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Abstract. We prove a-posteriori error-estimates for reduced-order modeling of
quasilinear parabolic PDEs with non-monotone nonlinearity. We consider the so-
lution of a semi-discrete in space equation as reference, and therefore incorporate
reduced basis-, empirical interpolation-, and time-discretization-errors in our con-
sideration. Numerical experiments illustrate our results.

1. Introduction

In the present paper we are concerned with a-posteriori error estimation for
model order reduction applied to a semi-discrete in space quasilinear parabolic
partial di�erential equation (PDE) with non-monotone nonlinearity. The PDE
appears for instance as state equation in the optimal control problems from [7,26],
and is used in the modeling of heat conduction, when the thermal conductivity of
the material under consideration is temperature dependend, cf. e.g. [35,36,42].

The numerical treatment of evolution equations and related problems is chal-
lenging. For instance, the discretization of associated optimal control problems
leads to large-scale optimization problems that are highly expensive to solve. This is
especially true for nonlinear equations. Therefore, model order reduction-techniques
(MOR) play an important role in this context. Their aim is to replace the high-
dimensional original model by a suitable model with less degrees of freedom, the so-
called reduced-order model. A prominent method of MOR for parabolic PDEs is the
so-called Proper Orthogonal Decomposition (POD) method, [47]. This approach
uses so-called snapshots of the dynamical system to construct a low-dimensional
subspace of e.g. a high-dimensional �nite-element space. More generally speak-
ing, projection of a high-dimensional dynamical or parametric system onto smaller
dimensional spaces leads to so-called reduced basis methods (RB), see e.g. [23].
These subspaces need to be in some sense capable of expressing the original tra-
jectory of the system su�ciently well. The question of estimating the model order
reduction error arises naturally and has been subject to intensive research. We
refer e.g. to [38] and the references therein for RB-methods in PDE-constrained
optimization in general, and to [39] or the survey [21] for POD in particular.

Since there is a huge amount of literature about POD/RB-MOR, not just for
uncontrolled equations but even in the context of PDE-constrained optimization,
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we have to restrict ourselves to an incomplete literature overview. POD-error-
estimates have been obtained in the a-priori regime for linear parabolic equations in
[30], and for certain nonlinear equations e.g. in [10,31,43]. For recently obtained
RB-a-posteriori error-estimates for quasilinear equations with monotone nonlin-
earity related to magneto(quasi)statics, both elliptic, and parabolic, we refer to
[24,25]. For a general nonlinear parabolic PDE including a-posteriori error estima-
tion on the time-discrete level we exemplarily cite [13], and refer to its introduction
for an overview over further literature. Moreover, let us mention some results re-
lated to optimal control: A-posteriori POD-errors for linear-quadratic optimal con-
trol problems have been derived in [46]. The technique has been extended to non-
linear problems in [29] and problems with mixed control-state constraints in [20].
POD-a-posteriori error-estimates for an optimal control problem with semilinear
state equation with monotone nonlinearity has been discussed in [39]. Appropriate
coupling between numerical optimization and MOR is an active area of research,
see e.g. [18]. For approaches based on a-posteriori error estimation and trust-
region type-algorithms, respectively, we refer to [5,41], and in particular [38,39].
A di�erent method, so-called optimality system POD, has been proposed in [32].
A related aspect, the interplay between POD and discretization, is under consider-
ation e.g. in [15{17]. Balancing of discretization- and POD-errors for an optimal
control problem is addressed in [19]. Finally, we exemplarily cite [1] and [28] for
RB/POD-MOR applied to robust and multiobjective optimization, respectively.

For quasilinear parabolic PDEs or related optimal control problems, even the
analysis of the full-order model is less complete. We mention [22,37] for the anal-
ysis of the equation itself based on the functional analytic tool of nonautonomous
maximal parabolic regularity [4], and refer to [7,8] for �rst- and second-order opti-
mality conditions of the respective optimal control problems. For additional state
constraints we refer to [27]. A quasilinear version of the so-called thermistor prob-
lem has been addressed in [35, 36], and convergence of the SQP method applied
to the model problem from [7] has been proven in [26]. For earlier literature on
quasilinear parabolic optimal control problems, and optimal control of quasilinear
elliptic PDEs with refer to the introductions of [7,8]. Finite element discretization
error-estimates for the state equation from [8] are obtained in [9]. Having in mind
a coupling of numerical optimization and MOR �a la [38,39] as a long-term goal,
we start in the present paper with deriving a-posteriori reduced basis errors for the
corresponding state equation. Herein, the presence of a non-monotone nonlinearity
is the main di�erence to earlier publications concerned with RB-a-posteriori error-
estimates for nonlinear PDEs [24,25,39], and also poses the main di�culty in our
analysis. Moreover, compared to [13,24,38] we include time-discretization errors in
our estimates which prevents the choice of unnecessarily accurate reduced-models
in practice. Nevertheless, our reference solution is semi-discrete (in space), i.e. we
�x a spatial discretization and do not address errors arising from this.

