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Abstract. The Proper Orthogonal Decomposition (POD) has been used for several years in the
post-processing of highly-resolved Computational Fluid Dynamics (CFD) simulations. While the
POD can provide valuable insights into the spatial-temporal behaviour of single transient flows,
it can be challenging to evaluate and compare results when applied to multiple simulations.
Therefore, we propose a workflow based on data-driven techniques, namely dimensionality re-
duction and clustering to extract knowledge from large simulation bundles from transient CFD
simulations. We apply this workflow to investigate the flow around two cylinders that contain
complex modal structures in the wake region. A special emphasis lies on the formulation of
in-situ algorithms to compute the data-driven representations during run-time of the simula-
tion. This can reduce the amount of data in- and output and enables a simulation monitoring
to reduce computational efforts. Finally, a classifier is trained to predict characteristic physical
behaviour in the flow only based on the input parameters.

1 INTRODUCTION

In the last decades, highly-resolved numerical flow simulations, e.g. Large Eddy Simulations
(LES) and Direct Numerical Simulations (DNS), have become an invaluable engineering tool
to get insights into the physics of turbulent flows. However, the analysis of large simulation
bundles, e.g. from variations in the geometry, boundary conditions or material properties, can
be a quite challenging task. A post-processing purely based on analytical scalar or integral
quantities can capture only specific aspects of the solution, while multi-scale simulations usually
contain much more information that can be exploited. Data-driven techniques, such as the
Proper Orthogonal Decomposition (POD) promise a more global perspective on the data and
delivers valuable insight into the spatio-temporal behaviour of transient flows.

Up to now, the comparison of these modal structures can not easily be automated and is
usually done in a visual analysis, which can be difficult if the number of simulations increase.
Therefore, we propose a data-driven workflow based on dimensionality reduction and clustering
techniques that has proven successful in the past to identify similarities and patterns in the
high-dimensional simulation results [1], [2]. Furthermore, in conjunction with in-situ analysis
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Figure 1: Iso-contours of the three dimensional modal structures computed for two different cylinder
configurations; in the background, slice parallel to the flow direction showing the modal structures in the
midplane

approaches, these techniques can also be employed to monitor the simulation [3]. That way,
trends in the flow solution over time, bifurcating behaviour, or characteristic phenomenons,
such flow separation, can be identified and tracked.

We will apply linear and non-linear techniques of dimensionality reduction, namely the Proper
Orthogonal Decomposition and Diffusion Maps, with the goal to derive suitable low-dimensional
representations of the chaotic time-series data from turbulent flow simulations. We will apply
these techniques to investigate the turbulent flow around two cylinder that contains a variety of
interesting spatial and temporal modes. Besides, we focus on an in-situ algorithm for the POD
to compute the representations during run-time to save data I/O and increase the resolution of
results. Finally, we perform a clustering of these modes to identify characteristic groups of flow
behaviour in the high-dimensional simulations data and train a classifier to predict these cluster
based on the input data.

2 EXPLORATIVE ANALYSIS OF FLOW DATA

For the explorative analysis of CFD simulation bundles, we suggest the workflow below that
is represented in figure 2 and discussed in detail in the following sections:

1. Set up CFD parameter study with varying geometrical boundary conditions

2. Extract modal features from the transient flow data during runtime

3. Collect dominant modes and apply diffusion maps for a non-linear dimensionality reduction

4. Find groups of similar simulations by applying a k-means clustering

5. Use classifier to identify decision regions and make prediction for new input parameters

2.1 In-Situ Proper Orthogonal Decomposition

As a first preprocessing step we want to extract spatial - temporal features from the transient
flow field and reduce the formal dimension of the data. A suitable technique for this purpose
is the the Proper Orthogonal Decomposition (POD), which has been used for several decades
to study turbulent flows by providing a decomposition of a flow field into spatial modes and
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Parallel and streaming SVD:

1. Every fs time-steps, collect snapshot from transient 

    flowfield into batch Xi of size NB
2. Every NB * fs time-steps, update local SVD Ui, Di, Vi

T

3. At the end of the simulation, construct global matrix 

    and compute global SVD and POD modes U  

Non-linear Dimension Reduction:

