NONNEGATIVITY PRESERVING CONVERGENT SCHEMES FOR
THE THIN FILM EQUATION

GUNTHER GRUN AND MARTIN RUMPF

ABSTRACT. We present numerical schemes for fourth order degenerate parabolic equa-
tions that arise e.g. in lubrication theory for time evolution of thin films of viscous fluids.
We prove convergence and nonnegativity results in arbitrary space dimensions. A proper
choice of the discrete mobility enables us to establish discrete counterparts of the essen-
tial integral estimates known from the continuous setting. Hence, the numerical cost
in each time step reduces to the solution of a linear system involving a sparse matrix.
Furthermore, by introducing a time step control that makes use of an explicit formula
for the normal velocity of the free boundary we keep the numerical cost for tracing the
free boundary low.

0. INTRODUCTION

In this paper we will present new numerical schemes for fourth order degenerate parabolic
equations of the form:

uy + div(M(u)VAu) = 0 in Q x (0,7),
Zu=L2Au =0 on 092 x (0,7), (1)
u(0, -) = wuo(-) in Q.

We assume that the nonnegative mobility M € C(IR) vanishes at zero and that it has at
M) < 0}, we denote its growth

uS

most polynomial growth. By n := sup{s € IR* : lim,_,o
exponent near zero.

Equation (1) models the height of thin films of viscous fluids that — driven by surface
tension — spread on plain, solid surfaces. Usually, it is derived by lubrication approxima-
tion from the Navier-Stokes equations for incompressible fluids(cf. [3]).

Assuming a no-slip boundary condition at the bottom of the thin film, the mobility be-
comes M (u) := |ul3, whereas the assumption of various slip boundary conditions leads to
mobilities of the form M (u) = ¢1|ul® + co|ul? with positive numbers ¢, ¢, and 3 € (0, 3).
Apart from the application in fluid dynamics, degenerate parabolic fourth order equations
with a highest order term similar to that in (1) arise in other fields of material sciences.
We mention here the Cahn-Hilliard model of phase separation for binary mixtures, where
u plays the role of the concentration of one component (cf. [14]), and a plasticity model
(cf. [17] and the references therein) where u stands for the density of dislocations.

Crucial for all these applications is the fact, that it is possible to construct solutions
of (1) which preserve nonnegativity as has been proved for space dimension d = 1 by
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Bernis and Friedman [7] and for higher space dimensions in the papers by Griin [17] and
by Elliott, Garcke [14]. This behaviour is in strong contrast to that of classical solutions
to linear parabolic equations of fourth order which in general become negative even in
the case of strictly positive initial values. Moreover, the publications of Beretta, Bertsch,
Dal Passo [2] and of Bertozzi, Pugh [9] who study this equation in space dimension d = 1
reveal a rich structure of qualitative behaviour of solutions depending on the mobility
growth exponent n. To put it concisely, the larger n is, the stronger is the tendency of
solutions to stay positive and the weaker is the regularity at the boundary of the set where
u vanishes. In space dimension d = 1 for instance, solutions to strictly positive initial
data remain strictly positive if n > % On the contrary, if n < % theoretical results by [2]
show that film rupture may occur.

This already indicates that for solutions to (1) maximum or comparison principles cannot
be valid. Indeed, all the results about existence and qualitative behaviour mentioned
above are the consequence of two basic types of integral estimates, namely the so called
energy estimate

/Q|Vu(T, I +2

and the entropy or pressure estimate which reads in its simplest form as

//U(T’x)/s L irdsd /\A 2 //W)/s L irdsd
T asar + ul© = rasax.
0JA AM(T) Qr aJa AM(T)

It is worth mentioning that the number n = 3 plays an important role in the theory of
equation (1) — both from the mathematical and the physical point of view.

Physically, the assumption of a no-slip condition at the bottom of the thin film which is
expressed in the equation by M (u) := |u|?, leads for spreading droplets to infinite energy
dissipation at the triple line solid-gas-liquid(cf. [21] and [13]).

Mathematically, self-similar source type solutions with zero contact angle at the free
boundary only exist if 0 < n < 3 and moreover, all the estimates for proving existence of
solutions with zero contact angle break down if n > 3. (cf. [2], [9] in space dimension 1,
[12], [10],and [15] in higher space dimensions).

M(u)|V AUl = /Q Vol

Qr

Another important feature in the qualitative behaviour of solutions to this equation —
in particular with regard to applications in wetting and dewetting problems — is the prop-
erty of having finite speed of propagation. More precisely, this means that the interface
separating the regions where u is positive and where u is equal to zero moves with finite
velocity as time progresses. For a proof in space dimension d = 1, we refer to the work of
F. Bernis ([4], [5]), in higher dimensions to [10] and [15].

Those aforementioned issues — nonnegativity of solutions, but lack of comparison princi-
ples, propagation of the free boundary — also mean a great challenge in finding efficient
numerical schemes.

Just recently, a first successful attempt in constructing a finite element scheme guaran-
teeing nonnegativity of solutions has been done by Barrett, Blowey and Garcke [1]. By
solving in each time-step an elliptic variational inequality of second order, they enforce
solutions to stay nonnegative. Unfortunately, it is not clear whether their algorithm guar-
antees — independently of the grid size — strictly positive discrete solutions in the case
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that the continuous solution to be approached is strictly positive.

With this paper, we pursue a different approach by proposing an algorithm discrete in
time and space that enables to prove discrete analoga of exactly those integral estimates
which are used in the continuous setting for the results about existence and qualitative
behaviour. Later on, the discrete analogon of the entropy estimate will be the key to
obtain nonnegativity results of discrete solutions for arbitrary n > 0 as well as positivity
results if n > 2 and initial data are strictly positive.

As a byproduct, the numerical cost in each time step reduces to the solution of a linear
system involving a sparse band matrix.

The second important issue in numerically simulating wetting phenomena is an efficient
tracing of the solution’s free boundary.

We will present a new formula — and in fact prove it for self-similar source type solutions —
that explicitly expresses the normal velocity of the free boundary in a point £(¢) in terms
of u(t,&(t)) and of certain spatial derivatives of v in (¢, £(t)).

The discrete counterpart of this formula can easily be implemented to estimate the speed
of propagation of the numerical free boundary in each time-step. We use this for an effi-
cient time-step control, defining the time increment at time ¢ by 7, := sp%d(t) where h is
the grid parameter.

As a consequence, our algorithm reduces the computation time for simulating e.g. the
spreading of self-similar source-type solutions by a factor smaller than 0.005.

Let us mention that L. Zhornitskaya and A. Bertozzi(cf. [23]) parallely in time devel-
oped a method for proving entropy estimates for numerical schemes that has something
in common with our ansatz. They confine themselves to the case n > 2 and suggest a
time-continuous, space-discrete finite difference scheme for approximating strictly positive
solutions. For this scheme, they present a proof for strong convergence of positive discrete
solutions and show equivalence to a finite element approach on uniform, rectangular grids.

Let us describe the outline of this paper.

In section (1), we will present the finite element scheme to be studied without specifying
already at that point the numerical mobilities which we are going to use. Nevertheless, by
comparing this finite element method with a finite volume algorithm — both algorithms
coincide for certain regular meshes — we will illustrate the main idea how to construct
numerical mobilities (or numerical fluxes, respectively) which allow for nonnegative so-
lutions. Section (2) contains a proof of global-in-time existence of discrete solutions by
means of a fixpoint argument(Brouwer). In section (3), we prove the discrete analogon
to the energy estimate as well as a result about compactness in time. The latter, we
will use later on for proving convergence of discrete solutions in higher space dimensions.
Section (4) is devoted to a result about uniform discrete Holder continuity of discrete
solutions (using a discrete analogon of C/21/8(Q;)) if the dimension is d = 1.

In sections (5),(6), the key results of this paper can be found. In section (5), we introduce
a general concept of admissible entropy-mobility pairs which allow for discrete analoga of
the entropy estimate on arbitrary, unstructured grids. Section (6) is devoted to the proof
of nonnegativity results (or positivity results, if n > 2) for discrete solutions which are
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valid for arbitrary grid size.

Sections (7),(8) contain the convergence results: in space dimension d = 1, we get uniform
convergence on {7 to a solution u € C/%1/8(Qy) satisfying the continuous entropy esti-
mates; in higher space dimensions, strong convergence in the L?-topology to a function
u € L*®((0,T); HY*(Q)) N L*((0,T); H*(2)) is proved.

In section (9), we suggest an explicit formula for the normal velocity of the free bound-
ary in terms of spatial derivatives of v and prove this formula for self-similar source-type
solutions in arbitrary space dimensions. Moreover, we present our concept of time-step
control.

Finally, section (10) is about numerical experiments in one and two space dimensions. We
will discuss phenomena like film rupture, instantaneous development of the zero contact
angle in the case of initial data having non-zero contact angle and convergence to solu-
tions of Poisson’s problem with constant right-hand side if n > 3. In particular, we will
illustrate the efficiency of the time-step control by comparing explicitly known self-similar
source-type solutions with the calculated discrete solutions.

Throughout the whole paper, we use the standard notation for Sobolev spaces, denoting
the norm of W*?(Q) (k € N, ¢ € [1,00]) by |||, and abbreviating W*?(©2) and ||-||, ,
by H*(Q) and ||-||,, respectively. LP((0,7); W*4(Q)) stands for the space of p—integrable,
measurable functions from the interval (0,7) to W*4(Q2). By (.,.), we denote the scalar
product in L?(Q2), and (u)s is an abbreviation for the mean value of u over S.

