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Abstract

This paper gives a re-interpretation of the multiscale method of Målqvist
and Peterseim [Math. Comp. 2014] by means of a discrete integral oper-
ator acting on standard finite element spaces. The exponential decay
of the involved integral kernel motivates the use of a diagonal approxi-
mation and, hence, a localized piecewise constant coefficient. This local
model turns out to be appropriate when the localized coefficient satisfies
a certain homogenization criterion, which can be verified a posteriori. An
a priori error analysis of the local model is presented and illustrated in
numerical experiments.

Keywords numerical homogenization, multiscale method, upscaling, a priori error
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1 Introduction
Homogenization is a tool of mathematical modeling to identify reduced descrip-
tions of the macroscopic response of multiscale models. In the context of the
prototypical elliptic model problem

−divAε∇u = f

microscopic features on some characteristic length scale ε are encoded in the
diffusion coefficient Aε and homogenization studies the limit as ε tends to zero.
It turns out that suitable limits represented by the so-called effective or homog-
enized coefficient exist in fairly general settings in the framework of G-, H-,
or two-scale convergence [Spa68, DG75, MT78, Ngu89, All92]. However, the
effective coefficient is rarely given explicitly and even its implicit representation
based on cell problems usually requires structural assumptions on the sequence
of coefficients Aε such as local periodicity and scale separation [BLP78]. Under
such assumptions, efficient numerical methods for the approximate evaluation of
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Numerical homogenization

the homogenized model are available, e.g., the Heterogeneous Multiscale Method
(HMM) [EE03, AEEV12] or the two-scale finite element method [MS02].

In contrast to this idealized setting of analytical homogenization, in practice
one is often concerned with one coefficient A with heterogeneities on multiple
nonseperable scales and a corresponding sequence of scalable models can hardly
be identified or may not be available at all. That is why we are interested in
the computation of effective representations of very rough coefficients beyond
structural assumptions such as scale separation and local periodicity. In recent
years, many numerical attempts have been developed that conceptually do not
rely on analytical homogenization results for rough cases. Amongst them are the
multiscale finite element method [HW97, EH09], metric-based upscaling [OZ07],
hierarchical matrix compression [GH08, Hac15], the flux-norm approach [BO10],
generalized finite elements based on spectral cell problems [BL11, EGH13], the
AL basis [GGS12, WS15], rough polyharmonic splines [OZB14], iterative nu-
merical homogenization [KY15], and gamblets [Owh15].

Another construction based on concepts of orthogonal subspace decomposi-
tion and the solution of localized microscopic cell problems was given in [MP14]
and later optimized in [HP13, HMP15, GP15, Pet15]. The method is referred
to as the Localized Orthogonal Decomposition (LOD) method. The approach is
inspired by ideas of the variational multiscale method [HFMQ98, HS07, Mål11].
As most of the methods above, the LOD constructs a basis representation of
some finite-dimensional operator-dependent subspace with superior approxima-
tion properties rather than computing an upscaled coefficient. The effective
model is then a discrete one represented by the corresponding stiffness matrix
and possibly right-hand side. The computation of an effective coefficient is, how-
ever, often favorable and this paper re-interprets and modifies the LOD method
in this regard.

For this purpose, we introduce a new scale H, the observation scale or scale
of interest and the classM(Ω, α, β) of matrix-valued coefficients with measurable
entries and uniform lower and upper spectral bounds 0 < α ≤ β. Our notion
of numerical homogenization is as follows. Given some symmetric coefficient
A ∈M(Ω, α, β) and the observation scale H associated with some quasi-uniform
mesh TH of width H, the goal is to find AH ∈M(Ω, αH , βH) such that

(a) The bounds satisfy

0 < αH ≈ α and βH ≈ β.

(b) For some constant C and all f ∈ L2(Ω) there holds

‖u− uH‖L2(Ω) ≤ CH‖f‖L2(Ω),

where u, uH ∈ H1
0 (Ω) are solutions to the model problem −div(A∇u) = f

and −div(AH∇uH) = f with homogeneous Dirichlet boundary condi-
tions.

Here, the L2 norm is chosen as a measure for macroscopic approximation of the
highly oscillating function u. We note that for particular cases of non-oscillating
data (e.g., constant A), the desired estimate above may be suboptimal. Hence,
we focus on the regime where the observation scale H is coarse in the sense that
a standard finite element method (i.e., the piecewise arithmetic mean of A) leads
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to an error of order O(1). Discrete models allowing for (a) and (b) seem only
possible under additional assumptions, and our estimates involve a posteriori
model error terms.

In this paper, we revisit and re-interpret the LOD method of [MP14]. The
original method employs finite element basis functions that are modified by a
fine-scale correction with a slightly larger support. We show that it is possible to
rewrite the method by means of a discrete integral operator acting on standard
finite element spaces. The discrete operator is of non-local nature and is not
necessarily associated with a differential operator on V . We are able to show
that there the discrete effective non-local model represented by an integral kernel
AH ∈ L∞(Ω×Ω,Rd×d) such that the problem is well-posed on a finite-element
space VH with similar constants and satisfies

sup
f∈L2(Ω)\{0}

‖u(f)− uH(f)‖L2(Ω)

‖f‖L2(Ω)
. sup
f∈L2(Ω)\{0}

inf
vH∈VH

‖u(f)− vH‖L2(Ω)

‖f‖L2(Ω)
+H2.

Based on the exponential decay of that kernel AH away from the diagonal, we
suggest a quasi-local and sparse formulation as an approximation. The storage
requirement for the quasi-local kernel is O(H−d|logH|).

For an even stronger compression to O(H−d) information, one can replace
AH by a local and piecewise constant tensor field AH ∈ M(Ω, αH , βH). It
turns out that this localized effective coefficient coincides with the homogenized
coefficient of classical homogenization results in the periodic case. In the the
general non-periodic case, this procedure is still applicable and yields reason-
able results whenever a certain homogenization criterion is satisfied, which can
be checked a posteriori through a computable model error estimator. For the
two-dimensional case, almost optimal convergence rates can be proved under
reasonable assumptions on the data. In three dimensions, similar results are
conjectured but cannot be proved with the arguments employed in this work
(Sobolev embeddings) and, therefore, remain suboptimal. We emphasize that
this possible sub-optimality is not an artifact of our numerical method but due
to the possible lack of regularity of the homogenized solution on polyhedral
domains.

The structure of this article is as follows. After the preliminaries on the
model problem and notation from Section 2, we review the LOD method of
[MP14] and introduce the quasi-local effective discrete coefficients in Section 3.
In Section 4, we present the error analysis for the localized effective coefficient.
Section 5 studies the particular case of a periodic coefficient. We present nu-
merical results in Section 6. Supplementary material for some idealized version
of the proposed methods is provided as Appendix A.

Standard notation on Lebesgue and Sobolev spaces applies throughout this
paper. The notation a . b abbreviates a ≤ Cb for some constant C that is
independent of the mesh-size, but may depend on the contrast of the coefficient
A; a ≈ b abbreviates a . b . a. The symmetric part of a quadratic matrix M
is denoted by sym(M).
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2 Model problem and notation
This section describes the model problem and some notation on finite element
spaces.

