The Wulff-shape minimizes an anisotropic
Willmore functional

Ulrich Clarenz
May 27, 2003

Abstract

The aim of this paper is to find a fourth order energy having Wulff-
shapes as minimizers. This question is motivated by surface restoration
problems. In surface restoration a damaged region of a surface is replaced
by a surface patch which restores the region in a suitable way. In partic-
ular one aims for C'-continuity at the patch boundary. A fourth order
energy is considered to measure fairness and to allow appropriate bound-
ary conditions ensuring continuity of the normal field. Here, anisotropy
comes into play if a surface is destroyed which contains edges and corners.
In the present paper we define a generalization of the classical Willmore
functional and prove that Wulff-shapes are the only minimizers.

1 Introduction

Consider a closed, immersed, oriented, and smooth surface z : M — R? with a
two-dimensional parameter manifold M. The differential of the normal mapping
n : M — S? induces the shape operator S via Dz o S = Dn. The classical
Willmore functional is defined as

Wiz] = %/M h2dA, (1)

where dA is the induced area element and h = tr S is the mean curvature. This
functional is used e.g. for modelling elastic surfaces.

A geometric analysis concerning the structure of integrands f(x1, K2) appear-
ing in elasticity is due to Nitsche. Here, k; and ko are the principal curvatures
of z. Nitsche considered integrands f(k1, k2) which are symmetric, definite and
of polynomial growth of order at most two. He shows that such integrands are
of the form:

a+ f(h—ho)? =k,

where a, 8,7 and hg are constants fulfilling certain structural inequalities [11].
Furthermore, k = det S is the classical Gaufl curvature. Nevertheless, the physi-
cal meaning of the pure Willmore functional (o =y = hg = 0, 8 = 1) is limited.



Any round sphere is a minimizer and the area of Willmore surfaces cannot be
bounded.

On the other hand, it is a well known fact that spheres are the only mini-
mizers of W. For the construction of minimizers in the classes of fixed genus we
refer to [18] in the case of genus one and to [1] for arbitrary genus.

Recently, the corresponding L2-gradient flow of W — the Willmore flow — was
considered analytically as well as numerically. For initial data close to spheres
w.r.t. the C>* topology, Simonett is able to show global existence of the flow
and convergence to a sphere [19]. Kuwert and Schétzle [8] prove a lower bound
on the maximal time of smooth existence of the Willmore flow in terms of the
concentration of the curvature. In [7, 9] they are able to show that for surfaces
of sphere type and initial energy less than or equal 87, Willmore flow converges
to a round sphere. (Note that in the present paper spheres have energy 87 in
contrast to 47 which is the usual convention in geometry.)

Mayer and Simonett present a numerical scheme for axisymmetric solutions
based on finite differences [10]. Their numerical experiments predict the ap-
pearance of singularities under Willmore flow. Furthermore, these experiments
show that the result obtained in [9] is optimal.

The case of curves, moving in space w.r.t. Willmore flow (and also curve
diffusion) is considered in [5] analytically and numerically. Here, results of
Polden for planar curves [13, 14] are generalized and a semi-implicit discretiza-
tion scheme based on a mixed formulation is given.

A discretization scheme for triangulated surfaces without boundary is ob-
tained by Rusu [15]. A generalization of this to bounded surfaces is used in [2]
for applications in surface restoration.

The present work is motivated by restoration problems. Restoring a surface,
usually means replacing a damaged domain of a surface by a patch which restores
the region in a suitable way which means in particular C'-continuity at the
boundary [22]. Therefore, it is crucial to use at least fourth order methods if one
wants to obtain smoothness at the boundary. With the aid of Willmore flow, one
is able to prescribe boundary conditions for the position vector and the normal.
Often, real-world restoration problems are of anisotropic nature, e.g., if the edge
of a surface is destroyed. In such cases, using the isotropic Willmore functional
will not lead to results respecting this anisotropy, see [2]. Therefore, one is
interested in anisotropic fourth order functionals with corresponding minimizers.
In this paper, we propose to replace the integrand h? by a generalized mean
curvature appearing as first variation of the functional

A, [z] =/ ~v(n)dA.
M
Here 7 is a smooth function
v : S2 5 RF
= 7(2), (2)

and we may assume, that + is given as a one-homogeneous function on R?, i.e.,
for A > 0 we have v(A\z) = Ay(z). In addition, let there be a positive constant



m such that for the second derivative we have
D?*(y(z) —mlz]) > 0.

