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Abstract – We apply the multiscale FENE model to a 3D square-square contraction flow problem. For this purpose, we 
couple the stochastic Brownian configuration field method (BCF) with our fully parallelized three-dimensional Navier-
Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah 
number flows for which most macroscopic methods suffer from stability issues. We compare the results of our 
simulations with that of experimental measurements from literature and obtain a very good agreement. In particular, we 
are able to reproduce effects such as strong vortex enhancement, streamline divergence and flow inversion for highly 
elastic flows. Due to their computational complexity, our simulations require massively parallel computations. Using a 
domain decomposition approach with MPI, we achieve excellent scale-up results for up to 128 processors.  
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Introduction 
The computational modeling of dilute polymeric fluids 
usually involves an additional polymeric stress tensor 
in the Navier-Stokes equations and an additional 
system of differential equations for the stress tensor 
entries, compare the Oldroyd-B or the Phan-Thien 
Tanner (PTT) model. After discretization, these 
macroscopic models are often restricted in their scope 
of application due to numerical instabilities that appear 
beyond a critical Deborah or Weissenberg number (cf. 
high Weissenberg number problem).  
 
One attempt to overcome this problem is multiscale 
modeling. This approach directly solves the kinetic 
equations of the microscopic system. Most multiscale 
methods used in practice are variants of the particle-
based CONNFFESSIT technique by Laso and 
Öttinger [1] or of the grid-based Brownian Con-
figuration field (BCF) method by Hulsen et al. [2]. 
Both approaches employ stochastics for the 
representation of polymeric configurations. Using 
Monte-Carlo integration, the macroscopic stress tensor 
is obtained as the first moment of the polymer 
configurations. Keunings gives a detailed overview of 
various micro-macro approaches in [3]. In the 
following, we present, to the best of our knowledge, 
the first 3D multiscale FENE (finitely extensible 
nonlinear elastic) simulations for square-square 
contraction flows and compare our results with that 
from laboratory experiments. Our multiscale 
simulations are more stable than comparable 
macroscopic simulations for high Deborah numbers.   
 
The remainder of this article is organized as follows: 
We first state the multiscale model equations and 
describe their discretization. Next, we illustrate the 3D 
contraction geometry and compare our simulation 
results with experimental results from literature. At 
last, we evaluate our findings and discuss possible 
extensions.   
 
 

 
Governing equations for the multiscale model 
The macroscopic 3D Navier-Stokes equations for an 
incompressible fluid are 
 
𝜕𝒖
𝜕𝑡

+ 𝒖 ∙ 𝛁𝒖 = −𝛁𝑝 +
1
𝑅𝑒

𝛽∆𝒖 +
1
𝑅𝑒

𝛁 ∙ 𝝉𝒑 (1) 

 𝛁 ∙ 𝒖 = 0 , (2) 
 
where 𝑅𝑒 denotes the dimensionless Reynolds number, 
𝛽 the ratio of polymer to total viscosity, and 𝜏𝑝 the 
additional polymeric stress tensor. Additionally, Eq. 1 
and Eq. 2 have to be complemented with initial and 
boundary conditions for the velocity field u and the 
pressure p.   
 
On the micro-scale we employ dumbbell systems 
immersed in a Newtonian solvent for approximating a 
dilute polymeric fluid. The dumbbell consists of two 
separate masses connected with a nonlinear FENE 
spring. The dumbbell model is illustrated in Fig. 1.    
 

 
Figure 1 – A position vector 𝒙 ∈ ℝ3 and the 

orientation 𝒒 ∈ ℝ3 are sufficient for a complete 
description of the dumbbell in the 3D flow domain. 

 
The BCF method applies a stochastic process 𝑸𝒕 to 
evolve the dumbbell’s orientation q in time. The 
corresponding stochastic differential equation is 
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where 𝑑𝑾𝒕 denotes a three-dimensional stochastic 
process to model Brownian forces. Eq. 3 involves a 
dimensionless Deborah number De to describe the 
elasticity of the fluid. The term 𝑭(𝑸𝒕) denotes the 
FENE spring force which is defined as 
 
 𝑭(𝑸𝒕) =

𝑸𝒕

1 −∥ 𝑸𝒕 ∥2/𝑏
 , (4) 

 
where b is a parameter for the maximum dumbbell 
extension. Finally, Kramers’ relation 
  

𝝉𝒑 =  
𝐶(1 − 𝛽)

𝐷𝑒
(〈𝑸𝒕⨂𝑭(𝑸𝒕)〉 − 𝑰𝒅) (5) 

 
couples the stochastic processes on the micro-scale 
with the polymeric stress tensor 𝝉𝒑 in Eq. 1. We use Id 
in Eq. 5 to denote the identity matrix and C to describe 
a dimension-dependent constant, which relates to the 
spring force potential.  
 
