
The Visual Computer manuscript No.
(will be inserted by the editor)

Feature Sensitive Multiscale Editing on Surfaces

U. Clarenz�, M. Griebel�, M. Rumpf�, M. A. Schweitzer�, A. Telea�

� Institut für Angewandte Mathematik, Bonn University, Wegelerstrasse 6, 53115 Bonn, Germany
� Fachbereik Mathematik, Duisburg University, Lotharstrasse 65, 47048 Duisburg, Germany
� Eindhoven University of Technology, Department of Mathematics and Computer Science, Den Dolech 2, 5600 MB Eindhoven, Netherlands

Received: date / Revised version: date

a) b)

c) d)

Fig. 1 Surface processing example: (a) feature detector (b) feature-
guided surface decomposition (c) features selected for deletion (d)
surface after feature deletion

Abstract A novel editing method for large triangular meshes
is presented. It is based on a stable local surface classification
and feature detection algorithm, the definition of a finite ele-
ment matrix encoding a weighted coupling of adjacent mesh
nodes, and an algebraic multigrid (AMG) algorithm. In par-
ticular, edges and corners are regarded as features on the sur-
face. We detect features using an analysis of local zero and
first surface moments, as computing these quantities is robust
and noise resistant. The feature detection is encoded in a fi-
nite element matrix, passed to the AMG algorithm. The AMG
algorithm generates a matrix hierarchy ranging from fine to
coarse respresentations of the initial fine grid matrix. This hi-
erarchy comes along with a corresponding multiscale of basis
functions, which reflect the surface features on all hierarchy
levels. We consider either these basis functions or distinct sets
from an induced multiscale domain decomposition as handles
for surface manipulation. Finally, we present a multiscale ed-
itor which enables boolean operations on this hierarchical do-

main decomposition and simple algebraic operations on the
basis functions. Users can thus interactively design their fa-
vorite surface handles by simple grouping operations on the
multiscale of the feature-sentitive basis functions or domains.
Several applications on large meshes underline the effective-
ness and flexibility of the presented tool.

Key words surface processing – algebraic multigrid – mul-
tiscale feature detection

1 Introduction

Flexible, interactive surface modeling is a challenging topic
in computer graphics. In particular, multiresolution strategies
have proved to be an efficient way for processing large trian-
gular surface meshes [18,20,22]. Surfaces of a complicated
shape and non trivial topology have to be treated and processed
in an intuitive and interactive way [34]. Hereby, surface fea-
tures such as edges and corners are of particular interest. The
set of all surface features is usually characterized by different
scales. Usually, one finds prominent, sharp, and long edges,
together with less pronounced, slighty curved features, con-
fined in smaller surface regions. Usually, such features sep-
arate the surface in a number of smooth regions that corre-
spond intuitively to different object parts. Just as the edge fea-
tures, these parts come at different scales, e.g. the dragon’s
horn and tongue on finer scales, and the head and body, on
coarser scales. To our knowledge, this multiscale nature of sur-
face features has not been considered so far. In this paper we
present a novel approach to surface modeling which

– robustly detects features on large and small scales,
– computes a multiscale library of surface handles reflecting

features, and
– enables a flexible interactive, and reliable multiscale sur-

face editing.

In the following, we outline the main steps of the proposed
method (see also Fig. 2 and the example in Fig. 1). The method

2 U. Clarenz et al.

is based on a local zero and first moment analysis to classify
features on discrete surface. The zero and first moment inte-
gral quantities are stable to compute and they give less noisy
results compared to discrete curvature quantities. The result-
ing local surface classification, computed at the triangulation
vertices of the surface, is encoded in a finite element stiffness
matrix. Thereby, the matrix describes the coupling of regions
on the surface. By construction, this coupling is much weaker
along feature edges than in smooth areas. Next, an algebraic
multigrid (AMG) method is applied to this matrix. The AMG
delivers a matrix representation on multiple scales and an ac-
companyingmultiscale library of discrete basis functions, which
can be seen as feature sensitive surface handles. In other words,
the AMG delivers a multiscale representation of our surface
classifier. Coarse levels show the main surface characteristics,
i.e. the smooth regions separated by the most salient surface
features. Finer levels show the (usually smaller) regions sepa-
rated by less pronounced,detail surface features. To build gen-
eral surface handles, an editor tool is presented which allows
combining basis functions from the multiscale library. Figure 1
shows the different ingredients of the approach: the robust fea-
ture detection showing the weak coupling along feature edges,
the AMG-based domain decomposition on a particular scale,
several surface handles selected form the multiscale library,
and finally the surface edited by deleting the selected handles.

surface

Classifier
computation

AMG multiscale
decomposition

Matrix encoding

Handle
computation

Surface editing

stiffness matrix

family of bases

family of handles

surface classifier

Fig. 2 Steps of the multiscale surface editing method

Review of related work The method we present here is related
to other applications of AMG which are also related to precon-
ditioning. In particular, in [28], AMG is used to segment im-
ages via a multiscale method. In these applications the coars-
ening is comparable to a hierarchical watershed algorithm [24],
where homogeous regions on surfaces, bounded by curvature
features, are extracted. Furthermore, AMG has been applied
to optimal graph drawing applications [33]. Here, AMG serves

again as an appropriate clustering algorithm. The common mul-
tiscale characteristic distinguishes these approaches in partic-
ular from other surface decomposition methods, such as those
given in [35], where another watershed approach is taken into
account, and in [10], where a combinatorical approach is pre-
sented.

One of the building blocks of our method is a reliable sur-
face feature detection, an indispensable tool in image and sur-
face processing. Features such as edges and corners in images
have to be classified in a stable way to enable edge preserv-
ing image denoising [26,1] and robust segmentation of im-
age subdomains bounded by edges [8]. In image processing,
a straightforward identification of edges can be based on an
evaluation of the image gradient. A sufficiently large gradi-
ent is supposed to indicate an edge. Alternatively, a frequently
considered edge indicator is the Canny edge indicator, which
searches for extrema of the second derivatives in the gradient
direction [13]. Furthermore, the structure tensor [31]) enables
a robust classification of edges and edge direction in images.

