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Abstract. A posteriori error estimators for convection-diffusion
eigenvalue model problems are discussed in [Heuveline and Ran-
nacher, A posteriori error control for finite element approximations
of elliptic eigenvalue problems, 2001] in the context of the dual-
weighted residual method (DWR). This paper directly addresses
the variational formulation rather than the non-linear ansatz of
Becker and Rannacher for some convection-diffusion model prob-
lem and presents a posteriori error estimators for the eigenvalue
error based on averaging techniques. Two different postprocessing
techniques attached to the DWR paradigm plus two new dual-
weighted a posteriori error estimators are also presented. The first
new estimator utilises an auxiliary Raviart-Thomas mixed finite
element method and the second exploits an averaging technique
in combination with ideas of DWR. The six a posteriori error es-
timators are compared in three numerical examples and illustrate
reliability and efficiency and the dependence of generic constants
on the size of the eigenvalue or the convection coefficient.

1. Introduction

While the numerical approximation of eigenvalues of symmetric second-
order elliptic partial differential equations (PDEs) with real eigen-
pairs is relatively well understood, much less is known about non-
symmetric problems with possibly complex eigenvalues. A posteriori
error estimators for symmetric eigenvalue problems can be found in
[Ver96, Lar00, OPW+03, DPR03, MSZ06]. The convergence of the
adaptive finite element method (AFEM) for the symmetric case is
considered in [GG09, GMZ09, Sau10, CG11]. A posteriori error es-
timators for some non-symmetric eigenvalue problems can be found in
[HR01, HR03, CHH10]. It is the aim of this paper to review the results

Key words and phrases. convection-diffusion, eigenvalue, adaptive, finite element
method, dual-weighted.

?Supported by the German Research Foundation (DFG) Research Center
MATHEON “Mathematics for key technologies”, the World Class University
(WCU) program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology R31-2008-000-10049-0, and
the graduate school BMS “Berlin Mathematical School”.

Published in Comput. Methods Appl. Mech. Engrg. 268 (2014) 160–177. Available online at
www.sciencedirect.com, http://dx.doi.org/10.1016/j.cma.2012.09.018.

c©2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/.

http://dx.doi.org/10.1016/j.cma.2012.09.018
http://creativecommons.org/licenses/by-nc-nd/4.0/


ERROR ESTIMATORS FOR CONVECTION-DIFFUSION EVPS 2

of Heuveline and Rannacher in a direct approach rather than in the non-
linear setting of the DWR paradigm following [BR98, HR01, BR03].
These results are also applicable to the averaging techniques as for the
symmetric eigenvalue problem in [MSZ06]. Numerical experiments in-
dicate that the efficiency indices for the residual-type a posteriori error
estimators depend strongly on the convection coefficient β. There-
fore, this paper investigates the dual-weighted residual paradigm from
Becker and Rannacher [BR98, BR01, BR03] and presents two new
dual-weighted a posteriori error estimators. The first new estimator is
based on the Raviart-Thomas mixed finite element method (MFEM)
[BF91, RT77] of first-order and the second one on averaging tech-
niques. Hence, they are named dual-weighted mixed (DWM) and dual-
weighted averaging (DWA) a posteriori estimators. The paper presents
numerical evidence that the DWR methodology in combination with
the L2 interpolation scheme of [WL94] is empirical reliable and ef-
ficient for unstructured triangular meshes while [HR01] is restricted
to structured meshes because of the approximation of the weights by
second-order difference quotients.

The convection-diffusion model eigenvalue problem reads: Seek an
eigenpair (λ, u) ∈ C× {H1

0 (Ω;C) ∩H2
loc(Ω;C)} with

−∆u+ β · ∇u = λu in Ω.(1.1)

The given data β ∈ H(div,Ω;R2) is assumed to be divergence free in
the bounded Lipschitz domain Ω ⊆ R2, i.e.,

∫
Ω
v div β dx = 0 for all

v ∈ V := H1
0 (Ω;C).

The weak problem considers the two complex Hilbert spaces V with
energy norm |||·||| = |·|H1(Ω;C) (which is a norm on V ) and W := L2(Ω;C)
with norm ‖·‖L2(Ω;C). The weak form reads: Seek an eigenpair (λ, u) ∈
C× V with ‖u‖ = 1 such that

a(u, v) = λb(u, v) for all v ∈ V.(1.2)

The bilinear form a(·, ·) is elliptic and continuous in V and the bilinear
form b(·, ·) is continuous, symmetric and positive definite, and hence
induces a norm ‖·‖ := b(·, ·)1/2 on W . For the above model problem,

‖·‖ = ‖·‖L2(Ω;C) and the bilinear forms (where (·) denotes complex
conjugation) read

a(u, v) =

∫
Ω

(∇u · ∇v + (β · ∇u)v) dx and b(u, v) =

∫
Ω

uv dx.

Since β is assumed to be divergence free, an integration by parts yields∫
Ω

(β · ∇v)v dx = −
∫

Ω

(β · ∇v)v dx.

Hence, for all v ∈ V , it holds that

|||v|||2 = Re a(v, v).
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Thus, the ellipticity constant (which is one) of the bilinear form a(·, ·)
is independent of β.

The analysis of the non-symmetric eigenvalue problem requires the
dual eigenvalue problem: Seek a (dual) eigenpair (λ∗, u∗) ∈ C×V with
‖u∗‖ = 1 such that

a(v, u∗) = λ∗b(v, u∗) for all v ∈ V.
Since the embedding of V in W is continuous and compact, the spectral
theory for compact operators [Kat80, OB91] is applicable. The Riesz-
Schauder theorem shows that the primal and dual spectra consist of
finite or countable infinite many eigenvalues with no finite accumulation
point. In particular, the algebraic multiplicities are finite.

Throughout this paper, suppose that λ is a simple eigenvalue in the
sense that the algebraic multiplicity and hence the geometric multiplic-
ity is one and that λ is well separated from the remaining part of the
spectrum.

Given any finite-dimensional subspace V` ⊂ V , the discrete problems
read: Seek primal and dual (discrete) eigenpairs (λ`, u`) and (λ∗` , u

∗
`)

with ‖u`‖ = 1 = ‖u∗`‖ such that

a(u`, v`) = λ`b(u`, v`) for all v` ∈ V`;
a(v`, u

∗
`) = λ∗`b(v`, u

∗
`) for all v` ∈ V`.

(1.3)

The primal and dual eigenvalues λj and λ∗j as well as the primal and
dual discrete eigenvalues λ`,j and λ∗`,j are connected by

λj = λ∗j for j = 1, 2, 3, . . . and λ`,j = λ∗`,j for all j = 1, . . . , dim(V`).

