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On the conver gence of the combination
technique

Michael Griebel and Helmut Harbrecht

Abstract Sparse tensor product spaces provide an efficient tool ¢oadize higher
dimensional operator equations. The direct Galerkin netthaguch ansatz spaces
may employ hierarchical bases, interpolets, wavelets diileuel frames. Besides,
an alternative approach is provided by the so-called coatioin technique. It prop-
erly combines the Galerkin solutions of the underlying peabon certain full (but
small) tensor product spaces. So far, however, the combmggchnique has been
analyzed only for special model problems. In the presenépayge provide now the
analysis of the combination technique for quite generataipe equations in sparse
tensor product spaces. We prove that the combination tgalamroduces the same
order of convergence as the Galerkin approximation witheesto the sparse ten-
sor product space. Furthermore, the order of the cost catityle the same as for
the Galerkin approach in the sparse tensor product spaceh@aretical findings
are validated by numerical experiments.

1 Introduction

The discretization in sparse tensor product spaces yi#fldeat numerical methods
to solve higher dimensional operator equations. Neverfiseh Galerkin discretiza-
tion in these sparse tensor product spaces requires Hiaarbases, interpolets,
wavelets, multilevel frames, or other types of multilewstems [9, 12, 18] which

make a direct Galerkin discretization in sparse tensoryrbspaces quite involved
and cumbersome in practical applications. To avoid theseeisof the Galerkin dis-
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cretization, thecombination techniquias been introduced in [14]. There, only the
Galerkin discretizations and solutions in appropriatélgsen, full, but small, tensor
product spaces need to be computed and combined.

In [8, 16, 19], it has been shown that, in the special case efaipr equations
which involve a tensor product operator, the approximgpiamduced by the combi-
nation technique indeed coincides exactly with the Gateskilution in the sparse
tensor product space. However, for non-tensor productadges, this is no longer
the case. Nevertheless, it is observed in practice thatahe oorder of approxi-
mation error is achieved. But theoretical convergencedt®ave only available for
specific applications, see for example [3, 14, 21, 22, 23, [lofeover, a general
proof of convergence is so far still missing for the comhimatechnique.

In the present paper, we prove optimal convergence rateleo€@ambination
technique for elliptic operators acting on arbitrary Getfiiples. The convergence
analysis is based on two compact lemmas (Lemma 1 and Lemma&i2h Wwave
basically been proven in [22, 25]. In contrast to these papeesides consider-
ing abstract Gelfant triples, we deal here with the comlmmatechnique for the
so-calledgeneralized sparse tensor product spaadsch have been introduced in
[10]. Lemma 1 involves a special stability condition for {Balerkin projection (cf.
(18)) which, however, holds for certain regularity assuons on the operator under
consideration (see Remark 1).

To keep the notation and the proofs simple, we restrict dvgseto the case
of operator equations which are defined on a two-fold prodochainQ; x Q.
However, we allow the domain®; ¢ R™ andQ, c R™ to be of different spatial
dimensions. Our proofs can be generalized without furtliféicidlties to arbitrary
L-fold product domain®1 x Q, x --- x Q| by employing the techniques from [11]
and [25].

The remainder of this paper is organized as follows. We fiestgnt the operator
equations under consideration in Section 2. Then, in Se&jave specify the re-
guirements of the multiscale hierarchies on each indivisuladomain. In Section 4,
we define the generalized sparse tensor product spacescalidtheir basic prop-
erties. The combination technique is introduced in Sechi@nd its convergence
is proven in Section 6. Section 7 is dedicated to numericaégrents. They are
in good agreement with the presented theory. Finally, iniSed, we give some
concluding remarks.

