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Abstract

We prove isoperimetric inequalities for general parametric variational
double integrals F , whose Lagrangians F depend on the position vector X
and on the surface normal N. As an essential tool we introduce Sauvigny’s
F -conformal parameters adapted to the parametric integrand and use
the notion of generalized mean and Gaussian curvature adapted to the
integrand. The special cases of minimal surfaces, surfaces of bounded
mean curvature and F-minimizing surfaces are also discussed.

Introduction

We consider general parametric functionals of the form

F(X) :=
∫
B

F (X,Xu ∧Xv) dudv , (1)

where B ⊂ IR2 is the open unit disk in the plane. The Lagrangian F is of class
C0(IR3 × IR3) ∩ C3,α(IR3 × (IR3−{0}) for some α ∈ (0, 1), and satisfies the
homogeneity condition

F (y, tz) = t F (y, z) for all t > 0 and (y, z) ∈ IR3 × IR3. (H)

Moreover, we assume that F is elliptic, i.e., that the mapping Fzz(y, z) : z⊥ → z⊥

is positive definite for all (y, z) ∈ IR3 × (IR3−{0}), where1

z⊥ = {ζ ∈ IR3| 〈ζ, z〉 = 0}.
∗clarenz@math.uni-duisburg.de
∗∗heiko@math.uni-bonn.de
1Note that (H) implies Fzz(y, z) z = 0 for all (y, z) ∈ IR3 × (IR3 − {0}).
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Since Fzz is homogeneous of degree −1 in its second argument by (H), this
implies that there exist constants 0 < M1 ≤M2 <∞ such that

M1 |Pz⊥ ξ|2 ≤ |z| 〈ξ, Fzz(y, z) ξ〉 ≤M2 |Pz⊥ ξ|2 (E)

for all (y, z) ∈ B1(0)× (IR3−{0}), ξ ∈ IR3, where Pz⊥ ξ = ξ−〈ξ, z〉 z/|z|2 is the
projection onto z⊥ and where B1(0) denotes the open unit ball in IR3.

In addition, we suppose that X is an immersed surface of class C2,α(B, IR3)
that maps the boundary ∂B topologically onto a given closed Jordan curve
Γ ⊂ IR3 with length L(Γ). The aim of the present paper is to prove an isoperi-
metric inequality for immersions X that are F-critical, i.e., stationary for the
parametric functional (1). To be more precise we are going to estimate the area

A(X) :=
∫
X

dA =
∫
B

|Xu ∧Xv| dudv (2)

in terms of quantities depending only on Γ and F. The area functional A itself
is a special parametric functional of the form (1) with the integrand F (y, z) =
A(z) := |z|. It is a well-known fact that A-critical surfaces, i.e., minimal surfaces
of the type of the disk satisfy the classical isoperimetric inequality

A(X) ≤ 1
4π
L2(Γ), (3)

see e.g. [6, Ch. 6.3]. Note that this is true for all surfaces with nonpositive
Gauß curvature K (cf. [2],[1]). More generally, disk-type surfaces of prescribed
bounded mean curvature H, whose Gauß curvature may have varying sign, can
be obtained as critical points of the parametric functional with the integrand

F (y, z) = E(y, z) := |z|+ 〈Q(y), z〉 , (4)

where Q is a weakly differentiable vector field on IR3 with divQ = H on IR3,
compare with Hildebrandt [8]. Under the assumption that

‖X(.)‖∞,B := sup
w∈B
|X(w)| ≤ 1 and h := ‖H(.)‖∞,IR3 < 2, (5)

one can show that
A(X) ≤ 1

8(1− (h/2))
L2(Γ) (6)

for such surfaces, which is a result of Heinz and Hildebrandt [7].2 In [4] we gen-
eralized (3) to critical immersions of parametric functionals with an integrand
F (y, z) = F (z) depending only on z, which does not cover the case of surfaces of
prescribed bounded mean curvature, cf. (4). In the present work we are going
to prove the following isoperimetric inequality for critical immersions of general
parametric double integrals (1), which contains all the previous cases.