Numerical discretization 
We discretize the Navier-Stokes equations Eq. 1-2 in 
space with a second-order finite difference scheme. For 
this purpose, we subdivide the flow domain into 
rectangular grid cells and evaluate the unknowns u, p 
and 𝝉𝒑 on a staggered grid. Furthermore, we decouple 
pressure and velocity field by using Chorin’s 
projection method which is described in [4]. Since the 
following problems invoke low Reynolds numbers, we 
employ an implicit 2nd-order Crank-Nicolson scheme 
for the diffusive terms in Eq. 1 to avoid time step 
restrictions. A more detailed description is given in 
Griebel et al. [5] and Croce et al. [6]. 
 
We solve Eq. 3 for a number of 𝑖 = 1, … ,𝑁 sample 
particles 𝑸𝒕

(𝒊) per grid cell, the Brownian configuration 
fields, which are distributed according to a specific 
density function for the FENE model. Using Monte 
Carlo integration we approximate the expectation in 
Eq. 5 with these configuration fields. Due to the 
stochastic treatment, the stress tensor solution exhibits 
stochastic noise. Furthermore, we perform the temporal 
discretization with an Euler-Maruyama scheme that is 
implicit in the spring force term. For a detailed 
description of its implementation in NaSt3DGPF and a 
multiscale code validation with an analytical 
benchmark solution we refer to Rüttgers [7].  
 
Three-dimensional contraction simulations  
We consider square-square contraction flows in which 
the fluid enters the domain in a quadratic channel with 
side length 2𝐻1 = 24 𝑚𝑚 and contracts into a smaller 

channel with side length 2𝐻2 = 6𝑚𝑚 (contraction 
ratio 4:1). These parameters are chosen according to 
the experimental measurements by Sousa et al. [8] to 
allow for comparisons. One important aspect of the 
square-square contraction flow geometry is the 
occurrence of 3D flow patterns in contrast to 2D 
axisymmetric or planar contraction flows.  
 

 
Figure 2 – Illustration of the 3D simulation domain.  

 
In Fig. 2 we illustrate the simulation domain. The 
upstream channel length is 82.5𝑚𝑚; the length of the 
downstream channel is 15𝑚𝑚. This results in an 
overall simulation domain of 97.5𝑚𝑚 × 24𝑚𝑚 ×
24𝑚𝑚. The complete grid consists of 260 × 64 × 64 
grid cells which results in a mesh width of ℎ =
0.375𝑚𝑚. To our knowledge, this resolution is higher 
than for any comparable multiscale simulation up to 
now.  
 
The most CPU-intensive aspects of the simulation are 
the stochastic terms on the micro-scale. Each grid cell 
contains 𝑁 = 800 stochastic variables which leads to a 
total number of 800 × 260 × 64 × 64 ≈ 850 ∙ 106 
configuration fields. If we use double precision 
machine numbers for each of the three BCF 
components, the total memory requirement is 
approximately 19 GB.  
 
We adapt the specifications of Sousa et al. [8] for a 
shear-thinning viscoelastic fluid that consists of 40% 
glycerol, 59.9% water and PAA at a weight con-
centration of 600 𝑝𝑝𝑚. The authors characterize the 
fluid as follows: fluid density 𝜌 = 1156 𝑘𝑔 𝑚−3, 
solvent shear viscosity 𝜂𝑠 = 0.03 𝑃𝑎 ∙ 𝑠, zero polymer 
shear viscosity 𝜂𝑝 = 1.62 𝑃𝑎 ∙ 𝑠 and fluid relaxation 
time  𝜆 = 32𝑠. Using these values, we derive 𝛽 =
0.0182 for Eq. 1 and Eq. 5.  Next, we prescribe the 
Reynolds and Deborah numbers in Eq. 1, Eq. 3 and 
Eq. 5 in terms of the average downstream velocity 𝑈2 
and half of the downstream channel width 𝐻2 = 3𝑚𝑚. 
To this end, we define 
 

𝑅𝑒2 =
𝜌𝑈2(2𝐻2)
𝜂𝑠 + 𝜂𝑝

 and 𝐷𝑒2 =
𝜆𝑈2
𝐻2

 (6) 

 
and choose for three multiscale simulations the average 
velocities 𝑈2 = 2.26𝑚𝑚 𝑠−1, 10.1𝑚𝑚 𝑠−1 and 
14.7𝑚𝑚 𝑠−1, respectively. Thus, we obtain the 
Deborah numbers 24.1, 108 and 157 as in Sousa 



et al. [8]. Note that we have added the lower index 2 to 
indicate that 𝐷𝑒2 is defined using the downstream 
channel’s characteristics. In all cases the Reynolds 
number is below 1 and, therefore, elasticity instead of 
inertia is the dominant effect in the simulations.  
 