1. Collect first column of U for each simulation into 

    sampling matrix Xs
2. Run diffusion maps on Xs  to derive embedding

    coordinates E1, E2, E3

  

Clustering

1. Group embedding coordinates into clusters Ci  

    by k-means clustering

  

Train Classifier

1. Train different classifiers based on input data 

   PosX, PosY and target clusters

2. Use classifier to predict characteristic flow behaviour

   for on new input parameters 

  

OpenFOAM Simulation 

1. Generate set of input parameters by varying X and Y 

    position of second cylinder  

2. Run transient Detached Eddy Simulation for each pair

  

For each simulation

Collect data

Figure 2: Proposed workflow layout for an explorative analysis of transient CFD data

temporal coefficients. The typical three dimensional structures of the modes for an example
flow around two cylinders are depicted in figure 1. To construct the POD, solution vectors are
taken from the CFD simulation at certain points in time and collected into a snapshot matrix
X of size m × n, where the rows stand for the spatial dimension and the columns represent one
snapshot in time. Next, the eigenvalues and eigenvectors of the covariance matrix C = XXT

are computed, in which the latter are called POD modes. The POD modes can also be derived
as the left singular matrix U from the Singular Value Decomposition (SVD) of X : X = UDV T .
Respectively, the POD coefficients correspond to the rows of the scope matrix T = DV T . The
SVD approach has some advantages in practise and will be used from here on.

From an algorithmic perspective, two main challenges arise during the computation of the
POD modes from CFD data. First, we need to run the SVD in parallel to speed up computations
and overcome memory limits of a single node. Second, we would like to run it in a streaming
fashion, meaning during runtime of the simulation, while the CFD results are being generated
and the solution is still in memory. This can avoid large amounts of data in- and output but
also allows for a simulation monitoring by investigated intermediate results of the simulation.
Especially the latter is an important motivation of an explorative analysis when employed to
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Figure 3: Parallel computation of the POD modes in two steps: local SVD (left) and final results (right)

identify unwanted behavior. This can for example be used as an abort criterion for the simulation
and thus potentially save computing time.

Parallel Execution of the SVD

There are multiple approaches for a distributed SVD execution optimized for different scenar-
ios (compare e.g. [8] and [9]). As we already have a predefined decomposition of the geometrical
mesh, we chose the split-and-merge approach for the SVD as described in [4]. That way, we
can take advantage of the data already being distributed to multiple MPI ranks in the CFD
simulation and reduce communication overhead during the analysis steps. A second advantage
lies in the simple formulation of the algorithm, including a streaming approach (see below) and
a straightforward implementation.

In a first step, the snapshot matrix X is divided by rows into s smaller matrices Xi that can
be chosen as the local flow solutions on each MPI rank. It follows a local SVD on each Xi that
will be done in parallel on all ranks at the same time. Next, the SV D of a combined eigen-matrix
Y of size n × ns has to be computed which is usually much smaller than the original snapshot
matrix of size m × n. The overall algorithms can be summarized in four steps [4]:

1. Partition X by rows into X = [XT
1 , ..., X

T
s ]

T

2. Perform SV D for each Xi: Xi = ŪiDiV
T
i

3. Perform SV D for the combined eigen-matrix Y = [V1D1, ..., VsDs]
T : Y = UyDyV

T
y

4. Output ŨUy, Dy and Vy as the three components of SV D of X, where Ũ is the block
diagonal matrix of all Ui.

Figure 3 shows an example of the local and global results of a parallel SVD computation
including the processor boundaries with overlapping regions.

Streaming Execution of the SVD

The algorithm, as it is defined above, would need the entire snapshot matrix to be available
at once in memory. However, this is oftentimes not feasible for a practical in-situ workflow.
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Instead we can split each local matrix Xi again by columns which leads to batches of local
snapshots over a couple of time-steps. Starting off with an SVD of the local snapshot matrix
X1:t

i up to time-step t, we can apply the following algorithm to update the local SVD with a
new batch Xt+1

i iteratively [4]:

a. Find the SVD Xt+1
i = U t+1

i Dt+1
i V t+1

i
T
, and let Ṽ = diag(V 1:t

i , V t+1
i ) be a diagonal block

matrix.

b. Let W = (U1:t
i D1:t

i , U t+1
i Dt+1

i ) and find the SVD w = UwDwV
T
w .

c. Output U1:t+1
i = Uw, D1:t+1

i = Dw and V 1:t+1
i = Ṽ Vw as the three components of SVD

of X1:t+1
i .