Finally, C%#((0,T) x ) stands for the subset of those elements of C'((0,7) x ) which are
Holder continuous to the exponent S (or o) with respect to the first (or second) argument,
respectively.

1. TWO DIFFERENT NUMERICAL APPROACHES

There are two major classes of discretizations for evolution problems, these are finite vol-
ume respectively finite element schemes. Here, we consider both types. For simplicity
we assume () to be polygonally bounded. First we derive a finite volume formulation,
which is well suited to motivate the central aim of this paper, how to fix a numerical
flux, respectively a numerical mobility, with properties such as mass conservation and
guaranteed nonnegativity. Next we compare this approach with a finite element scheme,
which will turn out to be preferable concerning the numerical analysis. For such a com-
parison a duality of the meshes is required. If the finite element mesh consists of open,
polygonally bounded subvolumes F, called elements, then a dual mesh is built of open,
again polygonally bounded dual cells D,, corresponding to the vertices x of the primal
mesh (cf. figure 1). L. e., we define a single dual cell by

D, :={y € Q: dist(y,x) < dist(y, Z), Z is vertex of the mesh} .

For a certain class of meshes, both schemes coincide.
To start with the discussion of finite volume schemes, let us suppose 2 = Uje ; D; with
open, polygonally bounded cells D; where J is any index set of finite cardinality and
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On each subvolume we can rewrite equation (1) in conservation form

8t/ ude = — M(u)Vp-vdH*!
D; oD,

where p = Au and v is the outer normal on dD;. The right hand side describes the inflow
at the boundary, and M(u)Vp is the corresponding flux.

Let us now discretize in space. That is, we look for U(t,-), P(t,-) piecewise constant
on the cells D; for every ¢ > 0, such that 0, f D, U dzx equals the boundary integral of a
numerical flux. Therefore suppose P = A, U, where A, is an appropriate discretization of
the Laplace operator. On a regular cell subdivision, we take the standard finite difference
discretization with a five point stencil; on an unstructured set of cells, the finite element
discrete Laplacian on the corresponding dual mesh is the right choice (see below).

FIGURE 1. A two dimensional finite element triangulation whose edges are

outlined in black and the corresponding dual finite volume mesh indicated
by dashed lines.

We assume VP to be defined uniquely on the whole of €2, especially on cell faces. On
interior faces F' of dDj, in general no unique extension of U exists.
To pay account to the fact that the values U* = lim,_,o U(z + ev) may be different due
to the discontinuity of U across cell boundaries, we replace M(-) by some M : R* —
R; (Ut,U" 3 M(U*,U") and formulate the semi-discrete scheme

1
oU = — — MUY, U )Vp-vdH.
‘Dj| aD;
For nonempty F' = D; N D; the inflow on F corresponding to D; should coincide with the
outflow with respect to D;. Therefore we look for numerical mobilities M (-, -) with the
natural property

MU U))Y=MU-,U").
This immediately implies the conservation of mass [, U dz. Major investigations in the
following sections will aim at the right choice of the numerical mobility. For the trivial
choice M(U*, U~):=M (L£Y~) nonnegativity of the numerical solution can no longer be
guaranteed. In section 6 we will be lead to some type of geometric integral mean as the

appropriate choice. Finally the semidiscrete scheme can be discretized in time implicitly
or explicitly.

Now we turn to a second type of discretizations, the finite element schemes. We denote
by 7, a regular and admissible triangulation of the domain Q (cf. Ciarlet’s monograph
[11]). We here restrict ourselves to the case of simplicial grid. Thereby, the triangulation
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consists of simplicial elements F, i. e. intervals in 1D respectively triangles in 2D, with
UEeTh E = Q). Here the index h indicates the maximal diameter of an element FE € 7},.
Corresponding to 7, we consider the conforming, linear finite element space V* C H2(Q).
In the following, such discrete functions will be denoted by uppercase letters, in contrast
to lowercase letters for arbitrary functions in the nondiscrete function spaces. A function
V € V" is uniquely defined by its values on the set of nodes N, = {zj};c; of the
triangulation 7, where J denotes a corresponding index set. To each node x; corresponds
the standard “hat”-type basefunction ¢; € V" with ¢;(z;) = &;;. Let us furthermore
introduce the well-known lumped masses scalar product corresponding to the integration
formula

(0,%), ::/QIh(GKII)

where Z, : C°(Q) — V" is the nodal projection operator with Zyu =Y. ; u(z;)@; -
We recall the following well known estimates:

(U, V)= O V), | <O U VI, foralU,V €V, (=01 (2)
In the same spirit, there exist positive constants ¢, C' such that we have for |.|, := \/(.,.),:
.|z <(,.)<C|. (3)

A semidiscrete finite element formulation of equation (1) then takes the following form.
We look for (U, P) € C'([0,T], V" x V*) such that

/ (U, 0), — (M(U)VP,V6) = 0

where M (U) is a numerical mobility and P = A,U. Here Ay, : V* — V" denotes the
discrete Laplacian with respect to the lumped masses scalar product, whose application
to a function U € V" is defined by

(AU, W), = —(VU,VY) V¥ eVh. (4)

The corresponding matrix representation in the nodal basis is — M, 'Ly, where M), is the
diagonal lumped mass matrix with components (Mp);; = (s, ¢;), and L, the standard
sparse stiffness matrix with entries (Ly);; = (V¢;, Vg;) . Due to the absence of Dirichlet
boundary conditions, Ay is not injective, i. e. kerA, = {x — C|C € R}. This corre-
sponds to the observation that fQ ApU = 0, which we immediately see choosing ¥ =1 in
(4).

In the above finite element method the replacement of the exact mobility M(-) by some
M(U) can be interpreted as the choice of a specific quadrature to integrate the elliptic
term numerically. In our case we suppose that the discrete mobility M (U) for U € V"
is a symmetric matrix in IR%*¢ which is positive semidefinite and piecewise constant on
E € T,. If Ul is constant, then M (U)|g should coincide with M(U)Id up to a small
perturbation, en detail M (U)|g = m(U)Id where m(u) is an appropriate approximation
to M(u) (cf. section 6)). Otherwise M(U)|g has to be defined appropriately such that
again nonnegativity is preserved for U (cf. especially section 5, 6).

Let us underline the close relation between the choice of M (U™,U~) in the finite volume
context and M(U)|g in case of a finite element scheme remarking that both schemes
coincide for a certain type of triangulation 7, and corresponding dual cell subdivision
{D;},c;- Therefore we consider Q = [0, 1] and a regular grid of points {gij}ocijen
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where qij::(%, %) Then for every index pair (4,7), 0 < 4,5 < N — 1, we define tri-
angular elements E, respectively E’ by the set of vertices {¢i;, ¢i+1,j, ¢ij+1}, respectively
{@i+1,j,%i+1,j+1, % j+1}- Now we consider as finite element triangulation 7}, the set of all
these elements, and as the finite volume mesh the set of corresponding dual cells. Finally
we define M(U*,U~) and M (U)|g according to the definition in section 6. Then a te-
dious but straightforward computation which we skip here proves the equivalence of the

different approaches.

In what follows, we will focus on the finite element discretization. Let us discretize now the
above semidiscrete scheme in time. Therefore suppose [0, 7] to be subdivided in intervals
I, = (tk, tgs1] with tg1 = tx + 7 for time increments 7, > 0 and k£ = 0,--- , N — 1. We
will use forward and backward difference quotients with respect to time which we shall
henceforward denote by 9} or 9-, respectively. Now we can formulate an fully implicit,
backward Euler discretization scheme for equation (1):

For given U € V" find a sequence (U*, P¥) for k =0,--- , N — 1 with U*, P¥ € V" such
that

(o;U*,0), — (MU VP Ve) = 0 (5)
(P w), = — (VU V) (6)

for all ©, ¥ € V",
Choosing ¥ =1 in (4), we immediately observe that

/Pk“:o.
Q

The discrete initial values U° are assumed to be an approximation of the continuous initial
values ug . Suppose ug € C°, then we can prescribe U%:=T,uq .

Furthermore, we introduce S%~!(V") as the space of functions V : [0, 7] — V" which are
piecewise constant in time on the intervals I, and with V(¢) € V* for all ¢t € [0,T]. For
the discrete solutions U*, P* corresponding to the sequence of timesteps {t;} k=1, N> W€
then straightforward define a piecewise constant extension U,, € S®71(V") in time by
U, (t):=U* for t € I),. Furthermore

Un(t) = 2 "Ly 2= B
Tk Tk
represents a linear and continuous interpolation in time in the corresponding function
space which we denote by S0(V") . A pressure P,, € S%~*(V") and a continuous pressure
P, € SLO(Vh) can be defined by analogy. In particular, P, = A,U,;,, respectively
P, = AU, . We will call a pair (Urn, Py1), that solves the equations (5), (6) with initial
condition U® = T,ug, a discrete solution. To simplify the writing we will skip the indices

whenever a misunderstanding is ruled out by the context.