The FENE dumbbell extension parameter b is an 
additional degree of freedom in the system of Eq. 1-5. 
This parameter allows a characterization of the fluid’s 
shear-thinning behavior. The characteristic shear rate 
�̇� = 𝑈2/𝐻2 of the simulations ranges from 0.75 𝑠−1 
to 4.9 𝑠−1. In this interval we compare different values 
of b and look for the best fit to the simplified Phan-
Thien Tanner (SPTT) model in Sousa et al. [8]. The 
results in Fig. 3 for the SPTT model (dark blue) are in 
agreement with FENE 𝑏 = 20 (green) for the stress 
coefficient 𝜓1. Therefore, we fix 𝑏 = 20 for our 
simulations from now on. 
 

 Figure 3 – Visualization of the shear viscosity 
𝜂 = 𝜂𝑝 + 𝜂𝑠 over �̇� (left) and of the first stress 

coefficient 𝜓1over �̇� (right).  
 

Parallelization 
All numerical simulations have been computed on the 
high performance cluster (HPC) Siebengebirge of the 
Institute for Numerical Simulation at the University of 
Bonn. This HPC cluster features 5 computing nodes 
with 160 CPUs and a main memory of 2560 GB in 
total. The Linpack performance of the system is 1349 
GFlops/s with a parallel efficiency of 93%. Each 
computation required 10-14 weeks on 64 CPUs which 
illustrates the huge computational requirements of fully 
3D multiscale simulations. In Tab. 1 we list the scale-
up behavior of our implementation for a test problem. 
Since the BCF model can be parallelized efficiently, 
the achieved results are nearly optimal. 
 
Table 1 – Scale-up behavior using NaSt3DGPF with 
BCFs for 1 up to 128 processors. Each processor 
computes a subdomain of 10 × 20 × 20 grid cells.  

CPU number computation time [s] scale-up 
1 232 1.0 
2 227 1.0 
4 238 0.98 
8 247 0.94 

16 253 0.92 
32 255 0.91 
64 272 0.85 

128 301 0.77 
 

Numerical results 
An increase of the fluid’s elasticity leads to a strong 
vortex enhancement. We now present the flow field on 
the central plane 𝑧 = 0.012𝑚 for two different 
Deborah numbers. In Fig. 4 the case of 𝐷𝑒2 = 24.1 is 
given. We indicate the boundary of the upper vortex by 
a white dashed line and furthermore give a typical 
streamline by the solid grey line. Results for 
𝐷𝑒2 =  157 are shown in Fig. 5. Here, we observe 
streamline divergence which coincides with the 
findings of Sousa et al. [8].  
 

 
Figure 4 – Simulation result for 𝐷𝑒2 = 24.1 at time 
𝑡 = 70.55 𝑠 visualized on the central plane 𝑧 =
0.012𝑚.  
 

 
Figure 5 – Simulation result for 𝐷𝑒2 = 157 at 
time 𝑡 = 37.60 𝑠 on the central plane 𝑧 = 0.012𝑚. 
The divergence of the streamline is indicated in red.     
 
It is important to recognize the system’s steady state to 
avoid additional costs and thus to cut down the 
computational complexity of the simulations. For this 
reason, we visualize the normalized vortex lengths 
𝑥𝑅/2𝐻1 in Fig. 6 on the central plane 𝑧 = 0.012𝑚 over 
time. For all three Deborah numbers the plot shows a 
plateau, i.e. all simulations have reached a steady state. 
We give a qualitative comparison for the results in 
Tab. 2. For 𝐷𝑒2 = 24.1 there is a high level of 
agreement between the findings by Sousa et al. [8] and 
our simulations. We performed further macroscopic 
simulations (PTT) with Deborah numbers in the order 
of 𝒪(1) which confirmed this good agreement of the 
measured vortex lengths for flows with low elasticity. 
On the other hand, for the higher Deborah numbers of 
108 and 157, respectively, the numerical scheme 
clearly underestimates the measured experimental 
vortex sizes. Note, however, that classical macroscopic 
approaches severely suffer from numerical instabilities 



when simulating Deborah numbers of order 𝒪(100) 
and do not obtain comparable values at all. 
Furthermore, it is not quite clear to us how large the 
measured laboratory error is for the case of the higher 
Deborah numbers. 
  

