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Abstract

We apply the multiscale FENE model to a 3D square-square contraction flow problem and to two 2D benchmark experi-
ments. For this purpose, we couple the stochastic Brownian configuration field method (BCF) with our fully parallelized
three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simula-
tion of higher Deborah number flows for which most macroscopic methods suffer from stability issues. We validate our
implementation by investigating the numerical error for a 2D viscoelastic Poiseuille flow that has an analytical solution.
Furthermore, we compare the FENE model with the FENE-P closure for a two-dimensional 4 : 1 contraction flow. We
then compare the results of our 3D simulations with that of experimental measurements from literature and obtain a
very good agreement. In particular, we are able to reproduce effects such as strong vortex enhancement, streamline
divergence and flow inversion for highly elastic flows. Due to their computational complexity, our simulations require
massively parallel computations. To this end, we use a domain decomposition approach with MPI.

Keywords: multiscale simulation, micro-macro method, Brownian configuration fields, FENE dumbbell, 3D
contraction flow, high-performance computing

1. Introduction

The macroscopic mathematical modeling of dilute vis-
coelastic fluids usually involves an additional stress tensor
in the Navier-Stokes equations and the solution of a dif-
ferential or integral constitutive equation to compute the
stress tensor entries. Here, the Oldroyd-B model can be
employed. It originates from a two-bead dumbbell model
with a linear Hookean spring force. Despite its shortcom-
ing to describe extensional flows accurately, it is widely
used for simulating dilute polymeric fluids. Other con-
stitutive models for dilute polymeric fluids include the
FENE-P model of Peterlin [1] and the FENE-L model of
Lielens et al. [2]. Both models are simplifications, obtained
with closure approximations, of a two-bead dumbbell sys-
tem connected with a f initely extensible nonlinear elastic
(FENE) spring. In the literature, there is no known di-
rect constitutive model for the FENE spring so far and
it is widely assumed that it does not exist. An extensive
description of constitutive models is given in the book by
Owens and Phillips [3].

More advanced multiscale approaches have been re-
cently developed that directly solve the kinetic equations
of the microscopic system. In this case, the macroscop-
ic stress tensor results from the internal configurations of
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the underlying molecular system. Using this ansatz avoids
further closure errors but yields the mathematical problem
of adequately modeling the internal orientations. Biller
and Petruccione theoretically investigated this approach
in their pioneering work in 1988 [4]. A detailed overview
of micro-macro approaches is given in a general survey by
Keunings [5].

Representing polymer molecules by a system of beads
connected with massless springs leads to a high-dimension-
al diffusion equation, the Fokker-Planck equation, that de-
scribes the evolution of the configuration probability den-
sity function (cf. Bird et al. [6]). Then, Kramers’ for-
mula connects the stress tensor with the expectation of
the instantaneous polymer configuration. Even for a sim-
ple dumbbell system, the Fokker-Planck equation for non-
homogeneous, three-dimensional flow systems is six-dimen-
sional. Three dimensions are needed for the physical space
of the flow system and three dimensions are needed to de-
scribe the dumbbell’s internal orientation which is referred
to as configuration space. More complex multi-bead sys-
tems involve configuration spaces of higher dimensional-
ity and require special numerical treatment to reduce the
curse of dimensionality. Chauviére and Lozinski [7] pro-
posed a first-order operator splitting of the Fokker-Planck
equation to separate operator treatment in the physical
space from that of the configuration space [8, 9]. They ap-
plied their spectral method approach to two- and three-di-
mensional configuration spaces and non-homogeneous two-
dimensional physical spaces. Recently, Knezevic and Sü-
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li [10] used a similar technique that is based on a spec-
tral Galerkin discretization with weighted ansatz and test
functions in configuration space and a three-dimensional
finite element discretization in physical space. A promis-
ing new approach to deal with configuration spaces of up
to twenty dimensions is the Proper Generalized Decom-
position (PGD) method (cf. Chinesta et al. [11]). So far,
the solution in high-dimensional configuration spaces with
the PGD approach has been primarily applied to homo-
geneous flow problems that are simple in the flow space.
The most advanced implementation which we are aware of
is a two-dimensional contraction flow problem considered
in Mokdad et al. [12].

A more common method for multiscale viscoelastic flow
simulations is based on the theory of stochastic calculus.
The main idea is to rewrite the Fokker-Planck equation
as a formally equivalent stochastic differential equation in
which a Wiener process models the Brownian forces act-
ing on the polymer. Numerical treatment of stochastic
differential equations normally leads to stochastic noise in
the stress tensor solution. On the other hand, stochas-
tic approaches are more adapted to higher Weissenberg or
Deborah number flows than comparable methods as noted
by Mangoubi et al. [13]. Furthermore, they are, due to
their intrinsic Monte-Carlo method, less affected by the
curse of dimensionality than deterministic Fokker-Planck
based methods in high-dimensional configuration spaces.

In 1993, Laso and Öttinger [14] introduced the particle-
based CONNFFESSIT method (Calculation of Non-New-
tonian Flow: Finite Elements and Stochastic Simulation
Techniques) and applied it to two-dimensional flow prob-
lems. In this approach, a large number of sample particles
in the flow domain approximates the stochastic process
numerically. Each particle, representing a polymeric con-
figuration, moves within the physical flow domain. Us-
ing Monte-Carlo integration, we obtain the stress tensor
as the first moment of the particle orientations. However,
the method exhibits several shortcomings such as wild spa-
tial fluctuation of the stress tensor which is caused by a
non-uniform particle density and uncorrelated Brownian
forces acting on individual sample particles (cf. Lozininski
et al. [15]).

A different stochastic approach, the Brownian config-
uration field (BCF) method by Hulsen et al. [16], signifi-
cantly reduces the drawbacks of CONNFFESSIT by using
an Eulerian particle description. The BCF method uses
a uniform number of configuration fields at fixed spatial
positions to ensure a homogeneous polymeric density in
physical space. Furthermore, it assumes locally correlated
Brownian forces which leads to a uniform stress tensor field
in the flow space. According to Bonvin and Picasso [17],
this simplification might reduce the global accuracy of the
stress tensor field. On the other hand, the spatial smooth-
ness of the BCF method leads to a considerably increased
stability of the numerical scheme.

Multiscale simulations involve an increased computa-
tional effort compared to purely macroscopic approaches.

Therefore, most micro-macro simulations are so far re-
stricted to homogeneous flow fields or two-dimensional phys-
ical spaces (cf. Vargas et al. [18], Prieto et al. [19], Koppol
et al. [20, 21] and Smith and Sequeira [22]). To the best of
our knowledge, Ramı́rez and Laso [23] performed the first
three-dimensional stochastic BCF simulations and only re-
cently Knezevic and Süli [10] accomplished the first three-
dimensional simulation for a coupled Fokker-Planck and
Stokes flow system. In both cases, the authors parallelized
their algorithms to reduce computing time.

In the following, we present the first 3D multiscale
FENE simulations using the BCF approach for square-
square contraction flows and compare our results with that
from laboratory experiments. Our multiscale simulations
are more stable than comparable macroscopic flows with
high Deborah numbers.

The remainder of this article is organized as follows:
First, we consider the governing equations on the macro-
and micro-scale in Section 2. We then describe adequate
initial conditions for the stochastic equations in the case
of a Hookean and a FENE dumbbell system. In Section 3
we discuss spatial and temporal discretization schemes of
the Navier-Stokes, Oldroyd-B and stochastic differential
equations. Furthermore, we describe our domain decom-
position approach to enable parallel computation using
MPI and consider variance reduction techniques. In Sec-
tion 4.1, we investigate the numerical error for a 2D vis-
coelastic Poiseuille flow that has an analytical solution
in the Oldroyd-B/Hookean dumbbell case. We then con-
sider two-dimensional contraction flows for the FENE and
FENE-P model in Section 4.2 for which published simula-
tion results are available. Moreover, we present the results
of 3D square-square contraction flows in Section 4.3 and
compare them with those from literature. At last, we eval-
uate our findings and discuss possible extensions.

2. Governing equations for the micro-macro model

Throughout this article, we consider fluid flow in a
bounded domain Ω ⊂ R3 and refer to Ω as physical space.
For any position x ∈ Ω and any time t ∈ (0, T ] ∈ R,
the fluid velocities u(x, t) ∈ R3 and the hydrodynamic
pressure p(x, t) ∈ R combined with appropriate bound-
ary conditions fully describe the current state of a purely
Newtonian system. We first give the Navier-Stokes and the
stress tensor equations on the macro-scale. Subsequently,
we specify the alternative stress tensor approaches on the
micro-scale that either involve a Fokker-Planck or a sto-
chastic differential equation.

2.1. Macroscopic equations

On the macroscopic scale, conservation of momentum
and mass for an incompressible and isothermal viscoelastic
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one-phase flow is given by the coupled system of equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ηs∆u+∇ · τ p (1)

∇ · u = 0 (2)

with ρ ∈ R+ as the fluid density, ηs ∈ R+ as solvent vis-
cosity, and τ p as the second-order tensor for the polymeric
stress contribution.

These equations are coupled with initial conditions

u(x, 0) = u0(x),

p(x, 0) = p0(x),

τ p(x, 0) = τ 0(x) ∀x ∈ Ω,

with one of the following conditions for the velocity field
on the boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γ3

u|Γ1
= u0 inflow boundary Γ1,

u|Γ2
= 0 no-slip boundary Γ2,

∂n(u · n)|Γ3
= 0, ∂n(u · t)|Γ3

= 0 outflow boundary Γ3.

Here, n denotes the outward pointing unit normal and t
denotes the tangential vector on ∂Ω, respectively.

On the macro-scale we consider the Oldroyd-B model.
It is equivalent to a Hookean dumbbell system on the
micro-scale. First, for an arbitrary second-order tensor
A we define the upper convected derivative or Oldroyd
derivative as

O
A ≡ ∂A

∂t
+ (u · ∇)A−∇u ·A−A · (∇u)T .

Then, the Oldroyd-B model takes the form

τ p + λ
O
τ p = 2ηpD (3)

with the symmetric deformation tensor

D =
1

2
(∇u+ (∇u)T ),

λ the relaxation time of the dumbbell system and ηp the
zero shear rate polymeric viscosity.

We rewrite equations (1), (2) and (3) in a dimensionless
form by scaling the equations with the characteristic units
Lc (characteristic length in macroscopic flow), Uc (char-
acteristic fluid velocity), ρc (fluid density, scaling pressure
term with 1/(ρUc

2)) and we normalize the polymeric stress
tensor with Lc/(Uc(ηs + ηp)). This yields the following di-
mensionless system of equations

∂u

∂t
+ u · ∇u = −∇p+

1

Re
β∆u+

1

Re
∇ · τ p (4)

∇ · u = 0 (5)

τ p + De
O
τ p = 2(1− β)D (6)

which involve the dimensionless parameters De (Deborah
number), Re (Reynolds number) and β (viscosity ratio).
They are defined as

Re =
ρcUcLc

ηs + ηp
, De =

λUc

Lc
, β =

ηs
ηs + ηp

. (7)

Note that (6) reduces to the Upper-Convected Maxwell
equation for β → 0. For simplicity, we have used the same
notation for the unknowns in the dimensionless formula-
tion as in (1)–(3).