2. EXISTENCE OF DISCRETE SOLUTIONS

In this section, we will prove the existence of discrete solutions globally in time by use of
a fixpoint argument. For W* = U* — o with a::ﬁ fQ U° we obtain the weak equations

(0, W™ o), — (M(W*! + a)VP*' V) = 0 (7)
(PHL0), = — (VWML VD)
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and the initial condition W = U® — «. At first let us define the weighted stiffness matrix
Ly(W) for W € V" by

(Lh(W)ij)i,jeJ = /QM(W +a)Vep; - Vo,

Then a solution of (5) is obtained solving the following nonlinear system of ¢ = dim V"
equations for each time step. If we denote the nodal value vector for a function V € V*
by V, and with a slight misuse of notation rewrite L, (W) for L,(W), then for given
Wk € R? we search W5 € IR? such that F(W*+!) = 0 for

FW) = (Id+ M, 'Ly(W)M; ' Ly)) W — W*
Let us now introduce a new bilinear form on IR? by
<W,V>:=L,W-V
where - indicates the Euclidian scalar product on IR?. By definition this form is symmetric
and therefore a scalar product on K+:= {W | MW - (1,---,1) = 0}. We easily verify that

W? € K+ and by induction that F' : K+ — K*. Furthermore considering especially the
assumptions on M (U) we estimate

<F(W),W> = <W—Wk,W>+TkLh(W)AhW'AhW
> <W-WEW >>0

for < W, W >%2 R with R:i= < Wk W* >2 . Therefore we can apply Brouwer’s fixpoint
theorem and prove existence of a root W**1 for the mapping F(-). Finally we define by
Uktl:=(W**! + o) a solution of the original problem.

Let us remark that the restriction on K+ reflects the mass conservation property [, UF*! =
fQ U, which we immediately obtain choosing ©® = 1 in (5). It is conserved by typical
iterative solvers, such as Newton’s method or nonlinear Gauss—Seidel iterations.

3. BASIC A PRIORI ESTIMATES

Main topic of this section is the derivation of a priori estimates necessary for compactness
results of a sequence of discrete solutions. It turns out that these are the discrete coun-
terparts of analoguous estimates in the continuous theory. In what follows we assume
fixed timesteps 7, =7 = % for N € IN to simplify the presentation. Let us start with an
energy type estimate.
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Lemma 3.1. (Energy estimate)
Let (Upp, Pry) € SO7HVR) x S%=1(V) be a discrete solution.
Then the following a priori estimate holds:

3 [ V@l e + égngV(U"“(x) —~Ui(@)["do

T 1
+ / /M(U) VP dzdt = —/ (VU (z)|” da.
0 Q 2 Q

In particular, if UY, is uniformly bounded in H*(2), then Uy, and M(U) |V P|* are uni-
formly bounded in L*((0,T); HX(Q)) or L1((0,T) xQ)), respectively, by a constant C that
1s independent of T, h.

Proof. We choose © = PFF1 in equation (5), and summing over k, we obtain for the
parabolic part with the help of equation (6)

1N—l 1N—1
k+1 k k+1 k+1 k k+1
;kE_Oj(U+ — U*, PHY), = ;Ek_o:(VUJ’ — VU*, vU*)

N-1
_ %Z/|VU’“+1\2+|VU’“+1—VU’€\2—|VU’“\2dx
k=0 V&

and for the elliptic term

N-1 T

1
Y (MU VPH VPR = - / (M(U)VP,VP)
k=0 0

Hence, multiplying by 7, the stated estimate is established. If we furthermore consider
the mass conservation [, U* = [ U°, we obtain as a straightforward consequence uniform
bounds for the inspected norms. O

In space dimension d = 1, Sobolev’s imbedding result immediately gives the follow-
ing corollary which will be the starting point for the proof of uniform discrete Holder-
continuity of numerical solutions U, in section (4) and later on of their uniform conver-
gence.

Corollary 3.2. Let (U, Pr) € S% 1 (VP x SO L(VR) be a discrete solution and suppose
that U2, ||, is uniformly bounded in T, h.
Then Uy, is uniformly bounded in L®((0,T); C'/2(Q)) for 7, h tending to 0.

Let us consider now a result on compactness in time valid in any space dimension. Com-
bined with the energy estimate, it will be sufficient to prove the existence of convergent
subsequences.

Lemma 3.3. (Compactness in time)
Let (Uyp, Pry) be a discrete solution and let s < T be a positive number. Further, assume
the existence of a constant My such that

max  sup  M;j(Usp)(t,z) < M. (8)

1<4,5<d (¢, 2)e[0,T]x Q
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Then, there exists a constant C > 0 such that

/OTS <U(t +s,x) = Ut z),U(t +s,z) — U(t, x))hdt < OMis ®)

Proof. Let us first prove the result for values s = 7, [ < N a positive integer. For a fixed
number j satisfying 0 < j < N — [ we choose

O:=Uit U’
in equation (5), multiply by 7 and sum over k = j —1,--- ,j+ [ — 1. This implies:

J+i-1

I gkt gk , . .
Ty (f,UHl—UJ) =7y / M@UHHVPHIV @I - U7)  (10)
k=j—1 h k=j—17%

As the term on the left-hand side is equal to (U/*! — U7, U9t — U7),, it follows:

l : :
(Uj-l—l _ Uj, Uittt — Uj)h < MlTZ (/ M(Uj-Hc) ‘VPJ'-}—k‘Q) </ ‘V(Uj—l—l _ Uj)‘z)
- Q Q

Now, we sum up from j =1 to N — [ and apply the energy estimate (cf. equation (8)).
Thus, we obtain

N-—l
Y (Ut -v Ut - ),
7j=1
l N-I . . ) % N-I . o\ 2
<ar 3(r X [arwen wr ) (+ 30 [ [ww - o)
k=0 N =179 j=1 /9
SCMllT,

which is inequality (9) for s = I7. For arbitrary 0 < s < T, s = r7 with 0 < r < N, we
argue as follows: Writing » = [ + 6 with # € (0,1) and [ a nonnegative integer, we get:

Ut + it x) if t € (j7, 57+ (1 — 0)7]

Ut+(+1)7) ifte (r+ (1= 0)r,(+1)7] (12)

Ult+rrx)= {
With the notation
o= (UG + 070 = UGm L UG +0m ) ~UGr) ) G =00 =L

h
we obtain using U € S%(V}):

o Ut+rrz)—U(tx),Ult+rrz)—U(t,z)) dt
/

h
N—-I-1 N—-I-1
= Z (]_ - 0)\:[][] + Z Q\IIHLJ-
7=0 j=0

<CM(1=60)+0(+1)r=CMrr=CMs

This proves the lemma. O
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4. UNIFORM HOLDER CONTINUITY

The result on uniform discrete Holder continuity of discrete solutions basically relies on
two facts, first the uniform L>((0, T); C'/2())-regularity established in corollary 3.2, and
secondly the following lemma about Hélder continuity in time of the spatial mean.

Lemma 4.1. Suppose d = 1 and (Uyp, Pyp) is a discrete solution. Furthermore assume
that M(-) is bounded by a constant M;. Then, for integers k > 0,1 >0 withk+1 < N,
the following estimate is valid independently of h:

1

(vt -v) <), vie 09
h

Remark: In section (6), it will be verified that the boundedness condition on M(-) is
always satisfied if d = 1.

Proof. We choose © = U**! — U7 in equation (5), multiply by 7 and sum over k =

J,---,j+1—1. Then we obtain for the parabolic term in analogy to the proof of lemma
3.1
-1 GH-1
Z (Uk+1 Uk Ukt U])h — Z ((Uk+1 — U9y — (U* = U%), U — Uj)h
k=j k=j
1 A
B il i it j k+1 k prk+1 k
=5 UM -0 U - 1), + 5 o (Ut Ut Uttt —uh),
k=j

and taking into account the energy estimate, the elliptic part can be estimated as follows:
JHI-1

> T (MU VPR v (UM - U7))

k=j

/j T(M)T /Q M(U)VPV(U - UY)

G+ > 3
< \/Ml/ (/ M(U)|VP\2d:r) (/ V(U—Uj)Q)
g Q Q
G+)T 3/ pUHDT 3
< /M; max ||U’“H1</ /M(U)\VPVth) </ 1dt>
Jr Q J

k=3, +j+l -
< VM |0, Vir

Hence, the assertion follows. O

Now, we are in the position to prove the main result of this section — adapting an idea of
F. Otto [18] to the discrete setting:

Lemma 4.2. Assume d = 1 and that for integer I,k > 0 with [+ k < N the relation kT >
h* holds. Then for a discrete solution (Urh, Pry) with | M (Uys)ll, < Mi independently of
7, h, there exists a constant C depending only on ||U°||, such that

Uk (2) — Ul(z)| < C (kr)3 (14)
forx €.
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Remark: In section (9) we will prove that max;, s—o( C) — 0 for the time increment 7,
given by the time-step control provided n > 1. Hence, for those mobilities the compati-
bility condition for 7, h expressed in the lemma, does no longer mean any restriction.

Proof. For given x € ) and a small positive number §, let us assume without loss of
generality that [z,z 4+ ¢) C . Then we calculate

) - 0] = | O -t U - v

[ vw-v@a
= |I+II+III|

Corollary (3.2) and Cauchy Schwarz’s inequality imply
(T+111] < 8 (U] + [jT]])
< i),

For the second term, we apply lemma 4.1 and achieve

‘II‘ < 5_% </(Ul+k_Ul)2)2
Q

- %( (o, + [0),) + @ = vt ue o9}

IN

< o b (2n U], + 2acen)t 0)],)

Here, we have applied inequality (2) to estimate the difference between the L?-norm

and the norm corresponding to the lumped masses scalar product. Finally, we choose
1 . 1 .

d = (k7)1, take into account h < (k7)7 and end up with

[T+IT+IT| < C (340673 (kn)t) < Clhr)b.

