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Abstract

We consider sequential, i.e., Gauss-Seidel type, subspace correction methods for the iterative solution
of symmetric positive definite variational problems, where the order of subspace correction steps is not
deterministically fixed as in standard multiplicative Schwarz methods. Here, we greedily choose the
subspace with the largest (or at least a relatively large) residual norm for the next update step, which
is also known as the Gauss-Southwell method. We prove exponential convergence in the energy norm,
with a reduction factor per iteration step directly related to the spectral properties, e.g., the condition
number, of the underlying space splitting. To avoid the additional computational cost associated with
the greedy pick, we alternatively consider choosing the next subspace randomly, and show similar
estimates for the expected error reduction. We give some numerical examples, in particular applications
to a Toeplitz system and to multilevel discretizations of an elliptic boundary value problem, which
illustrate the theoretical estimates.
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1. Introduction

With this note, we continue our collaboration [7, 17, 9] on iterative solvers for variational problems
based on Hilbert space splittings, so-called additive and multiplicative Schwarz methods. While in
standard multiplicative Schwarz methods the subproblems are traversed in a fixed cyclic order, the new
element now is to choose the ordering in a greedy fashion according to residual information, or randomly.
For linear systems and Gauss-Seidel methods (a special instance of multiplicative Schwarz methods)
the greedy ordering goes back to Gauss and Seidel, and has been popularized by Southwell [24]. The
method has been theoretically analyzed in the framework of coordinate descent methods for convex
optimization methods [30, 14]. It is also a specific instance of a projection onto convex sets (POCS)
algorithm. Lately, it has been revived in the context of sparse approximation and compressed sensing
[6, 3, 4]. Randomized versions are also used but investigated little (see [25, 15, 5] for the theory of a
randomized Kaczmarz iteration). Moreover, Hilbert space splittings underlying the theory of Schwarz
methods have reappeared as fusion frames (see [19] for a more detailed account on this connection).

Given these more recent developments, we decided to formulate and prove convergence results for a
greedy version of the multiplicative Schwarz method (called Southwell-Schwarz method) for the case of
splittings into finitely many subproblems. The main result, an upper bound for the error reduction in
energy norm per iteration step, reveals the role of the spectral bounds characterizing the space splitting
and shows that greedy strategies can help to improve and stabilize the performance of multiplicative
Schwarz methods. We admit that the result itself can be recovered from the optimization literature but
hope that stating it in the context of abstract subspace correction methods will make it more accessible
to readers working on large-scale PDE discretizations. Similar bounds for the expected convergence
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rate are proved if the subproblem ordering is appropriately randomized. This result includes results on
the randomized Kaczmarz iteration from [25] as a partial case.

The remainder of this paper is organized as follows. In the next section we briefly summarize the
necessary facts on stable space splittings and abstract iterative Schwarz methods, before introducing
two new versions called Southwell-Schwarz and random-order Schwarz iteration, respectively. In Section
3, the main convergence results for these methods are formulated and proved. We compare them with
the convergence estimates for standard multiplicative Schwarz iterations, and discuss the relation to
the recent results for the Kaczmarz method from [25]. In Section 4 some numerical tests are presented
for a Toeplitz system and for multilevel discretizations of an elliptic boundary value problem, which
illustrate our theoretical findings.

Note added in revision. After submitting this paper, we learned about the recent papers [13, 16,
20] in which the authors considered randomized block-coordinate decent methods for certain classes of
convex optimization problems. When restricted to the quadratic case considered here, their results are
closely related to ours for non-overlapping space splittings.

2. Space Splittings and Multiplicative Schwarz Algorithms

Consider a (possibly infinite-dimensional but separable) Hilbert space V , let a(·, ·) be a continuous
symmetric positive definite bilinear form on V , and let F be a bounded linear functional on V . We use
the notation Va if we consider V as Hilbert space with the scalar product given by this bilinear form
a(·, ·). To solve the variational problem

(A) Find u ∈ V such that
a(u, v) = F (v) ∀v ∈ V,

we use an iterative subspace correction scheme based on stable space splittings. Let now the separable
Hilbert space Va with associated scalar product a(·, ·) be represented by a finite number of Hilbert spaces
Vai with associated scalar products ai(·, ·) and corresponding linear bounded operators Ri : Vai → Va,
i = 1, . . . , N , as follows:

Va =
N∑
i=1

RiVai
:= {v =

N∑
i=1

Rivi : vi ∈ Vai
, i = 1, . . . , N}. (1)

We allow for redundancy, i.e., we do not assume that Va is the direct sum of its subspaces RiVai
. We

call (1) a stable space splitting, if

0 < λmin := inf
u∈Va

a(u, u)
‖|u‖|2

≤ λmax := sup
u∈Va

a(u, u)
‖|u‖|2

<∞, (2)

where

‖|u‖|2 := inf
vi∈Vai

: u=
∑N

i=1 Rivi

N∑
i=1

ai(vi, vi).