2.1 Model problem
Let Ω ⊆ Rd for d ∈ {1, 2, 3} be a convex polytope. We consider the prototypical
model problem

−div(A∇u) = f in Ω, u|∂Ω = 0. (2.1)

The coefficient A ∈ L∞(Ω;Rd×d) is assumed to be symmetric and to satisfy the
following uniform spectral bounds

α ≤ ess inf
x∈Ω

inf
ξ∈Rd\{0}

ξ · (A(x)ξ)

ξ · ξ
≤ ess sup

x∈Ω
sup

ξ∈Rd\{0}

ξ · (A(x)ξ)

ξ · ξ
≤ β. (2.2)

The symmetry of A is not essential for our analysis and is assumed for simpler
notation. The weak form employs the Sobolev space V := H1

0 (Ω) and the
bilinear form a defined, for any v, w ∈ V , by

a(v, w) := (A∇v,∇w)L2(Ω).

Given f ∈ L2(Ω) and the linear functional

F : V → R, with F (v) :=

ˆ
Ω

fv dx for any v ∈ V,

the weak form seeks u ∈ V such that

a(u, v) = F (v) for all v ∈ V. (2.3)

2.2 Finite element spaces
Let TH be a quasi-uniform regular triangulation of Ω and let VH denote the stan-
dard P1 finite element space, that is, the subspace of V consisting of piecewise
first-order polynomials.

Given any subdomain S ⊆ Ω, define its neighbourhood via

N(S) := int
(
∪ {T ∈ TH : T ∩ S 6= ∅}

)
.

Furthermore, we introduce for any m ≥ 2 the patch extensions

N1(S) := N(S) and Nm(S) := N(Nm−1(S)).

Throughout this paper, we assume that the coarse-scale mesh TH is quasi-
uniform. The global mesh-size reads H := max{diam(T ) : T ∈ TH}. Note that
the shape-regularity implies that there is a uniform bound C(m) on the number
of elements in the mth-order patch, card{K ∈ TH : K ⊆ Nm(T )} ≤ C(m)
for all T ∈ TH . The constant C(m) depends polynomially on m. The set of
interior (d−1)-dimensional hyper-faces of TH is denoted by FH . For a piecewise
continuous function ϕ, we denote the jump across an interior edge by [ϕ]F , where
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the index F will be sometimes omitted for brevity. The space of piecewise
constant d× d matrix fields is denoted by P0(TH ;Rd×d).

Let IH : V → VH be a surjective quasi-interpolation operator that acts as a
H1-stable and L2-stable quasi-local projection in the sense that IH ◦ IH = IH
and that for any T ∈ TH and all v ∈ V there holds

H−1‖v − IHv‖L2(T ) + ‖∇IHv‖L2(T ) ≤ CIH‖∇v‖L2(N(T )) (2.4)
‖IHv‖L2(T ) ≤ CIH‖v‖L2(N(T )). (2.5)

Since IH is a stable projection from V to VH , any v ∈ V is quasi-optimally
approximated by IHv in the L2(Ω) norm as well as in the H1(Ω) norm. One
possible choice is to define IH := EH ◦ ΠH , where ΠH is the piecewise L2

projection onto the space P1(TH) of piecewise affine (possibly discontinuous)
functions and EH is the averaging operator that maps P1(TH) to VH by assigning
to each free vertex the arithmetic mean of the corresponding function values of
the neighbouring cells, that is, for any v ∈ P1(TH) and any free vertex z of TH ,

(EH(v))(z) =
∑
T∈TH

with z∈T

v|T (z)

/
card{K ∈ TH : z ∈ K}. (2.6)

This choice of IH is employed in our numerical experiments.

3 Non-local effective coefficient
We briefly review the idealized version of the LOD method of [MP14] (following
the presentation in [HP13]) and its localization and give a new interpretation
by means of a non-local effective coefficient.

3.1 Review of the LOD method
Let W := ker IH ⊆ V denote the kernel of IH . Given any T ∈ TH and j ∈
{1, . . . , d}, the element corrector qT,j ∈ W is the solution of the variational
problem

a(w, qT,j) =

ˆ
T

∇w · (Aej) dx for all w ∈W. (3.1)

Here ej is the j-th standard Cartesian unit vector in Rd. The gradient of any
v ∈ V has the representation

∇v =
∑
T∈TH

d∑
j=1

(∂jv|T )ej . (3.2)

Given any vH ∈ VH , define the corrector CvH by

CvH =
∑
T∈TH

d∑
j=1

(∂jvH |T )qT,j . (3.3)

We remark that for any vH ∈ VH the gradient ∇vH is piecewise constant and,
thus, CvH is a finite linear combination of the element correctors qT,j . It is
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readily verified that, for any vH ∈ VH , CvH is the a-orthogonal projection on
W , i.e.,

a(w, vH − CvH) = 0 for all w ∈W. (3.4)

Clearly, by (3.4), the projection Cv ∈ W is well-defined for any v ∈ V . The
representation (3.3) for discrete functions will, however, be useful in this work.

The LOD method in its version from [MP14] seeks ūH ∈ VH such that

a((1− C)ūH , (1− C)vH) = F ((1− C)vH) for all vH ∈ VH .

By (3.4), it is clear that this is equivalent to

a(ūH , (1− C)vH) = F ((1− C)vH) for all vH ∈ VH . (3.5)

A variant with a problem-independent right-hand side seeks uH ∈ VH such that

a((1− C)uH , (1− C)vH) = F (vH) for all vH ∈ VH .

or, equivalently,

a(uH , (1− C)vH) = F (vH) for all vH ∈ VH . (3.6)

We define the following worst-case best-approximation error

wcba(A,TH) := sup
g∈L2(Ω)\{0}

inf
vH∈VH

‖u(g)− vH‖L2(Ω)

‖g‖L2(Ω)
(3.7)

where for g ∈ L2(Ω), u(g) ∈ V solves (2.3) with right-hand side g. Standard
interpolation and stability estimates show that always wcba(A,TH) . H, but
it may behave better in certain regimes. E.g., in a periodic homogenization
problem with some small parameter ε and some smooth homogenized solution
u0 ∈ H2(Ω), the best approximation error is dominated by the best approxi-
mation error of u0 in the regime H .

√
ε where it scales like H2. By contrast,

the error is typically not improved in the regime
√
ε & H & ε. This non-linear

behavior of the best-approximation error in the pre-assymptotic regime is pro-
totypical for many homogenization problems and explains why the rough bound
H is suboptimal.

The following result states an L2 error estimate for the method (3.6).

Proposition 1. The solutions u ∈ V to (2.3) and uH ∈ VH to (3.6) for right-
hand side f ∈ L2(Ω) satisfy the following error estimate

‖u− uH‖L2(Ω)

‖f‖L2(Ω)
. H2 + wcba(A,TH).

Proof. Let f ∈ L2(Ω) \ {0} and let ūH ∈ VH solve (3.5). We begin by analyzing
the error eH := uH − ūH . Let z ∈ V denote the solution to

a(v, z) = (eH , IHv)L2(Ω) for all v ∈ V.