5. PRESSURE-ENTROPY A PRIORI ESTIMATES

Now we will present an abstract frame which enables us to prove a discrete counterpart
of the continuous integral estimate

//U(T’m)/s ' drdsd /\A 2 //W)/s _drdsd
rasar + u© = rasdxr.
aJa 4 M(7) Qr aJa a4 M(r)

This estimate is sometimes called entropy estimate and serves for the proof of nonnega-
tivity results in the continuous setting.

Let us start with some notation. By m : IR — IR{, we denote an approximation of the
continuous mobility M that will be specified later on (cf. the following section). A is an
arbitrary, but fixed positive number.

We call a pair of functions G : R — IRJ, M : V" — R an admissible entropy-mobility
pair with respect to the triangulation 7Ty, if the following axioms are satisfied:
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(i) M : V" — R4 M(U) is piecewise constant on every E € Ty,

(ii) M is continuous, M(U)|g = (U)Id if U|E is constant,

(iii) MT(U )VIhG’(U) VU, where G(s) := [ g(r)dr with g(s) = [, m(r)dr,
(iv) M(U) is symmetric and positive semldeﬁnlte

For further reference, let us remark that G is nonnegative and convex by construction.

At first, we consider elements whose faces form rlght angles at one vertex. Let us as-
sume that £ = E(a1 ,aq) 18 a reference simplex in IR¢ with corners zy = 0, z; = woye; for
1t =1,---,d and o; € IR, where e; denotes the 7th unit vector. Applylng the notation
U, = U(xz) and g = G', we now look for a matrix M on E with MTV;Z,9(U) = VU,
where V; is the gradient on E. Due to

o) g = [ das

Uo m(s)

we straightforward verify that

U; 1 -1
ij=1,,d v, M(s)

) )

satisfies our axioms above. For Uy, = U, the definition simplifies to My, = m(Up) .

Now we generalize this method to arbitrary elements E which have a vertex z, with the
property that any two edges intersecting each other in x, form a right angle. We can find
(ov,---,0q) and an orthogonal matrix A in such a way that the affine linear mapping
T — = = xy + AZ is a bijection between the reference element E(ah...,ad) and E. We

proceed with the pull back on Ey,.... a,) and obtain ATV, ¢(z) = Vz¢(#). This implies
MTV;Tyg(U) = ViU =
MTATV,Tyg(U) = ATV,U =
(ATNI"AT) V. Thg(U) = V.U

Therefore defining M:=AMA"!, the conditions (ii), (iii) are fulfilled on E. Since A is
orthogonal, M is symmetric and positive semidefinite; hence condition (iv) is satisfied, too.

In the general case we cannot argue vertex oriented. Nevertheless, we can define

0., U
———0;;- (15)
Ou, Ing(U)

For an efficient implementation, this definition is less constructive than the first one which
we therefore find preferable. Finally using this method on every E € 7}, the required
property (i) holds and we obtain an admissible entropy—mobility pair (G, M) .

MijZ:

Let us emphasize that the choice © = Z,G'(U) implies for the elliptic term from (5)
the identity

- / MU)VPVO = — / MU)VPVLG(U) = / VPVU = (P,P),.  (16)

After these preliminaries, we can prove the key lemma for the subsequent results on
regularity and nonnegativity of solutions. It reads as follows:
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Lemma 5.1. (Pressure-Entropy estimate)

Let (U, P) be a solution to the system of equations (5)-(6) and assume that (M, Q) is an
admissible entropy-mobility pair as described above.

Then, for arbitrary T = K7, K € IN, the following estimate holds:

/Q T,G(U(T, 2))da+ / ' (P(t, ). Pt .))hdt

< / LG (2))dz

Proof. We take the function Z,G'(U**!) as test function in the weak formulation (5) and
obtain:

(17)

(@U’““,IhG’(U’““)) — / MUYV PTG (U )dz = 0 (18)
h Q

Using property (iv) of admissible entropy-mobility pairs (G, M) as well as identity (16),
we get:

(8;Uk+1,IhG'(Uk+1)) T (Pk+1’Pk+1) -0 (19)
The convexity of G implies: " "
%(G(U'““(év)) - G(U*(2))) < 0, UM ()G (U (2)) (20)
Hence, we can estimate:
<Ih(G(U’“+1(x)) — G(U*(z))), 1) + (Pk“,P’““) <0 (21)
Summing up from £ = 0 to K — 1, multiplying b:r 7 and using the hfact that (Zpn, 1), =
Jo Znn(x)dz, we obtain the result. O

6. NONNEGATIVITY RESULTS FOR DISCRETE SOLUTIONS

In this section, we will be concerned with the explicit construction of discrete mobilities
M that allow for nonnegative discrete solutions U. By a slight misuse of semantics, the
adjective nonnegative means in this context that it is possible to find mobilities M,
depending on a positive control parameter o such that for given € > 0 the corresponding
discrete solution U?, satisfies U, > —e on Qp. If the growth coefficient n is greater 2,
even strict positivity results can be proved for discrete solutions provided initial data are
strictly positive. These results are exactly the discrete counterpart of the nonnegativity
results which follow in the continuous setting from the basic entropy estimates(cf. [7] and
[17]).

Precisely, the following theorem holds:

Theorem 6.1. (Eristence of nonnegative discrete solutions U?, )

Let T, be an admissible triangulation of Q2 and let n > 0 be the growth coefficient of M in
zero. Assume that the mobility M is monotoneously increasing and vanishes on IR_U{0}.
For arbitrary € > 0, there exists a positive control parameter oy which only depends on d,
n, €, h and the initial datum ug > 0 such that:

For every 0 < o < aq discrete entropy-mobility pairs (G,, M,) can be constructed having
the property that the corresponding discrete solutions U?, of equation (5) satisfy:
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e U% >—cifu’®>0and0<n<2.
e U% > —c ifu’ >0 and n = 2.
e U% >0/2ifu’ >0y and n > 2.

Proof. For the ease of presentation, we will assume at the beginning that d = 1. Later
on, the modifications to be applied in the higher spatial dimensional case will be straight-
forward.

We will construct entropy-mobility pairs (G,, M,) in two different ways depending on
whether the mobility growth coefficient n is smaller than 1 or not.

If n > 1, we start with the following shifted mobilities m, (u) := M(max(o, u)), calculate
the entropy G, as the second primitive of m_ ! and eventually define the corresponding
discrete mobility M, (U)|g on an element E of the triangulation 7, by the formula:

mg(Ul) if U1 = UQ

M,(U)| = 2 -t
E ( [511 mol(s)d8> lf U1 #UQ

(22)

Here, Uy, U; denote the values of U on the boundary of E.

In the case 0 < n < 1, we obtain the discrete entropy G, by an C'-extension of an
appropriate continuous entropy G to the negative numbers and successively define M, |g
by the formula

(U1 = U2)(GL(U1) — Go(Un))™! it UL # Us
M,(U)| =< M(Uy) U, =020 (23)
E oM(=U) if Uy =Uy <0

Let us study now the case n > 1 en detail:

Due to the singular behaviour of the continuous entropy G for n > 2 we have to distinguish
three subcases.

Let us assume first that 1 < n < 2 and G(up) is bounded. The latter assumption is
satisfied for arbitrary nonnegative ug € H?(f2). In particular, this also applies to G(U}),
i.e. there is a positive constant Ceyr0p such that:

/ ThG(UY) < Controp independently of h — 0
Q

Denoting by RM the 4-th primitive of M™!, we may write the discrete entropy G, (u) :=
[ [imzt(s)dsdr as:

RM(u) — RM(A) — RM(A)(u — A) ifu>o
Go(u) := { RM(0) — RY(A) — RM(A) (0 — A) + 2(u— 0)’M(0) '+ (24)
+(u — o)(RM(0) — RM(A)) ifu<o

It is worthwhile to have a closer look on the formula for G, (u) for u < o.
By convexity, Ry'(0) — Ry (A) — RM(A)(o — A) > 0, and the same property obviously
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holds for the second term. The monotonicity of R implies that the third term is nonneg-
ative, provided o < A. The pressure-entropy estimate (18) implies the following estimate:
dim Vp

> wiUs(6) — ) (R (0) — RI(4)) < / T,G(UY)
=1 (25)
<c / Go(U(z:))

S Centrop

Here, w; := fﬂ i(z)dx,i=1,...,dim V} denotes the mass of a base function ¢; € V},. The
regularity of the triangulation implies the existence of positive constants c;, C; such that:

ch <w; <Cih 1=1,...,dim V}, (26)

Since M (u) ~ u™ in a neighbourhood of zero and n > 1, we infer for the growth of R (o)
near o = (:

logo ifn=1
R (o) ~ 27

1 (9) {—01_" ifn>1 (27)
Using inequalities (25),(26), the following estimate can be established for a negative min-
imum of U,x(t,.):

T

Centrop = Clh(niiin(UUh(ta z;)) — o) (R{\A (o) — R{M (A))

> cihmin U (t,2,) (R (o) — R () 28)

which implies:
Cflcentrop
h(R{"(0) — R{(A))
Letting o tend to zero, we infer from estimate (27) that the right-hand side in the inequal-

ity above tends to zero. Hence for each pair (g,h) and 1 < n < 2 the asserted number
oo(n, h, €, up) exists.

min(U7,) >

The subcase n = 2 can be handled similarily, provided we guarantee that

lim sup /GU(UO) < o0.
(0,7,h)—(0,0,0) /O

This can be achieved for instance if u° is strictly positive.

