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EXAHD – A Massively Parallel Fault Tolerant
Sparse Grid Approach for High-Dimensional
Turbulent Plasma Simulations

Rafael Lago, Michael Obersteiner, Theresa Pollinger, Johannes Rentrop,
Hans-Joachim Bungartz, Tilman Dannert, Michael Griebel, Frank Jenko, Dirk
Pflüger

Abstract Plasma fusion is one of the promising candidates for an emission-free
energy source and is heavily investigatedwith high-resolution numerical simulations.
Unfortunately, these simulations suffer from the curse of dimensionality due to the
five-plus-one-dimensional nature of the equations. Hence, we propose a sparse grid
approach based on the sparse grid combination technique which splits the simulation
grid into multiple smaller grids of varying resolution. This enables us to increase the
maximum resolution as well as the parallel efficiency of the current solvers. At the
same timewe introduce fault tolerancewithin the algorithmic design and increase the
resilience of the application code. We base our implementation on a manager-worker
approach which computes multiple solver runs in parallel by distributing tasks to
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different process groups. Our results demonstrate good convergence for linear fusion
runs and show high parallel efficiency up to 180k cores. In addition, our framework
achieves accurate results with low overhead in faulty environments. Moreover, for
nonlinear fusion runs, we show the effectiveness of the combination technique and
discuss existing shortcomings that are still under investigation.

1 Introduction

Scientists widely agree that the human-made climate change due to CO2 emission
will pose severe challenges for the future. Hence, to reduce the overall emission
of greenhouse gases, carbon free energy sources will be required. Nuclear fusion
is one candidate which offers abundant fuel with a large energy output. However,
there are still many difficulties to overcome in the task to build an energy-positive
fusion reactor. A major challenge are micro-instabilities caused by turbulent plasma
flow. These can be studied by numerical simulations to further improve the design of
fusion reactors. One of the codes dedicated to tackle this problem is GENE, which
solves the gyrokinetic Vlasov-Maxwell equations.

Unfortunately, the computational costs of these simulations are enormous. Since
they involve calculations on a five-dimensional spatial grid, they suffer from the curse
of dimensonality, i.e. from the exponential dependence of the grid size on dimension.
In our project, we overcome this issue with the help of the sparse grid combination
technique. This method splits a simulation into several independent runs on coarser
anisotropic grids and then aggregates the results on a sparse grid. As a consequence,
the curse of dimensionality is alleviated, which makes larger simulations feasible.
In addition, the arising subproblems can be computed in parallel which allows
for scaling to larger processor numbers. This enables the use of future exascale
computers. Finally, the method opens up an algorithmic approach to fault tolerance,
which will be a key requirement for exascale computing.

In this paper, we report on the main contributions of the two funding periods of
our project EXAHD within the priority program Software for Exascale Computing
of the DFG, with an emphasis on the second funding period. Partners in this joint
project were the Institute for Parallel and Distributed Systems at the University
of Stuttgart (PI Pflüger), the Institute for Numerical Simulations at the University
of Bonn (PI Griebel), the Institute for Informatics at the Technical University of
Munich (PI Bungartz), the Max-Planck Institute for Plasma Physics (PI Jenko), the
Supercomputing Center of the Max-Planck Society Garching (PI Dannert, second
period), and the Center for Mathematics and Its Applications of the Australian
National University (Hegland, external partner).

Our main contributions include significant progress for the solution of higher-
dimensional plasma flow problems. In particular, we addressed several exascale
challenges: We have realized the first-ever massively parallel computations with the
sparse grid combination technique, enabling scalability beyond the petascale for
mesh-based discretizations by numerically decoupling the underlying systems and
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by introducing a novel level of parallelism. We tackled load-balancing on massively
parallel systems, learning from gathered runtime data. And we have developed
new and innovative approaches for fault tolerance on multiple levels, in particular
algorithm-based fault tolerance, which can be a crucial aspect in settings where
checkpoint-restart is infeasible due to the massive amount of data that would have to
be handled.

In the first funding period we have focused on linear simulations of hot fusion
plasma which govern the exponential growth phase of turbulent modes. We have
developed core algorithms for fault tolerance and scalability, including algorithm-
based fault tolerance with the combination technique, suitable for parallel settings,
and we considered optimal communication schemes.

In the second funding period, we have extended the simulation setting to fully
nonlinear simulations, which pose several hurdles as they do not match the classical
setting for the sparse grid combination technique any more. We have further devel-
oped a flexible framework for massively parallel simulations with the combination
technique, including software interfaces to GENE and the general PDE framework
DUNE. We have realized fault tolerance within both GENE and the combination
framework, which even allows to detect and mitigate soft faults, for example due to
silent data corruption. Finally, we have extended load balancing to a fully data-driven
approach based on machine learning.

In the following, we first give an introduction to the underlying theory and the
mathematical model. To this end, we describe the sparse grid combination technique
and the gyrokinetic approach to plasma physics underlying GENE. Then, we outline
the principles behind our approach to fault tolerance. The third section focuses on
the implementation while numerical results are presented in section four.

2 Theory and Mathematical Model

2.1 The Sparse Grid Combination Technique

The sparse grid combination technique [10] is a method for approximating high-
dimensional problems based on sparse grids [2]. It yields an alternative representa-
tion of a sparse grid solution, not reliant on hierarchical surpluses but using diffferent
coarse full grid solutions to build a combination solution. The underlying idea of the
sparse grid approximation was first introduced by Smolyak for the case of quadra-
ture [24] and was since applied to a broad field of applications [7, 21].

Let’s assume we want to approximate a given function u. Furthermore let Ωn be
the regular Cartesian grid on [0, 1]d with mesh size hn = 2−n B (2−n1, . . . , 2−nd )

resulting in 2ni ± 1 points along the i-th direction, depending on whether there are
points on the left and/or right boundary. Arbitrary rectangular domains can be treated
by scaling them onto the unit hypercube.

Now we can define a piecewise linear approximation of u on Ωn,
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un =
∑

j
un,j φn,j (1)

where un,j are the function values at the grid points and φn,j are piecewise d-linear
hat functions with support of volume

∏d
i=1(2 hni ) anchored at the grid points, which

we call nodal basis. There are various other types of basis functions one could
choose in order to increase the order of the approximation. For various examples we
refer to [2]. In this presentation, we stick to the piecewise linear case for reasons of
simplicity.

The function Eq. (1) can also be represented in the so called hierarchical basis,

un =
∑̀
≤n

∑
j
α ,̀j φ̂ ,̀j B

∑̀
≤n

û` , (2)

where the hierarchical basis functions φ̂ ,̀j are those hat functions of level ` with
odd indices only (for `i > 0). Here, the expression ` ≤ n is to be understood
componentwise. We call the linear transformation between the two representations
hierarchization and dehierarchization, respectively.

