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Abstract
Quality-Diversity algorithms search for a set of diverse, high-per-

forming solutions to optimization problems, including reinforce-

ment learning problems. In the case of reinforcement learning prob-

lems, Quality-Diversity algorithms foster diversity by differentiat-

ing solutions using behaviour descriptors. We introduce a straight-

forward, powerful approach to generically characterise behaviour

using the so-called occupancy measure. Our approach avoids the

manual definition of behaviour descriptors and does not rely on

further black-box learning.

We investigate four established benchmark problems inspired by

robotics, concerning locomotion and maze navigation. To measure

the ability to overcome local optima we consider the number of

solved configurations and the maximum average score. The use

of the occupancy measure is competitive with problem-specific,

custom behaviour descriptors and superior to an established generic

behaviour descriptor. Our work contributes to the establishment of

MAP-Elites as a versatile, robust, out-of-the-box solver for complex

non-convex reinforcement learning scenarios.
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1 Introduction
There is not one optimal way to optimize complex non-convex prob-

lems as posed in reinforcement learning (RL). Quality-Diversity

(QD) [5] algorithms address the problem of non-convexity by ex-

ploring the solution space with an evolving, diverse population
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Figure 1: Sketch of the construction of a generic behaviour
descriptor by estimating the occupancy measure of a policy.
A policy rollout is interpreted as a distribution and added to
a niche in a MAP-Elites repertoire.

of high-performing solutions. To this end, QD algorithms require

a definition of both, the quality of a proposed solution as well as

the diversity of a population of solutions. The idea of quality is

implicit through the optimization target. Diversity, however, is hard

to define conceptually and practically. Carefully constructing the

definition of diversity is a prerequisite for using QD algorithms,

even if the desired result consists of only one optimal solution.

When tackling RL problems with QD, the expression of diversity

is determined by behaviour descriptors. They distil the observed

behaviour of a potential solution to an expression that fits into the

QD framework [1].

In this work, we examine ways to construct behaviour descrip-

tors. Originally they are hand-picked [11] based on a practitioner’s

understanding of a given problem, but efforts have been made to

remove this aspect of supervision through broader setups [20] and

unsupervised learning [9]. We introduce a novel strategy to foster

diversity in a generic way using the occupancy measure from RL

as a behaviour descriptor for a proposed solution. This is done by

binning the behaviour space and noting the distribution of visi-

tations of these bins during an episode. This distribution is then

treated as a high-dimensional behaviour descriptor and added to

an appropriate MAP-Elites repertoire, see fig. 1.

QD algorithms are known to overcome exploration challenges

which often stump RL algorithms since gradient-based methods

become ensnared in local optima [3]. In the tasks we present, these

optima manifest as dead ends or traps. We will measure the success

of different strategies to define and encourage diversity by their

ability to solve these exploration challenges. Therefore rather than

evaluating the performance of an entire population, typical in QD

studies [5], we focus on whether the top performer can navigate

these challenging exploration tasks, an evaluation typical for RL

problems [18].

https://doi.org/10.1145/3712256.3726337
https://creativecommons.org/licenses/by/4.0
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https://doi.org/10.1145/3712256.3726337


GECCO ’25, July 14–18, 2025, Malaga, Spain Feiden, Garcke

We specifically focus on the impact of the strategy to define

behaviour descriptors within MAP-Elites [11] and its derived meth-

ods. We investigate the impact of using different generic behaviour

descriptors on the algorithms’ ability to navigate problems that

require extensive exploration. To this end we use standard bench-

mark problems inspired by robotics, reflect on their suitability to

the task, and gauge the impact of the choice, benchmarking with

established ways to construct behaviour descriptors that encourage

diversity and a random approach, where no specific diversity is

encouraged.

The results indicate that our novel behaviour descriptor based

on the occupancy measure is competitive with custom, problem-

specific behaviour descriptors in all four instances. It is superior

to the established, and next best, generic descriptor in one of the

four, while on par for the other three instances. We also argue this

strategy is particularly appealing for conceptual reasons: Motivated

by theory it uses the full experience of a solution. This facilitates a

more thorough theoretical analysis of generalised diversity. The out-

lined approach requires no prior knowledge about the environment

by an end user nor some additional automated learning process. Its

simplicity makes it useful as a baseline for further studies and as an

out-of-the-box solution for problems where a diverse population

of solutions is desirable but not obvious to construct.

2 Background and Related Work
2.1 Quality-Diversity and MAP-Elites
Quality-Diversity (QD) [1, 5] refers to a class of evolutionary algo-

rithms designed to create a population of solutions that are both

diverse and high-performing. These algorithms tackle optimization

challenges including, but not limited to RL problems. Selecting one

ormore solutions out of this populationmay a bemethod for finding

local and global optima, but can also be used to better understand

the solution space of a problem ("illumination"), or when building

a repertoire of different behaviour itself is the goal, as for damage

adaptation [11, 20]. When addressing an underlying optimization

problem, the definition of high performance is given by the target

of that problem. The definition of diversity, however, needs to be

designed by experts specifically to foster the development of a pop-

ulation that can serve as stepping stones [5, 10] towards optimal

solutions. Unsupervised methods attempt to eliminate that require-

ment by using observed behaviours to construct helpful diversity

metrics.