Let us study now the subcase n > 2 under a strict positivity assumption on ug. In
particular, we have as before:

/ T,G(UD) < Controp independently of h — 0

Q

Defining for § € IR the set K3(t) := {z; nodal point: UZ,(¢,z;) < B}, we can consequently
estimate the cardinality of the set K,,(t) for 0 < a < 1 as follows:

-1
1 Centrop

Keao Ol < G0 0 (RM(4) — BM (o))
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By estimate (27), the term on the right-hand side tends to zero, as ¢ — 0. As a conse-
quence, for o sufficiently small, U?, > ao.

Let us explain now our concept for the case 0 < n < 1 en detail.
In the sequel, B! denotes the particular second primitive of M~! characterized by the
property:
Ry (0) = (Ry")'(0) = 0
We define the discrete entropy

R (u) ifu>0
Golu) := {a‘lRé\A(—u) ifu<0 (29)

and the corresponding discrete mobility M, (U)|g as indicated above(see equation (23)).
Before proving the nonnegativity result announced in the theorem, let us give — for the
reader’s convenience — the explicit formula for M, (U)|g if M(u) = u™. For the boundary
points x1, x5 of E, we abbreviate U, (t, z;),7 = 1,2 by Uy, Uy as before.

(Lol if min(Uy,Us;) > 0

1
A U <0<

MO’(U) = < 0% if maX(UQ,U1) S 0 (30)
o man if Uy = Uz >0
\O'M(—Ul) fU =U; <0

Coming back to the nonnegativity result, we estimate the cardinality of Kj(t) for 8 < 0
in the following way:
Cflcentropo'
hRy ()
Arguing as before, the nonnegativity result follows, and for d = 1 the theorem is proven.

[Kp(t)] <

Eventually, we will consider the case of higher spatial dimensions. Let us indicate the
main steps in constructing an admissible entropy-mobility pair (G, M) allowing for non-
negative solutions.

Depending on the mobility’s growth exponent n, we start with the same entropy function
G, as in the one-dimensional case and define functions f, : R x R — IR{ by

(a—0)(G!(a) — G (b))t ifa#b
o(a,b) = 7 7 . 31
Jo(a,b) {Gg(a) ifa="0 (31)
Let E € Ty, be given. Let us assume first that there are points o € IR? and (o, - -+ , ) €
IR¢ as well as an orthogonal matrix A € IR%*¢ such that E = z, + AE(q, .. a;) Where

E(a,, a4 is the convex hull of (0, ey, -+ , ageq).
Then for U € V}, the restriction of M (U) onto E is given by the formula M (U)|p =
AM(U)|zA™". Here, M(U)| is defined as
M(U)|j = diag(fo(Uo, 1), -+ , fo(Uo, Ua))
with Uy := U(x) and U; := U(xo + o Ae;), i =1,-+- ,d.
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Otherwise, we take g := G', and define M (U)|g according to formula (15).

Applying lemma 5.1, the entropy estimate is satisfied by the discrete solutions (UZ,, P%,)
corresponding to our construction. Hence, we can repeat the arguments for the nonneg-
ativity results used in the one-dimensional case — with the evident quantitative modifica-
tions due to the change in dimension. O

7. CONVERGENCE IN 1D

In this section, we shall prove the main result on convergence of discrete solutions. Since
we will make essential use of the uniform discrete Holder continuity of approximative
solutions — that up to now only could be established in space dimension d = 1 — we have
to confine ourselves at the moment to the one dimensional case. It is worthwhile to point
out that our result has not only its meaning as convergence proof but independently as a
new proof for existence of solutions in the continuous setting, too.

We have

Theorem 7.1. (Convergence result for discrete solutions)
For d = 1, let us assume that uy € H"*(Q;RY), that the sequences (7;)jen, (hj)jen,
(0))jen of positive real numbers monotoneously converge to zero and satisfy for every j €
IN: 7; > h;*. In addition, we suppose that the corresponding discrete solutions (UZ,, P%,)
fulfill the discrete pressure-entropy estimate with uniformly bounded right-hand side, and
that o depending on h is chosen sufficiently small. Then, a subsequence (UZ,, P%,) ezists
that converges in the following sense to a pair of functions (u,p) which is contained in
CHY2U3(Qr; Ry ) N L((0, T); HY()) N L2((0,T); H*(Q)) x L*(Qr):

e U% — u uniformly on Qr and weakly-+ in L*((0,T); H“*(Q)).

o P% —pe L*(Qr) weakly in L*((¢,T); L*(Q)) for arbitrary 0 <e < T.

e VP — Vp weakly in L?*(S) for any S CC [u > 0]

where [u > 0] := {(t,z) € Qp : u(t,z) > 0}.

Furthermore, (u,p) satisfy the entropy estimate

/[u(T,.)>0} Gl ) +/QT ps /QG(“O) (32)

and solve equation (1) in the following weak sense:

/ (u— uo)gﬂdxdt = — M (u)VpVidzdt
Qr ot [u>0]

for all 9 € C([0,T]; HY*(Q)) satisfying 9(T) =0

[ tappi@de =~ [ Vult,z)vot)
Q Q
for almost all t € (0,T) and every ¢ € H“*()

(33)

Remark: 1. Numerical experiments indicate that the scheme has fine convergence prop-
erties also in the case that discrete solutions do not satisfy the pressure-entropy estimate
uniformly in ¢ — 0, e.g. if » > 2 and initial data have compact support. Analytically,
we still can prove uniform convergence of discrete solutions, but the limit function does
not have L?((0,T); H?*(Q))-regularity.
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2. In addition, it is possible to prove u € H'((0,T); (H"*(Q))") using the methods pre-
sented in [1].

Proof. Tt merely consists of four steps. After having proven the uniform convergence of
a subsequence of (U%,) by means of an Arzela-Ascoli argument, we will discuss the limit
behaviour of the parabolic part of equation (5). Secondly, we will study the limit behaviour
of the discrete mobilities which shall enable us to pass to the limit in the elliptic term.
Then, we will prove convergence in equation (6). Finally, the entropy inequality (32) will
be established.

As a preliminary observation we remark that the application of theorem 6.1 implies
imr p,0)—0 Min zyear U, (o) > 0 if o in relation to A is small enough.

Step 1: We consider equation (5), choose different test functions ©% and sum over k.
Thereby, we obtain
N-1

_ k k k+1
0= {(U +1 _ U ’@ + )h _ T(M(Uk-f—l)vpk—f-l’v(_)k-f-l)}

b
(=)

=

(- (U* = U, 0" —0F), — (MU VP! vorth) + (UN - U° oY),
k=0

T—T
_ / (U7, —U°,676,4), — (M(UZ,)V P, VO, )dt
0
(34)

where O, € So’fl(Vh) with @Th(T) =0.

For a function ¢ € C'((0,7); H**(2)) with 9(7,.) = 0, we define ©,4|;, = SpV(ts,.).
Here, S}, stands for the H'?(Q)-projection H'%(Q)) — V},.

Let us discuss now the convergence behaviour of U?,. Using lemma 4.2 and corollary 3.2,
we observe that the time-interpolations U?, (for the exact definition, cf. section 1) are
uniformly bounded in C'/%'/8(Qr). Hence, Arzela-Ascoli’s theorem guarantees the exis-
tence of a subsequence which we still denote by U?, converging uniformly in C*#(Qr),
a < %, B <1itoa function u € C'/>'/8(Qr). Applying lemma 4.2 again, we can esti-
mate |U% (t,2) — U% (t,z)] < Cr/® and thus conclude that there exists a subsequence
(U%,)(r,h,0)—0 converging uniformly on Q7 to a function u € C1/21/8(Qy).

i
Let us consider now convergence in the parabolic term. We already know that

(U = U, 07 Oum),, = (U7, = U°, 0 0)| < OB |[U7, = U°], [|0f O], -

Furthermore, 070, (¢, .) converges in L? uniformly in time, to 8,9(t,.), and therefore we
achieve

T—1 T
/ ( :h—UO,aj(aTh)h%/ (u — ug, V)
0 0

as 7,h,0 — 0.

Step 2: Let us show now that the discrete mobilities M, (U) uniformly converge to the
original mobility M(u) as 7,h,0 — 0. For E}, € Ty, we denote the space-time element
Ey, x [Ir,(l+ 1)) by E',, and M(E",) stands for the discrete mobility on E*,.
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We denote the values of U7, in the end-points of Ej, by U;,U, and obtain using the
mean-value theorem:

1 i
M(E;,) = —Gg(ﬁ) with £ € [Ur, Us] (35)
If the mobility’s growth exponent n satisfies n > 1, we can easily estimate the difference
between M (u(t, z) and the discrete mobility M (EL, (¢, 7)) on the the space-time cell, (¢, )
is contained in:
(M(u(t,z)) — M(E;,(t, @) = [M(u(t, ) — mo(6)]
< IM(u(t, ) = M(E)] + IM(E) — my(€)]
< sup  [M(9)[ult, z) — & + M(o)

s€(—o0,maxU)

(36)

Due to the uniform discrete Holder-continuity and the uniform convergence of U?,, for
(1, h,0) — 0 the terms in the last line of (36) uniformly converge to zero.

If 0 < n <1, we argue as follows: For given € > 0, we find § > 0 such that M(s) < ¢ for
|s| < 20. Introducing Ss := {(t,z) € Qr : u(t,z) > §}, we obtain repeating the arguments
above:

(M(u(t, ) — M(Ep,(t, )| <e  onSs

for 7, h, o sufficiently small.
The nonnegativity results in the previous chapter imply that we have for sufficiently small
7,0, h:
U7y > —0.
Hence:
IM(u(t,z)) — M(E, (t,2))] < e+ M(o) on Q7 \ S;.

which proves the uniform convergence of the discrete mobilities M.