2.2. Microscopic equations

On the microscopic scale, we employ a dumbbell model
for approximating a dilute polymeric fluid, immersed in
a Newtonian solvent. It consists of two separate masses
connected with an elastic spring. The spring denotes in-
termolecular forces between both beads. For a complete
description we require the dumbbell’s position in the flow
domain x ∈ Ω as well as the orientation of the bead’s end-
to-end vector q ∈ D ⊆ R3. We refer to D as configuration
space.

2.2.1. Deterministic Fokker-Planck approach

Let ψ : Ω × D × [0, T ] → R+, (x, q, t) 7→ ψ(x, q, t)
denote the probability of finding dumbbells at time t with
a position in [x,x+dx] and an orientation vector in [q, q+
dq]. ψ is a probability density function (pdf) and fulfills

ψ(x, q, t) ≥ 0 ∀(x, q, t) ∈ Ω×D × [0, T ]∫
D

ψ(x, q, t) dq = 1 ∀(x, t) ∈ Ω× [0, T ].

The application of Newton‘s second law to the forces acting
on a dumbbell system (hydrodynamic drag force, spring
force and Brownian forces) leads to the dimensionless Fok-
ker-Planck equation

∂ψ

∂t
+∇x · (uψ) +∇q ·

(
(∇xu)Tqψ

− 1

2 De
F (q)ψ

)
=

1

2 De
∆qψ. (8)

It describes the evolution of ψ under the dumbbell’s spring
force F : R3 → R3. In (8) we have dropped the diffusion
∆xψ in physical space since the diffusion coefficient scales
quadratically in the micro-macro length scale ratio Lc/lc
and is usually only of the order 10−8 according to Bhave
et al. [24].

We employ three different spring forces for the charac-
terization of intermolecular forces defined as

F (q) = q, q ∈ R3 (Hooke), (9)

F (q) =
q

1− ‖q‖2/b , ‖q‖2 ≤ b (FENE), (10)

F (q) =
q

1− 〈q2〉/b , 〈q2〉 ≤ b (FENE-P) (11)

with b = ‖qmax‖2/lc as dimensionless unit for the dumb-
bell’s maximum extension qmax compared to a character-
istic micro length lc. For the Hookean spring force (9),
we observe that the dumbbell’s extension is not restricted
which leads to unbounded stress tensor values for certain
types of extensional flows. In an analogous way, only the
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average dumbbell length 〈q2〉 =
∫
D
q2ψ(x, q, t)dq is re-

stricted for the FENE-P spring. Consequently, the FENE-
P model also leads to spring extensions that exceed a max-
imum length of

√
b and to R3 as configuration space. The

FENE spring differs from this with the configuration space
D being a sphere with radius

√
b around the origin, i.e.

D = B(0,
√
b).

The pdf ψ in (8) represents the polymeric configura-
tions of the micro-system. Now, Kramers’ expression cou-
ples the internal configurations to the macroscopic stress
tensor by

τ p =
αb,d(1− β)

De
(〈q ⊗ F (q)〉 − Id) (12)

where 〈.〉 =
∫
D
·ψ(x, q, t)dq denotes the expectation in

configuration space. The prefactor αb,d specifies a spring
dependent constant and is defined as

αb,d ≡


1, for Hookean dumbbells (b→∞),
b+5
b , for 3-dimensional FENE dumbbells,

b+3
b , for 3-dimensional FENE-P dumbbells.

Due to conservation of angular momentum, τ p is symmet-
ric. Inserting the spring forces (9) – (11) into (12) results
in the symmetry condition for τ p.

2.2.2. Stochastic Brownian configuration field approach

The BCF method employs a formal equivalence be-
tween the Fokker-Planck equation and a corresponding
stochastic differential equation. To this end, we rewrite
(8) as

dQt(x) =
(
− u∇Qt(x) + (∇xu)TQt(x)

− 1

2 De
F (Qt(x))

)
dt+

√
1

De
dW t. (13)

This describes the evolution of a stochastic processQt that
represents the configuration vector q. We model Brownian
forces by a three-dimensional Wiener process W t. As W t

is a Gaussian process, we fully describe it by its first and
second moments 〈W t〉 = 0 and 〈W tW t′〉 = min(t, t′)Id.
We solve (13) for a number of i = 1, . . . , NBCF stochas-

tic realizations Q
(i)
t , the Brownian configuration fields,

which are distributed according to the density function ψ.
The convective term −u∇Qt in (13) represents the trans-
port of the spatially fixed configuration fields through Ω.
Furthermore, the BCF method assumes correlated Wiener
processes at different points in Ω such that W t does not
depend on x. This leads to a smooth stress tensor field in
space.

Since we do not know the actual density ψ, we approx-
imate the first moment 〈Qt⊗F (Qt)〉 in Kramers’ relation
(12) as

τ p≈
αb,d(1− β)

De

(
1

NBCF

NBCF∑
i=1

Q
(i)
t ⊗ F (Q

(i)
t )−Id

)
, (14)

i.e. we replace the integral by a MC quadrature formula.
One drawback of Monte Carlo integration is the low or-

der O(N
−1/2
BCF ) for the error reduction in τ p. The accuracy

of τ p as well as the computing time critically depends on
the choice of NBCF. This underlines the importance of
parallelization in 3D multiscale simulations to obtain suf-
ficiently small relative errors in τ p for a reasonable amount
of computing time.

2.2.3. Initial condition for the density function

The initial configuration fields Q
(i)
0 are distributed ac-

cording to the equilibrium solution ψeq(q) of the Fokker-
Planck equation, i.e. according to the solution of the Fok-
ker-Planck equation for the velocity field u = 0 in Ω. In
this case (8) simplifies to

−∇q · (F (q)ψeq(q)) = ∆qψeq(q). (15)

The gauged equilibrium solutions, presented in the form of
Bonvin [25] and Herrchen and Öttinger [26], respectively,
are

ψeq(q) =
1

(2π)3/2
exp

(
−‖q‖

2

2

)
(Hooke), (16)

ψeq(q) =
1

2πb3/2B( 3
2 ,

b+2
2 )

(
1− ‖q‖

2

b

)b/2

(FENE), (17)

ψeq(q) =

(
b+ 3

2πb

)3/2

exp

(
−b+ 3

2b
‖q‖2

)
(FENE-P). (18)

The gauging of Kramers’ expression ensures a stress tensor
value of zero for ψeq. The denominator in (17) includes the
beta function B(., .) that is defined by

B(x, y) =

∫ 1

0

sx−1(1− s)y−1ds for x, y > 0.

Considering the Gaussian equilibrium distribution in
(16) for which we have zero mean and a covariance ma-
trix Id, one could think of using various conventional ran-

dom number generators to generate Q
(i)
0 . However, since

the FENE density (17) is not Gaussian, we have to gen-
erate appropriate random numbers by other means. To
this end, we employ the rejection sampling/acceptance-
rejection method proposed by von Neumann [27]. It re-
quires a comparison function. We decided here for the
uniform density U : B(0,

√
b) → R+, q 7→ 3/(4πb3/2).

Furthermore, we need a constant M such that ψeq(q) ≤
MU(q) for all q ∈ D. The optimal choice for M in our
case is

Mopt =
ψ(0)

U(0)
=

2

3B
(

3
2 ,

b+2
2

) .
3. Numerical discretization

We subsequently describe the coupling of the Oldroyd-B
and the microscopic models with our three-dimensional
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Navier-Stokes solver NaSt3DGPF [28, 29]. First, we con-
sider the spatial and temporal discretization, then we de-
scribe the parallelization approach and at last we discuss
the applied variance reduction scheme.

3.1. Spatial discretization

For the discretization of the Navier-Stokes equations
(4) and (5) in Ω, we use a finite difference scheme. For this
purpose, we subdivide Ω into Ng rectangular grid cells and
evaluate the macroscopic unknowns u, p, τ p on a staggered
grid. Here, scalar values are stored in the cell centers and
components of vector-valued variables, such as the three
components of u, are placed on the cell faces. This ensures
a sufficient coupling between the pressure and the veloc-
ity field and avoids numerical instability. Furthermore, we
place the discrete second-order tensor τp in the cell centers
and do not distribute the stress components on different
cell faces. This reduces computation time for the multi-
scale approach as each component of τp requires the total
number of configuration fields for its computation.

Using second-order central differences on a staggered
grid, we discretize all spatial derivatives except for the
convective velocity terms. For the discretization of the
convective terms in the momentum equations (4), we em-
ploy a 5th-order WENO scheme [30] to minimize oscilla-
tory solutions. The WENO scheme requires grid point
information from three different adjacent positions in each
coordinate direction. A similar approach is used for the
Oldroyd-B constitutive equation (6). Again, we discretize
the convective contributions (i.e. (u · ∇)τ p) with a 5th-
order WENO scheme and apply central differences for the
other terms. A more detailed description of the spatial
discretization in NaSt3DGPF is given in Griebel et al. [28]
and Croce et al. [29]. Furthermore, the implementation of
the second-order tensor τp and the Oldroyd-B and Phan-
Thien Tanner model in NaSt3DGPF is described in detail
in Claus [31].

On the micro-scale, we employ a set of NBCF stochastic

samples Q
(i)
t (xj), i = 1, . . . , NBCF for each discrete stress

tensor value τ p(xj), j = 1, . . . , Ng in physical space. The
total number of samples for approximating the stress field
in Ω is then NBCF · Ng. Furthermore, we discretize the
convective part of the stochastic equation (13) with a 2nd-
order QUICK scheme. The QUICK scheme requires fluid
information from two neighboring cells in each coordinate
direction.

The boundary conditions for the stochastic samples on
∂Ω depend on the chosen type. Using the boundary spec-
ifications of Section 2.1, we set

Q(i)(x)|Γ1
= Q

(i)
0 on the inflow boundary Γ1,

∇xQ
(i)(x)|Γ2,3

= 0 on Γ2 and Γ3

for all i = 1, . . . , NBCF realizations in Section 4.3. We pre-
scribe Dirichlet boundary conditions on the inflow domain
from outside of the domain Ω, i.e. before the fluid enters

Ω. One approach to compute Q
(i)
0 is to pre-process two-di-

mensional simulations with an analytically prescribed ve-
locity field u0 on the domain Γ1. Using this two-dimen-
sional flow field, we evolve a discrete set of configuration
fields Q(i)(xj)|Γ1

from equilibrium towards steady state.
For the actual three-dimensional simulation, we then set
u0 as velocity profile on the inflow domain Γ1 and reuse

the steady state configuration fields as inflow fields Q
(i)
0 .

It is crucial to reuse the same number NBCF of stochastic
samples as well as the same Gaussian random numbers for
evolving the configuration fields towards a steady state (cf.
the Euler-Maruyama scheme in Section 3.2) to ensure that

Q
(i)
0 represents an adequate inflow field.

3.2. Temporal discretization

We apply an implicit 2nd-order Crank-Nicolson scheme
for the diffusive terms in the momentum equations (4) to
reduce CFL-type restrictions in time-step size for the lam-
inar flow regime considered in our simulations. We treat
the convective velocities explicitly by employing a 2nd-
order Adams-Bashforth method. The ansatz is implicit
in the pressure term as proposed by Bell et al. [32]. The
implementation into NaSt3DGPF is described in Verleye
et al. [33].