MAP-Elites [11] is a prominent QD algorithm that categorizes

a given solution with a behaviour descriptor, a function which

transforms the observed behaviour of that solution into a usually

low-dimensional space, the behaviour space. The image space of

that function is partitioned into niches, such that any output of the

behaviour descriptor belongs to exactly one niche. The population

is defined as up to one solution per such niche. The algorithm is

initialized with the creation of some random solutions. These are

then iteratively assigned to niches by the behaviour descriptor.

If a niche is not already associated with a solution, the solution

occupies the niche. If it is already occupied, both the occupying and

the new solution compete with regard to the optimization target.

The superior one occupies the niche, the inferior is discarded. After

random initialization of the population, new solutions are generated

as variations to copies of solutions in the population. These new

solutions are then again categorized by their behaviour descriptors,

and each is assigned to a niche accordinglywhere theymay compete

if necessary. The container that holds solutions based on these rules

is called the repertoire. This framework spawned several offshoots,

mainly by changing the way the new solutions are generated or

the way niches are created and solutions associated with them.

The original MAP-Elites strategy [11] constructs a low-dimen-

sional grid in the behaviour space to define niches, and generates

new solutions through random mutations. The PGA (Policy Gra-

dient Assisted) MAP-Elites version [12] includes a gradient-based

way to create new solutions, analogue to policy gradient methods

used in RL. The CVT (Centroidal Voronoi Tessellation) MAP-Elites

version [20], samples the behaviour space to construct centroids

and defines the niches as a Voronoi tessellation based on these

centroids. This permits higher dimensional behaviour descriptors

like stacking samples of the trajectory.

2.2 Behaviour Descriptors and Novelty
Behaviour descriptors are critical for the success of diversity-based

algorithms, serving as secondary objective functions that encode

specific expectations or desired behaviours [5, 10]. The diversity

fostered through these descriptors is essential for avoiding early

convergence in optimization tasks by helping algorithms overcome

local optima, which is important in exploration-hard tasks [3]. How-

ever, the effectiveness of a behaviour descriptor hinges on its align-

ment with the environmental challenges that need to be addressed.

If the descriptor does not accurately reflect the obstacles within

the environment, the diversity approach may fail to find a viable

solution [15]. This is further complicated by the vagueness of this

idea of alignment to the task. So, it may be desirable to profit from

diversity without having to provide prior knowledge of what kind

of diversity is desirable.

A direct approach would add more and more information from

the sampled trajectory into the behaviour description. But in a high-

dimensional Cartesian grid, the number of niches grows exponen-

tially with the dimension of the behaviour space. CVT MAP-Elites

[20] alleviates this problem by defining niches not on a Cartesian

grid but by closeness to centroids which are samples in the be-

haviour space. Especially when sampling many snapshots of the

trajectory a prior estimation of expected behaviour is necessary to

place these centroids appropriately to construct meaningful niches.

More sophisticated approaches find meaningful low-dimensional

representations of the behaviour through means of unsupervised

learning and run a MAP-Elites approach on this lower-dimensional

space. Here we represent this class of algorithms through AURORA

[9] but similar ideas are implemented in TAXONS [14], both of

which spawn further developments as in RUDA [8], and STAX [13].

Novelty [10] is a related approach that encapsulates the idea of

always looking for solutions different to those encountered prior

in the optimization run leading to an open-ended algorithm. In

MAP-Elites, unoccupied niches can be interpreted as supporting

novelty and occupied niches as novelty with local competition.
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3 Method
3.1 Challenges
We investigate the role of behavioural diversity in overcoming local

optima. We work with optimization problems that include a clear

local optimum difficult to avoid. These problems are sometimes

called exploration-hard and usually stump gradient-based methods

[3]. An optimizer may have difficulties finding its way out of a local

optimum once it gets stuck there as the gradient pulls the solution

in a direction which will trap this solution in a local optimum.

An extra push to keep exploring after finding a local optimum is

required. This extra bit of push can be provided by a QD algorithm.

We specifically look at four established benchmark tasks as im-

plemented in the QDax [2] library. The two-dimensional walker

(Walker 2D) is a simple locomotion task that does not seem to

feature an obvious local optimum that could trap an optimization

algorithm. However, a learner may have to overcome at least two,

early local optima: The strategy to fall over gains some reward by

rapid forward movement, but fails to collect the reward for being

healthy for the whole episode. The strategy to stand still accu-

mulates the reward for being healthy without moving forward. It

demonstrates that the trap of local optima is not a constructed issue

but pervasive in reinforcement learning problems. The analysis of

this environment also examines if and how intensely the effort to

develop diversity is detrimental to improving performance after

these early optima have been overcome.