The abstract a priori theory yields the following upper bounds in
terms of the maximal mesh-size H`,

|λ− λ`| . Hs1+s2
` , |||u− u`||| . Hs1

` , |||u∗ − u∗` ||| . Hs2
` ,

where 0 < s1 ≤ 1 and 0 < s2 ≤ 1 depend on the regularity of the pri-
mal and dual eigenfunctions [OB91, Chapter 10.3]. This paper employs
standard notation on Lebesgue and Sobolev spaces and norms. More-
over, x . y denotes an estimate x ≤ Cy with some generic constant
C > 0, which is independent of the maximal mesh-size H`. Similarly
x ≈ y abbreviates the inequalities x . y and y . x.

The outline of the remaining parts of this paper is a follows. In Sec-
tion 2 an optimal error estimate for the eigenvalue error is derived. For
this, the basic algebraic properties and identities of the non-symmetric
eigenvalue problem are reviewed. In contrast to [HR01], the direct vari-
ational formulation is used, rather then the more general non-linear
DWR framework of Becker and Rannacher [BR98, BR03]. The weak
regularity assumptions and the suboptimal L2 error estimate of [HR01]
prove the L2 contribution to the residual identity to be of higher-order.
Section 3 summarises some old and some new results on several a pos-
teriori error estimators, namely the residual, the averaging, and the
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dual-weighted DWR1, DWR2, DWM and DWA a posteriori error es-
timators. Section 4 describes the adaptive finite element method, the
interpolation scheme, used for the calculation of the weights, and the
computation of the error estimators. In Section 5 the error estimators
are compared in numerical benchmarks on three different domains for
higher eigenvalues and various convection coefficients. Section 6 draws
some conclusions.

2. Algebraic properties

This section is devoted to the primal and dual residual and the es-
timation of the eigenvalue and energy error in the primal and dual
eigenfunctions.

For the primal and dual discrete eigenpairs (λ`, u`) and (λ∗` , u
∗
`), the

residuals are defined by

Res` := a(u`, ·)− λ`b(u`, ·) ∈ V ∗ and Res∗` := a(·, u∗`)− λ
∗
`b(·, u∗`) ∈ V ∗,

for the dual space V ∗ of V . Notice that V` ⊂ ker(Res`) and V` ⊂
ker(Res∗`).

It is the goal of this section to derive the following optimal error
estimate for the eigenvalue error of simple eigenvalues

|λ− λ`| . |||Res`|||2∗ + |||Res∗` |||2∗(2.1)

which is valid only for H` � 1. Throughout this paper let e` := u− u`
and e∗` := u∗ − u∗` .
Lemma 2.1 (Primal-Dual Error Residual Identity). Suppose that (λ`, u`)
and (λ∗` , u

∗
`) are the discrete primal and discrete dual eigenpairs to the

primal and dual eigenpairs (λ, u) and (λ∗, u∗). Then it holds that

(λ− λ`)
(
b(u, u∗) + b(u`, u

∗
`)− b(e`, e∗`)

)
= Res`(e

∗
`) + Res∗`(e`).

Proof. Direct algebraic manipulations and the definition of the residu-
als and using that λ = λ∗, λ` = λ∗` leads to

a(u`, u
∗ − u∗`)− λ`b(u`, u∗ − u∗`) + a(u− u`, u∗`)− λ∗`b(u− u`, u

∗
`)

= a(u`, u
∗)− λ`b(u`, u∗) + a(u, u∗`)− λ∗`b(u, u

∗
`)

= (λ∗ − λ`)b(u`, u∗) + (λ− λ∗`)b(u, u
∗
`)

= (λ− λ`)(b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`)). �

Lemma 2.2. Suppose that the maximal mesh-size H` tends to zero as
`→∞, then

lim
`→∞

b(e`, e
∗
`) = 0 and lim

`→∞
b(u`, u

∗
`) = b(u, u∗).

Proof. The convergence of |||e`||| and |||e∗` ||| implies the convergence of
‖e`‖ and ‖e∗`‖ to zero as ` → ∞ because of the compact embedding.
Hence, the assertions follow from |b(e`, e∗`)| ≤ ‖e`‖‖e∗`‖ and

|b(u, u∗)− b(u`, u∗`)| = |b(u− u`, u∗) + b(u`, u
∗ − u∗`)| ≤ ‖e`‖+ ‖e∗`‖.�
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Remark 2.1. Since all eigenvalues converge as H` → 0, λ` is, as λ, a
simple eigenvalue for sufficiently small H`. For a vector z ∈ Rm let
zH denotes its complex conjugate transposed vector. The condition
number 1/|yH` B`x`| of the discrete eigenvalue λ` is defined for right
and left eigenvectors x` and y` of the algebraic eigenvalue problems

A`x` = λ`B`x` and yH` A` = λ∗`y
H
` B`,

with non-symmetric convection-diffusion matrix A` and symmetric pos-
itive definite mass matrix B` [GV96, Section 7.2.2]. It is known that
yH` B`x` 6= 0 for simple eigenvalues and that |yH` B`x`| � 0 if the simple
eigenvalue is well separated from the remaining part of the spectrum.
Hence, for well separated simple eigenvalues considered in this paper,
it is reasonable to assume b(u, u∗) 6= 0. Furthermore, 1/|b(u, u∗)| is the
condition number of the continuous eigenvalue λ and

|b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`)| −→ 2|b(u, u∗)| as H` → 0.

Suppose that λ is simple such that b(u, u∗) 6= 0 and let `� 1 be such
that the maximal mesh-size H` of the triangulation T` is sufficiently
small, i.e.,

max{‖e`‖, ‖e∗`‖|} < min{1, |b(u, u∗)|/2}.(2.2)

Then |b(u, u∗)| < |b(u, u∗) + b(u`, u
∗
`) − b(e`, e∗`)| < 3, where the lower

bound follows from

|b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`)|

= |2b(u, u∗)− b(u, u∗ − u∗`)− b(u− u`, u∗)|
≥ 2|b(u, u∗)| − |b(u, u∗ − u∗`) + b(u− u`, u∗)|
≥ 2|b(u, u∗)| − ‖u‖‖e∗`‖ − ‖u∗‖‖e`‖
= 2|b(u, u∗)| − ‖e∗`‖ − ‖e`‖

and (2.2). Thus for simple eigenvalues λ it holds that

|λ− λ`| ≈ |Res`(e
∗
`) + Res∗`(e`)|.(2.3)

This implies the suboptimal eigenvalue error estimate

|λ− λ`| . |||Res`|||∗ + |||Res∗` |||∗.(2.4)

Remark 2.2. The proof of the following Lemma 2.3 applies a suboptimal
L2 error estimate that is based on the weak regularity assumption of
the eigenvalue λ with the eigenspace E(λ). That is a condition on

aλ(·, ·) = a(·, ·)− λb(·, ·)

on the quotient space V/E(λ) in the sense that

|||w||| ≤ Cλ sup
v∈V/E(λ)

|aλ(v, w)|
|||v|||

for all w ∈ V/E(λ).
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The constant Cλ depends on the distance of λ to all other distinct
eigenvalues and does not depend on the mesh-size. This weak regularity
assumption implies the suboptimal L2 error estimates [HR01, (70)-(71)]

‖e`‖ . |||Res`|||∗ + |λ− λ`| and ‖e∗`‖ . |||Res∗` |||∗ + |λ− λ`|.(2.5)

Lemma 2.3 (Energy Estimate). Suppose that b(u, u∗) 6= 0, the max-
imal mesh-size H` is sufficiently small according to (2.2), and (λ`, u`)
and (λ∗` , u

∗
`) are the discrete primal and discrete dual eigenpairs to the

primal and dual eigenpairs (λ, u) and (λ∗, u∗). Then it holds that

|||e`|||+ |||e∗` ||| . |||Res`|||∗ + |||Res∗` |||∗.