The paper is organized as follows: We start by introducing the model prob-
lem and the underlying assumptions in Section 2. Further, we provide a short
overview over the results obtained on this equation so far, and introduce its semi-
discretization (in space), and the reduced-order counterpart thereof. Moreover, we
provide a sketchy outlook how the results subsequently obtained might be applied
in the context of PDE-constrained optimization. In Section 3 we prove RB-a-
posteriori error-estimates for a reduced-order trajectory that is continuous-in-time
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and piecewise C1-in-time. Depending on how much regularity of the semi-discrete
(in space) solution we are willing to exploit, we present two di�erent approaches to
obtain a-posteriori error-estimates. In case that hyperreduction of the nonlinearity
is done by empirical interpolation (EIM) we provide estimates that also include the
additional EIM-error in Section 4. Finally, we illustrate our results by numerical
experiments in Section 5.

Notation. Throughout the paper we follow the conventions of [7] and use stan-
dard notation for (Bochner-)Lebesgue, (Bochner-)Sobolev-, and H�older-spaces. By
subscript D we denote incorporation of certain homogeneous Dirichlet boundary
conditions. If the underlying spatial domain becomes clear from the context we
will omit it, i.e. we write H1

D instead of H1
D(
) for instance.

2. Model Problem, Assumptions, and RB-MOR

In this section we �rst introduce the continuous model equation with non-
monotone nonlinearity, and recall some regularity results under appropriate as-
sumptions. Second, we state the semi-discrete (in space) version and its RB-
reduction. Finally, we briey explain how the results obtained in this paper might
be applied to an optimal control problem associated to the model equation.

2.1. Model Problem, Assumptions, and Regularity Results. Let us start with
de�ning the setting for the following quasilinear parabolic PDE:

@tu+A(u)u = f on I � 
;

u(0) = u0 on 
;

)
(Eq)

with f 2 Ls(I;W�1;p
D ) and u0 2 (W

1;p
D ;W

�1;p
D )1=s0;s. The nonlinearity A is de�ned

by

hA(u)'; iH�1
D
;H1

D
:=

Z



�(u)�r'r dxdt; ';  2 L2(I;H1
D);

whenever u: I � 
! R is measurable.
Before going into the detailed assumptions, we would like to comment briey

on the non-monotone structure of the nonlinearity in (Eq). The main di�culty as
well as the main novelty of this paper arise from this fact. Recall that a nonlinear
operator N : X ! X� on a Banach space X is called monotone if

hN (x)�N (y); x� yiX�;X � 0 8x; y 2 X;

and strongly monotone if there exists a constant c > 0 such that

hN (x)�N (y); x� yiX�;X � ckx� yk2X 8x; y 2 X;

cf. e.g. [40,48] for this notion and its application in the theory of nonlinear PDEs.
It has turned out that exploitation of strong monotonicity of the nonlinear terms
is also an important step in the derivation of RB-a-posteriori error-estimates for
semilinear parabolic [39], quasilinear elliptic [25], and quasilinear parabolic [24]
PDEs, respectively. Note that the quasilinear nonlinearities in [24, 25] refer to
problems from magneto(quasi)statics and depend on the gradient of the solution.

The nonlinear operator H1
D ! H�1

D under consideration in the present paper,
however, is given by the map u 7! A(u)u, and hence it depends on the solution
and not on its gradient. The counterexample [14, Example 8.18] shows that this
essentially changes the structure of the nonlinearity: It cannot be expected to be
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monotone, and therefore it is speci�cally di�erent to those considered in [24,25,39].
In fact, the main di�culty in the derivation of RB-a-posteriori error-estimates will
be to �nd a workaround for the missing strong monotonicity of our nonlinearity.