Point-Maze is a maze environment in which a particle navigates

a square from one point in the lower middle to another in the upper

left. Two horizontal walls block the way to the goal. The lower wall

has an opening on its left, and the upper wall has an opening on

its right. The reward at any timestep is the negative distance to

the goal. This makes a pure representation of an exploration-hard

challenge.

Ant-Trap and Ant-Maze (fig. 2) are exploration-hard tasks that

combine a locomotion task, the quadruped walker, usually called

ant, which in itself is challenging, with a navigation task defined by

a visible trap or maze-like obstacles. The trap adds a U-shaped ob-

stacle to a unidirectional walking task and so provides a very clear

local optimum. Walking straight into it is a local optimum while

taking a detour around the trap is a better solution. The maze con-

strains the movement of the ant within a square where movement

is further obstructed by several walls. Success in the environment is

defined by moving as close as possible to a goal, where the path to

it is obstructed by the walls. Therefore a successful agent needs to

take a curved path around the walls of the environment. The local

optima in the maze and trap environments are directly visible in

fig. 2, as they are given through the obstacles in the environments

and can better illustrate the advantage of diversity.

Evolutionary algorithms without gradient information struggle

with the aspect of locomotion tasks [12]. It is difficult for random

mutation only to find a solution in a reasonable time frame. So while

population-based evolutionary algorithms may be well equipped

to deal with local optima the locomotion portion aspect is typically

prohibitive for simple evolutionary approaches. The combination

with locomotion therefore showcases the power of a merging be-

tween evolutionary, specifically quality-diversity approaches with

classical reinforcement learning strategies through gradient-based

Figure 2: Renderings of the Ant-Trap and Ant-Maze environ-
ments. The locomotion task is interrupted by obstacles that
need to be navigated.

optimization. The gradient-based optimization enables a learning

algorithm to find a walking strategy while the population trained

with the quality-diversity framework provides enough different

solutions such that one of them will find a path that avoids the

obstacles in the environment.

These environments pose in different ways the challenge to over-

come local optima in reinforcement learning problems. We look at

the ability of different ways to define behaviour descriptors to solve

the posed problems. A typical way to evaluate the success of a MAP-

Elites algorithm is through coverage and QD score [16]. Coverage

is the ratio of niches occupied. The QD score is the sum of all per-

formances of all population members offset by a constant such that

populated niches always have a positive impact on the score. This

is a useful metric if the niches remain fixed and other parts of the al-

gorithm change as it shows the ability of the algorithm to fill niches

with high-performing solutions. However, when the definition of

niches changes during different runs, QD scores and coverage are

not directly comparable any more. Consequently, diverting from

these metrics we only look at the best solution found in the archive,

which represents the ability of the quality-diversity algorithm to

find one appropriate solution to the exploration-hard problem. This

is a return to the way reinforcement learning algorithms usually

are evaluated.

3.2 The Occupancy Measure as Behaviour
Description

The occupancy measure is an important concept in the theory of

reinforcement learning. It identifies a policy with the probability

of visiting a certain state and choosing a certain action during

any episode. As such, the time component of a trajectory-based

sampling is lost in the occupancy measure. It has useful properties,

for example, a policy can be reconstructed from its occupancy

measure, and the mean performance of a policy can be described as

the inner product of its occupancy measure and its reward function

[19].

The concept of occupancy and its support is particularly im-

portant for imitation learning algorithms. The mismatch of the

support of the occupancy measure of the learner and the expert is

a key problem when designing imitation learning algorithms [17].

Here, enforcing a closeness not only in reaction to states but also

in support of occupancy empirically and theoretically improves the

performance of algorithms.
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Similarly, gradient-based reinforcement learning algorithms es-

timate improvements in new solutions based on past experiences.

This creates a mismatch between the selection of past experiences

and the still unknown occupancy of the new solution. As a conse-

quence, the new solution may not improve in performance. This

problem has been understood and addressed in trust-region ap-

proaches such as PPO [18], which enforces a closeness to past

iterations of the solution to guarantee similarity of the support of

the occupancy measure, which reduces the mismatch.

In the following, we introduce a practical technique to leverage

the occupancy measure of a policy as a behaviour descriptor that

supports a MAP-Elites type algorithm to develop a diverse popu-

lation indiscriminately. We state the relationship between policy

and occupancy measure in the following paragraphs as a simplified

version of Theorem 2 from [19] and describe an approximation to

transfer this relationship to a working algorithm.

