5 Network reduction

so that the overall network is now balanced when we set 𝑞1 = 𝑞7 = 0. We solve the
network with pressure drop coefficients 𝜙𝑎1

= 𝜙𝑎7
= 0, with the others the same as in

the original network, and get values 𝑄0,𝑎1
and 𝑄0,𝑎7

. Then, looking at where the gas
flow comes from, we know that, in the solution to the original network, one must have

𝑞1 = −|𝑄0,𝑎1
|, 𝑞7 = −|𝑄0,𝑎7

|.

5.2 Node pressures
Although the complicated part of solving a gas network is the calculation of the flows,
once this is done it is also important to have a method to compute the associated
pressures at all the nodes. If we know the value of the pressure 𝑝𝑟 at a reference node,
we can compute the rest of the pressures in a trivial way, spreading it arc by arc. By the
definition of the system whose solution we compute, the values of the pressure computed
that way will be consistent, meaning that calculating the pressure of a node by following
two different paths to the reference node will lead to the same result.
A more mechanical result can be found in Nitsche 2018; Gotzes, Heitsch, et al. 2016.
Theorem 5.7. For a network 𝐺, define the functions 𝐹 and 𝑔 as in theorem 2.6. Let

̂𝑧 be the solution of the system 𝐹(𝑧) = 0 arising from the network, and let 𝑝𝑟 be the
pressure of the reference node chosen in the computation of the system. Then

𝑝𝑢𝑖
= √𝑝2

𝑟 − 𝑔𝑖(𝑞nom, ̂𝑧).

Proof. Going back to eq. (2.10) we have

𝑝2 = 𝟙𝑝2
𝑟 − (𝒜T

𝐵)−1Φ𝐵|𝑄0,𝐵|𝑄0,𝐵.

But theorem 2.6 implies that

(𝒜T
𝐵)−1Φ𝐵|𝑄0,𝐵|𝑄0,𝐵 = 𝑔(𝑞nom, ̂𝑧),

hence going element by element we get that

𝑝2
𝑢𝑖

= 𝑝2
𝑟 − 𝑔𝑖(𝑞nom, ̂𝑧),

which is equivalent to what we wanted.

This allows us to very simply calculate the pressures at every node just by looking at 𝑔.
However, the definition of 𝑔 refers to the system generated by the entire network, and
the solution 𝑧 we have may not be an exact solution to that system (as it comes from a
reduction process that could introduce errors).
Therefore, we need a system that is adequate to our construction of the solution, and
takes into consideration the fact that we may be working with several sources that load
gas into the network at a constant pressure. To solve this problem we define the following
algorithm.
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Algorithm 4 Network pressure calculation algorithm.
Require: 𝐺 = (𝑉 (𝐺), 𝐸(𝐺))
Require: 𝑝 = (𝑝𝑢1

, … , 𝑝𝑢|𝑉 (𝐺)|
)

Require: 𝑉 = (𝑄0,𝑎1
, … , 𝑄0,𝑎|𝐸(𝐺)|

)
1: 𝑟(𝑢) ← { ∅ ∣ 𝑢 ∈ 𝑉 (𝐺) }
2: while 𝐺 ≠ ∅ do
3: 𝒮 ← { sources of 𝐺 }
4: for 𝑢 ∈ 𝒮 do
5: if 𝑝(𝑢) = −∞ then
6: 𝑝(𝑢) ← (∑(𝑄,𝑝)∈𝑟(𝑢) 𝑝𝑄)/(∑(𝑄,𝑝)∈𝑟(𝑢) 𝑄)

7: for 𝑎 = (𝑢, 𝑣) ∈ 𝛿+(𝑢) do
8: 𝑟(𝑣) ← 𝑟(𝑣) ∪ (𝑉 (𝑎), 𝑝(𝑢))
9: 𝐸(𝐺) ← 𝐸(𝐺) − {𝑎}

10: 𝑉 (𝐺) ← 𝑉 (𝐺) − {𝑢}
11: return 𝑝

Some things should be noted. First, we require 𝑝, which is the also the output. But for
the algorithm to work, all that is needed is to have the values of 𝑝 for the sources of the
graph 𝐺, and set 𝑝𝑢𝑖

= −∞ otherwise. Also note that the definition of source is a vertex
with no incoming edges, meaning that a disconnected node is considered a source.
The idea behind the algorithm is as follows. Starting from a source 𝑢, the volumetric flow
𝑄 and starting pressure 𝑝 of the gas through an edge ⃗𝑎 = (𝑢, 𝑣) arriving at 𝑣 is added to
𝑟(𝑣). Then the edge is deleted and, once all outgoing edges from 𝑢 are considered, the
node 𝑢 itself is deleted.
After this process finishes, the resulting graph will have some new sources. At those new
sources we compute the pressure as

𝑝(𝑢) =

∑
�⃗�=(𝑣,𝑢)∈𝛿−(𝑢)

𝑄0,𝑎 𝑝𝑣

∑
�⃗�=(𝑣,𝑢)∈𝛿−(𝑢)

𝑄0,𝑎
.

