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Finite Differences on Sparse Grids for
Continuous Time Heterogeneous Agent Models

Jochen Garcke and Steffen Ruttscheidt

Abstract We present a finite difference method working on sparse grids to solve

higher dimensional heterogeneous agent models. If one wants to solve the arising

Hamilton-Jacobi-Bellman equation on a standard full grid, one faces the problem

that the number of grid points grows exponentially with the number of dimensions.

Discretizations on sparse grids only involve O(N(logN)d−1) degrees of freedom in

comparison to the O(Nd) degrees of freedom of conventional methods, where N

denotes the number of grid points in one coordinate direction and d is the dimension

of the problem. Whereas one can show convergence for the used finite difference

method on full grids by using the theory introduced by Barles and Souganidis [4],

we explain why one cannot simply use their results for sparse grids. Our numerical

studies show that our method converges to the full grid solution for a two-dimensional

model. We analyze the convergence behavior for higher dimensional models and

experiment with different sparse grid adaptivity types.

1 Introduction

A lot of advances in economic research in recent years are due to the formulation

of models that do not admit closed form solutions. One is particularly interested in

models of higher dimensionality, such as heterogeneous agent models which may

have a large amount of agents that differ in some dimensions. These heterogeneities,

such as productivity, can be modeled by stochastic processes. Further, there are

models with a large number of state variables, e.g. New Keynesian models, asset
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2 Jochen Garcke and Steffen Ruttscheidt

pricing models may feature many different assets, while multi-country models may

have a large number of countries.

Thus, it is important to develop efficient numerical methods to approximate and

compute the solution of higher dimensional problems. With standard discretizations,

one faces the problem that one cannot introduce many variables due to the curse of

dimensionality, a terminology coined by Bellman in [6] that describes the exponential

dependence of the overall computational effort on the number of dimensions. In

this work we study how to solve continuous time heterogeneous agent models with

multiple assets in higher dimensions with a finite difference approach on sparse grids.

In [10] a finite difference method is used to solve the Hamilton-Jacobi-Bellman

(HJB) equation in the economic context. This approach was improved in [2] to handle

borrowing constraints by mathematically recasting them as state constraints. The

computational method was further adapted in [20] to handle non-convexities and

multiple assets.

In [31] finite differences on sparse grids were introduced and several theoretical

results regarding consistency, stability and convergence are shown. Further studies

have been made in [14, 15, 36]. Nevertheless, the theory remains limited mostly due

to the difficult handling of specific basis transformations used in the sparse grid finite

difference operators. Furthermore, the implementation is non-trivial and most sparse

grid libraries do not feature these operators. Therefore, we employ a finite difference

method following [3], which is based on interpolation and can be implemented more

easily. Notice that interpolation based ideas were already presented in [21].

With this approach, we are able to solve continuous time heterogeneous agent

models in higher dimensions. Note that we use the same finite difference approach

as in [2], but instead of implementing it on full grids we do it on sparse grids.

This work is structured as follows. The setup and motivation is given in Section 2,

where we present a two-dimensional model problem. In Section 3 we shortly describe

sparse grids and the employed finite differences on sparse grids [3]. An investigation

of sparse grid interpolation is done in Section 4 to explain why we do not simply

get convergence by means of Barles and Souganidis [4], which comes down to the

non-monotonicity of sparse grid interpolation. We further present some approaches

to overcome some of the arising issues regarding non-convergence. It is followed by

a detailed presentation of the algorithm and its implementation in Section 5. Even

though we do not have a theoretical convergence result, we give numerical results in

Section 6 that show that our sparse grid solution converges to the full grid solution

for a two-dimensional model. We further implement higher dimensional models for

our numerical experiments in which we analyze the convergence behavior for regular

sparse grids and for adaptive sparse grids with different adaptivity approaches. We

conclude this work with an outlook in Section 7. The Appendix contains information

about the implemented higher dimensional models and the choice of parameters for

the numerical experiments.
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2 Heterogeneous agent models as optimal control problems

In this work we aim to solve heterogeneous agent models. Even though traditionally

heterogeneous agent models have mostly been set in discrete time, recently there is a

lot of progress using continuous time formulations. Several well known heteroge-

neous agent models (e.g. Bewley, Huggett, and Aiyagari models) were recasted in

continuous time by [2]. Even though we restrict ourselves to certain types of model

in our experiments, we point out that the presented framework is basically applicable

to any heterogeneous agent model. We here mainly follow [26]. For mathematical

descriptions and proofs, see [23].

2.1 Optimal control problems

Most deterministic infinite time optimal control problems in continuous time can be

written as

max
{α(t)}t≥0

J(x,α), with J(x,α) :=
∫ ∞

0
e−ρth(x(t),α(t))dt (1)

such that the law of motion for given state x and control α

ẋ(t) = f (x(t),α(t)) and α(t) ∈ A

holds for t ≥ 0 and x(0) = x0 given using the notation ẋ(t) = d
dt

x(t).
Here x ∈ X ⊂ R

m denotes the state vector, α ∈ A ⊂ R
n the control vector and

h : X×A→R the instantaneous return function. Further, ρ ≥ 0 denotes the discount

rate which discounts future returns. Note that the state changes depending on the

current state and action (control), following f : X×A→ R
m.

Note that there are finite time and infinite time models. In economics, infinite time

models are often just used to simplify theoretical aspects. Due to discount factors or

similar model parameters the results often do not differ much. For example, there

are also stopping time problems that give an extra utility at a specific stopping time.

We point out that, even though we just solve infinite time models in this work, the

numerical approach can be used for other model types in the same fashion.

The value function associated to the problem (1) is defined as

v(x) = max
{α(t)}t≥0

J(x,α).

We define the optimal control as the α̂ ∈ A such that

v(x) = J(x, α̂).

Note that we aim to find the optimal controls for our model problems by solving for

the value function which is the solution of the HJB equation.
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To solve optimal control problems, we use the dynamic programming principle

(DPP) introduced by Bellman, see [5]. It is based on the recursive structure of the

problem. By using this principle one can show that the value function satisfies the

HJB equation

ρv(x) = max
α∈A

h(x,α)+Dxv(x) · f (x,α), ∀x ∈ X . (2)

To compute the optimal controls, one uses the first order conditions (FOCs) on the

HJB equation. For that, one computes the derivatives with respect to the different

controls and sets them to zero.

2.2 Optimal control problems in economics

The above framework can be used to model economic settings. We present a simple

economic model and explain several possible extensions in the economic context.

Note that we omit the initial state in the following and denote the time dependence

of the states by a subscript t.

Consider the following simple one-dimensional deterministic model. We want to

maximize

max
{ct}t≥0

∫ ∞

0
e−ρtu(ct)dt (3)

subject to

ḃt = w+ rbbt − ct . (4)

Here ct is consumption and bt are liquid assets at time t respectively. Further, rb

denotes returns on b and w is wage.

Whereas wage and consumption are self-explanatory, we aim to explain the other

components of the model. One can label an asset as liquid or illiquid depending on

the extend to which transaction costs are involved for buying or selling them. As it

is done in [20], we define liquid assets as deposits in financial institutions saving,

checking, call and money market accounts, government bonds and corporate bonds

net of revolving consumer credit. The rate of returns indicates at which rate the assets

generate earnings. Note that for negative b this is a borrowing rate.

Notice that for the framework given in Section 2.1 we have the state x(t) = bt and

the control α(t) = ct at time t. Moreover, the state changes at time t are modeled by

f (x(t),α(t)) = f (bt ,ct) = w+ rbbt − ct . Thus, at time t, for the liquid asset state bt ,

we want to choose an optimal control ct , i.e. how much we consume, to maximize

(3). Note again that this choice directly reflects in the change of the state. A standard

choice for the return function h is the Constant Relative Risk Aversion (CRRA)-utility

function given by

u(c) =
c1−γ

1− γ
(5)
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parameter γ > 0. Note that u is strictly convex and strictly monotone increasing in c.

For the model (3) - (4), we get the HJB equation

ρv(b) = max
c

u(c)+ v′(b)(w+ rbb− c).

Using the first order conditions explained in Section 2.1, one gets

c = (u′)−1(v′(b))

and given the derivative (or later its approximation) one can simply compute the

optimal control.