A canonic time discretization scheme for stochastic dif-
ferential equations is the explicit Euler-Maruyama method.
Though it is only a first order scheme, it does not restrict
the accuracy of the stress tensor result for the time-step
widths that are used in our simulations. The accuracy is
primarily limited by the chosen number of configuration
fields NBCF as the sampling error dominates the temporal
error. We therefore employ the explicit Euler scheme for
the Hookean (9) and for the FENE-P (11) spring force.

For the FENE spring force (10), however, the explicit
Euler-Maruyama method might lead to non-physical solu-
tions since the scheme does not necessarily preserve ‖q‖2 ≤
b as requested. A solution proposed by Öttinger [34] em-
ploys an implicit treatment of the spring force. The only
unknown for solving the linear system of equations in this
case is the dumbbell’s extension in the new time-step, i.e.
we have to determine ‖q(tn+1)‖. The extension is found
by taking absolute values on both sides of the stochastic
equation and by solving a cubic equation for ‖q(tn+1)‖
which has only one solution in D.

Altogether, let un, pn, τn
p and Qn denote the dis-

cretized variables at time tn ∈ [0, T ]. Then, the method
for computing tn + ∆tn = tn+1 ∈ (0, T ] consists of the
following steps:

1. In case of the Hookean and the FENE-P spring forces
(9) and (11), respectively, we solve the Brownian con-
figuration field equation for j = 1, . . . , Ng grid cells and
for i = 1, . . . , NBCF configuration fields by using the
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explicit Euler-Maruyama method

Q
(i)
n+1(xj) =Q(i)

n (xj) +

(
− un∇Q(i)

n (xj)

+ (∇xu
n)TQ(i)

n (xj)−
1

2 De
F (Q(i)

n (xj))

)
∆tn +

√
∆tn

De
N(0, 1)(i).

In case of the FENE spring force, we employ the semi-
implicit Euler method(

1 +
∆tn

2 De (1− ‖Q(i)
n+1‖2/b)

)
Q

(i)
n+1(xj) = Q(i)

n (xj)

+

(
− un∇Q(i)

n (xj) + (∇xu
n)TQ(i)

n

)
∆tn +

√
∆tn

De
N(0, 1)(i).

In both cases, N(0, 1) denotes a triple of independent
Gaussian random variables with zero mean and vari-
ance one.

2. We compute the new stress tensor using Kramers’ ex-
pression, i.e. we set

τn+1
p (xj) =

αb,d(1− β)

De

(
1

NBCF

∑
i

Q
(i)
n+1(xj)

⊗ F (Q
(i)
n+1(xj))− Id

)
.

3. We solve a Helmholtz equation to calculate an interme-
diate velocity field u∗(

Id− ∆tnβ

2Re

)
u∗ =un −∆tn

(
∇pn + un · ∇un

− β

2Re
∆un − 1

Re
∇ · τn+1

p

)
by using an SSOR preconditioned CG method.

4. We use u∗ on the right hand side of a Poisson prob-
lem to compute a pressure correction φn+1 and recover
un+1, i.e.

∆φn+1 =
1

∆tn
∇ · u∗

un+1 = u∗ −∆tn∇φn+1.

5. We obtain the new pressure field by computing

pn+1 = pn + φn+1 − ∆tnβ

2Re
∆φn+1.

3.3. Parallelization

We encounter the following two problems in multiscale
flow simulations with a total number of NgNBCF configu-
ration fields which emphasize the need of parallelization:

1. Solving NgNBCF stochastic differential equations per
time-step demands large computing times to solve phys-
ical systems of interest.

2. A large number of stochastic realizations leads to high
memory requirements. For instance, using 803 grid cells
with NBCF = 4000 fields per cell leads to a memory re-
quirement of about 50 GB in double precision accuracy.

A natural approach for parallelization is to employ do-
main decomposition, see also Smith et al. [35]. There, we
partition the physical space Ω into subdomains Ω1, . . . ,ΩN

and assign the local data and operations to different pro-
cessors. Processors whose subdomains share a common
boundary have to exchange data with each other in the
overall algorithm when necessary. Details of the data ex-
change for the macroscopic variables in NaSt3DGPF can
be found in Croce et al. [36].

Exchanging the BCFs is by far the most CPU inten-
sive part of the parallel algorithm. Note that it is not nec-
essary to exchange polymeric stress tensor values in our
multiscale simulations since these values directly depend
on the configuration fields.

We investigate the parallel code performance of our
implementation in a test simulation. The problem is dis-
cretized with Ng = 520× 128× 128 grid cells and employs
NBCF = 1200 samples per grid cell for a flow with Deborah
number De = 100. For this purpose, we perform the first
30 time steps of the semi-implicit Crank-Nicolson method
on our parallel cluster Siebengebirge. After 30 time-steps,
NaSt3DGPF has simulated a process time of about 0.02.

The HPC cluster Siebengebirge has 5 Dell PowerEdge
R910 computing nodes with 160 Intel Xeon X7560 2.226
GHz CPU cores and a main memory of 2560 GB in total,
i.e. one computing node contains 32 CPU cores and has 512
GB main memory. MPI communication on Siebengebirge
is performed with Mellanox ConnectX Infiniband. The
Linpack performance of the system is 1349 GFlops/s with
a parallel efficiency of 93%.

The simulations were performed with n = 1, 2, 4, 5
computing nodes of the cluster Siebengebirge. We always
used all 32 cores per node. The results of our speed-up
measurements are listed in Tab. 1. The table first shows
a decrease in parallel efficiency when switching from one
computing node n = 1 to two computing nodes n = 2.
This is due to the communication process that becomes
far more expensive when the code is extended to a sec-
ond node as the main memory is not separated on one
node. On four or five computing nodes the parallel effi-
ciency becomes much better since the gain in computing
speed outweighs the communication effort. On five com-
puting nodes we recover a parallel efficiency of 92%. The
high parallel efficiency results from the large number of
stochastic sample particles in the simulation that can be
parallelized efficiently.
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Table 1: Parallel code performance on CPU cluster.

#cores #nodes time [s] speedup efficiency
32 1 13531 1.0 100 %
64 2 7693 1.76 88 %
128 4 3726 3.63 91 %
160 5 2937 4.61 92 %

0 1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

time t

τxx (normal) τxx (reduced) stochastic noise

Figure 1: Plot of the τxx stress component with NBCF =
100 for a homogeneous extensional flow (i.e. Ng = 1). The
analytical solution for τxx at steady state is ≈ 4.02.

3.4. Variance reduction

A variance reduction scheme decreases the variance of
a stochastic simulation without increasing the computa-
tional effort. One method for variance reduction is given
by control variates. In this approach, instead of directly
computing 〈Qt ⊗ F (Qt)〉 in (12), we decompose the ex-
pression according to

〈Qt ⊗ F (Qt)〉 = 〈Qt ⊗ F (Qt)− Y t ⊗ F (Y t)〉
+ 〈Y t ⊗ F (Y t)〉. (19)

using an additional control process Y t. The basic prin-
ciple is to decide for Y t such that the last term in (19)
can be computed deterministically without any variance.
Furthermore, the stochastic processes Qt and Y t have to
be coupled strongly to reduce the variance in (19).

We reduce the variance of our simulations in Section 4
with an equilibrium control variate (cf. Melchior and Öt-
tinger [37]). In this case, we reuse the same initial dis-
tribution for Y t but evolve Qt according to a simplified
stochastic differential equation. For this purpose, we set
u = 0 in (13) such that Y t remains an equilibrium dis-
tribution for all time (i.e. the stress tensor contribution
for Y t remains zero). Since we apply the same Brownian
forces on both processes, we relate the noise in Y t to the
noise in Qt.

We demonstrate the principle of an equilibrium control
variate in Fig. 1 for a homogeneous extensional flow test
problem. Here, we intentionally used only a few number
of configurations fields, i.e. NBCF = 100, to emphasize the

improvement. The red line, representing 〈Qt ⊗ F (Qt) −
Y t⊗F (Y t)〉+ 0 (analytic result) in (19), performs better
than the conventional scheme without variance reduction.
Moreover, we plot the control process, representing the
stochastic noise, in brown for which we analytically ob-
tain 〈Y t ⊗ F (Y t)〉 = 0 and which is subtracted from the
blue solid line. Note however that the noise in Qt is not
necessarily reduced for an equilibrium control variate in
flow fields where Qt differs strongly from the equilibrium
distribution, see also Bonvin and Picasso [17].

4. Results and discussion

In this section, we consider three different flow prob-
lems to illustrate the quality of our numerical implemen-
tation.

• First, we investigate the benchmark problem of a
two-dimensional unsteady Poiseuille flow in a planar
channel for the Oldroyd-B model and, in a further
simulation, for the Hookean dumbbell model. As
this problem has an analytical solution, we can state
the computational discretization error.

• Second, we compare the FENE model with its FENE-
P closure approximation for a two-dimensional 4 : 1
contraction flow problem. This problem has been
analyzed in the literature and we use these results to
validate our implementation.

• Third, we simulate a three-dimensional flow through
a square-square contraction. As an analytical so-
lution is not available, we compare our simulations
with experimental measurements.

In general, we have applied an equilibrium control vari-
ate for all stochastic simulations. Furthermore, we often
plot velocity and stress tensor results in combination with
a zoomed picture (e.g. in Fig. 4). In this case, the zoomed
region is indicated with a red rectangle in the full figure.

4.1. Unsteady Poiseuille flow of a Hookean dumbbell fluid

4.1.1. Problem specification

An unsteady Poiseuille flow in a planar channel results
from a suddenly occurring constant pressure gradient in
the channel direction (cf. Fig. 2). For a Hookean dumbbell
fluid, this is one of the few transient viscoelastic problems
that possesses an analytical solution for the velocity u(y, t)
and the stress tensor field τ p(y, t). In this case, both fields
solely depend on the vertical position y and on time t.

The reference solution for the time-dependent velocity
field is stated in Waters and King [38] as

u(y, t) = Umax

[
4y(1− y) (20)

− 32

∞∑
n=1

sin (Ny)

N3
exp

(
−αN t

2El

)
GN (t)

]
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where N = (2n− 1)π, y ∈ [0, 1], t ≥ 0, and

GN (t) = cosh

(
βN t

2El

)
+
γN
βN

sinh

(
βN t

2El

)
for β2

N ≥ 0 with

El =
De

Re
, αN = 1 + βElN2, β2

N = α2
N − 4N2El ,

γN = 1 +N2El(β − 2), βN =
√
β2
N .

For β2
N < 0, we set βN =

√
−β2

N and GN (t) changes to

GN (t) = cos

(
βN t

2El

)
+
γN
βN

sin

(
βN t

2El

)
.

As the second term in (20) decays to 0 for t → ∞, the
viscoelastic flow recovers the parabolic profile of the New-
tonian solution.