To see that the right-hand side is indeed represented by an L2 function, note
that IH is continuous on L2(Ω) and, hence, the right-hand side has a Riesz rep-
resentative ẽH ∈ L2(Ω) such that (eH , IHv)L2(Ω) = (ẽH , v)L2(Ω). In particular,
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z solves (2.3) with right-hand side ẽH . Its L2 norm is bounded with (2.5) as
follows

‖ẽH‖2L2(Ω) = (eH , IH ẽH)L2(Ω) . ‖eH‖L2(Ω)‖ẽH‖L2(Ω),

hence
‖ẽH‖L2(Ω) . ‖eH‖L2(Ω). (3.8)

We note that, for any w ∈W , we have a(w, z) = (eH , IHw)L2(Ω) = 0. Thus, we
have a(eH ,Cz) = a(CeH , z) = 0. With (1− C)z = (1− C)IHz we conclude

‖eH‖2L2(Ω) = a(eH , z) = a(eH , (1− C)IHz). (3.9)

Elementary algebraic manipulations with the projection IH show that

−CIHz = (1− IH)
(
(1− C)IHz − z

)
+ (1− IH)z.

The relation (3.9) and the solution properties (3.5) and (3.6), thus, lead to

‖eH‖2L2(Ω) = F (CIHz) = |F ((1− IH)((1− C)IHz− z)) +F ((1− IH)z)|. (3.10)

We proceed by estimating the two terms on the right-hand side of (3.10) sep-
arately. For the second term in (3.10), the L2-best approximation property of
IH and (3.8) reveal

|F ((1− IH)z)| . ‖f‖L2(Ω)‖ẽH‖L2(Ω) inf
vH∈VH

‖z − vH‖L2(Ω)

‖ẽH‖L2(Ω)

. ‖f‖L2(Ω)‖eH‖L2(Ω)wcba(A,TH).

(3.11)

For the first term in (3.10), we obtain with the stability of IH and the Cauchy
inequality that

|F ((1− IH)((1− C)IHz − z))| . ‖f‖L2(Ω)‖z − (1− C)IHz‖L2(Ω).

Let ζ ∈ V denote the solution to

a(ζ, v) = (z − (1− C)IHz, v)L2(Ω) for all v ∈ V.

As shown in [MP14], the function IHz ∈ VH is the Galerkin approximation to z
with method (3.5). We, thus, have by symmetry of a and Galerkin orthogonality
that

‖z − (1− C)IHz‖2L2(Ω) = a(ζ, z − (1− C)IHz)

= a(ζ − (1− C)IHζ, z − (1− C)IHz).

The error analysis of [MP14] reveals that this is bounded by H2‖z − (1 −
C)IHz‖L2(Ω)‖ẽH‖L2(Ω). Altogether, with (3.10),

‖eH‖L2(Ω)

‖f‖L2(Ω)
. H2 + wcba(A,TH).

Since
‖u− ūH‖L2(Ω)

‖f‖L2(Ω)
. wcba(A,TH),

(which follows from the fact that ūH = IHu), the triangle inequality concludes
the proof.
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3.2 Localization of the corrector problems
Here, we briefly describe the localization technique of [MP14]. It was shown in
[MP14] and [HP13, Lemma 4.9] that the method is localizable in the sense that
for any vH ∈ VH

‖∇qT,j‖L2(Ω\Nm(T )) . exp(−cm)‖ej‖L2(T ). (3.12)

The exponential decay from (3.12) suggests to localize the computation (3.1) of
the corrector belonging to an element T ∈ TH to to a smaller domain, namely
the extended element patch ΩT := N`(T ) of order `. The nonnegative integer `
is referred to as the oversampling parameter. Let WΩT ⊆ W denote the space
of functions from W that vanish outside ΩT . On the patch, in analogy to (3.1),
for any vH ∈ VH , any T ∈ TH and any j ∈ {1, . . . , d}, the function q(`)

T,j ∈ WΩT

solves ˆ
ΩT

∇w · (A∇q(`)
T,j) dx =

ˆ
T

∇w · (Aej) dx for all w ∈WΩT . (3.13)

Given vH ∈ VH , we define the corrector C(`)vH ∈W by

C(`)∇vH =
∑
T∈TH

d∑
j=1

(∂jvH |T )∇q(`)
T,j . (3.14)

A practical variant of (3.6) is to seek u(`)
H ∈ VH such that

a(u
(`)
H , (1− C(`))vH) = F (vH) for all vH ∈ VH . (3.15)

This procedure is indispensable for actual computations and the effect of the
truncation of the domain on the error of the multiscale method was analyzed
in [MP14] and [HP13]. With similar arguments it is possible to prove that the
coupling ` ≈ |logH| is sufficient to derive the error bound

‖u− u(`)
H ‖L2(Ω) . (H2 + wcba(A,TH)) ‖f‖L2(Ω). (3.16)

The proof is based on a similar argument as in Proposition 1: Since the L2

distance of u− ū(`)
H is controlled by the right-hand side of (3.16) [HP13] where

ū
(`)
H solves a modified version of (3.15) with right-hand side F ((1−C(`))vH), it is

sufficient to control u(`)
H − ū

(`)
H in the L2 norm. This can be done with a duality

argument similar to that from the proof of Proposition 1. The additional tool
needed therein is the fact that

‖∇(C− C(`))IHz‖L2(Ω) . exp(−c`)C(`)‖∇z‖L2(Ω)

for the dual solution z (see [HP13, Proof of Thm. 4.13] for an outline of a proof)
where C(`) is an overlap constant depending polynomially on `. The choice of
` ≈ |logH| therefore leads to (3.16). The details are omitted here.

3.3 Definition of the quasi-local effective coefficient
In this subsection, we do not make any specific choice for the oversampling
parameter `. In particular, the analysis covers the case that all element patches
ΩT equal the whole domain Ω. We denote the latter case formally by ` =∞.
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We re-interpret the left-hand side of (3.15) as a non-local operator acting on
standard finite element functions. To this end, consider any uH , vH ∈ VH . We
have

a(uH , (1− C(`))vH) =

ˆ
Ω

∇uH · (A∇vH) dx−
ˆ

Ω

∇uH · (AC(`)∇vH) dx.

The second term can be expanded with (3.2) and (3.14) as

ˆ
Ω

∇uH · (A∇C(`)vH) dx =
∑
T∈TH

d∑
j=1

(∂jvH |T )

ˆ
Ω

∇uH · (A∇q(`)
T,j) dx

=
∑

K,T∈TH

ˆ
K

∇uH ·

 d∑
j=1

 
K

(A∇q(`)
T,j) dx (∂jvH |T )

 dx

=
∑

K,T∈TH

ˆ
K

ˆ
T

∇uH |K · (K(`)
T,K∇vH |T ) dx

for the matrix K
(`)
T,K defined for any K,T ∈ TH by

(K
(`)
T,K)j,k :=

1

|T | |K|
ek ·

ˆ
K

A∇q(`)
T,j dx.

Define the piecewise constant matrix field over TH × TH , for T,K ∈ TH by

A
(`)
H |T,K := δT,K

 
T

Adx−K
(`)
T,K

(where δ is the Kronecker symbol) and the bilinear form a(`) on VH × VH by

a(`)(vH , zH) :=

ˆ
Ω

ˆ
Ω

∇vH(x) · (A(`)
H (x, y)∇zH(y)) dy dx for any vH , zH ∈ VH .

