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Abstract Based on the theoretical framework recently proposed by Bonifacius and

Neitzel (2018) we discuss the sequential quadratic programming (SQP) method for

the numerical solution of an optimal control problem governed by a quasilinear para-

bolic partial differential equation. Following well-known techniques, convergence of

the method in appropriate function spaces is proven under some common technical

restrictions.

Particular attention is payed to how the second order sufficient conditions for

the optimal control problem and the resulting L2-local quadratic growth condition

influence the notion of “locality” in the SQP method. Further, a new regularity result

for the adjoint state, which is required during the convergence analysis, is proven.

Numerical examples illustrate the theoretical results.
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1 Overview

Optimal control problems governed by linear and semilinear parabolic partial dif-

ferential equations (PDEs) have been subject to intense research for several years.
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Existence- and regularity of their solutions is well understood, first order necessary

and second order sufficient optimality conditions have been proven, and discretization

errors for different types of discretization are available, see e.g. the pioneering work

of Lions (1971) concerned with linear PDEs and Hinze et al. (2009), or Tröltzsch

(2010) for a recent overview covering theoretical and numerical aspects of both lin-

ear and nonlinear problems.

Recently, optimal control of quasilinear parabolic equations was addressed by

Bonifacius and Neitzel (2018), Casas and Chrysafinos (2018), and Meinlschmidt

et al. (2017a,b), Meinlschmidt and Rehberg (2016). The functional analytic frame-

work for the analysis of the state equation is provided by the concept of maximal

parabolic regularity of nonautonomous operators, see e.g. the work of Amann (2004,

2003, 2005), Meinlschmidt and Rehberg (2016), Haller-Dintelmann and Rehberg

(2009), or further references in Bonifacius and Neitzel (2018). The highly non-trivial

existence and regularity theory for solutions of the underlying PDE poses the main

difficulty in the theoretical analysis of such problems. For a discussion of previous lit-

erature concerning optimal control of quasilinear PDEs see the introduction of Boni-

facius and Neitzel (2018) and Casas and Chrysafinos (2018), respectively. In partic-

ular, optimal control of quasilinear elliptic equations has been considered by Casas

and Tröltzsch (2009, 2011, 2012); Casas and Dhamo (2011) and Yousept (2013);

de Los Reyes and Dhamo (2016); Nicaise and Tröltzsch (2017). Several physical

models lead to quasilinear PDEs (e.g. temperature-dependent thermal conductivity),

which motivates the analysis of this challenging class of problems from the applied

point of view, see e.g. the socalled thermistor problem (Meinlschmidt et al. 2017a,b).

For the efficient numerical solution of nonlinear optimal control problems se-

quential quadratic programming (SQP) methods form a prominent class of state of

the art algorithms: The nonlinear optimization problem is approximated by a se-

quence of linear quadratic subproblems that can be solved e.g. by application of the

well-understood primal dual active set strategy. The analysis of such SQP methods

for nonlinear optimal control problems has been addressed by several researchers,

see e.g. Tröltzsch (1999), Goldberg and Tröltzsch (1998) for semilinear parabolic

equations, Hintermüller and Hinze (2006), Hinze and Kunisch (2001), Wachsmuth

(2007) for optimal control of time-dependent Navier-Stokes equation, Griesse et al.

(2010, 2008) for semilinear elliptic problems with mixed constraints, and Heinken-

schloss and Tröltzsch (1999) for optimal control of a phase field equation. For an

overview concerning the origins of SQP methods in the context of PDE-constrained

optimization we also refer to the introduction of Goldberg and Tröltzsch (1998). As

further second order methods for the solution of nonlinear optimal control problems

we mention the semismooth Newton method and versions of the primal dual active set

strategy, respectively, see e.g. Hinze and Kunisch (2001), Hintermüller et al. (2007),

Ito and Kunisch (2004).

In the present paper, we focus on the numerical solution of quasilinear parabolic

optimal control problems by the SQP method. To our best knowledge, a correspond-

ing convergence analysis in function space has not been carried out in the existing

literature. The most closely related existing publications are those by Ulbrich and

Ziems (Ulbrich and Ziems 2017; Ziems 2013; Ziems and Ulbrich 2011) and chapter

8 in the thesis of Feldhordt (2017), respectively. Ulbrich and Ziems consider trust-
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region and trust-region SQP methods for optimal control of general nonlinear PDE.

The main difference to our result is that they inlcude discretization in their work and

prove convergence of adaptive multilevel algorithms whereas we stick to the function

space setting. In return, we are able to prove locally superlinear convergence around

local minima fulfilling certain second order conditions avoiding the two norm gap

(Ioffe 1979; Casas and Tröltzsch 2012), whereas Ulbrich and Ziems establish global

convergence to a point fulfilling first order optimality conditions, but without explicit

rate. Feldhordt (2017) considers optimal control of the socalled chemotaxis system

and proves convergence of the SQP method assuming a rather strong second order

sufficient condition. This corresponds to our interim result in Section 6.1, whereas

our main focus during the rest of the paper is on the interplay of weaker second order

conditions and the notation of “locality” in the SQP method. The second order suf-

ficient conditions we refer to in the present paper are due to Bonifacius and Neitzel

(2018). For the topic of second order conditions in PDE-constrained optimization in

general we refer to Goldberg and Tröltzsch (1989), Bonnans (1998), or the recent

survey by Casas and Tröltzsch (2015) and the references therein.

Many of our arguments in the present paper are similiar to those known from

earlier publications. However, we believe that our consideration is of interest for three

main reasons:

1. First, we demonstrate that the results on optimal control of quasilinear parabolic

PDE obtained by Bonifacius and Neitzel (2018) allow to derive convergence

of the SQP method. In particular, existence and regularity theory of quasilin-

ear parabolic PDE is much more involved than the corresponding treatment of

semilinear PDE. This makes the choice of the correct function spaces more com-

plicated than in previous work on SQP methods and we believe that it is not clear

a priori that –in the end– the arguments from the existing literature apply to the

present model problem as well.

2. We show a new regularity result for the adjoint state in Section 7. The proof

relies on maximal parabolic regularity arguments and is based on the work of

Bonifacius and Neitzel (2018) and Haller-Dintelmann and Rehberg (2009). The

result is crucial for our further analysis, because the improved regularity allows

us to estimate the second derivative of the nonlinearity of the state equation in an

appropriate way.

3. Finally, most proofs concerning convergence of the SQP method have been pub-

lished before the introduction of a framework for second order sufficient condi-

tions without two norm gap by Casas and Tröltzsch (2012). As shown by Boni-

facius and Neitzel (2018) our model problem fits into this framework and hence

it is natural to revisit convergence theory of the SQP method under the new as-

pect of absence of the two norm gap: If quadratic growth of the reduced objective

functional holds L2-locally (instead of L∞-locally) around the optimal control, is

it possible to replace L∞-neighbourhoods from previous convergence proofs for

the SQP method by L2-neighbourhoods? – For our model problem, we give an

answer to this question in Section 6.3, which is our main result.
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The rest of this paper is organized as follows and keeps the main structure of

previous results concerning the analysis of SQP methods, cf. in particular the work

of Tröltzsch (1999), Wachsmuth (2007) and Goldberg and Tröltzsch (1998):

In Sections 2 and 3 we briefly recall the assumptions and the model problem

as well as its first order optimality conditions from Bonifacius and Neitzel (2018).

The idea of the SQP method is outlined together with appropriate second order suf-

ficient conditions. To prepare the analysis of the convergence properties of the SQP

method, we provide some auxiliary results that are specifically related to our quasi-

linear parabolic model problem in Section 4. The proof of a new regularity result

for the adjoint state is postponed to Section 7. After that, we follow the standard

argument to prove convergence of the SQP method in Sections 5 and 6. We utilize

the connection to the Josephy-Newton method for a generalized equation originat-

ing from the first order optimality conditions. Convergence of this Newton method

is proven in Section 5 and the interpretation of the iterates as the solutions of certain

quadratic optimization problems is topic of Section 6. Assuming strong second order

sufficient conditions we formulate our first main result in Section 6.1. The remain-

ing two theoretical Sections 6.2 and 6.3 of the paper are devoted to the analysis of

the SQP method under weaker second order assumptions. In particular we are able

to replace the L∞-neighbourhoods in the results of Tröltzsch (1999) and Wachsmuth

(2007) by L2-neighbourhoods in our final result in Section 6.3. Finally, we give short

numerical examples that illustrate our theoretical findings in Section 8.

Notation For a Lipschitz domain Ω and θ ∈ (0,1], k ∈ N, p ∈ [1,∞] we denote by

Lp = Lp(Ω), Hθ ,p = Hθ ,p(Ω) and W k,p = W k,p(Ω) the usual Lebesgue-, Bessel-

potential- and Sobolev-spaces, respectively. For the two latter families of spaces

a subscript D denotes incorporation of previously defined homogeneous Dirichlet

boundary conditions. With H
−θ ,p′
D and W

−1,p′
D we refer to the topological dual spaces

of H
θ ,p
D and W

1,p
D , where 〈·, ·〉 stands for the duality pairing and –in case of Hilbert

spaces– the scalar product. Norms ‖·‖ are indexed by the space they refer to. For some

integrability exponent r ∈ [0,∞], we define the conjugate exponent r′ by 1/r+1/r′ =
1. Spaces of countinuously differentiable resp. Hölder continuous functions are de-

noted as usual by C α .

The open and closed balls of radius r > 0 around x0 in a normed space X are

denoted by

B
X
r (x0) := {x ∈ X : ‖x− x0‖X < r} and BX

r (x0) := {x ∈ X : ‖x− x0‖X ≤ r}.

With (X ,Y )r,s or [X ,Y ]r we refer to real or complex interpolation spaces of two

normed spaces X ,Y , rescpectively. Given I ⊂ R, a Banach space X , and a function

φ : I → X , we denote by trtφ , t ∈ I, the trace φ(t) ∈ X , if such a pointwise evaluation

is welldefined.

The notation “... . ...” will be used in order to express that “... ≤ C · ...” holds

with a generic constant C > 0, whose dependencies are not relevant for the present

context. We use the double arrows “⇒” to indicate set-valued maps.
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2 Model Problem and Assumptions

We use notations and conventions of Bonifacius and Neitzel (2018) with some minor

changes. We rename controls, states, adjoint states from q, u, z to u, y, p.

2.1 The Model Problem

Our model problem is the same as the one in Example 2.5 of Bonifacius and Neitzel

(2018), and reads as follows:







min
y,u

J(y,u) :=
1

2
‖y− yd‖2

L2(I×Ω)+
γ

2
‖u‖2

L2(Λ),

subject to u ∈Uad and

{

∂ty+A (y)y = Bu

y(0) = y0.

(OCP)

Here, the quasilinear part A of the state equation is defined by

A (y) · :=−div(ξ (y)µ∇ · ),

The control operator B, Λ , and the admissible set Uad will be specified in the follow-

ing section.

2.2 Assumptions

We rely on the following assumptions that we repeat from Bonifacius and Neitzel

(2018) with minor changes, cf. the following remark.

Assumption 1 Ω ⊂ R
d , d ∈ {2,3}, is a bounded domain with boundary ∂Ω . ΓN ⊂

∂Ω is relatively open and denotes the Neumann boundary part whereas ΓD = ∂Ω \ΓN

denotes the Dirichlet boundary part equipped with homogeneous Dirichlet boundary

conditions. We assume that Ω ∪ΓN is Gröger regular (Bonifacius and Neitzel 2018,

Definition A.1) such that every chart map in the Definition of Gröger regularity can

be chosen volume preserving. The time interval I = (0,T ) with T > 0 is fixed.

Assumption 2 The function ξ : R → R is twice differentiable with ξ ′′ being Lips-

chitz continuous on bounded subsets of R. Let µ: Ω →R
d×d , µ = µT , be measurable

and uniformly bounded and coercive in the following sense:

0 < µ• := inf
x∈Ω

inf
z∈Rd\{0}

zT µ(x)z

zT z
, µ• := sup

x∈Ω
sup

1≤i, j≤d

|µi, j(x)|< ∞

We assume a coercivity condition 0 < ξ• ≤ ξ ≤ ξ • for ξ as well. With this we define

as above

〈A (y)ϕ,ψ〉
L2(I,W

1,2
D )

:=
∫

I

∫

Ω
ξ (y)µ∇ϕ∇ψdxdt, ϕ,ψ ∈ L2(I,W 1,2

D ).
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Assumption 3 We assume that there is p ∈ (d,4) such that

−div(µ∇·)+1: W
1,p
D →W

−1,p
D

is a topological isomorphism and fix this choice of p. In the following we denote by

D the domain of the unbounded operator −div(µ∇·)+1 in the Bessel potential space

H
−ζ ,p
D .