Now, if u possesses a certain smoothness property, namely (for our case of
piecewise d-linear hierarchical basis functions) that its second mixed derivative
is bounded, then the size of the coefficients α ,̀j decays as ∼ 2−2 |` |1 . Hence, they
are called hierarchical surplusses. This leads to the idea of approximating un by
truncating the sum in Eq. (2). Compared to the full Cartesian grid, merely a subset
of points carries a basis function, which is called a sparse grid. This can be formalized
as follows: For any multi-index set I that is downward-closed (for any ` ∈ I all
` ′ ≤ ` are in the set as well) we set

un =
∑
`∈I

û` (3)

with ni = max{`i : ` ∈ I} defining the target level. The classical sparse grid found
in the literature for an isotropic gridwithn = n·1 is given byI = {` ∈ Nd

0 : |` |1 ≤ n},
i. e. only a standard simplex of levels instead of the full hyperrectangle is taken into
account. In this case, as shown in [2], the number of points is drastically reduced, from
Nd to O(N (log N)d−1), where N = 2n ±1. Furthermore, for functions from Sobolev
spaces with dominating mixed derivatives H2

mix the asymptotic approximation error
with regard to the exact function u is only slightyworse,O(N−2(log N)d−1) compared
to the usual O(N−2). Generalized sparse grids [4] are defined by means of general
downward-closed index sets I and its associated truncation (3).

Due to the fact that the hierarchical increments û` can be expressed as differences
of full grid functions u`, Eq. (3) yields a telescopic sum that evaluates to

u(c)n =
∑
`∈I

c` u` , c` =
∑
z≤1
(−1) |z |1 χI(` + z) , (4)

with χI being the characteristic function of I. We call this equivalent represen-
tation the (generalized) combination technique. Note that most of the combination
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Fig. 1: Grids resulting from a 2D combination technique with `min = (1, 1) and `max = (3, 3). The
result of the combination is the sparse grid Ω(c)

(1,1),(3,3).

coefficients c` vanish, except the ones whose upper neighbors are not all included
in I (i. e. the ones near the upper boundary of I). The combination technique is
advantageous in practical applications, since code that produces full grid solutions
can be readily used as a black box and different component solutions u` can be
computed independently from each other, thus introducing a coarse grain layer of
parallelism. The point set produced by the union of all component grids is a sparse
grid as before. In practice, if one wants to evaluate the combination solution at a
point that is not shared by all component grids, the respective component functions
have to be interpolated according to the basis used.

The specific combination scheme used throughout this work is the truncated
planar combination technique, introducing a minimal level `min and a maximal level
`max ≡ n. The formula for the index set reads

Ì min,`max =
{
` ∈ Nd

0 : ` ∈ conv
(
`min , `min + ˆ̀ (1) , . . . , `min + ˆ̀ (d)

)}
, (5)

where ˆ̀ (i) = (0, . . . , `i,max−`i,min, . . . , 0), i. e. it includes all level indices that lie inside
the simplex spanned by `min and its adjacent corners of the hyperrectangle defined
by `min and `max. For example, the 2D sparse grid constructed with `min = (1, 1) and
`max = (3, 3) is shown in Fig. 1, where the simplex is just a shifted triangle.

As a remark, the approximation rate shown above does not, in general, hold in the
case of solving PDEs with the combination technique, which we are interested in.
However, it can be shown [3] that the combination technique produces the same rate,
as long as a certain ANOVA-like error expansion exists. In fact, the combination
technique is applicable to any quantity (not just functions) that is the solution to
a problem depending on some discretization parameters, provided there is such an
error expansion. Alternatively, there is a second route to prove that the sparse grid
Galerkin approximation and the combination method for a PDE possess errors of
the same order. To this end, in [8] optimal convergence rates of the combination
technique for elliptic operators acting on arbitrary Gelfant triples were shown.

Nevertheless, since it may be too hard to proof for a given case that the nec-
essary error expansion exists, or that the respective Gelfand triple indeed leads to
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equal approximation rates between the sparse grid Galerkin approach and the com-
bination method, this motivates the use of numerical experiments to determine the
applicability of the combination technique.

The type of PDE we will be concerned with is a time-dependent initial value
problem. We will, however, not include the time direction as a dimension of the
sparse grid approximation, but rather treat it as a parameter. The reason is that the
solver we will mainly deal with employs an explicit time stepping method, which
means that anisotropic grids with large time steps may be forbidden by a CFL
condition. The solver also dynamically adapts the time step size, so that it may be
disadvantageous to interfere with its capabilities.

Another difficulty is that the global truncation error introduced by a time stepping
scheme usually grows exponentially in time and, for a nonlinear PDE, even the exact
solution may be highly sensitive to perturbations in the initial condition (which are
always present due to different spatial discretizations). In consequence, we cannot
expect the component solutions to stay similar for long simulation times and so the
combination technique would break down.

Hence, we will look for the solution after some interval ∆T , starting at time t,
then repeat the process beginning at time t +∆T and so forth. Using the combination
technique for the remaining (spatial) dimensions, the solution is constructed from
the time evolution of the component solutions:

u(c)n (t + ∆T) B
∑
`∈I

c` Tt→t+∆T [u`(t)] (6)

with the time evolution operator T . The initial values are set by interpolating the
combination solution from the previous time step onto the different component grids.
Once in the beginning they are set by discretizing a known initial function u0:

u`(t) B I`
[
u(c)n (t)

]
, u`(0) B I` [u0] , (7)

where I` denotes the interpolation operator onto grid Ω`. The interval ∆T has to be
chosen sufficiently small, so that the error introduced by the time evolution is small
compared to the spatial discretization error (which we want to optimize by using the
combination technique). Sensible values for ∆T depend on the scenario at hand and
will be investigated in our experiments.

2.2 Plasma Physics with GENE

Themost commonway to study turbulence on amicroscopic scale are the gyrokinetic
equations. They are a system of partial integro-differential equations for the particle
distribution function f in a 5D phase space plus time for every particle species s in
the plasma (typically hydrogen ions and electrons). The model consists of a Vlasov
equation (when neglecting collisions) with Lorentz force,
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∂ fs
∂t
+ v · ∇x fs +

Zse
m

(
E +

v
c
× B

)
· ∇v fs = 0 , (8)

coupled with Maxwell’s equations for the electromagnetic fields as well as the self-
consistent computation of charge and current density from the respective moments
of the distribution function [6].