In this case, v is called elliptic and the eigenvalues of D?y(z) restricted to
2zt = {z € R®|z - 2 = 0} are bounded from below by m. Let us mention here
that the Euclidean scalar product of two vectors a, b € R? will always be denoted
by a-b.

Considering a surface z : M — R3, we can give a version of the second
derivative of v on its tangential space as follows

Ay TgM — TgM
U D27, (n) Da(v) . 3)

The endomorphism field a., is well defined due to the fact that D?y(z) z = 0 for
all z # 0. By ellipticity, a, is positive definite. The classical area functional is
obtained for the function v(z) = |z|. In this case, a, is the identity.

The first variation of A, in direction ¥ may be represented in the L*-metric
by a generalized mean curvature vector:

(A [2],9) = /M h(n-9)dA. )

Here, h., = tr (a,S) will be called the y-mean curvature.

It is known since the beginning of the last century [21], that solutions of the
isoperimetric problem for A, exist and are given by the so called Wulff-shapes
W, that may be obtained from < via the following parametrization over the
unit sphere:

Yot ST W,
=4 72(2). (5)

For a proof of the isoperimetric property of the Wulff-shape and more references
to the literature see [6].

In the present paper we want to give a different characterization of Wulff-
shapes. For the application in anisotropic restoration problems one seeks for a
fourth order functional W, which has the Wulff-shape W, as minimizer. Here
we show that one possible choice is

wie =" g [ mas ©

In this sense we have found a suitable fourth order functional which is well
suited for anisotropic restoration problems. For a second order approach to
surface fairing by locally prescribing Wulff-shapes we refer to [3].

The paper is organized as follows: Section 2 contains a proof of a formula
for the linearization of a generalized resp. anisotropic mean curvature (Theorem



2.2). This formula may be also interesting in different applications because the
anisotropy we consider there is not related to an integrand « as in (2).

In section 3 we apply the result of section 2 in the special case of anisotropic
mean curvature obtained by an integrand  to derive the Euler equation of
the functional (6). An important tool is a generalized Codazzi equation (12).
Moreover, we show that the Wulff-shape is a solution of the Euler equation.

In section 4 we prove the main result of this paper. Here, it is shown that
Walff-shapes are not only stationary points of W, but also minimizers and es-
sentially the only minimizers. The proof is based on a symmetrization argument
(16) and the generalized Codazzi equation (12). For a related reasoning see the
work on stable surfaces of constant y-mean curvature [12].

2 Linearization of generalized mean curvature

In this section we will consider a family of surfaces z : M x (—n,n) — R3, thus
z(t) = z(-,t) is an immersion of a two-dimensional orientable manifold M and
7 is a small positive real number. This family is considered as a perturbation
of a surface  : M — R3 i.e., z(-,0) = z. The evolution of z(t) is assumed to
be given by the equation

Oy = p(t)n(t) + Dx(v(t)), (7)

where ¢(t) is a smooth function and v(¢) is a smooth vector field on M.
The following notion is essential in our considerations:

Definition 2.1 Let o € R3*3 be a symmetric endomorphism depending on z €
S? with the property a(z) z = 0 for all z € S%. Then a induces an endomorphism
field on the surface x : M — R3

a:TM—TM, (8)

where @ is given by @ = Dz~! oa(n) o Dx and n : M — S?% is the surface
normal. The corresponding generalized mean curvature is defined as

ha=tr(&05).

In the next section we will apply this notion in the case of a(z) = v,.(2)
for an elliptic integrand « as in (2). Therefore we assume in the following that
a(z) : 2zt — 2zt is positive definite for all z € S2. The main result of this section
will be

Theorem 2.2 Let z be a family of surfaces evolving w.r.t. rule (7). The gen-
eralized mean curvature hg fulfils the following evolution equation:

—0ha = Azp+|S[2p
—g(diva, grad @) — tr (@ o [(VeS)v]) — g7 (8;a ;) - Ojm..  (9)

Here we use: Az = div(agrad ) and |S|2 = tr (ao S?).



Proof: Equation (7) implies the following relation for the normal n:
On = —Dx(grad p) + Dn(v). (10)

With the classical notation for g;;, g% and hs;; = —g(@d;, S9;) = —(ad;z)-9;n,
the mean curvature hz can be written as

—hg = gij ha,ij

and consequently —8:h; = 049" haij + g“0tha; = I + II. Here and in the
following we will use Einstein summation convention. On account of the fact

819" = —9" drgr1g"”
we can state (h;; = —0;z - O;n)

8ig” = 209" hig”
—9** Dx(Vv) - Oz g¥
—g* Oz - Dx(Vv) Y.