Assumption 4 Let ζ ∈ (0,1) and s > 1 be fixed such that

max

{

1− 1

p
,

d

p

}

< ζ and max

{
2

ζ −d/p
,

2

1−ζ

}

< s

holds. The desired state yd ∈ L∞(I,Lp/2), the initial condition for the state equation

y0 ∈ (H
−ζ ,p
D ,D)1−1/s,s and the regularization parameter γ > 0 are fixed.

We introduce the measure space (Λ ,ρ) by Λ = {•}m× I equippend with measure

ρ being the product of the counting measure on the m−element set {•}m with the

Lebesgue measure on I. Within the control space U := Ls(Λ ,ρ) = Ls(I,Rm) the set

of admissible controls is given by

Uad := {u ∈U : ua ≤ u ≤ ub ρ-a.e. on Λ}

with fixed control bounds ua,ub ∈ L∞(Λ). Finally, for fixed control basis functions

b1, ...,bm ∈ H
−ζ ,p
D we define the bounded linear control operator by

B: U → Ls(I,H
−ζ ,p
D ), (Bu)(t) :=

m

∑
i=1

ui(t)bi.

Remark 1 The choice of control space and operator (“purely timedependent con-

trols”) corresponds to Example 2.5 of Bonifacius and Neitzel (2018), where the con-

trol space is chosen as L∞(Λ) instead of Ls(Λ). We will make use of measuring

controls in Ls instead of L∞ when applying the “interpolation trick”, see the remark

concluding Section 6.1. The reason for choosing purely timedependent controls –

apart from practical motivation, see e.g. de Los Reyes et al. (2008)– is outlined in

the remark at the end of Section 5.1. The symmetry property µ = µT as well as the

slightly higher spatial integrability of the desired state yd (Lp/2 instead of L2) are

required to derive improved regularity for the adjoint state in Section 7.

3 Optimality Conditions and SQP Method

We follow Goldberg and Tröltzsch (1998), Tröltzsch (1999), Wachsmuth (2007).

From Bonifacius and Neitzel (2018), Section 4.1, recall the following notation:

A
′(y)v :=−div(ξ (y)vµ∇y) ,

A
′′(y)[v1,v2] :=−div

(
ξ ′(y)(v1µ∇v2 + v2µ∇v1)+ξ ′′(y)v1v2µ∇y

)

for v,v1,v2 ∈ W 1,r(I,W−1,p
D )∩Lr(I,W 1,p

D ) and r ∈ (1,∞). The divergence operators

have to be understood in weak form, of course.
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3.1 First Order Necessary Optimality Conditions

In Bonifacius and Neitzel (2018), Lemma 4.1, the existence of a global solution to

(OCP) is established. Further, any local solution to (OCP) fulfills the following sys-

tem of equations, cf. Bonifacius and Neitzel (2018, Lemmas 4.6-4.8):

∂ty+A (y)y = Bu,

y(0) = y0

(SE)

−∂t p+A (y)∗p+A
′(y)∗p = y− yd ,

p(T ) = 0
(AE)

(γu+B∗p,v−u)L2(Λ) ≥ 0 for all v ∈Uad , (FON)

This optimality system consists of the state equation (SE), the adjoint equation

(AE), and the variational inequality (FON). The underlying function spaces are intro-

duced in the next section. For reasons of shortness we will sometimes write the state

equation as

e(y,u) := (∂ty+A (y)y−Bu, tr0y− y0) = 0 (1)

with the C 2-map

e: (W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D ))×Ls(Λ)→ Ls(I,W−1,p
D )× (W−1,p

D ,W 1,p
D )1−1/s,s.

By LOCP(y,u, p) := J(y,u)−〈p,e1(y,u)〉 we denote the Lagrangian of (OCP).

3.2 Generalized Equation and SQP Method

We reformulate the optimality system as the generalized equation

0 ∈ F(y,u, p)+N(y,u, p) (GE)

with the maps

F(y,u, p) :=









∂ty+A (y)y−Bu

tr0y− y0

−∂t p+A (y)∗p+A ′(y)∗p− (y− yd)
trT p

γu+B∗p









and N(y,u, p) :=
(
{0} ,{0} ,{0} ,{0} ,NUad

(u)
)T

,

where NUad
(u) denotes the normal cone of the closed convex set Uad at the point

u ∈ Ls(Λ), i.e. NUad
(u) =

{

v ∈ Ls(Λ): (v,w−u)L2(Λ) ≤ 0 for all w ∈Uad

}

. To make

the definition of F and N precise, F is understood as map F : Xs → Zs with

Xs :=
(

W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D )
)

×Ls(Λ)×
(

W 1,s(I,W−1,p′
D )∩Ls(I,W 1,p′

D )
)
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and

Zs := Ls(I,W−1,p
D )× (W−1,p

D ,W 1,p
D )1−1/s,s ×Ls(I,W−1,p′

D )

× (W−1,p′
D ,W 1,p′

D )1−1/s,s ×Ls(Λ).

Accordingly, N is understood as set valued map Xs ⇒ Zs. We equip Xs and Zs with

the canonical norms

‖(y,u, p)‖Xs := ‖y‖
W 1,s(I,W

−1,p
D )∩Ls(I,W

1,p
D )

+‖u‖Ls(Λ)+‖p‖
W 1,s(I,W

−1,p′
D )∩Ls(I,W

1,p′
D )

,

‖( f ,y0,g, pT ,r)‖Zs := ‖ f‖
Ls(I,W

−1,p
D )

+‖y0‖(W−1,p
D ,W

1,p
D )1−1/s,s

+‖g‖
Ls(I,W

−1,p′
D )

+‖pT‖
(W

−1,p′
D ,W

1,p′
D )1−1/s,s

+‖r‖Ls(Λ).

Having chosen these spaces, the following result holds:

Lemma 1 F : Xs → Zs is continuously Fréchet differentiable and N: Xs ⇒ Zs has

closed graph.

Proof Differentiability has been used implicitely by Bonifacius and Neitzel (2018,

Lemma 4.5) where the differentiability of the control to state map is shown by the

implicit function theorem. The closed graph property is standard. ⊓⊔

Sometimes we will need the following subspaces X∞ and Z∞ of Xs, Zs:

X∞ :=
(

W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D )
)

×L∞(Λ)

×
(

W 1,s(I,W−1,p′
D )∩Ls(I,W 1,p′

D )
)

,

Z∞ := Ls(I,W−1,p
D )× (W−1,p

D ,W 1,p
D )1−1/s,s ×Ls(I,W−1,p′

D )

× (W−1,p′
D ,W 1,p′

D )1−1/s,s ×L∞(Λ),

equipped with the canonical norms similiarly as above. Note that changing from

Xs,Zs to X∞, Z∞ means nothing more than replacing the Ls(Λ)-factors by L∞(Λ)-
factors, i.e. considering controls in the L∞- instead of the Ls-norm. The same result

as before holds:

Lemma 2 F : X∞ → Z∞ is continuously Fréchet differentiable and N: X∞ ⇒ Z∞ has

closed graph.

Due to Lemma 1 we can formulate the ansatz of the SQP method in its abstract

form as the Josephy-Newton method for generalized equations, see Josephy (1979);

Dontchev (1996); Alt (1990), or Hinze et al. (2009, chapter 2): Given an iterate

(yk,uk, pk) ∈ Xs, solve

0 ∈ F(yk,uk, pk)+F ′(yk,uk, pk)(y− yk,u−uk, p− pk)+N(y,u, p) (2)
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to obtain the new iterate (yk+1,uk+1, pk+1) ∈ Xs. Writing down the full system of

equations for (2) we find:

∂ty+A (yk)y+A
′(yk)y = Bu+A

′(yk)yk

tr0y = y0

(3)

−∂t p+A (yk)
∗p+A

′(yk)
∗p = y− yd −A

′′(yk)[y− yk, ·]∗pk

trT p = 0
(4)

0 ∈ γu+B∗p+NUad
(u). (5)

Obviously, the current u-iterate uk has canceled out, which implies that the next iterate

(y,u, p) depends on yk and pk but not on uk. This is due to the structure of our model

problem. Note that the first two equations (3) are equivalent to the linearized state

equation

0 = e(yk,uk)+ ey(yk,uk)(y− yk)+ eu(yk,uk)(u−uk). (6)

A standard computation shows that

1

2
L′′

OCP(yk,uk, pk)[(y− yk,u−uk)]
2 + J′(yk,uk)(y− yk,u−uk) (7)

is equal (up to addition of constants) to the expression

Jk(y,u) :=
1

2
‖y− yd‖2 +

γ

2
‖u‖2 − 1

2
〈pk,A

′′(yk)[y− yk,y− yk]〉, (8)

that finally fulfills: The system of equations (3),(4),(5) is the formal optimality system

of the following optimal control problem:

{
min
y,u

Jk(y,u)

subject to u ∈Uad and equation (3).
(QP)

This is the classical formulation of the SQP method as sequence of quadratic prob-

lems to solve. Note that these computations were completely formal in the sense that

we do not know whether (QP) is convex or not. Hence, we cannot say whether there

is a unique minimizer or whether the optimality system (3),(4),(5) is a sufficient char-

acterization for this minimizer. This issue will be addressed in the following section

utilizing the assumption of second order sufficient conditions.

3.3 Second Order Sufficient Conditions and SQP

Depending on second order sufficient conditions (SSCs) for (OCP) based on those

derived in Bonifacius and Neitzel (2018) we have to restrict the admissible set for

(QP) to ensure convexity.
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Assumption 5 From now on let ū ∈ Uad be a fixed L2-local minimizer for (OCP),

i.e. there is r > 0 such that

u ∈Uad and ‖u− ū‖L2(I,Rm) < r =⇒ j(u)≥ j(ū).

Let ȳ and p̄ the state and adjoint state associated with ū. For σ ≥ 0 we define the

σ -active set of ū as

Aσ (ū) := {x ∈ Λ : |γ ū+B∗ p̄|(x)> σ}

and the corresponding subspace

Cσ (ū) := {v ∈ L2(Λ): v = 0 on Aσ (ū)}

of directions vanishing on Aσ (ū). We assume that the following second order suffi-

cient condition for (OCP) is satisfied at ū: There exists δ > 0 such that






L′′
OCP(ȳ, ū, p̄)[(y,u)]2 ≥ δ‖u‖2

L2(Λ)

for all (y,u) ∈W 1,2(I,W−1,p
D )∩L2(I,W 1,p

D )×L2(Λ) s.t.

u ∈Cσ (ū),

ey(ȳ, ū)y+ eu(ȳ, ū)u = 0.

(SSC-σ )

Condition (SSC-σ ) is stronger than the second order sufficient condition derived

by Bonifacius and Neitzel (2018, Theorem 4.14) which has smallest possible gap to

the corresponding necessary condition. However we conclude from the cited result:

Theorem 1 Let Assumption 5 hold with σ ≥ 0. Then there are ε,η > 0 such that the

quadratic growth condition

j(u)≥ j(ū)+η‖u− ū‖2
L2(Λ)

holds for all u ∈Uad ∩BL2

ε (ū).

We also mention the work of Casas and Chrysafinos (2018) in which second order

optimality conditions analogous to those of Bonifacius and Neitzel (2018), but for a

slightly different setting w.r.t. the domain, the boundary conditions and the bound-

edness properties of the nonlinearity, were derived. Casas and Chrysafinos deal with

C1,1-smooth domains, homogeneous Dirichlet boundary conditions and locally Lip-

schitz continuous coefficients for the state equation, which enables them to consider

W 2-regularity of the states.

Remark 2 Second order sufficient conditions related to strongly active sets turned

out to be suitable assumptions for the analysis of SQP methods, see e.g. Tröltzsch

(1999); Goldberg and Tröltzsch (1998), Wachsmuth (2007), which work with the

same assumption as we do. That we do not work with the SSCs formulated by Boni-

facius and Neitzel (2018) directly has two reasons: First, we require the coercivity

condition in (SSC-σ ) to hold on a vector space instead of just a cone in the proof of

the L2-stability result in Section 5.1. Second, in Section 6.2 we will make use of the

fact that strongly active sets behave well under small perturbations for σ > 0.
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Remark 3 Strongest possible second order conditions, i.e. coercivity of L′′
OCP on the

whole space L2(Λ) will be refered to by σ = ∞. In this case it holds C∞(ū) = L2(Λ)
and U∞

ad = Uad . See e.g. Griesse et al. (2010, 2008), Feldhordt (2017) or Heinken-

schloss and Tröltzsch (1999) for such an assumption in the context of SQP methods.