The gyrokinetic approach uses several approximations tailored to the setting of a
suspended plasma in a strong toroidal magnetic field, which is the concept behind
tokamaks and stellarators, the most popular types of fusion reactors. Since charged
particles move on helical trajectories along magnetic field lines, the motion is split
into the direction parallel to field line, v‖ , and the plane perpendicular to it. The
phase information of the rapid circular motion in the perpendicular direction is then
averaged out and its magnitude encoded in the magnetic moment µ ∝ |v⊥ |2. Also,
the coordinate system is commonly aligned to the magnetic field lines and, lastly, a
δ f -splitting is employed, dividing the distribution function into a static equilibrium
distribution and an unknown turbulent part g.

Eventually one arrives at a 5+1 dimensional nonlinear partial differential eqation
for g(x, y, z, v‖, µ; t) of the general form

∂g

∂t
= L g +N(g) (9)

where L and N are the linear resp. nonlinear parts of the differential operator.
One of the most widely used codes to solve the gyrokinetic equations is

GENE [17]. It is a Eulerian (fixed grid) solver that uses mostly finite differences
to discretize the spatial domain and an explicit Runge-Kutta scheme of fourth order
for the time evolution. Even though it is highly optimized and employs domain de-
composition to scale well on large computing systems, it still requires huge amounts
of computation time and for some scenarios the desired resolution is still out of
scope. This is why we deem GENE a good candidate to profit from the combination
technique. Not only are the component solutions cheaper in terms of memory, hence
always feasible to compute, but additionally can afford a larger time step size (due
to the CFL condition), reducing the computational cost further. GENE operates in
different modes described here for later reference:

linear/nonlinear – In the linear mode, N(g) in Eq. (9) is neglected. In this case
one is interested in the growth rate of the turbulence, i. e. the eigenvalue of L with
the largest real part and its corresponding eigenvector. To this end, GENE can either
be used as a direct eigenvalue or as an initial value solver. The nonlinear mode treats
the full equation and is used to study the quasi-stationary state after the initial growth
phase.

local/nonlocal – The local case uses the so called flux tube approximation, sim-
ulating only a small cross section of the full torus. Periodic boundary conditions
are employed in the x- and y-direction, enabling Fourier transformation. In nonlocal
runs the whole domain along the x-direction is treated, losing periodicity in x.
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adiabatic electrons – Setting the number of species to one (only ions), the elec-
trons are not treated with the full kinetic model, which reduces the problem size.
This approximation was mostly used for our results.

In order to use GENE within our combination technique framework, several
adjustments to GENE had to be implemented during the project. They are minor
enough to not undermine the black box functionality. First of all, the grid setup
of GENE had to be adjusted so that grids using 2`i grid points in each respective
dimension become nested. This is important because, on one hand, the combination
technique requires nested grids and, on the other hand, powers of two are necessary
for an efficient parallelization in GENE. As a result, only the left boundary may
carry a grid point (cf. Section 2.1), which was originally not the case for every
direction. Additionally, the µ-direction uses a Gauss-Laguerre grid by default for
efficient quadrature. Here we had to switch to an equidistant grid, losing accuracy,
but a potential solution to this problem using Clenshaw-Curtis points is discussed
in [18]. Furthermore, GENE requires an unusual quasi-periodic boundary condition
in the z-direction, which we had to incorporate into the interface of our framework.

Finally some performance issues had to be overcome. At every restart, GENE
performs an initialization routine that produces a large overhead when the simulation
time itself is short. In particular for nonlocal runs, a large gyromatrix has to be
assembled which is costly. To this end we had to integrate the functionality to store
and reload this matrix from memory. The same had to be done for the checkpoints
which could previously only be written to and read from disk [13].

2.3 Fault Tolerance

2.3.1 Fault Tolerant Combination Technique

The Fault Tolerant Combination Technique (FTCT) is an algorithm-based fault tol-
erant version of the Sparse Grid Combination Technique, which was proposed in the
project proposal of phase one of EXAHD and first published in [12]. The method
addresses the problem of both hard faults and soft faults1. Since these faults cause a
corruption or loss of data on certain processors, it is not guaranteed that all combina-
tion grids can safely contribute to the combination solution. After identifying such a
fault we therefore need to construct a new combination scheme that excludes faulty
parts from the original scheme. Ultimately, this modified scheme should only consist
of existing component grids, thus eliminating the necessity to recompute results. In
addition, switching to less and possibly coarser component grids should only slightly
decrease the accuracy compared to the original scheme. In case of a time-dependent
problem with frequent recombination, the FTCT restores the original combination

1 Hard faults are detected by the operating system and usually cause the affected system part to fail
while soft faults remain undetected by the system and usally appear in the form of bitflips during
computation or processing of data.
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Fig. 2: Recovering the combination scheme after two failed component grids (middle left). A
new scheme (middle right) is constructed which excludes the failed resources while utilizing a
component grid from the next lower subdiagonal. The resulting sparse grid (right) should be only
slightly less accurate than the origianl sparse grid (left).

scheme for all future combinations2 and continues computation. We will briefly
summarize the main steps of the algorithm: fault detection and reconstruction of a
fault-free combination scheme.

Fault detection heavily depends on the class of faults that we experience. For hard
faults or process failures, typically the operating system in combination with theMPI
runtime can be used to identify all processes which are affected by a fault. These
faulty ranks are then removed and computation can be continued. In case of soft
or silent faults it is more challenging to detect a faulty component as the failure is
undetected by the operating system. Therefore, dedicated routines are used to detect
such faults, e.g. running a program multiple times or with different algorithms or
by checking application dependent properties. An example of the latter case can
be found in Section 3.3 where we describe our implementation of the silent fault
detection.

Once all faulty component grids are detected, the FTCT constructs a new fault-
free combination scheme (see Fig. 2). The problem of finding such a new scheme
is known as the General Coefficient Problem (GCP). For further information about
the problem and on how to solve it most efficiently we refer to [11, 12]. In order
to increase convergence speed and the probability of finding such a solution we
already compute the component solutions of two additional lower diagonals3 of the
level set from the start, alongside the required ones, even though they originally
have a coefficient of zero. Since the degrees of freedom of component grids decrease
exponentially with the magnitude of the level index, this adds only minor overhead to
the overall computation time. Section 3.3 outlines our implementation of the FTCT
in more detail.

2 In case of process failures either failed resources are replaced by spare ranks or the individual
tasks are distributed to the remaining fault-free processes.
3 For dimensions d > 2 it is in fact a d − 1 dimensional slice and it might be tilted in general.
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2.3.2 Fault Recovery Algorithms

In addition to the FTCT, a fault tolerant version of GENEwas developed (FT-GENE).
The purposewas to allowFT-GENE to tackle small faults,whereas larger faultswould
be handled by the FTCT. To that end, an object oriented Fortran 2008 library called
libSpina was written. The purpose of this library is to provide functionalities that aid
the implementation of a fault tolerant application. In contrast to existing tools such
as ULFM [1], libSpina does not replace any existing MPI implementation and does
not attempt to extend the MPI standard.