One can additionally introduce a borrowing constraint which is the maximum

amount of money an agent can borrow, e.g. from banks, firms or governments. It can

be modeled by

bt ≥ b
¯
, (6)

i.e. the value of liquid assets b cannot go below b
¯
. Notice that b

¯
= 0 means that the

agent is not allowed to borrow but just to save. For an explanation of specific types

of borrowing constraints like the natural borrowing limit, we refer to [2].

Instead of just having liquid assets, we can extend the model to also feature illiquid

assets. One can model this by asset holdings of a household evolving according to

ḃt = wztr
b(bt)bt −dt −χ(dt ,at)− ct

ȧt = raat +dt

bt ≥ b, at ≥ 0

(7)

where at denotes illiquid assets, dt is the deposit rate and χ(dt ,at) the transaction

cost function for time t respectively. We point out that the modified model features

both an additional control, i.e. d, and an additional state, i.e. a.

Contrary to liquid assets bt , illiquid assets at cannot be sold that easily without

loosing value since (higher) transaction costs for selling and buying are involved. The

deposit rate is the amount one transfers into the other account. If dt > 0, one deposits

into the illiquid account and if dt < 0, one withdraws from the illiquid account.

Households have to pay a transaction cost χ(dt ,at) for depositing or withdrawing

from their illiquid account. In [20] it is pointed out that in the equilibrium illiquid

assets pay a higher return than liquid assets due to the transaction costs, i.e. ra > rb.

Furthermore, it is easily possible to extend the deterministic setting described

above to a stochastic one by adding heterogeneity to the model. We explain it for

general diffusion type stochastic processes and a two-state Poisson process.

Let us begin with the modified model for the former. We want to solve

max
{ct}t≥0

E0

∫ ∞

0
e−ρtu(ct)dt (8)
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subject to

ḃt = wzt + rbbt − ct

żt = µ(zt)dt +σ(zt)dWt

bt ≥ b
¯
.

(9)

We assume that the exogenous productivity state z evolves stochastically over time

on a bounded interval [z
¯
, z̄] with z

¯
≥ 0 such that the diffusion is reflected on the

boundaries in dimension z, i.e.

∂zv(b,z
¯
) = 0 and ∂zv(b, z̄) = 0, for b ∈ (b

¯
,∞).

Instead of simply getting wage w, one now gets uninsured income wzt . Notice further

that we now have to take the expected value in (8) since the model is no longer

deterministic. Thus, productivity, which is a measure for the output per unit of input,

is modeled such that it influences the households income. For the same model setup

one could also interpret z as specific skill that influences the income. Note that all

agents face different productivity shocks and thus this is an example of an economic

model featuring heterogeneity.

Using Itô’s lemma, see e.g. [29], one can show that the model leads to the HJB

equation

ρv(b,z) = max
c

u(c)+∂bv(b,z)(wz+ rbb− c)

+∂zv(b,z)µ(z)+
1

2
∂zzv(b,z)σ

2(z)
(10)

for the modified model.

If we instead replace żt = µ(zt)dt +σ(zt)dWt in (9) by

zt ∈ {z1,z2} Poisson with intensities λ1,λ2, (11)

we have a two-state Poisson type process instead of continuous stationary diffusion

process for productivity z. The HJB equation for model (8)-(9) modified by (11) is

then

ρv(b,z) = max
c

u(c)+∂bv(b,z)(wz+ rbb− c)+λi(v(b,z j)− v(b1,zi)) (12)

with Poisson states i, j = 1,2, j 6= i.

2.3 A model with two state variables – a two-asset model

We now explain the economic models that we employed for our numerical experi-

ments, following closely the presentation in a supplement to [20] for the two asset

model. Specifically, we want to solve the following maximization problem
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max
{ct ,dt}t≥0

E0

∫ ∞

0
e−ρtu(ct)dt (13)

subject to

ḃt = wztr
b(bt)bt −dt −χ(dt ,at)− ct

ȧt = raat +dt

zt = Poisson with intensities λ (z,z′)

bt ≥ b, at ≥ 0.

(14)

Here bt denotes liquid assets and at illiquid assets. The respective returns on these

assets are rb and ra. Further, we have consumption ct , deposits dt , the transaction

cost function χ and wage w. The idiosyncratic productivity zt follows a Poisson

process with intensities λ (z,z′). The setting can easily be extended to diffusion

type stochastic processes. We use the standard CRRA-utility function (5) and the

transaction cost function χ given by

χ(d,a) = χ0|d|+
χ1

2

(
d

a

)2

a+χ21{d 6=0}

with derivative w.r.t. d given by

χd(d,a) = χ01{d>0}−χ01{d<0}+χ1
d

a
.

By the standard steps, we get the HJB equation

ρv(b,a,z) =max
c,d

u(c)

+ vb(b,a,z)(wz+ rb(b)b−d−χ(d,a)− c)

+ va(b,a,z)(r
a +d)

+∑
z′

λ (z,z′)(v(b,a,z′)− v(b,a,z)).

The first order conditions w.r.t. c and d yield

uc(c) = vb(b,a,z),

va(b,a,z) = vb(b,a,z)(1+χd(d,a))

and thus we can simply compute the optimal consumption and optimal deposits given

the value function derivatives. The optimal consumption is then given by

c = (vb(b,a,z))
− 1

γ .

Using our cost function, we get the optimal deposits for illiquid assets
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d = d+
︸︷︷︸

case d>0

+ d−
︸︷︷︸

case d<0

=

(
(va

vb

−1−χ0

) a

χ1

)+

+

(
(va

vb

−1+χ0

) a

χ1

)−

.

(15)

2.4 Higher dimensional models

We refer to the Appendix for higher dimensional models which are natural extensions

of this two-dimensional model, where we add assets such as housing ones or multiple

diffusion type stochastic processes for different types of productivity.

2.5 Approaches used in economics to handle high dimensional

discrete time model problems

We refer to [32] for a broad overview of computational methods for solving high

dimensional discrete time economic models. Let us briefly summarize the most

important approaches and additionally reference some more recent works.

Conventional numerical methods to solve dynamic economic models do not

allow feasible or accurate computations in higher dimensions. Stochastic simulation

algorithms build on Monte Carlo integration and least square learning. Whereas the

former does not achieve a high accuracy, the latter may become unstable. Further,

projection methods build on tensor product constructions and are thus not feasible

in high dimensions. Last but not least, perturbation methods that solve for a steady

state by using Taylor expansions have uncertain accuracy.

To overcome the above described issues, the approaches were adapted to handle

high dimensional problems. In [18] a generalized stochastic simulation approach is

proposed that replaces the Monte Carlo integration with a deterministic one, and the

least squares learning with numerically stable regression methods. In [22] sparse

grids are used to replace the expensive tensor product grids. For perturbation methods

that are feasible in higher dimensions, see [17] and [25].

Sparse grids in combination with a fixed point iteration on the Euler equation are

proposed in [19] to solve a multi-country model featuring up to twenty state variables.

Combining it with a simulation to determine the high probability area and then using

a principal components transformation allows it to focus the computation on the

relevant domain. Parallel adaptive sparse grids were recently used in [8] to solve high

dimensional stochastic dynamic models where functions are interpolated on a sparse

grid either within time or value iterations. Further, in [33], dynamic portfolio choice

models are solved with adaptive sparse grids.

For a general overview of stochastic optimal control in the discrete time case, we

refer to [7] and the references therein.
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3 Sparse Grids

Sparse grids were introduced in [35] and go back to [34]. We give only a short

introduction here.

To construct sparse grids, one uses a tensor product construction to obtain a

multi-dimensional basis on the d-dimensional unit cube Ω̄ := [0,1]d from the one-

dimensional hierarchical basis. We use the multi-index l = (l1, . . . , ld) ∈N
d to denote

the level. We then consider the set of d-dimensional rectangular grids Ωl with mesh

size

hl := (hl1 , . . . ,hld ) := 2−l.

With each individual grid point xl,i, we associate a piecewise d-linear nodal basis

function

Φl,i :=
d

∏
j=1

Φl j ,i j
(x j),

which is the product of the one-dimensional basis functions and has support of size

2hl. Using these basis functions, we can define the d-dimensional nodal function

spaces

Vl := span{Φl,i : 1≤ i≤ 2l−1}

which are zero on the boundary ∂Ω and consist of piecewise d-linear functions, and

the d-dimensional hierarchical increment spaces

Wl := span{Φl,i : i ∈ N
d : 1≤ i≤ 2l−1, i j odd ∀ 1≤ j ≤ d }.