2In contrast to [7] and [8] we adopt the convention that the mean curvature H is the sum
of the principal curvatures, which accounts for the factor 1/2 in the denominator in (6).
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Theorem 1. Let X ∈ C2,α(B, IR3), α ∈ (0, 1), be an F-critical immersion with
surface area A(X), which maps ∂B topologically onto a closed Jordan curve Γ.
Assume that the parametric elliptic integrand F = F (y, z) is of class C0(IR3 ×
IR3) ∩ C3,α(IR3 × (IR3−{0})), and set ‖Fyz‖ := ‖Fyizi(., .)‖∞,B1(0)×S2 . Then
there is a constant C = C(F ) depending solely on F , such that if

‖X(.)‖∞,B ≤ 1, (7)
hF :=

[
C(F )(1 + ‖Fyz‖2) + (‖Fyz‖/M1)

]
< 2, (8)

then

A(X) ≤
2C(F )M2

M1

[∫
Γ
k ds− 2π

]
L(Γ) +

√
M2
M1
L2(Γ)

8(1− (hF /2))
. (9)

If F (y, z) = A(z) = |z|, or if F (y, z) = E(y, z) = |z| + 〈Q(y), z〉 for some
Q ∈W 1,∞

loc (IR3, IR3), then C(F ) = 0 and M1 = M2 = 1.

Remarks. 1. For the area integrand A(z) one has hF = 0, and (9) reduces
to (3) for minimal surfaces3. In the case of immersed surfaces with bounded
mean curvature as critical points of the parametric functional with the integrand
E(y, z), the inequality (9) simplifies to the estimate (6), since hF = h in this
situation.

2. For a geometric interpretation of the term ‖Fyz‖ in the definition of hF in
(8) we recall the notion of the F -mean curvature HF (X,N) = HF := −tr (AFS)
and the F -Gauß curvature KF (X,N) = KF := det (AFS), as introduced in [4].
Here, S : TwB → TwB is the shape operator defined by DX ◦ S := DN on
the tangent space TwB, and AF : TwB → TwB is the symmetric endomorphism
given by

V 7→ AF (V ) := (DX)−1(Fzz(X,N)DX(V )). (10)

For the special parametric integrands A(z) = |z| and E(y, z) = |z| + 〈Q(y), z〉
the curvature functions HF and KF reduce to the classical mean curvature H
and Gauß curvature K, respectively, since one has AA = AE = Id TwB . The first
author proved in [3] that the Euler equation for F can be written as

HF =
3∑
i=1

Fyizi(X,N), (11)

which shows that (9) may be regarded as an isoperimetric inequality for im-
mersed F-critical surfaces with bounded F -mean curvature. In the proof of
Theorem 1 we actually work with ‖HF ‖∞,B instead of ‖Fyz‖. Consequently,
(9) is also valid for immersions that are not necessarily F-critical but whose
F -mean curvature HF is a prescribed bounded function on B ⊂ IR2, we merely
have to replace the term ‖Fyz‖ in (8) by ‖HF ‖∞,B . Hence, the isoperimetric
inequality in [7, Theorem 1’] is a special case of Theorem 1 above in the context
of immersed surfaces.

3The factor 4π instead of 8 may be obtained using Wirtinger’s Inequality without any
smallness condition of the form (7), see e.g. [6, Ch.6.3].
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Finally, for parametric integrands F (y, z) = F (z) depending only on the
z-variable, F-critical immersions have vanishing F -mean curvature HF . By a
slight modification of the proof of Theorem 1 in Section 2 below, one obtains
the isoperimetric inequality presented in [4].

3. The regularity assumption on X (which also implies Γ ∈ C2,α) is due
to the use of the Gauß-Bonnet Theorem. It is not clear whether one can relax
the assumptions to X ∈ C0(B, IR3) ∩ C2(B, IR3) and to closed curves Γ that
are merely rectifiable as in the case of surfaces with bounded mean curvature.
In addition, it is an open question how to treat F-critical surfaces with branch
points for general parametric functionals.

We are going to prove an isoperimetric inequality slightly stronger than (9)
using the radius RΓ(X) of the smallest ball in IR3 containing the curve Γ, which
can be expressed as

RΓ(X) := inf
q∈IR3

‖X(.)− q‖∞,∂B . (12)

Theorem 2. Under the assumptions of Theorem 1 the following isoperimetric
inequality holds true:

A(X) ≤ RΓ(X) ·
2C(F )M2

M1

[∫
Γ
k ds− 2π

]
+
√

M2
M1
L(Γ)

2−RΓ(X)hF
. (13)

