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Abstract. We discuss state-constrained optimal control of a quasilinear parabolic
PDE. Existence of optimal controls and first-order necessary optimality conditions
are derived for a rather general setting including pointwise in time and space con-
straints on the state. Second-order sufficient optimality conditions are obtained for
averaged-in-time and pointwise in space state-constraints under general regularity
assumptions for the equation, and for pointwise in time and space state-constraints
when restricting in return to a more regular setting for the state equation.

1. Introduction

This paper is on optimal control of a quasilinear parabolic partial di�erential
equation (PDE) with pointwise control-constraints, and additional constraints on
the state variable. We prove existence of optimal controls and derive �rst-order
necessary optimality conditions (FONs) under rather general assumptions on the
state equation and pointwise in time and space state-constraints. Under additional
assumptions we provide second-order su�cient optimality conditions (SSCs). For
the rather general assumptions on the state equation we restrict the analysis to
averaged-in-time state-constraints. Pointwise in time and space state-constraints
are discussed for a more regular state equation and purely timedependent controls.

Optimal control of PDEs has been subject to research for several years, see e.g.
[29, 47]. Problems with pointwise state-constraints are particularly challenging,
since one usually needs continuity of the state to ful�ll a Slater-type constraint-
quali�cation. This yields low regularity of the Lagrange multipliers, see [6,7]. For
problems with nonlinear PDEs, SSCs are important because FONs are not su�-
cient in general. We refer e.g. to the survey [13] and references therein for an
overview on di�erent aspects of the topic, as well as to [23], to our knowledge the
�rst contribution to SSCs for PDE-constrained optimization, and point out only
a few more particular aspects. A di�culty arising in the second-order analysis of
PDE-constrained optimization is the two-norm discrepancy [12,32]: di�erentiabil-
ity of the reduced functional and coercivity of its second derivative often only hold
w.r.t. di�erent norms. In any case, a careful regularity analysis of the underlying
PDE is necessary, and often leads to restrictions on e.g. the spatial dimension in
particular for parabolic problems [10] or purely timedependent controls [18]. In [35]
the authors obtain SSCs for semilinear parabolic PDEs in space dimension 2 and 3
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and distributed control via a careful analysis utilizing the concept of maximal par-
abolic regularity. Regarding second-order necessary optimality conditions (SNCs)
for pure state-constraints we only mention [33], as well as both SNCs and SSCs
with emphasis on a possibly small gap between them in [34, 45] for the di�erent
setting of pointwise mixed control-state-constraints. Finally, we cite [15,48,49] for
SNCs and SSCs in an abstract optimization-theoretic setting. For control problems
with quasilinear PDEs, we restrict our overview to the parabolic case: Early results
[21,22] include existence of optimal controls and FONs for a problem with averaged-
in-space and pointwise in time, or �nitely many state-constraints of integral-type,
respectively, yet under more restrictive regularity assumptions than in our paper.
Well-posedness of the state equation and existence of optimal controls under rather
general regularity assumptions on domain and coe�cients has been proven in [41].
First- and second-order analysis has been carried out in [4], and convergence of
the SQP method applied to the respective optimization problem has been shown
in [31]. Optimality conditions for a similar problem with slightly more regular co-
e�cients and domain, but unbounded nonlinearities, have been analyzed in [8]. In
the same setting �nite element discretization error estimates for the state equation
have been derived in [9]. Optimal control of the thermistor problem, a coupled
system consisting of a quasilinear parabolic and a nonlinear elliptic equation, is
addressed in [39,40]. We refer to the references of all mentioned papers for a more
detailed history of the area. The non-trivial existence and regularity theory for
solutions of the underlying PDEs poses the main di�culty of such problems.

In this paper, we �rst establish existence of optimal controls and FONs in the
presence of state-constraints, extending the results from [4] and [8]. In particular,
the assumptions from [4, 41] are fairly general, and include certain types of non-
smooth domains, mixed boundary conditions, and nonsmooth coe�cients. One of
our goals is to investigate how far �rst- and second-order analysis of the problem
can be performed within this \rough" setting, before regularity requirements force
us to switch to a di�erent setup. Second, to our best knowledge, SSCs for state-
constrained optimal control of a quasilinear parabolic PDE have not been addressed
in the literature. We present a detailed analysis, restricting our setting to either
averaged-in-time state-constraints when keeping the general regularity setting of
[4], or to the strengthened regularity assumptions of [8] and purely timedependent
controls when considering pointwise in time and space state-constraints. Extend-
ing [12] towards the inclusion of state-constraints, we pay particular attention on
avoiding the two-norm gap.

The paper is organized as follows: In Section 2 we introduce the problem
setting, prove existence of optimal controls, and derive FONs in this rather general
context. In Section 3 we prove SSCs for an abstract optimization problem extending
the result from [12]. In Section 4 we explain why our abstract result from Section 3
does not apply to the model problem as stated in Section 2. Then, we prove
SSCs without two-norm gap for a modi�ed version of our model problem where
the regularity assumptions remain unchanged but the pointwise state-constraints
are replaced by averaged-in-time state-constraints. In Section 5 we come back to
pointwise state-constraints and prove SSCs for this situation, but now assuming
a more regular setting for the state equation along the lines of [8] and purely
timedependent controls. In the �nal section we comment on changes in the case
without control-constraints.
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Notation. Given an interval I � R and a domain 
 � Rd we denote the space
time cylinder by Q := I � 
. We apply standard notation for H�older-, (Bochner-)
Lebesgue- and (Bochner-)Sobolev-spaces as e.g. in [4]. The conjugate exponent
of some integrability exponent p is denoted by p0. Since 
 stays �xed we omit it
when refering to function spaces on 
. For interpolation spaces we use standard
notation, see e.g. [3, 46]. The domain of a densely de�ned operator A: X ! Y
between two Banach spaces X,Y , equipped with the graph norm, is denoted by
DomX(A), and L(X;Y ) is the space of bounded linear operators X ! Y with the
operator norm.

2. Existence of optimal controls and FONs

We introduce the model problem, state our assumptions, and collect some
results from [4]. Following standard techniques, we derive existence of optimal
controls and FONs.

2.1. Model Problem and Assumptions. We consider the problem:

min
y2Yad; u2Uad

J(y; u) :=
1

2
ky � ydk

2
L2(I�
) +



2
kuk2L2(�); s.t. (SE);(OCP)

with the quasilinear parabolic state equation (SE) given by

@ty +A(y)y = Bu on Q; y(0) = y0 on 
:(SE)

The quasilinear di�erential operator A is de�ned as A(y) := �r � �(y)�r, and
boundary conditions are incorporated in the right-hand-side of (SE) and the func-
tion spaces. Boundary conditions, control space Ls(�), and operator B, as well as
the set of admissible controls Uad � Ls(�) are introduced precisely below. The
set of admissible states is clari�ed in each section, and given either by point-
wise in space and time inequality-constraints, i.e. Yad = fy 2 C(Q): ya(t; x) �
y(t; x) � yb(t; x) 8(t; x) 2 Qg; or, if we require a weaker type of constraints for our
analysis, by pointwise in space and averaged-in-time bounds of type Yad = fy 2
L1(I; C(
)): ya(x) �

R
I
y(t; x) dt � yb(x) 8x 2 
g: The assumptions required for

the analysis of the state equation are close to [4], but we forego those parts that
refer to the improved regularity analysis from [4] on Bessel-potential spaces and
stick to the setting of [41]:

Assumption 2.1. 1. 
 � Rd, d 2 f2; 3g, is a bounded domain with boundary
@
. �N � @
 is relatively open and denotes the Neumann boundary part, whereas
�D = @
 n �N denotes the part of @
, where homogeneous Dirichlet boundary
conditions are prescribed. By a subscript D we indicate that the homogeneous
Dirichlet boundary conditions on �D are incorporated in the respective function
space. Let 
[�N be Gr�oger regular [25] such that every chart map in the de�nition
of Gr�oger regularity can be chosen volume-preserving. The time interval I = (0; T )
with T > 0 is �xed.

2. The function �: R ! R is twice di�erentiable with �00 being Lipschitz con-
tinuous on bounded subsets of R. Let �: 
 ! Rd�d be measurable and uniformly

bounded and coercive in the following sense: 0 < �� := infx2
 infz2Rdnf0g
zT�(x)z
zT z ,

�� := supx2
 sup1�i;j�dj�i;j(x)j < 1: We assume a coercivity condition 0 < �� �
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� � �� for � as well. With this we de�ne as above

hA(y)'; iL2(I;W 1;2

D
) :=

Z
I

Z



�(y)�r'r dxdt; ';  2 L2(I;W
1;2
D ):

3. We assume that there is p 2 (d; 4) such that �r � �r+ 1: W
1;p
D !W

�1;p
D is

a topological isomorphism and �x this choice of p.
4. Let s > 2 be �xed such that 1

s <
1
2 (1 �

d
p ) holds. For a measure space

(�; �) we de�ne the control space U := Ls(�) and the admissible set Uad = fu 2
Ls(�): ua(x) � u(x) � ub(x) for a.a. x 2 �g with ua; ub 2 L1(�), ua � ub
almost everywhere. The control operator B: U = Ls(�)! Ls(I;W

�1;p
D ) is bounded

linear and admits a bounded linear extension B: L2(�) ! L2(I;W
�1;p
D ): Finally,

the initial condition y0 2 (W
�1;p
D ;W

1;p
D )1�1=s;s and the desired state yd 2 L

1(I; L2)
are �xed.

The constants p and s are �xed from now on. Note that in Assumption 2.1.4, we
only suppose B to be continuous from Ls(�) to Ls(I;W

�1;p
D ), instead from L1(�)

to Ls(I;W
�1;p
D ) as in [4]). This does not destroy applicability of the assumption

to the full range of situations described in [4, Section 2.2], which we repeat for
convenience:

Example 2.2. 1. Distributed control: It holds � = Q, i.e. U = Ls(I � 
),

and B is the identity map Ls(Q)! Ls(I;W
�1;p
D ). Denoting the outer normal unit

vector of @
 by n
, the state equation reads

@ty +A(y)y = u on Q; n
 � �(y)�ry = 0 on I � �N ; y = 0 on �D:

2. Neumann boundary control (d = 2): We choose � = I � �N , i.e. U =

Ls(I � �N ), and B = tr� where tr: Ls
0

(I;W
1;p0

D ) ! Ls
0

(I � �N ) denotes the trace
map. With this the state equation reads

@ty +A(y)y = 0 on Q; n
 � �(y)�ry = u on I � �N ; y = 0 on �D:

3. Purely timedependent controls (d = 2; 3): We �x b1; :::; bm 2 W
�1;p
D , set

U = Ls(I;Rm), and de�ne Bu :=
Pm

i=1 uibi. If, for instance, bi = tr� fi with

fi 2 Ls(�N ) where tr: W
1;p0

D ! Ls
0

(�N ) denotes the trace map on �N , we obtain
as state equation:

@ty+A(y)y = 0 on Q; n
��(y)�ry =
mX
i=1

uifi on I��N ; y = 0 on �D:

A similar construction applies to bi 2 Ls(
). Of course, adding a su�ciently
regular, �xed nonhomogeneous Neumann boundary condition or distributed source
in Example 2.2.1 or 2, respectively, is possible.