We obtain for all vH , zH ∈ VH that

a(vH , (1− C(`))zH) = a(`)(vH , zH). (3.17)

Next, we state the equivalence of two multiscale formulations.

Proposition 2. A function u(`)
H ∈ VH solves (3.15) if and only if it solves

a(`)(u
(`)
H , vH) = F (vH). (3.18)

Proof. This follows directly from the representation (3.17).

Remark 3. For d = 1 and IH the standard nodal interpolation operator, the
corrector problems localize to one element and the presented multiscale ap-
proach coincides with various known methods (homogenization, MSFEM). The
resulting effective coefficient A(`)

H is diagonal and, thus, local. This is no longer
the case for d ≥ 2.
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4 Local effective coefficient
Throughout this section we consider oversampling parameters chosen as ` ≈
|logH|. Similar results are also true for the idealized version ` = ∞. For
better readability we focus on the practically relevant case and present further
technical results for the idealized case in Appendix A.

4.1 Definition of the local effective coefficient
The exponential decay motivates to approximate the non-local bilinear form
a(`)(·, ·) by a quadrature-like procedure: Define the piecewise constant coefficient
A

(`)
H ∈ P0(TH ;Rd×d) by

A
(`)
H |T :=

 
T

Adx−
∑
K∈TH

|K|K(`)
T,K .

and the bilinear form ã(`) on V × V by

ã(`)(u, v) :=

ˆ
Ω

∇u · (A(`)
H ∇v) dx.

Remark 4. In analogy to classical periodic homogenization, the local effective
coefficient A(`)

H can be written as

(A
(`)
H )j,k|T = |T |−1

ˆ
ΩT

(ek −∇q(`)
T,k) ·

(
A(χT ej −∇q(`)

T,j)
)

for the characteristic function χT of T and the slightly enlarged averaging do-
main ΩT . See Section 5 for further analogies to homogenization theory in the
periodic case.

The localized multiscale method is to seek ũ(`)
H ∈ VH such that

ã(`)(ũ
(`)
H , vH) = F (vH) for all vH ∈ VH . (4.1)

The unique solvability of (4.1) is not guaranteed a priori. It must be checked
a posteriori whether positive spectral bounds αH , βH on A(`)

H exist in the sense
of (2.2). Throughout this paper we assume that such bounds exist, that is, we
assume that there exist positive numbers αH , βH such that

αH |ξ|2 ≤ ξ · (A(`)
H (x)ξ) ≤ βH |ξ|2 (4.2)

for all ξ ∈ Rd and almost all x ∈ Ω.

4.2 Error analysis
The goal of this section is to establish an error estimate for the error

‖u− ũ(`)
H ‖L2(Ω).

Let u(`)
H ∈ VH solve (3.15). Then the error estimate (3.16) leads to the a priori

error estimate

‖u− u(`)
H ‖L2(Ω) . (H2 + wcba(A,TH)) ‖f‖L2(Ω). (4.3)
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We employ the triangle inequality and merely estimate the difference ‖u(`)
H −

ũ
(`)
H ‖L2(Ω).
With the finite localization parameter `, the quasi-local coefficient A(`) is

sparse in the sense that A(`)(x, y) = 0 whenever |x − y| > C`H. We note the
following lemma which will be employed in the error analysis. An analogous
result for ` =∞ is provided in Lemma 23 in Appendix A.

Lemma 5. Let ` ≈ |logH|. Given some x ∈ Ω with x ∈ T for some T ∈ TH ,
any p with 1 ≤ p <∞ satisfies

‖K(`)(x, y)‖Lp(Ω,dy) . CH−d(p−1)/p |logH|d.

Proof. From the definition of K(`), the boundedness of A and the Hölder in-
equality together with the stability of problem (3.13) and ‖ej‖L2(T ) = |T |1/2 we
obtain

|(K(`)
T,K)j,k| ≤

1

|T | |K|
‖∇qT,j‖L1(K) ≤

1

|T | |K|1/2
‖∇qT,j‖L2(K) . H−d.

Hence, we obtain that

‖K(`)(x, y)‖pLp(Ω,dy) =
∑
K∈TH

|K||K(`)
T,K |

p

. H−d(p−1) card{K ∈ TH : dist(T,K) ≤ C`H}

. H−d(p−1)`d.

The result follows with ` ≈ |logH|.

In what follows, we abbreviate

ρ := CH|logH| (4.4)

for some appropriately chosen constant C.

Proposition 6 (error estimate I). Let u(`)
H ∈ VH solve (3.18) and let ũ(`)

H solve
(4.1). We have for any 1 ≤ p <∞ and q ∈ (0,∞] such that 1/p+ 1/q = 1 (with
the convention 1/∞ = 0) that

‖∇(u
(`)
H − ũ

(`)
H )‖L2(Ω)

. H−d(p−1)/p|logH|d
∥∥∥‖∇ũ(`)

H (y)−∇ũ(`)
H (x)‖Lq(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

.
(4.5)

Proof. Denote eH := ũ
(`)
H −u

(`)
H . In the idealized case, ` =∞, the orthogonality

(3.4) and relation (3.17) show that

‖∇(1− C(`))eH‖2L2(Ω) . a(`)(eH , eH).

If ` ≈ | logH| this estimate is true up to a higher-order term Hr‖∇eH‖2L2(Ω)

with any algebraic rate r ≥ 2 on the right-hand side. In this case the hidden
constant is proportional to log r.

11
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The proof again follows ideas from [MP14] with the exponential-in-` closeness
of C and C` and is not discussed here. From the stability of IH and the properties
of the fine-scale projection C(`) we observe (with contrast-dependent constants)

‖∇eH‖2L2(Ω) = ‖∇IHeH‖2L2(Ω) = ‖∇IH(1− C(`))eH‖2L2(Ω)

. ‖∇(1− C(`))eH‖2L2(Ω)

. a(`)(eH , eH) +Hr‖∇eH‖2L2(Ω).

The term higher-order term Hr‖∇eH‖2L2(Ω) can be absorbed for H < 1 and a
proper choice of ` and, thus, we proceed with (3.15) and (3.18) as

‖∇eH‖2L2(Ω) . a(`)(ũ
(`)
H − u

(`)
H , eH) = a(`)(ũ

(`)
H , eH)− ã(`)(ũ

(`)
H , eH).

The right-hand side can be rewritten as

a(`)(ũ
(`)
H , eH)− ã(`)(ũ

(`)
H , eH)

=

ˆ
Ω

[ ˆ
Ω

A
(`)
H (x, y)(∇ũ(`)

H (y)−∇ũ(`)
H (x)) dy

]
· ∇eH(x) dx

+

ˆ
Ω

[(ˆ
Ω

A
(`)
H (x, y) dy −A(`)

H

)
∇ũ(`)

H (x)

]
· ∇eH(x) dx.