The constants λmin and λmax are called lower and upper stability constants, and κ := λmax/λmin is
called the condition number of the space splitting (1), respectively. It is easy to see that frames and
fusion frames [19] are special cases of this definition, where a(·, ·) = (·, ·)V , the Vai

are closed subspaces
of V = Va, the scalar products ai(·, ·) = w2

i (·, ·)V are modified by weights wi > 0, and Ri denote the
natural embeddings. In the frame case, the Vai

are one-dimensional and spanned by individual frame
elements.

For the setup of iterative Schwarz methods we will additionally assume that we have upper bounds
for the norms of the operators Ri : Vai

→ Va, i.e., we know positive constants γi such that

a(Rivi, Rivi) ≤ γiai(vi, vi), ∀ vi ∈ Vai , i = 1, . . . , N. (3)
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It is easy to see that then the upper stability bound λmax of a stable splitting satisfies the inequalities

max
i
‖Ri‖2Vai

→Va
≤ λmax ≤

∑
i

‖Ri‖2Vai
→Va

≤
∑
i

γi. (4)

We define operators Ti : Va → Vai
via the variational problems

ai(Tiv, vi) = a(v,Rivi) ∀ vi ∈ Vai
, (5)

to be solved for given v ∈ Va on the spaces Vai
, i = 1, . . . , N . Using these Ti, analogs of the classical

Jacobi-Richardson and Gauss-Seidel iterations, called additive and multiplicative Schwarz methods
associated with the stable space splitting (1) can be defined and investigated, pretty much along the
lines of the standard methods, see [7, 8, 9, 17, 19, 31, 32]. The multiplicative Schwarz methods considered
in these papers traverse the subspaces one by one in a fixed, problem-independent order.

In the present note, we consider two versions of the multiplicative Schwarz method for solving (A),
where the order of subspace correction steps depends either on residual information or is randomized.

The first scheme is called Southwell-Schwarz iteration associated with (1), and represents a version
of a greedy algorithm in a Hilbert space, see [28, 27]. To this end, let 0 < ω < 2 (relaxation parameter)
and β ∈ (0, 1] (weakness parameter) be fixed, start with some initial guess u(0) ∈ Va, and repeat the
following steps for m = 0, 1, . . . , until a stopping criterion is satisfied:

1. Residual computation: Determine r(m)
i := Tie

(m), i = 1, . . . , N , where e(m) := u− u(m). This
can be done since the right-hand side in the corresponding subproblems (5) reads

a(e(m), Rivi) = F (Rivi)− a(u(m), Rivi),

and does not depend on knowledge about u.

2. Greedy pick: Choose an index i∗ such that

1
γi∗

ai∗(r(m)
i∗ , r

(m)
i∗ ) ≥ β2 max

i=1,...,N

1
γi
ai(r

(m)
i , r

(m)
i ). (6)

3. Linear update: Set
u(m+1) = u(m) +

ω

γi∗
Ri∗r

(m)
i∗ . (7)

In contrast to fixed-order multiplicative Schwarz methods, where in each step only one residual needs
to be computed, in the Southwell-Schwarz method all residuals r(m)

i need to be computed in the first
substep, and compared with each other in the second substep. To clarify this difference, consider the
classical case of solving a linear system Ax = b with a symmetric positive definite N×N matrix A, and a
subspace splitting associated with the basis of unit coordinate vectors ei. Set V = IRN , a(x, y) = yTAx,
F (x) = bTx, define Vai = IR with scalar product ai(xi, yi) = xiyi, and let Ri(xi) = xiei be the injections
from Vai = IR into Va, i = 1, . . . , N . Obviously, the stability constants λmin, λmax, and the condition
number κ of this space splitting coincide with the extreme eigenvalues and the spectral condition number
of the matrix A, respectively, and in (3) we can set

γi = ‖Ri‖2Vai
→Va

= aii.

It is easy to see that Tiy = (Ay)i =
∑N
j=1 aijyj , and that a single update step in the above methods

coincides with a standard Gauss-Seidel/SOR update:

x
(m+1)
i = x

(m)
i +

ω

aii
(b−Ax(m))i, x

(m+1)
j = xmj , j 6= i.

In this particular situation, the above Southwell-Schwarz iteration reduces to the classical Gauss-
Seidel/SOR-Southwell (for short GS-Southwell) method. The main difference to the standard Gauss-
Seidel/SOR method (for short GS method) is the operation count per single update step. Indeed, for
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dense A a GS-Southwell update takes O(N2) elementary operations due to the need for computing the
whole residual vector r(m) = b−Ax(m), while in the GS method only O(N) operations are needed since
just a single residual component is needed. For sparse A the comparison is more subtle, see the remarks
in the last section.