Stable local classification of triangular meshes has been
considered in surface applications too [19,23] with the aim to
improve surface processing. Feature detection is usually based
on the measurement of dihedral angles [22] or on a local cur-
vature analysis [19,22]. An edge is supposed to be indicated
by one sufficiently large principle curvature and the correspond-
ing principle curvature direction is perpendicular to the edge
on the surface. A well known approach for curvature evalua-
tion on discrete surfaces is algorithm proposed in [25]. In [11]
principal curvatures are evaluated based on a local projection
of the mesh onto quadratic polynomial graphs. If concerned
with large triangular and irregular grids, e. g. generated by march-
ing cubes, such detectors are tedious to treat and a robust clas-
sification is hard to achieve. In critical applications features
are usually extracted manually [17]. Various applications rely
on a robust feature detection. In surface fairing a given initial,
noisy meshes have to be smoothed, while simultaneously pre-
serving edges on the surface [14,11]. In recent mesh decima-
tion tools, surface meshes are simplified while edge features
are retained [32]. As a final application, we mention automatic
texture generation, where it is desirable that the texture map
is bounded by feature lines [23].

Moment analysis for feature detection has already been
present in the graphics and computer vision areas [29,21]. Here
we focus on using moments as a multiscale feature classifica-
tion tool and provide details for their robust computation. Fi-
nally, there is a wealth of literature addressing the topic of sur-
face editing, such as [34] and [2]. However, to our knowledge,
no similar methods based on algebraic multigrid (AMG) ex-
ist. Since the main message of this paper is the novel introduc-
tion of the AMG in the field of multiscale surface processing,
we shall not insist on reviewing specific surface editing meth-
ods and tools.

The paper is organized as follows. In Section 2 we briefly
review algebraic multigrid methods. Then the local classifica-
tion of surfaces based on moments is discussed in Section 3.
We will use this classification to define a matrix encoding the
features of the surface in Section 4 and in Section 5 a mul-

Feature Sensitive Multiscale Editing on Surfaces 3

tiscale library of surface handles will be computed applying
algebraic multigrid to this matrix. The multiscale surface edi-
tor will be introduced in Section 6 and in Section 7 we present
some applications. Finally in Section 8 we draw conclusions
and indicate future work directions.

Notation

Before we develop our approach to multiresolution modeling,
let us first briefly introduce some basic notations. For a de-
tailed introduction to geometry and differential calculus we
refer to [15]. Let us consider a closed and orientable surface
M � R

� . Let x � � � M � � �� x��� be some coordinate
map from an atlas. For each point x on M the tangent space
TxM is spanned by the basis f �x

���
� �x
���
g. By TM we denote

the tangent bundle. Measuring length on M requires the def-
inition of a metric g��� �� � TxM�TxM� R. As the corre-
sponding matrix notation we obtain the first fundamental form
g � �gij�ij with gij � �x

��i
� �x
��j

, where � indicates the scalar

product in R� . The inverse of g is denoted by g�� � �gij�ij .
The gradientrMf of a function f is defined as the represen-
tation of df with respect to the metric g. In coordinates we
obtain

rMf ��
X
i�j

g
ij ��f � x�

��j

�

��i
�

We define the divergence divMv of a vector field v � TM
as the dual operator of the gradient with respect to the L�-
product on M and obtain in coordinates

divMv ��
X
i

�

��i
��vi � x�

p
det g�

�p
detg

�

Finally, the Laplace Beltrami operator �M is given by

�Mu �� divMrMu �

Let us denote by N the normal field on the surfaceM.

2 A brief introduction to AMG

In this section we give a short review of the basic algebraic
multigrid algorithm (for scalar PDEs) and the heuristics which
led to its development, see [30] for a detailed introduction to
AMG.

Algebraic multigrid methods were first introduced in the
early 1980’s [3–6,27] for the solution of linear systemsAu �
f coming from the discretization of scalar elliptic PDEs. The
development of AMG was led by the idea to mimic (geomet-
ric) multigrid methods, i.e. their functionality and convergence
behavior, in applications where a hierarchy of (nested) meshes
and interlevel transfer operators could not (or only with huge
effort) be provided. The amount of input information for the
iteration scheme should be minimal, i.e., the linear system it-
self should provide all the information needed for the algo-
rithm.

Roughly speaking, we define a sequence of matrices Al

from the input (fine level) matrix A� �� A via the a natural
coarsening (often named Galerkin projection)

Al �� RlAl��P l � �P l�TAl��P l �

where P l is an appropriately chosen prolongation matrix (en-
coding how coarse scale (l) basis functions are combined us-
ing the basis functions on the finer scale (l� �). In particular,
AMG constructs a sequence of appropriate prolongation ma-
trixes fP lgl�������L using information from the matrix Al��

on the previous level l � � only. The construction of a pro-
longation matrix can also be viewed as the construction of a
problem-dependent basis f� l�ig. We construct a coarser basis
f� l�igwhich captures the appropriate features relevant for the
approximation of the corresponding continuous problem, i.e.
the underlying differential operator (cf. Section 4). The theory
and the design of efficient AMG packages is rather involved.
We here require the basic AMG capabilities. There are sev-
eral suitable AMG packages available on the Web (e.g. un-
der www.mgnet.org, see also the software discussed in [33]).
Let us recall the essential ingredients of AMG algorithms. In

Fig. 3 Coarse matrix A� definition illustrating matrix sizes

general, any AMG implementation works as follows (see also
Fig. 4):

– Given fine grid matrix A� �� A.
– Construct prolongationP �; i.e. coarse basis functionsf���ig.
– Define restriction R� �� �P ��T .
– Define the coarse matrixA� �� R�A�P � via the Galerkin

identity.
– Recursive application gives a sequence of prolongationP l

and restriction Rl matrices, as well as matrices Al on all
levels l � �� � � � � L.