Step 8: Let us first pass to the limit 7,h,0 — 0 in equation (6). We denote by R}
the projection Ry, : L?((0,T); H**(2)) — S%~(V}). From equation (6) we infer that

T T
/ (P:h, Rh@)hdt = - / / VU:hVRh(pd.Tdt (37)
T T Q

for arbitrary ¢ € L?((0,T); H%?(2)). On account of inequality (2), the entropy esti-
mate (17), and estimate (3) the term on the left-hand side can be estimated:

T T
/ (Pps Rup)ndt — / /PthhQOdl“dt
T T Q

< ChI|P7 || 2 myser @ [ Rl 20y 2 ()
< Chl|G(uo)l| Lo el 2o,y 2 ()

By use of the following convergence properties of appropriate subsequences:
e P% — p weakly in L*((¢,T); L*(Q2)) for arbitrary 0 <e < T
e U2 — u weakly in L?((0,7); H**(Q2))
e R — o strongly in L?((0,T); H%*(9))
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we can pass to the limit in equation (37) and obtain for arbitrary 0 < ¢ < T and arbitrary
U e L2((0,T); HY?(Q)):

// (t,2)U(t,x)dzdt = //VutacV‘Ilta:)dxdt

/Qp(t, x)Y(zr)dx = —/QVu(t, z)Vi(x)dx

for almost every ¢t € (0,7) and arbitrary ¢ € H?(Q).

From the pressure-entropy estimate we infer additionally that ||p[|z2((,r);z2(0)) is uniformly
bounded for € — 0. This implies p € L?(Q2y) and in particular p = Au in L?*(Qr). More-
over, elliptic regularity theory shows that u € L2((0,T); H%(Q)).

This implies:

Let us discuss now the convergence behaviour of the elliptic term in equation (5). Recalling
the definition of ©,, we observe first that ., strongly converges to 9 in C°((0,T); H*(Q)).
Secondly, the energy estimate (11) implies that M 2 (U2, )V P, weakly converges to a func-
tion J € L?(Q) with respect to the L?*(Qr)-norm.

Let us identify J with M%(u)Vp. On Qr \ Ss, we may estimate for 7, h, o sufficiently
small:

M(UZ,)VP5VO,,
QT\Sg

1 1o - (38)
< |[M2 (U)o @p\ss) M 2 (U7 V Pl L2y 1Ornl | L2 (0,512 ()

< O6™2(|0.1] |20y 12(@)
This implies that J =0 on [u = 0].
On the other hand, the energy estimate implies that

2
VP, 2 dzdt < c(3)"

Ss

on S; with a constant C independent of 7, h, 0. Hence, on S5 VP?, weakly converges to
Vp with respect to the L?(Ss)-norm which proves the assertion.

Step 4: It remains to prove the entropy estimate (32). The following estimates involving
the discrete entropy G, will be helpful:

i) On IRy, we have G, (u) < G(u)
ii) If 1 < n < 2, the discrete entropy G, is uniformly Holder-continuous with exponent
a=2-n (a<1ifn=1) on the set (0,0).

We have to prove point i) only for n > 1 and on the set (0,0), since in all the other
relevant cases G, = G. Writing down the Taylor-expansion of Ry (u)

RY(w) = RY'(0) + (1= 0) R (0) + 5 (u = 0)"M ™ (0) = <(u = o) (M(€) "M'(€)

with £ € (u,0) and using the monotonicity of M, point i) immediately follows.
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To prove ii) for 1 < n < 2, we argue as follows:

Go(u1) — Go(uz)| = %MI(U)(M — ug) (U1 + up — 20) + (1 — up) R (0) — (u1 — ua) R{(A)

S O'Mil(O')‘ul —_ u2\27"|u1 —_ u2‘n71+
+ RM(0) |ur — ug]®> ™ ug — ug|™t 4 |ur — ug| RM(A)

S C‘Ul — U2|27n
(39)

For the last estimate, we used the growth of M~1(c) and R{ (o) near zero as well as the
inclusion u; € (0,0), i = 1,2. The special case n =1 can be handled similarily.

Let us pass now to the limit in the entropy estimate

[ B+ / (P PR < / L.G,(U2() (40)

First, we show that lim 5,0 fQ TG, fQ . Since U = Z,u° is nonnega-
tive (or even strictly positive if n > 2) and unlformly Holder continuous on €2, it will be
sufficient to study the convergence behaviour of G,(U}Y) for (1,h,a) — (0,0, 0). On the
set [u® > & > 0], the H'-convergence of U} together with the fact that for o sufficiently
small G, and G are identical, implies the convergence pointwise almost everywhere for
a subsequence of G,(U}). Using auxiliary estimate i), Lebesgue’s theorem of majorized
convergence implies the convergence on [u > 0].

We have to discuss the limit behaviour on the set [u® = 0] only if 1 < n < 2 because
otherwise u° is either strictly positive or G, = G on R{. Thus combining auxiliary result
ii) with the identity lim,_,o G,(0) = G(0), we observe:

|G (U7,(t,7)) = G(O)] < ClUZ (8 2)[* + 05(1).

Hence, for (7, h,0) — (0,0,0) the right-hand side of equation (40) converges to [, G(u°)
In the same spirit, we can prove with the help of Fatou’s lemma that:

T
[ cu@y+ [ v< fimint [ DGAT)+ [ (25PN
[u(.,T)>0] Qr (T,h,o’)—)(0,0,0) 9] T

which gives the result. O

8. CONVERGENCE RESULTS IN HIGHER DIMENSIONS

In the case of higher dimension, the convergence results to be presented are much weaker
than in dimension d = 1. This is due to the fact that even in the continuous setting no
results in higher space dimensions are known about

e local or global continuity of solutions

e strict positivity on open subsets of the space-time cylinder

e boundedness of solutions
For this reason, we have to confine ourselves to convergence results for the triple (U?,, P%,, JZ,)
where we denote by J2, the discrete flux M (UZ,)VPZ,. Unfortunately, the identification
im(; p.)—0 JZ, = M(u)Vp remains an open problem.
Our ex1stence result reads:
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Theorem 8.1. Let us assume that

o M : Ry — R{ is bounded,

o (Ti)ken, (hr)ren, (0k)kew are sequences of positive real numbers monotoneously
converging to zero,

o U7y, PR, J7), are solutions to the discrete system (5), (6),

o (U2, P3,) satisfy the discrete pressure-entropy estimate with uniformly bounded
right-hand side,

e o depending on h is chosen small enough,

e Q C IRY is convex and polygonally bounded.

Then, there is a subsequence (UZ,, P%,, Jf,h)(m,a)_)o that converges to a triple (u,p,J) €
L2((0,T); H2(Q)) N £°((0,T); H2(Q)) x L*(Qr) x L*(Qp;IRY) in the following sense:
e U% — u strongly in L*(Qr) and weakly-+ in L>=((0,T); HY*(Q)).
e P% —pe L*(Q) weakly in L*((e,T); L*(Q2)) for arbitrary 0 < e < T.
o M(U?%,)V P — J weakly in L?(Qr; IRY).

Furthermore, u is nonnegative, and equation (1) is satisfied in the following weak sense:

/ (u— uo)gﬁdxdt = — / JVidzdt
Qr ot

[u>0]

for all 9 € C'([0,T); H**(Q)) satisfying 9(T) = 0

(41)
[ tappi@e == [ Vult,z)vet)
Q Q
for almost all t € (0,T) and every ¢ € HY(2)
Proof. From lemma 3.3, we infer that
T—s
lim ( gh(t + 5, ) - Ugh(ta ))hdt =0 (42)
s—0 0

uniformly in (7, h,0) — 0. Together with the standard estimate (.,.), < C||.||%2(Q), we
obtain:

lim [[U7, (- + 5,) = UL (5 )l ez (0r—spz2ey) = 0 (43)

uniformly for (7,h,0) — 0. Combining this result with the uniform boundedness of
U2, Loe((0,r); 512 (02)) (cf. inequality (11)) and the following theorem due to J. Simon

Theorem.([19], p.84) Let X C B C Y with compact imbedding X — B and 1 < p < 0.
If F C IP(I; X) is bounded and ||f(- + h,-) = f(-; ) lvo,7-n,y) = O uniformly for f € F
as h — 0, then F is relatively compact in LP(I; B).

we observe that a subsequence (UZ,) exists having the convergence behaviour asserted
in the theorem.

The entropy estimate implies the existence of a subsequence (P7,) that weakly converges
to a function p € L*(Qr) in L?((e,T); L*(Q2)) for arbitrary 0 < & < T. By the energy esti-
mate, we infer the convergence behaviour conjectured for J2, = M (UZ,)VPY,. Following
the line of argumentation in theorem 7.1, the weak formulation (41) can be established.
Having chosen the entropy control parameter o such that lim inf(; ;50 min(Ug,,0) = 0,
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the nonnegativity of u follows. Finally, v has L?((0,T); H?*(f2))-regularity since the normal
derivatives of u vanish, conservation of mass is guaranteed and p = Au € L?(Q). O

9. TIMESTEP CONTROL

One of the most intriguing features in studying fourth order degenerate parabolic equa-
tions — with respect to theory as well as to applications such as wetting phenomena — is
to trace the solution’s free boundary in a correct way.

This section is devoted to a quasi-optimal mechanism of time-step control that allows in
each time-step to determine the maximal time increment 7 assuring that the numerical
free boundary may propagate as fast as its continuous counterpart.