Throughout this paper, the notion “essential” in the cont#xcomplexity es-
timates means “up to logarithmic terms”. Moreover, to avitid repeated use of
generic but unspecified constants, we signifythy, D thatC is bounded by a mul-
tiple of D independently of parameters whi€handD may depend on. Obviously,
C 2 Dis defined a® < C, andC ~ D asC < D andC =z D.
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2 Operator equations

We consider two sufficiently smooth, bounded domdhse R™ and Q, € R",
whereng, n, € N. Moreover, on the product domai®y x Q,, let the Hilbert space
2 be given such that

HCL2(Qyx Q) A

forms a Gelfand triple. Thus, the inner product
(UV) 1200, < 0y) ::/ / u(x,y)v(x,y)dxdy
Q1/Q;

in L2(Q1 x Q) can continuously be extended.t& x .7#". For sake of simplicity
of presentation, we Writgu,V), 2 g, « o,) @lso in the case € 7 andv € 7"

Now, letA: 27 — 2’ denote a differential or pseudo-differential operatois It
assumed that it maps the Hilbert spa¢econtinuously and bijectively onto its dual
A e,

[IAU|| sz ~ |Jul| s~ for all u e 7.

The Hilbert space’” is thus theenergy spacef the operator under consideration.
For the sake of simplicity, we further assume thAas s7-elliptic. Consequently,
the resulting bilinear form

a(u,v) := (AUV) 2., xq,) - ' X H — R

is continuous
a(u,V) < [lull#|IV]~ forall uv e 7
and elliptic
a(u,u) > ||ul|%, forallue 7.
In the following, for givenf € 2#’, we want to efficiently solve the operator
equationAu= f or, equivalently, the variational formulation:
findu e 7 such thag(u,v) = (f,v) 2.0, «q,) forallve 7. (1)

Of course, since we like to focus on conformal Galerkin ditzations, we should
tacitly assume that, for all;, j» > 0, the tensor produclj(ll> ®Vj(22) of the ansatz

spaceS/-<1) andv!? is contained in the energy spa¢&. Moreover, for the solution

u e 7 of (1), we will need a stronger regularity to hold for obtaigidecent con-
vergence rates. Therefore, fars, > 0, we introduce the following Sobolev spaces
of dominant mixed derivatives with respect to the undedyspace”’

09+B
|
ogal

%msilﬁ:_{fe%:‘

< oo forall |a| < s and|f] gsz}.

We shall illustrate our setting by the following specific exaes.
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Example 1A first simple example is the operatar. L?(Q; x Q) — L?(Q1 x Q3)
which underlies the bilinear form

auv) = [ [ atxypuixyvicy) ey,
/0,
where the coefficient functioa satisfies
O<a<a(xy)<aforall (x,y) € Q1 x Q. 2

Here, it holdsZ = LZ(Ql x Q7). Moreover, our space%”rﬁilfz of assumed stronger
regularity coincide with the standard Sobolev spaces ofidant mixed derivatives,
ie.,

HLZ = HAZ (Qq x Qo) 1= H(Qq) @ H2(Qy).

mix mix

Example 2 Stationary heat conduction in the product dom@nx Q yields the
bilinear form

auv) = [ [ a0y Bixy) + D06y Dxy)) dedy.

If the coefficienta satisfies (2), then the associated oper#tas known to be
continuous and elliptic with respect to the spaté = H&(Ql x Q). Moreover,

our spaces#* of assumed stronger regularity now coincide wit{s5% =

HE(Q1 % Qo) NHE2(Q1 x Q) NHEZTH Q) % Qy).

mix mix

Example 3Another example appears in two-scale homogenization. [dinfg ([4])
gives raise to the product of the macroscopic physical dofgiand the periodic
microscopic domai2;, of the cell problem, see [20]. Then, for the first order cor-
rector, one arrives at the bilinear form

a(u,v) :/QI/QZa(x,y)Dyu(x,y)Dyv(x,y)dxdy.

The underlying operatof is continuous and elliptic as a operator in the related
energy space? = L?(Q1) ® Hol(Qz) provided that the coefficient satisfies again
(2). Furthermore, our spac%rﬁilx’32 of assumed stronger regularity coincide with

AP = (L2(Q1) @ HE(Q2)) NHEZ (01 x 2).

mix mix

3 Approximation on the individual subdomains

On each domai®;, we consider a nested sequence

Véi) CVl(i) c... CVj(i) C.. C LZ(Qi) 3

of finite dimensional spaces
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VJ<') = spar{d)j(ff( ke Af')}

(the setAj(i) denotes a suitable index set) of piecewise polynomial arfgattions,
such that dinvj(i) ~ 2" and

2 QI) _ U VJ(')

jeNg

We will use the spaceaé ) for the approximation of functions. To this end, we
assume that the apprOX|mat|on property

inf [u—villnaga) Sh5 ullisa), ueH(Q), (4)
Vi €V<)

holds forg < y, g < s<rj uniformly in j. Here we sehj := 271, i.e.,hj corresponds
to the width of the mesh associated with the subspﬁf@eon Qi. The parameter
yi > 0 refers to theegularity of the functions which are contained\i‘lﬁ'), ie.,

yi :=sup{se R:ij C H3(Qi)}.