In Section 6.1 we state our main theorem for this special case.

For our analysis we will heavily rely on L∞(I,W 1,p′)-regularity of the adjoint state

p̄ associated with the optimal control ū, cf. the remarks in Section 4.2. For better

readability we postpone the proof of the corresponding regularity theorem to Section

7 and state here only

Lemma 3 It holds p̄ ∈ L∞(I,W 1,p′
D ).

Proof Set r = s, y = ȳ, w = ȳ− yd and wT = 0 in Theorem 10 of Section 7. Due

to yd ∈ L∞(I,Lp/2) and Lp/2 →֒ H−ζ ,p all requirements are fulfilled. It follows p̄ ∈
W 1,s(I,H

−ζ ,p
D )∩Ls(I,D), i.e. even p̄ ∈ L∞(I,W 1,p

D ) by Theorem 9 (b). ⊓⊔

Finally, we introduce the modified admissible set as

Uσ
ad :=Uad ∩ (ū+Cσ (ū)) = {u ∈Uad : u = ū on Aσ (ū)}

and define the corresponding restricted quadratic problem as follows:

{
min
y,u

Jk(y,u)

subject to u ∈Uσ
ad and equation (3)

(QP-σ )

Using the relation of Jk to the second derivative of the Lagrangian of (OCP) (see

(7) and (8)) it is clear that (QP-σ ) is a linear quadratic and under Assumption 5

strictly coercive and therefore strictly convex optimal control problem, at least for

(yk,uk, pk) = (ȳ, ū, p̄). This will be crucial for the convergence analysis of the SQP

method.

4 Auxiliary Results

Before going into the details of the convergence analysis for the SQP method we

collect some auxiliary results in the following section.

4.1 A Property of the Control Operator

Recall from Assumption 4 the definition of the control operator that refers to the

case of purely timedependent controls. Obviously, B is continuous from L2(Λ) to

L2(I,W−1,p
D ) and therefore its adjoint B∗ is defined on L2(I,W 1,p′

D ) with values in

L2(Λ). To derive the L∞-stability result from the L2-stability result in Section 5.1, we

need to perform a bootstrapping argument that requires us to know how B∗ behaves

restricted to a space of more regular functions.
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To simplify notation, let B: Ls(I,R)→ Ls(I,H−ζ ,p) be defined by u 7→ u ·b1 with

only a single fixed control function b1 ∈ H
−ζ ,p
D . Of course, this yields

(B∗v)(t) = 〈b1,v(t)〉
W

−1,p
D ,W

1,p′
D

for every v ∈ L2(I,W 1,p′
D ).

It is obvious that B maps Lr(Λ) into Lr(I,H
−ζ ,p
D ) for r ∈ [2,∞]. To obtain B∗v ∈

Lq(Λ), we have to ensure that v ∈ Lq(I,H
ζ ,p′
D ) holds. We need the following Lemma:

Lemma 4 It holds

(W−1,q
D ,W 1,q

D )θ ,1 →֒ H
2θ−1,q
D

for 0 < θ < 1 and q ∈ (1,∞) as long as 2θ −1 /∈ {1/q,−1/q′}.

Proof This is a direct consequence of Griepentrog et al. (2002, Theorem 3.5). ⊓⊔

Now, set θ := (ζ +1)/2. For r ∈ (1,∞) there are two possibilities: If θ < 1−1/r,

then it holds for 0 ≤ ρ < 1−1/r−θ

W 1,r(I,W−1,p′
D )∩Lr(I,W 1,p′

D ) →֒ C
ρ(I,(W−1,p′

D ,W 1,p′
D )θ ,1) →֒ C

ρ(I,H
ζ ,p′
D ),

i.e. B∗ is continous from W 1,r(I,W−1,p′
D )∩Lr(I,W 1,p′

D ) to L∞(Λ). Otherwise, if θ >
1−1/r, we obtain q ≥ 1 such that 1/q > θ − (1−1/r)> 0 and

W 1,r(I,W−1,p′
D )∩Lr(I,W 1,p′

D ) →֒ Lq(I,(W−1,p′
D ,W 1,p′

D )θ ,1) →֒ Lq(I,H
ζ ,p′
D ),

which means that B∗ maps W 1,r(I,W−1,p′
D )∩Lr(I,W 1,p′

D ) to Lq(Λ). For the two em-

beddings we refer e.g. to Amann (2003, formula (1.2)). We will come back to this

in Section 5.1: Given an estimate on the control in Lr, we have estimates for lin-

earized state and adjoint state in W 1,r(I,W−1,p
D )∩Lr(I,W 1,p

D ) and W 1,r(I,W−1,p′
D )∩

Lr(I,W 1,p′
D ) respectively. Application of B∗ either yields an estimates for the control

in Lq with some q > r or in L∞ if r already was large enough.

4.2 Some Properties of A ′′

Recall the definition of A ′′ from the beginning of Section 3. For the proof of the L2-

and L∞-stability results in Section 5.1 we need the following

Lemma 5 It holds

‖A ′′(y)[v, ·]∗p‖
Lr(I,W

−1,p′
D )

≤C(ξ ,µ,y)‖p‖
L∞(I,W

1,p′
D )

‖y‖
L∞(I,W

1,p
D )

‖v‖
Lr(I,W

1,p
D )

.

The constant C can be chosen uniformly with respect to y for y’s coming from a

bounded subset of W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D ).

Proof Estimate 〈A ′′(y)[v, ·]∗p,w〉= 〈A ′′(y)[v,w], p〉 for an arbitrary testfunction w∈
Lr′(I,W 1,p

D ) utilizing Hölders inequality. ⊓⊔
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In Lemma 5 we bounded the norm of A ′′(ȳ)[v, ·]∗ p̄ in the space Lr(I,W−1,p′
D )

against the norm of v in the space W 1,r(I,W 1,p
D )∩ Lr(I,W 1,p

D ) for each r ∈ [2,s] by

estimating 〈A ′′(y)[v,w], p〉 with arguments v ∈ Lr(I,W 1,p
D ) resp. w ∈ Lr′(I,W 1,p

D ).
This generality will be necessary in the bootstrapping argument in the proof of the

L∞-stability, which was already mentioned in the previous Section 4.1. As explained

in the remark after Lemma 6, this requires bounds for y in L∞(I,W 1,p
D ) and p in

L∞(I,W 1,p′). However, in the next section we will require an estimate of 〈A ′′(y)[v,w], p〉
directly (and not of A (y)′′[v, ·]∗p) which allows us to use the arguments v and w from

the space W 1,2(I,W−1,p
D )∩L2(I,W 1,p

D ) in Lemma 6. In that case we can exploit more

regularity of v,w, which allows to relax the assumptions on y and p.

Lemma 6 It holds

|〈A ′′(y)[v,w], p〉| ≤C(ξ ,µ,y)‖y‖
Ls(I,W

1,p
D )

‖p‖
Ls(I,W

1,p′
D )

· ‖v‖
W 1,2(I,W

1,p
D )∩L2(I,W

1,p
D )

‖w‖
W 1,2(I,W

1,p
D )∩L2(I,W

1,p
D )

.

The constant C can be chosen uniformly with respect to y for y’s coming from a

bounded subset of W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D ).

Proof The proof works similiar as for Lemma 5, but now we try to exploit more

regularity of v and w. Using embeddings due to Amann (2003, formula (1.2)) and

Griepentrog et al. (2002, Theorem 3.5) we find

W 1,2(I,W−1,p
D )∩L2(I,W 1,p

D ) →֒ Lq(I,L∞),

with some q ∈ (2,∞) satisfying

2

q
+

2

s
≤ 1 and

1

q
+

1

2
+

1

s
≤ 1. (9)

Now, an application of Hölders inequality (the temporal integrability exponents

match due to (9)) yields the desired result. The uniform choice of the constant with

respect to y follows from the boundedness of ξ and its derivatives on bounded sets of

R and the compactness of the embedding W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D ) →֒C 0(I ×Ω).
⊓⊔

Remark 4 The difference in the regularities assumed for y and p in the two Lemmas

is essential: Lemma 5 will be applied in Section 5.1 only for y = ȳ and p = p̄, i.e. the

required regularity is guaranteed by Lemma 3 for p̄ and Theorem 9 (1), (2b) for ȳ,

respectively. In Section 4.3 we will have to apply Lemma 6 for y = yk, p = pk with

yk, pk being iterates of the SQP method, i.e. yk and pk are solutions of the linearized

state and adjoint equation. Hence, the regularity requirements for Lemma 6 are met,

but not immediately those of Lemma 5.

Remark 5 (Necessity of higher regularity for the adjoint state) Note that Lemma 5

cannot be improved: The limiting factor is the summand
∫

I×Ω
ξ ′(y)w∇p∇v,
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which has to be estimated for v ∈ W 1,r(I,W−1,p
D )∩Lr(I,W 1,p

D ) and w ∈ Lr′(I,W 1,p
D ),

r ∈ [2,s]. The function w has temporal integrability r′ and spatial integrability ∞,

whereas ∇v has temporal integrability r and spatial integrability p, which is the

best we can expect from the assumptions each. This implies that we require p ∈
L∞(I,W 1,p′

D ) in order to be able to estimate the above integral.

4.3 Derivatives associated to (QP)

In this section we provide results on the first and second derivatives of the reduced

objective functionals associated to the quadratic subproblems (QP). We will apply

them in Section 6.3 briefly before obtaining our main result.

Recall the definition of the space Xs from Section 3.2 and denote by jk: L2(Λ)→
R the reduced functional associated with the linear quadratic optimal control prob-

lem (QP) at (yk,uk, pk) ∈ Xs. In particular note that j′′k is constant, because jk is a

quadratic functional, which makes us write j′′k instead of j′′k (v) for some v, because

v 7→ j′′k (v)[·, ·] is constant and hence independent of such v.

Proposition 1 Let Assumptions 1-4 and 5 be satisfied. Then, it holds uniformly in

u ∈ L2(Λ)

|( j′′k − j′′(ū))u2|.
(

‖yk − ȳ‖
W 1,s(I,W

−1,p
D )∩Ls(I,W

1,p
D )

+ ‖pk − p̄‖
W 1,s(I,W

−1,p′
D )∩Ls(I,W

1,p′
D )

)

‖u‖2
L2

as yk → ȳ, pk → p̄ in the above norms.

Proof Recall by (7) that j′′k ·u2 = L′′
OCP(yk,uk, pk)(y,u)

2 with

ey(yk,uk)y+ eu(yk,uk)u = 0, (10)

holds. We expand this as

L′′
OCP(yk,uk, pk)(y,u)

2 = L′′
OCP(ȳ, ū, p̄)(ỹ,u)2

︸ ︷︷ ︸

=:(I)

−
(
L′′

OCP(ȳ, ū, p̄)(ỹ,u)2 −L′′
OCP(ȳ, ū, p̄)(y,u)2

)

︸ ︷︷ ︸

=:(II)

−
(
L′′

OCP(ȳ, ū, p̄)−L′′
OCP(yk,uk, pk)

)
(y,u)2

︸ ︷︷ ︸

=:(III)

(11)

with ỹ ∈W 1,2(I,W−1,p
D )∩L2(I,W 1,p

D ) defined by

ey(ȳ, ū)ỹ+ eu(ȳ, ū)u = 0. (12)
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From the definition of the Lagrangian we know (I) = j′′(ū)u2. Hence it remains to

show that the contribution of (II) and (III) gets uniformly small as claimed above.

By definition we have

(II) = ‖ỹ‖2 −‖y‖2

︸ ︷︷ ︸

=:(IIa)

−〈 p̄,A ′′(ȳ)ỹ2 −A
′′(ȳ)y2〉

︸ ︷︷ ︸

=:(IIb)

,

(III) = 〈pk,A
′′(yk)y

2〉−〈 p̄,A ′′(ȳ)y2〉
= 〈pk − p̄,A ′′(yk)y

2〉
︸ ︷︷ ︸

=:(IIIa)

+〈 p̄,(A ′′(yk)−A
′′(ȳ))y2〉

︸ ︷︷ ︸

=:(IIIb)

,

wherein the summands

(IIa) = 〈ỹ+ y, ỹ− y〉 and (IIb) = 〈 p̄,A ′′(ȳ)[ỹ+ y, ỹ− y]〉 (13)

can be estimated using the boundedness of the solution operator of the linearized state

equation (Bonifacius and Neitzel 2018, Proposition 4.4) and applying Lemma 6 and

a similiar argument as in the proof of Lemma 6. In particular recall Remark 4. In the

same way one can treat (III) as well. ⊓⊔

For the gradient of jk we find:

Proposition 2 If (yk,uk, pk)→ (ȳ, ū, p̄) in Xs, vk → ū in Ls, it holds

∇ jk(vk)→ ∇ j(ū), strongly in L2(Λ).