The library is responsible for managing and separating “spare nodes” from the
application, the management of a channel for broadcasting errors, detection of faulty
resources and sanitization of the MPI environment. Instead of forcing a complete
rewriting of the code in order to fit a fault tolerant framework, libSpina provides
several preprocessor macros for encapsulating tasks such as exception handling and
timeout-based error detection. Some checkpointing andmessage logging capabilities
are available, but mostly for the initialization steps of FT-GENE. The use of the
library causes a negligible overhead (circa 3%).

Since libSpina is just a tool designed to assist in programming, it does not provide
any specific data recovery mechanism.Whenever a fault occurs, the lost data must be
recovered by checkpoint/rollback strategies or an algorithmic/approximate recovery,
which is not addressed by the library.

FT-GENE inherits the exception handling mechanism of libSpina and is fully
written using non-blocking MPI calls thanks to libSpina’s macros. Additionally,
FT-GENE is able to withstand faults and provides two recovery methods: check-
point/rollback and blank recovery (purely for testing purposes) which are discussed
later.

3 Implementation

3.1 Parallel Implementation of the Combination Technique

The main parallelization strategy of our combination framework is the manager-
worker approach. In this strategy, a dedicated process – the manager – distributes
work packages to workers which then process their tasks. Within the combination
technique these tasks consist of solving the respective PDE on a specific component
grid. Since these grids will usually be still too large to be solved on one MPI rank,
we assign the tasks to a group of workers which we will call a process group. To
avoid a communication bottleneck at the manager, only one dedicated rank in each
process group – the master – communicates with the manager. This master process
then broadcasts all information from the manager to the remaining processes in the
process group. In Fig. 3 one can see an example of the task distribution to individual
process groups.
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process group 1

manager process

tasks process group 2

process group 3

Fig. 3: The manager-worker implementation in our combination framework [13]. The manager
assigns tasks to process groups which perform a domain decomposition to work on the tasks in
parallel.

The main concern of our framework is achieving high parallel efficiency for
potential exascale computing. Due to the independence of the component grids,
we can solve all tasks independently. Aditionally, all process groups compute each
task in parallel by applying domain decomposition. This results in two levels of
parallelism: parallelism between process groups and within process groups.

Unfortunately, in a chaotic time-dependent setting, we cannot completely decou-
ple all tasks, as the individual solutions would eventually drift too far apart from the
exact solution resp. from each other, which would deteriorate the result of the final
combination. To avoid this effect, frequent recombination is applied (see Figure 4).
Here, we construct the sparse grid solution after a short simulation interval by gather-
ing all component grids, and then redistribute the aggregated information to proceed
with the computation. This process introduces a global synchronization point as
well as global communication. To ensure high parallel efficiency, we therefore re-
quire efficient load balancing (see Section 3.2) as well as an efficient recombination
mechanism.

The recombination (Fig. 5) is split into three phases: hierarchization, global re-
duction of the sparse grid and dehierarchization. In the hierarchization step, each

Sparse Grid

compute combine compute

Sparse Grid

combine

component grid

component grid

component grid

component grid

component grid

component grid

component grid

component grid

component grid

component grid

component grid

component grid

Fig. 4: Solving time-dependent PDEs with the combination technique [13]. Frequent recombination
is applied in between computation phases to avoid that the individual solutions drift too far apart
from each other.
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component grid

each component grid

global 
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Fig. 5: The recombination step in detail [13]. After the hierarchization phase (top left), the sparse
grid is globally reduced between process groups (right) and then dehierarchized within each process
group (bottom left).

process group transforms the local solutions from its assigned tasks into the hier-
archical basis. These hierarchized solutions are then added locally to the respective
subspaces of the corresponding sparse grid. To this end, each process holds the part
of the sparse grid that corresponds to their geometric subdomain in a buffer.

Thereafter, the global communication phase begins in which the partial sparse
grid solutions from all process groups are added together with an MPI_Allreduce.
In order to achieve low communication overhead, all process groups are constructed
from the same number of ranks and apply the same domain decomposition on the
sparse grid. A rank therefore directly communicates only with the ranks of other
process groups that are assigned to the same subdomain. This procedure heavily
reduces the number of communications and ensures a low communication overhead.
Once the global communication has finished, the individual process groups extract
the hierarchical information for their component grids from the sparse grid. The
procedure is concluded by the dehierarchization step which transforms the data
back to the nodal basis. It should be noted that only the second phase requires
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global communication while the hierarchization and dehierarchization only require
communication within each process group.

3.2 Load Balancing

Load balancing for HPC simulations is routinely implemented via different standard
techniques, such as domain decomposition or resource assignment. With the mas-
sively parallel distributed combination technique framework, there is an algorithmic
way of performing load balancing. Due to the manager-worker scheme with process
groups, cf. Fig. 3, the manager is free to assign multiple component grids to different
process groups (provided there is enough free memory). In particular, this assign-
ment can be chosen to balance the runtimes such that process groups do not have to
wait for each other longer than is necessary. An illustration is given in Fig. 6.

Of course, this assignment works best if accurate estimates of the individual grid
runtimes can be obtained beforehand; then, we can even statically assign the grids.
Reaching further, this can be improved using the information obtained in the first
solver run: by collecting the runtimes of the (presumably) longest-running grids,
the process groups can be “filled” with work. The initial dynamic “work-stealing”
approach was presented by Heene, Kowitz, and Pflüger [14]. The next step, dynamic
reassignment according to load imbalances has not been implemented so far, since
the reassignment of a grid to another process group could become very costly. In
addition to the field grid data, extensive simulation data is required for GENE, such
as the gyromatrix; it would have to be transferred or explicitly recomputed on the
new process group. Now, using the estimates obtained by the model, a decreasingly
ordered list can be created, and the grids can be assigned to the process group. This
means that the relative ordering between tasks is more important than the absolute
accuracy of the model.

t

pg1

pg2

pg3

. . .

. . .