Assumptions 2.1.1 and 2.1.3 impose non-trivial conditions on the geometry of
the domain, the elliptic operator �r��r+1, and the boundary conditions. Hence,
we mention the following examples, cf. also [4, Remarks 2.1 and 2.3]:

Example 2.3. 1. Assumption 2.1.1 is ful�lled for any domain with a Lipschitz
boundary (\strong Lipschitz domain", [24, De�nition 1.2.1.1]) in case �N = ; or
�N = @
, cf. [28, Remark 3.3]. There are also domains without Lipschitz bound-
ary ful�lling this assumption, e.g. a pair of crossing beams in 3D [28, Section 7.3].
Moreover, if 
 is a bounded domain with Lipschitz boundary, �N = ; or �N = @
,
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and �: 
! Rd�d is symmetric-valued and uniformly, Assumption 2.1.3 is ful�lled
with some p > 3, see [20, Theorem 3.12, Remark 3.17]. Therefore, Assumption 2.1
covers the classical \regular" setting of domains with Lipschitz-boundary in dimen-
sions d = 2; 3 with pure Dirichlet or Neumann boundary conditions and symmetric,
uniformly continuous coe�cient �.

2. The work [25] shows that the isomorphism property from Assumption 2.1.3
for some p > 2 is a consequence of Assumption 2.1.1 for any coe�cient � ful�lling
Assumption 2.1.2. This is also true under more general assumptions on the domain,
see [27]. Hence, for space dimension d = 2 Assumption 2.1 is guaranteed for a broad
range of nonsmooth domains, mixed boundary conditions, and nonsmooth �.

3. It is well-known that for mixed boundary conditions Assumption 2.1.3 can
only be expected to hold for some p < 4 in general. In [19] for instance sev-
eral real-world constellations in dimension d = 3 have been described that ful�ll
Assumption 2.1.1 and 2.1.3. Two crossing beams in 3D, e.g., equipped with con-
stant � and pure homogeneous Dirichlet or Neumann boundary conditions, ful�ll
Assumption 2.1.

Finally, note that Assumptions 2.1.1-2.1.3 are identical to Assumptions 1-3 of
[4], i.e. the suppositions w.r.t. domain, coe�cients, and boundary conditions re-
main unchanged. We only modify the assumptions w.r.t. the initial condition and
regularity of the right-hand-side of (SE): Assumption 4 in [4] is related to the im-
proved regularity analysis on Bessel-potential spaces. As pointed out in [4, Section
3] this analysis is not required for the �rst- and second-order analysis of Sections
3.1 and 4.1-4.3 of [4], except for [4, Proposition 4.7], a result concerning improved
regularity of the adjoint state. We only rely on those results that are obtained
completely within the W

�1;p
D -W

1;p
D -setting described in our Assumption 2.1.4, cf.

also [41, Theorem 5.3], and do not include the improved regularity assumptions of
[4].

2.2. Control-to-state map and reduced functional. For later reference we
recall some results from [4]. Due to [4, Proposition 3.5] (see also [41, Corollary
5.8]) the solution map of the equation

@ty +A(y)y = v; y(0) = y0;(2.1)

de�ned by y := ~S(v) if and only if (2.1) holds, is a well-de�ned map ~S: Ls(I;W
�1;p
D )!

W 1;s(I;W
�1;p
D ) \ Ls(I;W 1;p

D ). Hereby, y 2 W 1;s(I;W
�1;p
D ) \ Ls(I;W 1;p

D ) is said to
be a solution of (2.1) if and only if

h@ty; 'iW�1;p

D
;W 1;p0

D

+

Z



�(y(t))�ry(t)r' dx = hv(t); 'i
W�1;p

D
;W 1;p0

D

for all ' 2 W
1;p0

D and almost all t 2 I, and y(0) = y0 in (W
�1;p
D ;W

1;p
D )1=s0;s.

For well-de�nedness of y(0) 2 (W
�1;p
D ;W

1;p
D )1=s0;s we refer e.g. to [3, Theorem

III.4.10.2]. By composition with B we obtain the control-to-state map S: Ls(�)!

W 1;s(I;W
�1;p
D )\Ls(I;W 1;p

D ); u 7! ~S(Bu). Given y 2W 1;s(I;W
�1;p
D )\Ls(I;W 1;p

D )
we recall from [4] the notation for the derivatives of the nonlinear term, stated in
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weak form:

hA0(y)v; 'i :=

Z
Q

�0(y)v�ryr' dxdt;

hA00(y)[v1; v2]; 'i :=

Z
Q

(�0(y)(v1�rv2 + v2�rv1) + �00(y)v1v2�ry)r' dxdt;

with v; v1; v2 2W
1;s(I;W

�1;p
D )\Ls(I;W 1;p

D ) and a test function ' 2 Ls
0

(I;W
1;p0

D ).
It is possible to relax the regularity requirements on v; v1; v2, as done e.g. in
the proof of the following di�erentiability properties of G [4, Proposition 4.4 and
Lemma 4.5]:

Lemma 2.4. Let Assumption 2.1 be satis�ed. 1. The map ~S: Ls(I;W
�1;p
D )!

W 1;s(I;W
�1;p
D ) \ Ls(I;W 1;p

D ) is twice continuously Fr�echet di�erentiable with

derivatives ~S0(v)h = w and ~S00(v)[h1; h2] = z given by the unique solutions of

@tw +A(y)w +A0(y)w = h; w(0) = 0;(2.2)

@tz +A(y)z +A0(y)z = A00(y)[G0(v)h1; G
0(u)h2]; z(0) = 0(2.3)

for y = ~S(v), respectively.
2. The nonautonomous operator A(y) +A0(y) exhibits maximal parabolic

regularity on Lr(I;W
�1;p
D ) for r 2 (1; s]. It holds ~S0(v) 2 L(Lr(I;W�1;p

D );W 1;r(I;W
�1;p
D )\

Lr(I;W
1;p
D )) for all v 2 Ls(I;W�1;p

D ), r 2 (1; s].

We introduce the reduced objective functional j: Ls(�)! R; u 7! J(S(u); u):
From [4, Lemma 4.6] we recall that the reduced functional j is twice continuously
Fr�echet di�erentiable on Ls(�) with gradient

rj(u) = B� ~S0(Bu)�(y � yd) + u:(2.4)

A more detailed discussion of the operators B� and ~S0(Bu)� will be provided later
on, see in particular Sections 2.4 and 4.1.

2.3. Existence of optimal controls. Let us now consider the following setting
of the state-constraints, which remains unchanged until noted otherwise:

Assumption 2.5. 1. The set of admissible states is given by Yad = fy 2
C(Q) : ya(t; x) � y(t; x) � yb(t; x) 8(t; x) 2 Qg; with bounds ya; yb 2 C(Q)
satisfying ya(t; x) < yb(t; x) for all (t; x) 2 Q, ya(t; x) < 0 < yb(t; x) for all
(t; x) 2 I � �D, and ya(0; x) < y0(x) < yb(0; x) for x 2 
. We allow for ya � �1
or yb � +1.

2. There is a feasible point, i.e. there is (y; u) 2 Yad � Uad such that y and u
ful�ll the state equation (SE).

Together with Assumption 2.1 we can prove existence of a minimizer for (OCP)
as it has already been done for the case without state-constraints in [4, Lemma 4.1]
and [41, Proposition 6.4]. An analogous result for the state-constrained thermistor
problem has already been obtained in [39].

Theorem 2.6. Let Assumptions 2.1 and 2.5 hold. Then there exists a

globally optimal control �u 2 Uad for the optimal control problem (OCP).

Proof. The proof follows standard arguments in the calculus of variations, cf.
[4, 41], [29, 47]. In particular, note that existence of an in�mizing sequence is
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provided by the existence of a feasible point (Assumption 2.5.2). In the proof of
[41, Proposition 6.4] it is shown that a subsequence of the corresponding sequence
of states converges in C(Q) to the optimal state. Note that the presence of an
additional linear term in [41] is not essential for the respective argument which
therefore can be adapted to the present case as in [4]. For details we refer to
Appendix A. Since Yad is closed in C(Q) the limit is still in Yad, i.e. it ful�lls the
state-constraints. �

For comments on how Theorem 2.6 and all further results change in the case
without or with only unilateral control-constraints we refer to Section 6.

2.4. First-order necessary optimality conditions. We now characterize local
solutions of (OCP) that ful�ll a Slater-type constraint-quali�cation by FONs. The
following main di�culty is well-known in state-constrained optimal control of PDEs,
cf. e.g. [6, 7]: To use a Slater-type condition, we have to ensure nonempty inte-
rior of Yad in the respective space. Since Yad is de�ned by pointwise inequality-
constraints, this excludes states in Lq(Q), 1 � q < +1. We have to consider them
in C(Q), which infers regular Borel measures, i.e. the corresponding dual objects,
in the KKT-system. To apply an abstract result for optimization problems in Ba-
nach spaces [7, Theorem 5.2] to our problem (OCP) we formulate an additional
assumption.

Assumption 2.7. Let �u 2 Uad be an L2(�)-local solution to (OCP) with
associated state �y = S(�u) 2 Yad, i.e. there is � > 0 such that j(u) � j(�u) for all u 2

BL
2(�)

� (�u)\Uad ful�lling S(u) 2 Yad. Further, assume that the following linearized
Slater-condition is ful�lled at �u: There is uSl 2 Uad such that �y + S0(�u)(uSl � �u) 2
�Yad, i.e. ya(t; x) < �y(t; x) + S0(�u)(uSl � �u)(t; x) < yb(t; x) for all (t; x) 2 Q.

Since the Ls- is stronger than the L2-norm, a L2(�)-local is a Ls(�)-local
solution.

Theorem 2.8. Under Assumptions 2.1 and 2.7 and Assumption 2.5.1

there exists a regular Borel measure �� 2 M(Q) = C(Q)� on Q and the so-

called adjoint state �p 2 Lr
0

(I;W
1;p0

D ), r0 2 (1; 2p
p+d ), such that the optimality

system

@t�y +A(�y)�y = B�u; �y(0) = y0;(2.5)

�@t�p+A(�y)��p+A0(�y)��p = �y � yd + ��; �p(T ) = 0;(2.6)

h��; y � �yiM(Q);C(Q) � 0 for all y 2 Yad;(2.7)

hB��p+ �u; u� �uiLs0 (�);Ls(�) � 0 for all u 2 Uad(2.8)

is satis�ed. The so-called adjoint equation (2.6) has to be understood in the

sense outlined in the proof below, cf. also Remark 2.10.

Before going into the details of the proof we state the speci�c form of the
variational inequality (2.8) for the three variants of B discussed in Example 2.2:

Example 2.9. 1. In case of distributed control we obtain B� to be the identity

map Ls
0

(I;W
1;p0

D )! Ls
0

(Q), and (2.8) reads
R
Q
(�p+�u)(u��u)dxdt � 0; 8u 2 Uad �

Ls(Q):
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2. For Neumann boundary control (d = 2), B� is the trace map Ls
0

(I;W
1;p0

D )!

Ls
0

(I � �N ) and we obtain
R
I��N

(�pjI��N + �u)(u � �u)dsdt � 0; 8u 2 Uad �

Ls(I � �N ):
3. We obtainB��p = (t 7! hbi; �p(t)iW�1;p

D
;W 1;p0

D

)mi=1 = (t 7! s�N fi�p(t)j�Nds)
m
i=1 2

Ls
0

(I;Rm); and
Pm

i=1

R
I
(
R
�N
fi � �p(t)j�Nds + �ui(t))(ui(t) � �ui(t))dt � 0 for all

u 2 Uad � Ls(I;Rm) in case of purely timedependent controls.