The integer; > O refers to thepolynomial exactnesshat is the maximal order of
polynomials which are locally contained in the spk{é'é.

Now, IetQE (L2(Q) —>V 1) denote the.2(Q;)-orthogonal projection onto the
finite element spac\{j( ). Due to the orthogonality, we ha\(@gn)* = QE”. More-

over, our regularity assumptions on the ansatz spﬂﬁéﬁnply the continuity of

the related projections relative to the Sobolev spgd8€Q;) for all |g| < y, i.e., it
holds

19 ullye gy < Il el < . (5)
uniformly in j > O provided thati € HA(Q;).
By settmgQ 1 =0, we can define for alj > 0 the complementary spaces

w = (@) —Qf @ c vy,

They satisfy _ _ _
v =vliew? v nw = (o},
which recursively yields

;o
vy =pw. 6)
j=0

A given functionf € H9(;), where|qg| < y, admits the unique multiscale de-
composition
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f= Z) f with fj == (Q — Q")) f ew".
=
One now has the well-known norm equivalence
) X . . 2
1 10(ay ~ zozzlqu(Qﬁ” ~ Q) ff20y ol <w,
J:

see [5]. Finally, for anyf € HS(Q;) and|q| < ¥, the approximation property (4)
induces the estimate

|| (QEU - Q?zl) f ||Hq((2i) S 24(57@” f ”HS(Qi)v g<s<ri.

4 Generalized sparsetensor product spaces

The canonical approximation method in the Hilbert spaces the approximation
in full tensor product spacés

VJ/O' ®VJ0 - @
j10<d
j2/0<d

Here,o > Ois a given parameter which can be tuned to optimize the cosplexity.
There are 31/9.2)%9 degrees of freedom in the spal#(), ®VJ(§). Moreover, for
f e A0 (Q1 % Qo) N AN (Qux Q2) andfy = (QF), © Q) f V7! @ViZ), an
error estimate of the type
[ = follw S 27MNHORT a0 05 (7)

holds for all 0< s; < p; and 0< s, < p,. Note that the upper boungs andp, are
the largest values such th#?.% © H/1'2(Q; x Q,) and.#9 € HIL2(Qy x Q,),
respectively.

Alternatively, based on the multiscale decompositione(6@ach individual sub-
domain, one can define the so-callgeheralized sparse tensor product spasee
[1] and [10],

97 1 2 1 2
We @ wiewPo S vPev® @
j10+j2/0< j10+])2/0=J

Thus, a functiornf € .77 is represented by the Boolean sum

1 Here and in the following, the summation limits are in gehaemnatural numbers and must of
course be rounded properly. We leave this to the reader id aumbersome floor/ceil-notations.
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fy:= )3 AR feVf (9)

j10+]2/0<

where, for allj1, j» > 0, the detail projectionAJ-(‘z,j2 are given by

: 1 1 2 2
a7 = Q) - Q) © @ - Q). 10)
Here, we use the conventi@ﬁl{ =0 andQ(ﬂ := 0. For further detail on sparse
grids we refer the reader to the survey [1] and the referethegsin.

The dimension of the generalized sparse tensor produceffacs essentially
equal to the dimension of the finest univariate finite elenspaces which enter its

construction, i.e., it is essentially equal to the value eb(@dimVJ(/l()J_,dimVJ(g)}.
Nevertheless, by considering smoothness in terms of migdoI8v spaces, its ap-
proximation power is essentially the same as in the fullaepsoduct space. To be

precise, we have
Theorem 1 ([10]). The generalized sparse tensor product spﬁﬁmossesses

dim\//\U 2Jmax{n1/or,n20}7 if nl/a +£Ny0,
J 2Imo ] ifny/o =m0,

degrees of freedom. Moreover, for a given functian.#-%> and its >-orthonormal

projectioanJ € \7f, defined by(9), where0 < s; < p; and0 < s, < pg, there holds
the error estimate

R 2—-Imin{s1/0.50} || § 5, ifsi/o g,
lf=fll,, < Moz, 207
AN 27 s, if$1/0 = 50.