To arrive to this formula we consider the gas to behave like an ideal gas, and therefore to
follow the ideal gas law 𝑝𝑉 = 𝑛𝑅𝑇. Assume that at node 𝑢 we get volume 𝑉1 at pressure
𝑝1 from a pipe and volume 𝑉2 at pressure 𝑝2 at another. Then

𝑝𝑢 =
𝑛𝑅𝑇
𝑉𝑢

=
(𝑛1 + 𝑛2)𝑅𝑇

𝑉1 + 𝑉2
=

(𝑝1𝑉1/𝑅𝑇 + 𝑝2𝑉2/𝑅𝑇 )𝑅𝑇
𝑉1 + 𝑉2

=
𝑝1𝑉1 + 𝑝2𝑉2

𝑉1 + 𝑉2
.

A trivial generalization leads to the representation of 𝑝(𝑢) as the arithmetic mean of the
incoming pressures weighted by the flows. In practice this is simply an application of
Dalton’s law, see Tschoegl 2000.
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5 Network reduction

Once the new pressures are calculated, new partial pressures are added to the nodes
connected to these sources. Repeating this process allows us to compute the pressure at
every node, as we wanted.
Remark 5.8. While this algorithm is very simple (there are no smart choices for the
edges to take as one would see in a Dijkstra-type algorithm, for example), it is not
too complex. Indeed, the first while loop gives at most 𝒪(|𝑉 |) steps (since every loop
removes at least a vertex), the first for has at most 𝒪(|𝑉 |) sources and the last for is
bounded by 𝒪(min(|𝑉 |, |𝐸|)), giving a total of

𝒪(|𝑉 |2 min(|𝑉 |, |𝐸|)).

In practice however this is far from the actual runtime. If the graph is very connected,
there will not be many steps before termination (in fact the number of steps is bounded
by the longest path starting at a source). And similarly, if there are many steps, it’s
because at each step 𝒮 is small. One could analyze the algorithm in more detail, but in
practical terms this is much faster than the limiting factor, which is the calculation of
the flows.

5.3 Improving the restrictions
Once we have finished a full round of the network reduction scheme, we obtain a vector
𝑄0 of flows through the original network. However, there is no guarantee that this vector
is actually a solution of the original problem we had posed (and we should not expect it
to be). The reason is, as mentioned before, the errors introduced by the elimination of
certain pressure drops.
This does not mean that the computed solution is useless. In general, one should expect
it to be close to the actual solution, and we can exploit that by using the knowledge
gained in order to improve our choices when reducing and solving the network. This is
similar to how multigrid methods work (see, for instance, Trottenberg, Oosterlee, and
Schüller 2001). When working with 𝑊- and 𝐹-cycles, one starts with the coarsest possible
mesh, solves it exactly, and goes on to restrict it to a finer one. However, after that, one
uses the values of the finer mesh as a starting value for another round of resolution of
the coarse mesh.
The question is, how can we apply this idea in our case? There are two aspects:

1. Once we have solved a particular network for some values 𝑞nom of the loads, one
could expect that if we try to solve a network for loads given by 𝑞nom + 𝜀, where 𝜀
is small, the flow would be oriented in a similar way. Here, small could mean that
we take 𝜀 ∼ 𝒩(0, Σ) with max(|Σ𝑖𝑗|) ≪ max(|𝑞nom

𝑖 |), so that the new loads are in
the order of magnitude of the previous ones, with just some minor perturbations.
Therefore, once we have solved one network, a majority of the flow directions could
be fixed, in particular those that are untouched in the reduction process. Of course
this has limitations: for instance, one should not fix the direction ⃗𝑎 of a pipe 𝑎 if
𝑄0,𝑎 < min(|Σ𝑖𝑗|).
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5.3 Improving the restrictions

2. The other improvement one can make once the finer model has been established is
related to the choice of pressure drop coefficients 𝜙 for the coarse model. As seen
in section 5.1.3, the more we know about how the gas will flow through a path, the
better our definition of 𝜙 will be for the pipe that acts as substitute of that path.

The latter point allows us to consider a procedure based on iterated 𝑉-cycles (keeping
the multigrid terminology). This is illustrated in fig. 5.1, and a high-level description of
the algorithm can be found in algorithm 5.

Algorithm 5 Iterated 𝑉-cycles algorithm for network reduction.
Require: (𝐺, 𝑞nom, 𝜙, 𝑝𝑟)

1: 𝐺𝑝 ← 𝐺 − { leaves of ⃗𝐺 } ▷ Stage 𝑝
2: repeat
3: 𝒞 ← { cycles to collapse }
4: 𝐺𝑐 ← 𝐺𝑝/𝒞 ▷ Stage 𝑐
5: 𝒫 ← { paths to simplify }
6: 𝐺𝑠 ← 𝐺𝑐/𝒫int ▷ Stage 𝑠
7: if 𝑞nom