For the rest of this paper, we rely on the following minimal assumptions:

Assumption 2.1. (1) 
 � Rd, d 2 f1; 2; 3g, is a bounded domain with
boundary @
. �N � @
 is relatively open and denotes the Neumann
boundary part, whereas �D = @
 n �N is the part of the boundary
equipped with homogeneous Dirichlet conditions. By subscript D we
denote that a space of functions on 
 incorporates such homogeneous
Dirichlet boundary conditions on �D.

(2) For some T > 0 we de�ne the time interval I = [0; T ].
(3) The function �: R ! R is di�erentiable with bounded derivative. Let

�: 
 ! Rd�d, � = �T , be measurable, uniformly bounded, and coercive
in the following sense:

0 < �� := inf
x2


inf
z2Rdnf0g

zT�(x)z

zT z
; �� := sup

x2

sup

1�i;j�d
j�i;j(x)j <1

We assume a coercivity condition 0 < �� � � � �� for � as well. With this
we de�ne as above

hA(u)'; iL2(I;W 1;2

D
) :=

Z
I

Z



�(u)�r'r dxdt; ';  2 L2(I;W 1;2
D );

whenever u is a measurable function on 
.

Since we restrict ourselves to semi-discrete (in space) solutions in the present
paper, these assumptions su�ce for our purpose. We refer to the introduction of
Subsection 3.2, where we point out that the regularity assumptions on the semi-
discrete reference solution will automatically be ensured by space-discretization.

The discussion of (Eq) on the continuous in space and time level, however,
would require additional assumptions that we omit for the reason of clarity. We
only recall two regularity results from the literature that might be seen as moti-
vation for exploiting the respective regularity of the semi-discrete in space solu-
tion lateron: A detailed analysis of the equation on W�1;p-spaces can be found in
[37, section 5], and regularity on the slightly more regular Bessel potential-spaces

H��;p has been addressed in [7, section 3.2]. In particular, C�(I;W
1;p
D )-regularity

of the solution with some � > 0 and p 2 (d; 4) is obtained under fairly general
regularity assumptions that admit certain constellations of non-smooth domains
and coe�cients, mixed boundary conditions, and distributional right-hand sides f .
An equation similar to the one in the present paper, but in a slightly more regular
setting, has been considered in [8, Theorem 2.3]. In particular, C1;1-smooth do-
mains and coe�cients, homogeneous Dirichlet boundary conditions, and integrable
right-hand sides are required. In return the authors discuss a possibly unbounded
nonlinearity, include a semilinear term, and obtain W 2-regularity results that en-
able the derivation of �nite element error-estimates [9]. Applying their setting to
(Eq) yields C0;�(I;W 1;1)-regularity of the solutions with some � > 0, cf. also
[27, Corollary 5.4].

2.2. Semi-discretization in space and RB-MOR. We now introduce the semi-
discrete (in space) counterpart of (Eq). Its solution will serve as the so-called
truth-solution, i.e. the reference solution to which the a-posteriori error-estimates
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will refer to. In particular, note that this means that we do not address spatial
discretization errors in this paper. Moreover, we also introduce the RB-reduced
counterpart of the semi-discrete (in space) equation.

Let Vh be a H1
D-conforming �nite element space on 
 and Ih: H

1
D ! Vh be an

appropriate interpolation operator. We may introduce the semi-discrete (in space)
counterpart of (Eq) as follows: Find uh 2W

1;2(I; V �
h ) \ L

2(I; Vh) such that

h@tuh(t); 'hiH�1
D
;H1

D
+ hA(uh(t))uh(t); 'hiH�1

D
;H1

D
= hf(t); 'hiH�1

D
;H1

D

8t 2 I; 'h 2 Vh;

uh(0) = Ihu0:

9>=
>;(Eqh)

Due to �nite-dimensionality of Vh, (Eqh) results in a system of ordinary di�erential
equations (ODEs) for the coe�cients of uh w.r.t. some basis of Vh. This allows to
discuss existence of solutions to (Eqh). Hereby, we restrict ourselves to piecewise
continuous (w.r.t. time) right-hand sides for simplicity. With regard to possible
applications in PDE-constrained optimization, where f will be given by appropriate
space- and time-discretization of a control function, this is not a severe restriction
at all.