In the second scheme, which we call random-order Schwarz iteration, the first two of the above
substeps are replaced by a single residual computation for a randomly picked subspace:

1’. Random pick and residual computation: Choose an index i ∈ {1, 2, . . . , N} randomly with
probability pi = γi/(γ1 + . . . + γN ) (we assume independence for different m), denote the result
by i∗, and compute the corresponding residual r(m)

i∗ .

2’. Linear update: Set
u(m+1) = u(m) +

ω

γi∗
Ri∗r

(m)
i∗ . (8)

Note that the random-order Schwarz iteration does not suffer from a cost penalty. In the above example
of solving a linear system with dense matrix A based on the standard coordinate splitting, each update
step of the resulting random-order GS method can be done in O(N) operations, the cost for picking
i∗ does not exceed O(logN), and is negligible. A combination of greedy and random pick ideas will
be introduced in the next section, as indicated by the numerical tests reported in Section 4, it can
considerably improve the convergence of the random-order Schwarz iteration at little extra cost.

3. Convergence Results and Discussion

Our main theoretical result is stated in the following theorem.

Theorem 1 Assume that (1) is a stable space splitting of the Hilbert space Va, with lower stability
constant λmin given by (2), and assume that the constants γi > 0, i = 1, . . . , N , satisfy (3).
a) The relative error reduction of the Southwell-Schwarz iteration for solving the variational problem
(A) with initial guess u(0) and parameters 0 < ω < 2, 0 < β ≤ 1 is bounded by

‖u− u(m)‖2a ≤
(

1− β2ω(2− ω)λmin∑
i γi

)m
‖u− u(0)‖2a, m ≥ 1. (9)

b) The random-order Schwarz iteration converges with the expected error decay rate

E(‖u− u(m)‖2a) ≤
(

1− ω(2− ω)λmin∑
i γi

)m
‖u− u(0)‖2a, m ≥ 1. (10)

Proof. Both parts a) and b) use the same recursive error bound which can be deduced from the
update formula (7). Consider this formula for any i = 1, . . . , N (i.e., replace i∗ by a generic i), use the
definition of Ti in (5) together with the residual formula Tie(m) = r

(m)
i and (3) as follows:

‖e(m+1)‖2a = ‖e(m) − (u(m+1) − u(m))‖2a

= ‖e(m)‖2a − 2
ω

γi
a(e(m), Rir

(m)
i ) +

ω2

γ2
i

‖Rir(m)
i ‖2a

≤ ‖e(m)‖2a −
ω(2− ω)

γi
ai(r

(m)
i , r

(m)
i )

= ‖e(m)‖2a

(
1− ω(2− ω)

γi

ai(r
(m)
i , r

(m)
i )

‖e(m)‖2a

)
.
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For part a), we observe that the maximum of a sequence of non-negative numbers always exceeds
any of their convex combinations, thus by (6)

1
γi∗

ai∗(r(m)
i∗ , r

(m)
i∗ ) ≥ β2 max

i

1
γi
ai(r

(m)
i , r

(m)
i ) ≥ β2

∑
i ai(r

(m)
i , r

(m)
i )∑

i γi
,

if we use γi/
∑
j γj as weights. Consequently,

‖e(m+1)‖2a ≤ ‖e(m)‖2a

(
1− β2ω(2− ω)∑

i γi

∑
i ai(r

(m)
i , r

(m)
i )

‖e(m)‖2a

)
.

It now remains to observe (see [17] or [19, Theorem 1]) that∑
i

ai(Tiv, Tiv) ≥ λmina(v, v) = λmin‖v‖2a, v ∈ Va, (11)

where the lower stability bound λmin of the underlying space splitting (1) comes into play. Indeed,
consider an arbitrary representation v =

∑
iRivi, then

a(v, v) =
∑
i

a(v,Rivi) =
∑
i

ai(Tiv, vi) ≤ (
∑
i

ai(Tiv, Tiv))1/2(
∑
i

ai(vi, vi))1/2.

Squaring this estimate and taking the infimum with respect to all representations, we arrive at

a(v, v)2 ≤ (
∑
i

ai(Tiv, Tiv)) inf
v=
∑

i Rivi

∑
i

a(vi, vi)

= (
∑
i

ai(Tiv, Tiv))‖|v‖|2 ≤ λ−1
min(

∑
i

ai(Tiv, Tiv))a(v, v)).

This establishes (11), and applying the latter with v = e(m) and r
(m)
i = Tie

(m), we get

‖e(m+1)‖2a ≤
(

1− λminβ
2ω(2− ω)∑
i γi

)
‖e(m)‖2a.

This finishes the proof of (9).
For part b), we similarly estimate the expectation of ‖e(m+1)‖2a conditioned to given u(m) (and thus

‖e(m)‖2a):

E(‖e(m+1)‖2a
∣∣u(m)) ≤

∑
i

γi∑
j γj
‖e(m)‖2a

(
1− ω(2− ω)

γi

ai(r
(m)
i , r

(m)
i )

‖e(m)‖2a

)

= ‖e(m)‖2a

(
1− ω(2− ω)∑

i γi

∑
i ai(r

(m)
i , r

(m)
i )

‖e(m)‖2a

)

≤
(

1− ω(2− ω)λmin∑
i γi

)
‖e(m)‖2a.