Let (𝑆,𝐴,𝑇 , 𝛼) be a Markov decision process with finite state

space 𝑆 , finite action space 𝐴, transition properties 𝑇 , 𝛼 the initial

state probabilities and a finite time horizon 𝑁 . For a policy 𝜋 de-

fine the occupancy measure 𝑥 : 𝑆 × 𝐴 → R for each state-action

pair (𝑠, 𝑎) as the expected proportion of visitations of that state-

action pair given the policy 𝜋 , the initial states 𝛼 , and the transition

properties 𝑇 of the Markov decision process:

𝑥𝜋 (𝑠, 𝑎) = E
[
𝑁−1∑︁
𝑡=0

1

𝑁
1(𝑠𝑡 ,𝑎𝑡 )=(𝑠,𝑎) |𝛼, 𝜋,𝑇

]
. (1)

Further, 𝑇 (𝑠 | (𝑎, 𝑠′)) denotes the probability of transitioning to

state 𝑠 from state 𝑠′ when taking the action 𝑎, and 𝛼𝑠 is the proba-

bility the initial state is 𝑠 . Then 𝑥 : 𝑆 ×𝐴 → R is said to adhere to

the Bellman flow constraints if for all 𝑠 ∈ 𝑆 it holds:∑︁
𝑎∈𝐴

𝑥 (𝑠, 𝑎) = 𝛼𝑠 +
∑︁
(𝑠′,𝑎)

𝑥 (𝑠′, 𝑎)𝑇 (𝑠 | (𝑎, 𝑠′)), (2)

𝑥 (𝑠, 𝑎) ≥ 0. (3)

With that, we restate a result from [19]:

Theorem 1. If 𝑥 satisfies the Bellman flow constraints then

𝜋 (𝑎 |𝑠) = 𝑥 (𝑠, 𝑎)∑
𝑎′ 𝑥 (𝑠, 𝑎′)

(4)

is a stationary policy and 𝑥 is the occupancy measure of 𝜋 . If 𝜋 is a
stationary policy such that 𝑥 is its occupancy measure, then

𝜋 (𝑠,𝑎) =
𝑥 (𝑠, 𝑎)∑
𝑎′ 𝑥 (𝑠, 𝑎′)

(5)

and 𝑥 satisfies the Bellman flow constraints.

In plain terms, a policy is fully described by its occupancy mea-

sure when disregarding unreachable states where

∑
𝑎 𝑥 (𝑠, 𝑎) = 0

and assuming a stationary policy. Since we consider behavioural

and therefore observable difference, the first assumption is reason-

able. Since many successful approaches to solve RL problems use

stationary policies [12, 18], the second assumption is as well. This

justifies the use of the occupancy measure as a behaviour descriptor

beyond mere practicality, but rather as a complete characterisation

of the policy.

With this idea, we construct a technical implementation of a

behaviour descriptor based on the occupancy measure. To this end,
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Figure 3: Rolling out a policy generates a time series in
the state-action space, here symbolically portrayed as one-
dimensional. Bin each encountered value according to a fixed
tessellation of the state-action space. The proportion of visi-
tations of the bins then functions as the behaviour descriptor
that approximates the occupancy measure.

we partition the state-action space of dimension 𝐷 into bins by

constructing a Voronoi-Tessellation with𝑀 centroids on [−1, 1]𝐷
in the same way a behaviour space is tessellated in CVTMAP-Elites

[20]. The behaviour of a policy is then described by rolling it out

once, and counting for each bin howmany state-action pairs belong

to it. This is then normalized to sum up to 1. This approximates

the occupancy measure. The binning process is sketched in fig. 3,

where the 𝐷-dimensional state-action is represented by one "state"

dimension. The approximation of the occupancy measure then

serves as the behaviour description of the policy.

To build a MAP-Elites repertoire, we construct a second Voronoi-

Tessellation in this behaviour space. By construction this is 𝑋 =

{𝑥 ∈ [0, 1]𝑀 | ∑𝑖=1,...𝑀 𝑥𝑖 = 1}. Therefore, we construct the cen-
troids by sampling the Dirichlet distribution with the concentration

parameter 𝛼 ≡ 1, which returns a sample of uniform distribution

on 𝑋 . During the MAP-Elites loop, the behaviour description of a

new solution is the approximation of the occupancy measure as

described before. It is attributed to a niche according to this sec-

ond Voronoi-Tessellation of 𝑋 that serves as a tessellation of the

space of occupancy measures. We refer to this method as CVT-ME,
Occupancy.

3.3 Established Solvers and Baseline
We want to investigate how different ways to encode diversity con-

tribute to the solution of exploration-hard problems. As outlined in

section 3.1, we expect that locomotion requires gradient descent,
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Figure 4: Rolling out a policy generates a time series, here
symbolically portrayed as one-dimensional. In a trap- or
maze-like environment the custom, problem-specific be-
haviour descriptor for MAP-Elites is usually the last position,
while the established choice for constructing a generic be-
haviour descriptor in CVT MAP-Elites are snapshots along
the time series.

and navigation of mazes and traps requires diversity. Therefore, we

mostly limit our investigation to algorithms that combine gradi-

ent descent and population-based methods in a way that promises

success. We use the standard implementations provided by QDax

[2] for the benchmark algorithms and components already imple-

mented for the proposed algorithm. We test our assumption that

gradient-based approaches struggle in these environments with a

PPO [18] benchmark implementation in Brax [7].