The second term vanishes by definition of A(`)
H . Hence, the combination of the

preceding arguments with the Cauchy inequality leads to

‖∇eH‖2L2(Ω) . ‖∇eH‖L2(Ω)

∥∥∥ ˆ
Bρ(x)

A
(`)
H (x, y)(∇ũ(`)

H (y)−∇ũ(`)
H (x)) dy

∥∥∥
L2(Ω,dx)

,

where it was used that A
(`)
H (x, y) = 0 whenever |x − y| > ρ. Division by

‖∇eH‖L2(Ω) leads to

‖∇eH‖L2(Ω) .
√
(ˆ

Ω

∣∣∣∣ˆ
Bρ(x)

A
(`)
H (x, y)(∇ũ(`)

H (y)−∇ũ(`)
H (x)) dy

∣∣∣∣2dx
)
. (4.6)

This term can be bounded with the Hölder inequality and Lemma 5 by

√
(ˆ

Ω

∣∣∣∣‖A(`)
H (x, y)‖Lp(Bρ(x),dy)‖∇ũ

(`)
H (y)−∇ũ(`)

H (x)‖Lq(Bρ(x),dy)

∣∣∣∣2 dx
)

. H−d(p−1)/p|logH|d
∥∥∥‖∇ũ(`)

H (y)−∇ũ(`)
H (x)‖Lq(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

.

This finishes the proof.

It is worth noting that the error bound in Proposition 6 can be evaluated
without knowledge of the exact solution. Hence, Proposition 6 can be regarded
as an a posteriori error estimate. Formula (4.6) could also be an option if it
is available. In order to prove the main a priori error estimate, Proposition 8
below, the following technical lemma is required.

12
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Lemma 7 (existence of a regularized coefficient). Let AH ∈ P0(TH ;Rd×d) be a
piecewise constant field of d×d matrices that satisfies the spectral bounds (4.2).
Then there exists a Lipschitz continuous coefficient Areg

H ∈W 1,∞(Ω;Rd×d) satis-
fying the following three properties. 1) The piecewise integral mean is conserved,
i.e., ˆ

T

Areg
H dx =

ˆ
T

AH dx for all T ∈ TH .

2) The eigenvalues of sym(Areg
H ) lie in the interval [αH/2, 2βH ]. 3) The deriva-

tive satisfies the bound

‖∇Areg
H ‖L∞(Ω) ≤ Cη(AH)

for some constant C that depends on the shape-regularity of TH and for the
expression

η(AH) := H−1‖[AH ]‖L∞(FH)

(
1 + α−1

H ‖[AH ]‖L∞(FH)

)
. (4.7)

Here [·] defines the inter-element jump and FH denotes the set of interior hyper-
faces of TH .

Proof. Consider a refined triangulation TL resulting from L uniform refinements
of TH . In particular, the mesh-size in TL is of the order 2−LH. Let ELAH denote
the TL-piecewise affine and continuous function that takes at every interior
vertex the arithmetic mean of the nodal values of AH on the adjacent elements
of TL (similar to (2.6)). Clearly, for this convex combination the eigenvalues of
sym(ELAH) range within the interval [αH , βH ]. It is not difficult to prove that,
for any T ∈ TH ,

 
T

|AH − ELAH | dx . 2−L‖[AH ]‖L∞(FH(ωT )). (4.8)

Here, FH(ωT ) denotes the set of interior hyper-faces of TH that share a point
with T . Let, for any T ∈ TH , bT ∈ H1

0 (T ) denote a positive polynomial
bubble function with

ffl
T
bT dx = 1 and ‖bT ‖L∞(T ) ≈ 1. The regularized co-

efficient Areg
H = EL(AH) + bT

ffl
T

(AH − EL(AH)) dx has, for any T ∈ TH ,
the integral mean

ffl
T
Areg
H dx =

ffl
T
AH dx. If L is chosen to be of the order

|log(α−1
H ‖[AH ]‖L∞(FH))|, then, for any ξ ∈ Rd with |ξ| = 1 and any T ∈ TH , we

have ∣∣∣∣ξ ·  
T

(AH − ELAH) dx bT ξ

∣∣∣∣ ≤ ∣∣∣∣ 
T

(AH − ELAH) dx bT

∣∣∣∣ ≤ αH/2.
This and the triangle inequality prove the claimed spectral bound on sym(Areg

H ).
For the bound on the derivative of Areg

H , let t ∈ TL and T ∈ TH such that t ⊆ T .
The diameter of t is of order 2−LH. Since ‖∇bT ‖L∞(T ) . H−1, the triangle
and inverse inequalities therefore yield with the above choice of L (note that
∇(AH |T ) = 0)

‖∇Areg
H ‖L∞(t) . ‖∇(AH − EL(AH))‖L∞(t) +H−1‖AH − EL(AH)‖L∞(t)

. H−1‖[AH ]‖L∞(FH(ωT ))

(
1 + α−1

H ‖[AH ]‖L∞(FH(ωT )

)
.

This proves the assertion.
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By Lemma 7, there exists a coefficient Areg
H ∈W 1,∞(Ω) such that A(`)

H is the
piecewise L2 projection of Areg

H onto the piecewise constants. Let ureg ∈ V solve
ˆ

Ω

∇ureg · (Areg
H ∇v) dx = F (v) for all v ∈ V. (4.9)

In particular, ũH is the finite element approximation to ureg . In the following,
s refers to the elliptic W 1+s,q regularity index of the model problem with a
smooth coefficient of class W 1,∞ in a convex polygon. We have the following
error estimate for d = 2.

Proposition 8 (error estimate II). Let d = 2 and assume that 1 ≤ p ≤ 2 and
such that for all interior angles ω of the domain Ω the number 2ω/(pπ) is not
an integer, and let q ∈ [2,∞) such that 1/p+ 1/q = 1. Assume that the solution
ureg to (4.9) belongs to W 1+s,q(Ω) for some 0 < s ≤ 1. Let u(`)

H solve (3.15)
and let ũ(`)

H solve (4.1). Then, for f ∈ Lq(Ω),

‖∇(u
(`)
H − ũ

(`)
H )‖L2(Ω)

. H−d(p−1)/p|logH|d
(
Hs + (H|logH|)(d+sq)/q

) (
1 + η(A

(`)
H )
)2s‖f‖Lq(Ω).

Proof. Since Ω is convex, it is known [Gri85] that (4.9) is H2 regular with the
bound

‖D2ureg‖L2(Ω) . ‖Areg
H ‖W 1,∞(Ω)‖f‖L2(Ω).

Thus, the Sobolev embedding [Ada75, Thm. 5.4] assures that there holds

‖∇ureg‖Lq(Ω) . ‖D2ureg‖L2(Ω) . ‖Areg
H ‖W 1,∞(Ω)‖f‖Lq(Ω).

Hence, problem (4.9) is stable in Lq(Ω). Recall that ũ(`)
H is in particular the

finite element approximation to ureg . The result thus follows from Propositon 6:
The Hölder and triangle inequalites and a priori finite element error estimates
[RS82, BS08] bound the right-hand side of (4.5) for any 0 < s < 1 by

H−d(p−1)/p|logH|
[
‖∇(ũ

(`)
H − u

reg)‖Lq(Ω)

+ ρ(d+sq)/q

(ˆ
Ω

ˆ
Bρ(x)

|∇ureg(x)−∇ureg(y)|q

ρd+sq
dy dx

)1/q ]
. H−d(p−1)/p|logH|(Hs + ρ(d+sq)/q)‖ureg‖W 1+s,q(Ω).