Finally, by the assumed independence of picking i∗ for different m, we get the desired recursion for the
unconditional expectations

E(‖e(m+1)‖2a) ≤
(

1− ω(2− ω)λmin∑
i γi

)
E(‖e(m)‖2a).

This proves (10).

We add some comments on the role of the various parameters entering the convergence estimates of
Theorem 1, and on the relation to known results for standard Schwarz iterations and other subspace
correction methods.
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• First of all, the estimates suggest that ω = 1 is the best choice for the relaxation parameter, even
though it is well-known that for certain applications, over- (ω > 1) or under-relaxation (ω < 1)
pays off. The question of choosing ω is intertwined with our choice of γi in (3). Since only in
special cases, e.g., in the frame case, where the Vai

are one-dimensional, the norms of the operators
Ri are exactly known, we have to live with rough guesses for the γi. Equivalently, this can be
recast as the problem of optimal scaling of the subproblems in Vai which does not have a trivial
solution.

• A comparison of the Southwell-Schwarz iteration with the standard iterative Schwarz methods is
in order. If we choose equal values γi = λmax (this is admissible according to (4)) then (9) implies
for β = ω = 1 the estimate

‖u− u(m)‖2a ≤ (1− 1
Nκ

)m‖u− u(0)‖2a, m ≥ 1.

Therefore, after N steps of the Southwell-Schwarz iteration the square energy error reduction is
bounded by a constant factor

(1− 1/(Nκ))N ≈ e−1/κ ≈ 1− 1/κ (12)

which is controlled by the condition number κ of the underlying stable space splitting. Quali-
tatively, this is at least as good as any of the existing estimates for standard Schwarz iterations
with a fixed order of subproblem traversal can guarantee. Each iteration step of these methods
is formally equivalent to overall N Southwell-Schwarz steps if we neglect the cost for computing
the next Southwell-Schwarz index i∗. E.g., the optimal convergence rate for the additive Schwarz
(AS) method

u(n+1) = u(n) + ω∗
N∑
i=1

Rir
(n)
i , ω∗ :=

2
λmin + λmax

,

is given by the sharp estimate

‖u(n+1) − u‖a
‖u(n) − u‖a

≤ 1− 2
1 + κ

, n ≥ 0, (13)

where κ is the condition number of the underlying stable space splitting. Obviously, the AS
method generalizes the Jacobi-Richardson iteration. This shows that the estimate (9) is superior
to (13) if

∑
i γi << Nλmax. Recall that for the classical example of solving a linear system

with symmetric positive definite matrix and the canonical space splitting discussed before, we
automatically have ∑

i

γi =
∑
i

aii = tr(A) ≤ Nλmax.

Similarly, the best available general convergence estimate [9] for multiplicative Schwarz (MS)
methods is

‖u(n+1) − u‖a
‖u(n) − u‖a

≤ 1− C

log2(2N)κ
, n ≥ 0, (14)

where the constant C depends on the appropriate choice of the relaxation parameter ω. As for
the AS method, one step of the MS method corresponds to N single update steps of the form
(7), whereas each subspace problem is solved once and in a fixed order (such as i = 1, 2, . . . , N).
Since the additional log-factor in (14) cannot be removed in general [18], this shows that there are
situations where the convergence estimate (9) for the Southwell-Schwarz method is superior. We
refer to [32] for a detailed study of convergence of fixed-order MS methods. Note that these re-
marks also apply to the comparison of the random-order Schwarz iteration with standard iterative
Schwarz methods.
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• If we set β = ω = 1, the estimate (9) for the deterministic Southwell-Schwarz iteration is identical
to the estimate (10) for the expected error of the random-order Schwarz iteration in part b).
Experiments reported in the next section show that, with respect to the actual error decay, the
more costly Southwell-Schwarz iteration often performs better than the random-order Schwarz
iteration. This motivates the introduction of the following algorithm. Fix an integer parameter
1 ≤ k ≤ N .

1”. Block random pick and greedy residual computation: Choose randomly and indepen-
dently k indices i1, . . . , ik ∈ {1, . . . , N} according to the fixed probabilities pi = γi/

∑
j γj ,

and compute the associated residuals r(m)
il

, l = 1, . . . , k. Among these indices, pick i∗ greedily
according to

1
λi∗

ai∗(r(m)
i∗ , r

(m)
i∗ ) = max

l=1,...,k

1
λil

ail(r
(m)
il

, r
(m)
il

). (15)

2’. Linear update: Set
u(m+1) = u(m) +

ω

γi∗
Ri∗r

(m)
i∗ .