𝑖 = −∞ for some 𝑖 then
8: 𝐺𝑅 = (𝑉 (𝐺𝑠) ∪ {𝑟}, 𝐸(𝐺𝑠) ∪ { (𝑟, 𝑞𝑖) ∣ 𝑞nom

𝑖 = −∞ } )
9: else

10: 𝐺𝑅 = 𝐺𝑠

11: 𝑄0,𝑅 ← Solve(𝐺𝑅, 𝑞nom
𝑝 , 𝜙𝑝) ▷ Stage 𝑅

12: for 𝑃 ∈ 𝒫 do
13: 𝑞nom

𝑃 ← loads from 𝑄0,𝑅 ▷ Stage 𝑖
14: 𝑄0,𝑃 ← Solve(𝑃 , 𝑞nom

𝑃 , 𝜙)
15: 𝑄0,𝑐 ← combined flow from 𝑄0,𝑅 and the 𝑄0,𝑃
16: for 𝐶 ∈ 𝒞 do
17: 𝑞nom

𝐶𝑖
← loads from 𝑄0,𝑐 ▷ Stage 𝑖

18: 𝑄0,𝐶 ← Solve(𝐶 ∪ 𝛿(𝐶), 𝑞nom
𝐶 , 𝜙)

19: 𝑄0,𝑝 ← combined flows from 𝑄0,𝑐 and the 𝑄0,𝐶 ▷ Stage 𝑄
20: until criterion is met
21: 𝑄0 ← combined flows from 𝑄0,𝑝 and the leaves ▷ Stage 𝑝
22: 𝑝 ← CalculatePressures(𝐺, 𝑄0, 𝑝𝑟) ▷ Stage 𝑃
23: return 𝑄0, 𝑝

We start from a graph 𝐺, part of an instance (𝐺, 𝑞nom, 𝜙, 𝑝𝑟). The first step, 𝑝, simply
means pruning all leaves from the graph, since as mentioned they do not add any
additional information.
Steps 𝑐 and 𝑠 involve the choice of a set 𝒞 of cycles first and a set 𝒫 afterwards that
we want to collapse. We then arrive to a reduced graph 𝐺𝑠, and from it we define 𝐺𝑅,
the final reduced graph, by adding an extra vertex if necessary to find an unknown load.
We then Solve this graph exactly using the methods of chapter 4: this is step 𝑅 in the
cycle.
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𝐺
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𝑠
𝑖

⋯ 𝑝

Figure 5.1. The iterated 𝑉-cycle for the network reduction.

Once we have a solution 𝑄0,𝑅, we start solving the |𝒫| + |𝒞| problems generated by the
reduction, using the information obtained from the step before. We start with paths,
since the results may be needed to solve some of the cycles. We then combine all partial
solutions obtained to define 𝑄0,𝑝.
At this point the cycle is finished, and a decision has to be made about whether to
perform another cycle or to finish using this computed 𝑄0,𝑝 flow. A possible choice is
computing the mean squared error as in section 4.2.2 for the solution 𝑄0,𝑝 of the whole
network, and requiring it to be below a certain threshold. Other criteria can be defined
depending on the problem.
The other option is to continue with an additional cycle. The difference between each
cycle is in the choice of the reductions of 𝑐 and 𝑠. As mentioned before, the clearest
example would be doing the same topological reduction but changing the associated
pressure drop coefficients of the reduced network to account for the knowledge, stemming
from the calculation of 𝑄0,𝑅, of the direction of flow along a path. Similarly, in the
second cycle many directions could be ignored when solving the networks (in particular
one could assume that the directions that worked in the first cycle will be the ones
that work for the entire network, and set them for all cycles). However more complex
differences are possible: for instance one may decide to keep a whole cycle untouched in 𝑐,
or collapse an additional path in 𝑠. In general, the value of 𝑄 is completely independent
(in a numerical sense) of the previous value of 𝑄.
Finally, once we are happy with our calculated flows 𝑄0,𝑝 (which can be because some
parameters reach a fixed point, or the difference between computed flows goes below
a certain threshold), all that is left is to include the leaves removed at the beginning
and calculate the pressure as shown in section 5.2, with CalculatePressures being
algorithm 4. Ths gives us the full description of the network, as we wanted.
Remark 5.9. It would be possible to perform more drastic reductions in our cycles. For
instance, if we have a pipe that actually has a control valve, and the calculated flow in
the first cycle clearly exceeds the maximum safe operational flow of the valve, one could
remove the pipe directly for the next cycles.
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Figure 5.2. Schematic model of the reduced Irish gas network.

5.4 The Irish gas network
We now turn to a concrete example of how one can apply the network reduction technique
to a slightly bigger network (with 13 nodes and 14 edges). We will throughout this
section consider a simplified version of the Irish gas network, based on Ekhtiari et al.
2019. A representation can be seen in fig. 5.2. There are three entry nodes 𝑞1, 𝑞2 and
𝑞3, corresponding to the Moffat interconnector, the Corrib gas field and the Kinsale
Head/Seven Heads gas fields, respectively.
The first step to reduce the network is pruning, that is, removing leaves with fixed load.
We therefore remove the nodes 𝑞11, 𝑞12 and 𝑞13. While 𝑞11 by itself is not a leaf, it
becomes one when we remove the other two, and therefore can also be removed without
problems. The only modification one needs to do to the remaining network is setting

𝑞′
5 = 𝑞5 + 𝑞11 + 𝑞12 + 𝑞13.

Next, we remove the 𝐶 = (𝑞6, 𝑞7, 𝑞8, 𝑞9) cycle, turning it into a single node between 𝑞5
and 𝑞10. This means that in a sense 𝑞5 and 𝑞10 are now closer, as the pressure drop
through both possible arcs connecting them, (𝑎9, 𝑎4, 𝑎3) and (𝑎9, 𝑎5, 𝑎6, 𝑎7, 𝑎3), is reduced
due to the loss of the pressure drops associated to the edges we have collapsed together.
We define

𝑞𝐶 = 𝑞6 + 𝑞7 + 𝑞8 + 𝑞9.
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(a) After pruning. (b) After cycle collapse.