Instead of the full grid spaces

Vn :=V(n,...,n) =
⊕

|l|∞≤n

Wl

the idea is now to use sparse grid spaces V̂n of level n defined by

V̂n :=
⊕

|l|1≤n+d−1

Wl.

See [9, 12, 28] for details and approximation properties.

3.1 Finite difference schemes on sparse grids

Finite differences on sparse grids were introduced and studied in [31], where consis-

tency proofs and convergence results are given, see also [14, 15, 30]. The construction

of finite difference operators are based on a dimensional splitting combined with a

nodal to hierarchical basis transformation and its respective back-transform.
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The sparse grid finite difference operators are a composition of three partial

operators,

• a basis transformation from nodal to hierarchical basis in all dimensions but the

dimension j in which we aim to use the finite difference stencil,

• application of a finite difference stencil in dimension j with mesh size given as

the local step size to the neighboring grid point in dimension j,

• a basis transformation from hierarchical to nodal basis in all dimensions but

dimension j.

The finite difference operators use per dimension the neighboring grid points of

the respective grid point, i.e. the closest grid points in the dimension. For the approx-

imation of the derivative on regular sparse grids, one uses appropriate equidistant

difference stencils. If adaptive refinement is used, the grid points in the different

dimensions are no longer equidistant, that is the distance is no longer defined by

lmax j
, but the stencil is still chosen such that the closest neighbors in the respective

dimensions are used.

We consider an alternative approach [3], which introduces additional points and

interpolates using these. Instead of using the function values on the sparse grid points,

one interpolates on nodes that we will refer to as ghost nodes. This way we do not

have to use specific basis transformations and one could simply take any sparse grid

library, such as SG++ [28], to implement this approach.

Following [3], we first define the above noted ghost points. Afterwards, we

describe interpolation operators working on these points. Finally, we introduce the

finite difference operators by using these interpolation operators.

To define ghost nodes, we start by defining the ghost node step size.

Definition 1 (Ghost node step size). We define the ghost node step size hg j
in

dimension j, 1 ≤ j ≤ n, for a grid point xl,i by hg j
:= 2−k j where k j denotes the

maximal level used in dimension j.

Note that this is half of the size of the smallest support of the basis functions

in this dimension. This makes sense since for this step size the local behavior of

the approximation is still captured. For adaptive sparse grids, one could also take a

bigger distance in some grid points, but due to the linearity of the approximation in

this part this does not change the result.

Note that for the different sparse grid operators, we need to interpolate on dif-

ferent points. For the forward difference we have to add the ghost node step size

in the respective dimension and for the backward difference we have to subtract it

in the respective dimension. We refer to them as forward difference ghost nodes

and backward difference ghost nodes. Notice that for the second derivative finite

difference, we can use the first derivative operators. Other difference operators are

possible but we restrict ourselves for a simplified presentation.

Definition 2 (Ghost node). For a grid point xl,i in which we aim to compute the

finite differences in dimension j, 1≤ j ≤ d, we define the corresponding forward

difference ghost node by
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Fig. 1: Visualization of the ghost points for the forward difference in x-dimension:

ghost node (red) that is used for the sparse grid forward finite differences in x-

dimension in the green grid point in the left graphic, and on the right all forward

difference ghost nodes that are used for the sparse grid are drawn in red.

g
F, j
l,i := (xl1,i1 , . . . ,xl j ,i j

+hg j
, . . . ,xld ,id )

and similarly for the backward difference we define the corresponding backward

difference ghost node by

g
B, j
l,i := (xl1,i1 , . . . ,xl j ,i j

−hg j
, . . . ,xld ,id ).

An example for ghost nodes is given in Figure 1.

We can now define the finite difference operators on sparse grids that are based

on interpolation.

Definition 3 (Interpolation based sparse grid finite difference operator). Let us

denote the interpolation operator on the sparse grid by

Is :

l⊕

k=1

Wk→Vl.

We define the interpolation operator for the by hg j
shifted sparse grid, that is the

grid of ghost nodes, for the forward difference IF
hg j

and backward difference IB
hg j

in

dimension j, 1≤ j ≤ d by

IF
hg j

:

l⊕

k=1

Wk→Vl and IB
hg j

:

l⊕

k=1

Wk→Vl.

For a given grid and the desired difference operator, we can simply compute all

respective ghost nodes and interpolate on these.

We define the sparse grid forward difference operator D̃
S,F
j by

D̃
S,F
j := IF

hg j
− Is :

l⊕

k=1

Wk→Vl.

The sparse grid backward difference operator D̃
S,B
j is given by
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D̃
S,B
j := Is− IB

hg j
:

l⊕

k=1

Wk→Vl.

We point out that one does not have to use interpolation for the boundary points in

the respective dimension (see the right picture in Figure 1 with red points on top of

sparse grid points) since the function values for these grid points are already known.

For higher levels though, these points only make a small portion of the overall needed

ghost points and thus one does not gain a lot by excluding these points from the

interpolation operation.

Notice that the interpolation operators work on hierarchical values. Note further

that we can similarly define other finite difference operators by interpolating on the

required points. Let us turn to the boundary handling. Since the forward difference is

not defined on the upper boundary, we use the backward difference and thus also the

backward difference ghost nodes here. Similarly, we use the forward difference on

the lower boundary since the backward difference is not defined here.

For the second derivative difference operator, we can also use the above approach

by interpolating to the respective points. If we need both the first and the second

derivative, there are two approaches to avoid recomputations. First, one can use the

interpolated values that one used for the first derivative finite differences also for the

second derivative finite differences. Second, one can use the computed first derivative

operators to compute the second derivative one by using the following relationship

between the first and the second derivative operators on sparse grids given by

D̃S
j j = D̃

S,B
j ◦ D̃

S,F
j = D̃

S,F
j ◦ D̃

S,B
j

which is a well known identity for the full grid operators, as is also pointed out in

[31].

The operators are linear and can thus be represented by matrices, therefore a

comparison of the approaches can be easily undertaken using the corresponding

matrices. Observe that the version presented in [31] is working on nodal values,

whereas the interpolation based version is working on hierarchical basis coefficients.

One thus applies the nodal to hierarchical basis transformation as first operation in

the interpolation based version to compare the arising discretization matrices of both

sparse grid finite difference approaches. For regular sparse grids of level l = 1,2,3, it

is confirmed that both approaches yield the same finite difference operator [30]. The

relationship between the two approaches will be topic of the upcoming work [3].

3.2 Adaptive sparse grids

There are cases in which one wants to use an adaptive sparse grid. For example, this

is the case if has some steep regions in other parts. The idea is to add new points to

the sparse grid if it is likely that they increase the obtained accuracy enough. This is

called adaptive refinement. As a criterion for adaptation one typically uses a local
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error estimation based on the hierarchical surplus (coefficient). If one finds such a

point, one can add its child nodes (in the hierarchical structure). Vice versa, grid

points whose corresponding basis functions do not contribute much are removed

in a coarsening step. For a description of similar algorithms for refinement and

coarsening, see [13], and a general view can be found in [28].

We use different types of adaptivity criteria that are based on the hierarchical sur-

pluses as an error indicator. The overall algorithm uses both, the adaptive refinement

and the adaptive coarsening together. Given an index set I , a refinement parameter ε ,

a coarsening parameter ν and the approximated function v on QI we can refine and

coarsen the grid and approximate the function on the new grid. For our experiments,

we use the coarsening parameter ν = ε/10 which is a typical choice. An additional

component can be self-adaptivity as also used in [31], where the refinement threshold

and coarsening parameter are automatically decreased when no new points are added

by adapting with the current parameters.

We perform experiments with several types of adaptivity criteria since there

is no theoretical rule determining which criterion is optimal. The solution of the

HJB equation — the value function — often does not give a lot of useful insight.

Thus, we are also interested in a good approximation of the policy functions. These

are computed by the approximated derivatives of the value function. Hence, it is

not directly clear where the grid should be refined. That is why we study value

function adaptivity and policy functions adaptivity. Additionally, we experiment with

combinations of both.