If u belongs to W 2,q(Ω), then by the above assumptions on p and q, the results
of [Gri85, §5.2] lead to

‖ureg‖W 2,q(Ω) . ‖Areg
H ‖W 1,∞(Ω)(‖f‖Lq(Ω)+‖u‖W 1,q(Ω)) . ‖Areg

H ‖
2
W 1,∞(Ω)‖f‖Lq(Ω)

(in particular it is required that 2ω/(pπ) is not an integer for the interior angles
ω). The combination with Lemma 7 proves

‖ureg‖W 2,q(Ω) .
(
1 + η(A

(`)
H )
)2 ‖f‖Lq(Ω).

The assertion in W 1+s,q(Ω) can be proved with an operator interpolation argu-
ment.

14



Numerical homogenization

Remark 9 (homogenization indicator). If the relations

H−1‖[A(`)
H ]‖L∞(FH) . 1 and α−1

H H . 1

are satisfied, then the multiplicative constant in Proposition 8 is of moderate
size. Hence, we interpret η(A

(`)
H ) as a homogenization indicator and the above

relations as a homogenization criterion.

Remark 10 (local mesh-refinement). We furthermore remark that local ver-
sions of η(A

(`)
H ) involving the jump information H−1‖[A(`)

H ]‖L∞(F ) for interior
interfaces F may be used as refinement indicators for local mesh-adaptation.
This possibility shall, however, not be further discussed here.

Remark 11 (global homogenized coefficient). If the global variations of A(`)
H

are small in the sense that there are positive constants c1, c2 such that, almost
everywhere,

c1|ξ|2 ≤ ξ · (A(`)
H ξ) ≤ c2|ξ|2 for any ξ ∈ Rd

holds with |c2 − c1| . H, then A
(`)
H can be replaced by

ffl
Ω
A

(`)
H dx without

effecting the accuracy.

Remark 12 (d = 3, Sobolev embedding). Clearly, Proposition 8 is also valid
for d = 1. We expect a similar result as Proposition 8 to hold also for d = 3.
The use of the Sobolev embedding theorem, however, restricts the admissible
indices q to the range 2 ≤ q ≤ 6, which accordingly gives worse convergence
rates.

The combination of Proposition 8 with (4.3) leads to the following a priori
error estimate.

Corollary 13. Under the assumptions of Proposition 8 we have the error esti-
mate in the 2D case

‖u− u(`)
H ‖L2(Ω) .

(
H +Hs−2(p−1)/p|logH|2

(
1 + η(A

(`)
H )
)2s)‖f‖Lq(Ω).

In particular, under the homogenization criterion from Remark 9, a (positive)
convergence rate is achieved for any 1 ≤ p < 2/(2 − s) such that ‖f‖Lq(Ω) is
finite.

Proof. This follows from combining Proposition 8 with (4.3), the triangle in-
equality and the Friedrichs inequality.

Remark 14. We mention that the techniques used in Proposition 8 would lead
to the almost linear convergence rate H|logH| under the a priori assumption
that ureg ∈ W 2,∞(Ω). However, to obtain error estimates under realistic as-
sumptions in polyhedral domains, the balancing with the parameters p and s is
necessary.

Remark 15. We emphasize that η(A
(`)
H ) is not an error estimator for the dis-

cretization error. It rather indicates whether the local discrete model is ap-
propriate. If η(A

(`)
H ) is close to zero, then the multiplicative constant on the

right-hand side of the formula in Corollary 13 is of reasonable magnitude.
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Figure 1: Periodic coefficients with respect to a square grid and triangulations: non-
matching (left) and matching (right).

5 The periodic setting
In this section we justify the use of the local effective coefficient AH in the
periodic setting. We illustrate that the procedure in its idealized form with ` =
∞ recovers the classical periodic homogenization limit. Throughout this section,
we set ` =∞ and omit the index ` when there is no risk of confusion. We denote
by V := H1

#(Ω)/R the space of periodic H1 functions with vanishing integral
mean over Ω. We assume Ω to be a polytope allowing for periodic boundary
conditions. We adopt the notation of Section 3, in particular W ⊆ V is the
kernel of the quasi-interpolation IH , VH is the space of piecewise affine globally
continuous functions of V , and C, a, ã, a, AH , AH , K are defined as in Section 3
with the underlying space V being H1

#(Ω)/R. We assume that the domain Ω
matches with integer multiples of the period. We assume the triangulation TH
to match with the periodicity pattern. For simplicial partitions this implies
further symmetry assumptions. In particular, periodicity with respect to a
uniform rectangular grid is not sufficient. Instead we require further symmetry
within the triangulated macro-cells, see Example 16 for an illustration.

Example 16. Figure 1 displays a periodic coefficient and a matching triangu-
lation.

We remark that the error estimate of Proposition 8 holds in this case as well.
Due to the periodic boundary conditions, the auxiliary solution ureg utilized in
the proof of Proposition 8 has the smoothness ureg ∈W 2,q(Ω) for any 2 ≤ q <∞
in two space dimensions, so that those estimates are valid with s = 1. In the
periodic setting, further properties of AH can be derived. First, it is not difficult
to prove that the coefficient AH is globally constant. The following result states
that AH is even independent of the mesh-size H and coincides with the classical
homogenization limit, where for any k = 1, . . . , d, the corrector q̂k ∈ H1

#(Ω)/R
is the solution to

divA(∇q̂k − ek) = 0 in Ω with periodic boundary conditions. (5.1)

Proposition 17. Let A be periodic and let TH be uniform and aligned with
the periodicity pattern of A and let V , W be spaces with periodic boundary
conditions. Then, for any T ∈ TH , the localized coefficient AH |T coincides
with the homogenized coefficient from the classical homogenization theory. In
particular, AH is globally constant and independent of H.
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Proof. Let T ∈ TH and j, k ∈ {1, . . . , d}. The definitions of AH |T and K lead
to  

T

Ajk dx− (AH |T )jk = |T |−1
∑
K∈TH

ˆ
K

ek · (A∇qT,j) dx

= |T |−1

ˆ
Ω

ek · (A∇qT,j) dx.
(5.2)

The sum over all element correctors defined by qj :=
∑
T∈TH qT,j solves

a(w, qj) = (∇w,Aej)L2(Ω) for all w ∈W. (5.3)

The definitions of qT,j and qj and the symmetry of A lead to

|T |−1

ˆ
Ω

ek · (A∇qT,j) dx = |T |−1

ˆ
Ω

∇qk · (A∇qT,j) dx

=

 
T

ej · (A∇qk) dx.