Proof of Theorem 2.8. In [7, Theorem 5.2] choose U = Ls(�), Z = C(Q), J = j,

G = S, K = Uad and C = Yad. Note that the embedding W 1;s(I;W
�1;p
D ) \

Ls(I;W
1;p
D ) ,! C(Q) [4, Proposition 3.3] ensures that the control-to-state opera-

tor maps Ls(�) into C(Q). It holds ~S0(B�u) 2 L(Lr(I;W�1;p
D );W 1;r(I;W

�1;p
D ) \

Lr(I;W
1;p
D )) for any r 2 (1; s], cf. Lemma 2.4.2. Employing W 1;r(I;W

�1;p
D ) \

Lr(I;W
1;p
D ) ,! C(Q) for r 2 ( 2p

p�d ;1) [4, Proposition 3.3] we obtain ~S0(B�u) 2

L(Lr(I;W�1;p
D ); C(Q)) for those r, and consequently

~S0(B�u)� 2 L(M(Q); Lr
0

(I;W
1;p0

D ))(2.9)

for all r0 2 (1; 2p
p+d ). Following the usual adjoint technique in optimal control, see

e.g. [47, Chapter 6.2.1], we introduce the adjoint state �p := ~S0(B�u)�(�y � yd + ��).
Note that �p is well-de�ned in this way and exhibits the regularity stated in the
theorem due to (2.9) and �y � yd + �� 2 M(Q). The adjoint equation (2.6) has
to be understood purely formal, in the very-weak/adjoint sense. We discuss this
further in Remark 2.10 below. Combining equation (2.4) for the reduced gradient
of our particular setting with the abstract variational inequality [7, (5.3)] and the
de�nition of �p yields (2.8). �

Remark 2.10. The adjoint equation (2.6) has to be understood purely formal:

In general, it is not guaranteed that �p 2 Lr(I;W
1;p0

D ) has a distributional time
derivative or a well-de�ned trace on fTg � 
. Hence, (2.6) really only serves as
a more illustrative and intuitive notation for the precise de�nition of �p given by
�p = ~S0(B�u)�(�y � yd + ��). The notation as backward parabolic PDE is motivated

by the fact that ~S0(B�u)� restricted to the spaces Lr
0

(I;W
�1;p0

D ), r0 2 (1;1), can
be identi�ed with the solution map of the respective backward nonautonomous
parabolic PDE, cf. [4, Proposition 4.7]. Moreover, the presence of mixed boundary
conditions in the state equation does not pose additional di�culties, see e.g. [26,
30,35], in particular because the support of �� is disjoint from I ��D and f0g�
,
cf. Remark 2.11 below and Assumption 2.5.1.

Remark 2.11. Condition (2.7) can be rewritten in a more illustrative way:
The Jordan decomposition �� = ��+ � ��� into non-negative measures ��+; ��� � 0
satis�es supp ��+ � f(t; x) 2 Q: �y(t; x) = yb(t; x)g; supp ��

� � f(t; x) 2 Q: �y(t; x) =
ya(t; x)g: For a proof we refer e.g. to [11, Proposition 2.5].

Remark 2.12. Because �� is, in general, only a Borel measure, we cannot
improve regularity of the adjoint state �p along the lines of [4, Proposition 4.7]
using the improved regularity analysis of the state equation on Bessel-potential
spaces. However, we mention that improved regularity for adjoint states in state-
constrained optimal control has been obtained under additional assumptions and
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with di�erent techniques in case of linear and semilinear elliptic [11] and parabolic
[14] PDEs.

Due to 2p
p+d < 2 and p0 < 2 Theorem 2.8 shows rather poor temporal and

spatial regularity for �p. This is a typical di�culty to overcome during the analysis
of second-order optimality conditions for (OCP), as we will outline in Sections 4
and 5. To do so, we will either have to modify the type of state-constraints (Assump-
tion 4.1) or assume a more regular setting for the state equation (Assumption 5.1).

3. An abstract result on SSCs

We extend the abstract framework of [12] towards inclusion of state-constraints,
i.e. we give SSCs for an abstract optimization problem similar to the one from
[7, Theorem 5.2], but now enriched with two norms as typical for PDE-constrained
optimization. However, we prove SSCs that avoid the two-norm gap. The frame-
work is developed having in particular the setting and the arguments from [18] in
mind. We start by introducing the abstract problem

min j(u) s.t. u 2 K; g(u) 2 C;(P)

with the assumptions given below. The suppositions on the real-valued functional
j and the underlying spaces U2, U1, respectively, are identical to those from [12].
Here we extend this work towards the inclusion of a state-constraint-like constraint
of type \g(u) 2 C" that is formulated in a further Banach space Z. For instance,
choosing g to be the control-to-state map allows to handle state-constraints. Since
the set K \ g�1(C) is nonconvex in general, this situation is not covered by the
results of [12]. Further, j and g are di�erentiable w.r.t. the U1-norm, but not
necessarily w.r.t. the weaker U2-norm. We have in mind the case U2 = L2(�;m)
and U1 = Lp(�;m) with some p 2 (2;1] for a measure space (�;dm). The
presence of such two norms goes back to [32], see also the exposition in [12,13,47].

We briey put our result into context: As far as we know, prior results on
SSCs for state-constraints without two-norm gap required di�erentiability of j and
g w.r.t. L2, cf. [45, Section 4], [10, Theorem 4.3] { an assumption that can be
avoided in our result. In particular we can state SSCs for the same semilinear par-
abolic optimal control problem as in [18], but without norm gap, see Example 3.3
below. In [15] both SNCs and SSCs for certain optimization problems in in�nite
dimensions are proven. The results rely on the concept of a directional curvature
functional for the (possibly nonconvex) admissible set. The authors state that it is
possible to include cases with two-norm discrepancy (see Remark 4.6.iv), but the
special case of the present paper and [12], in which such a discrepancy appears
but can be avoided in the formulation of second-order conditions, is not addressed.
Further, the explicit computation of the directional curvature term in the pres-
ence of pointwise state-constraints is left as topic of further research. We believe
that our approach, explicitly tailored to situations as e.g. (OCP), [18], and [12],
respectively, is of independent interest.

Assumption 3.1. Let U2 be a Hilbert space and U1 a Banach space such that
there is a continuous embedding U1 ,! U2. With k�k2 and k�k1 we denote the
corresponding norms. Moreover, h�; �i2 is the duality product in U�2 � U2. Further,
let Z be a Banach space with norm k�kZ and duality pairing h�; �iZ�;Z .
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1. Let ; 6= K � U1 be convex and A � K be open in U1. We �x �u 2 K. The
functional j: A! R is twice continuously Fr�echet di�erentiable w.r.t. k�k1.

1a. The derivatives of j taken w.r.t. the space U1 extend to continuous linear
respectively bilinear forms on U2: j

0(u) 2 L(U2;R), j00(u) 2 L(U2 
 U2;R) for
u 2 A.

1b. Let (uk)k � K, (vk)k � U2 be arbitrary sequences such that uk ! �u
strongly w.r.t. the U2-norm and vk * v weakly in U2 as k!1. Then it holds:

1bi. j0(�u)v = limk!1 j0(uk)vk 1bii. j00(�u)v2 � lim infk!1 j00(uk)v
2
k

1biii. If v = 0, there is  > 0 such that  lim infk!1kvkk
2
2 � lim infk!1 j00(uk)v

2
k.

2. Let g: A! Z be twice continuously Fr�echet di�erentiable w.r.t. k�k1.
2a. The derivatives of g taken w.r.t. U1 extend to continuous linear respec-

tively bilinear forms on U2: g
0(u) 2 L(U2; Z), g

00(u) 2 L(U2 
 U2; Z) for u 2 A.
2b. Let (uk)k � K, (vk)k � U2 be arbitrary sequences such that uk ! �u

strongly w.r.t. the U2-norm and vk * v weakly in U2 as k!1. Then it holds:
2bi. g0(uk)vk * g0(�u)v weakly in Z 2bii. g00(uk)v

2
k * g00(�u)v2 weakly in

Z

The following is our main abstract result and extends [12, Theorem 2.3] towards
the inclusion of a state-constraint-like constraint of type \g(u) 2 C". We denote by
R(S; x) and TS(x) the radial cone and the contigent cone, respectively, of a closed
convex set S in a Banach space X at some x 2 S, see e.g. [5, De�nition 2.54].

Theorem 3.2. Let Assumption 3.1 hold. Let C � Z be a closed convex

set and let �u 2 K, g(�u) 2 C, and �� 2 Z� ful�ll the following properties:

hj0(�u) + g0(�u)���; u� �ui2 � 0 8u 2 K;(3.1)

h��; z � g(�u)iZ�;Z � 0 8z 2 C;(3.2)

i.e. the KKT-conditions for the problem (P). Assume further that it holds

j00(�u)v2 + h��; g00(�u)v2iZ�;Z > 0 8v 2 C�u n f0g(3.3)

with C�u := clU2(R(K; �u)) \ fv 2 U2 : j0(�u)v = 0; hg0(�u)���; vi2 = 0; g0(�u)v 2
TC(g(�u))g. Then, there are �; � > 0 such that the quadratic growth condition

j(u) � j(�u) + �
2ku � �uk22 holds for all u 2 K that satisfy ku � �uk2 � � and

g(u) 2 C; in particular, �u is an U2-local minimizer for (P).

In the theorem and its proof we make extensive use of the continuation proper-
ties from Assumption 3.1.1a and 3.1.2a: In formula (3.1), for instance, g0(�u)��� 2 U�2
is well-de�ned because of g0(�u) 2 L(U2; Z) by Assumption 3.1.2a. We follow the
the proof of [12, Theorem 2.3], and abstract the techniques of several similar results
in this context, see e.g. [10,34,45], and, in particular, [18].

Proof. Assume the contrary, i.e. there exist (uk)k � K such that ku�ukk2 <
1
k ,

j(uk) < j(�u) + 1
2kkuk � �uk22, and g(uk) 2 C. De�ne �k := kuk � �uk2 and vk :=

1
�k
(uk� �u). Since (vk)k � U2 is bounded by de�nition and U2 is a Hilbert space we

can w.l.o.g. assume that vk * v with some v 2 U2. We prove v 2 C�u in four steps:
A. From weak convergence and (3.1) we derive immediately: hj0(�u)+g0(�u)���; vi2 =
limk!1hj

0(�u) + g0(�u)���; vki2 = limk!1
1
�k
hj0(�u) + g0(�u)���; uk � �ui2 � 0:

B. To show hg0(�u)���; vi2 � 0 observe that h��; g0(u�k)vkiZ�;Z = 1
�k
h��; g0(u�k)(uk�

�u)iZ�;Z = 1
�k
h��; g(uk)� g(�u)iZ�;Z

(3.2)

� 0 with some u�k := �kuk+(1� �k)�u, (�k)k �
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[0; 1] originating from the mean value theorem. Utilizing Assumption 3.1.2bi we
obtain hg0(�u)���; vi2 = h��; g0(�u)viZ�;Z = limk!1h��; g

0(u�k)vkiZ�;Z � 0: Similarly we

obtain for arbitrary but �xed � 2 Z�: h�; 1
�k
(g(uk)�g(�u))iZ�;Z = h�; g0(u�;�k )vkiZ�;Z !

h�; g0(�u)viZ�;Z due to Assumption 3.1.2bi, i.e. g0(�u)v 2 weak-clZ(R(C; g(�u))) =
TC(g(�u)), since C is assumed to be closed and convex: From [5, Proposition 2.55]
we infer that TC(g(�u)) = clZ(R(C; g(�u))). The radial cone R(C; g(�u)) is convex
due to convexity of C, and hence its (strong) closure in Z is equal to its weak
closure weak-clZ(R(C; g(�u))), see [5, Theorem 2.23.ii] for instance.

