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We compare the cost complexities of two approximation schemes for functions which live on the product
domain Ω1×Ω2 of sufficiently smooth domains Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 , namely the singular value /
Karhunen-Lòeve decomposition and the sparse grid representation. We assume that appropriate finite
element methods with associated orders r1 and r2 of accuracy are given on the domains Ω1 and Ω2,
respectively. This setting reflects practical needs, since often black-box solvers are used in numerical
simulation which restrict the freedom in the choice of the underlying discretization. We compare the cost
complexities of the associated singular value decomposition and the associated sparse grid approxima-
tion. It turns out that, in this situation, the approximation by the sparse grid is always equal or superior to
the approximation by the singular value decomposition. The results in this article improve and generalize
those from Griebel & Harbrecht (2014). Especially, we consider the approximation of functions from
generalized isotropic and anisotropic Sobolev spaces.

Keywords: singular value decomposition; sparse grids; complexity.

1. Introduction

With this article, we intend to refine the results which have been achieved in Griebel & Harbrecht
(2014), where we were concerned with the comparison of low-rank approximation methods and sparse
grid methods for bivariate functions. This is a relevant setting since many problems in science and
engineering lead to problems on the product Ω1×Ω2 of two domains Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 . For
example, radiosity models and radiative transfer (Widmer et al. (2008)), space-time formulations of
parabolic problems (Griebel & Oeltz (2007)), phase space problems (Balescu (1997)), biscale homog-
enization (Cioranescu et al. (2008)), as well as correlation equations (Deb et al. (2001)) fit into this
setting. We refer the reader to Griebel & Harbrecht (2014) for a more comprehensive discussion of
these problems and further references.
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The representation of functions on product domains by low-rank approximation is also the funda-
mental idea of reduced basis methods and model order reduction, see Hesthaven et al. (2016), Quarteroni
et al. (2016), Rozza et al. (2008), and the references therein. Similarly, in uncertainty quantification, the
spatial variable and the stochastic variable are defined on different domains. In general, after inserting
the Karhunen-Lòeve decomposition of the underlying random field, one arrives at a parametric problem
posed on the product of the physical domain and a high- or even infinite-dimensional parameter domain,
see Ghanem & Spanos (1991) and Le Maı̂tre & Knio (2010) for example.

All the aforementioned problems are directly given on the product of two domains. Furthermore,
for some of these as well as for many other problems, the domains themselves are products of lower-
dimensional domains. Then, the domain of an n-dimensional problem with, for instance, n being some
power of two can be split into the product of two domains of dimension n/2 which can recursively be
further split until a terminal situation (a one-dimensional domain or a truly higher dimensional but non-
tensor product domain) is reached. Related representation methods have been considered in Bebendorf
(2011), Hackbusch (2012), Hackbusch & Kühn (2009), or Oseledets & Tyrtyshnikov (2009). Here, one
should note that hierarchical tensor formats, such as the hierarchical Tucker format or the tensor train
format, can be computed by means of a truncated singular value decomposition for each dimension
separation step, cf. Grasedyck (2010). An alternative approach would be a two-dimensional sparse grid
approximation in each separation step. Then, the recursive application would yield an n-dimensional
sparse grid. This motivates to consider the simple case of two domains Ω1 and Ω2 only. Our analysis
covers then also a single bisection step in the above mentioned recursion.

Our setting is as follows. We suppose to have given fixed sequences of nested trial spaces

V (i)
0 ⊂V (i)

1 ⊂V (i)
2 ⊂ ·· · ⊂ L2(Ωi), i = 1,2, (1.1)

on the individual subdomains, which consist of ansatz functions of approximation orders r1 and r2,
respectively (see Subsection 2.1 for the precise properties of the ansatz spaces under consideration).
We hence first fix the discretization and then compare the resulting algorithms. This reflects practical
needs, since often black-box codes have to be used due to the implementational complexity of the
underlying problems. Note at this point that our assumption is thus fundamentally different to the setting
in approximation theory, where a function class is fixed and the best algorithm is sought, compare Novak
& Woźniakowski (2008), Novak & Woźniakowski (2010), and Novak & Woźniakowski (2012). It also
different to the universality point of view, where one aims at algorithms, which are almost optimal for a
wide range of function classes, see Babuška (1968) and Motornyj (1974) for example.

Having the trial spaces (1.1) at hand, we can either apply the truncated singular value decomposition

fM(x,y) :=
M

∑
`=1

√
λ`ϕ`(x)ψ`(y), x ∈Ω1, y ∈Ω2,

or the generalized sparse grid approach

f̂J(x,y) := ∑
j1/σ+ j2σ6J

∑
k1∈∇

(1)
j1

∑
k2∈∇

(2)
j2

β( j1,k1),( j2,k2)ξ
(1)
j1,k1

(x)ξ (2)
j2,k2

(y), x ∈Ω1, y ∈Ω2

to represent a given function f ∈ L2(Ω1×Ω2) in an efficient way. In the first representation, {ϕ`}M
`=1

and {ψ`}M
`=1 are sets of orthonormal functions. They are a-priorily unknown, can in general not be

derived analytically, and need thus to be approximated in the ansatz spaces {V (i)
j }. In other words,
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the approximation involves in most applications both, a truncation after M terms and an approximate
computation of the singular values and the associated left and right singular vectors. In the second
representation, σ > 0 is an appropriately chosen parameter and {ξ (i)

j,k}k∈∇
(i)
j , j∈N

are in general multilevel

or wavelet bases associated with the trial spaces, where the index j refers to the level of resolution and
the index k refers to the locality of the basis function (the precise definition will be given in Section 4). In
order to decide which approximation should be implemented for treating problems on product domains,
we need to know the pro’s and con’s of both methods.