(c) After path simplification. (d) After adding the artificial node.

Figure 5.3. Different steps of the network reduction method.

The last remaining simplification of the Irish network is removing the two nodes in the
path linking 𝑞1 and 𝑞5, including the one we have just created by collapsing the cycle 𝐶.
We can now choose the values for the pressure drops. If we knew, for instance, that gas
coming from 𝑞1 would only reach 𝑞10, we could define

𝜙𝑏1
= 𝜙𝑎2

, 𝜙𝑏𝑛
= 𝜙𝑎9

+ 𝜙𝑎3
(1 −

𝑞6 + 𝑞7 + 𝑞8 + 𝑞9
𝑞5 + 𝑞6 + 𝑞7 + 𝑞8 + 𝑞9

)
2

.

However the most general scenario would be not having any such information. Then we
should simply do

𝜙𝑏1
= 𝜙𝑎2

+
1
2𝜙𝑎3

, 𝜙𝑏𝑛
= 𝜙𝑎9

+
1
2𝜙𝑎3

.

Finally, one has to take care of the three supply nodes, 𝑞1, 𝑞2 and 𝑞3. As explained
before, we simply define an additional artificial node connected to all of them, and set
the pressure drop along the connections to be zero.
The evolution of this process appears in fig. 5.3.
We now turn towards solving the network. The coefficients are taken from Ekhtiari et al.
2019. The network parameters are

𝑞nom = (−∞, −∞, −∞, 40, 30, 10, 5, 5, 5, 60, 10, 8, 7)

as well as

𝜙𝑎1
= 2021152507, 𝜙𝑎8

= 272631999,
𝜙𝑎2

= 3825126631, 𝜙𝑎9
= 766010664,
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𝜙𝑎3
= 603344912, 𝜙𝑎10

= 710214368,
𝜙𝑎4

= 180950610, 𝜙𝑎11
= 1636367083,

𝜙𝑎5
= 241253384, 𝜙𝑎12

= 450972262,
𝜙𝑎6

= 236922319, 𝜙𝑎13
= 196766854,

𝜙𝑎7
= 140398411, 𝜙𝑎14

= 170531273.

The value of 𝜙𝑎14
does not appear in the original article, so we have extrapolated it from

𝜙𝑎13
and the physical conditions of the pipe.

A more detailed representation of the reduced network can be seen in fig. 5.4. Most of
the structure of the network is intact, and in fact the only problems appear in the arc
linking 𝑞1 to 𝑞5 via 𝑞10. For this network, the node loads we have are

𝑞𝑟,1 = 𝑞1 = 0,
𝑞𝑟,2 = 𝑞2 = 0,
𝑞𝑟,3 = 𝑞3 = 0,
𝑞𝑟,4 = 𝑞4 = 40,
𝑞𝑟,5 = 𝑞5 + 𝑞11 + 𝑞12 + 𝑞13 = 50,
𝑞𝑟,6 = 𝑞6 + 𝑞7 + 𝑞8 + 𝑞9 + 𝑞10 = 85,

and for the pressure drop coefficients we get

𝜙𝑎𝑟,1
= 𝜙𝑎𝑟,2

= 𝜙𝑎𝑟,3
= 0,

𝜙𝑎𝑟,4
= 𝜙𝑎1

,
𝜙𝑎𝑟,5

= 𝜙𝑎8
,

𝜙𝑎𝑟,6
= 𝜙𝑎12

,
𝜙𝑎𝑟,7

= 𝜙𝑎11
,

𝜙𝑎𝑟,8
= 𝜙𝑎9

+ 𝜙𝑎3
/2,

𝜙𝑎𝑟,9
= 𝜙𝑎2

+ 𝜙𝑎3
/2.

As we mentioned in section 5.1.3, the choice of pressure drop coefficients is quite arbitrary
at this point. One also has to take into consideration the possible flow directions. The
previous figure represents the arcs already oriented with respect to a depth-first search
tree. The vector of directions is

𝑠 = (+1, +1, +1, 𝑠𝑎𝑟,4
, +1, −1, 𝑠𝑎𝑟,7

, 𝑠𝑎𝑟,8
, 𝑠𝑎𝑟,9

).

This gives us a maximum of 24 = 16 possible directions to check. However some of them
can be removed, since we know that 𝑠𝑎𝑟,8

= −1, 𝑠𝑎𝑟,9
= 1 is not a valid direction (there

would be no flow towards 𝑞𝑟,6, which is a sink), and that removes 22 = 4 possibilities.
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Figure 5.4. The detailed reduced network.

Similarly we can’t have a cycle being formed, which rules two more directions, giving a
total of 10 directions to check.
Once this system is solved, we know for the original that

𝑞1 = −𝑄0,𝑎𝑟,1
, 𝑞2 = −𝑄0,𝑎𝑟,2

, 𝑞3 = −𝑄0,𝑎𝑟,3
.