Fig. 4 General AMG construction

The fundamental ingredient in this AMG construction is the
notion of algebraic smoothness. With the help of such a smooth-
ness measure we can set up a reduced graph of the matrix from

4 U. Clarenz et al.

which we can then “merge” fine level basis functions � l���i

on level l�� in an appropriate fashion to define the coarse ba-
sis f� l�ig on level l. Hence, algebraic smoothness is defined
as a generalization of the concept of geometric smoothness
with the aim to extract some measurable quantity which can
be (easily) computed from the matrix. In particular, in our ap-
plication we weight the geometric smoothness of a surface (cf.
Section 4) with the help of local surface classifier (cf. Section
3). Several different measures for algebraic smoothness are
used today in the various algebraic multigrid methods [27,7,
9]. Common to all these heuristic definitions is the general ob-
servation that a simple relaxation scheme—most often Gauss–
Seidel smoothing is used in AMG—damps (efficiently) high
energy components, i.e. eigenvectors associated with large eigen-
values, only. Consequently, the coarse grid correction must be
able to deal with the remaining small energy components. These
small energy functions should be represented accurately on
coarser grids.

The construction of the coarse basis f� l�ig itself is a two-
step process. First, we select so-called coarse grid points, i.e. a
subset of indices which give the sparsity pattern of the prolon-
gation matrix P l. Then in a second step we define an interpo-
lation formula, i.e. the weights of the prolongation matrix P l.
This tell us how a coefficient vector on a coarser level l is rep-
resented with respect to the finer level l � �. Thus, we define
how information from the coarse basis f� l�ig is represented
in terms of the fine level basis f� l���ig. There are many dif-
ferent approaches to the definition of AMG prolongation ma-
trixes. Our numerical experiments with different prolongation
matrices showed that a renormalized variant of a very classical
and widely used interpolation scheme, see e.g. [16], gave the
most favorable results. Hence, throughout the paper we used
this interpolation scheme with a simple averaging of the in-
terpolation weights to enforce mass conservation. Note that
this two-step process can also be viewed as a graph coarsening
scheme: We select a subset of fine level vertices as the coarse
vertex set and define an approriate sum of the weights of the
removed edges on the fine level as weights for the coarse level
edges (cf. Section 5).

To illustrate the performance of AMG, we give a here a
very basic first example. Consider a flat square domain � �
���� �	� � R

� . Now we select the subset� � B����B�����,
where 	 is a small positive real and Br is the ball of radius r
centered at the origin �. Next, we define the function

C�x� �
�

���� x � � ��
����
� x � �

In other words, the operatorC is smooth overall but exhibits a
discontinuous jump on the ring-shaped boundary of �. Next,
we define the following differential operator�C � �div �Cr ��.
We discretize this problem by the usual finite element proce-
dure. Hence, we define a quadratic forma�
� �� �

R
�
C r
�r��

corresponding to this operator. Then, let Vh be the finite ele-
ment space corresponding to a triangulation of� and f��� � � � �ng
the basis of hat shaped basis functions, where n is the number
of nodes of the triangulation. Finally, we compute the n � n

0.0

1.0

Fig. 5 For a simple second order differential operator on a planar do-
main, algebraic multigrid basis functions are depicted on different
scales (upper row: coarsest scale, middle row and lower row succes-
sively finer scales). The basis functions clearly reflect the ring type
feature region encoded in the operator.

finite element stiffness matrix A:

Aij �� a��i� �j� �

Z
�

C r�i � r�j �

The multiscale of AMG basis functions is depicted in Fig. 5.
These basis functions clearly follow the discontinuities of C.
However, note that in smooth regions the bases have a nonzero
overlap. Moreover, the AMG method does not impose any con-
straints on the way this overlap takes place - for instance, it
does not guarantee that a smooth region is entirely covered
by a single basis function or by a number of bases having the
same nonzero support size. Nevertheless, this is not a serious
problem for our method (see, for more details, Sec. 5).

Obviously, the above is just a succint presentation of the
AMG method. However, we stress again that AMG tools have
been developed with the very purpose of being used as black
box solvers. Since our method does not explicitly rely on the
specific parameters or coarsening strategy of a given AMG
solver, one should be able to easily substitute the AMG solver
one avails of instead of the one we used, and obtain similar re-
sults. Different AMG parameter settings and coarsening strate-
gies are likely to deliver slightly different basis functions, es-
pecially in the smooth areas. However, given the strong classi-
fier discontinuities following the edge features, various AMG
tools should deliver the same basis function behavior along
these features.

3 Moment-based surface analysis

In the following, we will introduce and discuss local surface
classification based on zero and first order surface moments.

Feature Sensitive Multiscale Editing on Surfaces 5

This will in particular allow to robustly distinguish smooth re-
gions from the vicinity of edges or corners on surfaces. For a
surface M, the zero moment is given by the local barycenter
of M with respect to an Euclidian ball B��x� centered at x:

M�
� �x���� ��

Z
�
B��M

x dx �

The parameter serves as a filter width. Furthermore, the first
moment is defined by

M�
� �x� ��

Z
�
B��x��M

�x�M�
� �x�� 	 �x�M�

� �x��� dx

�

Z
�
B��x��M

x	 x dx�M�
� �x� 	M�

� �x�

�

where y 	 z �� �yizj�i�j��������. Due to the definition via
local integration, the zero and the first moment is expected to
be robust with respect to noise.

Moments in smooth areas and at edges

In the following two sections we will explain, how zero and
first moment information may be used to distinguish between
smooth and non-smooth surface parts. It turns out, that the zero
moment shift, defined by

N��x� � M�
� �x� � x �

scales quadratically w.r.t� the filter width in smooth surface
domains, whereas on edges and corners, the scaling is only
linear (cf. Fig. 6). Furthermore, the eigenvalues of the first mo-
mentM�

��x� give us additional information in the presence of
an edge. This justifies the usage of moments as detectors for
surface features. For a given, usually small, parameter , only
features larger than will be detected. The zero moment shift
N� plays the role of a scaled approximate normal.