Proof. Since b(u, u) = 1 = b(u`, u`), the eigenvalue equations (1.2) and
(1.3) imply that

a(e`, e`) = λ+ λ` − λb(u, u`)− a(u`, u).

The relation λ`b(u`, u) = λ`b(u, u`) = λ`Re b(u, u`)−iλ`Im b(u, u`) leads
to

a(e`, e`) = (λ+ λ`)(1− Re b(u, u`)) + i (λ` − λ)Im b(u, u`)

+ λ`b(u`, u)− a(u`, u).

From 0 = Im‖u`‖2 = Im b(u`, u`) it follows that

a(e`, e`) = (λ+ λ`)(1− Re b(u, u`)) + i (λ` − λ)Im b(u− u`, u`)
+ λ`b(u`, u)− a(u`, u).

Since

2Re b(u, u`) = ‖u‖2 + ‖u`‖2 − ‖e`‖2 = 2− ‖e`‖2,

this implies

|||e`|||2 = Re a(e`, e`) ≤ |Res`(e`)|+ |λ− λ`|‖e`‖+
|λ+ λ`|

2
‖e`‖2.(2.6)

The suboptimal estimates (2.4) and (2.5) imply

|λ− λ`|+ ‖e`‖ . |||Res`|||∗ + |||Res∗` |||∗.(2.7)

Since ‖.‖ . |||.|||, the inequalities (2.6),(2.7) yield

|||e`||| . |||Res`|||∗ + |||Res∗` |||∗.
Similarly it follows that

|||e∗` ||| . |||Res`|||∗ + |||Res∗` |||∗. �

Theorem 2.4 (Eigenvalue Error Estimate). Suppose b(u, u∗) 6= 0, the
maximal mesh-size H` is sufficiently small such that (2.2) holds and let
(λ`, u`) and (λ∗` , u

∗
`) be the discrete primal and discrete dual eigenpairs

to the primal and dual eigenpairs (λ, u) and (λ∗, u∗) for the simple
eigenvalue λ. Then it holds that

|λ− λ`| . |||Res`|||2∗ + |||Res∗` |||2∗.
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Proof. The aforementioned estimate (2.3), the Cauchy-Schwarz inequal-
ity and Lemma 2.3 lead to

|λ− λ`| . |Res`(e
∗
`)|+ |Res∗`(e`)| . |||Res`|||2∗ + |||Res∗` |||2∗. �

3. A Posteriori Error Estimates

This section is devoted to the residual, averaging and dual-weighted
residual a posteriori error estimators for the eigenvalue error of simple
eigenvalues. The first two residual and averaging based a posteriori
error estimators make use of Theorem 2.4

|λ− λ`| . |||Res`|||2∗ + |||Res∗` |||2∗.
Here, the dual norms of the primal and dual residuals are bounded
separately. The DWR based a posteriori error estimators are derived
from the asymptotic estimate (2.3) for simple eigenvalues,

|λ− λ`| ≈ |Res`(e
∗
`) + Res∗`(e`)|,

where the constant tends to 1/(2|b(u, u∗)|) as H` → 0. In general the
dual-weighted error estimators avoid any additional inequality, such
as approximation properties, with unknown constants. Thus, they are
robust with respect to strong convection which is also confirmed by the
numerical examples in Section 5. One question that arises from the
computation of Res`(e

∗
`) or Res∗`(e`) is the calculation of the unknown

errors e` and e∗` . The rather heuristic approach of [BR03] states that
it is numerically reliable and efficient to approximate these quantities
which occur only in the weights. The idea is that one does not need
to approximate the weights with higher accuracy than the size of the
residual terms. In practice, the unknown primal and dual solutions
u, u∗ are replaced by solutions of a higher-order method or by higher-
order interpolation. In Section 4 a higher-order interpolation ansatz
for general triangular meshes is described which leads to numerically
reliable and efficient dual-weighted a posteriori error estimators.

Throughout this paper, suppose (T`)` is a family of shape-regular
triangulations of Ω into triangles, i.e. each T ∈ T` is a closed triangle,
Ω =

⋃
T∈T` T , for any two distinct triangles T1, T2 ∈ T` and T1 ∩ T2 is

either empty, a common vertex or a common side. Suppose that the
minimal angle of every triangle is uniformly bounded from below. The
conforming finite element space of order k ∈ N for the triangulation T`
is defined by

Pk(T`) :=
{
v ∈ H1(Ω;C) : ∀T ∈ T`, vT is polynomial of degree ≤ k

}
.

Let V` := P1(T`)∩ V and h` ∈ P0(T`) be such that h`|T := diam(T ) for
all T ∈ T`. Given a triangulation T`, define E` as the set of inner edges
and N` as the set of inner nodes. Let hT := diam(T ) for T ∈ T` and
hE := diam(E) for E ∈ E`. The jump of the discrete gradient ∇u` ∈
P0(T`)2 in normal direction νE along an inner edge ∂T+∩∂T− = E ∈ E`,
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for T+, T− ∈ T`, is denoted by [∇u`] · νE = ∇u`|T+ · νE − ∇u`|T− · νE
and [∇u`] · νE = 0 for boundary edges E ⊂ ∂Ω.

3.1. Residual Estimator. The first a posteriori error estimator is the
residual error estimator from [HR01].

Lemma 3.1. Let (λ`, u`) and (λ∗` , u
∗
`) be the discrete primal and dis-

crete dual eigenpairs to the primal and dual eigenpairs (λ, u) and (λ∗, u∗).
Then it holds that

|||Res`|||2∗ .
∑
T∈T`

h2
T‖β · ∇u` − λ`u`‖2

L2(T ) +
∑
E∈E`

hE‖[∇u`] · νE‖2
L2(E),

|||Res∗` |||2∗ .
∑
T∈T`

h2
T‖−β · ∇u∗` − λ∗`u∗`‖

2
L2(T ) +

∑
E∈E`

hE‖[∇u∗` ] · νE‖
2
L2(E).

Proof. Let v` denote the Scott-Zhang interpolation of v onto V`. Then
it holds that

Res`(v) = Res`(v − v`) = a(u`, v − v`)− λ`b(u`, v − v`)

=
∑
T∈T`

∫
T

∇u` · ∇(v − v`) + (β · ∇u`)(v − v`)dx− λ`
∫
T

u`(v − v`)dx

=
∑
T∈T`

∫
T

(β · ∇u` − λ`u`)(v − v`)dx+
∑
E∈E`

∫
E

([∇u`] · νE)(v − v`)ds.