Proposition 2.2. Assume that Vh is a subspace of C(
) and that the right-

hand side ful�lls f 2 Cpcw([0; T ]; H
�1
D ). Then, there exists a unique solution of

(Eqh) on the whole time interval [0; T ] with regularity

uh 2 C(I; Vh) \ C
1
pcw(I; Vh):

Here and in the following we denote by subscript \pcw" that the stated regu-
larity holds piecewise w.r.t. a partition of the interval I. For the rest of the paper
we will refer to uh as the semi-discrete (in space) solution to (Eq), or, shorter, the
truth-solution.

Proof. It su�ces to argue for f 2 C(I;H�1
D ). For the case of piecewise con-

tinuous f we argue similarly by glueing together the solutions obtained on each
subinterval on which f is continuous. Let ('i)i=1;:::;Nh

, Nh = dimVh, be a basis

for Vh. Writing uh(t) =
PNh

i=1 xi(t)'i, the coe�cient vector x(t) 2 RNh ful�lls

M@tx(t) +A(x(t))x(t) = f(t); x(0) = x0;(1)

with

M := (h'i; 'jiL2)i;j ;

A(z) :=

 Z



�

 
NhX
n=1

zn'n

!
�r'ir'jdx

!
i;j

;

f(t) :=
�
hf(t); 'iiH�1

D
;H1

D

�
i
;

and x0 being the coe�cient vector of Ihu0. Since the basis functions are continuous
and due to Lipschitz-continuity of �, it is clear that A(�) is Lipschitz-continuous as
map RNh ! RNh�Nh . Further, since f was assumed to be continuous with respect
to time, also f is continuous with respect to time. Now, the Picard-Lindel�of Theo-
rem implies that there exists a unique C1-solution x: [0; T ]! RNh of (1). Hereby,
global-in-time existence is ensured by uniform boundedness of kA(�)kRNh�Nh , that
follows from boundedness of �, and Gronwall's Lemma. � �
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Note that the embedding Vh ,! C(
) is crucial in the previous argument:
It ensures Lipschitz continuity of A(�) and therefore existence of a solution to
(1) via Picard-Lindel�of. If Vh is a classical Lagrange �nite element space on a
polygonal (polyhedral) domain 
 equipped with a triangular (tetrahedral) mesh,
this assumption is obviously ful�lled. However, we would like to point out that
except for the assumptions from Proposition 2.2 we do not rely on further details
of spatial discretization. In general, Vh will have a rather large dimension which
makes the numerical solution of a time-discretized counterpart of (Eqh) expensive.
This is in particular a problem in so-called many-query scenarios, i.e. in a context
that requires to solve (Eq) for many di�erent right-hand sides f . A possible way
out of this problem is the so-called reduced basis-approach: The dynamical system
of equation (Eqh) is projected onto a smaller subspace of Vh that hopefully allows
to express the characteristics of the system. In other words: We replace the �nite
element space Vh by a much smaller n-dimensional subspace V

n
h � Vh that is related

to the physical properties of the system. Such a reduced space might be obtained by
the well-known POD approach [30,47] for instance. Although our arguments do not
rely on the particular choice of V nh and therefore also cover general RB-methods,
we clearly have in mind V nh 's obtained by POD and also restrict our numerical
experiments in Section 5 to this case. Having at hand a reduced ansatz-space
V nh � Vh and a suitable projection Pn: Vh ! V nh , we introduce the reduced-order
counterpart of (Eqh) as follows: Find u

n
h 2W

1;2(I; (V nh )
�) \ L2(I; V nh ) such that

h@tu
n
h(t); '

n
hiH�1

D
;H1

D
+ hA(unh(t))u

n
h(t); '

n
hiH�1

D
;H1

D
= hf(t); 'nhiH�1

D
;H1

D

8t 2 I; 'nh 2 V
n
h ;

unh(0) = PnIhu0:

9>=
>;

(Eqh-RBn)

A reader familiar with ROM-techniques may already have noticed that the
nonlinear term in (1) does not allow for e�cient evaluation within the reduced-
order model. We can overcome this issue by so-called hyperreduction techniques,
e.g. the empirical interpolation method (EIM), which will be addressed in Section
4.

