
caesar preprint

Gradient Flow Registration
A Streaming Implementation in DX9
Graphics Hardware
Robert Strzodka, Marc Droske, Martin Rumpf

Document info:

Type: Preprint
Group: caesar-smm
Preprint ID: 32
Date: 17.01.2003



this page intentionally left blank



GRADIENT FLOW REGISTRATION
A STREAMING IMPLEMENTATION IN DX9 GRAPHICS HARDWARE

R. Strzodka

research center caesar, D-53111 Bonn
strzodka@caesar.de

M. Droske, M. Rumpf

Duisburg University, D-47048 Duisburg�
droske,rumpf � @math.uni-duisburg.de

ABSTRACT

The analysis of image time series requires a correlation of
the information between two images. The gradient flow reg-
istration is a method for correlating this information by suc-
cessively minimizing an appropriate energy along its gradi-
ent. A graphics hardware implementation of this approach
to image registration is presented. The gradient flow formu-
lation makes use of a robust multi-scale regularization, an
efficient multi-grid solver and an effective time-step control.
The locality of the involved operations implies a data-flow
which is very well suited for an acceleration in the stream-
ing architecture of the DX9 graphics hardware. Therefore
the implementation promises very high performance, how-
ever the appropriate graphics hardware is not available be-
fore February. Currently the examples have been computed
on a emulator, but the implementation will run unchanged
on the soon released graphics hardware.

1. INTRODUCTION

The analysis of temporal changes in anatomic structures in
image assisted diagnostics and surgery planning strongly
depends on robust correlation of images taken at different
times. This problem called image registration is therefore
one of the fundamental tasks in medical imaging. The aim
is to correlate two images via a usually non-rigid deforma-
tion. This deformation may reflect temporal changes in the
image source or can compensate unknown deformation ef-
fects from the image acquisition technology.

The optimal correlation between two images depends on
the definition of a coherence measure. However, there may
be many minimizers to such a measure. Therefore many
regularizations of the registration problem have been dis-
cussed in the literature [1, 2, 3, 4, 5]. The graphics hard-
ware algorithm in this paper follows in its implementation
the gradient flow registration presented in [6]. It incorpo-
rates many of the ideas of iterative Tikhonov regularization
methods [7], fast multi-grid smoothing [8] and multi-scale
use for large displacements [9]. The model will be summa-
rized in the next section. The implementation in this paper

focuses on a basic intensity based model. Morphological
image matching is to be considered in future.

Modern graphics hardware can be used for very com-
plex procedural texturing and shading [10, 11] allowing an
enormous range of visual effects. But the optimization of
graphics hardware for the processing of large data volumes
made them also attractive for many other problems as di-
verse as robot motion planning [12], computation of Voronoi
diagrams [13], flow visualization [14], morphological oper-
ations [15], segmentation [16] and many others ([17] con-
tains a good overview). Although schemes for general com-
putation and especially discrete solvers for partial differen-
tial equations in graphics hardware have been previously de-
scribed [18, 19, 20], the researchers always emphasized the
problem of the low number precision and incomplete set of
operations which restricted the application area.

The new DX9 graphics hardware overcomes these prob-
lems by introducing a floating point number format and a
set of the most common mathematical operations. Together
with an access from high level languages to these features,
most of the code running on common micro-processors could
be coded for the graphics hardware. But this does not mean
that any problem could be accelerated in this way, rather the
analysis of the problem structure must determine the choice
of the hardware architecture. So while in the past the chal-
lenge of graphics hardware accelerated implementations lay
in the translation of the problem solver into the restricted
functionality, today the challenge lies in the construction of
a problem solver whose data-flow structure ideally fits the
streaming architecture of graphics hardware. The choice of
the gradient flow registration algorithm has been guided by
this idea.