Let us begin with a few remarks about how to determine the discrete solution U.

In each time-step, we have to solve the nonlinear system of equations B(U**!) = U* with

B(U) := (Id + Tth_llA;h(U)Mh_th) U where U is the vector of nodal values correspond-

ing to U € V" and Ly (U):=Ly(U — a) (cf. section 2).
In fact, we first consider the corresponding semi-implicite system

(14 + md L (0F) M L) OFF = O

and apply an iteration scheme to solve the fully implicite scheme which will be specified
later on.

Now observing that in the semi-implicite scheme the numerical free boundary cannot
propagate more than a distance h in each time step, it is reasonable to choose the time
increment 7 smaller than the quotient sp%d(t) where speed(t) stands for the maximal nor-
mal velocity of the numerical free boundary at time ¢. As a consequence of this special
choice of time increment, only a very small number of iterations (experiments show < 5)

is necessary to obtain the solution of the fully implicite scheme.

Formal considerations — performed in the continuous setting — indicate that the normal
velocity V;,(£(t)) of the free boundary in a point £(t) can be related to spatial derivatives
of u in &(t) according to the following formula:

V() = lim 2AE2) 0

a€(t)  u(t,z) 5y tult.z) @ € supp(u(t,.)) (44)

For a rigorous proof of this formula in a general setting, we refer to the forthcoming
paper([16]). In this section, it will already be verified for self-similar source-type solutions
to the equation

he + div(A"VAR) = 0 (45)
h(t,.) — o ast— 0. (46)
Those source-type solutions have been studied by Bernis-Peletier-Williams [8] (space di-

mension d = 1) and Bernis-Ferreira [6] (space-dimension d > 1).

But at first, let us make some more remarks related to the discrete setting. In the
framework of the algorithm studied in this paper, we formulate a discrete counterpart of
formula (44) in the following way:
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In a time-step t;, we first determine on each E € 7, numbers

M(U:n)E) (N .
U(tk, E) — o) (Zi:l |8wlp|) if UTh,‘E > 0 and (Urh)E >0 (47)
0 otherwise
and then define the time increment by the formula
h
T 7 with 7 € (0,1). (48)

~ 0.01 + maxger, v(ty, E)’

If n > 1, the results about Holder continuity in space for discrete solutions allow to give
a robust, but coarse upper bound: maxge7, v(t, E) < C||U||E;1(QT)h_5/2.
This implies for the time increment:

T>Ch?  ifn>1 (49)

Hence, the assumption k7 > h* in the previous chapters does not mean a restriction any
longer.

Let us prove now the following theorem:

Theorem 9.1. (Normal velocity of the free boundary for selfsimilar source-type solutions)
Let h: R* x (0,00) be the solution to equations (45),(46).
Then the normal velocity of the free-boundary at a free boundary point &(t) is given by:

Va(E(t)) = lim h"’lgAh(t, x) x € supp(h(t,.)) (50)

z—&(t) 1%

Proof. Adopting the notation of [6], the solution h of equations (45),(46) can be written
as

h(t,z) = tdﬁf(%) with 8 = 1 —i—ldn (51)
Defining n := L%l, f solves the equation
(™ (A F)) =B f) n>0 (52)
nf(n) =0 as n — o0 (53)
et dn=1 54
W /O n™ f(n)dn (54)

where A, is the radial Laplacian and wq is the area of the unit sphere in IR%.
In integrated form, equations (52)-(54) read as

A =80 on[f > 0] (55)

In particular, f is of class C* on [f > 0]. By direct computation, we obtain for the
normal derivative of Ah on spheres with radius = |z| around the origin:

0 9]
— — ¢ Bd+3)
% Ah(t,z) =t By (A, f) s (56)
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Multiplying this equation by A" ! and using equation (55) yields:

0 0
n—1 I — ¢~ B(dn+3) —B\n—17 ~
Wt 3) AR ) = 1P f(ae Py (DA )

z[t=F

— ﬁt—ﬁ(dn+4) |.’L“ (57)

= Bt |z|

For given 2, € R, 2y # 0, let us denote by z(t) the intersection of the half-line T}, :=
{z eR*:z=azs, a€R"} with S(t), the free boundary at time ¢.
By continuity, we infer:

lim M (2l) (A ) = Be()] € supp() (58)

which implies for the corresponding moving free boundary point z(t) := tPz(1):

V(1)) = o), ) = (1)
= 817 a(0) (59)
= x1—i>£vr(lt) "¢, :U)(%Ah(t, x) x € supp(h(t,.))

T
||

This proves the theorem. O

Here, we used the abbreviation v, :=

Remark: Straightforward calculations indicate that the formula for the normal velocity
of the free boundary implies that

e the support of solutions does not spread if n > 3.
e the support does not shrink if n > %,

For further details we refer to [16].

10. NUMERICAL RESULTS

The finite element scheme has been implemented in a numerical algorithm and applied
to several significant model problems. In each timestep, we have to solve the nonlinear
system of equations B(U**!) = U* with

B(U) = (Id+TkM,;1ih(U)M,;1Lh) ]

where U is the vector of nodal values corresponding to U € V" and Ly,(U):=L, (U — ) (cf.
section 2). If we consider first the semi-implicit scheme where the mobility is evaluated
for fixed W, we obtain a sparse, linear, nonsymmetric system of equations. For given W
we look for solutions U, such that

Bl(W)U: (Id + Tth_lzh(W)Mh_th) U = Uk .
For d = 1 the matrix By(W) is a band matrix with bandwidth 5. LR-Decomposition
is applied to solve this system of equations with O(q) computational effort, where ¢ =
dimV'™".
The original nonlinear problem B(U**1) = 0 now can be solved either by Newton’s method
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or by another appropriate fixpoint iteration. Here we calculate for ¢ > 0 iteratively
solutions of

B(UF) Uk = UF

+1

where we have defined USth:=U*. If HUfjll - Uf“”oo gets small enough, we select

Ukt = U} and continue with the next timestep.
We observe fine convergence properties for this iteration — at most four iterations are

necessary to get below a threshold of magnitude 1078.

Let us describe the results of our numerical experiments. In space dimension d = 1,
we performed four characteristic simulations, namely

e spreading of self-similar source-type solutions,
e instantaneous development of zero contact angle for initial data with non-zero
contact angle and exponent n < 3,
e convergence of solutions to a parabolic profile if n > 3,
e dead core phenomenon (film rupture) for n = 0.5 and appropriately chosen initial
data.
Let us begin with the detailed description of the first experiment.
Smyth and Hill ([20]) found the following explicit formula for self-similar source-type
solutions (cf. figure 2)to equations (45),(46):

1

) = s |~ o

2 2

A A A

. B

t=0.000 1 t=0.004 1 1=0.016 I =003 1

F1GURE 2. Evolution of selfsimilar source-type solution for growth expo-
nent n = 1.

Choosing w = 2, 7 = 47 and observing the symmetry around zero, it is sufficient to solve
equation (1) numerically on © = (0, 1) with initial datum:
1

U =Ta(55 [4 - 1622]7). (61)

We choose o = 1078 and perform simulations for values of v € {0.1,0.5, 1.0}, where 7 is
the parameter in the formula for the time-step control (48).
We stop the algorithm at time 7" = 0.03 in order to guarantee that supp(u(7},.)) is con-
tained in [0, 1].
The nodal point corresponding to the numerical free boundary is in each time step iden-
tified by the formula

zp(ty) := inf  {x; nodal point : U(ty,z;) <0}.

i=1—dim V},
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and compared with the true free-boundary point zp(t). In the following tables, the
relevant data for different values of v and various choices of triangulations are written
down.

vy=1 1 2 3 4
number of gridpoints 100 200 200 1000
time steps 41 86 261 851
|1 Z,u(0.029, ) U™ (-) || oo () /103 5.47 2.63 0.99 0.47
| Zhu — Ul|peo () /1072 7.61 3.75 1.44 0.67
max;—; ,n |Zr(tx) — xp(tg)|/1073 6.23 3.41 1.66 1.25
CPU-time/s 2.98 6.16 14.98 44.50
v=10.5 1 2 3 4
number of gridpoints 100 200 500 1000
time steps 85 178 661 1476
|1 Z,u(0.029, ) U™ (-)|| oo () /1073 4.69 2.31 0.88 0.43
| Znu — Ul| 1o (020) /1072 6.43 3.17 1.22 0.59
maxy_; ,n |Tr(tx) — xp(tx)|/1073 6.40 3.32 1.56 1.27
CPU-time/s 3.14 6.30 20.28 64.83

v=0.1 1 2 3

number of gridpoints 100 200 500

time steps 539 1104 3939

|1 Z5u(0.029, )= UM (-)|| oo () /103 4.17 2.05 0.80

| Zhu — Ul|poo(00) /1072 5.49 2.71 1.07

maxg—1n |Zr(tr) — 2p(t)| /1073 | 8.22 4.09 1.40

CPU-time/s 3.54 10.57 77.34

As we do not observe smaller values for U than —7 x 10 %, the discretization error ob-
viously does not have its maximum at the free boundary, but in the bulk region of the
droplet. Furthermore, a comparison of the fourth and fifth line indicates that the max-
imal error occurs for small values of . On the contrary, the error in the free boundary
is stable over the whole time-interval. In fact, we observe oscillations around zero of the
difference zp(t) — xp(t) between numerical and exact free boundary as time proceeds — a
good indication for the efficiency of our time-step control.