The approximation property of the interpolation operator [SZ90]∑
T∈T`

‖h−1
T (v − v`)‖2

L2(T ) +
∑
E∈E`

‖h−1/2
E (v − v`)‖2

L2(E) . |||v|||2(3.1)

and the Cauchy-Schwarz inequality yield

Res`(v) ≤
∑
T∈T`

hT‖β · ∇u` − λ`u`‖L2(T )‖h−1
T (v − v`)‖L2(T )

+
∑
E∈E`

h
1/2
E ‖[∇u`] · νE‖L2(E)‖h−1/2

E (v − v`)‖L2(E)

.

(∑
T∈T`

h2
T‖β · ∇u` − λ`u`‖2

L2(T )

)1/2
|||v|||

+

(∑
E∈E`

hE‖[∇u`] · νE‖2
L2(E)

)1/2
|||v|||.

For the second assertion notice that the dual bilinear form a∗(u∗, ·) :=
a(·, u∗) reads in the model problem

a∗(u∗, v) = a(v, u∗) =

∫
Ω

(∇v · ∇u∗ + (β · ∇v)u∗) dx.
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An integration by parts leads to

a∗(u∗, v) =

∫
Ω

(∇u∗ · ∇v − (β · ∇u∗)v) dx for all v ∈ V.

The same arguments as for the first assertion lead to the assertion for
|||Res∗` |||.

�

3.2. Averaging Estimator. The averaging technique concerns oper-
ators A : P0(T`)2 → {V 2

` ∩ C(Ω)2} with the model example

A(∇u`) :=
∑
z∈N`

1

|ωz|

(∫
ωz

∇u` dx
)
ϕz.

Here and throughout this paper, ϕz denotes the nodal basis function
for an inner node z ∈ N`. Alternative averaging operators from [Car03]
could be employed as well.

Lemma 3.2. Let (λ`, u`) and (λ∗` , u
∗
`) be the discrete primal and dis-

crete dual eigenpairs to the primal and dual eigenpairs (λ, u) and (λ∗, u∗).
Then it holds that

|||Res`|||∗ . ‖h`(−div(A(∇u`)) + β · ∇u` − λ`u`)‖L2(Ω)

+ ‖A(∇u`)−∇u`‖L2(Ω),

|||Res∗` |||∗ . ‖h`(−div(A(∇u∗`))− β · ∇u∗` − λ∗`u∗`)‖L2(Ω)

+ ‖A(∇u∗`)−∇u∗`‖L2(Ω).

Proof. As in the previous lemma, let v` denote the Scott-Zhang interpo-
lation of v onto V`, since A(∇u`) is globally continuous the divergence
theorem can be applied. This yields

Res`(v) = Res`(v − v`) = a(u`, v − v`)− λ`b(u`, v − v`)

=

∫
Ω

(∇u` − A(∇u`)) · ∇(v − v`)dx

−
∫

Ω

div(A(∇u`))(v − v`)dx

+

∫
Ω

(β · ∇u` − λ`u`)(v − v`)dx.

Hölder’s inequality leads to

Res`(v)

≤
∑
T∈T`

hT‖−div(A(∇u`)) + β · ∇u` − λ`u`‖L2(T )‖h−1
T (v − v`)‖L2(T )

+
∑
T∈T`

‖∇u` − A(∇u`)‖L2(T )‖∇(v − v`)‖L2(T ).
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Using the stability and the approximation property (3.1)∑
T∈T`

‖∇v`‖2
L2(T ) . |||v|||2 and

∑
T∈T`

‖h−1
T (v − v`)‖2

L2(T ) . |||v|||2,

together with the Cauchy-Schwarz inequality yield

Res`(v) .
(
‖h`(−div(A(∇u`)) + β · ∇u` − λ`u`)‖L2(Ω)

+ ‖A(∇u`)−∇u`‖L2(Ω)

)
|||v|||.

In the same way one proves the assertion for |||Res∗` |||. �

3.3. DWR1 Estimator. The first DWR a posteriori error estimator
(DWR1) is derived from the DWR ansatz as in [HR01] or [BR03] plus
a result from [Car05].

Lemma 3.3. Let the eigenfunctions u, u∗ ∈ H2(Ω) ∩ H3(T`), H3(T`)
denote the broken space of piecewise H3 Sobolev functions, (λ`, u`) and
(λ∗` , u

∗
`) be the discrete primal and discrete dual eigenpairs to the primal

and dual eigenpairs (λ, u) and (λ∗, u∗), and

ηT := ‖β · ∇u` − λ`u`‖L2(T ) + h
−1/2
T ‖[∇u`] · νE‖L2(∂T ),

η∗T := ‖−β · ∇u∗` − λ∗`u∗`‖L2(T ) + h
−1/2
T ‖[∇u∗` ] · νE‖L2(∂T ).

(3.2)

Then it holds that

|Res`(e
∗
`)|+ |Res∗`(e`)| .

∑
T∈T`

h
3/2
T ηT‖[∇u∗` ] · νE‖L2(

⋃
EΩT

)

+
∑
T∈T`

h
3/2
T η∗T‖[∇u`] · νE‖L2(

⋃
EΩT

)) + HOT

for suitable fixed subsets ΩT ⊆ Ω, which contain T ∈ T`, with skeleton⋃
EΩT

, and a higher-order term

HOT :=
∑
T∈T`

h2
TηT‖∇e∗`‖L2(ΩT ) +

∑
T∈T`

h2
Tη
∗
T‖∇e`‖L2(ΩT ).

Proof. Suppose u ∈ H2(Ω), then integration by parts and Hölder’s
inequality show that

Res`(v) =
∑
T∈T`

∫
T

∇u` · ∇(v − v`) + (β · ∇u` − λ`u`)(v − v`)dx

≤
∑
T∈T`

(
h
−1/2
T ‖[∇u`] · νE‖L2(∂T )h

1/2
T ‖v − v`‖L2(∂T )

+ ‖β · ∇u` − λ`u`‖L2(T )‖v − v`‖L2(T )

)
≤
∑
T∈T`

ηTωT .
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Here, ηT is as defined in (3.2) and

ωT := ‖v − v`‖L2(T ) + h
1/2
T ‖v − v`‖L2(∂T ).

Let v` = I`v ∈ V` be the nodal interpolant of v. The interpolation
estimate [BS02]

‖v − I`v‖2
L2(T ) + hT‖v − I`v‖2

L2(∂T ) . h4
T‖D2v‖2

L2(T )

leads to

Res`(v) .
∑
T∈T`

h2
TηT‖D2v‖L2(T ).

In [HR01] D2v is locally approximated on each quadrilateral Q by
D2v`|Q using finite differences. While this is an appropriate ansatz for
structured meshes, for general triangular meshes considered here this
is not suited. In [Car05] it is shown that v ∈ H3(T`) implies

‖D2v‖L2(T ) ≤ c1h
−1/2
T ‖[∇v`] · νE‖L2(

⋃
EΩT

)) + c2‖∇(v − v`)‖1/2

L2(ΩT ).