Carew et al. [39] found analytical expressions for the
stress components. The non-zero shear stress component
is

τxy(y, t) =
1− β

El

[
4(1− 2y)El (21)

− 32

∞∑
n=1

cos (Ny)

N2
HN (t)

]
+ Cxy (y) exp

(
− t

El

)
where N = (2n− 1)π and HN (t) is related to GN (t) by

HN (t) =

(
β

N
− αN

2ElN3

)
GN (t) +

1

N3

dGN (t)

dt

and Cxy (y) is a time-independent constant to ensure that
τxy(y, t=0)=0. Using (20) and (21) we numerically obtain
the other non-zero stress tensor component τxx as

τxx(y, t) = 2 exp

(
− t

El

)∫ t

0

τxy(y, s)
∂u

∂y
(y, s) exp

(
t

El

)
ds.

(22)

We assume no-slip boundary conditions at the channel
wall. This leads to a shear flow close to the wall bound-
ary. Furthermore, the transient velocity component u(t)
and both stress components τxx(t) and τxy(t) exhibit over-
and undershoots during the evolution towards a steady
state. The fluid elasticity depends on the size of De. For
De = 1.0, all components show several damped over- and
undershoots. By increasing the Deborah number beyond
De = 1.0, the first velocity overshoot is also increased but
all other over- and undershoots in u(t), τxx(t) and τxy(t)
are damped out. We therefore concentrate on De = 1.0
to determine the accuracy of the unknowns although the
multiscale approach allows using higher Deborah numbers.

As mentioned in the beginning of this section, we sub-
divide the convergence study for this benchmark problem
in two subproblems:

y

x

1.0

12.0

P1

P2

8.0u|Γ1 = uanalytic

τ p|Γ1 = τ analytic (macro)

(∂nτ p)|Γ1 = 0 (micro)

u|Γ3 = uanalytic

(∂nτ p)|Γ3 = 0 (macro)

(∂nτ p)|Γ3 = 0 (micro)

Figure 2: Poiseuille flow in a planar channel. We perform
measurements on the line x = 8.0 or at the grid points
P1 = (8.0, 0.075) and P2 = (8.0, 0.475).

• A convergence study of the Oldroyd-B model to the
analytical solution and

• a stochastic convergence of the Hookean dumbbell to
the Oldroyd-B model for a moderate and fixed mesh
width to restrict computing time. In this case, we
only increase the number of sample particles.

For both studies, we employ a channel of length 12.0
in the x-direction, of height 1.0 in the y-direction and of
width 0.4 in the z-direction (cf. Fig. 2). As NaSt3DGPF
solves the three-dimensional Navier-Stokes equations, we
impose periodic boundary conditions in the z-direction to
emulate the two-dimensional geometry. Moreover, we use
Re = 1.0 and employ β = 0.1 for the viscosity ratio.

4.1.2. Convergence study for Oldroyd-B model

For the convergence study, we prescribe the analyti-
cal solution (20) of the velocity component u at the inflow
and outflow boundary. On the channel walls, we set no-slip
boundary conditions. Furthermore, we use the reference
solutions (21) and (22) for the stress tensor on the in-
flow boundary and homogeneous Neumann boundary con-
ditions (i. e. (∂nτ p)|Γ3

= 0) on the outflow boundary. All
initial values in the flow domain are zero.

Since all unknowns solely depend on y, any deviation
in the flow domain from the inflow conditions is caused by
a numerical error. Thus, we probe the flow on the line x =
8.0 over the full channel height, i. e. at (8.0, y, 0.25) with
y ∈ [0, 1], and examine the solution of five consecutively
x/y-refined meshes. Table 2 lists the number of grid cells
and the corresponding mesh width for each level l. As the
solution is constant in the z-direction, we keep the mesh
width of 0.1 in this direction and measure all unknowns at
z = 0.25 in the center of the second grid cell. For a more
compact notation, we henceforth skip the third index in
z-direction in all grid point descriptions.

For the error measurement, we employ the discrete L2
l -
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Table 2: Mesh characteristics on different levels l used for
the Oldroyd-B convergence study.

l ∆xl , ∆yl ∆zl Cells/direction Total cells
1 1.0× 10−1 0.1 120× 10× 4 4,800
2 5.0× 10−2 0.1 240× 20× 4 19,200
3 2.5× 10−2 0.1 480× 40× 4 76,800
4 1.25× 10−2 0.1 960× 80× 4 307,200
5 6.25× 10−3 0.1 1920× 160× 4 1,228,800

norm of an unknown fl, i. e.

El(fl) = ‖fanalytic − fl‖L2
l

'

∑
j

|fanalytic(yj)− fl(yj)|2∆yl

 1
2

(23)

where fl(yj) is a component of the numerical solution of
either u or τ p at position (8.0, yj) on mesh level l. Anal-
ogously, fanalytic(yj) denotes the reference solutions (20) -
(22) evaluated at this position. Using these error values,
we can compute the order of convergence pl as

pl =
log (El(fl)/El+1(fl+1))

log (2)
. (24)

In Fig. 3 we show the error of the velocity component
u for the first velocity overshoot at t ≈ 0.528, for the first
velocity undershoot at t ≈ 1.582 and the error close to
the steady state at t = 10.0. For a better illustration
of the specified points in time, Fig. 8 shows the temporal
evolution of u at grid point P2 = (8.0, 0.475). As expected,
the error decreases with finer mesh widths. Additionally,
Fig. 3 shows the errors for τxx and τxy, respectively.

We give the order of convergence for the plots of Fig. 3
in Table 3. For the horizontal velocity u we obtain a rate
of second order in the over- and undershoot cases and at
steady state, which is to be expected due to the combi-
nation of 2nd-order central differences and the 5th-order
WENO scheme.

Obviously, the velocity overshoot situation is the more
difficult one of the transient flow problem as the error on
the finest mesh width is larger there. Nevertheless, the
accuracy of u is very high, compared to the stress com-
ponents τxx and τxy, for all mesh levels l. We illustrate
this for the velocity overshoot along the y-axis in Fig. 4 for
the three grid levels l = 1, 3, 5. Note that the top picture
in Fig. 4 only shows the coarsest grid solution to maintain
the visibility of the reference solution. Even though the er-
ror is largest at the overshoot point, we detect only minor
deviations from the analytical solution. Here, the error in
u is about 10−4 to 10−5 which is two orders of magnitude
smaller than the error in τ p.

The numerical error in τ p behaves differently for its
components. Fig. 3 shows that the error in τxy is about
one order of magnitude smaller than the error in τxx. This
could be caused by the dependency of the time-discrete

10−2 10−1
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10−3

mesh width ∆y
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r
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l(
u

)

u overshoot
u undershoot
u steady state
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τxy overshoot
τxy undershoot
τxy steady state

Figure 3: Top: convergence of u at t ≈ 0.528 (overshoot),
at t ≈ 1.582 (undershoot) and at t = 10.0 (close to steady
state). Middle: error reduction in τxx at t ≈ 1.194 (over-
shoot), at t ≈ 2.17 (undershoot) and at steady state. Bot-
tom: error reduction in τxy at t ≈ 1.056 (overshoot), at
t ≈ 2.109 (undershoot) and at steady state.

τ
(n+1)
xy on the velocity gradient only whereas, for the con-

sidered flow problem, τ
(n+1)
xx also depends on the previous

time-step stress component τ
(n)
xy (insert u = (u, 0, 0) into

the discretized Oldroyd-B equation (3)). Consequently,
the error in τxx is larger than the error in τxy as it con-
tains an additional error term. We obtain a convergence
rate of order two.

In Fig. 5 we present the error in τxx for the stress over-
shoot case at t ≈ 1.194 along the y-axis. We only plot τxx
since it dominates the error in τp and since the error at the
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Table 3: Order of convergence for u, τxx and τxy at three different positions in time.

overshoot undershoot steady state
u τxx τxy u τxx τxy u τxx τxy

time t 0.53 1.19 1.06 1.58 2.17 2.11 > 10 > 10 > 10
order
p1 0.55 2.07 2.11 2.17 1.98 1.98 1.99 2.02 2.03
p2 1.56 2.11 1.67 2.05 2.05 1.80 2.07 2.04 1.76
p3 1.62 2.22 2.16 2.03 2.18 1.99 2.00 2.09 2.07
p4 1.78 1.85 1.98 2.03 2.00 1.97 1.81 2.07 2.01
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Figure 4: Velocity component u on the vertical channel
wall during the velocity overshoot at t ≈ 0.528.

stress overshoot exceeds the other errors anyway, as illus-
trated in Fig. 3. Again, we only detect minor deviations
from the analytical solution. Altogether, this shows that
our scheme accurately approximates the transient flow not
only for the steady state but also for the previous over- and
undershoot cases.

4.1.3. Stochastic convergence of the Hooke model to the
Oldroyd-B model

In this subsection, we illustrate the convergence with
probability one of the Hookean dumbbell to the Oldroyd-B
model as stated by the law of large numbers. Using this
approach, we obtain an error estimation for the other sto-
chastic models such as the FENE dumbbell model (10).
As the stochastic approach is much more demanding with
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Figure 5: Stress component τxx on the y-axis during the
stress overshoot at t ≈ 1.194.

respect to the requirements on memory and computing
time, we perform the simulations only on the grid l = 2
from Table 2. We cannot expect to yield better results
for the Hookean dumbbell model than for the correspond-
ing noise-free macroscopic model. Moreover, we expect
an additional error for the multiscale approach caused by
stochastic noise in the solution. To this end, we analyze
the convergence to the Oldroyd-B model for fixed mesh
width with an increasing number of Brownian configura-
tion fields. Again, we use Re = 1.0, De = 1.0 and β = 0.1
for all simulations.

Fig. 6 compares the first normal stress component τxx
for five simulations at position P1 = (8.0, 0.075) which is
close to the channel’s wall where the stresses reach their
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Figure 6: Temporal evolution of τxx at point P1 =
(8.0, 0.075).

maxima. The first stress overshoot and the first under-
shoot are accurately resolved in all simulations with the ex-
ception of the coarsest simulation with NBCF = 500. The
simulation with NBCF = 500 underestimates τxx until at
about t ≈ 8.0 the reference solution reaches a steady state.
The more complex stochastic simulations with NBCF =
2000, NBCF = 8000 and NBCF = 16000 better resolve the
stress tensor over- and undershoots. Close to the steady
state (cf. bottom picture in Fig. 6), the simulation with
NBCF = 16000 performs best with respect to the Oldroyd-
B solution.

Fig. 7 displays the shear stress component τxy for the
four stochastic simulations, that of the Oldroyd-B result
and that of the analytical solution. The first stress over-
shoot is accurately resolved by the simulations NBCF =
2000, 8000 and 16000. However, only NBCF = 16000 yields
a high agreement for the second overshoot (cf. bottom pic-
ture in Fig. 7). For time integration, we used the explicit
Euler-Maruyama method described in Section 3.2 with a
constant time-step size of 10−4 which is much smaller than
required from the respective CFL condition. Note that
the usage of a constant and compliant time-step width for
all stochastic simulations allows to investigate the effect
of different sampling numbers NBCF. Consequently, the
dominant error in τp results from the sample point error
only. At steady state, the final values of τxy are compara-
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Figure 7: Evolution of stress component τxy at point P1 =
(8.0, 0.075) over time.

ble in accuracy with the τxx results.
As our multiscale simulations at steady state exhibit

a stochastic noise, we do not give a final value of τ p but
an arithmetic mean over a time interval. To this end, we
compute the expectation of τ p at P1 = (8.0, 0.075) as

〈τ p〉 =
1

#M

∑
ti∈M

τ p(ti, P1) for M ≡ {ti| ti ≥ 8.0}

(25)

with ti randomly chosen. For the stochastic simulations we
see that τ p is stationary after t = 8.0 since the analytical
solution subsequently shows only minor changes which are
below the stochastic error. For example, the analytical
solutions for the annotated grid point are τxx ≈ 20.80839
and τxy ≈ 3.06004 at t = 8.0 and τxx ≈ 20.80835 and
τxy ≈ 3.06005 at t = 10.0, respectively. Furthermore, we
compute the variance of τ p at P1 = (8.0, 0.075) by using
the formula

σ2(τ p) =
1

#M

∑
ti∈M

(τ p(ti, P1)− τ analytic)2 (26)

separately for each stress tensor component with M ≡
{ti|ti ≥ 8.0}.