During the simulation only the current SVD results, as well as a small batch of flow snapshots
has to be held in memory. Applied in conjunction with the parallel approach from above, the
batch updating of the SVD will replace step 2. from above. Whenever a global solution is
needed steps 3. and 4. can be executed.

The parallel and streaming approach for the POD is implemented in Python based on Scipy
for the local SVD computations. This ensures a flexible, but efficient implementation and a
straightforward in-situ execution in a Catalyst ParaView pipeline, while connecting to any CFD
code that supports the Catalyst interface.

2.2 Dimensionality Reduction, Clustering and Classification

The clustering of the simulations and their corresponding modes into groups of similar be-
haviour is done in two steps. First, a dimensionality reduction is performed by applying the
diffusion map algorithm. It is based on the assumption that there are low-dimensional struc-
tures in the data that can be extracted by a diffusion process over the data points, followed by a
spectral decomposition of the global diffusion distance matrix. Thereby a non-linear embedding
of the data points into the Euclidean space is achieved that preserves local diffusion distances
which makes it very powerful for exploring data from non-linear physical systems. For more de-
tails of the approach we refer to [5] and [6]. Based on the embedded data a k-means clustering
is performed. It separates the samples into a predefined number of groups by minimizing the
distances of the points to their group-mean (see e.g. [7]).

The k-means algorithm is an unsupervised machine learning technique, thus it cannot be
used for predictions. As we would like to be able to predict the characteristic behaviour of the
modes for new input parameter, we additionally train a classifier on the clustering results from
before. Here, we use a Support Vector Machine (SVM) with a non-linear radial basis functions
(RBF) kernel. More details can be found in [7].

3 DOUBLE CYLINDER USE-CASE

As a simple, but interesting use-case for an explorative analysis, we choose the three-dimen-
sional flow around two cylinders with identical diameters D at ReD = 10, 000. We generate
a parameter study of a total of 60 simulations by varying the X and Y position of the second
cylinder between 0 ≤ PosX ≤ 5 and 0 ≤ PosY ≤ 3. Values are sampled randomly from a latin
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Region of interest for analysis
Pos X

Po
s 

Y

Figure 4: Parameter variations (left) and geometrical setup (right) of the study including the region of
interest for analysis

hypercube and scaled to the desired boundaries. Here, to avoid an overlap of the cylinders, the
squared area, where (PosX,PosY ) ∈ [0, 1]2, is ignored, see figure 4a. The transient Detached
Eddy Simulations (DES) are carried out in OpenFOAM Version 6.0, using ParaView Catalyst
for in-situ data processing. To allow for an automatic generation of the mesh based on the
varying input geometries, we use SnappyHexMesh. The resulting meshes consist of around 2
million mostly hexahedral cells per simulation. The overall duration of one run corresponds to
150 non-dimensional time units based on the cylinder diameter and input velocity.

The streaming POD algorithm from section 2.1 is implemented in Python and wrapped as a
ParaView Plugin, which allows a simple online execution as part of a Catalyst pipeline. A total
of 600 flow snapshots are processed online in six consecutive batches of size 100 throughout the
simulation. Based on flows around single cylinders for similar Reynolds number, we expect one
dominant mode for each cylinder that shows periodic behaviour in the wake region. Depending
on the vertical and horizontal position of the cylinders, these modal structures will interact
with each other in different ways, such as cancelling out or amplifying each other or generating
completely new spatial structures.

We will investigate the principal shape of the dominant POD mode by identifying groups
of behaviour over all simulations, such as structures with two or three periodic oscillations in
the vertical directions or cases where no clear dominant mode is present. Due to the changing
geometries and meshes, we focus the analysis on the region behind both cylinders, as defined
in figure 4b and interpolate all data to a common reference mesh. As the POD decomposition
is computed in parallel on all simulation cores, there is no need to restrict the domain during
runtime. Thus, in the most efficient workflow, we do the interpolation only once at the end of
the simulation.