The constant c1 depends on the shape of elements and c2 on ‖v‖H3(ΩT ).
This leads to the estimate

|Res`(e
∗
`)| .

∑
T∈T`

h
3/2
T ηT‖[∇u∗` ] · νE‖L2(

⋃
EΩT

) + HOT,

with higher-order term

HOT =
∑
T∈T`

h2
TηT‖∇e∗`‖L2(ΩT ).

Note that the jump term is formally equivalent to the energy norm and

that HOT involves an extra factor of h
1/2
T compared to the other term

of the estimate. Following the argumentation for the primal residual
yields the assertion for the dual residual

|Res∗`(e`)| .
∑
T∈T`

h
3/2
T η∗T‖[∇u`] · νE‖L2(

⋃
EΩT

) + HOT,

with the higher-order term

HOT =
∑
T∈T`

h2
Tη
∗
T‖∇e`‖L2(ΩT ). �

Remark 3.1. From the theory in [Car05] it remains open to choose the
fixed size of the patches ΩT containing T ∈ T`. However, the numerical
examples of Section 5 suggest, that, surprisingly, ΩT = T and thus⋃
EΩT

= ∂T might be sufficient. This seems to be in agreement with
[BR03].
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3.4. DWR2 Estimator. The second DWR estimator (DWR2) ac-
cording to [BR03] reads as follows. Observe that this error estimator
involves the unknown exact primal and dual errors e` and e∗` . In the
numerical examples of Section 5, these errors will be approximated by
the interpolation described in Section 4.

Lemma 3.4. The unknown exact errors e` and e∗` satisfy

|Res`(e
∗
`) + Res∗`(e`)|

=

∣∣∣∣∣∑
T∈T`

∫
T

(β · ∇u` − λ`u`)e∗`dx+
∑
E∈E`

∫
E

([∇u`] · νE)e∗`ds,

+
∑
T∈T`

∫
T

(−β · ∇u∗` − λ∗`u∗`)e`dx+
∑
E∈E`

∫
E

([∇u∗` ] · νE)e`ds

∣∣∣∣∣ .
Proof. An integration by parts leads to

Res`(e
∗
`) = a(u`, u

∗ − u∗`)− λ`b(u`, u∗ − u∗`)

=
∑
T∈T`

∫
T

(β · ∇u` − λ`u`)(u∗ − u∗`)dx

+
∑
E∈E`

∫
E

[∇u`] · νE(u∗ − u∗`)ds.

Similarly,

Res∗`(e`) = a(u− u`, u∗`)− λ∗`b(u− u`, u
∗
`)

=
∑
T∈T`

∫
T

(−β · ∇u∗` − λ∗`u∗`)(u− u`)dx

+
∑
E∈E`

∫
E

[∇u∗` ] · νE(u− u`)ds. �

3.5. DWM Estimator. Utilising the non standard Raviart-Thomas
solution of an auxiliary problem leads to a new approach for a dual-
weighted a posteriori error estimator. Note that this error estimator
involves the unknown exact primal and dual errors e` and e∗` as well as
their unknown gradients ∇e` and ∇e∗` . In practice these errors need to
be approximated as described in Section 4.

Lemma 3.5. Let the two mixed finite element functions (qM , uM) ∈
RT0(T`)× P0(T`) and (q∗M , u

∗
M) ∈ RT0(T`)× P0(T`) be the solutions of

the equilibrium conditions

−div(qM) + β · qM = f` in Ω and qM −∇uM = 0 in Ω,

−div(q∗M)− β · q∗M = f ∗` in Ω and q∗M −∇u∗M = 0 in Ω,
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with right-hand sides f`, f
∗
` ∈ P0(T`) given by f`|T := h−2

T

∫
T
λ`u` and

f ∗`|T := h−2
T

∫
T
λ∗`u

∗
` for T ∈ T`. Then the unknown exact errors e` and

e∗` satisfy

|Res`(e
∗
`) + Res∗`(e`)|

≤
∣∣∣∣∫

Ω

(∇u` − qM) · ∇e∗`dx+

∫
Ω

(∇u∗` − q∗M) · ∇e`dx

+

∫
Ω

β · (∇u` − qM)e∗`dx−
∫

Ω

β · (∇u∗` − q∗M)e`dx

∣∣∣∣+ HOT,

with the higher-order term

HOT =

∣∣∣∣∫
Ω

(f` − λ`u`)e∗`dx+

∫
Ω

(f ∗` − λ∗`u∗`)e`dx
∣∣∣∣ .

Proof. By the definition of the auxiliary problem for qM and integration
by parts it holds that

Res`(e
∗
`) =

∫
Ω

∇u` · ∇e∗`dx+

∫
Ω

(β · ∇u` − λ`u`)e∗`dx

=

∫
Ω

(∇u` − qM) · ∇e∗`dx+

∫
Ω

β · (∇u` − qM)e∗`dx

+

∫
Ω

(f` − λ`u`)e∗`dx.

Element-wise Cauchy and Poincaré [PW60] inequalities yield∫
Ω

(f` − λ`u`)e∗`dx ≤ ‖f` − λ`u`‖‖e∗`‖

≤ 1

π

(∑
T∈T`

h2
T‖λ`∇u`‖2

L2(T )

)1/2

‖e∗`‖.

Note that ‖e∗`‖ is of the same convergence order as |λ − λ`| and that
the last term involves an additional term of order O(H`). Therefore,
this term is formally of higher-order compared to |λ − λ`|. The same
argumentation leads to

Res∗`(e`) =

∫
Ω

∇u∗` · ∇e`dx+

∫
Ω

(−β · ∇u∗` − λ∗`u∗`)e`dx

=

∫
Ω

(∇u∗` − q∗M) · ∇e`dx−
∫

Ω

β · (∇u∗` − q∗M)e`dx

+

∫
Ω

(f ∗` − λ∗`u∗`)e`dx.

The last term is again a formally higher-order term. �
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3.6. DWA Estimator. The second new a posteriori error estimator
makes use of the ideas of the DWR2 estimator. The new aspect pro-
posed here is not to use integration by parts to obtain a residual term
but to involve the averaged gradients A(∇u`) and A(∇u∗`) and then
to do integration by parts. Again this error estimator involves the
unknown exact primal and dual errors e` and e∗` which have to be ap-
proximated as described in Section 4.

Lemma 3.6. The unknown exact errors e` and e∗` satisfy

|Res`(e
∗
`) + Res∗`(e`)|

=

∣∣∣∣∫
Ω

(∇u` − A(∇u`)) · ∇e∗`dx+

∫
Ω

(∇u∗` − A(∇u∗`)) · ∇e`dx

+

∫
Ω

(−div(A(∇u`)) + β · ∇u` − λ`u`)e∗`dx

+

∫
Ω

(−div(A(∇u∗`))− β · ∇u∗` − λ∗`u∗`)e`dx
∣∣∣∣ .