We use different types ofMAP-Elites algorithms to solve the prob-

lem. In all approaches we incorporate policy-gradient assistance

(PGA) [12]. Combining that with a Cartesian grid for behaviour

descriptors in the classical approach belongs to the category PGA

MAP-Elites, combining it with a centroidal Voronoi tessellation

belongs to the category PGA-CVT MAP-Elites, and combining it

with an autoencoder belongs to the category PGA-Aurora, see [1]

for dedicated analysis of these methods.

We change in every instance of experiment the way behaviour

is characterized. The classical way to define a custom problem-

specific behaviour descriptor in trap- or maze-like locomotion tasks

is through the last physical position of the agent. For the walker, it

is the percentage of time either foot touches the ground.We will call

this ME, Custom. The classical way to characterize behaviour in an

unsupervised way through CVT MAP-Elites is to take snapshots of

the state encountered during a rollout and regard this time series as

the behaviour descriptor. We refer to this as CVT-ME, Snapshots. For

these behaviour descriptors refer to fig. 4 for a simplified graphical

representation. Amore sophisticated way to create an unsupervised

behaviour descriptor is represented through PGA-Aurora, which

uses an autoencoder to find lower dimensional representations of

the states encountered during a rollout, which we will refer to as

Aurora. As much as the different approaches allow, we keep other

hyperparameters fixed at reasonable values.

3.4 Random Niching as Lower Baseline
We introduce the idea of random niching as a lower baseline. Here

we define a usual MAP-Elites repertoire with a grid in [0, 1], parti-
tion it into niches of equal size and assign new solutions to a niche

by sampling the uniform distribution leading to random niche as-

signment independent of the actual behaviour. This then runs in the

PGA MAP-Elites framework but encourages behavioural diversity

in the minimal way that the population provides, not by defining

niches that protect different behaviours. This leads to full coverage

very quickly. We expect less diverse solutions in the population, but

more diversity in comparison to a regular policy-gradient method,

which always works with one solution modified in each loop.

This method still receives the eventual benefits the MAP-Elites

setup itself offers evenwhen using behaviour descriptors that do not

provide meaningful distinctions of new solutions. We expect any

behaviour descriptor to perform at least as well as random niching

in an exploration-hard task, but in an environment where diversity

does not matter as much, random niching may perform better, as it

will spend more resources on higher-performing solutions. We will

refer to this method as ME, Random.

4 Experimental Validation
4.1 Configuration
For the environments, established algorithms, and shared compo-

nents of the newly introduced algorithms, we use the reference

implementation of the QDax [2] library. The PPO implementation

stems from Brax [7].

We manipulate the Ant-Maze environment such that its perfor-

mance is only defined by the distance from the goal position in

its last position. This is different from the default configuration in

QDax where in each timestep the reward is defined by secondary

rewards of the ant environment and its distance to the goal. We

still use that reward information for the policy gradient steps both

in the policy-gradient assistance and PPO. This is in line with ear-

lier iterations of this problem [3], and makes it easier to read the

conceptual success of the policy from its performance. The number

of times steps is set to 1000 in Ant-Trap and 3000 in Ant-Maze.

We implemented the approximation of the occupancy measure

through the standard component of Voronoi tessellation imple-

mented in QDax and used TPU-KNN [4] for an approximation of the

nearest neighbour calculation. We use tanh to cast the unbounded

observation components to [1,−1] for both CVT MAP-Elites al-

gorithms demonstrating the out-of-the-box capabilities, although

defining box constraints tailored to the environment have better

prospects to achieve good performance. We use the boundaries

provided in QDax for each problem for the ME, Custom.

The policies are functions from the state to the action space,

implemented as fully connected feedforward networks with two
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hidden layers of size 256 each in Ant-Maze and Ant-Trap, and 64

each in Walker 2D and Point-Maze. We set 1001 centroids for the

repertoires, 501 centroids for the binning of the state space for

the occupancy measure and the batch size for each generation to

128. For CVT-ME, Snapshots, we take 10 snapshots in time in all

environments, as higher sampling ratios quickly result in a drop in

coverage and eventually in performance. Other hyperparameters

are set to default, or, if provided, to recommended values by QDax

and Brax.

The runtimes of all methods are on average very similar, rang-

ing from 1.3-1.9 ms per generation for Point-Maze, 50.1-55 ms/gen

for Ant-Maze, 20.6-22.3 ms/gen for Ant-Trap, and 4.5-5.3 ms/gen

for Walker 2D. All methods achieve reasonable coverage, the low-

est for CVT-ME, Occupancy in Point-Maze with 13.8%, which still

represents a population of 138 individuals.

4.2 Results in single environments
The following plots of performance over generations display the

performance of the highest-scoring individual in each population

with the mean and the standard error over generations. PPO does

not learn in generations but is still represented in the same plot, by

aligning the number of observed transitions in the environment in

both methods for a fair comparison.