4 RESULTS

In the first step of the analysis, the dominant POD modes of all simulations represented
as vectors are combined into a sampling matrix Xs. A non-linear dimensionality reduction is
performed by applying the diffusion map algorithm as described in section 2.2 to the matrix
Xs. Thereby the high-dimensional spatial modes are transformed into a lower dimensional
embedding. The first two embedding coordinates are shown in figure 5 (left). We observe a
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Figure 5: Clustering and Classification

structure that can be divided into several smaller groups. Note that generally it is difficult to
select the number of clusters. We choose four cluster for the following analysis. As we will
discuss later on, this represents best the different characteristic physical behaviour in the data.
Next, the k-means clustering algorithm is applied to assign each simulation to one cluster as
represented in colours in figure 5 (left).

To get a better understanding of how particular simulations are grouped, we chose two
example modes from each cluster and compare them in figure 6. Similar characteristic shapes of
the modes are found for all samples in each cluster. For Cluster I and II, sharp periodic structures
can be identified that repeat two and three times, respectively, in the vertical direction. In
Cluster IV, there are also three vertical periodic structures that however decay much stronger in
the downstream direction. In Cluster III the modal structures are more diffus and do not contain
any clearly repeating patterns. Similar behaviour is observed for all points in each cluster,
even though, at the connecting regions between two cluster, oftentimes, there are intermediate
solutions that could be assigned to both adjacent clusters.

In a further analysis step, we would like to be able to predict the characteristic modal structure
for a set of input parameters for which there are no high resolution CFD results. To achieve this,
we first plot the input parameters PosX versus PosY in figure 5 (right), coloured with the cluster
number from before. While most of the clusters can still be observed as continuous regions in the
original parameter space, it seems that there is no simple linear relationship between the input
parameters and cluster numbers. Thus, a non-linear classifier, such as the Kernel SVM that
we use in the following, seems most promising to predict the flow behaviour. For the training
and validation of the classifier, the data is randomly split into a training dataset containing 48
samples and a test dataset with 12 samples. Finally, the predicted regions are colored with the
corresponding cluster number in figure 5 (right) to show the decision boundaries of the classifier.
The overall accuracy of the classification of the test data lies in the range of 0.9 - 1.0 depending
on the random selection of the training and test samples.

We observe five coherent regions, whereby cluster II is split into two separate sections. In-
terestingly to note, all simulation cases in both sections of Cluster II show the same principal
behaviour of three periodic structure while this is not the case for the simulations that lie in
between and that are correctly identified to belong to Cluster III. The overall distribution of
the class boundaries leads to the conclusion that only for specific relative locations of the two
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Figure 6: Two selected POD modes per cluster; Cluster I: Case 16 & Case 45, Cluster II: 14 & 58,
Cluster III: 17 & 56, Custer IV: 6 & 43.
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cylinders to each other, periodic spatial modes are present. These findings could potentially be
exploited in various engineering scenarios, for example in cases where oscillations in the flow
solution should be avoided at specific frequencies to prevent an amplification of eigen-modes in
the surrounding structures.

5 CONCLUSION

We proposed a workflow for the explorative analysis of transient CFD simulations with the
goal to simplify the comparison of large simulation bundles. The key technical elements are
i) the in-situ extraction of POD modes, ii) a non-linear dimensionality reduction via diffusion
maps and III) clustering of the data. The data analytics workflow was implemented in Python
and attached to a OpenFOAM simulation using the ParaView Catalyst interface. A parameter
study of 60 simulations was constructed by simulating the flow around two cylinders with varying
relative positions to each other.

In the low dimensional embedding of the dominant POD modes, we found four different
clusters that represent different characteristic function shapes. Differences lie in the number
and vertical position of periodic structure, as well as the decay in the stream-wise direction.
Finally, we train a classifier to predict the principal class of physical behaviour of the dominant
mode for a new set of input parameters. Predictions were accurate in more than 90% of the
investigated test cases without the use of information from the CFD simulation.

While this concludes the explorative analysis, the obtained results could be the input for
further analysis steps. As an example, in cases where the physical solution varies in a non-linear
way over the parameter space, it could be difficult to build a global surrogate modal to predict
new solutions. However, when applying our workflow first, the global parameter space can be
divided into smaller regions with similar physical behaviour. Based on these, local prediction
models can be trained that - combined together - can provide better prediction over the entire
space.
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