C. As in the proof of [12, Theorem 2.3] we �nd with help of the mean value
theorem that j0(�u)v � 0 holds. Together with B. we obtain hj0(�u)+g0(�u)���; vi2 � 0
and therefore with A.: hj0(�u) + g0(�u)���; vi2 = 0

D. Now, by B. we have j0(u)v = �hg0(�u)���; vi2 � 0, which implies together
with j0(�u)v � 0 that j0(�u)v = 0. Finally it follows by C. that hg0(�u)���; vi2 = 0.

As in [12] one can show that v 2 clU2(R(K; �u)) and hence it follows from
A.-D. that v 2 C�u. Now, using our assumption and Taylor expansion we �nd
�2k
2k > j(uk)�j(�u) = j0(�u)(uk��u)+

1
2j
00(u�k)(uk��u)

2 with some u�k = �kuk+(1��k)�u,
(�k) � [0; 1]. Exploiting (3.1) and (3.2) it follows

(3.4)

�2k
2k

(3.1)
> �h��; g0(�u)(uk � �u)iZ�;Z +

1

2
j00(u�k)(uk � �u)2 = �h��; g(uk)� g(�u)iZ�;Z

+ h��; g(uk)� g(�u)� g
0(�u)(uk � �u)iZ�;Z +

1

2
j00(u�k)(uk � �u)2

(3.2)

� h��; g(uk)� g(�u)� g
0(�u)(uk � �u)iZ�;Z +

1

2
j00(u�k)(uk � �u)2

=
1

2
�2k(h��; g

00(~u�k)v
2
kiZ�;Z + j00(u�k)v

2
k);

where we used the mean value theorem for the last equality with some ~u�k =
~�kuk + (1 � ~�k)�u 2 K, (~�k) � [0; 1]. From 1

k > h��; g00(~u�k)v
2
kiZ�;Z + j00(u�k)v

2
k

and u�k ! �u, ~u�k ! �u in U2, vk * v weakly in U2 we �nd with Assumptions
3.1.1bii and 3.1.2bii: j00(�u)v2 + h��; g00(�u)v2iZ�;Z = 0: Since (3.3) and v 2 C�u

holds, we conclude v = 0. Using Assumptions 3.1.1biii at (|) and 3.1.2bii at

(F) we �nally arrive at 0 <  =  lim infk!1kvkk
2
2

(|)

� lim infk!1 j00(u�k)v
2
k �

lim infk!1( 1k � h
��; g00(~u�k)v

2
kiZ�;Z)

(F)
= 0; which is the desired contradiction. �

We briey indicate how Theorem 3.2 allows to extend a result from the litera-
ture:

Example 3.3. The reader may easily verify along the lines of [12, 18] that
the semilinear parabolic optimal control problem with pointwise constraints on the
state from [18] �ts into the framework of Assumption 3.1. Therefore, Theorem 3.2
allows to reformulate [18, Theorem 5] with L1- replaced by L2-neighbourhoods.

Remark 3.4. Let us for a moment replace convergence uk ! �u in U2 in
Assumption 3.1 by the stronger convergence uk ! �u in V , where (V; k�kV ) is a
Banach space such that V ,! U1 and K � V . The proof of Theorem 3.2 still
shows that a quadratic growth condition of type j(u) � j(�u) + �

2ku � �uk22 holds,
but now only for those u 2 K that ful�ll ku � �ukV < � and g(u) 2 C, i.e. there
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is a so-called two-norm-gap in the quadratic growth condition. Consequently, �u is
at best a V -local minimizer for (P), which corresponds {on the abstract level{ for
V = U1 to the result of [18].

The following example, although of arti�cial nature, illustrates that the as-
sumptions in the formulation of Theorem 3.2 are necessary. Necessity of the as-
sumptions on j is addressed in [12] and hence we only concentrate on the assump-
tions on g.

Example 3.5. With U1 = L1([0; 1]), U2 = L2([0; 1]), Z = C([0; 1]) we con-
sider

min
u2L2([0;1])

j(u) :=

Z 1

0

u(t)2dt s.t. � 1 � u(t) � 1; [g(u)](t) � t; 8t 2 [0; 1];(E)

with [g(u)](t) :=
R t
0
(1 � cos(�2u(s)))ds. Note that j satis�es Assumption 3.1 and

observe that g: L2([0; 1]) ! C([0; 1]) is well-de�ned. Yet, since the superposition
operator associated to the cosine-function is known to be Fr�echet-di�erentiable on
L1([0; 1]), but not on L2([0; 1]), we only have at hand twice Fr�echet-di�erentiablity
of g as map L1([0; 1]) ! C([0; 1]). One veri�es that �u � 1 is feasible for (E),
and satis�es the FONs (3.1) and (3.2) with �� = � 2

� �1 2 C([0; 1])�. Herein, �1
denotes the Dirac-measure concentrated at t = 1. The coercivity condition (3.3) is
trivially satis�ed at (�u; ��), because C�u;�� = f0g. Further, the second derivative of

the functional at �u is even L2([0; 1])-coercive, but any un 2 L2([0; 1]) de�ned by
un(t) = �1 for t 2 [0; 1n ] and un(t) = 1, else, is also feasible for (E) and satis�es

j(un) = j(�u). Together with un ! �u w.r.t. the L2([0; 1])-norm, this shows that a
quadratic growth condition around �u cannot hold. The reason is that Theorem 3.2
cannot be applied, because Assumption 3.1.2 fails to hold. Choose vn := n

1

21(0; 1
n
),

then it holds vn * 0 weakly in L2([0; 1]), but for ûn := 1
2 (un + �u) we obtain

ûn ! û strongly in L2([0; 1]) and h�1; g
00(ûn)v

2
ni = �2

4

R 1
0
cos(�2 ûn(t))v

2
n(t)dt =

�2

4 9 0 = h�1; g
00(�u)v2i which disproves Assumption 3.1.2bii. However, due to

continuous Fr�echet di�erentiability of g w.r.t. L1([0; 1]), Remark 3.4 applies: �u is
an L1([0; 1])-local, but not an L2([0; 1])-local solution of (E).

We conclude this section with an open problem. An important property of
the SSCs in [12, Theorem 2.3] is their minimal gap to corresponding SNCs, if the
admissible set K is polyhedric: Positivity of j00(�u) on a certain cone C�u � U2 is {
together with FONs{ a su�cient optimality condition for �u, while non-negativity of
j00(�u) on the same cone is necessarily implied by local optimality of �u [12, Theorem
2.2]. Obtaining SNCs for (P) seems to be a challenging topic and is beyond the
scope of our paper. For recent results concerning no-gap second-order conditions
we refer e.g. to [34, 45] in case of optimal control of semilinear elliptic PDEs
with mixed control-state constraints, to [16] for optimal control of a nonsmooth
quasilinear elliptic PDE, or to [15] for an abstract optimization-theoretic result
with di�erent applications to PDE-constrained optimization.

4. SSCs for averaged-in-time state-constraints

This section contains the �rst part of our discussion of SSCs for (OCP): We
replace the pointwise in space and time state-constraints by averaged-in-time state-
constraints, see Assumption 4.1 below. For the resulting modi�ed model problem
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we prove SSCs avoiding the two-norm gap while keeping the rather low regularity
requirements on the state equation from Assumption 2.1. Since Assumption 2.1
on the state equation and the control operator still holds, our results apply to
the full range of situations described in [4, Section 2.2], yet with additional state
constraints.

Since part 1. of Assumption 3.1 referring to the unchanged state equation
and the objective functional, has already been veri�ed for (OCP) in [4, Section
4.3], the remaining work is to check Assumption 3.1.2. This requires a careful
regularity analysis of the derivatives of the control-to-state map. The results of this
analysis also highlight the obstructions that prevent us from applying Theorem 3.2
under Assumptions 2.1 and 2.5 directly, and therefore motivate the introduction
of averaged-in-time state-constraints. In particular, the analysis of the quasilinear
problem (OCP) is quite di�erent from the discussion of the semilinear problem
mentioned in Example 3.3 due to the more complicated structure of derivatives of
the nonlinearity in the di�erential operator. This yields slightly better regularity
results in the case of semilinear PDEs.

4.1. Averaged-in-time state-constraints. We start by introducing our modi-
�ed state-constraints and postpone their mathematical motivation to Section 4.2.

Assumption 4.1. 1. The set of admissible states is Yad = fy 2 L1(I; C(
)) :
ya(x) �

R
I
y(t; x)dt � yb(x) 8x 2 
g; with bounds ya; yb 2 C(
) satisfying

ya(x) < yb(x) for all x 2 
 and ya(x) < 0 < yb(x) for all x 2 �D. We allow for
ya � �1 or yb � 1.

2. There is a feasible point, i.e. there is (y; u) 2 Yad � Uad such that y and u
ful�ll the state equation (SE).

Intuitively, this means, e.g. in the case of controling temperature, keeping the
average temperature over the time interval at each point of an object in a certain
desired range. To get closer to the original pointwise in time formulation, it is also
possible to consider averaging on a �nite number of subintervals of I separately.
Since the latter is only a technicality, we keep the above assumption as simple
as possible. Averaged-type instead of purely pointwise constraints are common in
the literature, e.g. averaged-in-space and pointwise in time bounds on the state
[21,23,36,38] or its gradient [37]. Existence of an optimal control for (OCP) with
averaged-in-time state-constraints is proven analogously to Theorem 2.6. We only
state the result.

Theorem 4.2. Let Assumptions 2.1 and 4.1 hold. Then there exists a

globally optimal control �u 2 Uad for the optimal control problem (OCP).

To address FONs we �rst require a suitable constraint-quali�cation:

Assumption 4.3. Under Assumption 4.1.1 let �u 2 Uad be an L2(�)-local
solution to (OCP) with associated state �y = S(�u) 2 Yad such that that the fol-
lowing linearized Slater-condition is ful�lled at �u: There is uSl 2 Uad such that
�y + S0(�u)(uSl � �u) 2 �Yad, i.e. ya(x) <

R


[�y(t; x) + S0(�u)(uSl � �u)(t; x)] dt < yb(x)

for all x 2 
.

As in Section 2.4 the proof of the following result is based on [7, Theorem 5.2].
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Theorem 4.4. Under Assumptions 2.1 and 4.3 and Assumption 4.1.1

there exists a regular Borel measure �� 2 M(
) = C(
)� on 
 and the adjoint

state �p 2 Lr
0

(I;W
1;p0

D ), r0 2 (1;1), such that the optimality system

@t�y +A(�y)�y = B�u; �y(0) = y0;(4.1)

�@t�p+A(�y)��p+A0(�y)��p = �y � yd + dt
 ��; �p(T ) = 0;(4.2)

supp(��+) � fs
I
�y(t; �)dt = ybg; supp(���) � fs

I
�y(t; �)dt = yag;(4.3)

hB��p+ �u; u� �uiLs0 (�);Ls(�) � 0; for all u 2 Uad;(4.4)

is satis�ed. Here, �� = ��+ � ��� denotes the Jordan-decomposition of ��, cf.
Remark 2.11, and (4.2) has to be understood in the sense outlined in the

proof.