The only remaining computation is the (𝑞6, 𝑞7, 𝑞8, 𝑞9) cycle. We solve it using the
parametric directions system. The pressure drops stay the same, but the loads are
changed as

𝑞𝑐,6 = 𝑞6 − 𝑠𝑎𝑟,8
𝑄0,𝑎𝑟,8

,
𝑞𝑐,7 = 𝑞7,
𝑞𝑐,8 = 𝑞8,
𝑞𝑐,9 = 𝑞9 + 𝑞10 + 𝑠𝑎𝑟,9

𝑄0,𝑎𝑟,9
.

After this step, all pipe flows can be easily determined. We obtain the vector of flow
directions

𝑠 = (+1, +1, +1, +1, +1, −1, −1, +1, −1).

At this point we are, in the terms of the cycle described in section 5.3, at the first 𝑄
point. There are two choices: either stopping, calculating the pressures and finishing or
trying to refine our calculation. We will do the latter.
The results of table 5.1, in the column of the flows after cycle 1 show that 𝑞1 only supplies
(partially) the 𝑞10 node. Therefore, we can work under that assumption, and redefine

𝜙𝑎𝑟,9
= 𝜙𝑎2

.
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Table 5.1. Network flow in the Irish network computed several ways: our reduction
method at the first and at the last cycle, and the three methods (SAINT custom solver,
MATLAB numerical solver and their own algorithm) reported in Ekhtiari et al. 2019,
Table 4. All values in m3 s−1.
Pipe Cycle 1 Cycle 8 SAINT MATLAB EDLS

𝑄0,𝑎1
20.57 20.63 21.62 18.99 18.89

𝑄0,𝑎2
34.44 33.77 34.83 34.53 34.23

𝑄0,𝑎3
25.55 26.22 25.16 25.46 24.53

𝑄0,𝑎4
23.98 24.41 23.78 23.73 22.39

𝑄0,𝑎5
16.57 16.81 16.38 16.73 16.22

𝑄0,𝑎6
11.57 11.81 11.38 11.73 11.64

𝑄0,𝑎7
6.57 6.81 6.38 6.73 6.63

𝑄0,𝑎8
81.43 81.90 85.80 88.13 88.11

𝑄0,𝑎9
50.55 51.22 50.16 50.46 50.39

𝑄0,𝑎10
25.00 25.00 25.00 25.00 25.00

𝑄0,𝑎11
24.12 24.32 29.35 27.33 27.10

𝑄0,𝑎12
43.55 43.68 37.73 38.34 38.03

𝑄0,𝑎13
8.00 8.00 8.00 8.00 8.00

𝑄0,𝑎14
7.00 7.00 7.00 7.00 7.00

What is now missing is the definition of 𝜙𝑎𝑟,8
. While we could try and make a heuristic

definition, a better choice is defining it directly from the data we have. As the flow will
go through the path (𝑎9, 𝑎4, 𝑎3), we can let

𝜙𝑎𝑟,8
𝑄2

0,𝑎𝑟,9
= 𝜙𝑎9

𝑄2
0,𝑎9

+ 𝜙𝑎4
𝑄2

0,𝑎4
+ 𝜙𝑎3

𝑄2
0,𝑎3

,

with the right hand side flows calculated from the solution we have put together. This
leads to

𝜙𝑎𝑟,8
= 𝜙𝑎9

+ 𝜙𝑎4

𝑄2
0,𝑎4

𝑄2
0,𝑎𝑟,8

+ 𝜙𝑎3

𝑄2
0,𝑎3

𝑄2
0,𝑎𝑟,8

.

We get a value of 𝜙𝑎𝑟,8
= 966418684 (we only take the integer part), which allows us to

repeat the cycle to arrive to a new set of flows. Again we can either stop here or keep
going. We choose to keep iterating and improving the value of 𝜙𝑎𝑟,8

. The idea is that
at some point this should become stable, and the expected value of the pressure drop
coefficient will match the actual calculated value. This is indeed the case: after eight
cycles, with pressure drops

𝜙(0)
𝑎𝑟,8 = 1067683120,

𝜙(1)
𝑎𝑟,8 = 960923719,

𝜙(2)
𝑎𝑟,8 = 965454804,
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𝜙(3)
𝑎𝑟,8 = 965257843,

𝜙(4)
𝑎𝑟,8 = 965266396,

𝜙(5)
𝑎𝑟,8 = 965266025,

𝜙(6)
𝑎𝑟,8 = 965266041,

𝜙(7)
𝑎𝑟,8 = 965266040,

the system reaches a fixed point, meaning that 𝜙(8)
𝑎𝑟,8 = 𝜙(7)

𝑎𝑟,8. Note that other fixed points
are possible too, and are reached depending on the run (sometimes it even enters a
loop between two values), although all computed flows are equal up to a high degree of
precision. Therefore we stop at this iteration. We can now assume that our reduction of
the network is as precise as possible, and the calculated flows are the actual solution of
the original network. The flows calculated at the beginning and the end of the process
can be found in table 5.1.
Once the flows are established, what remains is the computation of the pressure at every
node. We will use the algorithm in section 5.2, with starting pressures

𝑝1 = 𝑝2 = 𝑝3 = 7.0 × 105 Pa.