The optimal choice of the parametaerhas been discussed in [10]. It turns out
that the best cost complexity rate among all possible vatifies, s, is obtained
for the choiceo = /n1/ny. This choice induces an equilibration of the degrees of

freedom in the extremal spac\'éggj andVJ%).

We shall consider the Galerkin discretization of (1) in treneralized sparse
tensor product spadé’, that is we want to

find uy € V¥ such thai(u;,vy) = (f,Va)12(0,x 0, forall vy € Vi (11)

In view of Theorem 1, we arrive at the following error estimdtie to Céa’s lemma.
Corollary 1. The Galerkin solutiorfl11) satisfies the error estimate

27IMINR/ 0K}y s, i S1/0# S0,

U—Wllpe Slu=0sllpr << . ,
| I <1 | {2 /0|l 12 ifs1/0 = %0,

forall 0 <s; < pyand0 < s, < py provided that us JZ55%2(Qq x Qy).

mix
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Nevertheless, for the discretization of (11), hierarcHieses, interpolets, wavelets,
multilevel frames, or other types of multilevel systemsq112, 13, 17, 18, 24, 26]
are required which make a direct Galerkin discretizatiosparse tensor product
spaces quite involved and cumbersome in practical apitat

5 Combination technique

The combination technique is a different approach for ttserétization in sparse
tensor product spaces. It avoids the explicit need of hibieal bases, interpolets,
wavelets or frames for the discretization of (11). In facte@nly has to compute
the Galerkin solutions with respect to certain full tensaduct space‘s’j(ll) ®Vj(22)
and to appropriately combine them afterwords. The relat@iéi®in solutionsij, j,
are given by

(2
2

finduj, j, € Vj(l) V] ) such that

1

D

I o . (2
a(Ujy, o, Visiz) = (F.Vigjo) 20, x 0y forall vy, j, € Vi @V,

, -
This introduces the Galerkin projection

Pii, : H —)VJ-(ll> ®V-(2)

o o Pis,jU = Ujy,j,

which especially satisfies the Galerkin orthogonality
1 2
a(u—Pj, j,u,vj,.j,) =0forallvj, j, € Vj(1 ) ®Vj(2>.
The Galerkin projectio®;, j, is well defined for allj, j» > 0 due to the elliptic-
ity of the bilinear forma(-,-). Moreover, as in (7), we conclude the error estimate

p . < — (oD (2 < 9—min{jis,j2%}
Hu PJl,Jzu”ifN ”u (le ®le )u”%NZ HUH%S}X’OH%’O-’SQ

mix

forall 0 < s; < py and 0< s, < p, provided that € Z5L° N 202 In particular,
for fixed j; > 0 andj, — o, we obtain the Galerkin projectid?), . onto the space

Vi 0 1= (QE? ® 1) C . It satisfies the error estimate
1 »
lu=Pjy ot < lu— QY@ Nullr S 275 u] 50 (12)
for all 0 < 51 < pz. Likewise, for fixedj, > 0 andj; — o, we obtain the Galerkin
projectionP,, j, onto the spac¥., j, := (I ®Q§§>)% C . Analogously to (12),

we find 5 .
lu=Pa joul e < flu— (1@ Q2 )ullr S 2722 ul] o5, (13)

forall0 < s < po.
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With the help of the Galerkin projections, we can define
P .
A9 = (Piviz = Pii-v1j2 = Pijp-1+Pip-1j-2)u (14)

where we especially s&, _1:=0,P_1j, :=0, andP_; ;1 := 0. Then, the combi-
nation technique is expressed as the Boolean sum (cf. [§) 7, 8

= 5 Aju=u- Y 4fu (15)
j10+])2/0<d j10+]2/0>J
Straightforward calculation shows
e
1= (P po-j107 —Piy-1130-j,02) U (16)
j1=0
if j1 < jo02 and
[Ja]
U= 3 (Pujo-iyorliz = Plajo—izo?)j-L) (17)
j2=0

if j1> jo02. A visualization of the formula (17) is found in Fig. 1.

| 2

Jo'\

QD
/
/iS5
/
0E
/

D
ON

D

oD |

@\@ J1
J/o

Fig. 1 The combination technique W’ combines all the indicated solutioRg j,u with positive
sign (“@”) and negative sign (5").