Indeed, the quadratic scaling of the zero moment is given
by the relation

N��x� � ��c�d�H�x�N�x� � o��� �

The explicit constant c(d) = c(2) = 0.125 (we consider 2D sur-
faces only). The quantity H�x�N�x� is the mean curvature
vector at x. For a proof we refer to [12].

We now discuss the case of non-smooth surface features,
such as edges and corners. LetM be a surface, which is smooth
up to the edge set �M on the surface. Then, for X � �M,
there is a vector �N�x�, such that

N��x� � �N�x� � o�� �

In this sense, the zero order moment scales linearly on the sin-
gularity set of the surface. Next, we consider the first moment.
Let us assume that for X � �M the apex angle of a surface
edge is of size

 (cf. Fig. 6). Then in the eigenvalues of the
first moment are ��, �� sin�
 and �	 cos�
 up to higher
order terms, where � � ��
 and 	
 ������. For a formal
proof, we refer again to [12].

Fig. 6 The intersections of a ball B��x� are drawn for points x in a
smooth areas and on an edge respectively. In addition, we show the
approximate normal N��x� and the eigen direction of the first mo-
ment M�

� �x� for a point x on an edge.

Local surface feature classification

We will use these results to define local surface classifiers, i.e.
quantities that enable us to robustly distinguish between smooth
surface areas and features such as edges and corners. This will
later be encoded in a mathematical operator on the surface (see
Section 4). We have seen that the shift of the zero momentN�

Fig. 7 The zero moment and the combined moment feature classi-
fiers are compared on a triangular mesh. The combined classifier de-
tects significantly more robustly the surface edges.

differs by an order of magnitude in if compared on edges
and in smooth areas on the surface, respectively. Hence, let us
define a first local surface classifier

C�� �x� � G

�kN��x�k

�

where G�s� � �
	�
s� with suitably chosen �� � � �. In all

our applications we have chosen � � ����
 and � �
�.
We observe that C�� �x�
 ��� in smooth regions on M and
C�� �x� �� ��� close to edges or corners (cf. Fig. 7). Even
though C�� can already serve as a good classification tool, we
can further improve the feature detection quality by incorpo-
rating first moment information. Suppose �min� �max to be
the smallest and largest eigenvalue ofM�

� �x�, respectively. From
(1) we know that the quotient �min��max is approximately
given by

�min��max
 	�� cos�

 ��
��� cos�
 �

where

 is the apex angle of an edge feature. This relation
for �min��max is valid for
 larger than ��
�
�
 ��o. Es-
pecially, in the smooth case (
 � ��
), this quotient van-
ishes where it increases for decreasing
. Hence, we can fur-
ther pronounce edges in the classification by the choice of a

6 U. Clarenz et al.

combined zero and first moment classification

C���� � G

�kN�k�min

 �max

�
�

We mention that, for
 smaller than ��o, the quotient of the
eigenvalues again tends to �, when
� �. In this sense, very
sharp features are detected in a weaker sense than they should.
However, as our experiments showed, this seems to be only of
theoretical interest. Figure 7 compares the results obtained by
the classification with C�� and C���� . For all surfaces we tried,
the combined classifier showed a better separation of the fea-
ture areas (edges and corners) from the smooth areas than the
zero moment classifier. Due to its superior quality we have ap-
plied the classifier C���� in all applications below (cf. Fig. 8).

Fig. 8 For different triangular surface meshes we show the local
feature classification result using a color coding for the classifier
C
������.

Implementation of zero and first moment

In the previous section, we have treated arbitrary surfaces. In
applications, we usually deal with two-dimensional, irregular,
triangular grids. In the following we will detail the discretiza-
tion of the presented local surface classification in this case.
We consider a triangular meshMh with grid size function h.
In our implementation, we compute the moments centered at
each node of the triangulation.

Let us fix one nodeXi and denote the discrete moments by
M�

��h and M�
��h. Given this radius , we first collect all trian-

gles fT�� � � � Tmg of the triangulation such thatTi�B��Xi� ��
� i � �� � � �m, by performing a simple breadth first search
from the node Xi on the mesh connectivity graph. This set of
triangles splits into two subsets. The first one - denoted by T o

- consists of all elements with Ti � B��Xi�. The second one

T � is the complement. Now we iteratively compute the inte-
grals

R�T ox dA and
R�T ox	 x dA. On each triangle of T � we

use the following exact integration formulas:

M��Ti� �
�

�
�X� �X� �X�� �Z

�
Ti

x	 x dA �
�

�
�Y� 	 Y� � Y� 	 Y� � Y� 	 Y�� �

whereX�� X�� X� are the nodes ofTi andY� � �X��X���
,
Y� � �X� � X���
 and Y� � �X� � X���
. For the corre-
sponding computations on T � � B� we apply an approxima-
tion. For each triangle Tl � T � , the intersection of the sphere
�B� and the edges of the triangle consists of two points de-
noted by P�� P�. We replace the curvilinear connection Tl �
�B� by the line segment connectingP� andP�. Hence, we re-
place Tl�B� by a polygon which we again can split into trian-
gles. We proceed now as above using exact integration on all
these virtual triangles. To ensure a robust moment calculation
we choose � �h in our applications.

4 A matrix encoding features

Given a classifier C � M� R
�
� on a surface M, we can de-

fine a mathematical operator A�C	 which considers the clas-
sifier as a spatial coupling weight on the surface. Suppose C
to be large in smooth surface regions and small on edges and
corners. In our applications, we choose C � C���� as above and
define

A�C	 �� �divM�C rM � �

In case of a homogeneous surface with C � � we obtain a
constant spatial coupling described by the negative Laplace
Beltrami operator �M �� �divMrM. If one thinks in term
of diffusion, C is the diffusion coefficient, which is small on
edges and approximately ��� in smooth regions. This type
of operator has already proved to be a powerful tool in fea-
ture preserving surface fairing and image denoising [26,11].
Here, we do not aim to process the surface via a differential
equation. Instead we are interested in a multiscale decompo-
sition of the operator itself. With respect to our actual aim of
designing an editing tool for discrete, triangular surfaces in-
stead of the continuous operatorA, we treat its discrete finite
element counterpart Ah�C	. Hence, following the general fi-
nite element paradigms we first introduce the quadratic form
A��� �� acting on functions onM:

A��� �� ��

Z
M

C rM� � rM� dx �

Furthermore let

Vh � f
h � C��Mh�
��
hjT � P�� T � Mhg

be the finite element space onMh consisting of those continu-
ous functions being affine linear on each triangle ofMh. The
usual basis f�igi������n, on Vh is defined by �i�Xj� � 	ij

Feature Sensitive Multiscale Editing on Surfaces 7

where n is the number of vertices of Mh and �i�Xj� � 	ij
for all verticesXj . Note that we use capital letters for discrete
objects to distinguish them from continuous objects denoted
with lower case letters. We now define a discrete operatorAh

acting on Vh and a corresponding n � n matrix A where a
matrix entry is given by

Aij �� A��i� �j� �

Z
Mh

C rM�i � rM�j dx

and f��� � � � � �Jg is the standard basis of Vh. This matrix de-
scribes the coupling on the discrete surface weighted by the
classifier C. This coupling is encoded in terms of the coupling
of adjacent nodes of the triangulation. Indeed, for every pair of
adjacent nodes Xi and Xj the matrix entry Aij describes the
coupling strength. In Section 5 we will discuss the multiscale
decomposition of this matrix, the centerpoint of our method.

Assembling the matrix

Before we discuss the multiscale decomposition of the ma-
trix A, we detail its actual computation. The assembly of A
is based on the standard Finite Element assembly procedure.
We start by initializing B � � followed by a traversal of all
surface triangles T . On each T with nodes P �� P �� P �, a cor-
responding local matrix �aij�T ��ij is computed first, corre-
sponding to all pairings of local nodal basis functions. Next,
the local matrix is added to the matching locations in the global
matrixB, i. e. for every pair i� j we updateA	�i��	�j� � A	�i��	�j��
aij�T �. Here ��i� is defined as the global index of the node
with local index i. For the local matrix we need a local surface
classifier C�T � for every triangle T on Mh, which we define
by averaging. We obtain for the local matrix:

aij�T � � C�T �
Z
T

rT�i � rT�j � C�T � jT j �i
hi
� �j
hj

� C�T �jT j ei
hi keik �

ej
hj kejk � C�T �ei � ej

�jT j
where jT j is the area of triangle T , �i is the nodal basis func-
tion corresponding to the node xi for any local index i, rT

the gradient on T , and �i the outer normal to the edge ei op-
posite of xi. Finally hi is the height of the triangle over the
edge ei. The trianglewise classifier C�T � is deduced by aver-
aging from the classifier values on the nodes P �� P � and P �

of the triangle T : C�T � � ����C�P �� � C�P �� � C�P ���.
Given the sparsity ofA, we use a compressed row matrix stor-
age model, i.e. store only the nonzero entries and their column
indexes, for every matrix row. This confines the matrix mem-
ory requirements to e.g. around 10 megabytes for a mesh of
280472 triangles.

5 Multiscale decomposition by AMG

As discussed so far, the matrix A defined above can be re-
garded as a description of the surface shape. In particular the

smoothness modulus and the distinct surface features are en-
coded in this matrix. Besides prominent feature edges, succes-
sively finer, more detailed edges are encoded. At this point, we
require a tool capable to analyze and represent this multiscale
of features. Here AMG comes into play. Given a matrix which
encodes inhomogeneities on different scales - in our case the
features detected by the classifier - we apply AMG (cf. Sec-
tion 2) to detect this multiscale. AMG will deliver a scale of
surface descriptions in terms of matrices Al for l � �� � � �L
ranging from detailed (A� � A) to very coarse (AL). To-
gether with these matrices we obtain basis functions� l�i on all
scales. Hence, we obtain handles for surface editing on differ-
ent detail scales. One might either manipulate large scale fea-
tures such as the head, tail, or legs of the meshes shown in this
paper. Alternatively, adjustments of small details, such as fin-
ger tips or ears, can be performed. This section describes the
underlying mathematics related to the multiscale representa-
tion. The next section presents the actual editing tool, config-
ured as a simple but effective “combiner” of basis functions.

Recalling, we apply the AMG algorithm (cf. Section 2) to
the matrixA � Rn�n introduced in the previous section. Run-
ning AMG on the matrix A we obtain a sequence of prolon-
gation matrices

P l � Rnl�� �nl �
as output, where fnlgl�������L is decreasing and n� � n. The
entries in each column of P l describe how the basis functions
� l�i for i � �� � � � � nl can be generated from the basis func-
tions � l���i for i � �� � � � � nl�� on the previous, finer level.
Indeed, we obtain the following simple recursive recipe to cal-
culate a multiscale of basis functions

� l�i ��
X

j�������nl��

P l
ji�

l���j �i � �� � � �n� l � �� � � �L

���i �� �i �i�� � � �n
Collecting all basis function � l�i on all scales l � �� � � �L we
build up a multiscale library

L�C� � f� l�ig l � �� � � � � L

i � �� � � � � nl

of functions which reflects, on all scales, the surface features
encoded by the local surface classifier C (cf. Fig. 9). Let us re-
call that the prolongation matrices induce a sequence of ma-
trix representations Al � Rnl �nl on different levels:

Al �� RlAl��P l l � �� � � � � L
A� �� A

where the restriction matrices Rl � R
nl�� �nl are defined as

Rl � �P l�T . In general, as outlined in Sec. 2 the goal of AMG
is to compute prolongations in such a way that, for the num-
ber of degrees of freedom nl, the mapping corresponding to
the matrixAl is a sufficiently good approximation of the orig-
inal matrix A. Hereby, the underlying algebraic smoothness
criterion depends on the problem setting. In our case, smooth-
ness is induced by the spatially varying surface classifier C���.
An interpretation of the entries of Al is that Al

ij measures of

8 U. Clarenz et al.

Fig. 9 Selected basis functions � l�i are color coded on a blue (low)
to red (high) colormap on the coarsest scale (upper row) and on the
third coarsest scale(lower row).

strength of the coupling between the basis functions � l�i and
� l�j or - if we think in term or surface regions - the coupling of
the domains defined by the supports of the basis functions. In
particular, the coupling is expected to be weak across edges,
as described by C���.