In Table 4, we show the results for 〈τp〉, the variance
σ2(τ p) and the relative error in comparison to the analyti-
cal solution for different numbers of stochastic realizations
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Table 4: Expectation of τxx and τxy at P1 = (8.0, 0.075), their relative error compared to the analytical solution and the
variance for all stochastic simulations. For comparison, we state the Oldroyd-B and the analytical solution at t = 10.0.

NBCF 〈τxx〉 εrel(τxx) σ2(τxx) 〈τxy〉 εrel(τxy) σ2(τxy)
500 21.5610 0.0362 0.409 3.2544 0.0635 0.177
2000 19.8004 0.0484 0.129 2.9927 0.0220 0.071
8000 20.1474 0.0318 0.038 3.0606 0.0002 0.021
16000 20.4310 0.0181 0.022 3.0238 0.0119 0.015
Oldroyd-B 20.6466 0.0077 0 3.0482 0.0039 0
Analytical 20.8084 0 0 3.0601 0 0

NBCF. In general, the error in 〈τp〉 does not monoton-
ically decay because of the stochastic behavior. Due to
Monte Carlo integration, the error in 〈τp〉 is of the or-

der O(N
−1/2
BCF ) whereas the variance decreases linearly in

NBCF.
In Fig. 8 we examine the velocity field at position P2 =

(8.0, 0.475) close to the channel center over time. In com-
parison to the stress tensor components, we note that u
is smooth even for the coarsely resolved stochastic simu-
lation with NBCF = 500. Although τp strongly oscillates
in the flow domain for NBCF = 500 (cf. Fig. 6 and Fig. 7
at P1 = (8.0, 0.075)) this affects the velocity field only
slightly. There is even a further increase in the smooth-
ness of u for a larger number of stochastic samples which
is visible in the zoom in Fig. 8 (bottom). The smoothness
results from applying the same Wiener process for all Ng

grid cells. On the other hand, we note that using more
sample particles and thus increasing the accuracy in τp
does not noticeably increase the accuracy in u for the con-
sidered range of particle numbers. The relative error in u
at P2 = (8.0, 0.475) and t = 10.0 is εrel(u) = 0.0014 for
the Oldroyd-B model with l = 2 and about εrel(u) ≈ 0.003
for all stochastic levels. This shows that the error in τp
dominates the error in u not only for NBCF = 500 but also
for NBCF = 16000.

Similar to Fig. 4 in Section 4.1.2, we now compare the
velocity over the full channel height at a fixed point in
time. Fig. 9 displays the velocity profile at steady state
and gives a zoom around the two center grid points. The
error in u is already comparatively small for NBCF = 500
and decreases only slightly for the higher resolved multi-
scale simulations. Using the discrete error norm of (23),
we obtain a relative steady state error of E2(u) = 0.0029
for NBCF = 500 and of E2(u) = 0.0028 for NBCF = 16000
along the channel height. We expect an increase in the
accuracy of u when the errors of u and τp are in the same
order of magnitude and τp is no longer the dominant error
term. Only then, an increase in the number of configura-
tion fields, which decreases the error in the stress tensor,
also decreases the error in u.

As a result, we conclude the following for the specified
benchmark experiment:

1. A multiscale approach with stochastic samples de-
creases the accuracy of the velocity field u compared
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Figure 8: Horizontal velocity u over time at P2 =
(8.0, 0.475).

to a macroscopic approach. This reduction in accu-
racy is however much smaller in size than one would
expect from the stochastic behavior of τp only.

2. The velocity field remains smooth and does not adopt
the oscillating behavior of τp.

3. Multiscale simulations with the annotated number
of grid cells and configuration fields deliver velocity
fields with an accuracy that is adequate for compar-
isons with experimental results (i.e. the relative error
in u is about 0.3%).

This also applies to the FENE model in Section 4.2 and
Section 4.3.
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Figure 10: Two-dimensional contraction flow geometry.

4.2. FENE flow in a planar 4:1 contraction

4.2.1. Problem specification and parameter setting

In the second benchmark problem, we focus on the
differences between the FENE dumbbell model and its
FENE-P closure approximation. For this purpose, we in-
vestigate a planar flow in a 4:1 contraction according to
Wapperom et al. [40] to allow for comparisons. Although
the problem is restricted to two dimensions, it is closely
related to the three-dimensional problem in Section 4.3 as
the flow field in both problems has a singularity at the
contraction.

In Fig. 10 we depict the flow geometry. We decide
for half of the downstream’s channel height as charac-
teristic length scale Lc and set Lc = 1.0. The length
both of the upstream and downstream channel is cho-
sen as 20.0. In accordance with Wapperom et al. [40]
we use ρ = 0.098, ηs = 0.05, ηp = 0.65, λ = 0.6 and
β = ηs/(ηs + ηp) = 1/14 for the fluid. On the upper

Table 5: Mesh characteristics on different levels l used for
the FENE and FENE-P simulations.

l ∆xl , ∆yl ∆zl Cells/direction Total cells
1 0.5 0.5 80× 16× 3 3,840
2 0.25 0.5 160× 32× 3 15,360
3 0.125 0.5 320× 64× 3 61,440
4 0.0625 0.5 640× 128× 3 245,760

and lower channel walls we employ no-slip boundary con-
ditions. Analogously to the unsteady Poiseuille flow in
Section 4.1 we prescribe a parabolic velocity profile at the
inflow boundary but in this case we assume the profile to
be fully developed already. Using Uc = 23/3 as average ve-
locity at the outflow boundary and the definitions in (7),
we obtain a Reynolds number Re ≈ 1.07 and a Deborah
number De = 4.6. Furthermore, we use b = 10 for the
extensibility parameter in the FENE and FENE-P model.

In Table 5 we list the different mesh levels l that are
used in the simulations. Again we use periodic boundary
conditions in the z-direction to emulate a two-dimensional
geometry. On the finest mesh l = 4 we employ 32 grid cells
to resolve the downstream’s channel height. Furthermore,
we use NBCF = 4000 for each simulation. Note here that,
for reasons of comparability, we use the FENE-P model in
its multiscale formulation.

For temporal discretization we employ the semi-implicit
2nd-order Crank-Nicolson scheme. In contrast to the con-
vergence study in Section 4.1, we now use the largest avail-
able time-step that fulfills the CFL condition for the con-
vective velocity terms. The time steps for the simulations
are of order O(10−2) for l = 1 and of order O(10−3) for
l = 4.

4.2.2. 2D simulation results

First, we compare the results for the FENE and the
FENE-P model on the finest mesh l = 4 analogously to
Wapperom et al. [40]. We then concentrate on the FENE
model and investigate the convergence behavior by com-
paring different levels l = 1, 2, 3, 4. At last, we consider
the meshes l = 3 and l = 4 for the FENE-P model.

In Fig. 11 and Fig. 12 we illustrate the evolution of the
lower corner vortex for the FENE and for the FENE-P
model computed on mesh width l = 4. Note that the visu-
alized time points in both figures are chosen such that they
coincide with the streamline visualizations in Fig. 15 and
Fig. 20 in Wapperom et al. [40] to allow for comparison.
In both simulations a corner vortex develops and starts to
increase in size at the beginning. The corner vortices reach
their maximum size at about t ≈ 0.35 when a lip vortex
at the re-entrant corner forms. The evolution then differs
between the FENE and FENE-P model. The two vortex
regions for the FENE model attach at t ≈ 0.7 but can
still be distinguished. The vortex intensity increases up to
t ≈ 3.0 when a steady state is reached in which two sep-
arated vortex regions exist. The FENE-P model predicts
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Figure 11: Corner vortex evolution for the FENE model.

a lip vortex that is larger in size and is still distinct from
the corner vortex till about t ≈ 0.85. The vortices then
attach and form a structure that also consists of two sepa-
rated vortex cores. Compared to the FENE model, the lip
vortex is larger in its size but the size of the corner vor-
tex is slightly reduced. The vortices further increase up to
t ≈ 3.0 when the system reaches a steady state. Compar-
ing the steady state results, i.e. a vortex structure that is
dominated by the corner vortex in the FENE model on the
one hand and a vortex structure with a more pronounced
lip vortex in the FENE-P model on the other hand, shows
that the FENE-P model deviates from the FENE model

t = 0.05

t = 0.25

t = 0.70

t = 1.05

t = 3.00

t = 0.15

t = 0.35

t = 0.85

t = 1.35

t = 10.0

Figure 12: Corner vortex evolution for the FENE-P model.

for this contraction flow problem.
Compared to the literature, our FENE simulation re-

sults show an excellent agreement with the results in Wap-
perom et al. [40]. On the other hand, our results for the
FENE-P model differ from the literature at the final stage
of the simulation. The two predicted vortices in [40] merge
at t ≈ 1.35 and form one large lip vortex in contrast to the
two separated vortex cores that we show in Fig. 12. We
further discuss these differences for the FENE-P model,
depending on the mesh width l, at the final part of this
section.

In Fig. 13 to Fig. 15 we display the steady state FENE
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τxx

Figure 13: FENE contour lines of stress component τxx.

τxy

Figure 14: FENE contour lines of stress component τxy.

τyy

Figure 15: FENE contour lines of stress component τyy.

stress components τxx, τxy and τyy at t = 10.0. Although
the absolute stress tensor profiles are symmetric at the
channel’s centerline, the figures show both corner singu-
larities. Hence, it is viable to analyze the symmetry of
the numerical solution. The stochastic BCFs only show
minor oscillations and small deviations from the symme-
try. The perspective in all figures was chosen such that
it matches Fig. 19 in Wapperom et al. [40]. For a better
comparison, we scaled τxy in Fig. 14 such that the isolines
are adapted to the lower part of the channel. All stress
components have their maximum value at the contraction
corner. The shape of the stress components closely resem-
bles the results in [40]. There, higher stress tensor values
at the singularity were obtained as their adaptive mesh
geometry resolves the corner singularity better but, apart
from the singularity point, the agreement of the absolute
values is high. The singularity would be better resolved on
the next finer mesh level l = 5. But altogether, this leads
to only minor differences in the corner vortex structure in
Fig. 11.