The main improvement of our theory in comparison to Griebel & Harbrecht (2014) concerns the
approximative truncated singular value decomposition. Namely, it turned out that it is not optimal to
directly approximate the singular values and the eigenfunctions of the function under consideration. In
this article, we therefore proceed differently: We first apply an L2-projection on an appropriately chosen
full tensor product space (comp. Subsection 3.2), which enables us to prove sharp estimates on the decay
of the eigenvalues of the singular value decomposition (comp. Subsection 3.3). We then truncate the
discrete singular value decomposition afterwards to directly derive sharp error estimates in the trace
norm, while an approximation of the continuous eigenfunctions is no longer needed (comp. Subsection
3.4). With the improvements achieved here for approximative truncated singular value decomposition,
we are now able to correctly predict the observations made for the singular value decomposition in the
numerical examples found in Griebel & Harbrecht (2014).

For our comparison, we consider the smoothness of the function f to be measured in isotropic and
anisotropic Sobolev norms. We then want to compare the cost complexity to reach an approximation
with a prescribed accuracy for the truncated singular value decomposition and the sparse grid approach.
One result of this article is then as follows: In order to approximate a function f ∈ H p(Ω1×Ω2) in
L2(Ω1×Ω2) with accuracy ε > 0, we have to spend O(ε−q) degrees of freedom with

qsvd =
min{n1,n2}

p
+max

{
max{n1,n2}

p
,

n1

r1
,

n2

r2

}
for the approximation by the truncated singular value decomposition and with

qsg = max
{

n1 +n2

p
,

n1

r1
,

n2

r2

}
for the general sparse grid method with associated parameter σ = n1/n2 (a precise definition is given in
Section 4), see also Griebel & Harbrecht (2013). Since it always holds

min{n1,n2}
p

+max
{

max{n1,n2}
p

,
n1

r1
,

n2

r2

}
>max

{
n1 +n2

p
,

n1

r1
,

n2

r2

}
,

we deduce that the approximation by the sparse grid method is equal or – in case of smooth functions f ∈
H p(Ω1×Ω2) with p

max{n1,n2}
> min{ r1

n1
, r2

n2
} – even superior to the approximation by the singular value

decomposition, at least for our setting where we also consider the approximation of the eigenfunctions.
For example, assume for the sake of simplicity that n = n1 = n2 and r = r1 = r2. Then, if p > 2r, the
sparse grid approach approximates a bivariate function in a cost complexity which is essentially the same
as for a univariate function, i.e., with O(ε−n/p) cost. In contrast, the approximative truncated singular
value decomposition realizes this complexity only if the function to be approximated is analytical, i.e.,
in the limit case p = ∞. In the situation p > r, its cost complexity is indeed inferior to that of the sparse
grid approach, while for p6 r the cost complexities of the sparse grid approach and the approximative
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truncated singular value decomposition both coincide with that of the approximation in the full tensor
product space.

We refine in addition the aforementioned findings by considering in Section 5 more general isotropic
and anisotropic Sobolev spaces. Also in these cases, the asymptotic superiority of the sparse grid ap-
proach can be established. Recall here again that we fixed the underlying discretization via (1.1) and
now compare the resulting associated algorithms.

We like to mention that our results generalize those of Temlyakov (1986, 1988, 1992a,b, 1993). On
the one hand, we consider the approximation of arbitrary functions on domains Ω1 ⊂Rn1 and Ω2 ⊂Rn2

instead of the approximation of periodic functions on the unit cube. On the other hand, we consider
the approximation by piecewise polynomial ansatz functions of fixed order (i.e., the h-approximation
of functions) instead of the approximation by trigonometric polynomials (i.e., the p-approximation of
functions). Nonetheless, the results coincide for cubic domains and ansatz functions of sufficiently high
order. The mathematical technique, however, to derive our results is completely different to the one used
by Temlyakov.

The remainder of this article is organized as follows: In Section 2, we give a short introduction to
multilevel approximation. In Section 3, we describe the singular value decomposition of a bivariate
function on Ω1×Ω2 and discuss its approximation properties in detail. Section 4 gives the basics of
the so-called general sparse grid approximation of a bivariate function on Ω1×Ω2 and presents its error
rates and cost complexities. In Section 5, we compare the two approximations and make some final
remarks.

Throughout this article, the notion “essential” in connection with the complexity estimates means
“up to logarithmic terms”. Moreover, to avoid the repeated use of generic but unspecified constants, we
denote by C .D that C is bounded by a multiple of D independently of parameters which C and D may
depend on. Obviously, C & D is defined as D.C, and C ∼ D as C . D and C & D.

2. Preliminaries

2.1 Approximation on the subdomains

Let Ω ⊂ Rn be a sufficiently smooth, bounded domain.1 In general, one uses finite elements to ap-
proximate functions on L2(Ω). In the present article, we focus on the common h-method, i.e., on finite
elements of fixed approximation order. Then, particularly for applying multiscale techniques, one has a
sequence of nested trial spaces

V0 ⊂V1 ⊂V2 ⊂ . . .⊂ L2(Ω) (2.1)

such that
L2(Ω) =

⋃
j∈N0

Vj,

which is called multiscale analysis. Each space Vj is defined by a single scale basis Φ j = {φ j,k},
i.e. Vj = span{φ j,k : k ∈ ∆ j}, where ∆ j denotes a suitable index set with cardinality #∆ j ∼ 2n j.

We say that the trial spaces have (approximation) order r ∈ N if

r = sup
{

s ∈ R : inf
v j∈V j
‖v− v j‖L2(Ω) . hs

j‖v‖s for all v ∈ Hs(Ω)

}
, (2.2)

1One may also consider Ω ⊂ Rn+1 to be a sufficiently smooth manifold.
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where the quantity h j ∼ 2− j corresponds to the mesh width associated with the subspace Vj on Ω . Note
that the integer r > 0 refers in general to the maximal order of polynomials which are locally contained
in Vj.