2. GRADIENT FLOW REGISTRATION

2.1. Continuous Model

Given two images T � R : Ω ����� Ω ��� 2 we look for a de-
formation φ : Ω � Ω which maps the intensities of T via φ
to the intensities of R such that T 	 φ 
 R � Since φ will be
small in comparison to �Ω � it can be suitably expressed as



φ 
 11 � u, with a displacement function u. The displace-
ment u is sought as the minimum of the energy

E � u ��
 1
2

�
Ω
� T 	�� 11 � u ��� R � 2 �

A minimizer u in some Banach space V is characterized
by the condition �

Ω
E ��� u ��� θ 
 0 �

for all θ ���C∞
0 � Ω ��� 2, with the L2-representation of E �

E � � u ��
 � T 	�� 11 � u ��� R � ∇T 	�� 11 � u ���
This gradient may be used as the descent direction towards
a minimum in a gradient descent method. But there may
be many minima since any displacements within a level-
set of T do not change the energy. Therefore the descent
along the gradient will be regularized by A � σ �"! 1E � � u � , with

A � σ ��
 11 � σ2

2 ∆ � σ �#�%$ . Then the regularized gradient
flow

∂t u 
 � A � σ � ! 1E � � u �&�
u � 0 �'
 u0

has a unique solution u with u � t �(� V for some function
space V (Theorem 3.1 [6]).

But since the energy E is non-convex the gradient de-
scent path may easily get trapped in local minima instead of
finding the global minimum of E. Therefore a continuous
annealing method is used by defining a multi-scale of image
pairs Tε : 
 S � ε � T , Rε : 
 S � ε � R for ε ) 0 with a filter oper-
ator S �*� � . The choice S � ε �+
 A � ε � ! 1 corresponds again to a
Gaussian filtering. The energy

Eε � u �,
 1
2

�
Ω
� Tε 	�� 11 � u ��� Rε � 2

induces the corresponding gradient flow which has the so-
lution uε �*� � on scale ε.

2.2. Discretization

Time is discretized by the explicit Euler scheme

un $ 1
ε � un

ε
τn

ε

-� A � σ � ! 1E �ε � un �&�

where τn
ε is determined by Armijo’s rule. Finite-Elements

are used for the discretization in space. Let . Ψi /
i 0 Ih be the

canonical nodal basis of the linear finite element space V h.
Suppose Ūn is the nodal vector at the n-th time step. Then
we obtain the fully discrete scheme

Ūn $ 1
ε 
 Ūn

ε � τn
εAh � σ � ! 1Ē �ε � Ūn

ε �&�

Fig. 1. Textures at different spatial resolution corresponding
to the multi-scale of images.

where the matrix Ah � σ � is the discrete counterpart of the op-
erator A � σ � in V h [6]. We apply this formula to compute an
approximate solution ŪNε

ε on scale ε by iterating it Nε times
until the update τn

εAh � σ �1! 1Ē �ε � ŪNε
ε � is sufficiently small in

the L2 norm.
Since multi-grid solvers are the most efficient tools in

solving linear systems of equations, the gradient smoothing
Ah � σ � ! 1Ē �ε � Ūn

ε � is performed as a multi-grid V-cycle with
Jacobi iterations as smoother and standard prolongation and
restriction operators. Indeed to ensure an appropriate reg-
ularization it turns out to be sufficient to consider only a
single multi-grid cycle MGM � σ �2
 Ah � σ �3! 1. The same is
considered in the computation of the multi-scale of images.

The image scales are chosen exponentially, i. e. we con-
sider scales � εk � k 4 0 5 6 6 6 5 K � K �#7 and couple them with the
spatial resolution. We reduce the number of necessary com-
putations for large scales by defining a pyramid of grids
� Mhl � l 4 0 5 6 6 6 5 L � hl 
 2l ! L and resolving the images Tεk and
Rεk on the coarsest grid Mhl for which εk ) hl still holds
(cf. Figure 1). For further details we refer to [6].

3. HARDWARE IMPLEMENTATION

3.1. Data-flow

The two dimensional input images T and R are represented
as 2D textures on the finest grid Mh0 . The multi-grid hier-
archy � Mhl � l 4 0 5 6 6 6 5 L corresponds to textures of successively
smaller size (Figure 1). Several such hierarchies are re-
served in graphics memory to store any intermediate results,
because once the two images T and R are stored in graphics
memory all operations are performed on the graphics hard-
ware from where the final result is displayed.