4.2.1 Walker 2D. The Walker 2D (fig. 5) shows a situation where

diversity seems superfluous or obstructive in finding a good solu-

tion. We would expect and finally see in the results, that all types

of MAP-Elites and CVT MAP-Elites perform similarly well. Aurora,
however, while learning over time, lags behind the more direct

methods.ME, Custom here uses the ratio of any of the walker’s feet

touching the ground, instead of its last position. We can consider

the environment solved, if the agent learns to walk resulting in at

least 300 points of reward and stays healthy over all 1000 timesteps

resulting in 1000 points of reward, totalling at least 1300 points of

reward. Remarkably, the PPO algorithm fails to solve this problem,

because it always gets stuck in the trivial solution and local opti-

mum of falling over. This shows the inherent problems of these

algorithms and the potential benefit population-based approach

can bring even to problems that are not an obvious fit.
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Figure 5: Themaximum performance achieved in theWalker
2D environment.

4.2.2 Point-Maze. The Point-Maze environment both presents the

clearest case of the exploration problem and also exhibits the clear-

est results (fig. 6).Without fail,ME, Custom andCVT-ME, Occupancy,
solve the exploration problem in all 10 instances. ME, Random, as

expected, gives a lower bound, with Aurora and CVT-ME, Snapshots
falling in between. A correct solution navigates the agent into the

appropriate area with a reward of no less than −30. As expected,
PPO cannot solve this problem and gets stuck either in the first or

second wall.
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Figure 6: The maximum performance achieved in the Point-
Maze environment.

4.2.3 Ant-Trap. The results in the Ant-Trap environment (fig. 7)

show how powerful the MAP-Elites approach itself is, even if the

behaviour descriptor is not inherently helpful. All configurations

with different behaviour descriptors come up with solutions to the

problem that avoid the trap, even ME, Random. PPO however, will

always steer the ant into the wall with such force it stops being

healthy and ends the episode.

The way the problem is set up, positive reward signals come

from being healthy, with 1000 points from 1000 timesteps at most

and moving in the x-direction, where the trap waits. The trap itself

is positioned with the far wall at 12 units of distance to the ant’s

starting point, which leads to 240 points at most when the ant is

not moving around the trap. Additionally, negative rewards are

incurred from the control signals. So, the problem is considered

solved, for any accumulated reward over 1240. With this definition

of solving the environment, finding a solution that avoids the trap,

any algorithm but PPO confidently solves the problem.

4.2.4 Ant-Maze. In the Ant-Maze environment, the classical MAP-

Elites approach of using the last physical position of the agent,

is the strongest choice, with two CVT-ME methods coming in a

close second, followed by ME, Random (fig. 8). Aurora again takes

a longer time to learn. PPO sometimes learns a way to cheat the

system, by jumping over the wall, which in the physics simulation

is represented by a tube. Manipulating this environment by placing

a second tube on top of the first one prevents jumping. Then, PPO

consistently gets stuck, denoted as "PPO no jump" in fig. 8.

The target is located at (35, 0), with walls around 5 units distant.

A reward signal larger than −4 is considered a solution because it

suggests the agent made it into the critical zone of the maze but

also stopped within that zone instead of running into a wall close

to the target to stop its movement.
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Figure 7: The maximum performance achieved in the Ant-
Trap environment.

0 500 1000 1500 2000
Generation

−25

−20

−15

−10

−5

P
e
rf

o
rm

a
n
ce

 o
f 

b
e
st

 s
o
lu

ti
o
n Diversity Type

CVT-ME, Occupancy

ME, Custom

CVT-ME, Snapshots

Aurora

ME, Random

PPO

PPO no jump

Solved threshold

mean
standard error

Figure 8: The maximum performance achieved in the Ant-
Maze environment.

4.3 Statistical Evaluation
To examine the statistical significance of the results, for each envi-

ronment, we looked at the maximal scores achieved with the dif-

ferent methods in each of the 10 runs. We use the Mann–Whitney

𝑈 test to determine if the difference in observations is statistically

significant. The null hypothesis is the medians of the two underly-

ing distributions are the same. If the null hypothesis is rejected, the

performance of the methods can be seen as significantly different,

see fig. 9 for a visualisation where green signifies different grades

of significance and red indicates no significant difference. Both in

the Ant-Maze and in the Walker 2D environment, the diversity

methods are not significantly distinguishable, except for Aurora,
which falls behind. The Point-Maze shows the high performers,

CVT-ME, Occupancy and ME, Custom are not significantly distin-

guishable from each other, but this group and each of the other

three methods seem distinct from each other. The Ant-Trap shows

two groups, the high performers represented by ME, Custom and

both CVT approaches, with ME, Random and Aurora in the second

group. PPO is significantly different (worse) in every environment

compared to every method save Ant-Maze, where the "cheating" of

jumping over the wall, lumps it with all methods but Aurora.