Equation (2.2) implies that a given function v ∈ H p(Ω), 0 6 p 6 r, can be approximated in Vj at a
rate hp

j , i.e., the associated L2-orthogonal projection Q j : L2(Ω)→Vj satisfies

‖(I−Q j)v‖L2(Ω) . hp
j ‖v‖H p(Ω), 06 p6 r. (2.3)

Thus, when we approximate a function v ∈ H p(Ω) with 06 p6 r by uniform mesh refinement we
obtain the rate hp

j according to (2.3). Since the mesh size and the number of unknowns in Vj are related
by dim(Vj)∼ 2 jn ∼ h−n

j , we deduce that

N ∼ ε
−n/p (2.4)

unknowns have to be spent to achieve an approximation error ε . The best possible rate N−n/r is achieved
if p = r, that is if v ∈ Hr(Ω).

2.2 Kolmogorov’s n-width and full tensor product spaces

For our subsequent analysis of the approximation of bivariate functions in L2(Ω1×Ω2), we shall fix the
definitions, properties and cost complexities individually for each subdomain Ωi ∈Rni , i = 1,2. That is,
we fix two multiscale analyses

V (i)
0 ⊂V (i)

1 ⊂V (i)
2 ⊂ ·· · ⊂ L2(Ωi), i = 1,2, (2.5)

which are assumed to provide the approximation orders r1 and r2, respectively.
We start our discussion with the approximation of a given bivariate function f ∈ L2(Ω1×Ω2) in

full tensor product spaces V (1)
j1
⊗V (2)

j2
. To measure the smoothness of bivariate functions, we define the

Sobolev space of dominating mixed derivatives by

Hs1,s2
mix (Ω1×Ω2) := Hs1(Ω1)⊗Hs2(Ω2)

and set
Hs1,s2

iso (Ω1×Ω2) := Hs1,0
mix (Ω1×Ω2)∩H0,s2

mix (Ω1×Ω2).

Note that, in case of p= p1 = p2, the space H p,p
iso (Ω1×Ω2) coincides with the standard isotropic Sobolev

space H p(Ω1×Ω2), i.e., it holds

H p(Ω1×Ω2) = H p,p
iso (Ω1×Ω2).

Let f ∈ H p1,p2
iso (Ω1×Ω2). Then, for the L2-orthogonal projections onto V (1)

j1
and V (2)

j2
, respectively,

we obtain ∥∥(I−Q(1)
j1
⊗ I) f

∥∥
L2(Ω1×Ω2)

. 2− j1 min{p1,r1}‖ f‖
H

min{p1 ,r1},0
mix (Ω1×Ω2)

,∥∥(I− I⊗Q(2)
j2
) f
∥∥

L2(Ω1×Ω2)
. 2− j2 min{p2,r2}‖ f‖

H
0,min{p2 ,r2}
mix (Ω1×Ω2)

.
(2.6)

Using standard tensor product arguments leads thus to∥∥(I−Q(1)
j1
⊗Q(2)

j2
) f
∥∥

L2(Ω1×Ω2)

. 2− j1 min{p1,r1}‖ f‖
H

min{p1 ,r1},0
mix (Ω1×Ω2)

+2− j2 min{p2,r2}‖ f‖
H

0,min{p2,r2}
mix (Ω1×Ω2)

.
(
2− j1 min{p1,r1}+2− j2 min{p2,r2}

)
‖ f‖

H
min{p1 ,r1},min{p2 ,r2}
iso (Ω1×Ω2)

.
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The optimum choice is to equilibrate the errors, since the approximation errors are additive while the
cost are multiplicative. This means that

j1 min{p1,r1} ∼ j2 min{p2,r2}, (2.7)

which implies, in view of dim(V (1)
j1

)∼ 2 j1n1 and dim(V (2)
j2

)∼ 2 j2n2 , the cost complexity

dofsg(ε) = ε
− n1

min{p1 ,r1} ε
− n2

min{p2 ,r2} (2.8)

to achieve a desired approximation error ε . If p1 6 r1 and p2 6 r2, this is known to be Kolmogorov’s
n-width for Sobolev balls in the space H p1,p2

iso (Ω1 ×Ω2), see Kolmogorov (1936). Hence, the cost
complexity (2.8) is sharp in this case, which means, there is asymptotically no better representation
possible. Nonetheless, if p1 > r1 or p2 > r2, then (2.8) is not sharp anymore and we can approximate
better in H p1,p2

iso (Ω1×Ω2) than by just using the full tensor product space.
The methods we discuss in this article are the approximative truncated singular value decomposition

in Section 3 and the sparse grid in Section 4. The question we address is as follows: Given a function
H p1,p2

iso (Ω1×Ω2), where p1, p2 > 0 are arbitrary and where trial spaces with approximation orders r1
and r2, respectively, are used in both approaches, which algorithm provides the cheaper approximation?

3. Singular value decomposition

3.1 Definition and mapping properties

We intend to numerically represent functions f ∈ L2(Ω1×Ω2) on tensor product domains Ω1×Ω2 in
an efficient way. One way to solve this approximation problem is to use an ansatz by means of tensor
products which separates the variables x ∈Ω1 and y ∈Ω2. We first consider the approximation

f (x,y)≈ fM(x,y) =
M

∑
`=1

α`ϕ`(x)ψ`(y) (3.1)

with certain coefficients α` ∈ R and normalized functions ϕ` ∈ L2(Ω1) and ψ` ∈ L2(Ω2). Such an
approximation is called low-rank approximation.

It is well known (see e.g. Lòeve (1978) or Schmidt (1907)) that, with respect to the number M of
terms, the best possible representation of a function f ∈ L2(Ω1×Ω2) in the L2-sense is given by the
Karhunen-Lòeve / singular value decomposition2. Then, α` =

√
λ` are given by the eigenvalues of the

below defined integral operator (3.2) with kernel (3.3). As shown in Subsection 3.2, the truncation error
(in terms of M) of the series (3.1) is related to the smoothness of the function f to be approximated. As
a byproduct of this estimate, we can infer the decay of the eigenvalues in Subsection 3.3. In Subsection
3.4, we finally consider the numerical treatment of (3.1). Besides determining the coefficients {α`}`∈N,
a numerical scheme needs to approximate the functions {ϕ`}`∈N and {ψ`}`∈N in appropriate trial spaces
V (1)

j1
and V (2)

j2
, respectively, up to an accuracy corresponding to that of (3.1). Recall that the trial spaces

which we consider are elements of the multiscale analyses (2.5) which have the approximation orders
r1 and r2, respectively.