Note that for the tangential part of 8y Dz (v) we have [0y Dz (v)]**® = Dz(Vv).
Thus for the term I we obtain:

I = 209%hug" ha,;
—g** Dx(Viv) - O gljha”ij
—g'* Oz - Dx(Vv) gljha,z-j
= 2¢|S|2 + ¢"*g(Sad;, Viv) + g g(Viv,aS0;)
= 20|82 +tr((aS + Sa)Vev).

The computation of 8;hz,;; gives:

Othaiy; = —0i00;x-0jn
—ad;(pn + Dz(v)) - O;n
—adjz - 0;(—Dz(grad ) + Dn(v))
= —0,a0;x - 0jn
—padn-0jn — aDz(V,v) - 0jn
+ ad;x - 0;Dx(grad ) — ad;x - 0;Dn(v)
= —0wafiz - 0jn
—padin - 0jn — aDz(V,v) - Ojn
+ a0z - 0;Dx(grad ) — ad;x - Dx(SV;v)
—adix - Dz((V;S)v) .



Therefore, the term IT can geometrically be interpreted as follows:

I = _gij 0,00;x - 6]-” — (pgij ad;n - 6jn

—g aDz(V;v) - 9jn
+¢" ad;z - 9;Dx(grad ¢)
-9 ad;x - Dx(SV;v)
—g" ad;x - Dz((V;S)v)

= —gY 8adiz-dm — ¢|S|2 — tr (Sa V)
+¢" ad;x - 9;Dx(grad p) — tr (@S Vev)
—tr (@ o [(VeS)v]) .

Now, we finish the proof. The linearization of h; is the sum of I and I1:

—8iha = ¢|S|5 + ¢ 8ix - ad; Da(grad p)
-9 dyad;x - Bjn
—tr(@o[(VaS)e))
= ¢|S|2 + g% 8;z - 0;(aDz(grad ¢))
—g" 8;z - Oja Dx(grad )
—g" By,00;z - ;m — tr (@ o [(VeS)v])
= Asp+|Sl3p
—g% 0;x - 0;a Dx(grad @)
—tr (a0 [(VeS)v]) — g7 8108,z - Ojn .
It remains to show g(diva,w) = ¢* 8;a 8;z - Dz(w) for all vector fields w:
g(diva,w) = g¢"g(V;a0;,w)
— 4 Da((Via)d;) - Dr(w)
9" Dx(V;(ad;) — aV,d;) - Dx(w)
g" [0; Dz(ad;) — aDx(V,;0;)] - Dz(w)
= ¢ 9,00z - Dz(w) . (11)

3 Anisotropic Willmore energies

Now we want to apply the result on the linearization of generalized mean cur-
vature to compute the derivative of anisotropic Willmore-functionals.

We consider the energy W., defined as in (6). For a test function ¥ €
CY(M,R?) we have

(W2 [el,9) = S W [odco

where z; fulfils 0;x;;—9 = ¥. According to section 2 we split ¥ in a normal
component ¢n and a tangential component Dz(v), i.e., ¢ = pn + Dz(v).



To derive the Euler equation we have to compute the derivative of h2
and of the area element dA;. The latter is contained in [17] and the result 1s
6tdAt|t_0 = divJd dA.

In the special case where the endomorphism field a from section 2 is given
by the second derivative of an elliptic integrand 7, Theorem 2.2 simplifies in the
following way:

By (11) for a = 7. we have due to dyny;—o = —Dz(grad ¢) + Dn(v):

gij (6tat|t:06iw) -0in = gij’)’zzz (n) [5tnt\t=0; 0, 8;‘”]
99 (722(n))(~Dz(grad ) + Dn(v)) - diz
= g(diva,,—grady + Sv),

where a,, is defined as in (3). For the linearization of h, := h,, we therefore
obtain with A, = div (a, grad ) and |S|? = tr (a,S?)