2.3. Outlook towards Optimal Control. In [7, Example 2.5] and [26] the fol-
lowing optimal control problem governed by (Eq) has been addressed:

min
u;q

J(u; q) :=
1

2
ku� udk

2
L2(I�
) +



2
kqk2L2(I;Rk)

s.t. q 2 Qad :=
�
q 2 L2(I;Rk): qa � q � qb a.e. on I

	
;

and (Eq) with right-hand side f =

kX
i=1

qibi:

9>>>>>>=
>>>>>>;

(OCP)

Hereby, ud 2 L
2(I � 
) denotes the desired state,  > 0 is a Tikhonov-parameter,

bi 2 H
��;p
D � H1

D, i = 1; :::; k, are some �xed spatial control functions, and qa; qb 2
L1(I;Rk) de�ne box-constraints for the control. Fixing a space-discretization for
(Eq) as described earlier in this section results in a semi-discrete (in space) coun-
terpart (OCPh) of (OCP), which we may consider again as reference object. In
numerical algorithms for the solution of (OCPh), we may have to evaluate the semi-
discrete reduced functional j(q) := J(uh(q); q) where uh(q) denotes the solution of
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(Eqh) associated with several control functions q. Since repeated evaluation of jh
is costly, RB-MOR can be applied to (Eqh). Therefore, and due to additional time-
discretization, we only have the possibility to compute an approximate solution
u
n;m
h = u

n;m
h (q) instead of uh(q). A short computation shows that the resulting

error in the reduced functional can be estimated as follows:

jJ(un;mh ; q)�J(uh; q)j �

�
1

2
kun;mh � uhkL2(I;L2) + kun;mh � udkL2(I;L2)

�
kun;mh �uhkL2(I;L2):

Consequently, we immediately obtain an a-posteriori error for the reduced func-
tional of (OCPh) if we have a L2(I; L2)-estimate for solutions of (Eqh) at hand.
This may be regarded as motivation for the results in the present paper. Note that
the above estimate for the functional error di�ers from the estimates obtained in
[38, Theorems 4 and 9] because we do not utilize adjoint information. Deriving
a-posteriori reduced modeling errors for the adjoint equation of (OCPh), and con-
sequently for the gradient of the reduced functional, is beyond the scope of the
present paper. We refer to [38, 39] for such estimates in case of di�erent model
problems.

3. A-posteriori RB-error-estimates

In this section we state and prove our �rst main results: A-posteriori error-
estimates for (Eqh) including both reduced-order and time-discretization errors;
the technique of the proofs requires us to restrict ourselves to continuous-in-time
trajectories. Moreover, for the reason of clarity we exclude hyperreduction for the
nonlinearity at this point, and address this issue in the following section.

We roughly follow the ansatz of [39], where a semilinear equation with mono-
tone nonlinearity has been discussed. To overcome the di�culties arising from the
fact that our nonlinearity is not monotone we present two di�erent approaches: The
�rst approach relies on exploiting L1(I;W 1;1)-regularity of the truth-solution uh
and allows to obtain explicit estimates of \classical" structure in terms of the error
in the initial condition and the V �

h -residual of the discrete solution under consider-
ation. As a semi-discrete in space solution, uh obviously exhibits the required regu-
larity for any �xed (spatial) discretization level. However, since the error-estimates
will depend on the value of the L1(I;W 1;1)-norm of uh it is desirable to have uni-
form bounds for this norm for all su�ciently �ne spatial discretization levels. We
believe that we can only expect such a uniform bound if the continuous in space
and time solution of (Eq) exhibits L1(I;W 1;1)-regularity, which is guaranteed
in the setting of [8]. However, in the less regular setting of [7] we cannot expect
such a result. Therefore, the second approach is motivated by the intention to
exploit less regularity of the truth-solution, more precisely: L1(I;W 1;p)-regularity
for some p > d. For continuous in space and time solutions of (Eq) this regularity
is guaranteed in the setting of [7]. The price to pay for exploiting less regularity
of uh is that we do not obtain an explicit formula for the error-estimate; instead
the evaluation of the estimate requires the solution of a certain ODE. We start by
�xing the following notation and assumptions:

Assumption 3.1. (1) Assume that Vh � H1
D\C(
) is anNh-dimensional

conforming �nite element space, and V nh a n-dimensional subspace of Vh.
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By uh 2 C(I; Vh) \ C
1
pcw(I; Vh) we denote the truth-solution, i.e. the

unique solution to (Eqh).
(2) Moreover, let unh 2 C(I; V

n
h )\C

1
pcw(I; V

n
h ) be arbitrary. By e

n
h := unh�uh

we denote the error with respect to the truth-solution.