4.4 Evaluation Overall
Evaluating the success of different methods in different environ-

ments, we look at the best performance achieved by any solution

encountered during the run. For all environments, we also set a
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Figure 9: Presentation of statistical significance where darker
green shows a more significant rejection of the null hypoth-
esis which implies one method outperforms the other.

Walker Point- Ant- Ant-

2D Maze Trap Maze

CVT-ME, Occupancy 10 10 10 8

ME, Custom 10 10 10 9

CVT-ME, Snapshots 10 4 10 7

Aurora 6 3 10 0

ME, Random 10 2 10 5

PPO 0 0 0 4

Table 1: Number of trials that solve the underlying problem
out of 10.

threshold for the performance. If the threshold is exceeded, we as-

sume the fundamental underlying problem, which the environment

presents, has been solved. These are learning to walk, or navigat-

ing the obstacles, or both. We explained the thresholds for each

environment in the earlier paragraphs. The obtained results for this

measure of success are shown in table 1. This binary distinction

shows the difficulty of solving the underlying problem and the

ability of a certain diversity mechanism to avoid falling into the

local optimum. Looking atWalker 2D and Ant-Trap anyMAP-Elites

approach seems sufficient. Ant-Maze is more ambiguous, but there

some differentiation is visible, withME, Custom solving the problem

9 out of 10 times, and ME, Random only 5 out of 10 times. That sug-

gests an appropriate behaviour descriptor improves the chance of

success. An unambiguous distinction can be seen in the Point-Maze

environment, where ME, Custom and CVT-ME, Occupancy always

solve the problem, whereas the others struggle.

The min-max-scaled performance in the different environments,

depicted in fig. 10, reflects this analysis. Here, the y-value 1 repre-

sents the best performance seen in any run, 0 the worst. The large
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Walker Point- Ant- Ant-

2D Maze Trap Maze

CVT-ME, Occupancy 2084.3 -22.9 1675.3 -1.7

ME, Custom 2367.3 -23.1 1606.3 -0.1

CVT-ME, Snapshots 2111.3 -25.0 1704.8 -1.3

Aurora 1499.6 -25.1 1595.2 -4.0

ME, Random 2084.2 -23.3 1395.2 -1.0

PPO 349.3 -66.5 697.9 -0.0

Table 2: Maximum performance over all runs.

spread of Aurora, and CVT-ME, Snapshots in Point-Maze show these

methods only sometimes solve the underlying problem. Similarly,

in the Ant-Maze environment, the first three that often solve the

underlying problem have a smaller spread than the others. The

plot shows several instances where some methods seem to perform

similarly, as in the Ant-Trap environment. For reference, table 2

shows the top score achieved over all runs by the different methods.

To summarise, our approach with the occupancy measure is

just as suited to solve the problem as the custom, problem-specific

behaviour descriptors in all four environments. It retains the per-

formance, without the need to hand-craft a behaviour descriptor

for each specific problem. In one environment, the Point-Maze, it

improves on CVT MAP-Elites with taking snapshots of the trajec-

tory, the classical approach for generic behaviour descriptors. In

the other three, both perform similarly well. So overall, it improves

on the classical approach for generic behaviour descriptors.

As expected, random niching underperforms everywhere but in

the Walker 2D environment, but especially when compared with

PPO, is still remarkably effective. Aurora features some successes

in exploring the environment, particularly visible in the Point-

Maze environment, but would need more computation time, a more

focused preselection of the input data as in [1], or hyperparameter

tuning.

Overall, the introduced approach, CVT MAP-Elites with occu-

pancy measure, shares the place of top-performer with the classic

MAP-Elites approach that uses custom, problem-specific behaviour

descriptors. But of course, it has the advantage to skip that step of

handcrafting a suitable behaviour descriptor.

5 Discussion
The newly introduced behaviour descriptor using the occupancy

measure offers a real alternative to the trajectory-based charac-

terisation for non-specific diversity in reinforcement learning set-

tings. It maintains behavioural diversity well enough to solve the

exploration-hard problems presented in QDax. It outperforms tak-

ing snapshots in the purer exploration problem presented in the

Point-Maze environment. It has the conceptual advantage of using

the information of the full trajectory. In the presented exploration

problems snapshots along the trajectory always include the infor-

mation of the last position, which is particularly important, but still,

the approach with the occupancy measure slightly outperforms

taking snapshots.

The reflection on the given problems also uncovers properties

of the benchmark environments. While the Ant-Trap and Ant-

Maze environments both demonstrate the value of the quality-

diversity algorithms, the evaluation is difficult: In Ant-Trap, the

total score will be higher for fast movement, which obfuscates

the underlying problem of avoiding the trap, which all quality-

diversity algorithms achieve. The Ant-Maze environment provides

a challenging problem but should be slightly adjusted to avoid the

exploit of jumping over a wall by PPO. The Point-Maze environment

provides a clearer picture to differentiate the compared methods.

The Walker 2D demonstrates the real value quality-diversity can

provide when PPO falls into a local optimum invisible at first glance.