—0thy = Ay + |S|ig0 —tr(ay o [(VeS)v]) — g(diva,, Sv) .
The Codazzi equation as well as the symmetry of S and a., imply the following

Lemma 3.1 For the divergence of the endomorphism field Sa., and all vector
fields v the identity

g(div (Sa,),v) = tr (a, o [(V4S)v]) + g(div a,, Sv)

is valid. Furthermore, choosing ¢ = 0 in (7) the tangential part of the lineariza-
tion O¢hy is g(grad hy,v) from which one concludes

div (Sa,) = grad h., . (12)

Proof: By definition of the divergence, one gets

g(div(Sa,),v) = g¢*g(Vi(Sa,)0k,v)

= ¢"%9((ViS) ay0k,v) + g% 9(S(Viay )0k, v)
9% g(a 0k, (ViS)v) + " g((Viay )0k, Sv)
9" 9(0;

ik

( QO ))+g(diva7,SU)
= tr((Vq,eS)v) + g(diva,, Sv).

Defining the endomorphism ¥ via Yw = (V,,S) v we have
tr (Va,eS)v) = tr (X oa,) = tr(a, o X)

and the result is shown.



The Euler equation:
From the above considerations we obtain the identity:

—0thy = A0 + |S|3ch —g(grad h,,v) . (13)

Using this result, we obtain

1
Wilel9) = [ o (-Byp = |8+ glgradhy, ) + 5hdivoda
M

1. .. 1 ..
/M hy (—Ayp — |S2¢) + Ehhicp + 5div (h2v)dA. (14)

This relation implies the Euler equation of the Willmore functional for sur-
faces without boundary:

1
—Ayhy — hy|S[ + ihh?y =0. (15)

Especially we obtain the following

Proposition 3.2 The Wulff-shape W, is a solution of the Euler-equation for
the anisotropic Willmore functional.

Proof: We use the parametrization of the Wulff-shape given in (5). The
normal of W, at Dv(z) is given by z because D2v(z)z = 0 for z # 0. Therefore,
one gets S = a, ! for the shape operator. This especially implies the fact that
on the Wulff-shape we have h, = const. The result is shown, if we can prove:

1
1S|2 — 3hyh =0,

but this is a consequence of the above consideration:

IS[5

tr (a,S%) = tr a;l

1 1 _ -
3 Str Id)tra;* =tra’.

O
This proposition clearly follows from the result of the next section. Never-

theless, the discussion of the Euler equation seems worth to be pointed out.

4 Main result

As was mentioned in the introduction, spheres are not only extremals but also
minimizers of the classical Willmore functional. The aim of this section is to
prove an anisotropic version of this result. We will show

Theorem 4.1 Let z : M — R® be an immersion of a compact surface M
without boundary into R®. We can estimate the anisotropic Willmore-energy
W, [z] from below by

Wylz] > 2(W,|,
where |W,| is the area of the Wulff-shape W,. The Wulff-shape itself is the
unique minimizer of W.,.



Proof: We may follow the classical proof given e.g. in [20, pp. 270]. At
first we want to estimate W, by a total curvature term. In the case of elliptic
integrands, the y-mean curvature h, may also be written as

hy =tr(a,S) = tr (a;/2sa;/2) . (16)

The endomorphism field a}/ 2Sa,1y/ % is symmetric and may be diagonalized with
eigenvalues 1, 1o. Related symmetrizations were also used in [16] and [4].
Introducing the corresponding anisotropic GauB8 curvature k, = det(a,S) =

det(a}/ 25(1}/ %), one obtains the relation

hy = 4ky = (1 + p2)® — dpap = (1 — p2)® > 0

and therefore we can give the following estimate:

1
> = 2 >
W, [z] > 2/kv+h7dA_2/k7+kﬁ,dA,

where kf = {£ € M|k, (&) > 0}. By the area formula, the expression fkf,r k,dA

is the area (counted by multiplicity) of Dy(n(k})). Due to the ellipticity of -,
we may conclude

ky = {6 € M|k(¢) > 0},

where k is the classical Gaufl curvature. Therefore, and on account of the
compactness of M, we obtain n(kf) = S* and especially:

/k+k7dA2|W7|.

Assume now, that equality holds in all of the above inequalities. Then we can
conclude g1 = po =: p. Thus we have

(L,IY/ZSCL}/2 =pld

from which we get
Say=pld

and therefore
div (Sa,) = grad .

On the other hand we know by Lemma 3.1
div (Sa,) = grad h,, .

This implies h, — p = const. On account of h, = tr(Sa,) = 2u one gets
= const. Thus we obtain

D(ayS — pId) = D(r:(n) — ) = 0



and integration leads to

1
T =20+ —Y.(n),
W
where zy € R® is a constant vector and the result is shown. O
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