>
T

Our goal is now to show that the erriou — U;|| ,» converges as good as the error
of the true sparse tensor product Galerkin solution givedarollary (1).
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6 Proof of Convergence

To prove the desired error estimate for the combinationrtiegle (16) and (17),
respectively, we shall prove first the following two helpkeinmata.

Lemmal. Forall 0< s < p;and0< s < py, it holds
[(Piz.jz = P12 ullor S 2722 Ju]l s 0,
) mix
H(Ph,iz - Pil,jzfl)u”ﬁ” < 27]252”“”%‘33527
mix
provided that u is sufficiently smooth and provided that tlaée@in projection sat-
isfies
Po,ipull si0 S Ul si0,  [|Pipoeobllos SUllos,- 18
[1Po ol 10 < Ul 0 [Pl 00 < Ul 00 (18)

Proof. We shall prove only the first estimate, the second one follomsmplete
analogy. To this end, we split

1(Pisjz = Pis—vip)ulloz < 1l (Pi iz = P jp Jull g+ (Pes j, = Py 1,5, Ul -
Due toVj,-1,j,,Vj..j, C Ve,j,, the associated Galerkin projections satisfy the identi-
tiesP;j, j, = Pj;,j,Pw.j, andPj, 1 j, = Pj;—1,j,Pw,j,. Hence, we obtain

I(Piv.jz = Pis-1.j2) Ul < [ (Pig.jp = 1P, jpull e + ([ (1= Py —1,j5) P jo Ul e
By employing now the fact that the Galerkin projectid?s_, j,u andPj, j,u are
quasi-optimal, i.e.||(I — Pj_j,)ullz S ||(1 — QE? ®Q§§))u||jf and likewise for
Pj,—1,j,U, we arrive at
[(Pis.jz = Pii—1,j,)ull
1 2 1 2
S QY @ Q= DPwjpull o+ 110 = Q1 © Q2 )Pyl -

T_he combination ot_gﬁ) @QE? = (Qﬁ) @1)(1 ®Q§§)) and(! ®QE?)PM,]2 =Py j,
yields the operator identity

1 2 1

(le) ® Q§2>)P°°,J'2 - (Q§1> ® I)P‘X’yizv
and likewise W . W
(Qj171 & (g12 )Poo’jz = (Q1'171 ® I)Poo,jz.
Hence, we conclude
[ (Piz.j2 = Pja—1,j,)ull 2
1 1
S0 = Q) @ 1)Pajzull, +11(0 = QL) @ DPs U,

S 27]151||P°°,12U||J4f;i1;0-
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Using the condition (18) implies finally the desired estimat |

Remark 1Condition (18) holds ifA: s# — .27 is also continuous and bijective as
a mappingA: %ﬁrﬁﬁ;o — (%”)fﬁi’f forall 0 < 53 < p; and also as as a mappiAg

A — ()22 for all 0 < s, < py, respectively. Then, in view of the continuity

(5) of the projectionsgﬁ> andQE?, the Galerkin projections
-1
Pojy = (19 Q2)AI1 © QD)) (1 0 QP) 1 A = Vo j, € 2,
1 1 1, (1
P = (QYoDAQPY @ 1) QP @1): o = Ve C 2,

are also continuous as mappings

. $2,0 . $2,0 .. 0,51 : 0,51
P°°,Jz ' t%ﬂmix _>V°°712 - t%ﬂmix ’ P117°° ' t%ﬂmix _>V117°° - t%ﬂmix ’

which implies (18).

Lemma 2. If u € 4%, then it holds

|| (AJ'F;-,JZ o AJ'?-,Jz)uHif N 27]151*1252HUH%“§1>252

forall0<s < prand0< s < py WhereAj?)j2 is given by(10) andAJ-"Lj2 is given
by (14), respectively.