(5.4)

Let v ∈ V . We have (v − IHv) ∈W and therefore by (5.3) that
ˆ

Ω

∇v · (A(∇qk − ek)) dx =

ˆ
Ω

(∇IHv) · ((∇qk − ek)) dx

=
∑
K∈TH

ˆ
K

(∇IHv) dx ·
 
K

A(∇qk − ek) dx

where for the last identity it was used that ∇IHv is constant on each element.
By periodicity we have that

ffl
K
A(∇qk − ek) dx =

ffl
Ω
A(∇qk − ek) dx for any

K ∈ TH . Therefore, for all v ∈ V ,
ˆ

Ω

∇v · (A(∇qk − ek)) dx =

ˆ
Ω

(∇IHv) dx ·
 

Ω

A(∇qk − ek) dx = 0

due to the periodic boundary conditions of IHv. Hence, the difference ∇qk −
ek satisfies (5.1). This is the corrector problem from classical homogenization
theory and, thus, the proof is concluded by the above formulae (5.2)–(5.4).
Indeed,

(AH |T )jk =

 
T

Ajk dx−
 
T

ej · (A∇qk) dx.

Remark 18. For Dirichlet boundary conditions, the method is different from
the classical periodic homogenization as it takes the boundary conditions into
account.

Next, we prove a direct a priori error estimate for the multiscale method in
the periodic setting. Let the coefficient A = Aε be periodic, oscillating on the
scale ε. We couple ε ≈ H, where H is the observation scale represented by the
mesh-size of the finite element mesh. Denote denote by uH ∈ VH the solution
to (3.6). We use the abbreviation

aε(vH , zH) :=

ˆ
Ω

∇vH(x) ·
ˆ

Ω

AH(x, y)∇zH(y) dy dx for vH , zH ∈ VH .
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In this notation, uH solves

aε(uH , vH) = F (vH) for all vH ∈ VH .

Recall from Proposition 17 that the localized coefficient AH = A0 for a constant
coefficient A0 that is independent of H. It is known (see, e.g., [All97]) that, in
the present case of a symmetric coefficient, A0 satisfies the bounds (4.2). The
homogenized bilinear form on V reads

a0(v, z) =

ˆ
Ω

∇v · (A0∇z) dx for any v, z ∈ V

with energy norm ‖ · ‖A0 := a(·, ·)1/2. Denote by u0 ∈ V the solution to

a0(u0, v) = F (v) for all v ∈ V.

The aim is to estimate ‖u0 − uH‖A0
.

Proposition 19. Let p > 1 and q with 1/p+ 1/q = 1. In the periodic case

‖u0 − uH‖A0
. H1−d(p−1)/p|logH|(d+q)/q+d‖f‖Lq(Ω).

Proof. As in prior sections, abbreviate ρ := Cε log|ε| for some appropriately
chosen C > 0. The triangle inequality reads

‖u0 − uH‖A0 ≤ ‖u0 − IHu0‖A0 + ‖IHu0 − uH‖A0 .

The first term can be estimated with standard estimates. For the analysis of
the second term, abbreviate eε := IHu0− uH . From the stability of IH and the
properties of the fine-scale projection C, we observe (with contrast-dependent
constants)

‖eε‖2A0
= ‖IHeε‖2A0

= ‖IH(1− C)eε‖2A0
. ‖(1− C)eε‖2A0

. aε(eε, eε).

Hence, we proceed as

‖eε‖2A0
. aε(eε, eε) = aε(IHu0, eε)− a(u0, eε)

where we have used the solution properties of uH and u. With the symmetry
of a we conclude

‖eε‖2A0
. aε(eε, IHu)− a(eε, u0).

To analyze this term, consider its split
ˆ

Ω

∇eε(x)

[ ˆ
Ω

Aε(x, y) dy −A0(x)

]
∇u0(x) dx

+

ˆ
Ω

∇eε(x)

ˆ
Ω

Aε(x, y)(∇IHu0(y)−∇u0(y)) dy dx

+

ˆ
Ω

∇eε(x)

ˆ
Ω

Aε(x, y)(∇u0(y)−∇u0(x)) dy dx

=: T1 + T2 + T3.

(5.5)

By Proposition 17, term T1 vanishes in the periodic case. The Hölder in-
equality (once with (2, 2) and once with (p, q)) leads to

T2 ≤ ‖∇eε‖L2(Ω)

∥∥∥‖Aε(x, y)‖Lp(Ω,dy)

∥∥∥
L2(Ω,dx)

‖∇(1− IH)u0‖Lq(Ω).
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Standard estimates for the quasi-interpolation IH [EG16] together with Lemma 23
from Appendix A lead to

T2 . ‖∇eε‖L2(Ω)H
1−d(p−1)/p |logH|d ‖u0‖W 2,q(Ω).

T3 can be bounded by ‖∇eε‖L2(Ω) times

√
(ˆ

Ω

∣∣∣∣ ˆ
Ω\Bρ(x)

Aε(x, y)(∇u0(x)−∇u0(y)) dy

∣∣∣∣2 dx
)

+
√
(ˆ

Ω

∣∣∣∣ˆ
Bρ(x)

Aε(x, y)(∇u0(x)−∇u0(y)) dy

∣∣∣∣2 dx
) (5.6)

With the Lp bounds from Lemma 23 from Appendix A below and with the tech-
niques from the proof of Proposition 6 and Proposition 8, this can be bounded
by

H(1−d(p−1))/p|logH|(d−1)/p‖∇u0‖Lq(Ω) +H−d(p−1)/p|logH|dρ(d+sq)/q‖u0‖W 2,q(Ω).

Interior regularity estimates [Gri85] finally show that ‖u0‖W 2,q(Ω) ≤ C(q)‖f‖Lq(Ω).

Denote for any ε, by uε ∈ V the solution to (4.9) with coefficient Aε. The
following result recovers the classical homogenization limit uε → u0 strongly
in L2 as ε → 0. In particular, it quantifies the convergence speed and states
that for f ∈ L∞(Ω) any sublinear rate can be achieved. The obtained rate is
only sublinear, but the result is valid for L∞ coefficients while known linear-in-ε
rates [KLS12] require Hölder continuity of Aε.

Corollary 20 (quantified homogenization limit). For any 1 < p ≤ 2 and 2 ≤
q <∞ with 1/p+ 1/q = 1, we have

‖uε − u0‖L2(Ω) . H1−d(p−1)/p log|H|(d+q)/q+d‖f‖Lq(Ω).

Proof. Proposition 1 in particular implies the a priori error estimate

‖uε − uH‖L2(Ω) . H‖f‖L2(Ω).

On the other hand, Proposition 19 implies, for any 2 ≤ q <∞, that

‖u0 − uH‖L2(Ω) . H1−d(p−1)/p log|H|(d+q)/q+d‖f‖Lq(Ω),

The use of the triangle inequality concludes the proof.

Remark 21. The regularity assumptions f ∈ Lq(Ω) etc. are due to the possible
singular behaviour of uε and u0. Under the stronger assumption u0 ∈W 2,∞(Ω),
which we cannot guarantee in general, optimal error bounds can easily be
proved.
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6 Numerical illustration
In section, we present numerical experiments on the unit square domain Ω =
(0, 1)2. We consider the following worst-case error (referred to as the L2 error)
as error measure

sup
f∈L2(Ω)\{0}

‖u(f)− udiscrete(f)‖L2(Ω)

‖f‖L2(Ω)

where u(f) is the exact solution to (2.3) with right-hand side f and udiscrete(f) a
discrete approximation (standard FEM or local effective coefficient or quasi-local
effective coefficient or L2-best approximation). The error quantity is approxi-
mated by solving an eigenvalue problem on the reference mesh.