The case k = 1 corresponds to the random-order Schwarz iteration, while k = N is basically
equivalent to the Southwell-Schwarz iteration. As will be demonstrated in the next section,
already for relatively small k the new combined method converges as fast as the Southwell-Schwarz
iteration.

Note that, at no additional cost, the convergence of this combined method can be further boosted
by replacing the single update step (15) by a Jacobi update using all k computed residuals at
once:

u(m+1) = u(m) +
k∑
l=1

ω

γil
Rilr

(m)
il

. (16)

Consequently, Step 1” reduces to the computation of k randomly chosen residuals. Following
the proof of Theorem 1 using γi = λmax and the uniform probability distribution, an improved
expected error decay estimate

E(‖u− u(m)‖2a) ≤
(

1− ω(2− ω)k
Nκ

)m
‖u− u(0)‖2a, m ≥ 1, (17)

can be obtained for the new modification, showing that the increased cost is compensated for.
Obviously, for k = N we recover the deterministic additive Schwarz iteration, and the estimate
(17) is up to a constant the same as (13). Since in this paper we concentrate on variants of the
multiplicative Schwarz method, we will not go further into this extension.

• The theory of iterative Schwarz methods was originally developed as a framework for investi-
gating numerical algorithms such as domain decomposition and multilevel solvers for large-scale
discretizations for elliptic boundary value problems and integral equations. The following proto-
typical example and the multilevel algorithm proposals in [21, 22] were the initial motivation for
our study. Consider the Dirichlet problem

−∆u = f in Ω, u = 0 on ∂Ω, (18)

with the associated bilinear form and linear functional defined on H1
0 (Ω) by

a(u, v) =
∫

Ω

∇u · ∇v dx, F (v) =
∫

Ω

fv dx

respectively. Let Vj denote the subspace in H1
0 (Ω) consisting of C0 Lagrange finite element func-

tions of degree r ≥ 1 with zero boundary conditions over a quasi-uniform (triangular/simplicial or
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rectangular) partition Tj of Ω with element-size hj ≈ 2−j , j ≥ 0. For simplicity, let Ω ⊂ IRd be a
bounded polyhedral domain, which is exactly resolved by these partitions. We assume nestedness
Vj ⊂ Vj+1 which is satisfied if the partitions are obtained by regular dyadic refinement. Each of
these spaces Vj is spanned by a set of nodal basis functions Φj := {φj,i} in the usual way. For a
suitably given index set Λ, we want to use collections

ΦΛ := {φj,i : (j, i) ∈ Λ}

of such nodal basis functions to generate discretization spaces

VΛ,a = span ΦΛ.

To be precise, VΛ,a is the closure of the algebraic span of ΦΛ in H1
0 (Ω), which is equipped with

the scalar product given by a(·, ·). The associated space splittings will be generated directly from
the generating set ΦΛ, by canonically considering all one-dimensional subspaces of VΛ,a generated
by the nodal basis functions φj,i ∈ ΦΛ. The important fact is that there is a large collection of Λ
(e.g., those Λ relevant for adaptive finite element methods) such that these subspace splittings have
moderate condition number κΛ independently of the size NΛ of Λ (i.e., the number of subspaces
in the splitting), see [17, Section 4] for some overview and references. A notable fact is that, if we
take the whole multilevel system Φ := ∪j≥0Φj as ΦΛ, then our VΛ,a is H1

0 (Ω), and Φ represents
a frame in H1

0 (Ω) with moderate condition number. This assumes that we normalize the nodal
basis functions accordingly. A common choice is a(φj,i, φj,i) = 1, which implies γj,i = 1 for the
constants in (3).

For such VΛ,a ⊂ H1
0 (Ω) and their associated splittings, the standard AS and MS iterations con-

verge provably well independently of NΛ. In particular, the deterioration due to the logarithmic
factor in (14) can be removed. In other words, comparing with the upper bounds derived in The-
orem 1, we would not necessarily expect substantial improvements when using Southwell-Schwarz
and random-order Schwarz iterations instead. However, in practice one observes a reduction of
iteration steps by about a factor of three when comparing the standard MS method and the
Southwell-Schwarz iteration for the same target accuracy. Moreover, for the combination (15) of
random and greedy ordering one already gains for moderate values of k ≥ 3 improved convergence
in comparison to the standard MS method. Also, our convergence result (17) sheds new light on
asynchronous domain decomposition and multigrid methods for elliptic problems [10, 11, 12, 26].
For further comments in this direction, we refer to the next section.