. . .

compute hierarchize, combine, dehierarchize

Fig. 6: Possible parallel computation scheme for different 2D grids, cf. [22]. In principle, the
hierarchization step for a task could happen immediately after its completion, further improving
load balancing. This is not included in our implementation to date, but this does not prove to be a
significant bottleneck.
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The simplest approach would be to just take the number of grid points into
account [9], assuming that all grids of the same level sum |` |1 take the same time
to run. In larger scenarios, this will lead to variable results, as the assignment will
be ambiguous. A more expert knowledge based model can be designed by adding a
dependence on grid anisotropy [14]. In this model the runtime contribution of the
number of grid points N are estimated with a function r(N),

r(N) := mNk + b , (10)

where the coefficients m, k and b are fitted to runtime data of isotropic grids.
Moreover, the influence of anisotropy is added through an additional term h(s`),
where s ,̀i =

`i
|` |1

. The total runtime estimate t(N, s`) then reads

t(N, s`) = r(N) · h(s`) h(s`) := c +
d−1∑
i=1

cis ,̀i +

d−1∑
i=1

∑
j≤i

ci j s ,̀is ,̀ j + . . . . (11)

Again, the coefficients c in the polynomial ansatz for h(s`) are fitted to runtime data,
this time including anisotropic grids.

For nonlinear, global simulations, the loadmodelingwas recently extended to fully
data-driven techniques, such as support vector regression and neural networks [22].

3.3 Fault Tolerant Combination Technique

Fault tolerance is becoming more and more important in exascale frameworks as the
increasing process number will most certainly also increase the probability for some
components to fail. In our case we assume that such an error will most likely occur
during the computation phase, which takes the majority of the overall runtime. The
computation step will therefore not complete for all affected process groups. In the
next section we briefly summarize the progress made in [19, 15, 20, 16].

Such faulty groups are detected by the manager at the beginning of the global
communication phase with our fault simulation layer. This simulation layer imitates
the behavior of ULFM and returns an error signal if a process has failed that should
interact in a certain communication. It is also possible to simulate the process failure
of specific ranks at specific simulation points. Once the affected groups are known,

PG1 PG2 PG3 PG4
SP

PG1 PG2 PG3

Fig. 7: If a process failure occurs in one of the process groups the remaining ranks are declared as
spare processes [19].
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PG1 PG2 PG3

SP
SP

PG1 PG2 PG3

Fig. 8: In case all failed ranks can be replaced by spare processes, the process group is restored [19].

the manager process calculates a fault-free combination scheme by solving the GCP
(cf. Section 2.3.1). We use GLPK [5] to solve this optimization problem which
returns the new combination scheme.

Unfortunately we cannot proceed directly with the communication at this point
since failed ranks are contained in the MPI communicators. The naive implementa-
tion would just remove all failed process groups and continue computation on the
remaining groups. This procedure, however, might waste valuable resources if only
few of the ranks in a process groups have failed. We therefore save these non-faulty
ranks and declare them as spare ranks (Fig. 7). For future faults we can now substitute
failed ranks by spare ranks to restore a process group (Fig. 8). This enables us to
simulate high failure rates without quickly losing all process groups.

Once the MPI environment is restored, our implementation proceeds with the
recombination step by applying the global communication to the fault-free combina-
tion scheme. For future computations we restore the original combination scheme by
redistributing failed tasks to the remaining process groups. These tasks are then ini-
tialized by extraction from the sparse grid that results from the temporary fault-free
combination scheme.

4 Numerical Results

4.1 Convergence

A very important task in order to confirm the applicability of the sparse grid com-
bination technique to GENE is to show that we can produce meaningful results
while reducing the computational cost. This has to be verified in different ways and
for different quantities, depending on the setting of the simulation. Therefore, this
section is split into two parts.

The first one is concerned with convergence results for local linear GENE runs,
where the accuracy of computations of the growth rate λmax and its corresponding
eigenvector g(λmax) is studied. The second part presents results for nonlinear GENE
simulations, in particular the most recent investigations of nonlocal runs. Here, one is
interested in time averages of certain quantities of interest during the quasi-stationary
phase, mainly the mean heat flux Qes.
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4.1.1 Linear Runs

Linear simulations only use the linear part of the gyrokinetic equations,

∂g
∂t
= L g , (12)

according to Eq. (9) (the bold face g signifies the discretized version). The dynamics
of this equation can be understood by considering an eigenvalue decomposition
(assuming every eigenvalue has multiplicity one)

g(t) =
∑

λ∈σ(L)

α(λ)(t) g(λ) , L g(λ) = λ g(λ) . (13)

Note that g is complex valued because a Fourier basis is always used in the y-direction
and, hence, eigenvalues will be complex in general.

Plugging this decomposition into Eq. (12) yields the solution

g(t) =
∑

λ∈σ(L)

α(λ)(0) eλt g(λ) . (14)

The exponential growth (or decay) will, for large times, be dominated by the eigen-
vector corresponding to the eigenvalue λmax which has the largest real part. This
growth rate plus eigenmode are the quantities one is interested in. To this end,
GENE can be run either as a direct eigenvalue solver or as an initial value solver. For
the latter case, one initializes a random initial state and simulates long enough, until
the shape of g(t) stays constant and its ratio at subsequent times settles on eλmax∆t .

First results for the linear case were obtained during the first funding period of this
project. The combination technique was successfully applied to both the eigenvalue
solver and initial value runs. In each case, combining the eigenvalues as well as the
eigenvectors produced by the component solutions yielded satisfactory results. We
refer to [18] and omit the details here.

Instead we want to focus on results obtained for local linear initial value runs with
the massively parallel framework described in Section 3.1, using the possibility
of frequent recombination after short time intervals. The first studies with this
framework were conducted during the first half of the second funding period and are
recorded in [13]. They examined the convergence of the eigenvector in a GENE test
case simulating ion temperature gradient (ITG) driven instabilities.

The following combination schemes were set up for this experiment, always using
the z-, v‖- and µ-directions for combination (the kx- and ky-direction were fixed at
level 3 and 1, respectively, as not much resolution is needed in these dimensions
in local linear settings): The terms “combi 4 grids” and “combi 10 grids” describe
schemes where `min and `max are (0, 0, 1, 1, 1) resp. (0, 0, 2, 2, 2) apart. This results
in the mentioned number of component solutions. Finally, “combi lmin” means that
`min = (3, 1, 4, 4, 4) is kept fix regardless of maximal level. In order to calculate the
error of the obtained eigenvectors, a reference solution was computed on a high
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Fig. 9: Error of g(λmax) compared to the reference solution with ` = (3, 1, 8, 8, 8). The combined
solutions were obtained by combining after each time step with a total of 6000 time steps.

resolution full grid with ` = (3, 1, 8, 8, 8). All other solutions were interpolated to
this reference grid and normalized to unity (because only the shape matters), then
the L2-norm of the difference in absolute value was taken as the error.

Fig. 9 shows results for all combination schemes as well as single full grid
solutions for comparison. Here, a recombination was applied after each GENE time
step, which turned out to yield the best overall results. One can see that the error
decreases with higher target levels and that the combined solutions compare well to
the full grid convergence. The higher the number of component grids, the worse the
error as interpreted at the target level, but keep in mind that the number of degrees of
freedom is more and more reduced. All combination schemes also beat the best error
achieved with one of their component grids, which is a crucial test, since otherwise
one could be content with that one component solution.