In Fig. 16 we compare the steady state FENE vortex

l = 1

l = 2

l = 3

l = 4

Figure 16: Corner vortex at t = 10.0 using the FENE
model on different mesh widths l.

structure for different mesh widths l as listed in Table 5.
One large salient corner vortex occurs on the coarsest mesh
level l = 1 but a lip vortex as in Fig. 11 is not yet resolved.
On mesh level l = 2, the shape of the vortex resembles the
steady state result in Fig. 11 but the grid still resolves one
large vortex only. Finally, a separate lip and corner vortex
develop for l = 3 and l = 4. The results on both meshes
show only minor differences. We therefore conclude that
the results at l = 4 are close to a converged solution. Fur-
thermore, all important vortex characteristics are already
resolved on l = 3.

The situation differs for the FENE-P model. In Fig. 17
we depict the medium and final stage of the simulation for
l = 3 and for l = 4. Up to t ≈ 0.85 there is no difference in
the vortex evolution. At t ≈ 0.85 both vortices attach for
l = 3 on the one hand but are still distinct for l = 4 on the
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Figure 17: Differences in the finale stage of the simulation
for the FENE-P model depending on the mesh width l.

other hand. For l = 4 this vortex attachment occurs later
at about t ≈ 1.05. At t ≈ 1.35 the corner vortex for l = 3
combines with the lip vortex and forms one large vortex
structure. As mentioned before, for l = 4 both vortices
can still be separated up to the steady state. We assume
that the mesh on level l = 3 is not sufficiently fine to show
the corner vortex at steady state. Interestingly, the edge of
the complete vortex structure is similar for both meshes.
We also note that our results at l = 3 closely resemble the
results in Wapperom et al. [40]. As the mesh in this article
is finest resolved at the singularity point apart from the

corner vortex, it might be possible that simulations in [40]
on a refined mesh also display two steady state vortices for
the FENE-P model.

In the following Section 4.3 we use a mesh for the sim-
ulation of a three-dimensional square-square contraction
that is similar in its x-y-resolution to the mesh width l = 3
in Table 5. Although the mesh was sufficiently fine to show
all relevant flow phenomena for the FENE model in the
considered two-dimensional case, this was different for the
FENE-P results. On the other hand, the high Deborah
number flows that occur in Section 4.3 lead to a corner
vortex that is much larger in size than the filigree vor-
tex structure in this section, cf. vortex sizes in Fig. 11
and Fig. 23. We therefore assume that it is sufficient to
perform the computationally demanding three-dimension-
al simulations on a mesh with the chosen accuracy.

4.3. FENE fluid flow in a three-dimensional square-square
contraction

4.3.1. Modeling and parameter setting

Now we compare the results of our simulations for a
shear-thinning fluid in a square-square contraction with
that of laboratory experiments. For this purpose, we use
the measurements of Sousa et al. [41] for a non-Newtonian
solution composed of 40.0% (w/w) glycerol, 59.9% (w/w)
water and polyacrylic acid (PAA) with a weight concentra-
tion of 600 ppm for comparison. This experiment extends
previous findings from Sousa et al. [42] for a Newtonian
and a Boger fluid to shear-thinning fluids.

The flow geometry consists of a quadratic upstream
channel with side length 2H1 = 24 mm which contracts
into a smaller downstream channel with side length 2H2 =
6 mm (i. e. contraction ratio 4:1). The upstream channel’s
length is 82.5 mm; the length of the downstream channel
is 15 mm which results in a total domain size of 97.5 mm×
24 mm × 24 mm. We discretize this domain with a finite
difference grid that consists of Ng = 260 × 64 × 64 grid
cells, i.e. with an equidistant mesh width h = 0.375 mm.
We use double precision machine numbers for each of the
three BCF components. Thus, the total memory require-
ment is approximately 19 GB. For illustration, we show
the corresponding computational grid in Fig. 18 and a 2D
cut of the contraction region in Fig. 19. The 2D cut also
shows that the downstream channel’s height is resolved
with 16 grid cells.

Our simulation parameters for the shear-thinning fluid
correspond to those used by Sousa et al. [41]. There,
the authors employ a simplified Phan-Thien Tanner model
(SPTT). They give the parameters for their fluid fit as ε =
0.06 for the extensibility parameter, ηp = 1.62 Pa s for the
zero polymer shear viscosity, ηs = 0.03 Pa s for the solvent
shear viscosity, and λ = 32 s for the fluid’s relaxation time,
respectively. Using these values in (7), we derive a viscos-
ity ratio β = 0.0182 for the momentum equation (4) and
for Kramers’ relation (12). We use Lc = H2 = 3 mm as
characteristic length scale in (7) and obtain, with average
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Figure 18: Visualization of the 3D mesh for the contraction
flow problem.
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Figure 19: A zoomed 2D cut of the contraction region.

downstream velocities Uc = U2 = 2.26 mm/s, 10.1 mm/s
and 14.2 mm/s, the Deborah numbers De2 = 24.1, 108 and
157. This definition leads to Reynolds numbers below 1.
Consequently, elasticity is more important than inertia at
higher flow rates.

At a sufficient distance from the contraction region,
the velocity profile for a shear-thinning fluid shows only
minor deviations from a Newtonian profile in a square-
square channel. For this reason, we prescribe the analyt-
ical solution for a constant viscosity fluid on the inflow
domain as boundary condition, compare e.g. White [43].
In this case, the ratio from the value at the centerline to
the average velocity is ≈ 2.0963.

The Hookean dumbbell model (9) used in the bench-
mark experiment does not predict shear-thinning and is
not applicable to the experimental fluid. On the other
hand, the FENE dumbbell model (10) predicts shear-thin-
ning reasonably well. It contains an extensibility param-
eter b to match the fluid’s shear thinning behavior. This
extensibility parameter is related to the extensibility pa-
rameter ε in the SPTT model but, as both models do
not coincide, b has to be determined empirically. For this
purpose, we compare the shear-dependent behavior of the
SPTT fit by Sousa et al. [41] with different choices for
b in the FENE model. Herrchen and Öttinger [26] con-
sidered various FENE dumbbell and closure models using
the values b = 20, 50, 100. They interpret the parameter b
roughly as the number of monomer units, which form the
polymer that is represented by the dumbbell. The authors
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Figure 20: Apparent viscosity over shear rate γ̇ for the
SPTT and the 3D FENE dumbbell models with b =
5, 10, 20, 50.

suggest to use values in the range b ∈ [20, 100] since lower
values do not result in a physical model any more and
larger values are closely related to the Oldroyd-B model.

In Fig. 20 we investigate the shear-rate dependent vis-
cosity function. The apparent viscosity matches η(γ̇) =
ηs + ηp = 1.65 Pa s in the limit of zero shear and matches
η(γ̇) = ηs = 0.03 Pa s for large values of γ̇ due to shear-
thinning effects. Relevant shear rates γ̇ for the contraction
flow are of the order γ̇ ≈ U2/H2 = 0.75 s−1 at De2 = 24.1
and of the order γ̇ ≈ U2/H2 = 4.9 s−1 at De2 = 157. For
this scope of application, we note that b = 5, 10, 20, 50
differ from the SPTT fit.

Another variable of interest is the first normal stress
coefficient defined as Ψ1 = (τxx− τyy)/γ̇. As illustrated in
Fig. 21, the FENE model with b = 20 is in high agreement
with the SPTT model fit for the relevant range of γ̇. Con-
sequently, we employ b = 20 for our multiscale FENE sim-
ulations. Since the fluid characterization in Sousa et al. [41]
was performed to fit the fluid’s shear behavior only, we
can not directly infer that the fluid’s extensional behavior
is also characterized properly. For this reason, deviations
might occur at the 2H1-normalized channel’s centerline
(x, 0.5, 0.5) as an extensional flow is predominant there.

The material functions in Fig. 20 and in Fig. 21 for
the FENE dumbbell models were obtained from 25 steady
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Figure 21: The first stress coefficient Ψ1 over shear rate
γ̇ for different 3D FENE dumbbell models and the SPTT
model.

shear flow simulations with γ̇ ∈ [10−2 s, 103 s] and Ng = 1
for each of the values b = 5, 10, 20, 50. Each simulation
evolved NBCF = 106 sample particles for fixed γ̇ until
steady state was reached. Then, the resulting stresses were
measured. The steady states stress tensor values finally
delivered η(γ̇) and Ψ1(γ̇) for the corresponding γ̇.

We perform all contraction flow simulations with sto-
chastic values of NBCF = 800 samples per grid cell. Al-
together, the total number of configuration fields is 800×
260 × 64 × 64 ≈ 850 · 106. In contrast to the previous
2D Poiseuille flow simulations in Section 4.1, we do not
artificially restrict the time-step width but use the largest
possible time-step. The step size for the semi-implicit 2nd-
order Crank-Nicolson scheme is primarily restricted by the
CFL condition ∆t ≤ ∆x/|umax| since the horizontal veloc-
ity component u is dominant over the components v and
w for the chosen flow direction. Due to the implicitness of
the schemes with respect to the diffusion operator, there
is no restriction for the diffusive velocity terms and for
the stochastic PDE in case of the FENE spring force. The
time step sizes are in the order of O(10−2 s) for De2 = 24.1
and of order O(10−3 s) for De2 = 157. Each simulation
required 10-14 weeks on 64 CPUs of our parallel cluster
Siebengebirge to reach a steady state. This emphasizes
the huge computational requirements that are necessary
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Figure 22: Plot of the 2H1-normalized vortex lengths on
the central plane z = H1 over time.

for 3D multiscale simulations.

4.3.2. 3D simulation results

An important limiting factor is the numerical simu-
lation time. Therefore, we have to recognize when the
system has reached its steady state to avoid unnecessary
calculations. The results by Sousa et al. [41] indicate that
the system possesses a steady solution for Deborah num-
bers up to De2 ≈ 300.

To this end, we measure the vortex sizes over time on
the plane z = H1, compare Fig. 22, and terminate the com-
putation when the vortex size or the reattachment length
has reached a plateau. This results in a simulation time
of t ≈ 70 s for De2 = 24.1 and of t ≈ 50 s for De2 = 108
and De2 = 157, respectively. The size of the vortex length
is determined by the extension of the horizontal velocities’
zero contour, i. e. min{x/(2H1)|u(x, y, 0.5) = 0} with u
as the velocity component in flow direction. The plot of
the vortex length over time shows some minor oscillations
at steady state which occur due to the stochastic stress
tensor treatment.

An increase of the flow rate, which also enhances elas-
tic effects, leads to a strong vortex enlargement for the
investigated shear-thinning fluid. This is in contrast to
Newtonian fluids for which an increase in flow inertia, due
to the absence of elastic effects, decreases the size of the
upstream vortex. Fig. 23 shows the steady state flow field
for all three multiscale simulations. The size of the upper
vortex is indicated by a white dashed line. All vortices
are convex-shaped which is in agreement to the results by
Sousa et al. [41] for high flow rates. Furthermore, a solid
white line gives a typical streamline. The streamline at
De2 = 24.1 runs parallel to the channel wall to the left
side of the lower vortex and then moves inwards into the
downstream channel. This behavior is typical for Newto-
nian flows. In contrast, the streamlines at De2 = 108 and
at De2 = 157 diverge towards the channel walls shortly
before they reach the vortex and then run inwards into
the downstream channel. This effect is more pronounced
at De2 = 157 than at De2 = 108 which is in agreement
with the results by Sousa et al. [41].
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Figure 23: Simulation results at De2 = 24.1, 108 and at
De2 = 157 at steady state on the central plane z = H1.
The phenomena of streamlines divergence, indicated in red
on a typical streamline, occurs for the high Deborah num-
ber flows but not for De2 = 24.1.