The resulting values for the pressures appear in table 5.2. One can now check how
accurate our flows are. If the calculation were completely precise, then the pressure at
every node could be calculated with any path starting at a source, and there would be
no reason to deal with partial pressures in the algorithm. In our case, four nodes will
have gas coming from two different nodes: 𝑞4, 𝑞5, 𝑞9 (the two ways to go around the
cycle) and 𝑞10. The partial pressures are

𝑝4 = 6.938 246 066 449 20 × 106 Pa and 𝑝4 = 6.938 246 066 449 20 × 106 Pa,
𝑝5 = 6.868 118 614 236 92 × 106 Pa and 𝑝5 = 6.868 118 614 236 92 × 106 Pa,
𝑝9 = 6.712 140 011 377 00 × 106 Pa and 𝑝9 = 6.712 140 012 269 95 × 106 Pa,

𝑝10 = 6.681 146 697 585 50 × 106 Pa and 𝑝10 = 6.681 146 697 750 05 × 106 Pa.

The fact that the computed partial pressures are so similar (in the case of 𝑝4 and 𝑝5 up
to 15 digits of precision) suggests that our final model is indeed really precise.
Although we have arrived at a solution that is precise, an important aspect that cannot
be overshadowed is the timing: an accurate solution that takes too long to be found is
not useful.
The timing of the complete calculation can be found in table 5.3, where the start and end
times are given for each of the cycle, as well as the last step for computation of pressures.
We also add the timings of the two main steps that involve solving systems with Gröbner
methods: step 𝑅 is solving the big reduced network, while step 𝑄 is solving the reduced
network with four edges collapsed at the beginning. Additional time within each cycle
was devoted to other processes such as redefining the pressure drops or finding the loads.
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5.4 The Irish gas network

Table 5.2. Load and pressure at each node computed several ways: using algorithm 4,
and the three methods (SAINT custom solver, MATLAB numerical solver and their
own algorithm) reported in Ekhtiari et al. 2019, Table 3. Loads in m3 s−1, pressures in
×106 Pa.
Node Load Cycle 8 SAINT MATLAB EDLS

𝑝4 40 6.938 6.966 6.941 6.910
𝑝5 30 6.868 6.832 6.827 6.793
𝑝6 10 6.720 6.626 6.658 6.648
𝑝7 5 6.715 6.607 6.653 6.593
𝑝8 5 6.712 6.604 6.651 6.623
𝑝9 5 6.712 6.602 6.650 6.624
𝑝10 60 6.681 6.596 6.619 6.600
𝑝11 10 6.835 6.789 6.789 6.772
𝑝12 8 6.834 6.785 6.789 6.743
𝑝13 7 6.835 6.745 6.789 6.779

The times for the first cycle are very high due to the issue of directions. For 𝑅, we have
to check a priori ten directions, which gives a major decrease in performance since we
are forced to check them one by one until one of them gives a solution. One could try
and do this in parallel, however this leads to problems when using SageMath (because
although each direction starts running in a different thread, when they require interaction
with Singular they all connect to the same instance, and the commands sent start to
overlap, giving errors). In the following calculations of 𝑅, the direction that was used for
the solution in cycle 1 is used by default. Similarly, for the computation of step 𝑄, since
we do not know the solution either we apply the method of section 4.3.1, which allows us
to obtain directly a set of directions that we will use in the next iterations. Since there
are only a few directions to check, it would also be possible to make the process faster
by simply running the algorithm in parallel. An even faster option would be realizing
that the equation is simply a quadratic equation, so one could simply calculate and
compute the algebraic solution in terms of the loads. However, for the sake of providing
an approach using only the methods developped in the previous sections, we use the
Gröbner approach.
For the cycles two to eight, the time it takes for the steps 𝑅 and 𝑄 to finish is always at a
similar level of around 0.08 s and 0.03 s, respectively. This is a relatively fast calculation,
since it means that the total time spent calculating solutions in each cycle is around
0.12 s. The additional time spent could probably be reduced by optimizing the code as
much as possible: for instance, there is always some time lost in interfacing between
SageMath and Singular, and on computing values that may not be used at the end.
One last thing to consider is that the solutions at the end of each cycle do not change
much. In table 5.1 one can see that between the first cycle (with a wild guess for 𝜙𝑎𝑟,8

and 𝜙𝑎𝑟,9
) and the last cycle (with the pressure drop at a fixed point) the variation of
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Table 5.3. Timestamps for the execution of the iterated 𝑉-cycles algorithm for the Irish
network, and timing for the calculation of the loads (at steps 𝑅 and 𝑄) and pressures
(using algorithm 4).

Stage Time (s) Time for 𝑅 (s) Time for 𝑄 (s)