Proof. An addition and subtraction of the averaging term A(∇u`) and
an integration by parts yields

Res`(e
∗
`) = a(u`, u

∗ − u∗`)− λ`b(u`, u∗ − u∗`)

=

∫
Ω

(∇u` − A(∇u`)) · ∇e∗`dx

+

∫
Ω

(−div(A(∇u`)) + β · ∇u` − λ`u`)e∗`dx.

Analogously it follows

Res∗`(e`) = a(u− u`, u∗`)− λ∗`b(u− u`, u
∗
`)

=

∫
Ω

(∇u∗` − A(∇u∗`)) · ∇e`dx

+

∫
Ω

(−div(A(∇u∗`))− β · ∇u∗` − λ∗`u∗`)e`dx. �

4. Adaptive finite element method

The adaptive finite element method (AFEM) generates a sequence of
meshes T0, T1, . . . and associated discrete subspaces V0 ( V1 ( . . . ( V
with discrete primal and discrete dual eigenpairs (λ`, u`), (λ∗` , u

∗
`). A

typical loop from V` to V`+1 consists of the steps

SOLVE→ ESTIMATE→ MARK→ REFINE.

4.1. Solve. The primal and dual generalized algebraic eigenvalue prob-
lems

A`x` = λ`B`x` and yH` A` = λ∗`y
H
` B`,
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T

ωT

Figure 1. Interpolation points for the element patch
ωT to the triangle T ∈ T`.

are solved with an algebraic eigensolver. Here, the coefficient matrices
are the non-symmetric convection-diffusion matrix A` and the symmet-
ric positive definite mass matrix B`. The right and left eigenvectors x`
and y` represent the eigenfunctions

u` =

dim(V`)∑
k=1

x`,kϕk and u∗` =

dim(V`)∑
k=1

y`,kϕk

with respect to the basis (ϕ1, . . . , ϕdim(V`)) of V`.

4.2. Estimate. Since the weight-terms e` and e∗` in the dual-weighted
a posteriori error estimators involve the unknown solutions u and u∗,
they have to be approximated. In the following experiments those
functions are approximated by averaging A(u`) ∈ P2(T`) of u` ∈ P1(T`)
and A(u∗`) ∈ P2(T`) of u∗` ∈ P1(T`) on the mesh T`. In contrast to
the recovery of a gradient as in [ZZ92], the L2 recovery of [WL94] is
used here which is similar but uses different interpolation points. The
post-processing is based on element patches ωT := ∪z⊂Tωz for T ∈ T`,
where ωz := ∪T∈T`;z⊂TT is the nodal patch. The nodal and edge de-
grees of freedom for the interpolated P2(T`) function are computed for
each element separately by a global least square quadratic polynomial
fitting. The interpolation points for the least square fitting are the
nodal points of ωT as displayed in Figure 1. After all local values are
computed, a global P2(T`) function is obtained by taking the arithmetic
mean values for each node and midpoint of an edge of T`.

In [BE03] an alternative way of computing the estimator ηDWR2 based
on nodal values is presented. The analysis of this error estimator makes
use of a special interpolation operator. This operator assumes that the
mesh T` results from uniform refinement of a coarser mesh and considers
the nodal values as values for a higher-order P2 basis on the coarser
grid. The interpolation scheme presented here does not assumes any
structure of the mesh.

The step ESTIMATE of the AFEM loop involves an appropriate
a posteriori error estimator. In the numerical examples of Section 5
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the following error estimators are compared. Since the residual iden-
tity depends on the eigenvalue condition number the condition number
needs to be approximated for efficient a posteriori error control with
efficiency indices close to one. In Section 5 it is shown empirically that
the approximation 1/(2b(u`, u

∗
`)) is efficient.

The first a posteriori error estimator is the residual estimator

η`,R =
1

2|b(u`, u∗`)|

(∑
T∈T

(
h2
T‖β · ∇u` − λ`u`‖2

L2(T )

+
∑
E⊂T

hE‖[∇u`] · νE‖2
L2(E) + h2

T‖−β · ∇u∗` − λ∗`u∗`‖
2
L2(T )

+
∑
E⊂T

hE‖[∇u∗` ] · νE‖
2
L2(E)

))
.

The second a posteriori error estimator is the averaging estimator

η`,A =
1

2|b(u`, u∗`)|

(∑
T∈T

(
h2
T‖−div(A(∇u`)) + β · ∇u` − λ`u`‖2

L2(T )

+ ‖A(∇u`)−∇u`‖2
L2(T ) + h2

T‖−div(A(∇u∗`))− β · ∇u∗` − λ∗`u∗`‖
2
L2(T )

+ ‖A(∇u∗`)−∇u∗`‖
2
L2(T )

))
.

The third a posteriori error estimator is the DWR1 estimator where
the higher-order terms are neglected

η`,DWR1 =
1

2|b(u`, u∗`)|

(∑
T∈T`

h
3/2
T

(
ηT‖[∇u∗` ] · νE‖L2(∂T )

+ η∗T‖[∇u`] · νE‖L2(∂T )

))
,

with ηT and η∗T from (3.2).
The fourth a posteriori error estimator is the DWR2 estimator where

the unknown solutions in the weights, u and u∗, are interpolated by
A(u∗`) and A(u∗`) as described above

η`,DWR2 =
1

2|b(u`, u∗`)|

∣∣∣∣∣∑
E∈E`

∫
E

([∇u`] · νE)(A(u∗`)− u∗`)ds

+
∑
E∈E`

∫
E

([∇u∗` ] · νE)(A(u`)− u`)ds

+
∑
T∈T`

∫
T

(β · ∇u` − λ`u`)(A(u∗`)− u∗`)dx
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+
∑
T∈T`

∫
T

(−β · ∇u∗` − λ∗`u∗`)(A(u`)− u`)dx

∣∣∣∣∣ .
The local refinement indicators read

ηT :=

∣∣∣∣∫
T

(β · ∇u` − λ`u`)(A(u∗`)− u∗`)dx

+
∑
E∈∂T

∫
E

([∇u`] · νE)(A(u∗`)− u∗`)ds,

+

∫
T

(−β · ∇u∗` − λ∗`u∗`)(A(u`)− u`)dx

+
∑
E∈∂T

∫
E

([∇u∗` ] · νE)(A(u`)− u`)ds

∣∣∣∣∣ .
They are only necessary to determine the set of marked edges for re-
finement.