We also have to show that the computational cost is reduced. To this end, different
combination intervals (in number of time steps) have been investigated as shown in
Fig. 10. It turns out that the overhead for recombination after each time step was
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Fig. 10: Left: Computation times for “combi lmin” with n = (3, 1, 8, 8, 8) at different combination
intervals and for the reference full grid solution. Four process groups with 16 processes each were
used. Right: Relative increase of the error for g(λmax) for different combination intervals.



18 R. Lago, M. Obersteiner, T. Pollinger, J. Rentrop, et al.

too large. There are two main reasons. Firstly, this test case was comparatively small
so that the relative overhead is more significant than for much larger problem sizes.
Secondly, the restart behavior of GENE (as discussed in Section 2.2) is still not
optimal so that the pure GENE runtime is much larger for frequent recombination.
However, the figure also shows that there is a middle ground. For example, the run
time of “combi lmin” with n = (3, 1, 8, 8, 8) at a combination interval of 10 is already
lower by a factor 5 than that of the reference solution. At the same time, the error is
only increased by about 25% compared to the optimum.

In conclusion, the applicability of the combination technique with the massively
parallel framework has been demonstrated for a small test case. The benefit is
expected to be even bigger for larger problem sizes.

4.1.2 Nonlinear Runs

In nonlinear simulations the initial exponential growth phase is halted after some time
by the increasingly dominant influence of the nonlinear part of the PDE. Henceforth,
the distribution function is subjected to chaotic dynamics. This means that slight
disturbances will completely alter the trajectory in the long run (butterfly effect)
and, thus, the distribution function itself is not a suitable observable anymore. Still,
distinctive patterns in a typical trajectory can be observed that result in a quasi-
stationary state. Common observables (often averages or moments of the distribution
function) will statistically fluctuate around relatively robust mean values that only
depend on the problem parameters. Hence, the goal of the combination technique
should be to accurately reproduce said quantities of interest with a similar statistical
uncertainty. Throughout this chapter, an ITG test case with adiabatic electrons is
studied. We switched to nonlocal simulations to increase the problem size in line
with the conclusion of the previous section.

In order to familiarize ourselves with the behavior of important quantities of
interest, we initially tested directly combining them instead of g. That is, we choose a
combination scheme and, once all component runs are finished, we calculate the time
averages and linearly combine them with the appropriate combination coefficients.
The method we used to determine when the quasi-stationary phase begins and to
estimate the statistical uncertainty follows [25].

We focused on the mean heat flux Qes because it is one of the most statistically ro-
bust quantities. Results for various combination schemes in different dimensions are

`max, `min Reference Direct combination Best component

(10,5,6,5,4), (7,5,3,5,4) 21.7 ± 0.4 23.1 ± 0.9 ( 6% 0.66) 23.7 ± 0.4 ( 9% 0.13)
(9,5,5,6,5), (6,5,3,4,3) 20.2 ± 1.0 28.2 ± 8.1 (40% 0.33) 29.9 ± 0.5 (48% 0.04)
(11,5,5,7,4), (7,5,4,4,3) 21.8 ± 0.5 21.6 ± 1.4 ( 1% 0.37) 22.8 ± 0.4 ( 5% 0.04)

Table 1: Results for direct combination of Qes. The two values in parentheses denote the relative
error and the fraction of work load (in core-hours) in relation to the reference solution.
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summarized in Table 1. The reference values in each case were computed with a run
at target resolution. Unfortunately, adding and subtracting statistically independent
quantities causes the variance of the resulting quantity to be the sum of variances of
the summands scaled by the square of their combination coefficient. Since we take
the standard deviation as a measure of uncertainty, we get σ(c) = (

∑
i c2

i σ
2
i )

1/2. This
is why the uncertainty for the second scheme became very high. Furthermore, the
combined values are often not significantly better than the best component solution.

The problem is that finding an efficient level set is a balancing act. On one hand,
the minimal level is restricted by GENE simulations becoming erroneous for too
low resolutions when physically relevant scales are no longer resolved. On the other
hand, the maximal level is bounded by running into the statistical uncertainty so
that an increase in accuracy is wasted. This could be addressed by including the
simulation length as another dimension in the combination technique but decreasing
the uncertainty is always expensive since it scales only with the inverse square root of
the simulation length. On top of all this, there is a large discrepancy in the influence
of different dimensions, in particular, the error is mostly dominated by the resolution
in x-direction. The third scheme was chosen in a fashion to address these issues and
it shows the best agreement with the reference.We currently also work on optimizing
index sets with a dimensionally adaptive algorithm [4] to further mitigate said issues.

Recently, we obtained first results with the massively parallel framework applied
to the nonlinear test case. In this context we turned back to frequently recombining
g even in the nonlinear regime. Much care has to be taken since the trajectories
on different component grids have the tendency to drift apart fairly quickly. Thus,
the combination interval should be chosen sufficiently small. However, in contrast
to the linear case, we found that recombining after each or just a few time steps
leads to the simulation becoming unstable and the distribution function growing
uncontrollably. We had to increase the combination interval until stable trajectories
were achieved. Also, depending on which and how many dimensions were included
in the combination scheme, simulations could become unstable. The causes of these
effects are not yet understood and currently under investigation. We suspect that the
perturbation introduced by distributing the combined checkpoint to the component
grids is large enough so that each trajectory needs a certain relaxation time to reach
the quasi-stationary state again.

Nevertheless, results for three 2D combination schemes with a recombination
interval of two units of simulation time are presented in Table 2. The trajectories of

`max, `min Reference Recombination of g Direct combination

(10,5,5,4,3), (8,5,3,4,3) 27.3 ± 0.6 28.4 ± 0.5 ( 4%) 27.4 ± 1.7 (0.3%)
(11,5,5,4,3), (9,5,3,4,3) 28.1 ± 1.1 24.9 ± 0.5 (11%) 27.9 ± 2.2 (0.7%)
(10,5,3,6,3), (8,5,3,4,3) 27.3 ± 1.6 27.9 ± 0.9 ( 2%) 28.4 ± 1.4 (4.0%)

Table 2: Results for frequent recombination of g. The values shown are the mean heat flux Qes
with relative error to the reference in parentheses. The alleged outlier is actually closer to the high
resolution reference from Table 1.
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Fig. 11: Time traces of the mean heat flux Qes for the five component grids of the first scheme in
Table 2. One sees the effect of the recombination of g after every two units of time.