To derive the singular value decomposition, we shall consider the integral operator

S : L2(Ω1)→ L2(Ω2), u 7→ (S u)(y) :=
∫

Ω1

f (x,y)u(x)dx.

2We refer the reader to Stewart (1993) for a comprehensive historical overview about the singular value decomposition.
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Its adjoint is

S ? : L2(Ω2)→ L2(Ω1), u 7→ (S ?u)(x) :=
∫

Ω2

f (x,y)u(y)dy.

To obtain the low-rank representation (3.1), we need to compute the eigenvalues of the integral operator

K = S ?S : L2(Ω1)→ L2(Ω1), u 7→ (K u)(x) :=
∫

Ω1

k(x,x′)u(x′)dx′ (3.2)

whose kernel function is given by

k(x,x′) =
∫

Ω2

f (x,y) f (x′,y)dy ∈ L2(Ω1×Ω1). (3.3)

This is a Hilbert-Schmidt kernel. Thus, the associated integral operator K is compact. Moreover, since
K is self-adjoint, there exists a decomposition into eigenpairs (λ`,ϕ`), i.e.,

K ϕ` = λ`ϕ` for all ` ∈ N,

with non-negative eigenvalues λ1 > λ2 > · · · > λm → 0 and eigenfunctions {ϕ`}`∈N, which constitute
an orthonormal basis in L2(Ω1).

We now define for all ` ∈ N with λ` > 0 the function ψ` ∈ L2(Ω2) by

ψ`(y) =
1√
λ`

(S ϕ`)(y) =
1√
λ`

∫
Ω1

f (x,y)ϕ`(x)dx. (3.4)

This constitutes a second sequence of orthonormal functions since

(ψk,ψ`)L2(Ω2)
=

1√
λkλ`

(S ϕk,S ϕ`)L2(Ω2)
=

1√
λkλ`

(K ϕk,ϕ`)L2(Ω1)

=
λk√
λkλ`

(ϕk,ϕ`)L2(Ω1)
= δk,`.

If λ` = 0 for some ` ∈ N, we can extend this collection of functions properly to obtain an orthonormal
basis {ψ`}`∈N of L2(Ω2). Due to√

λ`ϕ`(x) =
1√
λ`

(S ?S ϕ`)(x) = (S ?
ψ`)(x) =

∫
Ω2

f (x,z)ψ`(z)dz (3.5)

for all x ∈Ω1 and ` ∈ N, we finally obtain the representation

f (x,y) =
∞

∑
`=1

√
λ`ϕ`(x)ψ`(y). (3.6)

With (3.4) and (3.5), this equation is easily verified by testing with the orthonormal basis {ϕk⊗ψ`}k,`∈N
of L2(Ω1×Ω2).

REMARK 3.1 The adjoint kernel k̃(·, ·) is just obtained by interchanging Ω1 and Ω2, i.e.,

k̃(y,y′) =
∫

Ω1

f (x,y) f (x,y′)dx ∈ L2(Ω2×Ω2).
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Then, one has the integral operator

K̃ = S S ? : L2(Ω2)→ L2(Ω2), u 7→ (K̃ u)(y) :=
∫

Ω2

k̃(y,y′)u(y′)dy′.

Again there exists a decomposition into eigenpairs

K̃ ϕ̃` = λ̃`ϕ̃`, ` ∈ N,

with non-negative eigenvalues λ̃1 > λ̃2 > · · ·> λ̃m→ 0 and eigenfunctions ϕ̃` ∈ L2(Ω2). We also obtain
a second sequence of orthonormal functions ψ̃` ∈ L2(Ω1) analogously to (3.4). The functions {ϕ̃`}`∈N
and {ψ̃`}`∈N will be the same as before but now their roles are exchanged. Moreover, the eigenvalues
λ` and λ̃` of K and K̃ coincide.

3.2 Truncation error

We shall now give improved estimates on the the decay rate of the eigenvalues of the integral operator
K = S ?S with kernel (3.3). To this end, assume that f ∈ H p,0

mix(Ω1×Ω2). We introduce new3 finite
element spaces UM ⊂ L2(Ω1), which consist of M discontinuous, piecewise polynomial functions of
total degree dpe on a quasi-uniform triangulation of Ω1 with mesh width hM ∼ M−1/n1 . Then, due
to the Bramble-Hilbert lemma (see e.g., Braess (2001) or Brenner & Scott (2008)), given a function
w ∈ H p(Ω1), the L2-orthogonal projection PM : L2(Ω1)→UM satisfies

‖(I−PM)w‖L2(Ω1)
6 cpM−p/n1‖w‖H p(Ω1), (3.7)

uniformly in M. For the approximation of f (x,y) in the first variable, i.e.

fM(x,y) :=
(
(PM⊗ I) f

)
(x,y),

we obtain the following approximation result in UM , see also Harbrecht et al. (2015).

THEOREM 3.1 Let λ1 > λ2 > . . .> 0 be the eigenvalues of the operator K = S S ? and λ M
1 > λ M

2 >
. . .> λ M

M > 0 those of KM := PMK PM . Then, it holds

‖ f − fM‖2
L2(Ω1×Ω2)

= traceK − traceKM

and therefore

‖ f − fM‖2
L2(Ω1×Ω2)

=
M

∑
`=1

(λ`−λ
M
` )+

∞

∑
`=M+1

λ`. (3.8)

Proof. Let {θk}k∈N be an orthonormal basis of L2(Ω1) such that either θk ∈ imgPM or θk ∈ img(I−PM)
holds. This implies

(
S (I−PM)θk,S PMθk

)
L2(Ω2)

= 0 for all k ∈ N. We thus arrive at

‖ f − fM‖2
L2(Ω1×Ω2)

=
∫

Ω2

∞

∑
`=1

(
( f − fM)(·,y),θ`

)2
L2(Ω1)

dy.