In Fig. 24 and Table 6 we compare the steady state vor-
tex sizes obtained from our simulations with those of the
experimental measurements obtained by Sousa et al. [41].
Our vortex length results at De2 = 24.1 coincide very
well with those of the experimental measurements. Ad-
ditionally, we have performed further simulations for low
Deborah numbers of order O(1) using a macroscopic PTT
model. In this case, the vortices are smaller in size but
still agree with the experimental measurements as shown
in Fig. 24. For the macroscopic PTT simulations we em-
ployed the same model parameter ε = 0.06 for the exten-
sibility as used by Sousa et al. [41]. The low Deborah
number flows for De2 = 0.5 and De2 = 1.0 simultaneously
show a corner vortex and an additional lip vortex near
the re-entrant corner, as illustrated in Fig. 25, where the
vortex regions are indicated with white dashed lines. The
additional lip vortex is not present for De2 = 2.0. This
coincides with general findings, for instance reported by
Sousa et al. [42], namely that a coexistence of lip vortex
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Figure 24: Comparison of the 2H1-normalized vortex
lengths on the central plane.

Table 6: Comparison between the experimental measure-
ments by Sousa et al. [41] and our multiscale simulations
for different Deborah numbers.

Deborah number De2 24.1 108 157
Sousa et al. [41] ≈ 0.9 ≈ 2.0 ≈ 2.4
multiscale FENE ≈ 0.7 ≈ 1.0 ≈ 1.1

and corner vortex only occurs in a small transition regime
where the fluid’s elasticity becomes dominant. In contrast
to the behavior at high flow rates, the vortices are slightly
concave-shaped at De2 = 0.5 and De2 = 1.0. Due to the
fluid’s high relaxation time λ our macroscopic PTT simu-
lations become unstable at De2 ≈ 4. Similar problems are
common in literature for high Deborah number flows (cf.
the high Weissenberg number problem analyzed in Keun-
ings [44]). One reason for these stability issues stems from
the large relaxation time of λ = 32 s for the experimental
fluid.

The stability problem in macroscopic approaches can
be partly avoided by rewriting the constitutive model in
terms of the conformation tensor as proposed by Fattal and
Kupferman [45]. This ansatz was used by Sousa et al. [41]
to achieve numerically stable results with the PTT model
for Deborah numbers of order O(10). Nevertheless, the au-
thors state that their implementation is unstable at Deb-
orah numbers 24.1 and higher for the investigated fluid
so that a numerical analysis as in Fig. 23 was not possi-
ble. In contrast, the multiscale BCF method did not show
any stability problems at the considered Deborah num-
bers which indicates its robustness. On the other hand,
we observe that our implementation underestimates the
experimental results by a factor of 2 at De2 = 108 and
at De2 = 157, respectively. This discrepancy becomes the
more pronounced the higher the flow elasticity is.

Furthermore, the numerically computed vortices are
sensitive to various parameters, like e.g. the dumbbell’s
extension parameter b. To illustrate this, we show the
vortex sizes at De2 = 157 for different values of b on the
central plane z = H1. We plot the upper vortex at t=3 s
with De2 = 157 for b = 10, 20 and 40 in the upper part
of Fig. 26. Due to the high computational effort, these
simulations were not computed to the steady state. Since
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Figure 25: Coexistence between a lip and a concave-shaped
corner vortex for a macroscopic PTT model for De2 = 0.5
and for De2 = 1.0.

the simulation time is t= 3.0 s, the vortices have not yet
reached their full size. The normalized vortex sizes at this
intermediate time point are xR/2H1 ≈ 0.58 for b = 10,
xR/2H1 ≈ 0.61 for b = 20, and xR/2H1 ≈ 0.57 for b=40.
Moreover, the vortices also differ in their shape. The zero
contour of u is highlighted in Fig. 26 with a solid white
line to clarify these differences. For b= 40 the zero con-
tour of the horizontal velocity component u, indicated by
a solid white line, has a more pronounced s-like shape as
for b=10 although the normalized vortex length is similar.

The differences are more pronounced in the FENE-P
model for b = 20. We show the simulations results for this
model in the lower part of Fig. 26. The normalized vortex
size in this case is xR/2H1 ≈ 0.60 which is similar to the
FENE simulation result for b = 20. However, in contrast
to the ellipsoidal vortex shape that occurs in the FENE
simulations, the corner vortex in the FENE-P model has a
more circular shape. For this reason, the area that is cov-
ered by the vortex in the FENE-P model is larger in size
and the vortex core is shifted towards the channel’s center-
line. Comparable differences also occurred in Section 4.2
for a two-dimensional contraction flow.

In Fig. 27 and Fig. 28 we compare the axial velocity
profiles on the centerline for De2 = 24.1 and for De2 =
108. Note that the horizontal axis is scaled with 2H2 and
that its origin is shifted to the contraction. Again, we
observe similar velocity profiles for De2 = 24.1 and de-
viations for De2 = 108. The deviations in the velocity
profiles for De2 = 108 are related to an underestimation
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Figure 26: Comparison of the FENE model with the
FENE-P model for different values of b at De2 = 157.

of the vortex size. The fluid’s acceleration in the simu-
lations is delayed as the vortex size is smaller compared
to the experiment findings. Apart from this, the starting
point for the acceleration is shifted to the left in the ex-
perimental measurements and in the multiscale simulation
compared to De2 = 24.1 (cf. Fig. 27 and Fig. 28).

Another aspect in Fig. 28 are velocity under- and over-
shoots. First, the experiments by Sousa et al. [41] reveal an
overshoot when the fluid enters the downstream channel.
However, our simulations do not result in an overshoot at
steady state. Since we are not aware of the experimental
error sizes we cannot interpret these differences. Second,
the authors mention an undershoot before the fluid starts

20



−3 −2 −1 0
0

0.5

1

1.5

2

x/(2H1)

u
x
/U

2

De2=24.1, U2=2.26mm/s, t ≈ 70s

FENE
Sousa et al. [41]

Figure 27: Axial velocity profiles on the channel centerline
for De2 = 24.1.

−3 −2 −1 0

0

0.5

1

1.5

2

u
x
/U

2

De2=108, U2=10.1mm/s, t ≈ 50s

FENE
Sousa et al. [41]

−1.6 −1.4 −1.2 −1

0.1

0.12

0.14

0.16

0.18

0.2

x/(2H1)

u
x
/U

2

Figure 28: Axial velocity profiles on the channel centerline
for De2 = 108.

to accelerate which is more pronounced for the higher Deb-
orah numbers. This undershoot also occurs in our simu-
lations and is highlighted in the zoomed part in Fig. 28

De2 = 1.0 (PTT)

z

y

x

De2 = 157 (FENE)

z

y

x

Figure 29: 3D vortex patterns for nearly Newtonian (top)
and for high Deborah numbers flows (bottom).

(bottom). Interestingly, the undershoot seems to be more
pronounced in the simulations than in the experimental
measurements.

The square-square contraction flow geometry differs
from axial or planar contraction geometries as it features
3D flow phenomena. In Fig. 29 we illustrate the 3D vor-
tex structure. For nearly Newtonian flows (top), particles
that enter the flow domain on a diagonal plane, such as
(y−H1) + (z −H1) = 0, rotate by 45◦ towards one of the
central planes y = H1 or z = H1, respectively. Note that
the perspective in Fig. 29 coincides with the flow direction,
i.e. x-direction, and that the upstream channel is clipped.

Literature findings often state an inversion of this 3D
vortex pattern for highly elastic flows. This effect is also
reported for Boger fluids which suggests that elasticity and
not shear-thinning is responsible for the occurrence of flow
inversion (cf. results by Sousa et al. [42] for Boger fluids).
For high Deborah number flows, such as for De2 = 157
in Fig. 29 (bottom), particles enter the flow domain on
the planes y = H1 or z = H1, respectively, and rotate the
other way around towards one of the diagonal planes before
going through the contraction. Sousa et al. [41] estimate
that the effect of flow reversal for the experimental fluid
occurs for Deborah numbers larger than ≈ 1.5. Referring
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to our multiscale results, all three simulations show an
inversion of the flow field streamlines.

A further variable of interest is the evolution of the
pressure profile p on the centerline through the contrac-
tion. Due to the elasticity of the fluid, the measured
pressure drop is not only caused by the pressure differ-
ence between the two Poiseuille flows in the upstream and
downstream channel but results also from the extensional
flow in the contraction. The increase in the pressure drop
is usually investigated with the dimensionless Couette cor-
rection C defined as

C =
∆ptotal − | dpdx |fd,u ∆xu − | dpdx |fd,d ∆xd

2τw
. (27)

Here, ∆ptotal is the total pressure drop at two specific lo-
cations in the upstream and downstream channel. These
locations have been chosen such that the flow can obtain
its fully developed Poiseuille profile at the points of mea-
surement. Furthermore, | dpdx |fd,u and | dpdx |fd,d denote the
pressure gradients at these two positions and ∆xu and
∆xd represent the distances to the midpoint of the con-
traction. τw in (27) denotes the average downstream wall
shear stress. For a square-square channel, τw can be ap-
proximated by | dpdx |fd,dH2/2.

In Fig. 30, we plot the dimensionless pressure gradient
(∇x/H2

p)/
(
(ηs + ηp)U2/H2

)
on the channel’s centerline.

The coordinate system in this plot has been shifted such
that its origin indicates the beginning of the contraction.
The pressure gradient is strongly affected in the interval
[−H2, H2] for all three multiscale flows. First, there is
a small pressure recovery shortly before the contraction
point which then leads to a strong pressure drop at x/H2 =
0.

Fig. 31 shows the Couette correction C as a function
of De2 for both, the macroscopic and the multiscale sim-
ulations. We have chosen the positions for measuring the
pressure profiles at x/H2 = −24 and at x/H2 = 4.8. Even
though the pressure measurement point in the downstream
channel is relatively close to the contraction point, Fig. 30
confirms that the pressure gradient is close to its fully de-
veloped value there.

In Fig. 31, a large extra pressure drop occurs for the
higher Deborah number flows which increases with the flow
rate. This extra pressure drop is related to the vortex en-
hancement in the upstream channel corner as illustrated in
Fig. 23. Therefore, the FENE dumbbell model seems to be
able to predict the large increase in the Couette correction
which is measured for certain fluids in contraction flows.
Note here that other viscoelastic models like Oldroyd-B
are not able to predict such an increase in the Couette
correction (cf. results by Alves et al. [46] for Boger fluids).

Koppol et al. [21] investigated the accuracy of a macro-
scopic FENE-P closure model, a multiscale FENE dumb-
bell and a multiscale three-bead-spring FENE model for
the prediction of the extra pressure drop in a two-dimen-
sional 4:1:4 contraction-expansion flow. The experimental
fluid was a constant viscosity 0.025 wt % PS/PS Boger
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Figure 30: Pressure gradient measured over centerline.
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Figure 31: Couette correction for the SPTT and FENE
dumbbell simulations.

fluid. In general, both multiscale FENE models were able
to predict the large extra pressure drop enhancement. How-
ever, compared to the FENE dumbbell model, the authors
emphasize the better agreement of the three-bead-spring
FENE with the experimental data at higher Deborah num-
bers. Even though we investigate a different problem, we
expect a comparable uncertainty in our absolute pressure
drop values for the higher Deborah number flows in Fig. 31
similar to the results in Koppol et al. [21].