If the boundary curve Γ is long in comparison to the radius RΓ(X), then the
estimate (13) is better than (9), since it depends at most linearly on the length
L(Γ). Theorem 2 reduces to the linear isoperimetric inequality for minimal sur-
faces presented in [6, p. 388], because hF = C(F ) = 0 and M1 = M2 = 1 in
that case. Notice that Theorem 1 follows from Theorem 2 by (7) and a simple
geometric observation that leads to

RΓ(X) ≤ min{1, L(Γ)
4
}. (14)

If X minimizes the functional (1) within the class of surfaces bounded by Γ,
one merely needs to assume that the continuous parametric integrand F satisfies
the growth condition

m1|z| ≤ F (y, z) ≤ m2|z| (15)

for some constants 0 < m1 ≤ m2 < ∞ without further regularity assumptions
on F. Moreover, the minimizer X does not have to be immersed, and it suffices
to know that X is in the Sobolev class W 1,2(B, IR3), and that Γ is a rectifiable
closed Jordan curve.

Theorem 3. Let X ∈ W 1,2(B, IR3) be a minimizer for the parametric func-
tional (1) within the class of mappings Z ∈ W 1,2(B, IR3) such that the trace
Z|∂B on ∂B is a continuous, weakly monotonic mapping4 of ∂B onto a closed

4See [6, Ch. 4.2] for the notion of weakly monotonic mappings on the boundary.
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rectifiable Jordan curve Γ. Assume that the Lagrangian F of class C0(IR3× IR3)
satisfies (15). Then

A(X) ≤ m2

4πm1
L2(Γ). (16)

Remark. In this context no ellipticity condition is needed. In order to prove
the existence of a minimizer for (1), however, one has to assume convexity of F
in the second argument, see [9],[10].

To describe the strategy for proving Theorem 1 without getting involved with
the technical details which arise in the general case, let us give a short proof of
the isoperimetric inequality (6) for surfaces of bounded mean curvature. Such
surfaces satisfy the partial differential equations

∆X = H(X)Xu ∧Xv, (17)
|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 (18)

on the domain B, where H is a given bounded function on IR3. Using (18) and
integrating by parts we may write

A(X) = D(X) :=
1
2

∫
B

|∇X(w)|2 dw

≤ −1
2

∫
B

〈∆X(w), X(w)− q〉+
1
2

∫
∂B

|Xr(w)| · |X(1, θ)− q| dθ (19)

for any q ∈ IR3, where for w = (u, v) = reiθ ∈ B we have identified X(w) with
X(r, θ). We observe that there is a vector q∗ ∈ IR3 with

‖X(.)− q∗‖∞,∂B = RΓ(X) ≤ 1

by assumption (5). Inserting the equation (17) into (19) we infer for q = q∗

A(X) ≤ 1
2

∫
B

|H(X(w))||X(w)− q∗||Xu ∧Xv| dw

+
1
2
‖X(.)− q∗‖∞,∂BL(Γ)

≤ 1
2
hRΓ(X)A(X) +

1
2
RΓ(X)L(Γ),

where we have used that |Xθ| = |Xr| on ∂B by (18), and the fact that

‖X(.)− q∗‖∞,B ≤ ‖X(.)− q∗‖∞,∂B (20)

by an application of the maximum principle for (17). In fact, one can show
that the function f(w) := |X(w)−q∗|2 is a subsolution for the Laplace operator
under the smallness assumption (5), see [7, Lemma 1]. With (14) we arrive at
(6).

In Section 1 we introduce the tools necessary to take up the approach out-
lined above. Proposition 1.2 gives the inclusion principle generalizing (20), the
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conformality relations are suitably adapted to the general parametric integrand
F in (29), (30). The partial differential equation (17) will be replaced by a
differential inequality in Proposition 1.4 containing first derivatives of X and of
its normal N on the right-hand side. Therefore it is necessary to estimate the
Dirichlet energy D(N) of the normal of an F-critical immersion, which will be
done using the Gauß-Bonnet Theorem, see Lemma 1.5. Section 2 contains the
proof for Theorem 2 along the lines of the arguments described above, as well
as a short proof of Theorem 3.

1 Inclusion theorem and F -conformal parame-
ters

Let X : M ↪→ IR3 be an immersion of an orientable smooth manifold M of
dimension 2 into IR3, where X ∈ C2(M, IR3). We are going to work with the
induced metric

g(V,W ) := 〈DX(V ), DX(W )〉 for V,W ∈ TpM

and the globally well-defined normal mapping N : M → S2. Consider the
parametric variational integral

F(X) :=
∫
M

F (X,N) dA (21)

with an elliptic parametric Lagrangian F = F (y, z) ∈ C0(IR3×IR3)∩C3,α(IR3×
(IR3−{0})) satisfying the homogeneity condition (H).