We have in mind the following situation: unh is the solution of a time-discrete
counterpart of (Eqh-RBn), and we want to estimate how good unh approximates
the truth-solution uh. Note that in order to ensure that unh meets the regular-
ity requirements of Assumption 3.1 we have to choose a time-discretization for
(Eqh-RBn) that results in piecewise C1-solutions, e.g. the Crank-Nicolson scheme
in its CG1-DG0 Petrov-Galerkin form. Time-discrete solutions of (Eqh-RBn) ob-
tained by Discontinuous Galerkin time-discretization, e.g. backward Euler, do not
ful�ll Assumption 3.1. Since discontinuous time-discretization might be of particu-
lar interest in the context of PDE-constrained optimization we outline an approach
to overcome this restriction in Remark 4.4.

3.1. Some preliminary calculations. In this subsection we follow the residual-
based ansatz of [39] as far as possible without modi�cation, i.e. up to the point
where strong monotonicity of the nonlinearity would be required. From that point
on we develop two di�erent approaches that will be discussed in the following
subsections.

First, we introduce the residual of unh by

rnh(t) := @tu
n
h(t) +A(unh(t))u

n
h(t)� f(t) 2 (V nh )

� ,! H�1
D ; t 2 I:(2)

A short computation utilizing (Eqh) shows that

hrnh(t); 'hiH�1
D
;H1

D
= h@te

n
h(t); 'hiH�1

D
;H1

D
+ hA(unh)u

n
h �A(uh)uh; 'hiH�1

D
;H1

D
(3)

holds for all 'h 2 Vh. We consider Vh as a vector space canonically equipped with
the H1

D-norm. Therefore, its dual V �
h is canonically equipped with the following

norm:

k`hkV �
h
:= sup

06= h2Vh

h`h;  hiH�1
D
;H1

D

k hkH1

D

= sup
06= h2Vh

`h( h)

k hkH1

D

:(4)

Note that this norm is not equal to the H�1
D -norm, because we only test with

elements  h from Vh in (4). For later use we state the following observation:

Lemma 3.2. Let Assumption 3.1 hold. Then the function [0; T ] ! R,
t 7! krnh(t)k

2
V �
h
is piecewise continuous.

Proof. This follows from the de�nition of rnh and the fact that unh is piecewise
C1. � �

Plugging in 'h = enh(t) for every �xed t in (3), and using the classical integra-
tion by parts formula from [40, Remark 7.5] we obtain

d

dt

1

2
kenh(t)k

2
L2 + hA(unh)u

n
h �A(uh)uh; e

n
h(t)iH�1

D
;H1

D
= hrnh(t); e

n
h(t)iH�1

D
;H1

D
:(5)

Note that the second summand on the left-hand side of (5) causes problems in our
case: If the nonlinearity u 7! A(u)u was strongly monotone, we could proceed as
done in [39] for a semilinear term and estimate as follows:

hA(unh)u
n
h �A(uh)uh; e

n
h(t)iH�1

D
;H1

D
� cjenh(t)j

2
H1

D

:
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However, as pointed out in Subsection 2.1 such an estimate cannot be expected
to hold true. We cannot even bound the term under consideration from below by
zero. Therefore, we have to proceed in a di�erent way and split the problematic
term into a coercive part and a remainder as follows:

hA(unh)u
n
h �A(uh)uh; u

n
h � uhiH�1

D
;H1

D

=

Z



(�(unh)�ru
n
h � �(uh)�ruh)r(u

n
h � uh)dx

=

Z



�(unh)�re
n
hre

n
hdx+

Z



(�(unh)� �(uh))�ruhre
n
hdx

� ����je
n
h j
2
H1

D

+

Z



(�(unh)� �(uh))�ruhre
n
hdx:

Plugging this in into (5) yields

(6)
d

dt

1

2
kenh(t)k

2
L2 + ����je

n
h(t)jH1

D

� hrnh(t); e
n
h(t)iH�1

D
;H1

D
�

Z



(�(unh(t))� �(uh(t)))�ruh(t)re
n
h(t)dx;

i.e. except for the remainder term that we have shifted to the right-hand-side
we have preserved a similar structure as in [39]. Formula (6) will serve as the
common basis for our two di�erent approaches in the following subsections. The
main challenge in both cases is to estimate the second summand on the right-hand
side in (6) in such a way that Gronwall's Lemma or a similar comparison principle
can be applied to the resulting inequality.

3.2. A-posteriori estimates – Approach I. The approach of this subsection
is closer to [39] than the second one, and relies on L1(I;W 1;1)-regularity of the
truth-solution.