3The present argument relies on an approximation argument. The new finite element spaces {UM} are introduced to obtain the
optimal convergence rate with N degrees of freedom.
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Due to the fact that I−PM is an L2-orthogonal projection, we have(
( f − fM)(·,y),θ`

)
L2(Ω1)

=
(

f (·,y),(I−PM)θ`
)

L2(Ω1)
.

Hence, it holds

‖ f − fM‖2
L2(Ω1×Ω2)

=
∞

∑
`=1

∫
Ω2

(
f (·,y),(I−PM)θ`

)2
L2(Ω1)

dy.

Inserting next the definition of S , we obtain

‖ f − fM‖2
L2(Ω1×Ω2)

=
∞

∑
`=1
‖S (I−PM)θ`‖2

L2(Ω2)
=

∞

∑
`=1
‖S θ`‖2

L2(Ω2)
−

∞

∑
`=1
‖S PMθ`‖2

L2(Ω2)
.

Finally, by using

traceK =
∞

∑
`=1

(K θ`,θ`)L2(Ω1)
=

∞

∑
`=1
‖S θ`‖2

L2(Ω1)

and

traceKM =
∞

∑
`=1

(KMθ`,θ`)L2(Ω1)
=

∞

∑
`=1
‖S PMθ`‖2

L2(Ω1)
,

we conclude the assertion. �
By combining this theorem with the approximation estimate (3.7), we can obviously bound the trace

error by

06 traceK − traceKM .M−
2p
n1 ‖ f‖2

H p,0
mix(Ω1×Ω2)

. (3.9)

This estimate now allows to prove the following result on the truncation of the singular value decompo-
sition after M terms.

THEOREM 3.2 Let f ∈ H p,0
mix(Ω1×Ω2). Then, it holds∥∥∥∥ f −

M

∑
`=0

√
λ`(ϕ`⊗ψ`)

∥∥∥∥
L2(Ω1×Ω2)

.M−
p

n1 ‖ f‖H p,0
mix(Ω1×Ω2)

. (3.10)

Proof. Due to the orthonormality of the sequences {ϕ`} and {ψ`} in L2(Ω1) and L2(Ω2), respectively,
the error when truncating the singular value decomposition after M terms is given by∥∥∥∥ f −

M

∑
`=0

√
λ`(ϕ`⊗ψ`)

∥∥∥∥2

L2(Ω1×Ω2)

=

∥∥∥∥ ∞

∑
`=M+1

√
λ`(ϕ`⊗ψ`)

∥∥∥∥2

L2(Ω1×Ω2)

=
∞

∑
`=M+1

λ`.

In view of Theorem 3.1 and (3.9), since λ` > λ M
` for all ` ∈ {1, . . . ,M} (see e.g. Babuška & Osborn

(1991)), we immediately arrive at the following estimate:
∞

∑
`=M+1

λ` .M−
2p
n1 ‖ f‖2

H p,0
mix(Ω1×Ω2)

. (3.11)

�
According to Theorem 3.2, we only need the smoothness of f in the first coordinate to derive esti-

mate (3.10). Since the eigenvalues of integral operator K and its adjoint K̃ are the same, we can also
exploit any smoothness of f in the second coordinate, if provided, by interchanging the roles of Ω1 and
Ω2 in the above proof. We thus obtain the following corollary.
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COROLLARY 3.1 For f ∈ H p1,p2
iso (Ω1×Ω2), it holds∥∥∥∥ f −

M

∑
`=0

√
λ`(ϕ`⊗ψ`)

∥∥∥∥
L2(Ω1×Ω2)

.M−max{ p1
n1

,
p2
n2
}‖ f‖H

p1 ,p2
iso (Ω1×Ω2)

. (3.12)

Altogether, in order to ensure the bound∥∥∥∥ f −
M

∑
`=0

√
λ`(ϕ`⊗ψ`)

∥∥∥∥
L2(Ω1×Ω2)

. ε (3.13)

on the truncation error of the singular value decomposition, we need, as a consequence of Theorem 3.2
and Corollary 3.1, to choose the expansion degree M in accordance with

M ∼ ε
−min{ n1

p1
,

n2
p2
} (3.14)

if f ∈ H p1,p2
iso (Ω1×Ω2). Note that in the situation p = p1 = p2, which means f ∈ H p(Ω1×Ω2), the

truncation rank is simply given by M ∼ ε
−min{n1 ,n2}

p .

3.3 Decay of the eigenvalues

Having Corollary 3.1 at hand, we can give a bound on the decay of the singular values. Note that this
estimate improves the bound

λ` . `
−2min{ p1

n1
,

p2
n2
} as `→ ∞

found in Griebel & Harbrecht (2014), resulting from the application of the min-max principle of Courant-
Fisher, by an additive factor 1 in the exponent. In particular, the new bound below is now sharp (see, for
instance, the specific examples in Griebel & Harbrecht (2014)). Moreover, it coincides with the bound
which was derived in Dölz et al. (2017) and Griebel & Li (2017) by different techniques.

PROPOSITION 3.3 Consider f ∈ H p1,p2
iso (Ω1×Ω2) with associated kernel k from (3.3) and associated

integral operator K from (3.2). Then, the eigenvalues {λ`}`∈N of K decay like

λ` . `
−2min{ p1

n1
,

p2
n2
}−1 as `→ ∞.

Proof. Since the sequence {λ`} decreases monotonically, it holds on the one hand

2k+1−1

∑
m=1

λm = λ1 +(λ2 +λ3)+ · · ·+(λ2k +λ2k+1 + · · ·+λ2k+1−1)6
k

∑
n=0

2n
λ2n ,

and on the other hand

2k

∑
m=1

λm = λ1 +λ2 +(λ3 +λ4)+ · · ·+(λ2k−1+1 +λ2k−1+2 + · · ·+λ2k)>
1
2

k

∑
n=0

2n
λ2n .