Furthermore, the shape of the basis functions will clearly
show the strength of the node coupling in the matrix. On edges,
the weightsAij are small, because the classifier C�cot� is small
in this region. Hence, AMG will cluster vertices on both sides
of an edge on much finer scales and will collect vertices from
both sides of the edge at later stages of the coarsening pro-
cess. In particular, it is expensive - in terms of the built-in op-
timization in a concrete AMG implementation - to generate
basis functions whose masses are equally distributed on dif-
ferent sides of an edge feature (cf. Fig. 5 and 9). However, as
already mentioned in Sec. 2, this is not a problem for the pro-
posed method, as it will be explained next.

As usually, basis functions on a given scale overlap each
other. Hence, it turns out to be sometimes hard to treat to vi-
sualize basis functions directly in an graphical user interface
for e.g. a surface editor or processing tool. Hence, aiming to
represent the set of overlappingbasis functionsf� l�igi�������nl
visually, let us define a corresponding domain decomposition
Dl for every l � �� � � �L (cf. Fig.10). Here, we define Dl ��
fDl�igi�������nl , where

Dl�i �� fx �Mh j� l�i � � l�j �j � �� � � � � nlg
Let us remark that the domains on different scales need not
be strictly spatially nested. Nethertheless, these domains are
bounded by surface feature lines. This characteristic is enough
for building a simple and intuitive way to represent and ma-
nipulate such domains on different scales (see Sec. 6).

A major feature of our method is its speed. The AMG com-
putation of the prolongation matrices takes between 3 and 6
seconds for meshes up to 300000 elements on a Pentium 4

PC at 1.5 GHz running Linux. The domain decomposition in-
volves just multiplication of the prolongations and thus takes,
for the same datasets and platform, 1 to 3 seconds. The slowest
part of the pipeline is assembling the classifier matrix, which
is linear in the number of mesh triangles, and takes about 10
seconds for the largest mesh we tried, i.e. 280472 elements.
The matrix assembly complexity is quadratic in the radius
of the integration ballB� (see Sec. 3). For all examples, a ball
size of �h, whereh is the average triangle size, was used. Larger
balls, that would slow down the assembly, are not required, as
the surface features we are looking for in the classifier are al-
ready present on this scale.

The graph perspective

The mesh M� �� Mh can be trivially encoded in a graph
G� � G�N �� E��, where the verticesN � �� Nh and the egdes
E� �� Eh of the mesh are the graph nodes and egdes, respec-
tively. In case of our affine finite element space Vh the spar-
sity pattern of the matrix A� is such that in the ith row, cor-
responding to the vertex xi, the only nonzero entries A�

ij are
those corresponding to adjacent nodes xj , connected to xi by
an edge e�ij � E�, and the entry xi reflecting the self-coupling
of node i with itself. Hence, the entries Aij in the matrix can
be regarded as weights on the egdes E� of the graph G�. In-
deed, AMG generates a sequence of graphs

Gl � G�N l� E l�
for l � �� � � � � L. On level l the set of graph nodes N l corre-
sponds to the basis f� l�igi�������nl and for every entryAl

ij �� �

their exists an edge elij � E l with that weight. One might ask
whether the graphs Gl for l � � again generate immersed
polygonal grids Ml. This is known to be a design principle
of progressive mesh algorithms. However, in our case there is
in general no such mesh nesting sequence and it would be a
much too severe restriction to formulate this property in the
AMG algorithm as a constraint.

6 A multiscale surface editor

The basis functions � l�i from the multiscale library Ł�C� can
be directly used as handles to process the surface. Frequently,
however, the “handles” the user has in mind to manipulate the
surface are not precisely recoveredby one of the available AMG
basis functions. Desired handles can be generated by combin-
ing a few basis functions from the AMG multiscale library of
basis functions. We present here a simple but effective fea-
ture editor based on this strategy. The editor allows to select
a given basis function on a given level by just two intuitive
mouse picks. Several such bases can be then added to design
the desired handle. In detail, for an arbitrary surface point x
- chosen by a first mouse pick - we extract from the multi-
scale domain decomposition a sequence of activated domains
fDl

xgl�������L, where Dl�i�x� is the set Dl�i from the domain
decomposition on level l for which x � Dl�i. A second point

Feature Sensitive Multiscale Editing on Surfaces 9

Fig. 10 On different scales (corresponding to the columns) the domain decomposition Dl is shown for several triangular surfaces. The surfaces
consist of 280472 (bunny), 87140 (dragon) 25030 (hound), and 96966 (horse) triangles, respectively.

y - chosen by a second mouse pick - identifies now a single ac-
tive setDl�y��i�x� from the activated sets, where l�y� � maxfl j y � Dl�i�x�g.
Hence, the corresponding basis function � l�y��i�x� is interac-
tively and intuitively selected form the multiscale libraryL�C�.
This function inintializes the handle

� � � l�y��i�x� �

The process can be repeated e.g. by picking another two sur-
face points �x and �y. The handle is updated

� � minf�� � � � l�	y��i�	x�g �
Figure 11 shows an example. The first pick (at the black ar-
row’s location) produces the activated domains corresponding
to the hand’s middle finger tip. Surface color coding indicates
the editor’s current status. Picking a point x, the activated do-
mains are drawn in colors corresponding to the sequence pa-
rameter l, using a fixed color map (see Fig. 11). The second
pick (light blue arrow) adds now a basis to the current handle.
The domain

D� � fz �Mh j��z� � 	g
where we choose 	 � ����, essentially being the support of
the current handle � , is always shown by a fixed color (light
blue, Fig. 11). Coloring guides the user’s iterative handle se-
lection. In all our applications, � to selection iterations (i.e.
2 to 10 clicks) were sufficient to define the desired surface
handles (cf. Figures 11,12, 13, 14). In addition, we provide a
mechanism to step back in the handle construction. Picking
a point x in the already selected domain D deletes the previ-
ously added basis function containing x in its support.