Proof We split

∇ jk(vk)−∇ j(ū) = ∇ jk(vk)−∇ j(vk)
︸ ︷︷ ︸

=:(A)

+∇ j(vk)−∇ j(ū)
︸ ︷︷ ︸

=:(B)

and estimate both summands. For some v∈Uad , e.g. v= vk, introducing the following

quantities will be helpfull:

y(v) state associated to v w.r.t. (OCP),

p(v) adjoint state associated to v w.r.t. (OCP),

yk(v) state associated to v w.r.t. (QP)

pk(v) adjoint state associated to v w.r.t. (QP).

Regarding (B) we know from Bonifacius and Neitzel (2018, Proposition 4.9) that

‖∇ j(vk)−∇ j(ū)‖L2(Λ) ≤ γ‖vk− ū‖L2 +‖B∗(p(vk)− p(ū))‖L2 → 0 as vk → ū in Ls,

holds, because the adjoint states p(vk) converge in Ls(I,W 1,p′
D ) to p̄. To estimate

(A) first note that the states yk(vk) of the quadratic problem converge to ȳ = y(ū) in

W 1,2(I,W−1,p
D )∩L2(I,W 1,p

D ). This is shown using the convergence of the solution op-

erators of the linearized state equation (Bonifacius and Neitzel 2018, Proposition 4.9).

Utilizing similiar techniques as before the desired result follows after some straight

forward computations. We omit the details. ⊓⊔
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5 Generalized Newton Method on Uσ
ad

Following the standard arguments, see e.g. Tröltzsch (2000, 1999), Goldberg and

Tröltzsch (1998), Alt et al. (2010), Griesse et al. (2010, 2008), Wachsmuth (2007) and

Hintermüller and Hinze (2006), we show that the Newton-Josephy method applied to

a modified version of the generalized equation (GE), see Section 3.2, converges. Our

own contribution here is to verify that –under the correct choice of spaces and with

help of suitable auxiliary results that have been achieved in the previous section–

existing arguments apply to the quasilinear case as well.

We consider the generalized equation with modified admissible set, i.e. we re-

place (GE) by

0 ∈ F(y,u, p)+Nσ (y,u, p), (GE-σ )

where Uad is replaced by Uσ
ad in the definition of the normal cone map N, i.e.

Nσ (y,u, p) :=
(

{0} , {0} , {0} , {0} , NUσ
ad
(u)
)T

,

where NUσ
ad
(u) denotes the normal cone of Uσ

ad at u. The map F : Xs → Zs as well as

the spaces Xs,Zs, see Section 3.2 for the definitions, do not change.

To prove convergence of the generalized Newton method strong regularity in the

sense of Robinson has to be shown at an optimal point (ȳ, ū, p̄) ∈ Xs, i.e. for every

perturbation d ∈ Zs sufficiently close to 0 the generalized equation

d ∈ F(ȳ, ū, p̄)+F ′(ȳ, ū, p̄)(y− ȳ,u− ū, p− p̄)+Nσ (y,u, p) (GE-σ -D)

needs to have a unique solution that depends Lipschitz continuous on d ∈ Zs. For the

definition of strong regularity we refer e.g. to Robinson (1980), Hinze et al. (2009,

Definition 2.5).

Translating back this generalized equation for (y,u, p) into an optimal control

problem yields







min
y,u

1

2
‖y− yd‖2 +

γ

2
‖u‖2 − 1

2
〈p̄,A ′′(ȳ)[y− ȳ]2〉

+ 〈dT , trT y〉−〈du,u〉+ 〈dp,y〉

subject to u ∈Uσ
ad

and

(
dy

d0

)

= ey(ȳ, ū)(y− ȳ)+ eu(ȳ, ū)(u− ū)

(QP-σ -D)

for a given perturbation vector d = (dy,d0,dp,dT ,du) ∈ Zs with components coming

from the corresponding spaces. Note that (GE-σ -D) is indeed the first order neces-

sary and (due to convexity) sufficient optimality condition for (QP-σ -D), because

(QP-σ -D) is convex since only linear perturbation terms have been added to the con-

vex objective function from (QP-σ ). The perturbation in the corresponding affine

linear state equation is only a constant and does not destroy convexity as well.
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5.1 Stability of the Quadratic Problems (QP-σ )

We fix d0 = 0 and dT = 0, i.e. we assume that initial and final conditions are met

exactly during the application of the SQP method, which is reasonable from the nu-

merical point of view.

Proposition 3 Let Assumptions 1-4 and 5 hold. Denote with (yi,ui, pi) ∈ Xs, i = 1,2,

the solution of (QP-σ -D) for arbitrary perturbation vectors di ∈ Zs. Then it holds

‖u2 −u1‖2
L2 . ‖d2

u −d1
u‖2

L2 +‖d2
y −d1

y‖2
L2(I,W−1,p)+‖d2

p −d1
p‖2

L2(I,W−1,p′ )
.

The hidden constant depends on the data of (OCP) and (ȳ, ū, p̄), but not on di.

To enhance clarity we state the KKT-system of the perturbed problems, that can

easily be derived from (GE-σ -D) using (2) and (3)-(5), before starting the proof:







∂ty
i +A (ȳ)yi +A

′(ȳ)yi = Bui +A
′(ȳ)ȳ+di

y

yi(0) = y0

−∂t pi +A (ȳ)∗pi +A
′(ȳ)∗pi = yi − yd −A

′′(ȳ)[yi − ȳ, ·]∗ p̄+di
p

pi(T ) = 0

di
u ∈ γui +B∗pi +NUσ

ad
(ui).

(14)

In the following we use the short notation ∆y := y2 − y1, ∆u := u2 − u1, ∆p :=
p2 − p1 (and similiarly for dy,du,dp). From (14) we derive:

∂t∆y +A (ȳ)∆y +A
′(ȳ)∆y = B∆u +∆dy

, (15)

−∂t∆p +A (ȳ)∗∆p +A
′(ȳ)∗∆p = ∆y −A

′′(ȳ)[∆y, ·]∗ p̄+∆dp
, (16)

with vanishing initial and final condition, respectively: ∆y(0) = 0 and ∆p(T ) = 0.

Proof The proof relies on the linear quadratic structure of (QP-σ -D) and regularity

results for the linearized state equation resp. the adjoint equation.

Hence it works completely analogous to Goldberg and Tröltzsch (1998) and we

omit the details and only mention the required regularity results (Bonifacius and

Neitzel 2018, Propositions 4.4 resp. 4.7) and that terms containing A ′′ are estimated

with help of Lemma 5. ⊓⊔

This shows L2-stability of the quadratic problems (QP-σ ) with respect to pertur-

bations measured in corresponding norms. Utilizing a standard bootstrapping argu-

ment as e.g. in Tröltzsch (2000) we can show the corresponding Ls- resp. L∞-stability

result:
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Theorem 2 Let Assumptions 1-4 and 5 hold. Then, for the (yi,ui, pi), i = 1,2, from

the previous Proposition we have

‖u2 −u1‖Ls . ‖d2
u −d1

u‖Ls +‖d2
y −d1

y‖Ls(I,W−1,p)+‖d2
p −d1

p‖Ls(I,W−1,p′ ),

‖u2 −u1‖L∞ . ‖d2
u −d1

u‖L∞ +‖d2
y −d1

y‖Ls(I,W−1,p)+‖d2
p −d1

p‖Ls(I,W−1,p′ )

and

‖(y1,u1, p1)− (y2,u2, p2)‖Xs . ‖d1 −d2‖Zs ,

‖(y1,u1, p1)− (y2,u2, p2)‖X∞ . ‖d1 −d2‖Z∞ .

In particular, the generalized equation (GE-σ ) is strongly regular at its solution

(ȳ, ū, p̄) with respect to the spaces Xs,Zs and X∞,Z∞.

Proof Again, the proof follows the techniques from Goldberg and Tröltzsch (1998);

Tröltzsch (2000). From the projection formula ui = ProjUσ
ad

(

− 1
γ (B

∗pi −di
u)
)

, i =

1,2, we infer that

|∆u| ≤
1

γ
(|B∗∆p|+ |∆du

|)

holds pointwise on Λ . Thus, we can bound ∆u in the Lq(Λ)-norm, if we can bound

B∗∆p and ∆du
in the Lq(Λ)-norm. We apply a bootstrapping argument that relies on

the property of B∗ from Section 4.1: Assume that we already know

‖∆u‖Lr . ‖∆du
‖Lr +‖∆dy

‖Lr(I,W−1,p)+‖∆dp
‖

Lr(I,W−1,p′ )

for some r ∈ [2,s). Using the regularity theory of the linearized state resp. adjoint

equation for (15) resp. (16) we conclude

‖∆p‖
Lr(I,W

−1,p′
D )

. ‖∆du
‖Lr +‖∆dy

‖Lr(I,W−1,p)+‖∆dp
‖

Lr(I,W−1,p′ ).

At this point we need the full strength of Lemma 5 to estimate the A ′′-terms for

different r ∈ [2,s]. Note that p̄ ∈ L∞(I,W 1,p′) holds due to Lemma 3. Our discussion

of B∗ from Section 4.1 shows that either

(ζ +1)/2 < 1−1/r, which implies ‖B∗∆p‖L∞ . ‖∆p‖Lr(I,W−1,p′ )

or

(ζ +1)/2 > 1−1/r, which implies ‖B∗∆p‖Lq . ‖∆p‖Lr(I,W−1,p′ )

with some q fulfilling 1/q > 1/r+(ζ −1)/2 holds. In the first case it follows

‖∆u‖L∞ . ‖∆du
‖L∞ +‖∆dy

‖
Ls(I,W

−1,p
D )

+‖∆dp
‖

Ls(I,W
−1,p′
D )

and we are done. In the second case we have

‖∆u‖Lq . ‖∆du
‖Lq +‖∆dy

‖Lq(I,W−1,p)+‖∆dp
‖

Lq(I,W−1,p′ )

and we repeat the procedure with r = q as long as the first holds, which is clearly the

case due to Assumption 4 if r = s is reached. Note that (ζ − 1)/2 < 0 is fixed and

that we can avoid q being equal to the exceptional cases of Lemma 4 due to the strict

inequality that allows small perturbations. ⊓⊔
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Remark 6 In addition to the case of purely timedependent control Bonifacius and

Neitzel (2018) discuss the case of distributed control, i.e. U = Ls(I×Ω) in Assump-

tion 4 and B is the embedding Ls(I ×Ω) →֒ Ls(I,H
−ζ ,p
D ).

The main difficulty when generalizing our results to the setting of distributed

control lies in keeping the arguments for Proposition 3 and Theorem 2 working. In

that case, B∗ is the imbedding Ls′(I,W 1,p′) →֒ Ls′(I×Ω) and a similiar discussion as

in Section 4.1 has to be done. Sufficiently good estimates for ∆p could be obtained

using the regularity theorem from Section 7, whereas the corresponding estimates for

∆y would require an analogous analysis of the linearized state equation on H−ζ ,p-

spaces, which is beyond scope and focus of this paper.

5.2 Convergence of the Generalized Newton Method

Invoking a general result on the convergence of generalized Newton methods, e.g.

Hinze et al. (2009), Theorem 2.19, our previous results allow to derive the following

Theorem 3 Let assumptions 1-4 and 5 hold.

1. Then there is a radius rNewton > 0 such that for any tripple (y0,u0, p0) ∈ Xs fulfill-

ing

(y0,u0, p0) ∈ B
Xs
rNewton

((ȳ, ū, p̄))

the sequence of iterates generated by the Newton-Josephy method for equation

(GE-σ ) with (y0,u0, p0) as start is welldefined, stays in the ball BXs
rNewton

((ȳ, ū, p̄))
and converges q-superlinearly to (ȳ, ū, p̄) in Xs.

2. The same result as in (1) holds with X∞ instead of Xs.

Proof The proof is standard, see e.g. Tröltzsch (1999), Goldberg and Tröltzsch (1998),

Wachsmuth (2007), Hintermüller and Hinze (2006), Griesse et al. (2008, 2010).