Thus, for the value function adaptivity we use the hierarchical coefficients of

the sparse grid value function approximation. Similarly, we use the hierarchical

coefficients of the policy function approximation for the policy function adaptivity.

Hence, for the two dimensional model (13)-(14) described in Section 2.3, we can use

a value function adaptivity, a consumption function adaptivity, or a deposit function

adaptivity.

Moreover, we use the combination of the above described adaptivity types. One

possibility is a logical combination. By that we mean the use of a logical operator

like OR or AND to combine adaptivity with respect to different functions, i.e. the

criteria has to be fulfilled by one of them, i.e. OR, or all of them, i.e. AND, to mark

a point for adaptivity. Moreover, one can implement a weighted combination by

computing a weighted sum of the hierarchical coefficients of different functions on

the same points.

4 (Non-)Convergence of Sparse Grid Finite Difference Schemes

for solving the HJB equation

The requirements one needs to fulfill to obtain a convergent approximation scheme

for HJB equations by means of Barles and Souganidis [4] involve a stable, consistent

and monotone scheme. Whereas it is trivial to show that we need monotone inter-



14 Jochen Garcke and Steffen Ruttscheidt

polation in this theoretical framework, we face the problem that one cannot prove

that interpolation on sparse grids is monotone in general, as it is already pointed out

in [16], see also [28]. [3] notes that the introduced upwind finite difference scheme

converges even though the scheme is not monotone. However, [3] does not give

examples or justifications that it is not monotone.

Obviously, in just one dimension it is monotone since it is just a specific type of

linear interpolation. This does not help when it comes to solving higher dimensional

problems and we thus need monotone interpolation in multi-dimensional settings.

Notice that we only use one-dimensional monotonicity and thus just need monotonic-

ity with respect to the different dimensions, in particular with respect to the used

ghost points. We now investigate if by restricting ourselves to concave monotonically

increasing functions, such as the value functions arising from our models, one can

achieve monotonicity.

4.1 (Non-)monotonicity of interpolation on sparse grids

Let us begin by giving our definition of monotone interpolation.

Definition 4 (Monotone interpolation in one dimension). Let x1, . . . ,xn be data

points with x1 < .. . < xn. A function f is called monotone, if it holds that f (x1)≤
. . .≤ f (xn) or f (x1)≥ . . .≥ f (xn). In case of strict inequalities f is strictly monotone.

The interpolation fI of f is monotone, if for every pair of two points x̃1 < x̃2, x̃1, x̃2 ∈
[x1,xn] it holds

fI(x̃1)≤ fI(x̃2) for f (x̃1)≤ f (x̃2)

or

fI(x̃1)≥ fI(x̃2) for f (x̃1)≥ f (x̃2),

with strict inequality for strictly monotone interpolation.

Note that we are interested in higher dimensions and aim for one-dimensional

monotone interpolation for the restriction to the different dimensions respectively,

and in particular with respect to the ghost points.

In the following examples we add a high constant to the functions to not exclude

boundary points when we say “all” hierarchical coefficients. This is not necessary

and we could also restrict ourselves to the inner points. Further, whenever we say

“coefficients”, we mean the hierarchical coefficients in the sparse grid function repre-

sentation. Let us begin our investigation by motivating the restriction to monotonically

increasing concave functions.

In the following we consider concave functions which in [0,1]2 are monotone.

4.1.1 Strictly increasing concave functions with positive coefficients

Notice that for the strictly increasing concave function
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(a) Function plot of f2 (b) Interpolation plot of f2

Fig. 2: Plots of the original function f2 on the left and its sparse grid interpolation of

level l = 7 on the right

f1(x,y) =−1000(1− x)2−1000(1− y)2 +10000,

we end up with just positive coefficients and we also get a monotone interpolation.

A more interesting case arises for the function

f2(x,y) =−(1− x)30− (1− y)30 +50,

which has extremely steep gradients close to (0,0) and is flat in the other parts of the

domain. This function is also strictly concave and monotonically increasing. Notice

further that all hierarchical coefficients are positive. In Figure 2 one can see that the

interpolation looks monotone. Explicitly checking the monotonicity shows that the

approximation is monotone up to machine accuracy.

4.1.2 Non-monotone sparse grid interpolation for concave monotonically

increasing functions

We now give a counter example to show that sparse grid interpolation for monotoni-

cally increasing concave functions is not monotone in general. To achieve this, we

give a concave monotonically increasing functions for which negative hierarchical

coefficients arise. Let us consider the interpolation of the function

f3(x,y) =
−1

1+10x+10y
+50.

The reason that we chose this function is that it is similar to functions that arise as

value function for some models. Computing the eigenvalues of the Hessian shows that

it is negative semidefinite in [0,1]2 and thus the function is concave. Unfortunately,

we see in Figure 3 and Figure 4 that the interpolation is not monotone. Increasing

the factors in front of x and y also increases this effect. Note that the function is not

strictly concave. You can also see this by looking at the contour plot of the function,

where you see the non-monotonicity of the interpolation in the interpolation contour
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(a) Function plot of f4 (b) Interpolation plot of f4

Fig. 3: Plots of the original function f3 on the left and its sparse grid interpolation of

level l = 3 on the right

plot. We use a sparse grid level l = 3 in the following, but corresponding counter

examples can be constructed for other levels.
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(a) Contour plot of function f3
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(b) Contour plot of the interpolation of f4

Fig. 4: Contour plots of the function f3 on the left and its sparse grid interpolation of

level l = 3 on the right

Note further that the above interpolation is in particular not monotone with respect

to the points used for our sparse grid finite differences. In Figure 5 one can see that

the value shown in red is higher than the one in green. Thus, even if we restrict

ourselves to the ghost points, we do not have the monotonicity we hoped for.

You may come to the conclusion that we just have monotone interpolation for

strictly concave functions. There are several examples for strictly concave functions

though which also yield non-monotone sparse grid interpolation, e.g. f4(x,y) =
−1

1+(x+0.01)0.2+(y+0.01)0.2 +50. The interested reader can check the concavity by using

the leading principal minors criteria. Further, we point out that one cannot simply set

the negative coefficients to zero to get a monotone approximation.
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Fig. 5: For the backward difference at (0.5/0.25), one uses the values drawn as the

green and the red point

4.1.3 Overcoming the non-monotonicity of sparse grid interpolation
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(a) Contour plot for the interpo-

lation of f4 for level l = 5
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(b) Contour plot for the interpo-

lation of f4 for level l = 7
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(c) Contour plot for the interpo-

lation of f4 for level l = 9

Fig. 6: Plots of contour plots for the sparse grid interpolation of f4 for different levels.

There are several approaches to get monotone interpolation on sparse grids. The

most trivial way is to go to a higher sparse grid level, this is visualized in Figure 6

where the interpolation of f4 is presented for sparse grid levels l = 5,7,9 instead

of l = 3. The approach is simple, but one cannot go to arbitrarily high levels in

higher dimensions, besides for higher levels corresponding counter examples can be

constructed as well.

Alternatively, one can identify the areas where non-monotonicities arise and insert

points only in these areas. For that, one can adapt the sparse grid using the hierarchical

coefficients as error indicator, as it is done in standard adaptive approaches. Another
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approach is to go to a ”full” grid in the critical area. Here, one determines the

maximal one-dimensional level used in the critical area and then simply uses the full

grid level. Thereby non-monotonicity cannot arise in this area. For investigations

on these approaches for monotone functions see [30]. Specific to our situation, a

promising alternative refinement is to use the computed derivatives. That is, one can

use the approximations of the derivative and check if these are non-negative since

that indicates a non-monotone interpolation. By marking such points for adaption,

one can iterate until all derivative approximations are non-negative or below a certain

error threshold.

5 Numerical approach using an upwind scheme

Let us follow the very recent work of [2] and give a simple example model to explain

how to construct a consistent, stable and monotone finite difference scheme on full

grids for solving the HJB equation arising from economic models. The approach was

extended to sparse grids and applied to economic models in [3]. You can find a more

mathematical description of finite difference schemes for solving the HJB equation

that is not targeted to economic models in [1].