This is the well-known Cauchy condensation test, which implies

2k+1−1

∑
m=2k

λm ∼
k

∑
n=0

2n
λ2n .
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For arbitrary k ∈ N, in view of (3.11), we conclude with β := 2min{ p1
n1
, p2

n2
} that

k

∑
n=0

2n
λ2n ∼

2k+1

∑
m=2k

λm .
∞

∑
m=2k

λm . 2−βk.

This, however, leads to

k

∑
n=0

2(β+1)n
λ2n . 2βk

2k+1

∑
m=2k

λm . 2βk
∞

∑
m=2k

λm . 1

uniformly in k ∈ N. Therefore, 2(β+1)nλ2n tends to zero, which immediately implies that `β+1λ` also
tends to zero since

2(β+1)n
λ2n ∼ `β+1

λ` ∼ 2(β+1)(n+1)
λ2n+1 for all 2n 6 ` < 2n+1.

�

3.4 Numerical approximation

In Corollary 3.1, we used an exact description of the eigenfunctions. However, this does not hold in
practice. Instead, the eigenvalues {λ`}M

`=1 and eigenfunctions {ϕ`}M
`=1 and {ψ`}M

`=1 need to be approxi-
mately computed in the finite element spaces which have been introduced in Subsection 2.1.

For functions f ∈ H p1,p2
iso (Ω1×Ω2) with p1 6 r1 and p2 6 r2, we already know that the full tensor

product space yields the best possible approximation. Indeed, the singular values then decay not fast
enough in order to benefit from additional compression. Hence, we shall assume p1 > r1 or p2 > r2 in
the subsequent discussion.

In contrast to Griebel & Harbrecht (2014), we aim not at a direct approximation of the eigenvectors
since then their oscillations would have to be taken into account which does not yield optimal estimates.
Therefore, in the following, we first consider the projection of f onto a suitable full tensor product ansatz
space and perform afterwards a projection onto the M dominant eigenpairs of the projected function.

When choosing the levels of refinement j1 and j2 for the projections Q(1)
j1

and Q(2)
j2

in (2.6), we

obtain Nϕ = dim(V (1)
j1

) ∼ 2 j1n1 and Nψ = dim(V (2)
j2

) ∼ 2 j2n2 degrees of freedoms, respectively. Then,

for KNϕ
:= Q(1)

j K Q(1)
j with eigenvalues λ1,Nϕ

> λ2,Nϕ
> · · ·> λNϕ ,Nϕ

> 0, it holds in complete analogy
to Theorem 3.1 ∥∥(I−Q(1)

j1
⊗ I) f

∥∥2
L2(Ω1×Ω2)

= traceK − traceKNϕ

=
Nϕ

∑
`=1

(λ`−λ`,Nϕ
)+

∞

∑
`=Nϕ+1

λ`

. 2−2 j1 min{p1,r1}‖ f‖2
H

min{p1 ,r1},0
mix (Ω1×Ω2)

.

(3.15)

We emphasize again that there holds λ` > λ`,Nϕ
for all ` ∈ {1,2, . . . ,Nϕ}.

For M6Nϕ , let P(1)
M denote the projection onto the M dominant eigenpairs (λ1,Nϕ

,ϕ1,Nϕ
), . . . ,(λM,Nϕ

,ϕM,Nϕ
)

of KNϕ
, i.e.,

P(1)
M : L2(Ω1)→ L2(Ω1), g 7→ P(1)

M g =
M

∑
k=1

(g,ϕk,Nϕ
)L2(Ω1)

ϕk,Nϕ
.
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Then, we have∥∥(I−P(1)
M ⊗ I) f

∥∥2
L2(Ω1×Ω2)

= traceK − traceP(1)
M KNϕ

P(1)
M

=
M

∑
`=1

(λ`−λ`,Nϕ
)+

∞

∑
`=M+1

λ`

. 2−2 j1 min{p1,r1}‖ f‖2
H

min{p1 ,r1},0
mix (Ω1×Ω2)

+M−2max{ p1
n1

,
p2
n2
}‖ f‖2

H
p1 ,p2
iso (Ω1×Ω2)

,

(3.16)

where we used (3.11) and

06
M

∑
`=1

(λ`−λ`,Nϕ
)6

Nϕ

∑
`=1

(λ`−λ`,Nϕ
)6 2−2 j1 min{r1,p1}‖ f‖2

H
min{r1,p1},0
mix (Ω1×Ω2)

in accordance with (3.15).
We proceed in complete analogy in the second variable. For the projection

P(2)
M : L2(Ω2)→ L2(Ω2), g 7→ P(2)

M g =
M

∑
k=1

(g,ψk,Nψ
)L2(Ω1)

ψk,Nψ

onto the M 6 Nψ dominant eigenpairs (λ̃1,Nψ
,ψ1,Nψ

), . . . ,(λ̃M,Nψ
,ψM,Nψ

) of K̃Nψ
:= Q(2)

j2
K̃ Q(2)

j2
, we

obtain ∥∥(I− I⊗P(2)
M ) f

∥∥2
L2(Ω1×Ω2)

. 2−2 j2 min{p2,r2}‖ f‖2
H

0,min{p2 ,r2}
mix (Ω1×Ω2)

+M−2min{ p1
n1

,
p2
n2
}‖ f‖2

H
p1,p2
iso (Ω1×Ω2)

.
(3.17)

We now choose the levels j1 and j2 such that (2.7) holds. Then, by combining (3.16) and (3.17), we
arrive for any M 6max{Nϕ ,Nψ} at∥∥(I−P(1)

M ⊗P(2)
M ) f

∥∥2
L2(Ω1×Ω2)

. 2−2 j1 min{p1,r1}‖ f‖2
H

min{p1 ,r1},0
mix (Ω1×Ω2)

+M−2min{ p1
n1

,
p2
n2
}‖ f‖2

H
p1 ,p2
iso (Ω1×Ω2)

.