As a starting point we give a generalization of the well-known identity
∆MX = HN, where ∆M = divMgradM is the Laplace-Beltrami operator asso-
ciated to M . To this end we introduce the differential operator

θF [ϕ] := divM (AF gradMϕ)− (divMAF )[ϕ] for ϕ ∈ C2(M),

where AF is defined in (10) of the introduction. In [3] the following result is
proved:

Theorem 1.1. Let X ∈ C2(M, IR3) be an immersion with normal N and F -
mean curvature HF . Then we have

θFX = HFN. (22)

Let us point out that according to the ellipticity condition (E) the eigenvalues
of Fzz(y, z) : z⊥ −→ z⊥ are bounded by M1 and M2 for |y| ≤ 1 in the case
of elliptic integrands as definied in (E). Obviously, θF is an elliptic operator,
if F is elliptic. This allows us to prove the following inclusion principle for F-
critical immersions of a smooth manifold M with boundary ∂M , where we set
M := M ∪ ∂M .
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Proposition 1.2. Let F be an elliptic integrand and X be an immersion of
class C2(M, IR3) ∩ C0(M, IR3) such that

X(M) ⊂ B1(0) ⊂ IR3, and ‖HF ‖∞,M < 2M1. (23)

Then X(∂M) ⊂ Br(p) for some p ∈ IR3 and some radius 0 < r ≤ 1, implies
X(M) ⊂ Br(p).

Proof. We apply a continuity method as in [7]. For σ ∈ [0, 1] we consider the
family of surfaces Xσ(w) := X(w)− σp and note that by our assumptions (23)
one has

‖Xσ(.)‖∞,∂M = ‖σ(X(.)− p) + (1− σ)X(.)‖∞,∂M ≤ 1. (24)

Using the chain rule we calculate on M

θFX
2
σ = 2

3∑
i=1

Xi
σdivM (AF gradM (Xi))

+2
3∑
i=1

g(gradM (Xi
σ), AF gradM (Xi))

−
3∑
i=1

Xi
σ(divMAF )(Xi)

= 2
3∑
i=1

Xi
σθFX

i + 2
3∑
i=1

g(gradM (Xi
σ), AF gradM (Xi))

=
(22)

2HF

3∑
i=1

Xi
σN

i + 2
3∑
i=1

g(gradM (Xi), AF gradM (Xi))

≥ −2‖HF ‖∞,M‖Xσ(.)‖∞,M + 4M1.

If the condition
‖HF ‖∞,M‖Xσ(.)‖∞,M ≤ 2M1 (25)

holds true for every σ ∈ [0, 1], then X2
σ and in particular X2

1 (w) = (X(w)− p)2

is a subsolution for the elliptic operator θF , which implies by the maximum
principle the statement of the proposition. The condition (25) is certainly valid
for each σ ∈ [0, 1]

if ‖HF ‖∞,M = 0.Hence by virtue of (23) we may assume that 0 < ‖HF ‖∞,M <
2M1. Then one has either

‖Xσ(.)‖∞,M >
2M1

‖HF ‖∞,M
=: c1 >

(23)
1, (26)

or (25) is true, which implies according to (24) and the maximum principle

‖Xσ(.)‖∞,M ≤ 1. (27)
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Note that the function σ 7→ ‖Xσ(.)‖∞,M is continuous on [0, 1], and that
‖X0(.)‖∞,M ≤ 1. If there were some σ1 ∈ (0, 1] with (26), i.e., with ‖Xσ1(.)‖∞,M
> c1 > 1, then by the intermediate value theorem there would be some param-
eter σ2 ∈ (0, σ1) with ‖Xσ2(.)‖∞,M = c1. But this would contradict our obser-
vation that for any σ ∈ [0, 1] either (26) or (27) must hold. Consequently, (26)
is not possible for any σ ∈ [0, 1], which proves (25). 2

From now on we focus on immersions X : B → IR3 of B ⊂ IR2 into IR3 of
class C2(B, IR3), where B is the open unit disk in IR2. In this case a special
parametrization simplifies the situation. We introduce so-called F -conformal
parameters defined via the metric

gF (V,W ) := g(A−1
F V,W ) for V,W ∈ TxB (28)

as follows. An immersion X(u, v) : B → IR3 is given in F -conformal parameters
w = (u, v), if gF is diagonalized, i.e.,

gF (w)
(
∂

∂u
,
∂

∂u

)
= gF (w)