A multiscale approach delivers additional information,
compared to classical macroscopic approaches, due to the
actual description of the polymer configurations. In Fig. 32
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slice z = H1

centerline P2

P3

P1

Figure 32: 2D cut of the channel geometry in which the
positions P1, P2, and P3 are indicated.

we indicate three different 2H1-normalized positions

P1 = (−1.09375, 0.875, 0.5)

P2 = (0, 0.59375, 0.5)

P3 = (0, 0.5, 0.5)

that are employed for the discrete configuration vectors

Q
(i)
t , i = 1, . . . , 800. Position P1 and P2 lie roughly on

the same streamline so that they represent the same con-
figuration at two different points in time, in the upstream
area and in the point in time of contraction. Position P3

directly lies on the channel centerline at the downstream
channel’s entrance. We analyze the polymeric orientations
at the two different Deborah numbers De2 = 24.1 and
De2 = 157, respectively. A similar analysis was performed
by Prieto et al. [19] for a 2D planar contraction flow.

In Fig. 33 we give the polymer configurations at P1

for two different Deborah numbers. We first visualize all
three components of the configuration vectors Q

(i)
t , i =

1, . . . , 800 (top). Then, we restrict the configuration vector
to its first and second component Qx and Qy in the center,
to clarify the actual shape of the 3D structure (center).
At last we state the probability density function for the
squared distance function Q2 which is limited by b = 20
(bottom). We obtain a typical shear flow pattern for both
flows. Furthermore, the higher flow rate at De2 = 157
leads to a stronger molecule extension as shown in the
corresponding density function.

At position P2 indicated in Fig. 34 most of the stochas-
tic samples are elongated close to their maximum. This
reflects the occurrence of strong tensions at the contraction
corner. Nevertheless, the components on the xy-plane are
still rotated against the horizontal axis as in Fig. 33. In
contrast to this, the configurations at position P3 on the
centerline are aligned with the axis of the flow direction.

The sample particles in Fig. 35 have a similar distri-
bution for both flows but the support is different. The
vertical spread at De2 = 157 in the y- and z-direction
is strongly reduced compared to the flow at De2 = 24.1.
Since an extensional flow occurs at the centerline, the con-
figuration fields are aligned with the flow and reach their
maximum extension there.

Using the Brownian configuration fields in each grid
cell, we compute the components of the polymeric stress
tensor. In Fig. 36 we show the τxx component on a plane
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Figure 33: Shear flow behavior upstream of contraction
(P1) for two different Deborah numbers.
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Figure 34: Polymer configuration at the re-entrant corner
(P2) for two different Deborah numbers.

at De2 = 157. As reported by Keunings [5] for the BCF
method, the stress field is smooth in space at a fixed
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Figure 35: Extensional behavior at centerline (P3) for two
different Deborah numbers.

τxx

P4

Figure 36: First normal stress component τxx on the slice
z = H1 at t = 50 s for De2 = 157.

point in time. This is caused by the locally correlated
Brownian force as described in Section 2.2. The stress
component has two peaks close to the corner singularity
that overlap on the centerline (cf. 2H1-normalized position
P4 = (−1/32, 0.5, 0.5) in Fig. 36). For the same Deborah
number flow we give the τxy component in Fig. 37. In com-
parison to the results for τxx, the shear stress is smaller in
size and takes its maximum at the corner singularity. As
indicated before, τxy is smooth in space at a fixed point in
time.

To analyze the stochastic behavior of the BCF method,
we plot both stress components in Fig. 38 at two different
positions over time. We show τxx at point P4 = (−1/32,
0.5, 0.5) on the centerline and τxy at point P5 = (−1/32,

τxy

P5

Figure 37: Shear stress component τxy on the slice z = H1

at t = 50 s for De2 = 157.
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Figure 38: Plot of the stress component τxx at P4 =
(−1/32, 0.5, 0.5) and of τxy at P5 = (−1/32, 0.390625,
0.5).

0.390625, 0.5) close to the contraction corner. Both points
are defined analogously to P1, P2 and P3 and are indicated
in Fig. 36 and Fig. 37, respectively. Depending on the
Deborah number, the steady state stress values are differ-
ent in their magnitude. For the higher flow rates we obtain
larger shear and normal stresses. τxx increases monotoni-
cally over time until its steady state value is reached. On
the other hand, τxy has a stress overshoot at the begin-
ning and then decreases to its final value. The stress over-
shoot is more pronounced at De2 = 157 than for the flows
with lower elasticity. The oscillation in both components
is caused by the stochastic approach and can be reduced
by using more samples particles or by employing a more
advanced variance reduction scheme.

In Fig. 39 we show the steady state stress components
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Figure 39: Steady state stress components τxx, τxy, and
τyy in decreasing order of their magnitude.

τxx, τxy and τyy in decreasing order of magnitude over a
vertical line given by (−5/48, y/(2H1), 0.5) with y ∈ [−0.5,
0.5]. As described before, the stress components have their
maximum close to the corner singularity and are larger for
the high Deborah number flows. Despite their different
sizes, the stress maxima have the same physical position
for each component. A consequence of the underlying sto-
chastic process is that the components are not totally sym-
metric. Nevertheless, the stresses at steady state or at any
fixed point in time are comparatively smooth compared to
the time-dependent plots in Fig. 38.
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Figure 40: The plot illustrates τxx on the 2H1-scaled hor-
izontal centerline.

Fig. 40 displays τxx on the horizontal centerline. For
a better analysis of the symmetry, the horizontal axis has
been normalized with 2H1 and the axis has been shifted
in its origin to coincide with the contraction center’s ori-
gin. The τxx stress component starts to increase strongly
at about x/(2H1) ≈ −0.5 for each of the considered Debo-
rah numbers. This increase is delayed compared to the in-
crease in the fluid velocity that begins at about x/(2H1) ≈
−1 as illustrated in Fig. 27 and Fig. 28. τxx reaches its
maximum in the contraction and then starts to decrease.

5. Conclusion

3D square-square contraction flows were studied nu-
merically for a multiscale FENE dumbbell model using the
Brownian configuration field approach. Our implemen-
tation was validated, see Section 4.1, on a 2D Poiseuille
flow for a Hookean dumbbell system and for the equiv-
alent Oldroyd-B model. Both approaches, the Hookean
dumbbell and the Oldroyd-B system, then reached the the-
oretically predicted rates of convergence of 1/2 for the sto-
chastic part and of 2 for the macroscopic flow variables in
the considered problem. We also presented 2D contraction
flow results for the FENE and FENE-P model and showed
that both models significantly differ at steady state. From
these results, we concluded that the FENE-P model does
not deliver a good approximation to the FENE model for
this kind of problem. Nevertheless, it would be interest-
ing to investigate the differences between both models at
steady state for the complex 3D flow. In Fig. 26 we pre-
sented 3D FENE-P simulation results in the early stage of
the simulation and already observed noticeable deviations
from the FENE model. We performed the 3D FENE-P
simulations in the multiscale formulation and therefore the
simulations could not be conducted up to a steady state
due to the high computational effort. Presumably, macro-
scopic FENE-P simulations have to be combined with a
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suitable stabilizing technique to avoid the issues caused
by the high Weissenberg numbers involved.

The 3D simulations were compared with experimental
measurements and showed an improved numerical stabil-
ity compared to classical macroscopic methods. This co-
incides with literature findings for the BCF method, for
instance by Mangoubi et al. [13]. With respect to the im-
proved stability, multiscale methods are especially suited
for situations in which elasticity is dominant and in which
classical macroscopic approaches are restricted by the high
Weissenberg number problem.

Our 3D contraction flow results exhibited a high agree-
ment for low and moderate Weissenberg numbers but dif-
fered from the experimental measurements for flows with
high elasticity. This discrepancy is not unexpected since
the large computational requirements for the stochastic
samples led to several limitations that might cause these
differences:

• Alves et al. [47], among others, state that a single-
mode model, such as the FENE dumbbell model,
is not able to reproduce the shear and extensional
flow behavior of actual polymer solutions over the
whole range of experimental measurements. Instead,
a multi-mode model with different relaxation times k
for the relaxation spectrum λk is required. Each λk,
combined with the corresponding viscosity contribu-
tion ηk, leads to an evolution equation for a dumbbell
system as in (13). The stress tensor τp,k for each
contribution k is then linearly superimposed. For
most macroscopic approaches a multi-mode model
does not increase the computation time particularly.
However, for the multiscale approach this is no longer
the case since the computational effort increases k
times for a k-mode model.

• An approach that better describes the structure of
a polymer, compared to a multi-mode model, is a
multi-bead-spring FENE model. In this case, the
molecule is approximated as a system of k+ 1 beads
that are connected with k elastic springs. The cor-
responding Fokker-Planck equation (8) then has 3k-
dimensions in configuration space and three dimen-
sions in the flow space. Koppol et al. [21] simulated a
0.0025 wt % PS/PS Boger fluid in a planar 4:1:4 con-
traction-expansion flow with a dumbbell and with
multi-bead-spring models. Even though the dumb-
bell and the three-spring FENE model were both in
good agreement with the fluid at steady shear and in
steady uniaxial extension, only the three-bead-spring
model accurately modeled the pressure drop behav-
ior at higher Deborah number flows. As mentioned
before, the pressure drop enhancement is closely con-
nected with the corner vortex dynamics. Koppol et
al. show in [20] that their k-bead-spring model im-
plementation scales linearly in the number of springs
k.

• For the simulation of the three-dimensional contrac-
tion flow we decided for FENE b = 20 because the
agreement was best for the steady shear flow mate-
rial function. Since we are not aware of the material
functions for an extensional flow, other choices for b
might deliver a better general characterization of the
experimental fluid. This becomes especially impor-
tant since the size of the corner vortex considerably
depends on b as illustrated in Fig. 26.

• The staggered finite difference grid uses the cell cen-
ters and the cell faces for storing the unknowns of
the velocity, pressure and stress tensor field. There-
fore, the corner singularity at the contraction is nu-
merically resolved up to a distance of about half the
mesh width and, consequently, the corner singularity
is slightly regularized. As reported in the literature,
for instance by Boger and Walters [48], a rounded
corner in the contraction geometry reduces the re-
sulting vortex size.

• As shown in Section 4.1, an increase in the number
of Brownian configuration fields reduces the error in
τ p with a rate of 1/2. A further limitation originated
from the number of stochastic samples used in the
simulations. With respect to a high accuracy in τ p,
the sample number per cell NBCF should be of order
O(106) or higher which is beyond the capabilities of
current high performance computation.

Our results indicate the potential of multiscale meth-
ods for simulating real polymeric fluids. They avoid clo-
sure errors that are typical for macroscopic approaches
and, at least in the case of the Brownian configuration
field method, lead to a noticeable increase in numerical sta-
bility. However, multiscale simulations involve massively
parallel computing for more complex 3D flow problems.
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