6 Convergence of the SQP Method

The welldefinedness of the iterates in Theorem 3 is so far only ensured by some

generalized implicit function theorem and the strong regularity of (GE-σ ) at (ȳ, ū, p̄).
Convexity of the quadratic subproblems (QP-σ ) is so far only known in the case

(yk,uk, pk) = (ȳ, ū, p̄), i.e. the relation of possible minimizers of (QP-σ ) and solutions

of (GE-σ ) is unclear at the moment.

Therefore, this final section is devoted to the interpretation of the Newton iterates

as solutions of some linear quadratic optimal control problems. In a first step (Section

6.1) we consider the quadratic problems restricted to Uσ
ad , i.e. the set of those controls

from Uad that coincide with the optimal control ū on the σ -active set of ū. It is not

possible to avoid such rather technical restrictions completely, cf. the example given

by Goldberg and Tröltzsch (1998, Section 6) or the last remark of Tröltzsch (1999),

but they can be slightly relaxed: The quadratic subproblems have to be restricted

to Uad ∩BL2

ρ (ū) with some radius ρ > 0, as shown in Sections 6.2 and 6.3. That

this restriction can be done in terms of L2-balls around ū (instead of L∞-balls as in
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previous results) is –to our best knowledge– a new result that we obtain by careful

application of the SSCs.

6.1 SQP Method on Uσ
ad

In this section we relate the iterates of the Newton method to solutions of (QP-σ ),

see Section 3.3 for the definition of Uσ
ad and QP-σ . To do so we will show that

the formal optimality conditions for (QP-σ ) encoded in the Newton equations for

(GE-σ ) are indeed sufficient optimality conditions for (QP-σ ). Following again the

work of Tröltzsch (1999), Goldberg and Tröltzsch (1998), and Wachsmuth (2007)

this is done by showing strict convexity for (QP-σ ) for (yk,uk, pk) sufficiently close

to (ȳ, ū, p̄). We prove convergence of the SQP method under the technical restriction

to replace Uad by Uσ
ad . Assuming strongest possible SSCs, i.e. Uad =Uσ

ad , this yields

our first main result.

Recall the definition of the space Xs from Section 3.2. The following result cor-

responds to Lemma 6.2, Corollary 6.3 by Tröltzsch (1999).

Proposition 4 Let Assumptions 1-4 and 5 be satisfied. Then, the linear quadratic

SQP problem (QP-σ ) is a strictly convex optimization problem as long as (yk,uk, pk)
is sufficiently close to (ȳ, ū, p̄) in Xs.

Proof The optimization problems (QP-σ ) are of linear quadratic type. To show strict

convexity it suffices to show coercivity, but the latter is an immediate consequence of

the second order sufficient condition (SSC-σ ) and the uniform estimate from Propo-

sition 1. ⊓⊔
Now we are ready to show locally superlinear convergence of the SQP method

with quadratic problems on Uσ
ad :

Theorem 4 Let the assumptions of Theorem 3 be fulfilled.

1. There is a radius rSQP-σ > 0 such that for any start tripple (y0,u0, p0) ∈ Xs fulfill-

ing

(y0,u0, p0) ∈ B
Xs
rSQP−σ

((ȳ, ū, p̄))

the sequences of iterates generated by the generalized Newton method applied to

(GE-σ ) resp. generated by the SQP method with quadratic subproblems (QP-σ )

are both welldefined, coincide, stay in the ball BXs
rSQP σ

((ȳ, ū, p̄)) and converge

superlinearly to (ȳ, ū, p̄) in Xs.

2. The statement analogous to (1) with Xs replaced by X∞ is true, too.

3. There is a radius r̃SQP-σ > 0 such that the SQP method with quadratic subprob-

lems (QP-σ ) and initial iterate (y0,u0, p0) with

‖y0 − ȳ‖
W 1,s(I,W

−1,p
D )∩Ls(I,W

1,p
D )

+‖p0 − p̄‖
W 1,s(I,W

−1,p′
D )∩Ls(I,W

1,p′
D )

≤ r̃SQP-σ

converges superlinearly in Xs and X∞ to (ȳ, ū, p̄). In particular we can choose

u0 ∈Uad , ‖u0 − ū‖L2(Λ) sufficiently small,

y0, p0 state and adjoint state associated to u0.
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Proof For (1) and (2) the proof works analogous to that of Theorem 6.4 in Tröltzsch

(1999). For (3) note that (QP-σ ) is actually independent of the current control iterate

uk, cf. also the remark after (5), which shows the first statement in (3). By interpola-

tion, cf. Remark 7, it holds ‖u0− ū‖Ls ≤C‖u0− ū‖2/s

L2 for all u0 ∈Uad with a constant

C > 0 depending only on ua and ub. From this we conclude by continuity

‖(y0,u0, p0)− (ȳ, ū, p̄)‖Xs . ‖u0 − ū‖2/s

L2 ,

which shows the second statement of (3). ⊓⊔

Assuming strongest possible second order sufficient conditions, i.e. coercivity

of the second derivative of the Lagrangian on the whole space instead of only on a

subspace, we are able to state our first main result. Note that it is possible to formulate

all “closeness” required for convergence of the SQP method with respect to L2-norms.

Theorem 5 Let the Assumptions 1-4 be fulfilled and let the second order sufficient

condition (SSC-σ ) from Assumption 5 hold on the whole space L2(Λ). Then the SQP

method for (OCP) started in (y0,u0, p0) ∈ Xs,

u0 ∈Uad , ‖u0 − ū‖L2(Λ) sufficiently small,

y0, p0 state and adjoint state associated to u0,

converges superlinearly in Xs and X∞ to (ȳ, ū, p̄).

Proof Use Theorem 4 (3) together with Uσ
ad =Uad . ⊓⊔

Remark 7 (The “interpolation trick”) Using the equivalence of the topologies gener-

ated by the L2- and the Ls-norm on the L∞-bounded set Uad , respectively, might look

rather trivial, but indeed this observation is a key argument for many proofs con-

cerning second order conditions without two norm gap, see e.g. Casas and Tröltzsch

(2012, Proposition 3.4) or Bonifacius and Neitzel (2018, Theorem 4.14). Here, we

made use of this “interpolation trick” in Theorem 4 (3) and 5 to tighten the unsat-

isfying gap between the quadratic growth condition for j implied by (SSC-σ ) – this

growth condition holds L2-locally – and the Ls-local convergence of the SQP method.

For the rest of Section 6 we will be concerned with relaxing this rather abstract

and technical condition towards a more natural restriction.

6.2 Generalized Newton Method on Uad resp. Uad ∩BL2

ρ (ū)

To establish convergence of the SQP method restricted to Uad ∩BL2

ρ (ū) we have to

consider convergence of the Newton method for the associated generalized equation

first. Our arguments follow in particular the presentation by Wachsmuth (2007), but

similiar results are also due to Goldberg and Tröltzsch (1998) and Tröltzsch (1999).

To replace L∞-locality by L2-locality in the statements of Proposition 5 is –to our best

knowledge– a new result, which will serve as main step towards our final result in the

last section.



22 Fabian Hoppe, Ira Neitzel

In the following we consider the perturbed generalized equation

d ∈ F(ȳ, ū, p̄)+F ′(ȳ, ū, p̄)(y− ȳ,u− ū, p− p̄)+N(y,u, p). (GE-D)

Note that we now use the normal cone map N associated with the true set of

admissible controls Uad instead of the normal cone map Nσ associated with the mod-

ified admissible set Uσ
ad that was used for the definition of (GE-σ -D) in the previous

sections. Furthermore, note that (GE-D) can be understood as generalized equation

in the spaces Xs,Zs resp. X∞, Z∞ both. For the definition of these spaces see Section

3.2. As before, the generalized equation (GE-D) is the formal optimality system of

the following perturbed optimal control problem:







min
y,u

1

2
‖y− yd‖2 +

γ

2
‖u‖2 − 1

2
〈p̄,A ′′(ȳ)[y− ȳ]2〉−〈du,u〉+ 〈dp,y〉

subject to u ∈Uad

and

(
dy

0

)

= ey(ȳ, ū)(y− ȳ)+ eu(ȳ, ū)(u− ū)

(QP-D)

The reduced objective function for (QP-D) will be denoted by jd . Note that we did

not discuss properties of this optimization problem so far. Further, we introduce the

following notation for the strongly active sets:

Aσ
d (u) := {x ∈ Λ : |∇ jd(u)|(x) = |B∗p+ γu−du|(x)> σ} ,

Aσ (u) := Aσ
0 (u), i.e. d = 0 in the definition above.

Here, p denotes the adjoint state associated with u with respect to (QP-D) with per-

turbation vector d, see (14). Note that Aσ
0 (ū) coincides with the strongly active set for

ū defined in Assumption 5.

In Section 5 we observed that under Assumptions 1-4 and 5 the restricted optimal

control problem (QP-σ -D), i.e. problem (QP-D) restricted to Uσ
ad , is strictly convex

and admits a unique solution (ȳd , ūd , p̄d). This holds true for arbitrarily large pertur-

bation vectors d. In particular, the map d = (dy,dp,du) 7→ (ȳd , ūd , p̄d) was shown to

be Lipschitz from Z∞ to X∞ in Theorem 2, say with modulus L′ > 0. It follows that

the mapping

Z∞ → L∞(Λ),

d 7→ γ ūd +B∗ p̄d −du = ∇ jd(ūd)
(17)

is Lipschitz as well, say with modulus L > 0.

Remark 8 Of course, even the map Zs → Xs, d 7→ (ȳd , ūd , p̄d) is Lipschitz continuous

as shown in Theorem 2, which implies that d 7→ γ ūd +B∗ p̄d −du is Lipschitz contin-

uous from Zs to Ls(Λ). Unfortunately, we rely on L∞-estimates in the following.

Assuming σ > 0 in (SSC-σ ) we can draw some immediate conclusions from the

Lipschitz continuity of (17) as done by Wachsmuth (2007, Corollaries 5.3 and 5.4):
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Lemma 7 Let Assumptions 1-4 and 5 with σ > 0 hold and suppose that ‖d‖Z∞ < σ
2L

.

1. It holds Aσ (ū) ⊂ A
σ/2

d (ūd) and the signs of ∇ jd(ūd) and ∇ j0(ū) coincide on

Aσ (ū).
2. The solution (ȳd , ūd , p̄d) of (QP-σ -D) is a solution of (GE-D) as well, i.e. it holds

〈γ ūd +B∗ p̄d −du,u− ūd〉L2(Λ) ≥ 0, ∀u ∈Uad .

Proof Completely analogous to Wachsmuth (2007).

Lemma 7 shows that our solution of (QP-σ -D) that depends Z∞-X∞-Lipschitz on

d is a solution of (GE-D) as well, if the perturbation d is small enough in Z∞. To

establish strong regularity of (GE) (with spaces X∞,Z∞) from this result we have to

show that this solution is locally unique. This is done by proving that (ȳd , ūd , p̄d) is

not only a global solution of (QP-σ -D) but even a local solution of (QP-D) fulfilling

a quadratic growth condition on a ball around (ȳd , ūd , p̄d) with radius independent of

d.

Proposition 5 Let the Assumptions of Lemma 7 be satisfied.

1. Then there exist 0 < ε̃ < σ
2L

and ρ̃,η > 0, such that (ȳd , ūd , p̄d), i.e. the solution

of (QP-σ -D), is also a L2-local solution of (QP-D) and satisfies the quadratic

growth condition

jd(u)≥ jd(ūd)+η‖u− ūd‖2
L2

for ‖u− ūd‖L2(Λ) ≤ ρ̃ , u ∈Uad , as long as ‖d‖Z∞ < ε̃ .

2. There are 0 < ε̂ ≤ ε̃ , 0 < ρ̂ ≤ ρ̃ such that (ȳd , ūd , p̄d) is the only stationary1 point

for (QP-D) in BL2

ρ̂ (ūd).

The first statement of this Proposition corresponds to Theorem 5.5 (Wachsmuth

2007) with the L∞-ball around ūd replaced by an L2-ball. To establish quadratic

growth L∞-locally around ūd , one could follow the direct proof of Theorem 5.17

(Tröltzsch 2010). Avoiding the two norm gap –which is our aim– can be done fol-

lowing ideas due to Casas and Tröltzsch (2012, Theorem 2.3), see also Tröltzsch and

Wachsmuth (2006, Theorem 3.22), utilizing a proof by contradiction. We mention

that similiar arguments were also used by Casas and Tröltzsch (2012) in the context

of abstract finite element errors.