All textures are implemented as floating point pbuffers,
such that one can consecutively write and read from them.
Computations are performed by loading an operational ker-
nel to the programmable fragment pipeline and streaming
the texture operands through that kernel into a target pbuffer.
The target pbuffer can then be used as a texture operand in
the succeeding operation. Such a streaming operation is ex-
tremely fast if only local information is accessed, i.e. to



compute the result for any texel in the target pbuffer infor-
mation from only small neighborhoods of the corresponding
texels in the texture operands are necessary. The ingredients
of the gradient flow registration fulfill this condition very
well.

3.2. Algorithm

The algorithm starts by setting the initial displacement Ū0
εK

on the coarsest scale εK to zero. Then the gradient flow
at this scale computes from this vector the approximate so-

lution Ū
NεK
εK . This solution is used as the initial displace-

ment Ū0
εK 8 1 at the next finer scale εK ! 1. This process Ū0

εK
: 


0̄ � Ū0
εi 8 1 : 
 Ū

Nεi
εi continues for i 
 K � 1 �1�*�1�*� 1 until the final

solution U
Nε0
ε0 on the finest scale ε0 is obtained.

The main computational part, the solution to the gradi-
ent flow problem at scale ε is given in pseudo-code notation:

gradient flow at scale ε 9
compute new image scales MGM : ε ; T̄ ,MGM : ε ; R̄;
for each n 9

evaluate energy gradient Ē <ε = Ūn
ε > ;

perform smoothing multi-grid V-cycle MGM : σ ; Ē <ε = Ūn
ε > ;

evaluate Armijo’s rule;
compute new solution Un ? 1

ε @ Ūn
ε A τn

εMGM : σ ; Ē <ε = Ūn
ε > ;

stop if B τn
εMGM : σ ; Ē <ε = Ūn

ε > B 22 C δ;D
D

The smoothing with the multi-grid V-cycle involves as
operational kernels the operations of prolongation, restric-
tion, and the Jacobi iterations with Ah. Armijo’s rule on
the other hand requires a kernel for the error computation
T̄ε 	E� 1 � Ūn

ε �+� R̄ε and a L2 scalar product. The energy
Ēε � Ūn

ε � is namely evaluated as the L2 scalar product of the
error with itself.

All this kernels have been programmed in Cg [21] and
perform the operations in one pass. Only the L2 scalar prod-
uct must be evaluated by a component-wise multiplication
and an iterative addition of local texels because it involves
a global access to all texels of a texture. The result of the
iterative addition is retrieved from the coarsest level.

3.3. Results and Performance

In Figure 2 and 3 four 2562 images are arranged in the fol-
lowing way. On the upper left we see the template with a
possible acquisition artefact. On the upper right the orig-
inal is displayed. On the lower left we see the computed
deformation applied to a uniform grid and on the right the
matching result. Obviously both correlations can eliminate
the introduced artefacts very well.

Currently the implementation runs on a emulator of the
DX9 graphics unit GeForceFX which should be on sale in

Fig. 2. The elimination of a whirl artefact.

February. Therefore performance numbers can only be es-
timated. From the experience with PDE implementations
on DX8 graphics hardware one can expect the matching of
2562 images to be completed in less than a second.

4. CONCLUSIONS

A graphics hardware implementation of the gradient flow
registration has been presented. The algorithm has been
suitably divided into tasks which can be quickly performed
by streaming the data through programmable kernels, an op-
eration which best fits the streaming architecture of DX9
graphics hardware. The use of floating point pbuffers elim-
inates previous precision problems. The expected perfor-
mance of less than one second for matching of 2562 images
would allow the use of this algorithm in interactive image
assisted diagnostics. Further research will concentrate on
fast morphological matching, which could also register im-
ages of different modalities.

5. REFERENCES

[1] G. E. Christensen, S. C. Joshi, and M. I. Miller, “Vol-
umetric transformations of brain anatomy,” IEEE
Trans. Medical Imaging, vol. 16, no. 6, pp. 864–877,
1997.

[2] C. A. Davatzikos, R. N. Bryan, and J. L. Prince, “Im-
age registration based on boundary mapping,” IEEE
Trans. Medical Imaging, vol. 15, no. 1, pp. 112–115,
1996.



Fig. 3. The elimination of a lens artefact.