It is remarkable that the time-step control for v = 1 allows average values of the time
increment 7 which are of magnitude A* with a € (1.45,1.57). This is - besides the low
numerical cost in each time-step - the main reason for the extremely low CPU-times we
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needed for our calculations on a Silicon Graphics Indigo 2 with processor R4000 (250MHz).

The second experiment shows the effect of the time-step control with regard to instanta-
neous development of zero-contact angle. As initial datum U° : (0,1) — IR, we take the
nodal projection of the hat-shaped function

0.2(x —0.25) if0.25<z2<0.5
up := 1< 0.2(0.75 —z) if0.5<2<0.75 (62)
0 otherwise.

We choose an uniform triangulation with 100 grid points, take v = 0.1, and need a
CPU-time of 3.16s for the whole sequence presented in figure 3.

t=0.000 t=0.005 004 -

t=0.020 t=0.410 0 005 o1 o1 o0z 0% 03 0% 04 o045 05

FiGURE 3. Instantaneous development of zero contact angle for initial data
with non-zero contact angle, illustrated for n = 1 and hat-shaped initial
datum with supp(ug) = (0.25,0.75) and maximal height 0.05, on the right
time—increment versus time depicted in a diagram.

Furthermore, the time increment 7, is depicted depending on the time-step tx. As the
free boundary initially moves extremely fast, we have to start with very little values 7
to guarantee the zero-contact angle. Afterwards, the propagation slows down, and larger
time increments are sufficient. Finally, when the numerical solution approaches its con-
stant limit value, 7, reaches its maximum, namely 10A.

Figure 4 underlines the crucial role of the exponent n in the theory of equation (1).
Starting with the same initial data as before, we obtain for n = 4 convergence to a so-
lution of Poisson’s equation with constant right-hand side as expected by the theoretical
results by [2]. Moreover, our experiments show that numerical solutions converge for val-
ues of n > 3 and ¢t — oo to a parabolic profile. This gives strong numerical evidence to
the conjecture that no spreading of support occurs for values of n > 3. In addition, we
point out, that the algorithm finely works despite the fact that n > 2 and initial data
have compact support.

Theoretical results only assure for values of n > % that the solution’s support cannot
shrink as time proceeds. Figure 5 gives numerical evidence that for n = % film rupture
may occur, a phenomenon that in the literature already has been described by Bertozzi-
Pugh ([9]).
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AAAa

t=300

Fi1GURE 4. No spreading of support, but convergence to a parabolic profile,
illustrated for n = 4 and same initial datum as in figure 3.

Choosing the initial datum
up(z) := 1072 + (z — 0.5)*

and 0 = 107! we get film rupture for 300 grid points as indicated in figure 5 (CPU-time
25.34s). Finally, figure 6 has been produced using the same initial data as before, but

UL A o -

t=0.0000 t=0.0005 t=0.0019 t=0.0050

FIGURE 5. Dead core phenomenon, initial datum ug(z) = (z—0.5)*+1073,
growth exponent n = 0.5, using a uniform discretisation in space with 300
gridpoints.

taking n = 2 as growth exponent. Obviously, the solution remains strictly positive.

uL‘L‘M

t=0.60 t=1.70 t=5.00

FIGURE 6. No dead core phenomenon, same initial datum as before, but
exponent n = 2.

Let us discuss now the case of higher spatial dimensions. We subdivide Q = [0, 1]
uniformly using 2500 gridpoints, and perform two characteristic experiments with the
semi-implicite algorithm described above — the evolution of pyramide-shaped initial data
for mobility growth exponents n = 1 and n = 4 (cf. figures 7 and 8). As the sparsity of
B;(W) remains, we choose iterative solvers and apply the BiCG-Stab algorithm [22] to
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solve the corresponding system of equations. It turns out that the number of BiCG-Stab-
iterations necessary to get below the error tolerance of 107! remains low (i.e. in average
70 iterations for the case of 2500 nodal points) as long as the time-step control suggests
small time-increments. As soon as the time-increment reaches its maximum of 10A, we
observe in the first experiment an augmentation up to values around 500, whereas in the
second experiment the number of iterations remains small. Hence, the CPU-times are
rather different — for the first experiment, we need 325s, for the second experiment, 125s
are sufficient. Although the numerical cost is still moderate, for further investigations
on finer grids and an additional optimization of the algorithm, we intend to develop a
multigrid solver as well as an hierarchical preconditioner.

Let us conclude with a remark about the qualitative results of the simulation in higher
space dimensions. Figure 7 indicates that the evolution has a regularizing effect on the
free boundary when n < 3. For larger values of n, the support does not spread as time
proceeds — underlining once more the meaning of n = 3 as threshold parameter for the
qualitative behaviour of solutions to equation (1).

t=0.008 t=0.2

F1GUuRE 7. 2D analogon to figure 3; please note the evolution’s regulariz-
ing effect on the numerical free boundary which instantaneously becomes
smooth.

Acknowledgement: G.G. would like to express his gratitude to Danielle Hilhorst for
recommending to him to study finite volume schemes for degenerate parabolic equations.

REFERENCES

[1] J. Barrett, J. Blowey, and H. Garcke. Finite element approximation of a fourth order nonlinear
degenerate parabolic equation. to appear in Numer. Mathematik.

[2] E. Beretta, M. Bertsch, and R. Dal Passo. Nonnegative solutions of a fourth order nonlinear degen-
erate parabolic equation. Arch. Rat. Mech. Anal., 129:175-200, 1995.

[3] F. Bernis. Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic
problems. In J.I. Diaz, M.A. Herrero, A. Linan, and J.L. Vazquez, editors, Free boundary problems:
theory and applications, Pitman Research Notes in Mathematics 323, pages 40-56. Longman, Harlow,
1995.

[4] F. Bernis. Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. in
Diff. Equations, 1, no. 3:337-368, 1996.

[5] F. Bernis. Finite speed of propagation for thin viscous flows when 2 < n < 3. C.R. Acad. Sci. Paris;
Sér.I Math., 322, 1996.



32 Giinther Griin and Martin Rumpf

_—
—
| ——
P —
P a—
Pa—

t=0.0 t=0.5

t=4.0 t=20.0

FiGUuRE 8. 2D analogon to figure 4. The support remains constant in time;
its boundary is only Lipschitz continuous.

[6] F. Bernis and R. Ferreira. Source-type solutions to thin-film equations in higher space dimensions.
Euro. J. Appl. Math., 8:507-524, 1997.
[7] F. Bernis and A. Friedman. Higher order nonlinear degenerate parabolic equations. J. Diff. Equ.,
83:179-206, 1990.
[8] F. Bernis, L.A. Peletier, and S.M. Williams. Source-type solutions of a fourth order nonlinear de-
generate parabolic equations. Nonlin. Anal., 18:217-234, 1992.
[9] A.L. Bertozzi and M. Pugh. The lubrication approximation for thin viscous films: regularity and
long time behaviour of weak solutions. Nonlin. Anal., 18:217-234, 1992.
[10] M. Bertsch, R. Dal Passo, H. Garcke, and G. Griin. The thin viscous flow equation in higher space
dimensions. Adv. Diff. Equ., 3:417-440, 1998.
[11] Ph. G. Ciarlet. The finite element method for elliptic problems. North Holland, Amsterdam, 1978.
[12] R. Dal Passo, H. Garcke, and G. Griin. On a fourth order degenerate parabolic equation: global
entropy estimates and qualitative behaviour of solutions. SIAM J. Math. Anal., 29, 1998.



Nonnegativity preserving numerical schemes for the thin film equation 33

[13] E.B. Dussan and S. Davis. On the motion of a fluid-fluid interface along a solid surface. J. Fluid
Mech., 65:71-95, 1974.

[14] C.M. Elliott and H. Garcke. On the cahn-hilliard equation with degenerate mobility. STAM
J. Math.Anal., 27 Nr. 2:404-423, 1996.

[15] G. Griin. Finite speed of propagation for solutions to the thin film equation for exponents 2 < n < 3:
case of higher space dimensions. manuscript.

[16] G. Griin. On the velocity of the free boundary for solutions to degenerate parabolic equations of
fourth order. manuscript.

[17] G. Griin. Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hard-
ening. Z. Anal. Anwendungen, 14:541-573, 1995.

[18] F. Otto. Lubrication approximation with prescribed non-zero contact angle: an existence result.
submitted to CPDE.

[19] J. Simon. Compact sets in the space I7(0,t;b). Annali di Matematica Pura ed Applicata, 146:65-96,
1987.

[20] N.F. Smyth and J. M. Hill. Higher order nonlinear diffusion. IMA J. Applied Mathematics, 40:73-86,
1988.

[21] V.M. Starov. Spreading of droplets of nonvolatile liquids over a flat solid. J. Colloid Interface Sci.
UdSSR, 45, 1983.

[22] H. A. van der Vorst. A fast and smoothly converging variant of bi—cg for the solution of nonsymmetric
linear systems. SIAM J. Sci. Stat. Comp., 13:73-86, 1992.

[23] L. Zhornitskaya and A.L. Bertozzi. Positivity preserving numerical schemes for lubrication-type
equations. STAM Num. Anal. submitted, 1998.

GUNTHER GRUN: UNIVERSITAT BONN, INSTITUT FUR ANGEWANDTE MATHEMATIK, BERINGSTR. 6,
53115 BONN, GERMANY

MARTIN RUMPF: UNIVERSITAT BONN, INSTITUT FUR ANGEWANDTE MATHEMATIK, WEGELERSTR. 6,
53115 BONN, GERMANY