Note that for every single perturbation d ∈ Z∞, both properties in the proposition

are directly implied by Theorem 2.3 resp. Corollary 2.6 from Casas and Tröltzsch

(2012). The crucial point here is to guarantee that the radii of the respective balls can

be chosen independently of the choice of d as long as ‖d‖Z∞ is small enough.

Proof For the proof of (1) we extended the technique presented by Casas and Tröltzsch

(2012, Theorem 2.3) to our needs. First, note that due to the quadratic structure of

(QP-D) it holds j′′d(ūd)[v1,v2] = j′′(ū)[v1,v2]. In particular, j′′d is independent of d.

1 We call (y,u, p) stationary for (QP-D) if (y,u, p) fulfills the first order necessary conditions for

(QP-D).
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We are going to argue by contradiction and assume the contrary of our claim:

There are sequences (dn)n ⊂ Z∞, (hn)n ⊂ L2(Λ) with

‖dn‖Z∞ <
1

n
, ‖hn‖L2 <

1

n
and ūdn

+hn ∈Uad

such that

jdn
(ūdn

+hn)− jdn
(ūdn

)<
1

n
‖hn‖2

L2 . (18)

Define vn := hn

‖hn‖L2
and ρn := ‖hn‖L2 . It holds dn = (dy,n,dp,n,du,n) → 0 strongly

in Z∞, which implies ūdn
→ ū and ∇ jdn

(ūdn
) → ∇ j(ū) strongly in L∞(Λ). Due to

‖vn‖L2 = 1 for all n ∈ N we can w.l.o.g. assume that vn ⇀ v∗ weakly in L2(Λ) for

some v∗ ∈ L2(Λ).

Step 1: We prove j′(ū)v∗ = 0. We have

j′(ū)v∗ = 〈strong- lim
n→∞

∇ jdn
(udn

),weak- lim
n→∞

vn〉L2

= lim
n→∞

〈∇ jdn
(udn

),vn〉L2 ≥ 0,
(19)

because 〈∇ jdn
(udn

),vn〉L2 = 1
ρn
〈∇ jdn

(udn
),hn〉L2 ≥ 0 holds for every n due to ūdn

+

hn ∈ Uad and Lemma 7 (2), for which we can assume w.l.o.g. that ‖dn‖Z∞ < σ
2L

.

Further, using the mean value theorem there are θn ∈ (0,1) such that

jdn
(udn

+ρnvn)− jdn
(ūdn

)

ρn

= 〈∇ jdn
(ūdn

+θnρnvn),vn〉L2 .

Due to the structure of (QP-D) –see e.g. (15), (16) and use regularity results as in the

proof of Theorem 2– we know that ∇ jdn
(ūdn

+θnρnvn)→ ∇ j(ū) strongly in L2(Λ),
which implies

jdn
(udn

+ρnvn)− jdn
(ūdn

)

ρn

→ j′(ū)v∗ as n → ∞. (20)

On the other hand it holds by assumption (18):

jdn
(udn

+ρnvn)− jdn
(ūdn

)

ρn

<
1

ρn

· 1

n
‖hn‖2

L2 =
ρn

n
→ 0,

which together with (20) yields j′(ū)v∗ ≤ 0 first and then together with (19):

j′(ū)v∗ = 0. (21)

Step 2: We want to show v∗ = 0 if |∇ j(ū)|> 0. To do so we show v∗ ≥ 0 if ∇ j(ū)> 0

and v∗ ≤ 0 if ∇ j(ū)< 0, which implies together with Step 1 the desired property: For

σ ′ > 0 arbitrary define Aσ ′,a(ū) := {x ∈Λ : ∇ j(ū)> σ ′}. As in the proof of Lemma 7

we conclude that ∇ jdn
(ūdn

)> 0 on Aσ ′,a(ū) for all sufficiently large n, which implies

hn,vn ≥ 0 on Aσ ′,a(ū) for all such n. Because weak convergence preserves signs we

conclude v∗ ≥ 0 on Aσ ′,a(ū). Since σ ′ > 0 was arbitrary it follows v∗ ≥ 0 whenever

∇ j(ū)> 0, as stated. The case ∇ j(ū)< 0 is shown in the same way.
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Step 3: In Step 2 we have shown that v∗ ∈ C0(ū) ⊂ Cσ (ū) holds. For the definition

of C0(ū) and Cσ (ū) see Assumption 5. In the present step we will arrive at the final

contradiction. First observe that by our assumption

ρ2
n

n
=

1

n
‖hn‖2

L2 > jdn
(ūdn

+hn)− jdn
(ūdn

)
(⋆)
= j′dn

(ūdn
)hn +

1

2
j′′(ū)hn

(�)

≥ ρ2
n

2
j′′(ū)v2

n,

where we used the linear quadratic structure of (QP-D) at (⋆) and the first order

optimality condition at (�). It follows

j′′(ū)v2
∗ ≤ liminf

n→∞
j′′(ū)v2

n ≤ liminf
n→∞

2

n
= 0, (22)

where the first inequality comes from the weak lower semicontinuity of j′′(ū), see

Proposition 4.10 (Bonifacius and Neitzel 2018). Since v∗ ∈ Cσ (ū) we can apply

(SSC-σ ) and conclude from (22) that v∗ = 0. Using property (4.11) by Bonifacius

and Neitzel (2018) at (N) we obtain

γ = γ liminf
n→

‖vn‖2
L2

(N)

≤ liminf
n→∞

j′′(ū)v2
n

(22)
= 0,

which is the desired contradiction. ⊓⊔
The second part of the Proposition is shown similiarly adapting the proof of

Corollary 2.6 by Casas and Tröltzsch (2012). We leave the details to the reader. ⊓⊔

Given a radius ρ > 0 we introduce another modification of the perturbed linear

quadratic problem (QP-D)







min
y,u

1

2
‖y− yd‖2 +

γ

2
‖u‖2 − 1

2
〈p̄,A ′′(ȳ)[y− ȳ]2〉−〈du,u〉+ 〈dp,y〉

subject to u ∈Uad ∩BL2

ρ (ū)

and

(
dy

0

)

= ey(ȳ, ū)(y− ȳ)+ eu(ȳ, ū)(u− ū)

(QP-D-ρ)

for which the following result holds:

Corollary 1 Let the Assumptions of the Lemma 7 be satisfied.

1. There are ε,ρ > 0, such that the tripple (ȳd , ūd , p̄d), i.e. the unique solution of

(QP-σ -D), is also the unique solution of (QP-D-ρ) if ‖d‖Z∞ < ε .

2. There are ε,τ > 0, such that for ‖d‖Z∞ < ε the control ūd is the unique solution

of (GE-D) that is contained in the set Uad ∩BL2

τ (ū).

A result similiar to (2) –but with L∞- instead of L2-balls– was proven by Goldberg

and Tröltzsch (1998, Theorem 5.4) using a different argument that relies on strongly

active sets and continuity of (17).
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Proof 1. Choose ρ = 2ρ̃
3

and ε < min
(

ε̃, ρ̃
3C

)

, where C > 0 is the Z∞-L2-Lipschitz

constant for the map d 7→ ūd , cf. Theorem 2 for the Lipschitz continuity. Then, it

holds in particular ‖d‖Z∞ < ε̃ , i.e. the previous Proposition applies, and

ūd ∈Uad ∩BL2

ρ (ū)⊂Uad ∩BL2

ρ̃ (ūd)

for all ‖d‖Z∞ < ε . Since ūd is the unique minimizer of (QP-D) restricted to Uad ∩
BL2

ρ̃ (ūd) by quadratic growth (Proposition 5 (1)) and this minimizer is contained

in the smaller set Uad ∩BL2

ρ (ū), we finally proved that ūd is the unique minimizer

of (QP-D) restricted to Uad ∩BL2

ρ (ū), i.e. the unique minimizer of (QP-D-ρ).

2. Similiarly as for (1). Now make use of Proposition 5 (2). ⊓⊔

We introduce another variation of (GE):

0 ∈ F(y,u, p)+Nρ(y,u, p), (GE-ρ)

with the set valued map Nρ(y,u, p) := {{0} ,{0} ,{0} ,{0} ,N
Uad∩BL2

ρ (ū)
(u)}T , where

N
Uad∩BL2

ρ (ū)
(u) denotes the normal cone of the closed convex set Uad ∩BL2

ρ (ū) at some

point u. The first part of the following result is similiar to Corollary 5.6 (Wachsmuth

2007), the second part to the observation on top of p. 240 by Goldberg and Tröltzsch

(1998).

Theorem 6 Let the Assumptions of Lemma 7 be fulfilled. It holds:

1. The generalized equation (GE) in the spaces X∞, Z∞ is strongly regular at (ȳ, ū, p̄).
2. There is a ρ > 0 such that the generalized equation (GE-ρ) in the spaces X∞,Z∞

is strongly regular at (ȳ, ū, p̄).

Proof Both statements are consequences of Corollary 1 resp. Theorem 2. The first

part is proven in the same way as in Wachsmuth (2007). We have to use that the

L∞-norm is stronger than the L2-norm. For the second part note that for all u in the

L2-interior of the ball BL2

ρ (ū), i.e. in particular for all u sufficiently close to ū in

the L∞-norm, the equality N
Uad∩BL2

ρ (ū)
(u) = NUad

(u) holds, as already mentioned by

Goldberg and Tröltzsch (1998). ⊓⊔

The following result is an immediate consequence of an abstract result (Hinze

et al. 2009, Theorem 2.19) and Theorem 6. The closed graph property for the normal

cone map Nρ is standard.

Theorem 7 Let Assumptions 1-4 and 5 hold. For any (y0, p0) sufficiently close to

(ȳ, p̄) in the space

W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D )×W 1,s(I,W−1,p′
D )∩Ls(I,W 1,p′

D )

it holds:
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1. The sequence of iterates generated by the Newton-Josephy method for (GE) with

initial iterate (y0,u0, p0) is welldefined and converges superlinearly in X∞ to

(ȳ, ū, p̄).
2. The same holds true for the sequence of iterates generated by the Newton-Josephy

method for (GE-ρ) with ρ from Theorem 6 (2).

From Lemma 7 on we had to consider perturbations in Z∞, i.e. we had to measure

the control in L∞(Λ). This is the reason why have to show strong regularity only

in Z∞,X∞ and not in Zs,Xs as well as we did before. That we impose no condition

on u0 is due to the fact that the Newton update equations for (GE) resp. (GE-ρ) are

independent of the current u-iterate uk, see the comment after equation (5).

6.3 SQP Method on Uad ∩BL2

ρ (ū)

Finally, we can investigate how the iterates of the generalized Newton method from

Theorem 7 can be computed by solving linear quadratic optimal control problems

restricted on Uad ∩BL2

ρ (ū). For analogous results in the case of semilinear equations

(but with L∞- instead of L2-balls) we refer to Tröltzsch (1999) and Goldberg and

Tröltzsch (1998).

Lemma 8 Let the Assumptions of Theorem 7 hold. Let (yk,uk, pk) ∈ X∞ be a given

tripple and consider the restricted quadratic subproblem (QP-σ ) associated with this

tripple. There exists an X∞-neighbourhood V1 of (ȳ, ū, p̄) such that the map

(yk,uk, pk) 7→ (yσ
k+1,u

σ
k+1, pσ

k+1)

is well-defined on V1 and Lipschitz continuous, where (yσ
k+1,u

σ
k+1, pσ

k+1) denotes the

unique solution of (QP-σ ).