(
∂

∂v
,
∂

∂v

)
= WF , (29)

gF (w)
(
∂

∂u
,
∂

∂v

)
= 0 for all w ∈ B . (30)

The following simple result from planar linear algebra proven in [4] turns out
to be useful for computing the conformal factor WF and for other calculations
in F -conformal parameters:

Lemma 1.3. Let V be a two-dimensional vector space with an inner product.
If ψ : V → V is a positive definite symmetric endomorphism and D90 : V → V
a rotation about an angle of 90o, then D90 ◦ ψ = (det ψ)ψ−1 ◦D90.

Remark. The lemma will be applied to the rotation D(w) : N(w)⊥ → N(w)⊥

defined by D(w)Z := N(w) ∧ Z for Z ∈ N(w)⊥.
Using the notation Φ(w) := Fzz(X(w), N(w)) : N(w)⊥ → N(w)⊥ the F -

conformality relations may be rewritten as

0 < WF =
〈
Xu,Φ−1Xu

〉
=
〈
Xv,Φ−1Xv

〉
,

0 =
〈
Xv,Φ−1Xu

〉
.

Thus we can write with Lemma 1.3

Xu = µ2 ((Φ−1Xv) ∧N) = µ2 Φ(det Φ)−1 (Xv ∧N), (31)
Xv = µ1 (N ∧ (Φ−1Xu)) = µ1 Φ(det Φ)−1 (N ∧Xu) (32)

for some numbers µ1, µ2 ∈ IR. Therefore one obtains for the conformal factor
WF

0 < WF =
〈
Φ−1Xv, Xv

〉
= µ2(det Φ)−1 〈N ∧Xu, Xv〉
= µ2(det Φ)−1W,
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where W := |Xu ∧ Xv|. Furthermore we have W N = Xu ∧ Xv = µ1WFN =
µ2WFN. Consequently, we get µ1 = µ2 = W/WF , and then

WF = W/
√

det Φ, µ1 = µ2 =
√

det Φ. (33)

The following calculation will lead to an analytic interpretation of the F -
mean curvature of an F -conformally parametrized surface X : B → IR3. By the
definition of the F -mean curvature we have

HF = −tr (AFS) = −gαβg(
∂

∂uα
, AFS

∂

∂uβ
)

= −gαβ 〈Xuα , Fzz(X,N)Nuβ 〉 .

The two identities N ∧ Xu = W g2αXuα , N ∧ Xv = −W g1αXuα are used to
obtain

HF =
(
〈N ∧Xv, Fzz(X,N)Nu〉 − 〈N ∧Xu, Fzz(X,N)Nv〉

)
/W

=
(
〈Φ (N ∧Xv), Nu〉 − 〈Φ (N ∧Xu), Nv〉

)
/W

=
(32)(31)

−
√

det Φ
(
〈Xu, Nu〉+ 〈Xv, Nv〉

)
/W

=
(33)

〈∆X,N〉 /WF . (34)

Thus we have found that the normal component of ∆X is given by HFWFN, if
X is an immersion in F -conformal parameters.

For technical reasons we introduce the linear mapping

l(y, z) :=
Fzz(y, z)√

det Fzz(y, z)|z⊥
+

z

|z|
⊗ z

|z|
, (35)

where y ∈ IR3, z ∈ IR3 − {0}. Note that we can rewrite (31), (32) as

Xu = l(X,N)(Xv ∧N),
Xv = l(X,N)(N ∧Xu),

since the wedge products on the right-hand side are tangential vectors in N⊥.
Differentiating these equations we arrive at

∆X = (l(X,N))u (Xv ∧N) + (l(X,N))v (N ∧Xu)
+ l(X,N)(Xv ∧Nu +Nv ∧Xu). (36)

The tangential part of ∆X may be estimated by

|(∆X)tan| ≤ |(l(X,N))u (Xv ∧N) + (l(X,N))v (N ∧Xu)|,

whereas the normal part, according to (34), is given by

|(∆X)nor| = | 〈∆X,N〉 | = |HF |WF . (37)
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A simple application of the chain rule leads to an a priori estimate of ∆X:

|∆X| ≤ 2‖ly‖|Xu||Xv|+ ‖lz‖(|Xu||Nv|+ |Xv||Nu|)
+ |HF |WF . (38)

Remark. Immersed surfaces of bounded mean curvatureH may be considered
as critical points of the parametric functional with the integrand E(y, z) defined
in (4) in the introduction. Note that the F -conformality relations (29), (30)
reduce to the classical conformality relations (18) mentioned in the introduction,
since AF = IdTwB in that case. Moreover, (l(X,N))u = (l(X,N))v = 0 and
(36) together with (34) reduce to the well-known differential equation (17) given
in the introduction.