Notice that in our approach we follow exactly the same scheme, but instead

of using a full grid with standard finite differences we use a sparse grid with the

difference operators introduced in [3], as described in Section 3.1. The idea is to

use an approach with proven convergence on full grids and show the approximation

quality for the sparse grid finite difference method following the same upwind

scheme. At the end of this subsection, we generalize the matrix notation so that it

can easily be extended to the sparse grid setting.

For ease of presentation, let us consider the simple one-dimensional deterministic

model already presented and explained in Section 2.2 consisting of equations (3),(4)

and (6). Notice that ct is our control and bt reflects the state at time t. Thus, given the

state, we want to choose an optimal control and this choice directly reflects in the

change of the state.

5.1 Discretization

The finite difference approximation of the HJB equation (2), using J points, is

ρv(b j) = u(c j)+ v′(b j)(w+ rbb j− c j), c j = (u′)−1(v′(b j)), j = 1, . . . ,J (16)

where v(b j)
′ = v′j is either the forward or the backward difference approximation.

Note that the computation for c arises from the first order condition with respect to c.

In the following, whenever we state an equation for j, this holds true for j = 1, . . . ,J.

This is also the case for other states added later on.
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An issue when constructing such a scheme is the monotonicity condition. We

use an upwind scheme that gives us a rule for the choice of the finite difference:

we use the forward difference when the drift of the state variable (here: savings

s j = w+ rbb j − c j) is positive and the backward difference if it is negative. To

formalize this let us, for a function v, denote the forward difference by vF and

the backward difference by vB. For the drift the superscripts indicate which finite

difference operation is used on the value function. Let us define

sF
j = w+ rbb j− cF

j and sB
j = w+ rbb j− cB

j

with cF
j = (u′)−1(vF

j ) and cB
j = (u′)−1(vB

j ). Notice that since v is concave, it holds

vF
j ≤ vB

j and thus directly sF
j ≤ sB

j . If sF
j ≤ 0 ≤ sB

j , we set s j = 0 which leads to

v′(b j) = u′(w+ rbb j) by simple algebra, i.e. we are in the steady state. Note that we

can thus approximate the derivative v′j by

v′j = vF
j 1{sF

j >0}+ vB
j 1{sB

j <0}+ v̄ j1{sF
j ≤0≤sB

j }

with v̄ j = u′(w+ rbb j). This construction obviously yields monotonicity but there is

also an intuition for this: if the continuation value at v j−1 or v j+1 is higher we are at

least as well off.

Denoting max{x,0} as x+ and min{x,0} as x− for any x ∈ R we end up with

ρv j = u(c j)+
v j+1− v j

∆b
(sF

j )
++

v j− v j−1

∆b
(sB

j )
−.

We should mention that there is a circular element to the above equation in the sense

that v′j is also used to compute c j. Due to the well known envelope condition this

does not change the monotonicity, see [2]. Furthermore, it is possible to construct

other monotone schemes but this one is perfectly suited to implement borrowing

constraints which we turn to now.

5.1.1 Numerical approach for handling the borrowing constraint

At the lower end of the state space, i.e. at b1, we aim to impose the borrowing

constraint bt ≥ b
¯
. We have two main ingredients:

• the first order condition still holds at the boundary: u′(c(b
¯
)) = v′(b

¯
)

• to respect the constraint we need: s(b
¯
) = w+ rbb

¯
− c(b

¯
)≥ 0.

Since u is strictly monotonically increasing and concave we get

v′(b
¯
)≥ u′(w+ rb

¯
)

by a simple combination of the above points. We can ensure that the borrowing

constraint is never violated by setting
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vB
1 ≡

v1− v0

∆b
= u′(w+ rb1).

Hence, the boundary condition is only imposed if s1 < 0 and thus only for the

backward difference.

Let us turn to the upper end of the state space, i.e. bJ . One should make sure that

the backward difference is used at the upper bound. If bJ is large enough, savings

are always negative and thus s+J = 0. Therefore, the forward difference is never used

at the upper bound so that no boundary condition has to be imposed. In practice, it

can be appropriate to use an artificial state constraint a≤ amax and treat it like the

borrowing constraint, just for the upper bound.

We further use the concept of soft borrowing constraints in order to avoid spikes

that are counter-factual to empirical observations. We refer to [2] for a description.

5.1.2 Numerical approach for overcoming the non-linearity

The HJB equation is highly nonlinear due to the maximum operator. We use an

iterative scheme to solve this equation, i.e. policy iteration as for example explained

in [11]. Its general idea is to linearize the HJB equation by omitting the maximum

operator and using an iteration instead of searching for the maximum.

In our setting, we end up with the following explicit method for the discretized

HJB equation

vn+1
j − vn

j

∆
+ρvn

j = u(cn
j)+

vn
j+1− vn

j

∆b
(sF,n

j )++
vn

j − vn
j−1

∆b
(sB,n

j )−, (17)

where n denotes the iteration step.

Let us describe the algorithmic approach. Notice that all computations are done

for all grid points even though we omit this in the presentation. We have a grid on

which we compute the policy functions for every grid point in every iteration. We

start with an initial guess for the policy functions by simply setting these to zero. For

this initial guess, we can directly compute a value function approximation. We then

can use the value function approximation at every point to compute the respective

optimal control. With the new optimal control, we can then compute an improved

approximation to the value function. Doing this, we stop when the value function

approximation of consecutive iterations does not differ much.

There are two main interpretations for (17). The first one is the use of the Newton

method for solving the system of non-linear equations (16). The other one is that the

iterative scheme is equivalent to solving the HJB equation backward in time. Hence,

(17) basically sets v(b,T ) as initial guess and solves

ρv(b, t) = max
c

u(c)+∂kv(b, t)(w+ rbb− c)+∂tv(b, t)

backward in time, i.e. v(b) = limt→−∞ v(b, t).
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Note that (17) denotes an explicit scheme, i.e. it is possible to compute vn+1 given

vn by a simple computation. Contrarily, the implicit version is given by

vn+1
j − vn

j

∆
+ρvn

j = u(cn
j)+

vn+1
j+1− vn+1

j

∆b
(sF,n

j )++
vn+1

j − vn+1
j−1

∆b
(sB,n

j )− (18)

where the value functions on the right hand side are of step n+1. Thus, one has to

solve a linear system to solve (18) for every grid point. We note that this system is

not fully implicit since the consumption c of step n is used in the computation (also

for the drifts s
F,n
j and s

B,n
j ). Using a Newton method, one could also solve the fully

implicit method.

Explicit schemes are often easier to understand but they are only stable if they

satisfy the so-called CFL condition which gives an upper bound on the step size.

Contrarily, implicit schemes are unconditionally stable. We restrict ourselves to

implicit schemes, such as (18), in our implementations and the following presentation

since for explicit schemes one has to use an extremely small time step size and thus

a lot of iterations are required. For more details regarding implicit and explicit

approaches, see for example [27].

5.1.3 Numerical approach for stochastic settings

For the heterogeneous agent model (8) - (9) featuring a diffusion process, we add

another grid dimension for the productivity state z using k = 1, . . . ,K. Note that this

leads to a full grid of J×K points. We discretize the HJB equation (10) which arises

for this model by

vn+1
j,k − vn

j,k

∆
+ρvn

j,k =u(cn
j,k)+

vn+1
j+1,k− vn+1

j,k

∆b
(sF,n

j,k )
++

vn+1
j,k − vn+1

j−1,k

∆b
(sB,n

j,k )
−

+
vn+1

j,k+1− vn+1
j,k

∆z
(µk)

++
vn+1

j,k − vn+1
j,k−1

∆z
(µk)

−

+
σ2

k

2

vn+1
j,k+1−2vn+1

j,k + vn+1
j,k−1

(∆z)2
.

(19)

Note that we can easily implement reflecting boundary conditions by using

∂zv j,1 =
v j,1− v j,0

∆z
= 0 and ∂zv j,1 =

v j,K− v j,K+1

∆z
= 0

which implies v j,0 = v j,1 and v j,K+1 = v j,K respectively.