Proof Existence and uniqueness of a solution to (QP-σ ) is established in Proposition

4 for (yk,uk, pk) sufficiently close to (ȳ, ū, p̄). Define Ṽ to be such a neighbourhood

of (ȳ, ū, p̄). To see Lipschitz continuity, note that (yσ
k+1,u

σ
k+1, pσ

k+1) is solution of the

parametrized generalized equation

0 ∈ G((yk,uk, pk),(y,u, p))+Nσ (y,u, p)

:= F(yk,uk, pk)+F ′(yk,uk, pk)(y− yk,u−uk, p− pk)+Nσ (y,u, p)

–with (yk,uk, pk) being the parameter– and that

0 ∈ G((ȳ, ū, p̄),(y,u, p))+Nσ (y,u, p)

= F(ȳ, ū, p̄)+F ′(ȳ, ū, p̄)(y− ȳ,u− ū, p− p̄)+Nσ (y,u, p)

is strongly regular at its solution (ȳ, ū, p̄) according to Theorem 2. Further, G and G′,
i.e. F and F ′, depend continuously on (yk,uk, pk), because F : X∞ → Z∞ is continu-

ously differentiable (Lemma 2). Hence, Theorem 2.18 (Hinze et al. 2009) implies the

desired Lipschitz continuity of (yk,uk, pk) 7→ (yσ
k+1,u

σ
k+1, pσ

k+1) from X∞ to X∞ on a

sufficiently small neighbourhood V̂ of (ȳ, ū, p̄). Now, V1 := Ṽ ∩ V̂ yields the desired

neighbourhood. ⊓⊔
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With the previous Lemma we have shown in particular that

X∞ → L∞(Λ)

(yk,uk, pk) 7→ ∇ jk(u
σ
k+1) = γuσ

k+1 +B∗pσ
k+1

(23)

is Lipschitz continuous on the X∞-neighbourhood V1 of (ȳ, ū, p̄). With jk we denoted

the reduced functional of (QP-σ ) and pσ
k+1 is the adjoint state (w.r.t. (QP-σ )) associ-

ated with the control uσ
k+1, see equations (3), (4). The same argument as for Lemma

7 now shows

Lemma 9 Let the Assumptions of Theorem 7 hold. There is an X∞-neighbourhood V2

of (ȳ, ū, p̄) such that for all (yk,uk, pk) ∈V2 the solution (yσ
k+1,u

σ
k+1, pσ

k+1) of (QP-σ )

satisfies the first order necessary optimality conditions of (QP).

Proof State- and adjoint equation of (QP) and (QP-σ ) coincide. We only have to

show that (yσ
k+1,u

σ
k+1, pσ

k+1) fulfills the variational inequality of (QP) as well and this

works completely analogous to Lemma 7 replacing (17) with (23). ⊓⊔

Now, we can show the following result that is similiar to Proposition 5:

Proposition 6 Let the Assumptions of Theorem 7 hold. There is an X∞-neighbourhood

V3 of (ȳ, ū, p̄) and there are ρ,η > 0 such that for all tripples (yk,uk, pk) ∈ V3 the

unique solution (yk+1,uk+1, pk+1) := (yσ
k+1,u

σ
k+1, pσ

k+1) of (QP-σ )

1. is a L2-local solution of (QP) satisfying the quadratic growth condition

jk(u)≥ jk(uk+1)+η‖u−uk+1‖2
L2

for u ∈Uad such that ‖u−uk+1‖L2(Λ) ≤ ρ .

2. is the only stationary point for (QP) in BL2

ρ (uk+1).

Proof We proceed as in the proofs of Proposition 5 (1) and (2) and argue by contra-

diction. Instead of jdn
and ūdn

we have to consider jk and uk+1. We only mention the

essential ingredients that keep all the previous arguments working:

(i) For any sequence (wk)⊂Uad such that wk → ū in L2(Λ) it holds

∇ jk(wk)→ ∇ j(ū), strongly in L2(Λ).

This was shown in Proposition 2; use the “interpolation trick” (Remark 7) to

obtain the required Ls-convergence wk → ū from the given L2-convergence.

(ii) If uk → ū strongly in L2 and vk ⇀ v∗ weakly in L2 we have:

j′′(ū)v2
∗ ≤ liminf

k→∞
j′′k (uk)v

2
k .

Using the boundedness of (vk)k, this is a consequence of Proposition 1 and the

weak lower semicontinuity of j′′, see Bonifacius and Neitzel (2018), (4.10):

liminf
k

j′′k (uk)v
2
k ≥ liminf

k

(
j′′k (uk)− j′′(uk)

)
v2

k
︸ ︷︷ ︸

→0 uniformly in vk

+ liminf
k

j′′(uk)v
2
k ≥ j′′(ū)v2

∗
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(iii) If v∗ = 0 in (2), then γ liminfk→∞‖vk‖2
L2 ≤ liminfk→∞ j′′k (uk)v

2
k : This is shown by

the same argument as above. ⊓⊔

Next, we obtain with the same argument as for Corollary 1:

Proposition 7 Let the Assumptions of Theorem 7 hold.

1. There is an X∞-neighbourhood V4 of (ȳ, ū, p̄) and a radius ρ > 0 such that for

all (yk,uk, pk) ∈ V4 the next SQP iterate (yk+1,uk+1, pk+1) given by the unique

solution of (QP-σ ) is also the unique solution of (QP) with admissible set Uad ∩
BL2

ρ (ū).
2. There is an X∞-neighbourhood V5 of (ȳ, ū, p̄) and a radius ρ > 0, such that for

all (yk,uk, pk) ∈ V5 the next SQP iterate (yk+1,uk+1, pk+1) given by the unique

solution of (QP-σ ) is also the unique L2-local solution of the global quadratic

problem (QP) that is contained in Uad ∩BL2

ρ (ū).

For convenience of the reader we write down the quadratic problem which we

will refer to in our final theorem:







min
y,u

Jk(y,u) :=
1

2
‖y− yd‖2 +

γ

2
‖u‖2 − 1

2
〈pk,A

′′(yk)[y− yk]
2〉

subject to u ∈Uad ∩BL2

ρ (ū),

and

{

∂ty+A (yk)y+A
′(yk)y = Bu+A

′(yk)yk

y(0) = y0

(QP(ρ,yk, pk))

Theorem 8 Let Assumptions 1-4 and 5 with σ > 0 hold. Then there are radii ρ > 0,

rSQP > 0 such that for any initial guess

(y0, p0) ∈W 1,s(I,W−1,p
D )∩Ls(I,W 1,p

D )×W 1,s(I,W−1,p′
D )∩Ls(I,W 1,p′

D )

fulfilling

‖y0 − ȳ‖
W 1,s(I,W

−1,p
D )∩Ls(I,W

1,p
D )

+‖p0 − p̄‖
W 1,s(I,W

−1,p′
D )∩Ls(I,W

1,p′
D )

≤ rSQP

the sequence of iterates generated by the sucessive solution of the SQP subproblems

(QP(ρ,yk, pk)) converges superlinearly in X∞ to (ȳ, ū, p̄).
A possible choice of y0, p0 are state y0 and adjoint state p0 associated to some

control u0 ∈Uad w.r.t. (OCP) if ‖u0 − ū‖L2 is chosen small enough.

Proof Combine Proposition 7 with Theorem 7. ⊓⊔

This theorem is our main result. Note in particular that we tightened the gap

between the L2-local growth condition originating from the second order sufficient

conditions and the “closeness”-conditions in the SQP method. The latter had been

formulated with respect to L∞ in the existing literature. Now, in Theorem 8 above all

required “closeness” can be formulated with respect to the L2-norm.



30 Fabian Hoppe, Ira Neitzel

7 Regularity of the Adjoint State

In this section we prove the regularity required for the adjoint state in our analysis. In

Bonifacius and Neitzel (2018, Proposition 4.7) it was shown that

p̄ ∈W 1,r(I,W−1,p′
D )∩Lr(I,W 1,p′

D ) ∀r ∈ [s′,∞),

whereas we need additional regularity p̄ ∈ L∞(I,W 1,p′) as explained in Remark 5. In

fact, we will show even higher regularity for p̄ in the theorem below than necessary.

To improve readability of our arguments, we start with a collection of results from

Bonifacius and Neitzel (2018). As further reference for maximal parabolic regularity

on H−ζ ,p-spaces we mention the work of Haller-Dintelmann and Rehberg (2009).

Some of the results cited below are originally due to them.

Theorem 9 1. For every right hand side f ∈ Ls(I,H
−ζ ,p
D ) there is a unique solution

y ∈W 1,s(I,H
−ζ ,p
D )∩Ls(I,D) to the nonlinear state equation

∂ty+A (y)y = f , y(0) = y0. (E)

2. The following embeddings hold true:

(a) D →֒W
1,p
D →֒c Lp →֒ H

−ζ ,p
D

(b) W 1,s(I,H
−ζ ,p
D )∩Ls(I,D) →֒c C α(I,W 1,p

D ) for some α > 0.

3. The linear map W
1,p
D → L (D ,H

−ζ ,p
D ), ξ 7→ −div(ξ µ∇·) is continuous.

4. Let y be a solution of (E). Then it holds:

(a) A (y) has maximal parabolic regularity on Lr(I,H
−ζ ,p
D ) for r ∈ (1,∞).

(b) A (y) +A ′(y) has maximal parabolic regularity on Lr(I,W−1,p
D ) for every

r ∈ (1,s].
(c) A (y)•+A ′(y)• (where • indicates taking adjoints and reversing time) has

maximal parabolic regularity on Lr′(I,W−1,p′
D ) for every r′ ∈ [s′,∞).

(d) A (y)∗+A ′(y)∗ has maximal parabolic regularity on Lr′(I,W−1,p′
D ) for every

r′ ∈ [s′,∞).

5. For τ ∈ ( 1+ζ
2

,1) it holds (H
−ζ ,p
D ,D)τ,1 →֒W

1,p
D .

Proof 1. Bonifacius and Neitzel (2018, Theorem 3.20 for regularity, Proposition 3.5

for existence)

2. Bonifacius and Neitzel (2018, (a) below Proposition 3.6, (b) Corollary 3.7)

3. Bonifacius and Neitzel (2018) Proposition 3.6(ii).

4. See Bonifacius and Neitzel (2018, Theorem 3.20 for (a), Proposition 4.4 (resp.

text between formulas (4.4) and (4.5)) for (b), Proposition 4.7 for (c)).

For (d): Bonifacius and Neitzel (2018, proof of Proposition 4.7) state that ev-

ery autonomous operator A (y(t))∗+A ′(y(t))∗ has maximal parabolic regular-

ity on W
−1,p′
D . Since the map t 7→ A (y(t))∗+A ′(y(t))∗ is continuous from I to

L (W 1,p′
D ,W−1,p′

D ) the nonautonomous operator inherits maximal parabolic regu-

larity, see Amann (2004, Theorem 7.2)

5. Bonifacius and Neitzel (2018, Proposition 3.6(i)). ⊓⊔
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Now, we fix y ∈ W 1,s(I,H
−ζ ,p
D )∩ Ls(I,D). In particular, y can be a solution of

(E) for some right hand side f ∈ Ls(I,H
−ζ ,p
D ). It was shown, see Theorem 9 (4c) and

Amann (2004, Proposition 3.1) resp. Amann (2003, formula (6.2)), that

(
−∂t +A (y)∗+A

′(y)∗, trT

)
: W 1,r(I,W−1,p′

D )∩Lr(I,W 1,p′
D )

→ Lr(I,W−1,p′
D )× (W−1,p′

D ,W 1,p′
D )1−1/r,r (24)

is a topological isomorphism for r ∈ [s′,∞). In fact, this also holds for every r ∈ (1,∞)

due to continuity of t 7→ A (y)∗+A ′(y)∗ as map I → L (W 1,p′ ,W−1,p′) by (Amann

2004, Proposition 7.1 and Theorem 7.1). The required continuity with respect to time

is shown by Bonifacius and Neitzel (2018) in the proof of Proposition 4.7.

We want to obtain more regularity for the adjoint state and to do so we consider

restrictions of the above isomorphism onto smaller spaces of more regular functions.