Cycle 1 0.000400 Start 0.619333 0.1825280.806086 End

Cycle 2 0.879807 Start 0.084666 0.0316431.049376 End

Cycle 3 1.049493 Start 0.082903 0.0314631.210725 End

Cycle 4 1.210776 Start 0.081302 0.0325871.374903 End

Cycle 5 1.375007 Start 0.080368 0.0305951.534096 End

Cycle 6 1.534264 Start 0.086031 0.0294021.696714 End

Cycle 7 1.696762 Start 0.082029 0.0341261.860312 End

Cycle 8 1.860362 Start 0.084933 0.0305092.023596 End

Step 𝑃 2.024733 Finished

the values of the flow is relatively small. Even more can be said: if the results after the
last cycle are considered the “baseline” results, by the end of the second cycle all flows
are accurate to 3 digits, by the end of the fourth cycle all flows are accurate to 5 digits,
and by the end of the fifth cycle all flows are accurate to 7 digits.
Finally, it can be seen that the computation of the pressures has a negligible impact on
the overall performance of the algorithm, taking around a 1 ms.
Overall, while the performance is definitely worse than the one reported in Ekhtiari et al.
2019, Table 5 by at least an order of magnitude, improvements to this are possible. For
instance, other runs in the same network for different loads (still similar to the ones that
we are using) could profit from knowing already the directions to set and having a better
approximation to the pressure drop. One could also precompute a Gröbner system for
step 𝑄 to get a much faster solution (as mentioned before this would simply end up being
a solution to a quadratic equation), and reduce the number of cycles being considered to
obtain a less precise but still acceptable solution.
Once we have solved the network for the aforementioned values of 𝑞nom, we can use the
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5.4 The Irish gas network

knowledge of the solution to solve other similar networks faster. For instance, consider
the initial exit loads

𝑞nom
+ = (40, 30, 10, 5, 5, 5, 60, 10, 8, 7) ∈ ℝ10.

This vector represents the demand for gas by end users, which we could model by a
probability distribution. In particular, let us assume that 𝑞nom

+ is the average demand,
and that the actual demand is given by a normal multivariate distribution centered on
𝑞nom

+ . We will define 𝜇 = 𝑞nom
+ , as well as a matrix Σ as

Σ = (𝜎𝑖,𝑗)1≤𝑖,𝑗≤10 =
⎧
{
⎨
{
⎩

0.05𝜇𝑖, if 𝑖 = 𝑗,
0.025√𝜇𝑖𝜇𝑗, if nodes 𝑖 and 𝑗 are connected,
0, otherwise.

The above matrix gives us a variation in the loads of every node that is not one of the
−∞ source nodes. We can then consider a network where the source nodes are left
unchanged but the loads of the at the exit nodes are now given by

𝑞nom
+ ∼ 𝒩(𝜇, Σ).

Remark 5.10. Of course, the choice of having 𝑞nom
+ follow a normal distribution is a

simplification: the problem of forecasting the demand is much more complicated. But in
any case we could always write the demand as 𝑞nom

+ = 𝜇 + 𝜀 with an error term stemming
from some probability distribution 𝜀 ∼ 𝑋, and with ℙ𝑋(𝜀 > 𝛿𝜇) ≪ 1 for some 0 < 𝛿 < 1,
so that we can expect the flow directions to stay the same.

To study this case, we consider 100 networks with exit loads taken from 100 samples
of the normal distribution above. The construction of Σ is done to make the load 𝑞nom

𝑢
of an exit node be close to the mean load, and to couple together loads for nodes that
share an edge. For each sample of the normal multivariate distribution, we only take
5 decimal digits in every element, to improve the performance of the algorithm. For
each network, we compute the solution after one cycle and after the calculated pressure
drops 𝜙(𝑖) converge (to prevent the network from entering a loop, we simply require
|𝜙(𝑖+1) − 𝜙(𝑖)| ≤ 1). We then compute, for each network and each pipe 𝑎, the relative
error

𝜂𝑎 = ∣
𝑄(1)

0,𝑎 − 𝑄(𝑖max)
0,𝑎

𝑄(𝑖max)
0,𝑎

∣ . (5.1)

Table 5.4 shows the results of the relative errors of the 100 samples. Note that the cases
for pipes 𝑎10, 𝑎13 and 𝑎14 are not really interesting since they form a tree and so the
flow can be calculated independently of the rest of the network. One can see that all
of the pipes present a relative error of less than 1 % on average, and only for one of
the pipes was there a case where the relative error crossed the 1 % threshold (for 𝜂𝑎7

).
As one could expect, the largest relative errors appeared in the pipes linking 𝑞1 and 𝑞5,
which is where the network reduction takes place, and in particular in the pipes along
the removed cycle.

71



5 Network reduction

Table 5.4. Statistical parameters (mean 𝜇, standard deviation 𝜎, minimum and maximum
value) of the relative error 𝜂𝑎 (as defined in eq. (5.1)) between the first and last computed
flows accross 100 sampled networks.

Pipe 𝜇 𝜎 min max

𝑄0,𝑎1
0.00037 0.00029 0.00007 0.00118

𝑄0,𝑎2
0.00238 0.00188 0.00005 0.00756

𝑄0,𝑎3
0.00306 0.00241 0.00006 0.00982

𝑄0,𝑎4
0.00211 0.00166 0.00004 0.00660

𝑄0,𝑎5
0.00173 0.00137 0.00003 0.00553

𝑄0,𝑎6
0.00245 0.00192 0.00005 0.00763

𝑄0,𝑎7
0.00424 0.00339 0.00008 0.01542

𝑄0,𝑎8
0.00069 0.00055 0.00001 0.00220

𝑄0,𝑎9
0.00157 0.00124 0.00003 0.00507

𝑄0,𝑎10
0.00000 0.00000 0.00000 0.00000

𝑄0,𝑎11
0.00098 0.00078 0.00002 0.00308

𝑄0,𝑎12
0.00037 0.00029 0.00001 0.00118

𝑄0,𝑎13
0.00000 0.00000 0.00000 0.00000

𝑄0,𝑎14
0.00000 0.00000 0.00000 0.00000

Table 5.5. Statistical parameters (mean 𝜇, standard deviation 𝜎, minimum and maximum
value) of the time required to compute the flows in one cycle or until convergence.