For the heterogeneous agent model (8) - (9) featuring a Poisson process instead of

a diffusion one, we add another grid dimension using k = 1, . . . ,K where k refers to

the respective Poisson state and K is the total number of Poisson states. We discretize

the HJB equation (12) which arises for this model with a two-state Poisson process

by



22 Jochen Garcke and Steffen Ruttscheidt

vn+1
j,k − vn

j,k

∆
+ρvn

j,k =u(cn
j,k)+

vn+1
j+1,k− vn+1

j,k

∆b
(sF,n

j,k )
++

vn+1
j,k − vn+1

j−1,k

∆b
(sB,n

j,k )
−

+λk(v
n+1
j,−k− vn+1

j,k )

(20)

where−k denotes the other Poisson state respectively. Note that Poisson states cannot

be discretized by sparse grids since they are already discrete.

5.1.4 Matrix notation

After linearizing and discretizing the HJB equation, we can easily formulate the

resulting equations as a linear system for the value function of size m = J ·K. Note

that we use the same ordering for all other functions that depend on the grid points.

Further, note that we indicate vectors, i.e. one-dimensional arrays by bold formatting

and lower-case letters, whereas we indicate matrices by bold formatting and upper-

case letters. By reordering the discretized HJB equation by its subscripts, we can

then easily setup the respective matrices to formulate the discretized HJB equation

by
1

∆
(vn+1−vn)+ρvn+1 = un +(An +ΛΛΛ)vn+1 (21)

where A ∈ R
m×m is the non-stochastic drift matrix and ΛΛΛ ∈ R

m×m is the intensity

matrix which models the stochastic process for productivity z. By simple algebra, we

get

((
1

∆
+ρ)I−An−ΛΛΛ)))

︸ ︷︷ ︸

B

vn+1 = un +
1

∆
vn

︸ ︷︷ ︸

bn=b(vn)

(22)

with identity matrix I ∈ R
m×m, i.e. we want to solve the linear system given by

Bvn+1 = bn (23)

with B ∈ R
m×m and bn ∈ R

m. Note that ΛΛΛ does not depend on n and thus can be

precomputed.

To define An and ΛΛΛ more formally, one can denote the construction via finite

difference operators and specific scalar matrix-row multiplications. Let us show this

for equation (19). We denote the row-wise vector matrix scalar multiplication, i.e.

scalar multiplication of vector entry i, 1≤ i≤ m with matrix row i by ⋆. To denote

(19) using matrix notation (21), we have

An = (sF,n)+ ⋆DF
b +(sB,n)− ⋆DB

b (24)

and

ΛΛΛ n = (µµµ)+ ⋆DF
z +(µµµ)− ⋆DB

z +
1

2
σσσ2 ⋆Dzz (25)

where the standard operations should be understood entry-wise. Note that e.g.

((sF,n)+ ⋆DF
b )v

n is nothing else but (DF
b vn)⋆̃((sF,n)+) where ⋆̃ denotes the entry-
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wise vector multiplication. The difference matrices D with sub- and superscripts

indicating the taken derivative, are build using the standard full grid finite difference

stencils, see any standard textbook such as [24] for a description.

As explained in Section 3.1, we use sparse grid finite difference operators operat-

ing on hierarchical coefficients. Since we require derivative approximations of the

value function, we now denote v as the vector storing hierarchical coefficients of the

value function approximation. For the utility function approximation, we already

have nodal values and thus u now describes the vector containing nodal coefficients

of the utility function approximation. To solve the linear system with consistent basis

representations, we use the hierarchical to nodal basis transformations E and get

((
1

∆
+ρ)E−ΛΛΛ −An)vn+1 = un +

1

∆
Evn (26)

for diffusion processes where ΛΛΛ is built with difference operators and thus works on

hierarchical coefficients, whereas for Poisson processes we get

((
1

∆
+ρ)E−EΛΛΛ −An)vn+1 = un +

1

∆
Evn (27)

where ΛΛΛ models the Poisson process. Notice that the resulting vectors on both sides

of the equation are given in nodal values and the solution vn+1 is given in hierarchical

values again such that we can simply use it in the next iteration for the computation

of its derivatives.

The overall procedure is given in Algorithm 1.

Algorithm 1 Solving the HJB equation on (adaptive) sparse grids

Data: model parameters, sparse grid parameters

Result: solution v of HJB equation

1: Initialization:

2: generate sparse grid

3: compute hierarchical to nodal basis transformation matrix E

4: generate finite difference operators ⊲ see 3.1

5: set up matrix ΛΛΛ that models stochastic process ⊲ see 5.1.4

6: compute initial guess in hierarchical representation v0 ⊲ see e.g. (28) for model (13) - (14)

7: Iterative part:

8: for n = 0,1, . . . do

9: refine sparse grid and initialize the new sparse grid

10: compute forward and backward differences of vn ⊲ use finite difference operators

11: compute optimal controls ⊲ e.g. consumption, deposits for model (13) - (14)),

12: ⊲ use forward and backward differences of vn

13: build drift matrix An ⊲ see 5.1.4, follow upwind scheme and use finite difference operators

14: solve (26) respectively (27) for vn+1 ⊲ see 5.1.2, linearized HJB equation

15: if vn+1 is close to vn according to stopping criteria then

16: v← vn+1

17: STOP

18: end if

19: coarsen sparse grid

20: end for
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5.2 Further aspects

Considering the employed two-asset model problem (13), (14), notice that the optimal

deposits d are computed with both the derivative with respect to b and with respect

to a. Thus, to get a monotone scheme for this model, we use the trick to upwind such

that there are no terms with different controls together and the respective forward and

backward differences are used correctly. We split the drift of b into different parts

that do not have this type of interaction and approximate the value function using the

split. For the optimal deposits we follow the same splitting idea.

The resulting system is implicit in b, a and z. It is also possible to formulate a

semi-implicit equation that is explicit in the productivity state z but still implicit

in b and a, which allows to split the problem in K subproblems that one can solve

simultaneously using parallelization. See [30] for the full technical details.

As an initial guess for the value function, we use

v0 =

(

wz+rb(b)b+raa

1−γ

)1−γ

ρ
, (28)

where we follow the standard approach to start by staying ”put”, i.e. with controls

equal to zero.

6 Numerical Results

Before we present the numerical results, let us define our error metrics denoting the

reference solution by fref and the sparse grid solution by fSG. We use a normalization

with respect to the reference solution to allow us to compare the arising errors of

different functions. Thus, we compute relative errors by

e
f
2,r(x1, . . . ,xM) =

(
1

M

M

∑
m=1

∣
∣
∣
∣

fref(xm)− fSG(xm)

maxm fref(xm)−minm fref(xm)

∣
∣
∣
∣

2) 1
2

,

e f
∞,r(x1, . . . ,xM) = max

m

∣
∣
∣
∣

fref(xm)− fSG(xm)

maxm fref(xm)−minm fref(xm)

∣
∣
∣
∣
.

(29)

Note that for all adaptive refinements, we use a normalization of the hierarchical

coefficients with respect to the range in nodal values. We always use the coarsening

parameter ν = ε/10 and always coarsen with respect to the value function, this yields

in our experiments better results.

We solve the linear equation system with an ILUC preconditioned BiCGSTAB in

Matlab.
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6.1 Two-dimensional model

Let us begin with the 2d model (13) - (14) presented in Section 2.3 to give some intu-

ition and to show that our sparse grid algorithm converges to the solution of the full

grid method. We present relative errors for the value function and all policy functions

for regular sparse grids of different levels. The reference solution is computed on a

600×600 full grid.

In Figure 7 we show the convergence behavior of regular sparse grids for the value

function, the deposit policy, and the consumption policy. First of all, we see that the

sparse grid algorithm converges to the full grid solution. We additionally note that

the accuracy for both Poisson states is quite similar. Note that this may change if the

resulting functions become more different.

One can see that the e∞-error for one state of the consumption function is quite

high. This is due to that fact that the consumption function of state 1 is very steep

close to the boundary and hence cannot be captured well by sparse grids.

Note that in the following results, we give the errors for the multi-variate functions,

where the different outputs are stacked into one vector.
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Fig. 7: Accuracy of different sparse grid levels: e2 and e∞-errors for the value function,

deposit policy and consumption policy for states 1 and 2.