Proof. Because the proof is completely analogous to the proof of Theorem 2.8,
we mainly comment on the di�erences w.r.t. the new type of state-constraints: In
[7, Theorem 5.2] we choose Z = C(
) and G := � � A � S: , where S: Ls(�) !

W 1;s(I;W
�1;p
D ) \ Ls(I;W 1;p

D ) is the control-to-state map, �: W
1;p
D ,! C(
) the

Sobolev embedding, and A: ' 7! (x 7!
R
I
'(t; x)dt) is averaging w.r.t. time,

which is a bounded linear map Lr(I;W
1;p
D ) ! W

1;p
D for any r 2 (1;1). The

choice r = s shows that G is well-de�ned from Ls(�) into C(
). From A 2

L(Lr(I;W 1;p
D );W

1;p
D ) we conclude A� 2 L(W�1;p0

D ; Lr
0

(I;W
�1;p0

D )), and �� is the

embedding M(
) ,! W
�1;p0

D . For a test function  2 Lr(I;W
1;p
D ) we compute

hA�����;  i
Lr0 (I;W�1;p0

D
);Lr(I;W 1;p

D
)
= h����;A iM(
);C(
) =

R


A d�� =

R
�Q
 dtd��; i.e.

A����� = dt 
 �� 2 Lr
0

(I;W
�1;p0

D ) for each r0 2 (1;1). Together with ~S0(B�u) 2

L(Lr(I;W�1;p
D ); Lr(I;W

1;p
D )); for r 2 (1; s], which follows from Lemma 2.4.2, we

�nd ~S0(B�u)�A��� 2 L(M(
); Lr
0

(I;W
1;p0

D )) for r0 2 [s0;1). This shows that

�p = ~S0(B�u)�(�y� yd+A
�����) 2 Lr

0

(I;W
1;p0

D ), r0 2 (1;1), is well-de�ned. Equation
(4.2) has to be understood in this sense. Finally, a short computation shows that
(4.4) holds. �

Remark 4.5. Let in addition to Assumption 2.1 the enhanced regularity as-
sumptions from [4, Assumption 4] hold that enable the improved regularity analysis

of the state on the Bessel-potential space H
��;p
D ,!W

�1;p
D from [4, Theorem 3.20]:

More precisely, y0 2 (H
��;p
D ;DomH��;p

D
(�r � �r))1=s0;s and B is a bounded linear

map Ls(�) ! Ls(I;H
��;p
D ), where � 2 (0; 1) and s > 2 satisfy maxf1 � 1

p ;
d
pg < �

and s > maxf 2
�� d

p

; 2
1�� g. The situations from Example 2.2 still �t into this setting,

cf. [4, Examples 2.4-6], with the minor modi�cation that bi 2 H
��;p
D is required for

purely timedependent controls. Under these stricter assumptions, [4, Proposition
4.7] shows that ~S0(B�u)� coincides with the solution operator of the backward-
parabolic PDE

�@tz +A(�y)�z +A0(�y)�z = w; z(T ) = 0:

Moreover, for any r0 2 [s0;1) the map w 7! z is bounded linear Lr
0

(I;W�1;p0) !

W 1;r0(I;W�1;p0)\Lr
0

(I;W
1;p0

D ). Since it holds A����� = dt
 �� 2 Lr
0

(I;W
�1;p0

D ) for

any r0 2 (1;1) we obtain improved regularity �p 2W 1;r0(I;W�1;p0)\Lr
0

(I;W
1;p0

D ),
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r0 2 [s0;1); for the adjoint state from Theorem 4.4 in this case. Moreover, the
adjoint equation (4.2) even holds in the distributional sense in the respective space.

4.2. Regularity of the derivatives of the control-to-state map. From Sec-
tion 2.2 recall the de�nition of S and its derivatives stated in Lemma 2.4. In this
subsection we carry out a more detailed analysis w.r.t. regularity, continuity, and
extension properties of the derivatives. Moreover, we use these results subsequently
to motivate the introduction of the averaged-in-time state-constraints.

Proposition 4.6. Let Assumption 2.1 hold and �x u 2 Ls(�).
1a. The �rst derivative S0(u) of the control-to-state map extends to a

continuous linear map from L2(�) to Lq(I; C(
)) for any q 2 (1; 2pd ).
1b. The second derivative S00(u) extends to a continuous bilinear map

from L2(�)� L2(�) to W 1;r(I;W
�1;p
D ) \ Lr(I;W 1;p

D ) for any r 2 (1; 2p
p+d ).

2. Let (uk)k � Ls(�) converge to �u strongly in Ls(�) and (vk)k � L2(�)
converge to some v weakly in L2(�). Then it follows S0(uk)vk ! S0(�u)vk
strongly in Lq(I; C(
)) and S00(uk)v

2
k * S00(�u)v2 weakly in W 1;r(I;W

�1;p
D ) \

Lr(I;W
1;p
D ) for q and r as in part 1.

As already pointed out at the end of Section 2.1 our Assumption 2.1 su�ces
to apply those results of [4] that are used in the proof below.

Proof. 1. We know S0(u) 2 L((L2(�);W 1;2(I;W
�1;p
D )\L2(I;W

1;p
D )) for all u 2

Ls(�), cf. Lemma 2.4. Hence, 1a. follows from W 1;2(I;W
�1;p
D ) \ L2(I;W

1;p
D ) ,!c

Lq(I; C(
)), q 2 (1; 2pd ), see e.g. [4, Proposition 3.3]. Since this embedding is

compact, S0(u) 2 L(L2(�); Lq(I; C(
))) is also compact. For 1b. it su�ces due to

Lemma 2.4 to show for r 2 (1; 2p
p+d ) and w1; w2 2W

1;2(I;W
�1;p
D )\L2(I;W

1;p
D ) that

kA00(y)[w1; w2]kLr(I;W�1;p

D
).kw1kW 1;2(I;W�1;p

D
)\L2(I;W 1;p

D
)kw2kW 1;2(I;W�1;p

D
)\L2(I;W 1;p

D
)

holds, where y = S(u). This, however, follows from the de�nition of A00, H�olders
inequality and the aforementioned embedding.

2. In the proof of [4, Proposition 4.9] it has been shown that ~S0(Buk)! ~S0(B�u)

in L(Lr(I;W�1;p);W 1;r(I;W
�1;p
D )\Lr(I;W 1;p

D )) as long as r � 2p
p�d ; see Section 2.4

for the meaning of ~S. In particular, S0(uk) ! S0(�u) in L(L2(�);W 1;2(I;W
�1;p
D ) \

L2(I;W
1;p
D )) is true, from which we conclude the �rst statement of part 2. For the

second derivative we write S00(uk)v
2
k�S

00(�u)v2 = ( ~S0(Buk)� ~S0(B�u))A00(yk)[S
0(uk)vk]

2+
~S0(B�u)(A00(yk)[S

0(uk)vk]
2�A00(�y)[S0(�u)v]2); with yk = S(uk) and �y = S(�u). Con-

vergence of the operators above is in particular true for r 2 (1; 2p
p+d ). Hence, it

su�ces to show that A00(yk)[S
0(uk)vk]

2 * A00(�y)[S0(�u)v]2 weakly in Lr(I;W
�1;p
D ),

which follows by H�olders inequality and the previous results. �

Proposition 4.6 motivates the introduction of averaged-in-time state-constraints:
Assume we want to apply Theorem 3.2 to (OCP) in case of pointwise in time and
space state-constraints (Assumption 2.5). Consequently, we have to verify As-
sumption 3.1 for U1 = Ls(�), U2 = L2(�), K = Uad, Z = C(Q), C = Yad, j being
the reduced functional and g = S being the control-to-state map of (OCP). We
would have to show that S0(u) extends to a bounded linear map L2(�) ! C(Q),
and that S00(u) extends to a continuous bilinear map L2(�) � L2(�) ! C(Q),
for any �xed u 2 Uad. The proof of Proposition 4.6, however, shows this al-
ready fails to hold for the �rst derivative: From Lemma 2.4 we know that the
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extension S0(u): L2(�) ! W 1;2(I;W
�1;p
D ) \ L2(I;W

1;p
D ); is the best possible we

can expect. However, there is no embedding W 1;2(I;W
�1;p
D ) \ L2(I;W

1;p
D ) ,!

C(Q). Due to 2p
p+d < 2, the situation is even worse for S00(u). Similarly, the

application to averaged-in-space and pointwise in time state-constraints [38], i.e.
Yad = fy: ya(t) �

R


y(t; x)!(x)dx � yb(t) 8t 2 Ig; with continuous func-

tions ya; yb 2 C(I) and a weight function ! 2 L1, would require an embedding

W 1;r(I;W
�1;p
D ) \ Lr(I;W 1;p

D ) ,! C(I; L1) for some r 2 (1; 2p
p+d ) in order to verify

Assumption 3.1.2bii. Unfortunately, such an embedding cannot be true. However,
the embedding W 1;r(I;W

�1;p
D ) \ Lr(I;W 1;p

D ) ,! L1(I;W
1;p
D ) ,! L1(I; C(
)) is ob-

vious. Therefore, averaging in time {instead of averaging in space{ seems to be
reasonable, resulting in the formulation of Assumption 4.1.

Remark 4.7. The improved regularity analysis of [4] and considering the

linearized state equation on certain Bessel-potential spaces instead of W
�1;p
D does

not improve the situation signi�cantly, as can be seen along the lines of the proof of
Proposition 4.6. Moreover, the appearance of the A00-term in the second derivative
of the control-to-state map, and hence in the second derivative of the Lagrangian
of (OCP), makes it impossible to repeat the approach of [35], cf. in particular
[35, Proposition 3.8]: The reason is the presence of di�erential operators in A00

that have to be applied to solutions of the linearized state equation. In contrast,
for the semilinear equation discussed in [35] all terms in the second derivative of
the nonlinearity are of order zero, which allows to get along with less regularity for
the linearized state equation.

4.3. SSCs. Using the previously obtained results we formulate SSCs for (OCP).
As already pointed out, the proof relies on Theorem 3.2. For convenience, we intro-
duce the \regular part" p̂ of the adjoint state �p de�ned by the following equation

�@tp̂+A(�y)�p̂+A0(�y)�p̂ = �y � yd; p̂(T ) = 0;(4.5)

Note that this allows us to express the �rst derivative of the reduced functional j
as j0(�u)v = hB�p̂+ �u; viL2(�), cf. Section 2.2.

Theorem 4.8. Let Assumption 2.1 and Assumption 4.1.1 hold, and let

�u 2 Uad, �y = S(�u) 2 Yad, �� 2M(
) ful�ll the optimality system (4.1)-(4.4) from
Theorem 4.4. We de�ne the critical cone by C�u;�� := fv 2 L2(�): (4.6)-(4.8) holdg;

Z
�

(�u+B�p̂)v = 0;

Z



Z
I

zv(t; x)dtd�� = 0;

(4.6)

Z
I

zv(t; �)dt � 0 on fs
I
�y(t; �)dt = yag;

Z
I

zv(t; �)dt � 0 on fs
I
�y(t; �)dt = ybg;

(4.7)

v � 0; on f�u = ubg; v � 0; on f�u = uag;
(4.8)

where �p and p̂ are de�ned by (4.2) and (4.5), respectively, and zv = S0(�u)v. If

kvk2L2(�) +

Z
Q

((1� �00(�y)�r�yr�p)z2v � 2�0(�y)zv�rzvr�p)dxdt > 0;(4.9)
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holds for all v 2 C�u;�� n f0g, there are �; � > 0 such that the quadratic growth

condition j(u) � j(�u) + �
2ku � �uk2L2(�) is satis�ed for all u 2 Uad such that

ku� �ukL2(�) < � and ya(x) �
R
I
S(u)(t; x)dt � yb(x) for all x 2 
. In particular,

�u is an local solution of (OCP) w.r.t. the L2(�)-topology.