 
Figure 6 – Plot of the normalized vortex lengths 
𝑥𝑅/2𝐻1 over time for different Deborah numbers. The 
vortices have reached a steady state.   
 
Table 2 – Comparison of experimental vortex lengths 
from Sousa et al. [8] with our FENE simulation results. 

Deborah  𝐷𝑒2 24.1 108 157 
Sousa et al. [8] ≈ 0.8 ≈ 1.8 ≈ 2.4 
FENE ≈ 0.7 ≈ 1.0 ≈ 1.05 

 
In Fig. 7 we compare the axial velocity profiles on the 
channel centerline (𝑥, 0.012𝑚, 0.012𝑚). Again, there 
is a good agreement for 𝐷𝑒2 = 24.1 but a discrepancy 
for higher Deborah numbers. Since the vortices for 
𝐷𝑒2 = 108 in the laboratory experiment are larger in 
size, the fluid starts to accelerate earlier. Moreover, for 
𝐷𝑒2 = 108 we observe a slight velocity undershoot 
before the fluid starts to accelerate (cf. inset in Fig. 7) 
which is also reported in Sousa et al. [8].  
 
Literature findings often state a vortex structure for 
highly elastic flows which is inversely oriented to that 
of nearly Newtonian flows. Fig. 8 compares the 
streamlines in the case of 𝐷𝑒2 = 1.0 (macroscopic PTT 
with NaSt3DGPF) and 𝐷𝑒2 = 157. The red cross 
indicates the starting area of the streamlines in both 
flows. For  𝐷𝑒2 = 1.0 the streamlines rotate, beginning 
at the channel corners, by  45°. In contrast, the 
streamlines for 𝐷𝑒2 = 157 rotate the other way round 
but end in these corners before going through the 
contraction. Clearly, these flow phenomena are 3D 
effects.    
 

 
Figure 7 – Axial velocity profiles at the channel 
centerline. We use 𝑈2 = 2.26𝑚𝑚/𝑠 (𝐷𝑒2 = 24.1) and 
𝑈2 = 10.1𝑚𝑚/𝑠 (𝐷𝑒2 = 108) for proper scaling. 
 
 

 
Figure 8 – In contrast to flows with low elasticity (top) 
the flow direction is inversed for high Deborah number 
flows (bottom). Note that the perspective coincides 
with the flow direction and that the upstream channel is 
clipped.   
 



At last, we present results for the first normal stress 
component 𝜏𝑥𝑥. As reported by Keunings [3] for the 
BCF method, the stress field is smooth in space at a 
fixed point in time (cf. Fig. 9). On the other hand, 
plotting the stress tensor over time clearly shows the 
stochastic behavior of the solution which is reduced for 
a larger number of samples N (cf. Fig. 10). We obtain 
comparable results for the other stress components. 
 

 
Figure 9 – First normal stress component 𝜏𝑥𝑥 on the 
slice 𝑧 = 0.012𝑚 at 𝑡 ≈ 50𝑠 for 𝐷𝑒2 = 108. 
 

 
Figure 10 – First normal stress component 𝜏𝑥𝑥 plotted 
over time at position 1 of Fig. 9. Due to the stochastic 
treatment, the 𝜏𝑥𝑥-component exhibits stochastic noise. 
 
Conclusions 
3D square-square contraction flows were numerically 
studied for a multiscale FENE dumbbell model using 
the Brownian configuration field approach. The 

simulations clearly show an increased numerical 
stability compared to classical macroscopic methods. 
This coincides with other findings for the BCF method. 
While there is a good agreement for lower Deborah 
numbers, the model fails to accurately predict the 
actual vortex sizes for higher Deborah numbers. One 
reason might lie in the single-mode FENE model itself. 
The description of real fluids often requires multi-
mode FENE models which, due to their huge 
computational complexity, have not been tackled with 
multiscale methods yet. Nevertheless, our results 
indicate the potential of multiscale model approaches 
for the simulation of polymeric fluids. This will 
however invoke massively parallel computing. 
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