6.1.1 Plots for regular sparse grids

To get insight into how the approximations and the arising errors look, we present

plots of the approximations for sparse grid level l = 7. Additionally we show the

difference between sparse grid and full grid solution.
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In the Figures 8 - 10 we can see that apart from the really steep parts of the

functions the sparse grid approximation is able to capture the function behaviors

quite well not only for the value function but also for the utility and policy functions.

Fig. 8: Value function for state 1: sparse grid approximation, full grid reference

solution, and the sparse grid approximation subtracted from the full grid solution

6.1.2 Plots for adaptive sparse grids

To get a good approximation without using a really high sparse grid level (and thus

many points), we investigate adaptive sparse grids. One goal is to analyze if it is better

to minimize the error of the value function approximation, which then implicitly

leads to a better approximation of the policy functions, or if it is better to improve

the value function approximation in the area where the policy functions are steep

and thus normally not approximated that well. Let us focus our investigation on the

deposit function since we observe the biggest errors here. Notice though that the

analysis results can be transferred to policy functions in general.

Let us visualize the resulting sparse grids and sparse grid approximations for

value and deposit function adaptivity, respectively. Note that we indicate the grid

points by their respective function values as bullet points.

In Figure 11 the approximation of the value function for state 1 and the sparse

grid using value function adaptivity are shown. One can see that the sparse grid is

refined in the area in which the value function is steep. Note that this is not the area

where the deposit function is steep.
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Fig. 9: Deposit policy function for state 1: sparse grid approximation, full grid

reference solution, and the sparse grid approximation subtracted from the full grid

solution

Fig. 10: Consumption policy function for state 1: sparse grid approximation, full grid

reference solution, and the sparse grid approximation subtracted from the full grid

solution
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Fig. 11: Scatter and surface plot of the value and the deposit function for state 1 for

the adapted sparse grid with value function adaptivity

Fig. 12: Scatter and surface plot of the value and the deposit function for state 1 for

the adapted sparse grid with deposit function adaptivity

The plots shown in Figure 12 visualize the sparse grid and the resulting value

function for state 1 using deposit function adaptivity. Notice that the resulting sparse

grid looks completely different to the one we obtained by adaptivity with respect

to the value function. Now there are more grid points in the area where the deposit

function is steep.
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Since it is not clear a priori where the sparse grid should be adapted to get a

good approximation of the deposit function or policy functions in general, we aim to

compare the accuracies resulting from different types of adaptivity to which we turn

now.

6.1.3 Accuracy for adaptive sparse grids

To get more insight into the approximation quality of different types of adaptivity

(see Section 3.2) we look into the discrete relative e2,r- and e∞,r-errors noted in the

beginning of this section. We compute a reference solution on a sparse grid of level

l = 11 and interpolate both the reference solution and the approximations of the

adapted sparse grids and lower level regular sparse grids to uniformly distributed

points.

We present in Figure 13 the results for different refinement thresholds, where

we limit the maximum number of adaption steps so that we not exceed the level of

the reference grid. We can observe that value function adaptivity performs well for

the value function approximation. In some cases other adaptivity versions outper-

form in the beginning the value function adaptivity for the deposit policy accuracy.

Concerning the l2-error, the other adaptivity critera are not better, if at all, than a

regular sparse grids. For the maximum error this depends on the function under

consideration, e.g. for the deposit policy function only with finer resolutions the

adaptation based on the value function helps.

Note that it depends on the model parameters if value function adaptivity or policy

function adaptivity is better. In general, if one is not particularly interested in a

specific policy function and if one does not want to spend a lot of time on parameter

fine-tuning, we recommend value function adaptivity, which turns out to be the best

approach in most situations. Further, we observed that it requires fine-tuning and

testing, or an algorithm for parameter optimization, to find a good combination of

parameters improving on value function adaptivity.

6.2 Four-dimensional model

Let us present our results for the 4d model (30) - (31) explained in the Appendix. We

compute the accuracy for different sparse grid levels and adaptivity versions by using

a reference solution that we compute on a higher sparse grid level l = 8. Instead of

computing the error on the grid of the reference solution, we compute the error by

interpolating on uniformly distributed points for both the reference and the analyzed

solutions.

We present in Figure 14 the results for different refinement thresholds, where we

limit the maximum number of adaption steps so that we not exceed the level of the

reference grid. We compare the results for value function adaptivity, deposit function

adaptivity, and by logical OR combined value and deposit function adaptivity.
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Fig. 13: Accuracy plots for the two-dimensional problem using different

adaptivity versions starting at level l = 2 with refinement threshold ε =
10−1,10−2,10−3,10−4,10−5 (marked on the respective lines) after using at most

ten adaption steps.
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Fig. 14: Accuracy plots for the four-dimensional problem using different

adaptivity versions starting at level l = 2 with refinement threshold ε =
10−1,10−2,10−3,10−4,10−5 (marked on the respective lines) after using at most

five adaption steps.
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Note that all adaptivity versions work for the policy function approximation,

where for the maximum error is relatively large. However, for the value function

approximation, one can see that value function adaptivity works better than the other

adaptivities. Overall, the adaptivity gives better results in comparison to a regular

grids. We observe a stagnation in particular for the policy function, we assume this is

due to the limitation of the refinement level in this study.

6.3 Six-dimensional model

Finally we give results for the 6d model (32) - (33) explained in the Appendix. We

again compute the accuracy for different sparse grid levels and adaptivity versions

by using a reference solution that we compute on a higher sparse grid level l = 6.

Again, we do not add points which are not in this grid in our adaptation by limiting

the maximum number of adaptation steps. As in the last subsection, we interpolate

on uniformly distributed points for both the reference and the analyzed function for

the error computations.

As in the lower dimensional experiments, value function adaptivity works better

than the other adaptivity types for the value function approximation. For the deposit

function on the other hand, the combined adaptivity of value and deposit function

adaptivity also yields good results. The advantage of the adaptive approaches in

comparison to the regular sparse grid further increases.

7 Conclusion and Outlook

In this work we explained a sparse grid finite difference approach for solving eco-

nomic models following the numerical scheme of [2].

To get a general convergence result for sparse grids finite difference schemes

for solving the HJB equation due to [4], we would need monotone sparse grid

interpolation. However, we showed that interpolation on sparse grids is not monotone

in general even if we restrict ourselves to one-dimensional monotonicity for concave

monotonically increasing functions. A general theoretical result based on assumptions

that are fulfilled by most economic models is hardly possible, since it often depends

on model parameters if the arising interpolations are monotone for the used sparse

grid. Thus, it depends on the model parameters if our approach works correctly

without specific approaches to overcome non-monotonicity.

We analyzed the accuracy for our approach for economic models ranging from

dimension d = 2 to dimension d = 6 and achieve good results for the used model

parameters. We can extract multiple results from our numerical studies. First, sparse

grid finite differences work quite well in practice for solving continuous time eco-

nomic models. For a two-dimensional model, we showed that our numerical scheme

converges to the full grid solution for which it is proven that it converges to the
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Fig. 15: Accuracy plots for the six-dimensional problem for different adap-

tivity versions starting at level l = 1 with refinement threshold ε =
10−1,10−2,10−3,10−4,10−5 (marked on the respective lines) after using at most

four adaption steps.

correct solution. Second, the experiments with different types of adaptivity indicate

that value function adaptivity is performing well for approximating the value function.

To get a good approximation of the policy functions, it can sometimes be better to

use a criterion suited to this function or a combined criterion. Note though that for

policy functions it strongly depends on the choice of parameters like starting sparse

grid level or starting refinement threshold how well it performs. Nevertheless, we

recommend to use value function adaptivity since it leads to the best results in most

cases.

Note that with the current Matlab implementation we cannot go to higher sparse

grid levels and refinements since it requires allocating large amounts of memory

and we thus face memory constraints. Thus, for [3] several Matlab functions are
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rewritten using MEX-files, but also an implementation using other performant sparse

grid libraries seems promising.

Acknowledgements We thank SeHyoun Ahn and Benjamin Moll for fruitful discussions, and

SeHyoun Ahn for help with the Matlab implementation, which is based on his code written for [3].

Appendix

7.1 A model with four state variables – a three-asset model with

productivity modeled by a continuous stochastic process

We are now turning to a model with four state variables that is an extension of our

2d-model. The theory developed and used in the lower dimensional problem can

be adapted to this problem. Thus, we only describe the differences to the 2d-model.