[3] U. Grenander and M. I. Miller, “Computational
anatomy: An emerging discipline,” Quarterly Appl.
Math., vol. LVI, no. 4, pp. 617–694, 1998.

[4] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal,
and P. Suetens, “Multi–modal volume registration by
maximization of mutual information,” IEEE Trans.
Medical Imaging, vol. 16, no. 7, pp. 187–198, 1997.

[5] J. P. Thirion, “Image matching as a diffusion process:
An analogy with maxwell’s demon,” Medical Imag.
Analysis, vol. 2, pp. 243–260, 1998.

[6] U. Clarenz, M. Droske, and M. Rumpf, “Towards fast
non–rigid registration,” in Proceedings of the AMS,
2002.

[7] M. Hanke and C.W. Groetsch, “Nonstationary iterated
tikhonov regularization,” J. Optim. Theory and Appli-
cations, vol. 98, pp. 37–53, 1998.

[8] S. Henn and K. Witsch, “Iterative multigrid regular-
ization techniques for image matching,” SIAM J. Sci.
Comput. (SISC), vol. Vol. 23 no. 4, pp. pp. 1077–1093,
2001.

[9] L. Alvarez, J. Weickert, and J. Sánchez, “Reliable
estimation of dense optical flow fields with large dis-
placements,” International Journal of Computer Vi-
sion, vol. 39, pp. 41–56, 2000.

[10] Mark S. Peercy, Marc Olano, John Airey, and P. Jef-
frey Ungar, “Interactive multi-pass programmable
shading,” in Siggraph 2000, Computer Graphics Pro-
ceedings,, Kurt Akeley, Ed. 2000, Annual Conference

Series, pp. 425–432, ACM Press / ACM SIGGRAPH
/ Addison Wesley Longman.

[11] Kekoa Proudfoot, William R. Mark, Svetoslav
Tzvetkov, and Pat Hanrahan, “A real-time procedu-
ral shading system for programmable graphics,” in
SIGGRAPH 2001, Computer Graphics Proceedings,
Eugene Fiume, Ed. 2001, Annual Conference Series,
pp. 159–170, ACM Press / ACM SIGGRAPH.

[12] J. Lengyel, M. Reichert, B.R. Donald, and D.P. Green-
berg, “Real-time robot motion planning using raster-
izing computer graphics hardware,” in Proceedings of
SIGGRAPH 1990, 1990, pp. 327–335.

[13] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh
Manocha, and Tim Culver, “Fast computation of gen-
eralized Voronoi diagrams using graphics hardware,”
Computer Graphics, vol. 33, no. Annual Conference
Series, pp. 277–286, 1999.

[14] D. Weiskopf, M. Hopf, and T. Ertl, “Hardware-
accelerated visualization of time-varying 2d and 3d
vector fields by texture advection via programmable
per-pixel operations,” in Proceedings of VMV’01,
2001, pp. 439–446.

[15] M. Hopf and T. Ertl, “Accelerating Morphological
Analysis with Graphics Hardware,” in Workshop on
Vision, Modelling, and Visualization VMV ’00, 2000,
pp. 337–345.

[16] M. Rumpf and R. Strzodka, “Level set segmentation
in graphics hardware,” in Proceedings ICIP’01, 2001,
vol. 3, pp. 1103–1106.

[17] Mark J. Harris, “General purpose
computation using graphics hardware,”
http://www.cs.unc.edu/˜harrism/gpgpu.

[18] Chris Trendall and A. James Stewart, “General cal-
culations using graphics hardware, with applications
to interactive caustics,” in Eurographics Workshop on
Rendering, June 2000.

[19] M. Rumpf and R. Strzodka, “Using graphics cards
for quantized FEM computations,” in Proceedings
VIIP’01, 2001, pp. 193–202.

[20] Mark J. Harris, Greg Coombe, Thorsten Scheuermann,
and Anselmo Lastra, “Physically-based visual simula-
tion on graphics hardware,” in Proceedings of Graph-
ics Hardware 2002, 2002, pp. 109–118.

[21] NVIDIA Corporation, “Cg programming language,”
http://developer.nvidia.com/view.asp?PAGE=cg main,
2002.