Fig. 11 Selection steps in the feature editor (from left to right). First,
for a picked point x, all active domains Dl�i�x� are color coded or-
ange, red, yellow, green and violet for increasing scale l. Next, pick-
ing into one of these active domains at point y, selects a particular
scale l�y�. This activatesDl�y��i�x� and the corresponding basis func-
tion � l�y��i�x�. The support is drawn in blue. Repeating this proce-
dure adds a second basis function to the handle with two clicks.

7 Applications

After having selected the desired surface handles, one can edit
the surface. We show here a number of simple surface edit-
ing operations performed on the selected handles. These op-
erations serve only as illustration for the presented multiscale
surface decomposition and handle construction. However, this
does not diminish the usability of our technique. Indeed, state
of the art surface processing operations can be easily substi-
tuted in place of the ones shown here.

In the first example (Fig. 12), we select five features on
the Stanford bunny dataset, i.e. the ears, from paws, and tail.
Using the handle construction method (Sec. 6) these features
are easily selected by just ten mouse clicks, two for every fea-
ture, in the order: left ear, right ear, left paw, right paw, tail
(Fig. 12 a-j). The complete handle is shown in Fig. 12 k. Next,
we remove the ears by smoothing the mesh. Smoothing de-
forms the mesh in the inward normal direction and performs

10 U. Clarenz et al.

a) b) c) d)

e) f) g) h)

i) j) k) l)

Fig. 12 Application 1: In ten clicks, five features (ears, front paws,
tail) are selected (a-j). Next, the handle and the edited surface are
shown (k,l)

a mesh decimation simultaneously by removing triangles that
become smaller than a fraction of the average triangle size.
Decimation is needed to ensure that the deformed mesh does
not contain unnecessarily small triangles. Finally, we inflate
the paws and tail by mesh deformation in the outward normal
direction. Figure 12 l shows the edited mesh and the selected
domain.

a) b)

c) d)

2x

Fig. 13 Application 2: The left hind leg middle toe is selected by two
clicks on the red domain (a,b). Similarly, other features are selected
(c). Finally, the selection is edited (d)

In the second example, we select eight features on the mesh
in Fig. 13, i.e. the ears, middle toes, and tail. Selecting these
fine details requires only two clicks per feature. Figures 13 a,b
show the selection of the left front toe. Next, we inflate the
toes and ears and round the tail. (Fig. 13 c). The inflation is
done as for the previous example. The tail rounding is a se-

quence of alternate mesh inflations and smoothings. Finally,
we separately select the body, also in two clicks, and smooth
it. Figure 13 d shows the final result and the domain corre-
sponding to the body.

In the last example, we select four features on the dragon
dataset (Fig. 14), i.e. the horn, tongue, hind leg spike, and tail
tip. We detail the selection of the horn. The first click (Fig. 14 a)
produces the activation domains for the horn’s tip. A second
click, in the same place, selects the upper half of the horn only,
since there is no single basis covering the whole horn (Fig. 14 b).
Two more clicks, both on the horn’s stem, are needed to select
the rest of the horn (Fig. 14 c,d). After all details are selected
(Fig. 14 e), we erase them by mesh decimation, to yield the
final result (Fig. 14).

a) b)

c) d)

2x

2x

f)e)

Fig. 14 Application 3: The dragon’s horn is selected in a sequence
of four clicks (a..d). Next, other features are selected (e). Finally, the
selection is erased (f)

8 Conclusions

We have presented a novel technique for manipulating surface
meshes at different levels of detail, consisting of the following
ingredients: the stable computation of surface classifiers, the
classifier assembly into a finite element matrix, the computa-
tion of a sequence of basis functions on different detail lev-
els with the AMG method, and a simple but effective surface
editor based on these basis functions. Overall, selecting sur-
face features at different detail levels is done by a few mouse

Feature Sensitive Multiscale Editing on Surfaces 11

clicks. Although the machinery behind the editor is quite in-
volved, its users may employ it being totally unaware of the
underlying complexities.

The whole process requires setting few (if any) parame-
ters. The two classifier parameters� and � (Sec. 3) were fixed
for all our test surfaces. The AMG tool specific parameters
were fixed as well for all surfaces. There is little else that could
be automated in the process. The most complex implementa-
tion part of the entire pipeline is indeed the AMG tool. How-
ever, as mentioned, several available AMG tools can be used,
virtually as black boxes. Implementing the moment-based clas-
sifiers, matrix assembly, basis function computation, and the
editor, is straightforward.

The presented technique opens a multitude of directions
for surface processing. Various other data, such as surface pa-
rameterizations, texture, shading, or normals can be represented
on the multiscale induced by surface features. State of the art
surface processing operations, such as editing, decimation, or
morphing, can be coupled with the surface decomposition out-
put. Such surface data can also be encoded into new classi-
fiers, to produce novel ways for multilevel surface representa-
tions. Finally, an interesting question is whether the presented
AMG-based technique can be applied to mesh-free, point-based
surface representations, such as the one used in the PointShop
3D editing tool [36].

References

1. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms
and fundamental equations of image processing. Arch. Ration.
Mech. Anal., 123 (3):199–257, 1993.

2. H. Biermann, D. Kristjansson, and D. Zorin. Approximate
boolean operations on free-form solids. Computer Graphics
Proceedings (SIGGRAPH ’01), pages 185–194, 2001.

3. A. Brandt. Algebraic Multigrid Theory: The Symmetric Case.
In Preliminary Proceedings for the International Multigrid
Conference, Copper Mountain, Colorado, April 1983.

4. A. Brandt. Algebraic Multigrid Theory: The Symmetric Case.
Appl. Math. Comput., 19:23–56, 1986.

5. A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic
Multigrid for Automatic Multigrid Solutions with Application
to Geodetic Computations. Technical Report, Institute for Com-
putational Studies, Fort Collins, Colorado, October 1982.