Hence, the basic idea here is again to derive an appropriate approach for full grid

finite difference methods and then use sparse grid finite difference method to solve

this model. Due to the higher dimensionality, the standard full grid approach is no

longer useful and the main advantage of sparse grids shows off. We refer to Section

2.2 for descriptions of the model components and to Section 5 for explanations of

the numerical approach.

We are now interested in the following maximization problem

max
{ct ,d

a
t ,d

h
t }
E0

∫ ∞

0
e−ρtu(ct ,ht)dt (30)

subject to

ḃt = wztr
b(bt)bt −da

t −χ(da
t ,at)−dt

h−χ(dh
t ,ht)− ct

ȧt = raat +da
t

ḣt = dh
t

żt = µ(zt)dt +σ(zt)dWt

bt ≥ b, at ≥ 0, ht ≥ 0

(31)

The diffusion is reflected on the boundaries in dimension z, i.e.

∂zv(b,a,h,z
¯
) = 0, ∂zv(a, z̄) = 0, for b ∈ (b

¯
,∞),a ∈ (a

¯
,∞),h ∈ (h

¯
,∞).

We model housing assets h to pay a utility return added to the standard utility function

instead of a monetary return, i.e.

u(c,h) =
c1−γ

1− γ
+ rhh
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Notice that we now have a stationary diffusion process instead of a two-state Poisson

process for income zt . We assume that a worker’s efficiency evolves stochastically

over time on a bounded interval [z
¯
, z̄] with z

¯
≥ 0.

The HJB equation for this model is

ρv(b,a,h,z) = max
c,da,dh

u(c,h)

+ vb(b,a,h,z)(wz+ rb(b)b−da−χ(da,a)−dh−χ(dh,h)− c)

+ va(b,a,h,z)(r
a +da)

+ vh(b,a,h,z)(d
h)

+∂zv(b,a,h,z)µ(z)+
1

2
∂zzv(b,a,h,z)σ

2(z).

7.2 A model with six state variables – a two-asset model with four

skill types modeled by continuous stochastic processes

The following model is again an extension of the 2d-model presented in Section 2.3.

It is used to analyze the high-dimensional behavior of the sparse grid approach. Note

that by introducing different weights and ranges of the different stochastic processes

or different types of stochastic processes, this multi-dimensional modeling allows

further analysis in the economic context, but we restrict our numerical analysis to

this simplified version.

We are interested in the following maximization problem

max
{ct ,dt}t≥0

E0

∫ ∞

0
e−ρtu(ct)dt (32)

subject to

ḃt =
(z1

t + z2
t + z3

t + z4
t )

4
wrb(bt)bt −dt −χ(dt ,at)− ct

ȧt = raat +dt

ż1
t = µ(z1

t )dt +σ(z1
t )dWt

ż2
t = µ(z2

t )dt +σ(z2
t )dWt

ż3
t = µ(z3

t )dt +σ(z3
t )dWt

ż4
t = µ(z4

t )dt +σ(z4
t )dWt

bt ≥ b, at ≥ 0

(33)

Here zi
t , i = 1, . . . ,4 can be interpreted as different types of skill or luck that evolve

differently over time. We use the standard CRRA-utility function again and have
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reflecting boundary conditions again.

We get the HJB equation

ρv(b,a,z1,z2,z3,z4)

=max
c,d

u(c)

+ vb(b,a,z
1,z2,z3,z4)

(
(z1 + z2 + z3 + z4)

4
w+ rb(b)b−d−χ(d,a)− c

)

+ va(b,a,z
1,z2,z3,z4)(ra +d)

+∂z1 v(b,a,z1,z2,z3,z4)µ(z1)+
1

2
∂z1z1v(b,a,z1,z2,z3,z4)σ2(z1)

+∂z2v(b,a,z1,z2,z3,z4)µ(z2)+
1

2
∂z2z2v(b,a,z1,z2,z3,z4)σ2(z2)

+∂z3v(b,a,z1,z2,z3,z4)µ(z3)+
1

2
∂z3z3v(b,a,z1,z2,z3,z4)σ2(z3)

+∂z4v(b,a,z1,z2,z3,z4)µ(z4)+
1

2
∂z4z4v(b,a,z1,z2,z3,z4)σ2(z4).

7.3 Parameters

We here give model and algorithm parameters that we used in our numerical studies.

7.3.1 Parameters for the two-dimensional model

Parameter Default value Description

γ 2 CRRA utility parameter

ρ 0.06 discount rate

rb
pos 0.03 returns on liquid asset b if positive

rb
neg 0.12 returns on liquid asset b if negative

ra 0.04 returns on illiquid asset a

rh 0.0003 returns on illiquid asset h

χ0 0.07 parameter of cost function

χ1 3 parameter of cost function

χ2 0 parameter of cost function (fix costs)

ξ 0 automatic deposit parameter

w 4 wage

z1 0.8 Poisson state 1 (productivity)

z2 1.3 Poisson state 2 (productivity)

λ ±1/3 Poisson parameters

Table 1: Model parameters for the 2d model (13)- (14).
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Parameter Default value Description

crit 10−10 algorithm stopping criterion (maximum absolute

value function value of all grid points)

maxit 35 maximum number of iterations in Algorithm 1

∆ 100 ∆ in HJB equation

Table 2: Algorithm 1 parameters for the 2d model.

State Lower bound Upper bound Description

b −2 40 liquid asset

a 0 70 illiquid asset

Table 3: Lower and upper bounds for the respective states in the 2d model. The lower

bounds are model parameters, whereas the upper bounds for the assets are numerical

bounds on the computational domain.

7.3.2 Parameters for the four-dimensional model

Parameter Default value Description

γ 2 CRRA utility parameter

ρ 0.06 discount rate

rb
pos 0.03 returns on liquid asset b if positive

rb
neg 0.12 returns on liquid asset b if negative

ra 0.04 returns on illiquid asset a

rh 0.0003 returns on illiquid asset h

χ0 0.08 parameter of cost function

χ1 3 parameter of cost function

χ2 0 parameter of cost function (fix costs)

w 4 wage

σ 0.1414 standard deviation for productivity

ẑ 1 mean of z (used for computation of µ)

θ 0.3 persistence

Table 4: Model parameters for the 4d model (30) - (31).
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Parameter Default value Description

crit 10−7 algorithm stopping criterion (maximum absolute

value function value of all grid points)

maxit 35 maximum number of iterations in Algorithm 1

∆ 100 ∆ in HJB equation

Table 5: Algorithm 1 parameters for the 4d model.

State Lower bound Upper bound Description

b −2 40 liquid asset

a 0 70 illiquid asset

h 0 70 housing asset

z 0.8 1.2 productivity

Table 6: Lower and upper bounds for the respective states in the 4d model. All lower

bounds and the upper bound of productivity are model parameters, whereas the upper

bounds for the assets are numerical bounds on the computational domain.

7.3.3 Parameters for the six-dimensional model

Parameter Default value Description

γ 2 CRRA utility parameter

ρ 0.06 discount rate

rb
pos 0.03 returns on liquid asset b if positive

rb
neg 0.12 returns on liquid asset b if negative

ra 0.04 returns on illiquid asset a

χ0 0.07 parameter of cost function

χ1 3 parameter of cost function

χ2 0 parameter of cost function (fix costs)

w 5 wage

σ 0.1414 standard deviation for productivity

ẑ 1 mean of z (used for computation of µ)

θ 0.3 persistence

Table 7: Model parameters for the 6d model (32) - (33).
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Parameter Default value Description

crit 10−7 algorithm stopping criterion (maximum absolute

value function value of all grid points)

maxit 50 maximum number of iterations in Algorithm 1

∆ 100 ∆ in HJB equation

Table 8: Algorithm 1 parameters for the 6d model.

State Lower bound Upper bound Description

b −2 40 liquid asset

a 0 70 illiquid asset

h 0 70 housing asset

z1 0.8 1.2 skill type 1

z2 0.8 1.2 skill type 2

z3 0.8 1.2 skill type 3

z4 0.8 1.2 skill type 4

Table 9: Lower and upper bounds for the respective states in the 6d model. All lower

bounds and the upper bound of productivity are model parameters, whereas the upper

bounds for the assets are numerical bounds on the computational domain.
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