Stage 𝜇 (s) 𝜎 (s) min (s) max (s)

After one cycle 0.083 0.007 0.074 0.111
After convergence 0.533 0.051 0.417 0.656

In table 5.5 the times it took to compute the first and last cycle are shown. As we have
more information about the network, several improvements were applied: the directions
were fixed from the start, and for the computation of the flows through the small collapsed
cycle a Gröbner system was calculated beforehand, which allowed us to simply substitute
into the solution of a degree 2 equation. The starting value of 𝜙𝑎𝑟,8

was set to the fixed
point calculated before. All of this together leads to a more streamlined approach that
arrives to an approximately good solution in the first iteration and really fast. Of course
more improvements would be possible, for instance by reducing the overhead cost of
switching between SageMath and Singular. Still, the average time of 0.083 s is close to
the 0.058 s in Ekhtiari et al. 2019.
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Throughout this thesis we have investigated how to use a Gröbner basis approach in
order to solve a ser of polynomial equations stemming from the flow in a gas network, in
the context of the nomination problem.
In chapters 2 and 3 we derive the system of equations that defines the gas flow through
the fundamental cycles of a network, which is enough to describe the flow through the
entire network. We also introduce the basic concepts and ideas from the theory of
Gröbner basis, as well as the algebro-geometric tools that justify the use of Gröbner basis
to solve systems of polynomial equations.
We then turn in chapter 4 to the study of how the shape and the coefficients of the
network can affect the runtime of the algorithm. While simple networks with simple
coefficients give often a good enough performance, once we take loads that are probably
closer to a real scenario the complexity of the computation of the solution increases
dramatically.
We also study the errors associated to a solution computed using Gröbner basis, and
introduce the idea of the comprehensive Gröbner system as a tool to solve parametrically
the equations. This allows us to remove the error due to the construction of the Gröbner
basis, but it also gives us relations between the flow and the loads that we can use to
study the numerical conditioning of the system. We also introduce the Shape Lemma,
that tells us that under some circumstances (that we expect to hold almost always) the
shape of the Gröbner basis will minimize the error stemming from the approximation of
the solutions of univariate polynomials. We also study the problem of the determination
of feasible flow directions, and show how a small increase in network connectivity can
create many new possible flow directions. To deal with this problem we explain how a
parametric approach may be used to obtain directly a solution of the network with its
respective flow direction, although this comes with an increase in runtime that makes it
practical only for situations where few of the directions are unknown.
For larger networks, however, the computation of a full Gröbner basis becomes impractical
due to the time required, when compared with other numerical methods, so the methods
explained before are not useful. To be able to tackle larger networks we therefore propose
a scheme of network reduction based on iterated 𝑉-cycles, similar in design to multigrid
algorithms. We perform a topological reduction of the network to arrive to a reduced
version that can be solved directly using Gröbner basis, and then obtain a solution to
the full network by extending the reduced solution to the removed subnetworks. While
this is still slower than other approaches when we have no previous information about
the network, once we have computed a solution for a load 𝑞nom it is possible to compute
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solutions to similar loads up to a high degree of accuracy by considering a smaller amount
of cycles and in a fraction of the time.
Overall, the negative aspects about the Gröbner basis (mainly the exponential runtime)
outweigh its benefits (for instance computing a very precise solution, and being able
to detect infeasibility very fast). The main limit is therefore the inherent exponential
behaviour of any algorithm that computes a Gröbner basis. Although quantum algorithms
have been proposed to solve the multivariate quadratic problem (see J.-C. Faugère et al.
2017), they only deal with the case 𝐾 = 𝔽2, so one would need to translate those results
to the framework of characteristic zero fields.
While comprehensive Gröbner basis would be a good solution, the fact that they are so
hard to compute (not getting results even after days of computations) prevents us from
realizing their full potential (even though the computation of a Gröbner system only has
to be done once). Still, for smaller networks with at most two fundamental cycles (and
not too many nodes) they can be a very useful tool to study the conditioning of the flow
with respect to loads at some of the nodes. A possible use case would be to try to apply
it to search for congestion points, as defined in Fügenschuh et al. 2011, identifying the
key pipes when the load in a node is increased from a set baseline load.
While the method of network reduction gives us a good result to apply Gröbner basis to
larger networks, it is still not as efficient as other numerical algorithms. In particular,
the main issue is that the model of gas networks we are considering is very simplified:
we include only nodes and pipes and forget about compressor stations, control valves
and other elements. The description of the pressure drop is also simplified to allow us to
break up the network between the depth-first search tree and the fundamental cycles,
which decreases the amount of equations to solve. In order to increase the accuracy of the
network it would be necessary to consider a more complex model of the pipe flow, which
would add further nonlinearities, as well as additional elements like compressors, even
with simplified models. Therefore, the biggest improvements to our methods could be to
define and model more complex networks in terms of systems of polynomial equations
with as few variables as possible, and using a Gröbner basis reduction approach to solve
these systems.
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