Proof. Due tonl,jz(QE? ®Q§§)) = QE? ®Q§§) for all jq, j» > 0, we obtain

1 2 1 2
Af =B85, =P — QY @ Q) = Py 1,0 - Q)Y 12 Q)Y)
(1) (2) (1) (2) (19)
- Pil,jzfl(l - le ® szfl) + Plfl,j—l(I - le—l & sz—l)'

We shall now make use of the identity
- #Qf =191-Q) 9 Q]
2 1 1 2
=1o(-Q)+1-Q)el-(1-q))e(-qp).

Inserting this identity into (19) and reordering the terredds
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Af =82 5, = (P, —Pi1p) (12 (1- Q)
= (Pjy,jp-1—Pj-1jo- 1)(|®(|—Q12 1)

+(Piyis — Pinip ) (1 - Q) @1)
~ (P, — Pi1ip-0) (1 - Q) @1)
)
+ P2 (1= Qfl) Do -qQ?))
+Pipip1 (1 - Q) @ 1-Q12 )
—Pi—1j- 1(( ,1) D)@ QE? 1)

The combination of the error estimates

~Pp(1-Q) e (1 -Qf)

1(Piy.j, = Piy—1,j,)ull e S 27%Jul] 2510

IPut =Pl 27200l o0,
cf. Lemma 1, and

100 =@y 50 £ 272 ]y,

l(t-Qhe wuoﬁwzﬂwwgﬂ%
leads to

H(le,iz - Pirlxl'z)(l ® (- sz )quf S2 o J252||u||jg75152a

) (20)
(Piy.iz = Pivio-1) (1 = Q) @ ul| L, S 27 7022 u]| g
Similarly, from the continuity
IPiy.j2Ulloe S llulle
and
1
(0 -Q)y o 0 -Q)ul,, 2o = ul] oy,
we deduce
1
"leajZ((l —le))@)(l—le )uHJf 2" o ]ZSQHUH (21)

With (20) and (21) at hand, we can estimate each of the eifflerelnt terms which
yields the desired error estimate
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H (AJ'PLJ'z o Aﬁ;iz)uH% N 2*]151*1252||u||fn5“1)232,

Now, we arrive at our main result which proves optimal cogeeice rates.

Theorem 2. The solution(16) and (17), respectively, of the combination technique
satisfies the error estimate

27Jmin{51/07820}||u||%s.1,52, if s1/0 # 0,
“mix

2*351/0\/j||u||%r}x,s2, ifs;/0 =0,

[u=Tslle < {

forall 0 < s; < p; and0 < s, < pz provided that us H22(Q; x Q).

mix

Proof. In view of (15), we have

U=l ={ ¥ 4 ;,u

j10+]j2/0>J

A
The Galerkin orthogonality implies the relation

2

P
) . AJLJzu
j10+]2/0>d

~ Z HAJ'PLJ'zuHif‘
o 110+])2/0>]

Thus, we arrive at

~ 2 2
u-wliZ s Y Ia2ul5+ Y @h Al
j10+]2/0> j104]2/0>J

We bound the first sum on the right hand side in complete agai@dl0] from
above by

Q 2 —2j1S1—2jo 2
D N oA D S Lo 2
j10+72/0>3 j10+j2/0>J
2—2Jmin{51/07520}||u||§f51,52, if s1/0 # 50,
< “Z“mix .
2—2Jsl/o\]”u|\2%sl,52, if s1/0 = s0.
mix

Likewise, with the help of Lemma 2, the second sum on the rigirtd side is
bounded from above by

P _ AQ 2 —2i151-2]2%2|4/|2
) . H(AllaJZ Ajl,jz)quf 'S ) Z 2 ’ ”u”ﬂnSuleQ
j10+]j2/0>d j10+]j2/0>d
2-2Jmin{s;/0.,50} ||U||§f?1~sza if s1/0 # 90,
“Tmix

<
~ ) 2729/9]||u)? s, if s1/0 =0,
%m

ix
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which, altogether, yields the desired error estimate. |

7 Numerical results

We now validate our theoretical findings by numerical experits. Specifically, we
will apply the combination technique for the three examplagh were mentioned
in Section 2. To this end, we consider the most simple caselooseQ; = Q, =
(0,1), i.e.,n; = ny = 1. The ansatz spacée.ﬁﬁl> ande(z) consist of continuous,
piecewise linear ansatz functions on an equidistant sigidivof the interval0, 1)
into 2 subintervals. This yields the polynomial exactnesses r, = 2. For the
sake of notational convenience, we et (0,1) x (0,1).