• The results of [25] concerning the expected convergence rate of a randomized Kaczmarz method
for solving consistent over-determined linear systems Ax = b with full-rank M × N matrix A
(M ≥ N) appear to be a very special case of part b) of our main theorem (the inconsistent or
noisy case is dealt with in [15]). The reason is that the Kaczmarz iteration step is equivalent
to a single Gauss-Seidel step for the symmetric semi-definite problem AA∗x̂ = b (and thus to
a single subspace update of a multiplicative Schwarz method based on the splitting of IRM into
its coordinate spaces). This can be seen as follows. Set V = IRN and take a(x, y) = xT y. In
other words, the variational problem (A) corresponds to solving a trivial linear system. For the
space splitting, we set Vai

= IR, ai(x̂i, ŷi) = x̂iŷi, and the operators Ri are given by the columns
âTi ∈ IRN of AT (or, equivalently, the rows âi of A):

Rix̂i = x̂iâ
T
i , i = 1, . . . ,M.

We can choose γi = ‖Ri‖2Vai
→Va

= ‖âi‖22. Consequently,

M∑
i=1

γi = tr(AA∗) = ‖A‖2F =
N∑
j=1

σ2
j ,
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where σ1 ≥ . . . ≥ σN > 0 denote the non-zero singular values of A. Finally, since x =
∑M
i=1Rix̂i =

AT x̂ for x̂ := A(ATA)−1x, we have

‖|x‖|2 = inf
x=AT x̂

‖x̂‖22 ≤ ‖A(ATA)−1x‖22 = xT (ATA)−1x ≤ σ−2
N a(x, x).

This implies the estimate λmin ≥ σ2
N for the lower stability constant of the introduced space

splitting. Putting things together, we see that the expected convergence rate of the random-order
Schwarz iteration with this splitting is given by

E(‖x− x(m)‖22) ≤

(
1− σ2

N∑N
j=1 σ

2
j

)m
‖x− x(0)‖22.

This translates one-to-one into the result of [25]. Note that the consistency assumption Ax = b is
used when computing

Tie
(m) = âi(x− x(m)) = (Ax−Ax(m))i = bi − âix(m), i = 1, . . . ,M,

and that the probability distribution used for picking i∗ in the random-order Schwarz iteration is
identical with the one advocated in [25].

Part a) of our Theorem 1 gives a similar estimate for the deterministic Kaczmarz-Southwell
iteration which has been mentioned but not investigated in [25], we refer to [5] for an interesting
proposal of an approximate Kaczmarz-Southwell iteration. We want to acknowledge that the
original version of our note concentrated on the investigation of the deterministic Southwell-
Schwarz iteration, and that only after reading the paper [25] we also looked at the random-order
Schwarz method in a systematic way.

• As an alternative to [25, 15], one might think of solving the least-squares problem for the over-
determined system Ax = b with full-rank A (and not just the consistent case thereof) by the
GS-Southwell method or the random-order GS method for the N ×N system of normal equations
ATAx = AT b. The theoretical convergence rates following from our theorem are exactly the same
as for the corresponding iterations on AAT x̂ = b, i.e., for the above discussed Kaczmarz methods.
However, the energy norm error is now ‖Ae(m)‖2 instead of ‖e(m)‖2. Furthermore, compared to
the work to be done for a single subspace update in the Kaczmarz iteration, i.e.

x(m+1) = x(m) +
ω

‖âi‖22
r

(m)
i âTi , i ∈ {1, . . . ,m},

the computational costs for a single Gauss-Seidel update, i.e.

x(m+1) = x(m) +
ω

‖âj‖22
((âj)T r(m))ej , j ∈ {1, . . . , n},

for solving ATAx = AT b are higher since it involves computing the whole residual vector r = b−Ax
in each iteration step. Here, âj denotes the j-th column of A.

• So far, we only considered the case of finite space splittings. Investigations on splittings into
infinitely many auxiliary spaces are still at their beginning, they can benefit from the theory
of greedy algorithms in infinite-dimensional Hilbert and Banach spaces developed by Temlyakov
[28, 27] and others. We hope that a better understanding of this topic will also shed new light on
adaptive multilevel methods such as the early work by Rüde [21, 22].

4. Numerical Examples

We begin with some illustrating numerical experiments for a linear system from [18]. It was originally
constructed to show the necessity of the logarithmic factor in (14), and provides an example where the
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Figure 1: Left: Comparison of the convergence of various Schwarz iterations, Toeplitz problem, N = 500. Right:
Comparison of the convergence of the GS-Southwell and GS methods for varying N .

Jacobi method performs better than SOR and SSOR methods, even after optimally adjusting the
relaxation parameter ω. Let A be a symmetric N ×N Toeplitz matrix with entries aij = bi−j given by
the formulas b0 = 1, b2k+1 = c(−1)k(2k + 1)−1, b2k+2 = 0, k = 0, 1, . . ., which for |c| < 2/π turns out
to be positive definite with κ(A) bounded independently of N . In the following tests, we set c = 0.3.