Note that the expression (P(1)
M ⊗P(2)

M ) f corresponds to the desired series expansion

(P(1)
M ⊗P(2)

M ) f =
M

∑
`=1

α`(ϕ`,Nϕ
⊗ψ`,Nψ

),

where the coefficients {α`} are given by

α` := ( f ,ϕ`,Nϕ
⊗ψ`,Nψ

)L2(Ω1×Ω2)
for all ` ∈ {1,2, . . . ,M}.

The approximation error is already fixed by the projection onto the full tensor product space. Hence,
it remains to equilibrate the truncation error, which is induced by M, and the projection error, which is
related to the degrees of freedom Nϕ and Nψ , respectively. This implies the choice

M ∼ ε
−min{ n1

p1
,

n2
p2
}
, Nϕ ∼ ε

− n1
min{p1 ,r1} , Nψ ∼ ε

− n2
min{p2 ,r2} .
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In particular, the assumption p1 > r1 or p2 > r2 implies both, M 6 Nϕ and M 6 Nψ . Thus, in view of
the cost M ·max{Nϕ ,Nψ}, we obtain the following result:

THEOREM 3.4 The number of degrees of freedom, which is needed to approximate a function f ∈
H p1,p2

iso (Ω1×Ω2) by the singular value decomposition approach (3.1) to a prescribed accuracy ε , is

dofsvd(ε)∼ ε
−min{ n1

p1
,

n2
p2
}
ε
−max{ n1

min{p1 ,r1}
,

n2
min{p2 ,r2}

}
. (3.18)

REMARK 3.2 Note that if p1 6 r1 and p2 6 r2, the cost complexity (3.18) also covers the situation when
the full tensor product space coincides with Kolmogorov’s n-width by means of M = min{Nϕ ,Nψ}.
We may hence drop the restriction p1 > r1 or p2 > r2 which has been made in the beginning of this
subsection. Moreover, the cost complexity (3.18) does not improve if f would possess mixed Sobolev
regularity in the sense of f ∈ H p1,p2

mix (Ω1×Ω2).

We emphasize that the estimate (3.18) does not include the work to be spent for computing the
singular values nor the eigenfunctions. Here, a naive approach would result in a cost complexity of
order M ·N2, where N := max{Nϕ ,Nψ}, the use of fast methods for nonlocal operators would result in
an almost linear or even linear complexity per eigenpair. Note that, in any case, at least linear complexity
O(M ·N) is required, which is indeed achieved with modern algorithms, see e.g. Dahmen et al. (2008),
Dai et al. (2008), and the references cited therein. Therefore, our analysis is based on the best possible
situation for the approximative truncated singular value decomposition and our later comparison will be
fair in this respect.

REMARK 3.3 In uncertainty quantification, the truncated singular value decomposition of the random
field under consideration is called Karhunen-Loéve approximation. In particular, one has then higher
regularity only in the spatial variable, i.e., one considers functions f ∈H0,p

mix(Ω1×Ω2), where Ω1 reflects
the sample space and Ω2 the physical domain. Of course, the truncation estimate (3.13) remains true
with p1 = 0 and p2 = p, but an approximation of the eigenfunctions with respect to the sample space
is not possible any more. Instead, one prescribes a certain distribution of the random variables which
involves a modelling step, see Ghanem & Spanos (1991) or Le Maı̂tre & Knio (2010) for details.

4. Sparse grids

Based on the multiscale analyses (2.5) on each individual subdomain, one naturally obtains a second
method to approximate functions in tensor product spaces: By choosing complementary spaces

W (i)
j = span

{
ξ
(i)
j,k : k ∈ ∇

(i)
j := ∆

(i)
j \∆

(i)
j−1

}
, i = 1,2,

such that
V (i)

j =W (i)
j ⊕V (i)

j−1, V (i)
0 =W (i)

0 ,

we can define the so called general sparse grid space, see Bungartz & Griebel (2004) and Griebel &
Harbrecht (2013),

V̂σ
J :=

⊕
j1σ+ j2/σ6J

W (1)
j1
⊗W (2)

j2
(4.1)

where σ > 0 is a given parameter. Thus, a function f̂J ∈ V̂σ
J is represented as

f̂J(x,y) = ∑
j1σ+ j2/σ6J

∑
k1∈∇

(1)
j1

∑
k2∈∇

(2)
j2

β( j1,k1),( j2,k2)ξ
(1)
j1,k1

(x)ξ (2)
j2,k2

(y). (4.2)
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Sparse grids can be constructed via hierarchical bases, interpolets and wavelet-like bases (see e.g.
DeVore et al. (1998), Griebel & Knapek (2009), Strömberg (1998), and Zenger (1991)) or even directly
by finite elements in terms of frames (see e.g. Griebel (1994), Griebel & Oswald (1994), and Harbrecht
et al. (2008b)). They can also be built from Fourier-, Chebyshev-, Legendre- or similar global poly-
nomial systems, depending on the respective situation. This results in the so-called hyperbolic cross
methods. For a survey on sparse grids, we refer the reader to Bungartz & Griebel (2004) and the refer-
ences therein.

The dimension of the general sparse grid space V̂σ
J is essentially equal to the dimension of the

finest univariate finite element spaces which enter its construction, i.e., it is essentially equal to the
value of max

{
dimV (1)

J/σ
,dimV (2)

Jσ

}
. Nevertheless, by considering smoothness in terms of mixed Sobolev

spaces, its approximation power is essentially the same as in the full tensor product space. Precisely, in
accordance with Griebel & Harbrecht (2013), we have the following result:

LEMMA 4.1 The sparse grid space V̂σ
J possesses

dim V̂σ
J ∼

{
2J max{n1/σ ,n2σ}, if n1/σ 6= n2σ ,

2Jn2σ J, if n1/σ = n2σ ,

degrees of freedom. Moreover, for a given function f ∈ H p1,p2
mix (Ω1×Ω2) with 0 < p1 6 r1 and 0 <

p2 6 r2, there holds the approximation estimate

inf
f̂J∈V̂σ

J

∥∥ f − f̂J
∥∥

L2(Ω1×Ω2)
.