Example 1First, we solve the variational problem
find u € L2(0J) such thai(u,v) = ¢(v) for all v e L?(01)

where
a(uy) = | acy)uieyixy)dxy)

and _
()= [ 1oyvixy)docy). @22

The underlying operatadk is the multiplication operator

(AU)(xy) = a(x,y)u(x,y)

which is of the order 0. Hence, we have the energy sp#te- L?(C]) and the
related spaces of assumed stronger regularity/#fg® = H3:%(0)). If the mul-
tiplier a(x,y) is a smooth function, theA arbitrarily shifts through the Sobolev
scales which implies the condition (18) due to Remark 1.

Let the solutioru be a smooth function such that 5% for givens;, s, > 0,
which holds if the right hand sidé is sufficiently regular. Then, the best possible
approximation rate for the present discretization wittcpigise linear ansatz func-
tions is obtained fos; = ry = 2 ands; = rp = 2, i.e., forZ5L%2 — H22(00). Thus,
theregular sparse tensor product space

Gl _ &) @ _ &) )
Vi = EB ijl ®V\/Jz - Z le ®ij ) (23)
j1t+j2<d jit+12=Jd

(cf. (8)) is optimal for the discretization, see [10] for aaiked derivation. In partic-
ular, with Theorem 2, the combination technique yields tiereestimate

u—0 <477V|u :
lu=llizey £ 47Vl g2z

For our numerical tests, we choose
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a(xy) =1+ (x+y)%  f(xy)=axyuxy), uxy)=sinmx)sin(my).

The resulting convergence history is plotted as the redecimFig. 2. As can be
seen there, the convergence ratéJ, indicated by the dashed red line, is indeed
obtained in the numerical experiments.

Convergence rates

T T
10° | 1
_10°F 1
g
5]
c
8
< 107 1
£ 10
x
S
(=}
<
10°h 1
—oe— Example 1: o’=1
- — ~ Asymptotics 479342
10781 — Example 2: o’=1 |
-~ ~ Asymptotics 273512
I L

0 5 10 15
Discretization level J

Fig. 2 Convergence rates in case of the first and second example.

Example 2This example concerns the stationary heat conduction iddh@ain.
In its weak form, it is given by the variational problem

find u € H3 () such thag(u,v) = ¢(v) for all v e H3 (D)
where

a(u,v) = /D a(x,y){ % (x,y)g—\):(w) + g—;(x,y)g—\y/(x,y)} dx,y)

and/(v) asin (22). The underlying operatais the elliptic second order differential
operator

(AU)(x,y) = — diV(x,y) (a (X,y) |:|(x,y) u(x, Y))
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and maps the energy spag€ = H3(O) bijectively onto its dualz” = H-1(0).
Recall that now the spaces of assumed stronger regulaeityiﬁl);52 =H3(@O)Nn
HSLELS2 () RS2 (O,

mix mix
Since the domai] is convex, the second order boundary value problem un-
der consideration il?-regular, which implies thad : L2(0) — H3(O) NnHz(0O) is
also bijective. By interpolation arguments, we thus find ma,%”n},)? (%ﬂ’)#& is
continuous and bijective since

L2(0) ¢ ()0 cH YD) and HE(O) c 2=0 ¢ HE(D) NHa(D).

Likewise, A : ‘%ﬂn?l):([ (%ﬂ’)mlx is continuous and bijective. Hence, the condition
(18) holds again due to Remark 1 and Lemma 1 applies.

Again, the regular sparse tensor product space (23) is aptomthe present dis-
cretization with piecewise linear ansatz functions. Cqasatly, Theorem 2 implies
as the best possible convergence estimate

J
Ju=olhs o) £ 2 V3llhz ez o

provided thatu € H%&(D) HlZ(D). Here, we exploited thatz! — Hl(D)

mix mix
Hrf"i(D) NH2(0). Nevertheless, in general, we only have H2(C1) ¢ H () N
Hmlx( ). Thus, due t(b-l,i/,f’l/Z(D) N H1/2’3/2(D) C H?(O), one can only expect the

mix
reduced convergence rate
Ju=Tslluz ) 2772Vl
In our particular numerical computations, we use

a(xy) =1+ (x+y)% u(xy) = sin(rx)sin(my),

(%) = 2200y To(x y>+3—";1<x,y>3—§<x,y>—a(x,ymu(x,y).