Figure 1 (left) shows the error decay in the energy norm of the GS-Southwell method with ω = β = 1
(legend: GSS) for solving the equation Au = 0 with N = 500. The iteration process was started with
a randomly chosen unit energy norm vector x(0), and carried out for 25N single update steps. For
comparison, we show similar error plots for the Jacobi (AS) method (indicated by crosses, note that
one Jacobi step corresponds to N single update steps of the Schwarz methods), the standard Gauss-
Seidel (MS) method (legend: GS), the GS-Southwell iteration with weakness parameter β = 0.1 and
ω = 1 (legend: wGSS), and the random-order GS method. While the latter does not seem to be
competitive with respect to energy norm error decay per update step, the proposed iterative methods
based on greedy orderings are superior to standard Gauss-Seidel and Jacobi methods in this example.

In Figure 1 (right) we give the energy error decay for the GS-Southwell method with ω = β = 1
and for the standard Gauss-Seidel method for varying system size N . While the convergence of the
latter indeed deteriorates with rising N due to the logarithmic factor in (14) as the theory predicts, it is
independent of N for the GS-Southwell iteration, compare (12). Moreover it stays perfectly the same,
i.e. the error plots overlay exactly.

Next, we illustrate the performance improvements if we use the algorithm combining random and
greedy strategies for index selection, as described in the previous section. Figure 2 shows error plots
for different values of k for the same linear system as before. Recall that k is the number of randomly
chosen indices from which the next update index i∗ is picked by the greedy strategy. Because γi = 1
for our matrix A, indices i are chosen with equal probability pi = 1/N . For each k, we have repeated
the iteration ten times (the error plots are represented by gray lines), and computed from them an
approximation to the expected error (shown by a thicker solid line). The dashed line corresponds to the
upper bound for the (squared) energy error decay predicted by Theorem 1. The experimental results
show that, already for small values of k, the combined method becomes competitive with the GS-
Southwell iteration with respect to error decay, but is only slightly more expensive than any fixed-order
Gauss-Seidel (MS) method.

As a second example, we consider the multilevel discretization of the Poisson problem (18), see the
corresponding remark in the previous section for the used notation. For simplicity, let d = 2, Ω = [0, 1]2,
define the sequence {Tj} of uniform partitions into squares of side-length hj = 2−j , j ≥ 1, created from

10



Figure 2: Schwarz iterations combining random and greedy ordering, Toeplitz problem.

an initial partition T0 = Ω by uniform dyadic refinement, and use bilinear finite elements with zero
boundary conditions. For a final level J ≥ 1, the standard multilevel generating system ΦJ := ΦΛJ

for
the resulting subspace VJ ⊂ H1

0 (Ω) of bilinear finite element functions on the partition TJ is given by
the index set

ΛJ = {(j, i1, i2) : j = 1, . . . J, i1 = 1, . . . , 2j − 1, i2 = 1, . . . , 2j − 1},
where φj,i1,i2 denotes the standard bilinear hat function associated with the nodal point (i12−j , i22−j)
in Tj .

The use of the multilevel generating system ΦJ (instead of just the nodal basis on the finest level)
for VJ results in a non-unique representations of uJ ∈ VJ

uJ :=
J∑
j=1

vj with vj(x) =
∑
i1,i2

xj,i1,i2φj,i1,i2(x1, x2), xj,i1,i2 ∈ IR, (19)

via coefficient vectors xJ = {xj,i1,i2}, i.e. there exist infinitely many coefficient sets xJ which give the
same function uJ . Consequently, the matrix of the resulting linear system

AJxJ = fJ (20)

is no longer positive definite, but merely positive semi-definite. Its dimension is by a factor of about
4/3 larger than its rank, i.e., the dimension of VJ . Nevertheless, the system is solvable, since the right
hand side is build in a consistent manner. It possesses infinitely many solutions, one of which can be
gained as fix point in an iterative method. Moreover, it can be shown that a classical Gauss-Seidel
iteration with a level-wise traversal ordering from coarse to fine over the set of unknowns resembles
a multigrid method, more precisely, a (0,1)-V-cycle with one post-smoothing step by a Gauss-Seidel
smoother. Furthermore, one classical Jacobi iteration for (20) resembles just the BPX-preconditioner,
for further details see [7, 8, 9, 17]. Altogether, by directly using ΦJ in the discretization process, the
application of classical iterative methods to (20) results in modern multilevel methods.