6.1 First experiment
Consider the scalar coefficient A

A(x1, x2) =

(
11

2
+ sin

(
2π

ε1
x1

)
sin

(
2π

ε1
x2

)
+ 4 sin

(
2π

ε2
x1

)
sin

(
2π

ε2
x2

))−1

with ε1 = 2−3 and ε2 = 2−5. We consider a sequence of uniformly refined
meshes of mesh size H =

√
2 × 2−1, . . . ,

√
2 × 2−6. The corrector problems

are solved on a reference mesh of width h =
√

2 × 2−9. The localization (or
oversampling) parameter is chosen as ` = 2. Figure 3 displays the coefficient A.
The four components of the reconstructed coefficient A(`)

H for H =
√

2×2−6 are
displayed in Figure 4. Figure 2 compares the L2 errors of the standard FEM,
the FEM with the local effective coefficient, the method with the quasi-local
effective coefficient, and the L2-best approximation in dependence of H. For
comparison, also the error of the Multiscale Finite Element Method (MSFEM)
from [EH09] is displayed. As expected, the error of the FEM is of order O(1)
because the coefficient is not resolved by the mesh-size H. The error for the
quasi-local effective coefficient is close the the best-approximation. The local
effective coefficient leads to comparable errors on coarse meshes. On the finest
mesh, where the coefficient is almost resolved, the error deteriorates. This
effect, referred to as “resonance effect”, will be studied in the second numerical
experiment. Table 1 lists the values of the estimator η(A

(`)
H ) as well as the

bounds αH and βH on (A
(`)
H ). The estimator η(A

(`)
H ) is small on the first meshes,

which corresponds to an effective coefficient close to a constant. The estimator
increases for the meshes approaching the resonance regime. The values of the
coefficient A range in the interval [α, β] = [0.096, 1.55]. In this example, the
discrete bounds αH , βH stay in this interval.

6.2 Second experiment: Resonance effects
In this experiment we investigate so-called resonance effects of our homogeniza-
tion procedure. We consider a fixed mesh of width H =

√
2×2−4 and the scalar

coefficient

A(x1, x2) =

(
5 + 4 sin

(
2π

ε
x1

)
sin

(
2π

ε
x2

))−1
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10−3
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FEM

MSFEM

loc. eff. coeff.

quasi-loc. eff. coeff.

L2 best

Figure 2: Convergence history under uniform mesh refinement.

Figure 3: The scalar coefficient A for the first experiment.
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0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: Matrix entries of the reconstructed localized coefficient (A
(`)
H ) in the first

experiment for H =
√
2× 2−6.

H η(A
(`)
H ) αH βH√

2× 2−1 3.2108e-02 1.9223e-01 2.0786e-01√
2× 2−2 1.1267e-02 1.9568e-01 1.9954e-01√
2× 2−3 1.4765e-02 1.9579e-01 1.9986e-01√
2× 2−4 5.3952e-01 1.8323e-01 2.1992e-01√
2× 2−5 1.7199e+00 1.6909e-01 2.3257e-01√
2× 2−6 1.5538e+01 1.4070e-01 3.0277e-01

Table 1: Values of the estimator η(A(`)
H ) and the bounds αH and βH on AH for the first

experiment. The values of the coefficient A range in the interval [α, β] = [0.096, 1.55].
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10−2 10−1 100
0

10

20

30

40

50

ε

FEM

MSFEM

loc. eff. coeff.

quasi-loc. eff. coeff.

η(A
(`)
H )

Figure 5: Resonance effect: Normalized (by L2-best error) errors of FEM, local effec-
tive model and quasi-local effecitve model; and values of the estimator η(A(`)

H ).

for a sequence of parameters ε = 20, 2−1, . . . , 2−6. The coefficient (A
(`)
H ) was

computed with the same reference mesh and the same oversampling parameter
as in the first experiment. Figure 5 displays the L2 errors normalized by the
L2 error of the L2-best approximation. On the third mesh, where H and ε
have the same order of magnitude, the local effective coefficient leads to a larger
error compared to the coarser meshes (where the coefficient is resolved by H)
and finer meshes, where H is much coarser than ε and the effective coefficient is
close to a constant. We observe that the values of the estimator η(A

(`)
H ) are large

in the resonance regime where also the error of the method the local effective
coefficient is large. For smaller values of ε, the values of η(A

(`)
H ) are close to zero,

which indicates that the homogenization criterion from Remark 9 is satisfied,
cf. also Remark 15.

A Exponential decay of the non-local effective
coefficient

In this section, we illustrate in two lemmas the exponential decay of the entries
of K := K(∞), i.e., in the case where the corrector problems are not localized.

Lemma 22. The coefficient K satisfies∣∣∣[K|T×K]jk∣∣∣ . 1
|K|1/2|T |1/2 exp (−cdist(T,K)/H) (A.1)

for any T,K ∈ TH and j, k = 1, . . . , d.

Proof. From the definition ofK, the boundedness of A and the Hölder inequality
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we obtain

|(KT,K)j,k| ≤
1

|T | |K|
‖∇qT,j‖L1(K) ≤

1

|T | |K|1/2
‖∇qT,j‖L2(K).

The combination with the exponential decay from (3.12) and ‖ej‖L2(T ) = |T |1/2
proves the result.

Lemma 23. Given some x ∈ Ω with x ∈ T for some T ∈ TH , any p with
1 ≤ p <∞ satisfies

‖K(x, y)‖Lp(Ω,dy) . CH−d(p−1)/p|logH|d. (A.2)

Furthermore, if m ≥ C1|logH| for a sufficiently large constant C1 that only
depends on c from (A.1) and the shape-regularity of TH , then

‖K(x, y)‖Lp(Ω\Nm(T ),dy) . H(1−d(p−1))/p |logH|(d−1)/p. (A.3)

Proof. We begin with the proof of the second stated inequality. From the quasi-
uniformity of TH we obtain with Lemma 22 that

‖K(x, y)‖pLp(Ω\Nm(T ),dy) =
∑
K∈TH

K 6⊆Nm(T )

|K||KT,K |p

. H−d(p−1)
∑
K∈TH

K 6⊆Nm(T )

exp(−cdist(T,K)/H).

Since the mesh TH is quasi-uniform, for any positive integer k, the number of
elements of Nk(T ) \ Nk−1(T ) can be bounded by p(k) with some polynomial p
of degree d− 1. Thus, we can estimate

‖K(x, y)‖pLp(Ω\Nm(T ),dy) . H−d(p−1)
∑
k≥m

p(k) exp(−c k).

With the above choice of m ≥ C1|logH|, the sum can be rewritten∑
k≥m

p(k) exp(−c k) =
∑
k≥0

p(m+ k) exp(−c (m+ k))

. Hp(|logH|)
∑
k≥0

p(k) exp(−c k).

The combination with the foregoing displayed estimate proves the second stated
estimate. The proof of the first one follows from the combination of this and
the arguments from Lemma 5.
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