The fifth a posteriori error estimator utilised the auxiliary Raviart-
Thomas mixed solutions qM and q∗M and the averaged gradients A(∇u`)
and A(∇u∗`)

η`,DWM =
1

2|b(u`, u∗`)|

∣∣∣∣∫
Ω

(∇u` − qM) · (A(∇u∗`)−∇u∗`)dx

+

∫
Ω

(∇u∗` − q∗M) · (A(∇u`)−∇u`)dx

+

∫
Ω

β · (∇u` − qM)(A(u∗`)− u∗`)dx

−
∫

Ω

β · (∇u∗` − q∗M)(A(u`)− u`)dx
∣∣∣∣ ,

where the higher-order term is neglected. The local refinement indica-
tors read

ηT :=

∣∣∣∣∫
T

(∇u` − qM) · ∇(A(∇u∗`)−∇u∗`)dx

+

∫
T

(∇u∗` − q∗M) · (A(∇u`)−∇u`)dx

+

∫
T

β · (∇u` − qM)(A(u∗`)− u∗`)dx

−
∫
T

β · (∇u∗` − q∗M)(A(u`)− u`)dx
∣∣∣∣ .

The last a posteriori error estimator uses both averaged gradients
A(∇u`) and A(∇u∗`) as well as interpolated L2 functions A(u∗`) and
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Figure 2. Refinement rules: sub-triangles with corre-
sponding reference edges depicted with a second edge.

A(u∗`) for the weights

µ`,DWA =
1

2|b(u`, u∗`)|

∣∣∣∣∫
Ω

(∇u` − A(∇u`)) · (A(∇u∗`)−∇u∗`)dx

+

∫
Ω

(∇u∗` − A(∇u∗`)) · (A(∇u`)−∇u`)dx

+

∫
Ω

(−div(A(∇u`)) + β · ∇u` − λ`u`)(A(u∗`)− u∗`)dx

+

∫
Ω

(−div(A(∇u∗`))− β · ∇u∗` − λ∗`u∗`)(A(u`)− u`)dx
∣∣∣∣ .

Here, the local refinement indicators read

ηT :=

∣∣∣∣∫
T

(∇u` − A(∇u`)) · (A(∇u∗`)−∇u∗`)dx

+

∫
T

(∇u∗` − A(∇u∗`)) · (A(∇u`)−∇u`)dx

+

∫
T

(−div(A(∇u`))β · ∇u` − λ`u`)(A(u∗`)− u∗`)dx

+

∫
T

(−div(A(∇u∗`))− β · ∇u∗` − λ∗`u∗`)(A(u`)− u`)dx
∣∣∣∣ .

4.3. Mark. Based on the refinement indicators, the set of elements
M` ⊆ T` that are refined is specified in the algorithm Mark . Let M`

be the set of minimal cardinality for which the bulk criterion [Dör96],

θ
∑
T∈T`

η2
T ≤

∑
T∈M`

η2
T

is satisfied for a given bulk parameter 0 < θ ≤ 1.

4.4. Refine. Given the set M` ⊆ T` of marked elements, mark all
edges of elements in M` for refinement. The closure algorithm com-
putes a superset of refined edges such that once an edge of a triangle
is marked for refinement its reference edge is marked as well. The re-
finement T`+1 is obtained by application of the refinement rules from
Figure 2.
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Figure 3. Primal (left) and dual (right) discrete solu-
tion for β = (3, 0) on adaptively refined meshes generated
by η`,R on the unit square with about 500 nodes.
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Figure 4. Eigenvalue condition numbers for different
values of β and sequences of uniform and adaptive meshes
generated by η`,R on the unit square.

5. Numerical Experiments

This section is devoted to numerical experiments and the empirical
evidence of reliability, efficiency and stability for higher eigenvalues and
strong convection coefficients. The numerical experiments on the unit
square investigate the validity of the residual identity of Lemma 2.1
and the efficiency of the proposed eigenvalue condition number ap-
proximation. The experiments of the L-shaped domain investigate the
stability of the a posteriori error estimators for higher eigenvalues and
the experiments on the slit domain their robustness in β.

5.1. Unit Square. As first example consider the convection-diffusion
eigenvalue model problem (1.1) on the unit square Ω = (0, 1)× (0, 1).
For constant convection coefficient β, the exact eigenvalue with smallest
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Figure 5. Eigenvalue errors and |δ`| for different val-
ues of β and sequences of uniform and adaptive meshes
generated by η`,R on the unit square.
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Figure 6. Eigenvalue errors and error estimators for
β = (20, 0) and a sequence of uniform meshes on the unit
square.

real part reads λ = |β|2/4 + 2π2 [RWW10]. The corresponding primal
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and dual eigenfunctions read

u(x, y) = exp

(
β · (x, y)t

2

)
sin(πx) sin(πy),

u∗(x, y) = exp

(
−β · (x, y)t

2

)
sin(πx) sin(πy).

Two discrete primal and dual solutions are displayed in Figure 3. To
investigate the stability of the residual equation of Lemma 2.1 which
depends on the condition number of the eigenvalue Figure 4 shows the
factor (b(u, u∗) + b(u`, u

∗
`)− b(e`, e∗`))

−1 for different values of β. The
values depend strongly on the size of |β| and eigenvalue computations
beyond |β| � 20 are numerically unstable. Figure 5 compares the accu-
racy of the eigenvalue condition number approximation (2b(u`, u

∗
`))
−1

with the error δ` := (b(u, u∗) + b(u`, u
∗
`)− b(e`, e∗`))

−1 − (2b(u`, u
∗
`))
−1

compared to the eigenvalue error. Since the error for the eigenvalue con-
dition number is much smaller than the eigenvalue error for different
values of β, the proposed approximation (2b(u`, u

∗
`))
−1 of the eigenvalue

condition number is empirical efficient. In all presented numerical re-
sults the sign of Res`(e

∗
`) and Res∗`(e`) is in fact the same. Thus the

triangle inequality |Res`(e
∗
`) + Res∗`(e`)| ≤ |Res`(e

∗
`)|+ |Res∗`(e`)| in the

proof of Theorem 2.4 does not destroy the efficiency of the estimate.
Let N` denote the number of unknowns, i.e., the number of inner nodes.
Because the domain is convex, even uniform refinement results in opti-
mal convergence rates of O(N−1

` ) as shown in Figure 6. Note that for
uniform meshes N` ≈ h−2

` and that there is some strong pre-asymptotic
error due to the eigenvalue condition number estimate. The a posteri-
ori error estimators η`,DWR2, η`,DWM, and η`,DWA are close to the error
while η`,R, η`,A, and η`,DWR1 are by factors 104 − 106 larger than the
error. Note that the first term of the error estimator η`,A is of higher
order and η`,A is asymptotically reliable.

5.2. L-shaped Domain. The second example is the convection-diffusion
eigenvalue model problem (1.1) on the L-shaped domain Ω = ((−1, 1)×
(−1, 1))\([0, 1]×[0,−1]) with constant convection parameter β = (3, 0)
and higher eigenvalues. The primal and dual solutions for adaptive
meshes generated by the AFEM, based on the a posteriori error es-
timator η`,DWR2 for the 5−th eigenvalue with smallest real part, are
shown in Figure 7. An approximation of the first eigenvalue reads
λ = |β|2/4 + 9.6397238 where 9.6397238 from [TB06] is an approxi-
mation of the first Laplace eigenvalue. In Figure 8 it is shown that
uniform refinement results in a suboptimal convergence rate of about

O(N
−2/3
` ), while adaptive refinement leads to numerically optimal con-

vergence rates of O(N−1
` ). The experiments show that the a posteriori

error estimators are reliable and efficient for adaptive mesh refinement.
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Figure 7. Primal (left) and dual (right) discrete solu-
tion for β = (3, 0), λ5 on adaptively refined meshes gen-
erated by η`,DWR2 on the L-shaped domain with about
500 nodes.
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Figure 8. Eigenvalue errors and estimators for β =
(3, 0), λ1 and sequences of uniform and adaptive meshes
on the L-shaped domain.