Let us summarize (34) and (38) in

Proposition 1.4. Let X : B → IR3 be an F -conformally parametrized immer-
sion of class C2(B, IR3). Then

(i) 〈∆X,N〉 = HFWF .

(ii) |∆X| ≤ Cy(F )|Xu||Xv|+ Cz(F )(|Xu||Nv|+ |Xv||Nu|) + |HF |WF ,

where Cy, Cz are constants depending only on the integrand F.

Note that Cy, Cz can be estimated from above in terms of ‖F‖
C3(B1(0)×S2)

and

M1, if X(B) ⊂ B1(0) .

The theorem of Cayley–Hamilton applied to the endomorphismAFS : TwB →
TwB leads to the algebraic relation

SAFS +KFA
−1
F +HFS = 0. (39)

This gives us a gradient estimate for the normal N :

|∇N |2 ≤ 1
M1

[
〈ΦNu, Nu〉+ 〈ΦNv, Nv〉

]
=

1
M1

[
g(SAFS

(
∂

∂u

)
,
∂

∂u
) + g(SAFS

(
∂

∂v

)
,
∂

∂v
)
]

=
(39)

−1
M1

[
HF {〈DX ◦ S

(
∂

∂u

)
, DX

(
∂

∂u

)
〉+ 〈DX ◦ S

(
∂

∂v

)
, DX

(
∂

∂v

)
〉}

+KF {g(A−1
F

(
∂

∂u

)
,
∂

∂u
) + g(A−1

F

(
∂

∂v

)
,
∂

∂v
)}
]

= − 1
M1

[
HF {〈Nu, Xu〉+ 〈Nv, Xv〉}

+KF {gF (
∂

∂u
,
∂

∂u
) + gF (

∂

∂v
,
∂

∂v
)}
]

=
(29)

WF

M1

[
H2
F − 2KF

]
, (40)
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where we have used (i) of Proposition 1.4. Now we are in the position to deduce
a geometric estimate for the Dirichlet energy

D(N) :=
1
2

∫
B

|∇N(w)|2 dw

of the normal N of an F -conformal immersion X.

Lemma 1.5. The normal N of an F -conformal immersion X ∈ C2(B, IR3)
with X(B) ⊂ B1(0) satisfies

D(N) ≤ M2

M1

[∫
Γ

κg ds− 2π
]

+
M2

2M3
1

∫
X

H2
F dA. (41)

Proof. We may write

KF = det (AFS) = det Φ det S = K det Φ. (42)

From (33), (40), and the ellipticity condition (E) we infer

M1

M2
|∇N |2 ≤

(40)

WF

(det Φ)1/2

[
H2
F − 2KF

]
=

(33),(42)

W

det Φ
H2
F − 2KW

≤ W

M2
1

H2
F − 2KW .

The estimate (41) follows now by integrating this inequality over the domain B
and applying the Gauß-Bonnet Theorem. 2

2 Proofs of the main results

Proof of Theorem 2 . Since (9) is a purely geometric estimate, we may assume
that X is given in F -conformal parameters. If this is not the case one may
apply the uniformization theorem in a version proved by Sauvigny [11, Thm. 2]
to the C1,α-metric (28), or apply our argument in [4, p. 94] to find a positively
oriented diffeomorphism w : B → B of class C2,α(B, IR2), such that X ◦ w−1 ∈
C2,α(B, IR3) is F -conformal. Integrating by parts we may estimate the Dirichlet
energy of an F -conformal immersion for any q ∈ IR3 as

D(X) =
1
2

∫
B

〈DX(w), D(X(w)− q)〉 dw

≤ 1
2

∫
B

|∆X(w)||X(w)− q| dw

+
1
2

∫
∂B

|Xr(1, θ)||X(1, θ)− q| dθ,

11



where for w = (u, v) = r eiθ ∈ B we have identified X(w) and X(r, θ). Using
Proposition 1.4 (ii) and Lemma 1.5 we obtain