Proof. We apply Theorem 3.2 with U1 = Ls(�), U2 = L2(�), K = Uad,
Z = C(
), and C = fz 2 C(
): ya � z � yb on 
g. The properties for the reduced
functional j, j(u) = J(S(u); u), required in Assumption 3.1 have already been
checked in [4, Theorem 4.14]. Note that the average-in-time map A is linear and
continuous from both Lq(I; C(
)) andW 1;r(I;W�1;p)\Lr(I;W 1;p) ,! Lr(I; C(
))
into C(
) for any q; r � 1. Hence, extension and continuity properties for the
derivatives of g := A � S in Assumption 3.1.2 immediately follow from Propo-
sition 4.6. Hereby, observe that convergence of (uk)k � Uad to �u w.r.t. L2(�)
implies, due to L1(�)-boundedness of Uad, also convergence w.r.t. Ls(�) by the
Riesz-Thorin interpolation theorem. Therefore, application of Proposition 4.6 is
possible. �

Although (OCP) with averaged-in-time state-constraints is slightly easier than
(OCP) with pointwise in time and space state-constraints from an analytical point
of view, Theorem 4.8 illustrates the full strength of Theorem 3.2. To prove C2-
di�erentiability of the control-to-state map we need controls in Ls(�) with s � 1
as in Assumption 2.1, cf. [4], because already existence of solutions to (SE) relies
on such an assumption [41]. Hence, C2-di�erentiability, and even well-de�nedness,
of the reduced functional j is guaranteed on Ls(�), but not necessarily on L2(�).
However, we cannot hope for a coercivity or positivity condition like (4.9) with
the increments v coming from Ls(�). The latter condition can only hold for v
coming from L2(�), cf. [13,32,47]. For the same reason, a similar situation holds
for g := A � S. It is clear that g is well-de�ned and C2-di�erentiable on Ls(�).
The question whether g is even well-de�ned on L2(�) is not clear. Although the
problem necessarily requires to refer to two non-equivalent norms, a norm gap in
the formulation of Theorem 4.8 can be avoided. This is the main bene�t and
novelty of Theorem 3.2.

5. SSCs for pointwise state-constraints

In the previous section we relaxed the type of state-constraints while keep-
ing the regularity assumptions for the equation unchanged. Now we proceed the
other way round and strengthen the regularity assumptions and restrict ourselves
to purely timedependent controls. In return, we establish SSCs for (OCP) with
pointwise in time and space state-constraints as introduced in Section 2. We re-
place Assumption 2.1 by a slightly smoother setting that allows to use stronger
regularity results from [8]. Based on this we derive a result analogous to Propo-
sition 4.6 in the Lp-W 2;p-setting that �nally allows to apply Theorem 3.2 also in
case of pointwise in time and space state-constraints.

5.1. Regularity assumptions for the state equation. For brevity, we do not
exploit the results of [8] in their full generality, that allows, contrary to [4,41], e.g.
for unbounded nonlinearities and a semilinear term in the state equation. Instead,
we state the following regularity assumptions for domain, coe�cients, and initial
conditions that are those of [8] applied to the setting described in Assumption 2.1:
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Assumption 5.1. 1. 
 � Rd, d 2 f2; 3g is a bounded domain with C1;1-
boundary �, and homogeneous Dirichlet boundary conditions hold on the entire
boundary �.

2. Let Assumption 2.1.2 on � and � hold and assume in addition that � is
Lipschitz-continuous as map 
! Rd�d.

3. Choose p > d and s > 2 such that 1
s <

1
2 (1 �

d
p ). The set of admissible

controls is given by Uad := fu 2 L2s(I;Rm) : ua � u � ub on Ig with control-
bounds ua; ub 2 L

1(I;Rm), and for �xed control-functions bi 2 L
p, i = 1; :::;m we

de�ne B: L2s(I;Rm)! L2s(I; Lp); u 7!
Pm

i=1 uibi: The initial value y0 for the state

equation ful�lls y0 2 (Lp;W 2;p \W 1;p
D )1�1=s;s \ (W

�1;2p
D ;W

1;2p
D )1�1=(2s);2s \ C(
);

and the desired state has regularity yd 2 L
1(I; L2).

Unlike in [8] we have to restrict ourselves to purely timedependent controls as
introduced in [18]. The reason is the following, cf. also [18, Remark 2]: When
switching from controls in U1 = L2s(I;Rm) to controls in U2 = L2(I;Rm), only
time integrability decreases, but the spatial regularity of the right-hand-sides of
the PDEs is not a�ected. This turns out to be crucial for obtaining the required
regularity for the derivatives of the control-to-state map. From the applied point of
view, having only �nitely many pre-de�ned actuators to inuence a system might
also seem reasonable. However, note that Lp-regularity (unlike W

�1;p
D -regularity

in Example 2.2.3) of the �xed control-functions now excludes any possibility of
boundary control.

Remark 5.2. From [8, p. 609] we recall: C1;1-smoothness of �, combined with
homogeneous Dirichlet boundary conditions and Lipschitz-continuity of � implies
that �r � �r+ 1: W

1;q
D !W

�1;q
D is a topological isomorphism for any q 2 (1;1).

Consequently, Assumption 5.1 is indeed a tightened version of Assumption 2.1.

5.2. Improved regularity of the state. We start by recalling the following
regularity result from [8] that will be the cornerstone of our further analysis:

Theorem 5.3 ([8], Theorem 2.3). Let Assumptions 5.1.1 and 5.1.2 hold

and �x p; s 2 [2;1) such that 1
s + d

p < 2. Given v 2 L2s(I; Lp) and y0 2

(Lp;W 2;p \W 1;p
D )1�1=s;s \ (W

�1;2p
D ;W

1;2p
D )1�1=(2s);2s \C(
) there is a unique so-

lution y to equation (2.1) with regularity y 2W 1;s(I; Lp)\Ls(I;W 2;p\W 1;p
D ): In

particular, the control-to-state map S introduced in Section 2.2 is well de�ned

from L2s(I;Rm) to W 1;s(I; Lp) \ Ls(I;W 2;p \W 1;p
D ) under Assumption 5.1 .

Note that [8, Remark 2], addressing relaxation of the smoothness of � in case
of convex polygonal/polyhedral domains, does only apply to our case in dimension
d = 2: To have su�cient spatial regularity in the following corollary we require
p > d.

Corollary 5.4. Under Assumption 5.1 there are some �; � > 0 such that

W 1;s(I; Lp) \ Ls(I;W 2;p \W 1;p
D ) ,! C0;�(I; C1;�):

Proof. Choose 1
2 (1 +

d
p ) < � < 1� 1

s and set � = 1� 1
s � � > 0. Then it holds

W 1;s(I; Lp) \ Ls(I;W 2;p \ W 1;p
D ) ,! C0;�(I; (Lp;W 2;p)�;1) by standard Bochner-

Sobolev embedding, see e.g. [1]. Further, it is well-known that (Lp;W 2;p)�;1 ,!
[Lp;W 2;p]�. Since 
 is in particular a domain with Lipschitz boundary, there is
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a bounded linear extension operator Lp ! Lp(Rd) that restricts to a bounded
extension operator W 2;p ! W 2;p(Rd) [44]. Thus, a standard argument utilizing
the retraction-coretraction theorem ([46, Theorem 1.2.4], [3, Proposition I.2.3.2])
shows that it su�ces to prove [Lp(Rd);W 2;p(Rd)]� ,! C1;�(Rd). The latter follows
from [Lp(Rd);W 2;p(Rd)]� = H2�;p(Rd) [46, Theorem 4.3.2.2] and standard Sobolev
embeddings on Rd with � = 2� � d

p � 1 > 0 [46, Theorem 2.8.1]. �

5.3. Improved regularity for derivatives of the control-to-state map. We
provide an improved version of Lemma 2.4 under the strengthened regularity As-
sumption 5.1. The improved regularity of the state from Theorem 5.3 is the crucial
point, because we can show that the domain of �r � �(y(t))�r in Lp is indepen-
dent of t 2 I for y 2 C0;�(I; C1;�). Hence, it is possible to show that A(y) and
A(y)+A0(y) exhibit maximal parabolic regularity [1,2] on Lp-spaces, which �nally
allows to prove the desired regularity result analogous to Lemma 2.4 and propo-
sition 4.6. The approach is similar to [4] with the essential di�erence that the

weaker regularity y 2 W 1;s(I;W
1;p
D ) \ Ls(I;W 1;p

D ) for the states in [4, Section 3.2]

su�ces to show constant domains and maximal parabolic regularity on H
��;p
D for

certain � 2 (0; 1) close to 1, but not on Lp, cf. the proof of [4, Proposition 3.17].

However, an analysis carried out on H
��;p
D will not su�ce for the derivation of

SSCs for (OCP) in case of pointwise in time and space state-constraints, see Re-
mark 4.7. The following observation is rather trivial in our case. We state it due
to its importance for the following results.

Lemma 5.5. Under Assumptions 5.1.1 and 5.1.2 let � 2 W 1;1 with � �
�� > 0 on 
. Then it holds: 1. DomLp(�r � ��r+1) �= DomLp(�r � �r+1) =

W 2;p \W 1;p
D , i.e. �r � ��r+1 is a topological isomorphism W 2;p \W 1;p

D ! Lp.
2. The map � 7! �r � ��r is bounded linear as map W 1;1 ! L(W 2;p \

W
1;p
D ; Lp).

Similar results have been obtained in [28, Lemmas 6.5, 6.7, Corollary 6.8] if
(SE) is considered on certain Bessel-potential spaces instead of Lp.

Proof. 1. This follows from [24, Theorem 2.4.2.5] for instance.

2. It holds �r���r 2 L(W 2;p\W 1;p
D ; Lp) for any � 2W 1;1, with linear depen-

dence on �. A short computation shows k�r � ��r'kLp . k�kW 1;1k'kW 2;p\W 1;p

D
;

for any � 2W 1;1, ' 2W 2;p \W 1;p
D , which veri�es boundedness. �

The following lemma is a �rst step towards the analysis of the linearized state
equation on Lp, where linearization takes place at some y that exhibits the regu-
larity obtained in Theorem 5.3 for solutions of (SE). The linearized state equa-
tion is given by the parabolic PDE associated to the nonautonomous linear para-
bolic operator A(y) +A0(y). Regularity of the �rst summand of this operator, i.e.
A(y), is provided by the following lemma; the whole operator will be addressed in
Lemma 5.7.