6. A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic Multi-
grid for Sparse Matrix Equations. In D.J. Evans, editor, Sparsity
and Its Applications. Cambridge Univ. Press, 1984.

7. M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E.
Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge. Alge-
braic Multigrid Based on Element Interpolation (AMGe). SIAM
J. Sci. Comp., 22(5):1570–1592, 2000.

8. V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model
for active contours in image processing. Numer. Math., 66, 1993.

9. T.P. Chartier. Spectral AMGe (�AMGe). Abstracts of the
Seventh Copper Mountain Conference on Iterative Methods, 2,
2002.

10. B. Chazelle, D.P. Dobkin, N. Shouraboura, and A. Tal. Strate-
gies for Polyhedral Surface Decomposition: An Experimental
Study. In Computational Geometry, Theory and Applications,
volume 7 (4-5), pages 327–342, 1997.

11. U. Clarenz, U. Diewald, and M. Rumpf. Nonlinear anisotropic
diffusion in surface processing. In Proc. IEEE Visualization,
pages 397–405. IEEE CS Press, 2000.

12. U. Clarenz, M. Rumpf, and A. Telea. Robust feature detec-
tion and local classification for surfaces based on moment anal-
ysis. to appear in Transactions on Visualization and Computer
Graphics, 2004.

13. R. Deriche. Using Canny’s criteria to derive a recursively imple-
mented optimal edge detector. Int. Jr. Comp. Vis., 1:167–187,
1987.

14. M. Desbrun, M. Meyer, P. Schroeder, and A. Barr. Anisotropic
feature preserving denoising of height fields and bivariate data.
In Graphics Interface ’00 Proceedings. AK Peters Ltd., 2000.

15. M. P. do Carmo. Riemannian Geometry. Birkhäuser, Boston–
Basel–Berlin, 1993.

16. T. Grauschopf, M. Griebel, and H. Regler. Additive Multilevel-
Preconditioners based on Bilinear Interpolation, Matrix Depen-
dent Geometric Coarsening and Algebraic Multigrid Coarsen-
ing for Second Order Elliptic PDEs. Applied Numerical Math-
ematics, 23(1):63–96, 1997.

17. A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston.
Feature-based Surface Decomposition for Correspondence and
Morphing between Polyhedra. In Proc. of Computer Animation,
pages 64–71, 1998.

18. I. Guskov, W. Sweldens, and P. Schroeder. Multiresolution Sig-
nal Processing for Meshes. In Computer Graphics (SIGGRAPH
’99 Proceedings), 1999.

19. A. Hubeli and M.H. Gross. Multiresolution Feature Extraction
from Unstructured Meshes. In Proc. IEEE Visualization, pages
287–294. IEEE CS Press, 2001.

20. L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Inter-
active multi-resolution modeling on arbitrary meshes. In Com-
puter Graphics (SIGGRAPH ’98 Proceedings), pages 105–114,
1998.

21. Mundy J. L. and Zisserman A. Geometric Invariance in Com-
puter Vision. MIT Press, 1992.

22. A. Lee, W. Sweldens, P. Schroeder, L. Cowsar, and D. Dobkin.
Maps: Multiresolution adaptive parametrization of surfaces. In
Computer Graphics (SIGGRAPH ’98 Proceedings), pages 95–
104, 1998.

23. B. Lévy, S. Petitjean, Ray N., and J. Maillot. Least squares con-
formal maps for automatic texture atlas generation. In Computer
Graphics (SIGGRAPH ’02 Proceedings), pages 362–371, 2002.

24. A.P. Mangan and R.T. Whitaker. Partitioning 3D Surface
Meshes Using Watershed Segmentation. In IEEE TVCG, vol-
ume 5 (4), pages 308–321, 1999.

25. H.P. Moreton and C.H. Séquin. Functional optimization for
fair surface design. In Proc. ACM SIGGRAPH, pages 167–176,
1992.

26. P. Perona and J. Malik. Scale space and edge detection using
anisotropic diffusion. In IEEE Trans. Patt. Mach. Intell., volume
12(7), pages 629–639, 1990.

27. J. W. Ruge and K. Stüben. Efficient Solution of Finite Difference
and Finite Element Equations by Algebraic Multigrid. In D. J.
Paddon and H. Holstein, editors, Multigrid Methods for Integral
and Differntial Equations, The Institute of Mathematics and its
Applications Conference Series. Clarendon Press, 1985.

28. E. Sharon, A. Brandt, and R. Basri. Fast multiscale image seg-
mentation. In Proc. IEEE CVPR, pages 70–77, South Carolina,
2000.

29. G. Taubin. Recognition and Positioning of Rigid Objects using
Algebraic and Moment Invariants. PhD thesis, Brown Univer-
sity, Providence, RI, 1992.

12 U. Clarenz et al.

30. U. Trottenberg, C. W. Osterlee, and A. Schüller. Multigrid, Ap-
pendix A: An Introduction to Algebraic Multigrid by K. Stüben,
pages 413–532. Academic Press, San Diego, 2001.

31. J. Weickert. Foundations and applications of nonlinear
anisotropic diffusion filtering. Z. Angew. Math. Mech., 76:283–
286, 1996.

32. J. Wu, S. Hu, C. Tai, and J. Sun. An effective feature-preserving
mesh simplification scheme based on face constriction. In Proc.
Pacific Graphics 2001, pages 12–21, 2001.

33. D. Harel Y. Koren, L. Carmel. Ace: A fast multiscale eigenvec-
tors computation for drawing huge graphs. In Proc. IEEE Info-
Vis, pages 137–144, 2002.

34. D. Zorin, P. Schröder, and W. Sweldens. Interactive multires-
olution mesh editing. Computer Graphics Proceedings (SIG-
GRAPH 96), pages 259–269, 1997.

35. E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral surface
decomposition with applications. Computers and Graphics,
26(5):733–743, 2002.

36. Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross.
Pointshop 3d: an interactive system for point-based surface edit-
ing. In Proc. Computer Graphics and Interactive Techniques,
pages 322–329. ACM Press, 2002.