First, note that a short computation shows A (y)∗|
Lr(I,W

1,p
D )

= A (y)|
Lr(I,W

1,p
D )

and si-

miliarly we can express A ′(y)∗ restricted to Lr(I,W 1,p
D ) as first order differential

operator A ′(y)∗ϕ = ξ ′(y)µ∇y∇ϕ . Standard Sobolev embeddings imply that under

Assumption 4 it holds

Lp/2 →֒ H
−ζ ,p
D . (25)

We already know by Theorem 9 (4a) that −div(ξ (y)µ∇·) has maximal parabolic

regularity on Lr(I,H
−ζ ,p
D ) and that t 7→ −div(ξ (y)µ∇·) is continuous as map I →

L (D ,H
−ζ ,p
D ), which follows from Theorem 9 (2a) and (3). As above, we infer from

Amann (2004) that

(−∂t −div(ξ (y)µ∇·), trT ): W 1,r(I,H
−ζ ,p
D )∩Lr(I,D)

→ Lr(I,H
−ζ ,p
D )× (H

−ζ ,p
D ,D)1−1/r,r

is a topological isomorphism. Now, choose
1+ζ

2
< θ < 1 such that 1

r
> 1 − θ . It

follows by (Amann 2003, formula (1.2)) and Theorem 9 (2a), (5) that

W 1,r(I,H
−ζ ,p
D )∩Lr(I,D) →֒c Lr(I,(H

−ζ ,p
D ,D)θ ,1) →֒ Lr(I,W 1,p

D )

holds. Hence, the operator

A
′(y)∗: W 1,r(I,H

−ζ ,p
D )∩Lr(I,D) →֒c Lr(I,W 1,p

D )→ Lr(I,Lp/2) →֒ Lr(I,H
−ζ ,p
D ),

z 7→ ξ ′(y)µ∇y∇z

is compact as it can be expressed as composition of linear operators of which one is

a compact embedding. We conclude that the sum

(−∂t −div(ξ (y)µ∇·)+ξ ′(y)µ∇y∇·, trT ): W 1,r(I,H
−ζ ,p
D )∩Lr(I,D)

→ Lr(I,H
−ζ ,p
D )× (H

−ζ ,p
D ,D)1−1/r,r

is a Fredholm-operator of index 0 for every r ∈ (1,∞). Since it is the restriction of

the isomorphism (24) above, its kernel is trivial and therefore we actually have an

isomorphism. To sum this up we have shown the following regularity result:
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Theorem 10 Given y ∈W 1,s(I,H
−ζ ,p
D )∩Ls(I,D) the map

(−∂t −div(ξ (y)µ∇·)+ξ ′(y)µ∇y∇·, trT ): W 1,r(I,H
−ζ ,p
D )∩Lr(I,D)

→ Lr(I,H
−ζ ,p
D )× (H

−ζ ,p
D ,D)1−1/r,r

is a topological isomorphism for every r ∈ (1,∞), i.e. the adjoint equation

−∂tz−div(ξ (y)µ∇z)+ξ ′(y)µ∇y∇z = w,

z(T ) = wT

admits a unique solution z∈W 1,r(I,H
−ζ ,p
D )∩Lr(I,D) provided that w∈ Lr(I,H

−ζ ,p
D )

and wT ∈ (H
−ζ ,p
D ,D)1−1/r,r.

Remark 9 Note that we did not need more assumptions than Bonifacius and Neitzel

(2018) except for the slightly higher integrability of yd . In the framework of maximal

parabolic regularity on W
−1,p
D -spaces they discuss first order necessary and second

order sufficient optimality conditions, but in order to deal with the adjoint equation in

the maximal parabolic regularity context (Bonifacius and Neitzel 2018, Lemma 4.6,

Proposition 4.7) they required states in C α(I,W 1,p
D ) which was achieved by consid-

eration of the state equation on H
−ζ ,p
D spaces. Since we aim at SQP methods having

an adjoint equation with corresponding regularity theory is necessary anyway and

therefore restriction to the H
−ζ ,p
D -setting is not superfluous.

Remark 10 Since µ was assumed to be symmetric we could identify A (y)∗ with

A (y) etc. directly. In fact, all arguments go through if we postulate the same as-

sumptions for µT as already done for µ .

8 Numerical Examples

In this final section we present numerical examples in order to illustrate our theoret-

ical results. To do so we have constructed socalled manufactured solution examples,

i.e. an optimal control problem with analytically known solution, see Tröltzsch (2010,

Section 2.9) for the construction of such examples. Further, we test with an example

including boundary control, see Section 8.2

We implemented the SQP algorithm in python using an optimize-then-discre-

tize approach and FEniCS (Alnæs et al. 2015; Logg et al. 2012) for the finite element

discretization of the problem. The quadratic subproblems are solved by a semismooth

Newton method, see e.g. Ulbrich (2011), Hintermüller and Hinze (2006). As observed

in the existing literature the restriction of the quadratic subproblems to L∞- or –in our

case– L2-balls is only required to prove convergence of the algorithm in function

space. Fortunately, we can leave away this additional constraint in practice and solve

the quadratic subproblems on Uad without loosing convergence.
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Initial guess for the SQP method is in all three examples (y0,u0, p0) := (0,0,0).
To measure optimality of some iterate u we compute the L2-norm of the residual of

the projection formula

resL2(u) :=

∥
∥
∥
∥

u−ProjUad

(

−1

γ
B∗p(u)

)∥
∥
∥
∥

L2

,

where the adjoint state p(u) associated to u is computed using the implicit Euler

scheme. The nonlinear equations appearing at each timestep during the solution of

the state equation are solved by the built-in nonlinear solver of FEniCS. Convergence

of the SQP-Algorithm is measured by the increments

incrk := ‖yk+1 − yk‖L∞ +‖uk+1 −uk‖L∞ +‖pk+1 − pk‖L∞

Note that we do not compute the norm of the increments with respect to the norms

appearing in Theorem 8 because we do not have the abstract exponents p,s at hand

in a practical context.

8.1 Manufactured Solution Examples

8.1.1 Manufactured Solution Example in 1D

For I = [0,1] and Ω = [0,1] we consider the problem






min
y,u

J(y,u) :=
1

2
‖y− yd‖2

L2(I×Ω)+10−3 · ‖u‖2
L2([0,1])

subject to u ∈
{

v ∈ L2([0,1]) : − 9

10
≤ v(x)≤

√
2

2
a.e.

}

,

and







∂ty−div(ξ (y)∇y) = b ·u+ f on I ×Ω ,

y = 0 on I ×∂Ω ,

y(0) = sin(πx1),

(26)

and choose

ȳ(t,x) = cos(2πt)sin(πx),

p̄(t,x) =
1

100
sin(2πt)sin(πx),

b(x) = 1[1/3,2/3](x),

ξ (z) =
1

2
+

1

1+ exp(−5z)
.

With help of Wolfram Mathematica we compute the remaining quantities yd , f , ū

such that the optimality system for (26) is fulfilled. In particular it holds

ū(t) = min

(√
2

2
,max

(

− 9

10
,−10

π
sin(2πt)

))

.
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Note that all our theoretical results remain true for a problem of type (26) since addi-

tion of the term f to the model problem (OCP) does not change its structural proper-

ties.

Discretization of spatial functions is done with piecewise linear finite elements

on a equidistant partition of Ω = [0,1] in 100 subintervals. For time discretization

we apply an implicit Euler discretization with 10000 timesteps, whereby the size of

timesteps is chosen in order to roughly balance spatial and temporal discretization

errors, cf. Casas and Chrysafinos (2019). Since there is no visible difference between

the computed optimal control and the interpolated true solution, we do not show a

plot. Superlinear convergence seems to be indicated in Figure 1 (lhs). Stagnation

both of the projection residuals (Figure 1 (lhs)) resp. the errors to the interpolated

KKT-tripple (Figure 2 (lhs)) can be explained by effects of discretization.

8.1.2 Manufactured Solution Example in 2D

For I = [0,1] and Ω = [0,1]2 we consider a problem of the same structure as (26), but

now with

y0(x) = sin(πx1)sin(πx2),

ȳ(t,x) = cos(2πt)sin(πx1)sin(πx2),

p̄(t,x) =
1

100
sin(2πt)sin(πx1)sin(πx2),

b(x) = π2 ·1[1/3,2/3]2(x)

and the regularization parameter γ = 2 · 10−3 in (26) replaced by γ = 10−2. As be-

fore, the remaining quantities are computed utilizing Wolfram Mathematica and

the optimal control is given by

ū(t) = min

(√
2

2
,max

(

− 9

10
,−sin(2πt)

))

.

Discretization of spatial functions is now done with piecewise linear finite ele-

ments on a triangular mesh generated by mshr, the mesh-generation tool of FEniCS,

with maximum element diameter hmax ≈ 2.55 ·10−2. For time discretization we apply

an implicit Euler discretization with 1544 timesteps, whereby the size of timesteps

τ ≈ h2
max is chosen in order to roughly balance spatial and temporal discretization

errors, cf. Casas and Chrysafinos (2019). It was not possible to choose a finer dis-

cretization while maintaining a reasonable amount of computational costs and hence

convergence of the SQP method with respect to the true solution stagnates quite early

compared to the 1D case, see Figure 2 (rhs). However, the behaviour of the increments

resp. the projection residuals in Figure 1 (rhs) still seems to indicate superlinear con-

vergence.



Convergence of the SQP Method for Quasilinear Parabolic Optimal Control Problems 35

0 1 2 3 4 5 6

10−15

10−11

10−7

10−3

101

iteration k

incrk

resL2(uk)

0 1 2 3 4 5

10−12

10−9

10−6

10−3

100

iteration k

incrk

resL2(uk)

Fig. 1 Manufactured solution examples in 1D (lhs) resp. 2D (rhs): Convergence of the increments incrk

resp. projection residuals resL2 (uk) during the SQP iteration.
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Fig. 2 Manufactured solution example in 1D (lhs) resp. 2D (rhs): Convergence of the L∞-errors of state,

control resp. adjoint state with respect to the interpolated true KKT-tripple.

8.2 Example including Boundary Control Functions

As a final example we consider for I = [0,1] and Ω = [0,1]2 the following problem:







min
y,u

J(y,u) :=
1

2
‖y− yd‖2

L2(I×Ω)+
10−4

2
·

4

∑
i=1

‖ui‖2
L2([0,1])

subject to u ∈
{

v ∈ L2([0,1],R4) : 0 ≤ v1(t)≤ 15,

−0.8 ≤ vi ≤ 0 for i = 2,3,4} ,

and







∂ty−div(ξ (y)∇y) = u11K2
on I ×Ω ,

ξ (y)∂nΩ
y = ui on I ×ΓN,i, i = 2,3,4,

∂nΩ
y = 0 on I ×ΓN,1,

y = 0 on I ×∂ΓD,

y(0) = 0.

(27)
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Fig. 3 Optimal controls computed with SQP for example (27): control u1 (lhs) and controls u2,u3,u4 (rhs).

The desired state is given by

yd(t,x) := 1[1/3,2/3](t) ·1K1
(x),

where K1 := B 1
4
((0.6,0.5)) denotes the subdomain of Ω we want to “heat” during

the times t ∈ [1/3,2/3] and K2 := B 1
6
((0.6,0.5)) is the subdomain of Ω at which we

can apply a “heat source”. At the boundary parts

ΓN,2 := {x ∈ ∂Ω : x2 = 1},
ΓN,3 := {x ∈ ∂Ω : x1 = 1,0.5 ≤ x2 < 1},
ΓN,4 := {x ∈ ∂Ω : x1 = 0,0.5 ≤ x2 < 1}

we can “cool” via Neumann boundary control. ΓD := {x ∈ ∂Ω : x2 = 0} denotes

the Dirichlet boundary equippend with homogeneous Dirichlet conditions. Natural

boundary conditions hold on the remaining parts ΓN,1 of the boundary. The nonline-

arity is given by

ξ (y) := 0.9+
0.2

1+ exp(−20y)
.

Discretization is done with piecewise linear finite elements on a mesh generated

by mshr with mesh size hmax ≈ 4.24 · 10−2 and 556 time steps. Figure 3 shows the

optimal controls computed by the SQP method. Both the convergence of increments

and residuals in Figure 4 seems to go along with our theoretical findings.

Acknowledgements The authors are grateful to Hannes Meinlschmidt (RICAM, Linz) for suggesting a

more elegant and shorter proof for Theorem 10 than our original argument.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projekt-

nummer 211504053 - SFB 1060.

References

Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME,

Wells GN (2015) The fenics project version 1.5. Archive of Numerical Software 3(100), DOI

10.11588/ans.2015.100.20553



Convergence of the SQP Method for Quasilinear Parabolic Optimal Control Problems 37

0 1 2 3 4 5
10−13

10−10

10−7

10−4

10−1

102

iteration k

incrk

resL2(uk)

Fig. 4 Example (27): Convergence of the increments incrk resp. projection residuals resL2 (uk) during the

SQP iteration.

Alt W (1990) The Lagrange-Newton method for infinite-dimensional optimization problems.

Numer Funct Anal Optim 11(3-4):201–224, DOI 10.1080/01630569008816371, URL

https://doi.org/10.1080/01630569008816371
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Meinlschmidt H, Rehberg J (2016) Hölder-estimates for non-autonomous parabolic problems with

rough data. Evol Equ Control Theory 5(1):147–184, DOI 10.3934/eect.2016.5.147, URL

https://doi.org/10.3934/eect.2016.5.147

Meinlschmidt H, Meyer C, Rehberg J (2017a) Optimal control of the thermistor problem in three spatial

dimensions, Part 1: Existence of optimal solutions. SIAM J Control Optim 55(5):2876–2904, DOI

10.1137/16M1072644, URL https://doi.org/10.1137/16M1072644

Meinlschmidt H, Meyer C, Rehberg J (2017b) Optimal control of the thermistor problem in three spa-

tial dimensions, Part 2: Optimality conditions. SIAM J Control Optim 55(4):2368–2392, DOI

10.1137/16M1072656, URL https://doi.org/10.1137/16M1072656
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