Qes for the different component grids are shown in Fig. 11. They look promising since
one can observe that after a combination step the values “snap” to a similar value.
The remaining discrepancy is solely caused by the influence of different resolutions
during the calculation of Qes. There is no functionality yet to directly compute this
quantity on the underlying sparse grid because its implementation would have been
too time-consuming. Instead, the values at the combination times were gathered and
again linearly combined according to the combination scheme. With this procedure
we achieved results that are in accordance to their reference solution. Still, the same
considerations as for the one-time combination apply here and we look forward to
expanding the tests to more optimized index sets in the future.

4.2 Scaling Analysis

Scalability is a crucial aspect for an exascale-ready framework. For our framework
this boils down to two aspects: achieving a good load balance to avoid idling process
groups and keeping the overhead of recombination low as the main computation
happens in the black box solver. We expect that the black box solver itself already
provides good scalability up to a certain number of cores. By parallelizing over
many tasks we can then boost this scalability to reach process counts beyond the
capabilities of the solver. This is based on the fact that the number of cores can be
scaled in two ways: increasing the number of cores in the process groups – scaling
the solver – or increasing the number of process groups while keeping their core
numbers equal.

We will first look at the scalability of the recombination steps [13] for a linear
test case with `max = (14, 6, 6, 8, 7) and `min = (9, 4, 4, 6, 4) on Hazel Hen (HLRS).
In Figure 12 we can see that the hierarchization scales almost perfectly with the
number of cores as it does not involve computation between process groups. More-
over, it mainly involves local computation with little communication in the group.
Dehierarchization performs almost identically as it is the inverse function of the hi-
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global reduction. We also included a rough estimate of the computation time for one time step of
GENE with process groups of size 4096. Graphs from [13]

.

erarchization. The local reduction step only adds the hierarchical coefficients of the
local component grids to the sparse grid. As we enforce the same domain decompo-
sition of the sparse grids and the component grids, this introduces no computation.
Consequently, this operation scales perfectly. The global reduction of the sparse grid,
however, involves the communication of the decomposed sparse grid parts over the
process groups. Therefore, it shows no scaling behavior but also a comparably low
runtime.

If we now sum up all components of our recombination step (bottom graph in
Fig. 12), we can see that we can scale up to the whole size of the Hazel Hen
supercomputer if the number of process groups is adjusted well. As a consequence,
the framework introduces only a low overhead compared to the computation time of
GENE itself.
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Fig. 13: Timings for a combination scheme computed with the nonlinear GENE functionality:
ITG with adiabatic electrons, for `min = (7, 1, 5, 6, 4) to `max = (10, 1, 7, 8, 6), averaged over ten
combination time steps on Hazel Hen.

This observation is confirmed by the measurements taken for nonlinear runs on
Hazel Hen, shown in Fig. 13. This scenario consisted of 16 grids at relatively high
resolutions. The optimal linear scaling is reached for moderate numbers of processes,
yet the total scaling capabilities are limited by the solver’s scaling capabilities. We
see again that the sparse grid combination technique can play out its advantages
only if the scenario is chosen to contain many grids, i.e., to have significant spans
between `min and `max. Even then, for our use cases, the overhead imposed by the
combination routines is negligible compared to the total runtime.

4.2.1 Load Balancing

We will see here that, using the algorithmic opportunity for load balancing by grid
assignment based on a good loadmodel, cf. Section 3.2, we can achieve good parallel
efficiency for large simulations – applied to both linear and nonlinear GENE runs.

The linear and anisotropy-based models were tested on 32 cores [14]. For
this linear experiment, the scenario was constructed from `min = (3, 1, 3, 3, 3) to
`max = (11, 1, 11, 11, 11), containing 425 grids. Fig. 14 shows that the initial dy-
namic approach (“work stealing”) is preferable to the static assignment, because
high parallel efficiencies can be sustained as the number of process groups grows.
We can also conclude that taking the anisotropy into account leads to, on average,
substantial improvements with respect to the parallel efficiencies.

In order to cope with the larger-scale nonlinear GENE simulations, a similar
methodology was used to evaluate data-driven techniques. The methods compared
were, again, the anisotropy-based model, nearest neighbor estimates, support vector
regression (SVR) and neural networks [22]. These models were trained on 2048
randomly sampled tasks. As a reference, the best attainable balance that could be
produced by the dynamic filling heuristic (cf. Section 3.2) – through an estimate
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Fig. 14: Parallel efficiency for the linear ITG scenario: linear vs. anisotropy-based, static vs. linear.

that is the same as the true runtime – is included in the comparison. This time, the
scenario contained grids from `min = (7, 4, 3, 4, 3) to `max = (12, 8, 6, 8, 6) to account
for the anisotropy in the requirements for different solutions, comprising 237 grids.
Now, the process group size was not fixed to 32 any more, but could reach up to 215

or 32768 processes.
It is to be noted that Fig. 15 shows regions of high parallel efficiency compared to

Fig. 14. Still, the differences between the different modeling methods are significant:
while the nearest neighbor and SVR models lead to a relatively quick degradation of
parallel efficiency, the expert knowledge-based anisotropy model performs a lot bet-
ter, and the neural network can even achieve near-optimal scaling (the improvements

Fig. 15: Parallel efficiencies for the nonlinear, larger ITG scenario: by method and process group
size (upper), and averaged over the different process group sizes for clarity (lower). The legend of
the lower plot applies to the upper one in the same way.
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over the optimal estimate are of course lucky guesses). This advantage is enabled
by having enough data samples available. Since GENE is routinely run on various
HPC machines, strong load models could be generated even across machines from
the runtime data through neural networks.

4.3 Fault Tolerance

4.3.1 Fault Tolerant Combination Technique

This chapter briefly summarizes the most recent results with hard faults within the
FTCT from [19]. For further results on hard and soft faults see [15, 20, 16].

To simulate statistical effects on the accuracy with faults in the FTCT, we conduct
a random sampling for generating process failures during the simulation. For this
sampling we choose the commonly used Weibull distribution [23]:

f (t; λ, k) =
k
λ

( t
λ

)k−1
e−(t/λ)

k

(15)

where k and λ are the shape and scale parameter. λ is used to directly control the
failure rate where smaller λ values cause larger error rates. This distribution is used
to draw a failure time after which an MPI rank will fail. E.g., a failure time of 10s
means that after a wall clock time of 10s a process will fail.