D(X) ≤ 1
4
Cy(F )

∫
B

|∇X(w)|2|X(w)− q| dw

+
1
2
Cz(F )

∫
B

[
|Xu(w)||Nv(w)|+ |Xv(w)||Nu(w)|

]
· |X(w)− q| dw

+
1
2

∫
B

|HF (X(w), N(w))||X(w)− q|WF (w) dw

+
1
2

∫
∂B

|Xr(1, θ)||X(1, θ)− q| dθ

≤
(33)

[Cy(F )
2

+
Cz(F )

2
+
‖HF ‖∞,B

2M1

]
‖X − q‖∞,B D(X)

+
Cz(F )

2
‖X − q‖∞,B D(N) +

1
2

∫
∂B

|Xr(1, θ)||X(1, θ)− q| dθ

≤
(41)

[Cy(F )
2

+
Cz(F )

2
+
‖HF ‖∞,B

2M1
+ Cz(F )

M2

4M3
1

‖HF ‖2∞,B
]
‖X − q‖∞,B D(X)

+
Cz(F )

2
‖X − q‖∞,B

M2

M1

[∫
Γ

κg ds− 2π
]

+
1
2

∫
∂B

|Xr(1, θ)||X(1, θ)− q| dθ .

Defining

C(F ) := Cy(F ) + Cz(F )
(
1 +

M2

2M3
1

)
,

we insert the Euler equation (11) to arrive at

D(X) ≤ 1
2

[
C(F )(1 + ‖Fyz‖2) +

‖Fyz‖
M1

]
‖X − q‖∞,B D(X)

+ ‖X − q‖∞,B C(F )
M2

M1

[∫
Γ

κg ds− 2π
]

(43)

+
1
2
‖X − q‖∞,∂B

√
M2

M1
L(Γ),

for any q ∈ IR3, where we have used the ellipticity condition (E) and the con-
formality relations (29) and (30) in polar coordinates for the boundary integral,
i.e. for |w| = r = 1:

|Xr|2 ≤M2

〈
Xr,Φ−1Xr

〉
= M2

〈
Xθ,Φ−1Xθ

〉
≤ M2

M1
|Xθ|2 .

Note that C(F ) can be estimated from above in terms of ‖F‖
C3(B1(0)×S2)

and
M1. We notice that by assumption (7) there is a vector q∗ ∈ IR3, such that

‖X(.)− q∗‖∞,∂B = RΓ(X) ≤ 1,

12



where RΓ(X) is defined in (12) in the introduction. By (7) and (8) we may
apply the inclusion principle Proposition 1.2 to conclude

‖X(.)− q∗‖∞,B ≤ RΓ(X).

These observations together with (43) for q = q∗ lead to the desired result, since
then we may write

D(X) ≤ RΓ(X) ·
2C(F )M2

M1

[∫
Γ
κg ds− 2π

]
+
√

M2
M1
L(Γ)

2−RΓ(X)
[
C(F )(1 + ‖Fyz‖2) + ‖Fyz‖

M1

] .
2

Proof of Theorem 3 . Let Y be a disk-type minimal surface bounded by
the curve Γ. Then the classical isoperimetric inequality (3) and the growth
condition (15) imply that for the minimizer X we can conclude

m1A(X) ≤ F(X) ≤ F(Y ) ≤ m2A(Y ) ≤ m2

4π
L2(Γ),

which proves the result. 2

Remark. Using an isoperimetric inequality for harmonic vector functions
due to Morse and Tompkins, see e.g. [5, pp. 135–138], one may use a similar
comparison argument to prove a local version of (16) for minimizers:

AΩ(X) :=
∫

Ω

|Xu ∧Xv| dudv ≤
m2

4m1
L2(X(∂Ω))

for all simply connected subdomains Ω ⊂ B whose boundary is piecewise
smooth. In fact, one uses the comparison surface

Z :=

{
Y on Ω,
X on B − Ω,

where Y ∈ C0(Ω, IR3) ∩ C2(Ω, IR3) satisfies ∆Y = 0 on Ω, and X − Y ∈
W 1,2

0 (Ω, IR3).

References

[1] Barbosa J.L., do Carmo M., A proof of a general isoperimetric inequality
for surfaces. Math. Z. 162, no. 3, 245–261 (1978).
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