Another interesting aspect not explored here is that the be-

haviour descriptor using the occupancy measure can meaning-

fully aggregate the behaviour of several runs, something classic

behaviour descriptors like a last physical position cannot: The occu-

pancy measure in theory gets more accurate the more trajectories

are rolled out and aggregated. This could prove helpful to evolve

solutions for environments with stronger random influences, but

also alleviate the problem of (un)lucky individuals [6], where the

behaviour or performance of an individual in an uncertain environ-

ment is not representative of its average behaviour or performance.

There may be even more efficient ways to encode diversity us-

ing the occupancy measure than the presented trick of using two

linked centroidal Voronoi tessellations, like using the earth mover’s

distance when searching for the appropriate niche in the space of

occupancy measures. The introduction of a prior to explore a more

realistic representation of the state space as is typically done in

CVT MAP-Elites may further improve performance, a technique

passed over in favour of clarity.

We see the greatest practical advantage of the newly presented

approach with the occupancy measure not in its performance, but

in the simplicity as an out-of-the-box solution, that uses all be-

havioural information, does not require a hand-crafted behaviour

descriptor and can handle high-dimensional behaviour spaces. As

such it is highly suited as a lower-bound baseline for any quality-

diversity problem where behaviour descriptors are being compared

or constructed.

Finally, the presented approach demonstrates that generalised di-

versity, that is diversity based on considering the complete observed

behaviour, can be feasible and useful in Quality-Diversity.
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A Key figures of the experiment averaged over all runs

Environment Technique top score s/gen QD score mean score coverage
Point-Maze CVT-ME, Occupancy -23.8 1.3 36843 -177.2 13.8

ME, Custom -24.3 1.3 269893 -175.0 100.0

CVT-ME, Snapshots -53.4 1.3 128692 -172.3 47.2

Aurora -57.7 1.9 228017 -217.0 100.0

ME, Random -104.2 1.3 339003 -106.1 100.0

PPO -119.2 n/a n/a n/a n/a

Ant-Maze CVT-ME, Occupancy -3.2 55.0 12105 -20.72 35.2

ME, Custom -2.1 54.9 22881 -29.66 90.0

CVT-ME, Snapshots -3.1 54.9 8472 -18.86 23.3

Aurora -12.6 50.8 31068 -24.02 100.0

ME, Random -5.5 50.1 39467 -15.62 100.0

PPO -7.0 n/a n/a n/a n/a

Ant-Trap CVT-ME, Occupancy 1537.7 20.7 1064546 538.2 29.2

ME, Custom 1497.1 22.3 3193614 916.9 79.4

CVT-ME, Snapshots 1563.1 20.6 935478 450.4 29.3

Aurora 1418.4 21.3 3891014 781.4 100.0

ME, Random 1346.0 20.6 4276066 1168.0 100.0

PPO 696.9 n/a n/a n/a n/a

Walker 2D CVT-ME, Occupancy 1733.5 4.5 361472 849.0 40.2

ME, Custom 1346.7 4.5 989722 1203.6 79.0

CVT-ME, Snapshots 1793.6 4.5 906942 1047.3 82.7

Aurora 1867.9 5.3 380674 332.1 100.0

ME, Random 1853.9 4.5 1473018 1423.4 100.0

PPO 335.7 n/a n/a n/a n/a

Table 3: More key figures for the experiments with mean values at the end of the 10 runs. Offsets for QD scores are determined
empirically as Point-Maze: -444.81, Ant-Maze: -55.05, Ant-Trap: -3103.80, Walker 2D: -48.15. The dominance ofME, Random
in QD score, mean score, and coverage shows that these typical metrics are not suitable to compare methods with differing
archives.
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B Hyperparameters and Configuration
For completeness the full list of hyperparameters used. The entry

"Distinct centroids (double CVT)" in table 4 refers to the number of

centroids selected to represent the state-action space or the number

of bins. The presented environments exhibit a wide spread of both

length (200-3000) and dimensionality (4-109) of the rollouts.

Parameter Value
Initial CVT samples 50,000

Distinct centroids (double CVT) 501

Distinct centroids 1,001

New generation size 128

Proportion of PG updates 0.5

Replay buffer size 1,000,000

Critic learning rate 0.0003

Greedy learning rate 0.0003

Policy learning rate 0.001

Noise clip 0.5

Policy noise 0.2

Discount factor 0.99

Reward scaling factor 1.0

Transitions batch size 256

Soft 𝜏 update 0.005

Critic training steps 300

Policy-gradient training steps 100

Policy delay 2

Table 4: PGA-ME parameters

Environment Episode State Action
Length dim. dim.

Point-Maze 200 2 2

Ant-Maze 3000 101 8

Ant-Trap 1000 95 8

Walker 2D 1000 17 6

Table 5: Key figures of the environments

Environment Episode Length
Sampling frequency 10

AURORA dimensions 5

𝑙 threshold value 0.2

Table 6: AURORA parameters
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