Therefore, due to € H%&(D) N Hr}“f((D), we should observe the convergence rate
2-J/J. The computational approximation errors are plotted asbthe graph in

Figure 2. The dashed blue line correspondsth2J and clearly validates the pre-

dicted convergence rate. We even observe the sllghty et which can be

explained by the fact that the solutions even mHmIX(D), see [2] for the details.

Example 3We shall finally consider the variational problem
find u € L2(0,1) ® H3(0,1) such that(u,v) = £(v) for all v e L?(0,1) ® H3(0,1)

where ) 5
auy) = [ a(x,y>a—;<x,y>a—;<x,y>d<x,y>
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and/(v) is again given as in (22). The underlying operaias the elliptic differen-
tial operator

(AU)(x,y) = —(% <a(x,y>§yu<x,y>>.

Its energy space is#” = L2(0,1) @ H}(0,1) ¢ H2:L(D)) with dual.#” = L2(0,1) @

mix
H~1(0,1). Here, the spaces of assumed stronger regularity coinditie; S}XSQ =
(L2(0,1) ® H3(0,1)) NHZE2 (D).

mix
The operatoA shifts as a operator’>L%2 ™ — (#")%%2+ for arbitrarys;, s, >
0 provided that the coeffciertt is smooth enough. Thus, Theorem 2 holds and
predicts the best possible convergence estimate for owerlyly discretization
with piecewise linear ansatz functionaiifies in the spacéinz;if((D).
According to the theory presented in [10], the optimal cashplexity with re-
spect to the generalized sparse tensor product sﬁé’cobtained for the choice

oo ]

In order to be able to compare the convergence rates instétagl @ost complexities

for different choices obr, we have to consider the generalized sparse tensor product
spacea7j‘7, whereJ := gJ. Then, for all the above choices of, we essentially
expect the convergence rate

T < o/ w0
Hu uj”Hr('T)]’i])'((D)Nz HUHHéé(D) 2 HuHH%;(D)

while the degrees of freedom fif essentially scale like’29 ~ 27, This setting is
employed in our numerical tests, where we further set

a(x,y) =1+ (x+y)?% u(x,y) = sin(rx)sin(my),
da ou 0%u

f(X,y) = E(Xay)a_y(xvy) - a(xvy)a—yz(xvy)'

We apply the combination technique for the particular cesic

e 0 =1, which yields an equilibration of the unknowns in all théreral tensor

1 2
product spacé&&/j(1 ) ®V\6(7)j102,

e 0 =/2, which yields an equilibration of the approximation in thié extremal
tensor product spacmtj(ll) W2 and

J—j10%’
e 0 =,/3/2, which results in aequilibrated cost-benefit ratsee [1, 10] for the
details.

The computed approximation errors are found in Fig. 3, wileeered curve cor-
responds tar = 1, the black curve corresponds to= v/2, and the blue curve
corresponds t@ = \/VZ In the cases = 1 ando = /2, we achieve the pre-
dicted convergence rate 2which is indicated by the dashed black line. In the case
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Convergence rates

=
C)I

Approximation error
N

1080 Example 3: o’=1 |
—— Example 3: 0%=3/2
—o— Example 3: 0%=2
- - - Asymptotics 277 ' N
-4 N
10 I 1
0 5 10 15

Discretization level o J

Fig. 3 Convergence rates in case of the third example.

o = /2 the predicted convergence rate is only?J which is also confirmed by
Fig. 3.

8 Conclusion

In the present paper, we proved the convergence of the catdirtechnique in a
rather general set-up. Especially, we considered the amatibn technique in gen-
eralized sparse tensor product spaces. We restrictedi\eesdeere to the case of
two-fold tensor product domains. Nevertheless, all owlts€an straightforwardly
be extended to the case of generalizedld sparse tensor product spaces by apply-
ing the techniques from [11] and [25]. Then, of course, thastants hidden by the
“~" -notation will depend on the given dimensian
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