We show results for one linear test case with a 3D combination in z,µ and v‖ with
`max = (8, 8, 8) and `min = (5, 5, 5). The remaining dimensions x an y are fixed at
9 and 1 grid points, respectively. Statistical results for 100 individual runs with 512
MPI ranks are shown in Fig. 16 (left). It can be seen that for lower failure rates the
error is almost identical to the base line error without any process failure (dotted
line). In case of larger failure rates the accuracy decreases but the overall error
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increase is still tolerable compared to the number of failing ranks. On average, the
error increases by 0.09%, 4% and 20%, respectively, for lambda values of 107, 106

and 105.
Apart from error analysis, we are interested in the scaling behavior of the FTCT

in the presence of faults. For this analysis we again choose a 3D combination in z,µ
and v‖ with `max = (14, 14, 14) and `min = (4, 4, 4). In this case we simulate only 300
time steps and apply 3 recombinations, i.e. every 100 steps, and inject a single fault
in one of the process groups. The process group size stays fixed at 1024 cores and
only the number of process groups is varied in the scaling experiment (Fig. 16, right).

In general we observed a very good scaling behavior even in the presence of
faults. Of course, the runtimes are slightly increased due to the fault of one process
group, which reduces the overall process count after the fault occurs. However, the
scaling properties seem to be unaffected by the fault recovery. This can also be seen
in the low overhead of the recovery step which is about 2 orders of magnitude lower
than the time for solving the PDE. Also the time for the recombination scales well
even though it involves global communication.

All in all, our results with linear GENE simulations have shown that we can
achieve fault tolerance with small computational overhead while keeping a similar
accuracy. For further details about the experiments and results we refer to [19].

4.3.2 libSpina

We answer here two questions concerning FT-GENE: how its performance compares
with the performance of standard GENE and what kind of faults the framework is
able to recognize and tackle. The clusters Hazel Hen, Cobra and Draco (MPCDF)
were used in the tests which follow.

Robustness

These tests used realistic parameters (based on the benchmark ITGTEM) where a
random subset of the MPI ranks is selected to fail. Several combinations of faults
were tested (full node failure, partial node failure, multiple failures in different time
steps, etc.) as well as different causes for failure (e.g. “stop” intrinsic, or externally
calling the “pkill” command).

The library libSpina was able to detect the faults, notify FT-GENE, restore the
MPI environment and allow FT-GENE to read the last checkpoint and rollback
the computation. Not all fault types could be handled by libSpina, most notably
faults caused by interrupting the interconnect hardware. Otherwise, the results were
consistent and reproducible.
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Nodes µ n_proc_µ GENE FT-GENE Loss
2 2 1 379.2s 386.1s 1.83%
4 4 2 398.9s 400.7s 0.46%
8 8 4 419.6s 422.4s 0.67%
16 16 8 414.5s 416.2s 0.40%
32 32 16 424.4s 432.4s 1.89%
64 64 32 438.0s 451.4s 3.06%
150 5 5 568.4s 565.3s -0.55%
300 10 10 590.4s 585.0s -0.91%
600 20 20 714.6s 700.4s -1.99%

Table 3: Cobra performance comparison. Topmost: (512,64,40,*,48) points, (8,1,5,*,1) paralleliza-
tion, nonlocal, kinetic electrons (2 species). Lowermost: (512,512,20,*,60) grid size, (1,2,20,*,15)
parallelization, local, kinetic electrons. Both are nonlinear runs with 100 time steps and 40 ranks
per node.

Performance and Overhead

The aim of these tests was to determine the performance impact of libSpina on
an application, by running both FT-GENE and GENE “back-to-back” on the same
hardware with the same parameter files.

In the following, the grid dimensions are displayed as (x, y, z, v | |, µ). The same
notation is used for the MPI partitioning of the domain (that is, n_proc_x, n_proc_y,
and so on). The runtime is shown in seconds and disregards the initialization of
GENE and libSpina. The reason is that the initialization of GENE involves several
performance optimization tests (often lasting several minutes) which would mask
the true difference in runtime.

The first part of the results in Table 3 have been repeated many times for many
different configurations: nonlocal and local, linear and nonlinear, between 1 and 64
nodes, in Cobra and Draco with several different types of parallelization. On all
occasions the result was consistent and the overhead of libSpina lay between −3%
and +3% which is within statistical fluctuations in this case. For the sake of brevity,
only the most recent of these results are shown in Table 3.

There was no deterioration of the performance of FT-GENE for large number of
nodes, as it can be seen in the lowermost part of Table 3.

Nodes x n_proc_x GENE FT-GENE Loss
1024 576 24 517s 446s -13.7%
1024 576 24 469s 477s 1.7%
2048 1152 48 1156s 805s -30.4%
2048 1152 48 836s 914s 9.3%

Table 4: Hazel Hen performance comparison. Grid size: (*,128,32,64,16) points, parallelization:
(*,1,8,8,16), nonlocal, adiabatic electrons (1 species), nonlinear run, 1000 time steps, 24 ranks per
node.
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Similar experiments were performed on Hazel Hen but provide largely inconclu-
sive results. Small tests (with 4 nodes) were analogous to the results shown in Table 3,
but tests involving a large number of resources were inconclusive (see Table 4). The
overhead fluctuated between −30% and +15%. One of the possible explanations is
that the job was distributed amongst several islands and MPI communications had to
be passed through switches. Since switches are shared amongst all running jobs, the
communication patterns of GENE and FT-GENE were disturbed by external factors,
causing statistically invalid measurements of performance.

5 Conclusion

During the EXAHD project a massively parallel software framework for the sparse
grid combination technique was developed and successfully applied to the gyroki-
netic solver GENE, to linear as well as nonlinear, nonlocal settings. While its func-
tionality has been demonstrated for medium sized test cases we expect an even
greater benefit when applying it to larger simulations in future experiments.

Our implementation shows excellent scaling behavior up to 180k cores, and allows
to scale the application code beyond its specific capabilities, thus making it ready
for exascale computing. At the same time the overhead incurred to the total runtime
is negligible.

The load balancing that can be realized with our approach allows to maintain
parallel efficiencies close to the optimum. This is achieved by incorporating effects
of anisotropy in our cost model and applying dynamic task scheduling. By modeling
the solver loads with neural networks, this scheduling can be further enhanced. As an
outlook, the additional level of parallelism offered by the combination techniquemay
allow for scaling beyond a single system: The computation may be decoupled across
compute centers. This would require more advanced distributed communication, as
the combined solutions would have to be updated on both systems. First tests have
been performed for this setup, but the overall performance and gains of such an
approach still need to be evaluated.

We have also shown that the fault tolerant combination technique can be used
to construct a resilient framework, which can tolerate hard and even soft faults.
This algorithm-based fault tolerance introduces only minor effects on the overall
accuracy and runtime while preserving the scaling properties of the framework.
Furthermore, FT-GENE demonstrated a reasonable ability to tolerate faults, even
under the restrictions of relying purely on standard MPI, causing no performance
overhead.

Finally, by implementing specialized interfaces, the software framework can read-
ily be extended to other codes dealing with high-dimensional functions and we look
forward to seeing it used in many more applications.
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