{
2−J min{p1/σ ,p2σ}‖ f‖H

p1 ,p2
mix (Ω1×Ω2)

, if p1/σ 6= s2σ ,

2−Jp1/σ
√

J‖ f‖H
p1 ,p2
mix (Ω1×Ω2)

, if p1/σ = p2σ .

As shown in Griebel & Harbrecht (2013), the best cost complexity is obtained for the choice σ =√
n1/n2 which means that the degrees of freedom in the extremal spaces V (1)

J/σ
and V (2)

Jσ
are equilibrated.

It especially holds:

THEOREM 4.1 The number of degrees of freedom, which is needed to approximate a function f ∈
H p1,p2

mix (Ω1×Ω2) in the sparse grid space V̂σ
J with σ =

√
n1/n2 to a prescribed accuracy ε , is essentially

dofmix
sg (ε)∼ ε

−max
{

n1
min{p1 ,r1}

,
n2

min{p2 ,r2}

}
(4.3)

In Theorem 4.1, the convergence rate is given for a function f ∈ H p1,p2
mix (Ω1×Ω2). Nonetheless, we

are also interested in the convergence rate if the smoothness of f is measured in the isotropic Sobolev
space H p1,p2

iso (Ω1×Ω2). Since for all q1 = p1s and q2 = p2(1− s) with s ∈ [0,1] it holds

Hq1,q2
mix (Ω1×Ω2)⊂ H p1,p2

iso (Ω1×Ω2),

we conclude in view of (4.3) the cost complexity

dof iso
sg (ε)∼ min

0<s<1
ε
−max

{
n1

min{sp1 ,r1}
,

n2
min{(1−s)p2 ,r2}

}

for functions in H p1,p2
iso (Ω1×Ω2).

The optimum s is the one that equilibrates the fractions n1
sp1

and n2
(1−s)p2

, which yields

dof iso
sg (ε)∼ ε

−max{ n1
p1

+
n2
p2

,
n1
r1
,

n2
r2
}
. (4.4)

We may hence summarize:
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THEOREM 4.2 The number of degrees of freedom, which is needed to approximate a function f ∈
H p1,p2

iso (Ω1×Ω2) in the sparse grid space V̂σ
J with σ =

√
n1/n2 to a prescribed accuracy ε , is essentially

(4.4).

5. Discussion and concluding remarks

In the present article, we derived the cost complexities of the approximative truncated singular value
decomposition and the general sparse grid approach for given, fixed approximation orders r1 and r2 and
spatial dimensions n1 and n2 of the associated finite element methods. We are aware that this setting is
different to the one in approximation theory, but it clearly reflects practical needs. For making a decision
on which method is preferable, we will compare the two different approximation schemes in case of a
bivariate function f ∈ H p1,p2

iso (Ω1×Ω2).
According to Theorems 3.4 and 4.2, the cost complexity to ensure a desired approximation error ε

is O(ε−q) with

qsvd = min
{

n1

p1
,

n2

p2

}
+max

{
n1

min{p1,r1}
,

n2

min{p2,r2}

}
for the approximation by the singular value decomposition and with

qsg = max
{

n1

p1
+

n2

p2
,

n1

r1
,

n2

r2

}
for the sparse grid method.

Straightforward calculation shows that qsvd > qsg for all choices of n1, n2, r1, r2, p1, p2. If p1 > r1
and p2 > r2, then it even holds qsvd > qsg. This means that the approximation by properly balanced
sparse grids is superior over the approximation by the singular value decomposition in the function
class H p1,p2

iso (Ω1×Ω2). We emphasize that a change from the isotropic Sobolev space H p1,p2
iso (Ω1×Ω2)

to the anisotropic Sobolev space H p1,p2
mix (Ω1×Ω2) does only improve the rate qsg in accordance with

qsg = max
{

n1

min{p1,r1}
,

n2

min{p2,r2}

}
while qsvd is kept unchanged.

In the situation of low regularity, that is, if p1 6 r1 and p2 6 r2, the approximative truncated singular
value decomposition coincides with the approximation in the full tensor product space V (1)

j1
⊗V (2)

j2
, where

j1 and j2 are related by (2.7). This full tensor product space is known to realize Kolmogorov’s n-width

ε
− n1

p1
− n2

p2 for Sobolev balls in the space H p1,p2
iso (Ω1×Ω2). The sparse grid approach would essentially

also give Kolmogorov’s n-width, but has in general larger constants.
In case of the sparse grid approach, we envision further improvements by the use of local adap-

tivity, which would further increase its performance. In case of the singular value decomposition, the
truncation length is determined by the smoothness of the function under consideration and is thus fixed.
Therefore, improvements for the truncated singular value decomposition can only be achieved by a more
efficient representation of the eigenfunctions.

Future work is needed to study the cost complexity in the higher dimensional setting. Especially,
the comparison of the recursive application of the singular value decomposition in a hierarchical tensor
format and the sparse grid approach would be relevant for practical application. For example, our
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results immediately extend the results of Schneider & Uschmajew (2014), regarding hierarchical tensor
formats, also to non-periodic functions on general product domains, since we have now been able to
proof the same decay rate of the singular values as Temlyakov (1993) in case of periodic functions. For
further results concerning the cost complexity of high-dimensional tensor approximation, we refer the
reader to Bachmayr & Dahmen (2015, 2016) and the references therein.
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KOLMOGOROV, A. (1936) Über die beste Annäherung von Funktionen einer gegebenen Funktionen-
klasse. Annals Math., 37, 107–110.
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