Lemma 5.6. Let Assumptions 5.1.1 and 5.1.2 hold and �x y 2W 1;s(I; Lp)\

Ls(I;W 2;p\W 1;p
D ). The nonautonomous linear parabolic operator A(y) exhibits

maximal parabolic regularity on Lr(I; Lp), r 2 (1;1), i.e. the solution map

(w;w0) 7! z of the equation

@tz +A(y)z = w; z(0) = w0;
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is linear and bounded as a map Lr(I; Lp)�(Lp;W 2;p\W 1;p
D )1=r0;r !W 1;r(I; Lp)\

Lr(I;W 2;p \W 1;p
D ): Moreover, the corresponding operators norms are bounded

uniformly for y coming from a bounded set in W 1;s(I; Lp)\Ls(I;W 2;p \W 1;p
D ).

The proof relies on the same technique as in [4, Theorem 3.20]. Nevertheless,
the present situation is slightly easier than in [4], because the additional regularity
assumptions ensure that the domains of A(y(t)) in Lp stay independent of t.

Proof. We apply [4, Lemma D.1], see also [42, Corollary 14]. First, note that
Lp is an UMD space, see [3, Section III.4.4] for the de�nition. Uniform resolvent
estimates and uniform R-sectoriality for A(t) := �r��(y(t))�r on Lp have already
been established, see formulas (3.16) and Lemma 3.12 in [4]; note that uniformity
already holds for y's coming from a bounded set in C�(Q), which is a much weaker
assumption than in the present case. It remains to check the so-called Acquistapace-
Terreni condition on Lp. The latter was done in [4] only on the Bessel-potential

spaces H
��;p
D for appropriate � 2 (0; 1), but not on Lp. As in the proof of [4,

Proposition 3.18] we write with help of the resolvent calculus: (A(t)+1)R(z;A(t)+
1)[(A(t) + 1)�1 � (A(s) + 1)�1] = R(z;A(t) + 1)[A(t) � A(s)](A(s) + 1)�1: From
Lemma 5.5.2 it follows that kA(t)�A(s)kL(W 2;p\W 1;p

D
;Lp) � ck�(y)kC�(I;W 1;1)jt�sj

�

with c > 0 independent of y. Employing formula (3.16) from [4] there is � 2
(0; �=2) such that kR(z;A(t) + 1)kL(Lp) � cjzj�1 for all z 2 C n ��; t 2 I; with
�� = fz 2 C n f0g: jarg zj < �g, and �nally it follows again from Lemma 5.5 that
k(A(s)+1)�1kL(Lp;W 2;p\W 1;p

D
) � ck�(y)kL1(I;W 1;1) with a constant c independent of

y. Together, this shows the Acquistapace-Terreni condition, k(A(t)+1)R(z;A(t)+
1)[(A(t)+1)�1�(A(s)+1)�1]kL(Lp) � Cjt�sj�jzj�1 for all z 2 Cn��; t; s 2 I; with
the constant C > 0 depending on the C�(I;W 1;1)-norm of y. Therefore, C can be
chosen uniformly for y's coming from a bounded set in W 1;s(I; Lp) \ Ls(I;W 2;p \

W
1;p
D ) due to Corollary 5.4. �

Now, we consider maximal parabolic regularity for the linearized state equation.
This extends Lemma 2.4 (see also [4, Proposition 4.4], [8, Theorem 3.2]), where
maximal parabolic regularity on W�1;p has been dealt with.

Lemma 5.7. Let Assumptions 5.1.1 and 5.1.2 hold, and �x y 2W 1;s(I; Lp)\

Ls(I;W 2;p \W 1;p
D ). For any r 2 (1; s] and f 2 Lr(I; Lp), the linearized state

equation

@tw +A(y)w +A0(y)w = f; w(0) = 0;

has a unique solution w 2W r(I; Lp)\Lr(I;W 2;p\W 1;p
D ). The nonautonomous

operator A(y) + A0(y) has maximal parabolic regularity on Lr(I; Lp) for r 2
(1; s].

Proof. Maximal parabolic regularity of A(y) on Lr(I; Lp), r 2 (1;1), has been
shown in Lemma 5.6. Corollary 5.4 together with Lemma 5.5 implies continuity of
the map I ! L(W 2;p\W 1;p

D ; Lp); t 7! �r��(y(t))�r; from which we conclude that

each autonomous operator �r � �(y(t)�r 2 L(W 2;p \W 1;p
D ; Lp), t 2 I, has in fact

maximal parabolic regularity on Lp. This follows from [2, Proposition 7.1]. Regard-
ing the second summand, A0(y), we observe that the map I ! L(W 1;1; Lp); t 7!
( 7! �r��0(y(t)) �ry(t)) is Ls-integrable w.r.t. time: This follows from the con-

tinuity of the map W 1;1 ! L(W 2;p \W 1;p
D ; Lp); � 7! �r � ��r; see Lemma 5.5.2,
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together with �0(y) 2 L1(I;W 1;1), the continuity of the product onW 1;1�W 1;1,

and the fact that y 2 Ls(I;W 2;p \ W 1;p
D ). Hence, we have just shown A0(y) =

(t 7! ( 7! �r � �0(y) �ry)) 2 Ls(I;L(W 1;1; Lp)) ,! Ls(I;L((Lp;W 2;p)�;1; L
p))

with some 1 � 1=s > � > �̂ > 1
2 + d

2p . Hereby, we made use of the embedding

(Lp;W 2;p)�;1 ,! [Lp;W 2;p]�̂ ,!W 1;1, cf. the proof of Corollary 5.4. From [2, The-
orem 7.1] we conclude maximal parabolic regularity of A(y) + A0(y) on Lr(I; Lp)
for r 2 (1; s). Similar to the proof of [4, Proposition 4.4] we invoke [43, Corollary
3.4] to get maximal parabolic regularity on Ls(I; Lp). �

We point out that Lemma 5.7 and Theorem 5.3 do not allow immediately to
conclude di�erentiability of the solution map of (2.1) from Lr(I; Lp) toW 1;r(I; Lp)\

Lr(I;W 2;p \W 1;p
D ). Of course, for 1

r < 1 � d
2p , e.g. r = 2, there is an embedding

W 1;r(I; Lp) \ Lr(I;W 2;p \W 1;p
D ) ,! C(Q); which can be shown with a similar ar-

gument as for Corollary 5.4. Hence, the map F: W 1;r(I; Lp)\Lr(I;W 2;p\W 1;p
D )�

Lr(I; Lp)! Lr(I; Lp)� (Lp;W 2;p\W 1;p
D )1=r0;r; (y; v) 7! (@ty+A(y)�v; y(0)�y0);

is continuously Fr�echet di�erentiable. Further, for r 2 (1; s] the partial deriv-
ative @yF (y; v) is even continuously invertible, cf. Lemma 5.7. Nevertheless,
the fact that prevents us from application of the implicit function theorem is
that we would �rst require a well-de�ned solution map v 7! y(v) associated to
F (y; v) = 0, and we do not have such a map at hand: To obtain solutions to (2.1) in

W 1;s(I; Lp)\Ls(I;W 2;p\W 1;p
D ) we need right-hand-sides v 2 L2s(I; Lp) and not in

Ls(I; Lp), see Theorem 5.3: For v 2 Ls(I; Lp) we do not know whether there exists

some y 2W 1;s(I; Lp)\Ls(I;W 2;p\W 1;p
D ) such that F (y; v) = 0. On the other hand,

@yF (y; v) cannot be invertible from W 1;s(I; Lp)\Ls(I;W 2;p \W 1;p
D ) to L2s(I; Lp),

because invertibility of @yF (y; v) holds between W
1;r(I; Lp) \ Lr(I;W 2;p \W 1;p

D )
and Lr(I; Lp), r 2 (1; s], cf. Lemma 5.7.

Remark 5.8. Double time integrability on the right-hand-side of (2.1) in The-
orem 5.3 is due to the technique applied in the proof of [8, Theorem 2.3]. For a
short outline we refer to the proof of Lemma 5.10 below.

The following lemma is the �rst step towards an analogue to Proposition 4.6.1
under Assumption 5.1. Particularly, the regularity of the A00-term appearing in the
second derivative of the control-to-state map can be essentially improved in the
present case. Even in this highly regular setting A00(y)w2 is from Lr(I;W

�1;p
D ), i.e.

a distributional object in general, which illustrates the di�culty of this term.

Lemma 5.9. Given y 2W 1;s(I; Lp)\Ls(I;W 2;p\W 1;p
D ) and w 2W 1;2(I; Lp)\

L2(I;W 2;p\W 1;p
D ) it holds kA00(y)w2kLr(I;W�1;p

D
)� cy;rkwk

2
W 1;2(I;Lp)\L2(I;W 2;p\W 1;p

D
)

for r 2 (1;1). The constant cy;r can be chosen uniformly w.r.t. y coming from

a bounded set in L1(I;W 1;p).

Proof. This follows from the de�nition of A00 and H�olders inequality. We have
to make use of the embeddings W 1;2(I; Lp) \ L2(I;W 2;p \ W 1;p

D ) ,! C(Q) and

W 1;2(I; Lp) \ L2(I;W 2;p \W 1;p
D ) ,! Lq(I;W 1;p) for every q 2 (1;1), that can be

shown similarly as in Corollary 5.4. �

The following lemma is the last auxiliary result before we will be able to verify
the assumptions of Theorem 3.2 in the proposition thereafter.
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Lemma 5.10. The solution map of the state equation (2.1) is continuous

from L2s(I; Lp) to W 1;s(I; Lp) \ Ls(I;W 2;p \W 1;p
D ).

This result is not explicitly contained in [8]. There, di�erentiability and, conse-

quently, continuity of the control-to-state map have been addressed in the W
�1;p
D -

setting, cf. [8, Theorem 3.2]. As outlined after Lemma 5.7, arguing via the implicit
function theorem is not possible here. To prove continuous dependence we go
through the steps in [8] tracking continuous dependence of the quantities under
consideration.

Proof. It is well known that L2s(I; Lp) ,! L2s(I;W
�1;2p
D ) and that solution

map of (2.1) is continuous (in fact even C2) from v 2 L2s(I;W
�1;2p
D ) to y =

y(v) 2 W 1;2s(I;W�1;2p) \ L2s(I;W
1;2p
D ): Existence is clear by [8, Theorem 2.1]

and di�erentiability follows using the implicit function theorem similarly as in the
proof of [8, Theorem 3.2]: The required invertibility property is assured by maximal

parabolic regularity of A(y)+A0(y) on L2s(I;W
�1;2p
D ), which is proven similarly as

in the proof of [4, Proposition 4.4] with s and p replaced by 2s and 2p, respectively,
cf. also the similar proof of Lemma 5.7 in the Lp-setting. Next, following the main
idea in the proof of [8, Theorem 2.3] we rewrite equation (2.1) as @tz� �r��rz =

v +r� � � with y = y(v) 2 W 1;2s(I;W�1;2p) \ L2s(I;W
1;2p
D ) being the solution to

(2.1) and � = �(y(v)). It is clear that the right-hand-side measured in Ls(I; Lp)
depends continuously on � in L2s(I;W 1;2p) and y in L2s(I;W 1;2p), respectively, i.e.
on v in L2s(I;W�1;2p) by the above consideration. Further, due to the embedding

W 1;2s(I;W�1;2p)\L2s(I;W
1;2p
D ) ,! C(Q); also � = �(y(v)) depends continuously in

C(Q) on v. Finally, the map C(Q)! L(W 1;s(I; Lp)\Ls(I;W 2;p\W 1;p
D ); Ls(I; Lp)),

� 7! @t��r��r; is continuous. Therefore, using [8, Lemma 2.4] the solution z = y

depends continuously on � in C(Q) and y in W 1;2s(I;W�1;2p)\L2s(I;W
1;2p
D ), and

thus on v in L2s(I; Lp). �

The following proposition is our analogon to Proposition 4.6 for the present
section. It provides the main steps in checking Assumption 3.1 for the setting
described by Assumption 5.1, and therefore forms the main part of the proof of
our second main result, SSCs for (OCP) with pointwise in time and space state-
constraints, below.