Notice that the eigenvalues obtained from the AFEM for different esti-
mators lead to similar eigenvalue errors. As before the values of η`,DWR2,
η`,DWM, and η`,DWA are closer to the exact error than those of η`,R, η`,A,
and η`,DWR1. In order to study the dependence of the a posteriori er-
ror estimators on the size of the eigenvalue, we compare the numerical
results for

λ1 = |β|2/4 + 9.6397238, λ5 = |β|2/4 + 31.912636,

λ20 = |β|2/4 + 101.60529, λ50 = |β|2/4 + 250.78548

with approximations for the corresponding Laplace eigenvalues from
[TB06]. Figure 9 shows that the size of the eigenvalue error depends
on the eigenvalue and that the a posteriori error estimator η`,DWR2 is
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Figure 9. Eigenvalue errors for β = (3, 0), λ1, λ5, λ20

and λ50 for sequences of uniform and adaptive meshes
generated by η`,DWR2 on the L-shaped domain.

asymptotically exact. In order to investigate the dependence on the
size of the eigenvalue, the efficiency indices IEff = η`/|λ − λ`| for λ1

and λ50 are compared in Figure 10. The experiments show that the
ratio between the a posteriori error estimators and the eigenvalue error
is growing in λ for η`,R, η`,A, and η`,DWR1 while η`,DWR2, η`,DWM, and
η`,DWA are robust in λ. Note that the efficiency indices of η`,DWR2,
η`,DWM, and η`,DWA are close to one.

5.3. Slit Domain. As last example consider the convection-diffusion
eigenvalue model problem (1.1) on the slit domain Ω = ((−1, 1) ×
(−1, 1))\([0, 1]×{0}) with different constant values for β. A computed
reference value for the first eigenvalue reads λ = |β|2/4 + 8.3713297112
with approximation 8.3713297112 of the first Laplace eigenvalue com-
puted on very fine meshes and higher order finite elements. The primal
and dual eigenfunctions on adaptive meshes for η`,DWA are shown in
Figure 11. Notice that for the primal eigenfunction the influence of
the magnitude of the corner singularity at the origin is much larger
than for the dual eigenfunction. This illustrates that it is important
to consider both primal and dual residuals. Due to the corner sin-
gularity, uniform refinement results in a suboptimal convergence rate

O(N
−1/2
` ) while adaptive refinement results in the optimal convergence



ERROR ESTIMATORS FOR CONVECTION-DIFFUSION EVPS 24

102 103 104 105 106

101

102

N

I Ef
f

 

 
IEff( R) for 1
IEff( R) for 50
IEff( A) for 1
IEff( A) for 50
IEff( DWR1) for 1
IEff( DWR1) for 50

102 103 104 105 106
0,85

0,9

0,95

1

1,05

1,1

1,15

N

I Ef
f

 

 
IEff( DWR2) for 1
IEff( DWR2) for 50
IEff( DWM) for 1
IEff( DWM) for 50
IEff( DWA) for 1
IEff( DWA) for 50

Figure 10. Efficiency indices IEff for β = (3, 0), λ1, λ50

and adaptive meshes on the L-shaped domain.

Figure 11. Primal (left) and dual (right) discrete solu-
tion for β = (3, 0) on adaptively refined meshes generated
by η`,DWA on the slit domain with about 500 nodes.
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Figure 12. Eigenvalue errors and estimators for β =
(15, 0) and sequences of uniform and adaptive meshes on
the slit domain.

Figure 13. Meshes with β = (15, 0) generated by the
refinement monitored by η`,R, η`,A, η`,DWR1, η`,DWR2,
η`,DWM and η`,DWA (from left to right and top to bottom)
on the Slit domain with about 2500 nodes.

rate O(N−1
` ) as shown in Figure 12 for β = (15, 0). Note that the

eigenvalue errors for η`,R and η`,A are much larger than for η`,DWR1,
η`,DWR2, η`,DWM and η`,DWA and even larger than the eigenvalue error
for uniform refinement up to N` = 106. This observation is caused by a
much larger pre-asymptotic range for η`,R and η`,A than for the DWR
based a posteriori error estimators. The different adaptive meshes with
about N` = 2500 are shown in Figure 13. The meshes for η`,R and η`,A
show strong refinement towards the two boundary layers on the left and
right but almost no refinement towards the corner singularity at the
origin which might cause the larger eigenvalue errors. In contrast to
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Figure 14. Efficiency indices IEff for β = (1, 0), (15, 0)
and adaptive sequences of meshes on the slit domain.

that all other refinement indicators show strong refinement toward the
corner singularity at the origin which leads to smaller eigenvalue errors.
In order to study the dependence of the a posteriori error estimators
on the size of the convection coefficient, experiments for β = (1, 0) and
β = (15, 0) are compared in Figure 14. The constants of the estimates
in Lemma 3.1 and Lemma 3.2 depend on the size of the convection
parameter. Thus, the efficiency indices Ieff are expected to depend on
the size of |β| as well which is confirmed by the numerical experiments.
The size of the efficiency indices grows for the a posteriori error esti-
mators η`,R, η`,A and η`,DWR1 corresponding to the increase of |β|. In
contrast the efficiency indices for η`,DWR2, η`,DWM and η`,DWA are robust
in β and asymptotically close to one.
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6. Conclusions

All the numerical results indicate that the a posteriori error estima-
tors are empirically reliable and efficient for sufficiently small global
mesh-size. The interpolation scheme of Section 4 for the weights shows
to be empirical stable for unstructured triangular meshes. The approx-
imation of the condition number needs to be included in the a posteri-
ori error estimators in order to get efficiency indices close to one. The
DWR2, DWM and the DWA a posteriori error estimators result in the
best asymptotic efficiency indices close to one independently of both,
the size of the eigenvalue and the convection parameter. For larger
values of |β| the DWR based a posteriori error estimators show much
better results than the residual and averaging based a posteriori error
estimators because of the much smaller pre-asymptotic range. Since
the used eigenvalue solver ARPACK [LSY98] shows some instability
for convection coefficients larger than (20, 0) and coarser meshes those
are excluded in this paper. For highly non-symmetric problems other
techniques such as homotopy methods [CGMM11] need to be applied
in order to compute the same eigenvalue of interest during all steps of
the adaptive finite element loop or different finite elements need to be
considered such as discontinuous Galerkin finite elements [CHH10].
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