We now apply the Southwell-Schwarz iteration with the splitting generated by ΦJ , i.e. the GS-
Southwell method for (20), and compare its convergence in the energy norm with that of the multiplica-
tive Schwarz method, i.e. the Gauss-Seidel iteration with coarse to fine level-wise traversal ordering.
We start with an initial random vector of unit norm. Since an iterative method on (20) is only semi-
convergent [2], i.e. classically convergent to just one of the many possible solutions, we measure the
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Figure 3: Comparison of the convergence of the GS and GS-Southwell method with varying J for the multilevel discretiza-
tion of the two-dimensional Poisson problem.

error reduction rate by projecting the non-unique representation of an iterate x(m)
J via the projection

(19) onto its unique representation with respect to the nodal basis on the finest level J , and computing
the iteration error and its energy norm there. The convergence results for different discretization levels
J are shown in Figure 3. On the x-axis, we indicate here the number of full cycles of the GS iteration
and accordingly the number of dim(AJ)-sized blocks of single steps of the GS-Southwell method for
a fair comparison. The error decay for the GS-Southwell iteration is substantially faster than that of
the GS iteration with fixed, level-wise traversal order. To be precise, for J = 6 we obtain a reduc-
tion of the error in the energy norm by a factor of 10−16 after about 30 full cycles of the GS method
whereas the GS-Southwell method needs only about 10 · dim(AJ) local iterations, i.e. 10 full cycles.
Its convergence rate is thus roughly three times better. Moreover, the GS-Southwell iteration perfectly
achieves level-independent convergence (for the range of tested values J , the error plots overlay exactly)
whereas the convergence rate for the GS method gets practically slightly worse when increasing J (but
will asymptotically be bounded independently of J). Note here that we observed the same qualitative
behavior also for the anisotropic diffusion problem −uxx − εuyy = f, with varying values of ε.

For Schwarz iterations (15) combining random and greedy ordering we obtain the results shown in
Figure 4. Here, energy error plots are given for different values of k for the matrix AJ with J = 6
of the Poisson problem. Again, for each k, we have repeated the iteration ten times (the error plots
are represented by gray lines), and computed from them an approximation to the square root of the
expected error

√
E(‖u− u(m)‖2a) (shown by a thicker solid line). For comparison, we also give the energy

error decay for the GS and GS-Southwell iteration, respectively. Recall that because aii = γi = 1 for
our matrix AJ , the indices i are picked with equal probability pi = 1/ dim(AJ). From our results, we
see a similar behavior as for the Toeplitz problem. Now, in contrast to that, the case k = 1 shows
a convergence which is slightly worse than that for the GS-iteration. But already for small values of
k ≥ 3, the randomized method again becomes competitive with the GS-Southwell iteration with respect
to error decay, but is only slightly more expensive than any fixed-order Gauss-Seidel method. Thus,
we have demonstrated that conventional multigrid, i.e. the level-wise Gauss-Seidel approach using the
multi-level generating system ΦJ , can indeed be further improved by a combination of random and
greedy ordering. Moreover, the asynchronous quality of the random part of our new method may be
further exploited in the design of efficient parallel multilevel solvers for elliptic problems on the modern
architectures of next-generation supercomputers.
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Figure 4: Schwarz iterations combining random and greedy ordering for the multilevel discretization of the Poisson
problem.

We conclude with a few comments on the computational costs. We again use the standard problem
of solving Ax = b for this discussion. Of course, the GS-Southwell iterations are more costly due to the
evaluation of all residuals and the determination of its maximum in each iteration step. For the case
of a full matrix, we already mentioned its O(N2) cost complexity per update step. For the case of a
sparse matrix with a constant number of non-zero entries per row the situation is better: For a naive
implementation, the cost to determine all residual values and to pick the largest one is O(N) while the
cost for a single update is O(1). However, in a more clever implementation, only the O(1) updates of
residual values caused by the previous iteration step need to be handled (and not the whole residual
vector). Then, the determination of the index with maximal residual value boils down to simple sorting
and inserting into tree-like data structures which results in a further logN term. Altogether, N steps
of the GS-Southwell iteration cost O(N logN) operations which is not so bad compared to the O(N)
operations needed for a full cycle of the GS method.

For the case of the multilevel discretization of an elliptic PDE in VJ via the generating system ΦJ
things are principally similar but more involved in the details. First, a naive setting up of the system
matrix would involve O(2dJJµ) non-zero entries, where µ depends on the dimension d, and the structure
of the problem. This is due to the overlay of the supports of all functions in ΦJ which is analogous to
the well-known finger structure of the matrix resulting from a wavelet discretization. However, using
the multilevel structure of ΦJ it is possible to implement the GS iteration step with level-wise traversal
ordering in only O(2dJ) operations, see the zipper algorithm in [7] or compare the cost complexity of
a multigrid V-cycle. Here the explicit assembly of the overall system matrix and its subsequent use
in the iteration is avoided. In contrast to that, the GS-Southwell approach involves again a further
logarithmic term in the cost complexity for an implementation which exploits the above-mentioned
tricks for sparse matrices, but now taylored to the more involved system matrices which stem from ΦJ .
Altogether, O(2dJ) steps of the GS-Southwell iteration, which correspond to one full cycle of the GS
method, can be realized with a cost of O(2dJJν) operations, where ν depends on the dimension, the
coefficient functions of the problem, and the respective data structures in the specific implementation.
For further details on an efficient implementation of the GS-Southwell method and a discussion of the
involved special data structures, see [29].
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