Proposition 5.11. Under Assumption 5.1 the control-to-state map is twice

continuously Fr�echet di�erentiable as map Ls(I;Rm)!W 1;s(I;W
�1;p
D )\Ls(I;W 1;p

D )
and the following continuation and continuity properties hold for the respective

derivatives:

1. For any u 2 L2s(I;Rm), S0(u) and S00(u) extend to continuous linear

and bilinear forms on L2(I;Rm) with values in C(Q), respectively.
2. Let (uk)k � L2s(I;Rm) converge to �u strongly in L2s(I;Rm) and (vk)k �

L2(I;Rm) converge weakly in L2(I;Rm) to some v. Then S0(uk)vk * S0(�u)vk
and S00(uk)v

2
k * S00(�u)v2 weakly in C(Q).

The proof has similar structure as the one of Proposition 4.6.

Proof. Di�erentiability of the control-to-state map and the formulas for the
respective derivatives follow from Lemma 2.4. Note that Assumption 5.1 indeed
su�ces to invoke this result, cf. Remark 5.2. The extension property for the �rst
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derivative follows from Lemma 5.7 with r = 2 and the �rst embedding in the
proof of Lemma 5.9. For the continuation of the second derivative, combine the
continuation property for S0(u) with Lemmas 5.7 and 5.9 and the embedding from
[4, Proposition 3.3]. It remains to check the continuity properties: As an auxiliary
result, we �rst show that S0(uk)! S0(�u) in L(Lr(I;Rm);W 1;r(I; Lp)\Lr(I;W 2;p\

W
1;p
D )) for any r 2 (1;1). To do so, it su�ces, by continuity of operator inversion,

to show convergence A(yk)+A
0(yk)! A(�y)+A0(�y) in L(W 1;r(I; Lp)\Lr(I;W 2;p\

W
1;p
D ); Lr(I; Lp)). This can be done using Lemma 5.10, H�olders inequality and

W 1;r(I; Lp) \ Lr(I;W 2;p \W 1;p
D ) ,! Lq(I;W 1;1) for some q such that 1

q +
1
s �

1
r ,

which can be shown by the same technique as for Corollary 5.4. Having at hand this
auxiliary result, the continuity property for the �rst derivative follows similarly as in
the proof of Proposition 4.6. For the second derivative we also argue similarly as in
the proof of Proposition 4.6: Due to the embedding from [4, Proposition 3.3] for r >
2p
p�d it su�ces to show that ~S0(Buk)! ~S0(B�u) in L(Lr(I;W�1;p

D );W 1;r(I;W
�1;p
D )\

Lr(I;W
1;p
D )), and A00(yk)[wk]

2 * A00(y)[w]2 weakly in Lr(I;W
�1;p
D ). We leave the

details to the reader. �

5.4. SSCs. We now apply Theorem 3.2 to (OCP) under Assumptions 2.5
and 5.1 and formulate SSCs for (OCP) with pointwise in time and space state-
constraint. Compared to Theorem 4.8 we crucially rely on the improved regularity
results due to the strengthened regularity Assumption 5.1.

Theorem 5.12. Let Assumption 5.1 and Assumption 2.5.1 hold, and let

�u 2 L2s(I;Rm), �y 2W 1;s(I; Lp)\Ls(I;W 2;p\W 1;p
D )\Yad and �� 2M(Q) ful�ll the

FONs (2.5)-(2.8) from Theorem 2.8. We de�ne the cone of critical directions

by C�u;�� := fv 2 L2(I;Rm): (5.1)� (5.3) holdg,Z
I

(�u(t) +B�p̂(t))T v(t)dt = 0;

Z
Q

zvd�� = 0(5.1)

zv(t; x) � 0; on f�y = ybg; zv(t; x) � 0; on f�y = yag;(5.2)

vi(t) � 0; if �ui(t) = ub;i(t); vi(t) � 0; if �ui(t) = ua;i(t);(5.3)

where p̂ is de�ned by (4.5) and zv = S0(�u)v. If

(5.4) kvk2L2(I;Rm) +

Z
Q

((1 � �00(�y)�r�yr�p)z2v � 2�0(�y)zv�rzvr�p)dxdt > 0;

holds for all v 2 C�u;�� n f0g, then �u is a L2(I;Rm)-local minimizer for (OCP),
and there are �; � > 0 such that the quadratic growth condition j(u) � j(�u) +
�
2ku � �uk2L2(I;Rm) holds for all u 2 Uad that satisfy ku � �ukL2(I;Rm) < � and

S(u) 2 Yad.

Proof. We apply Theorem 3.2 with U1 = Ls(I;Rm), U2 = L2(I;Rm), Z =
C(Q), K = Uad, C = Yad. As stated in the proof of Theorem 4.8, the assumptions
on the reduced functional j from Assumption 3.1.1 have been veri�ed in [4] and
Assumption 3.1.2 for g = S is ful�lled due to Proposition 5.11. The crucial point
is as in the proof of Theorem 4.8 to observe that due to L1-boundedness of Uad

L2(I;Rm)- implies L2s(I;Rm)- and Ls(I;Rm)-convergence, respectively. �

The problem formulation requires two di�erent norms: Reduced functional
and control-to-state map are well-de�ned and C2-Fr�echet on Ls(I;Rm) with some



24 F.HOPPE, I. NEITZEL

s � 2, but not necessarily on L2(I;Rm). The positivity condition (5.4) might
hold for directions v from L2(I;Rm), but cannot be expected to hold for directions
v 2 Ls(I;Rm). However, it is possible to state the quadratic growth condition in
Theorem 5.12 only referring to the L2(I;Rm)-norm, i.e. similarly to Theorem 4.8
and Example 3.3 occurrence of a two-norm gap can be avoided.

6. The case without control-constraints

In the terminology of Assumptions 2.1 and 5.1 we now consider the case ua �
�1 or ub � +1.

6.1. Existence of optimal controls. The argument in the proof of Theorem 2.6
relies on the possibility to extract a Ls(�)-bounded subsequence of the in�mizing
sequence of controls, see the proof of [41, Theorem 6.3]. Therefore, we require
either boundedness of Uad in Ls(�), or boundedness of the in�mizing sequence has
to be enforced by the choice of the objective functional. The latter can be modi�ed
by an Ls(�)-Tikhonov term as follows

J(y; u) =
1

2
ky � ydk

2
L2(I�
) +



2
kuk2L2(�) +

s
s
kuksLs(�);(6.1)

with some s > 0. Now, the techniques used in the proof of Theorem 2.6 apply
again, and existence of a globally optimal control can be shown.

6.2. FONs. Theorems 2.8 and 4.4 do not rely on the existence of optimal
controls; they only characterize locally optimal controls, if they exist. Hence, these
results stay valid for unilateral or no control-constraints. In the case Uad = Ls(�)
the variational inequalities (2.8) and (4.4), respectively, simplify to the equality
B��p + �u = 0. Moreover, the reduced gradient for the modi�ed functional (6.1)
is given by rj(�u) = B��p + �u + sj�uj

s�1; and (2.8) and (4.4) have to be adapted
accordingly.

6.3. SSCs. The veri�cation of Assumption 3.1 makes use of L1-boundedness
of the admissible set Uad, cf. the proofs of Propositions 4.6 and 5.11 and [4, The-
orem 4.14]. Hence, we cannot apply Theorem 3.2. However, following Remark 3.4
it is still possible to obtain SSCs with norm gap: The quadratic growth condition
will only hold on an Ls(�)- and L2s(I;Rm)-neighborhood of �u, respectively. Fur-
thermore, when using the modi�ed functional (6.1) the choice  = 0 is not possible
when aiming at SSCs with the technique of the present paper, even at such with
two-norm gap: The condition  > 0 is crucial for verifying Assumption 3.1.1biii for
the reduced functional; see formula (30) in [18], or formula (5.3) in [12], respec-
tively.

Appendix A. Applicability of the results of [41]

In the paper we used results from [41]. We now comment on their applicability
in our setting, applying the notation of [41]. The results of [41, Sections 5 and 6]
refer to the PDE

@tw �r � �(w)�rw + w = F(t; w(t)); w(T0) = w0;(A.1)

which di�ers from (SE) by the additional identity-term on the left-hand-side and
the nonlinearity on the right-hand-side. The special case of right-hand-sides in-
dependent of w, as in the present paper, is contained in this setting. Existence
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and regularity of solutions [41, Theorem 5.3] and weak-to-strong continuity of the
solution map [41, Theorem 6.3] have alreadby been applied to (SE) in [4]. We now
give the details concerning the required adaptations. If �D has nonzero measure,
omitting the identity-term does not require changes in the arguments, cf. [41, Re-
mark 2.12]. In the following we outline the changes needed to deal with the general
case.

A.1. Uniform Hölder estimates. The crucial idea is to obtain uniform H�older
estimates for nonautonomous linear parabolic PDEs without identity-term from
those with identity-term by application of a well-known scaling technique, see [17,
Chapter XVIII.§3.1.4, Remark 2] for instance: Observe that u is a solution to

@tu(t)�r � �(t; �)ru(t) = f(t); u(T0) = u0;

if and only if ~u(t; �) := e�tu(t; �) is a solution to

@t~u(t)�r � �(t; �)r~u(t) + ~u(t) = e�tf(t); ~u(T0) = e�T0u0:

Since the results of [41] apply to ~u and scaling back u(t; �) = et~u(t; �) does not
a�ect H�older-continuity, both [41, Proposition 2.10] and [41, Theorem 2.13] also
hold true without the identity-term, with adapted constants, of course.

A.2. Existence of solutions to (SE). We check that the proof of [41, The-
orem 5.3] works without the identity-term. First, we ensure that the auxiliary
results used in the proof stay valid: The proof of [41, Lemma 5.4] does not
need modi�cation. In part (i) of [41, Lemma 5.5] we have to argue on maxi-
mal parabolic regularity of �r � '�r instead of �r � '�r + 1. To do so, note
that �r � '�r = (�r � '�r + 1) � 1 inherits maximal parabolic regularity from

�r � '�r + 1 due to �1 2 L1((T0; T1);L(W
1;q
D ;W

1;q
D ))) by [2, Theorem 7.1]. It

is clear that the continuous dependence in part (ii) stays true. Then, the proof of
[41, Theorem 5.3] can easily be adapted: Equation (5.7) now reads

@tv �r � �(u+  )�rv = F(u+  )� @tu+r�(u+  )�ru; v(T0) = 0:

(A.2)

The technique of the proof of [41, Theorem 5.3] does not need further adaptation.
The �xed-point argument from [41] continues to be applicable to (A.2), since uni-
form H�older-estimates for the respective nonautonomous linear parabolic operators
are also valid without the identity-term. For the same reason also the uniform es-
timates from [41, Corollaries 5.7 and 5.8] stay true, again with adapted constants.

A.3. Weak-to-strong continuity of the solution map. Weak-to-strong conti-
nuity of the solution map of (A.1) is shown in [41, Theorem 6.3] based on the
results already discussed in Appendices A.1 and A.2. No further adaptations are
needed.
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