Theorem 3.3. Let Assumptions 2.1 and 3.1 hold, and let cLip > 0 be such

that

juh(t)jW 1;1 � cLip 8t 2 I:

Moreover, let "; � > 0 be chosen such that

� + "j�0j1�
�cLip = ����

and de�ne � := 2
�
1
2" j�

0j1�
�cLip + ����

�
. Then, the following a-posteriori

error-estimates for unh hold:

kenh(t)k
2
L2 � e�tkunh(0)� uh(0)k

2
L2 + ��1

Z t

0

e�(t�s)krnh(s)k
2
V �
h
ds;(7)

kenhk
2
L2(I;L2) � ��1

�
e�T � 1

�
kunh(0)� uh(0)k

2
L2

+ ��1��1
Z T

0

(e�(T�t) � 1)krnh(t)k
2
V �
h
dt:

(8)

kenhk
2
L2(I;H1

D
) � ��1� ��1� e�T kunh(0)� uh(0)k

2
L2

+ ��1� ��1� ��1
Z T

0

e�(T�t)krnh(t)k
2
V �
h
dt:

(9)
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Proof. We proceed with the argument from the previous subsection. Starting
with the estimate (6) we bound the remaining term of the nonlinearity in the
following way:����

Z



(�(unh(t))� �(uh(t)))�ruh(t)re
n
h(t)dx

���� � j�0j1�
�cLipke

n
hkL2ke

n
hkH1

D
:(10)

UsingW 1;1-regularity for uh we can estimate one of the e
n
h-factors in the L

2-norm,
which would not be possible assuming only W 1;p-regularity for uh with some �nite
p. With help of Young's inequality we arrive at

d

dt

1

2
kenh(t)k

2
L2 + ����ke

n
h(t)k

2
H1

D

� ����ke
n
h(t)k

2
L2 + hrnh(t); e

n
h(t)iH�1

D
;H1

D

+ j�0j1�
�cLip

�
1

2"
kenhkL2 +

"

2
kenhkH1

D

�
with some " > 0. Another application of Young's inequality yields

d

dt

1

2
kenh(t)k

2
L2 + ����ke

n
h(t)k

2
H1

D

�

�
1

2"
j�0j1�

�cLip + ����

�
kenh(t)k

2
L2 +

1

2�
krnh(t)k

2
V �
h

+
��
2
+
"

2
j�0j1�

�cLip

�
kenhk

2
H1

D

with � > 0. Now, choose �; " as in the statement of the theorem and obtain

d

dt

1

2
kenh(t)k

2
L2 +

1

2
����ke

n
h(t)k

2
H1

D

� � �
1

2
kenh(t)k

2
L2 +

1

2�
krnh(t)k

2
V �
h
;(11)

where we will use from now on the abbreviation � = 2
�
1
2" j�

0j1�
�cLip + ����

�
to

enhance readability. With help of Gronwall's Lemma [12, Corollary 2] we obtain
an a-posteriori estimate for the L1(I; L2)-error from this:

kenh(t)k
2
L2 � kPnIhu0 � Ihu0k

2
L2e

�t + ��1
Z t

0

krnh(s)k
2
V �
h
e�(t�s)ds:

The second summand thereof is integrated using integration by parts, i.e.Z T

0

e�t
�Z t

0

e��skrnh(s)k
2
V �
h
ds

�
dt = ��1

Z T

0

(e�(T�t) � 1)krnh(t)k
2
V �
h
dt;

and together with the �rst summand we obtain the L2(I; L2)-estimate (21). As in
[39] the L2(I;H1)-estimate (22) is obtained from (11) by integrating with respect
to time over I = [0; T ] and using (21). � �

In order to exploit less regularity of uh in (10) one might be tempted to estimate
in �(unh(t)) � �(uh(t)) in L

q with some q > 2 such that H1
D ,! Lq. However, we

would not be able to shift the resulting kenh(t)k
2
H1

D

-term to the right-hand side of

(11) via Young's inequality. Hence, application of Gronwall's Lemma would not be
possible.

3.3. A-posteriori estimates – Approach II. We derive a-posteriori error-estimates
that rely on L1(I;W

1;p
D )-regularity for the truth-solution uh with some p > d, only.

We start with the following auxiliary result:

Lemma 3.4. Let Assumptions 2.1 and 3.1 hold, and let "; � > 0 satisfy

���� = � + " � ��(2��)1�
2

q j�0j
2

q

1cp:
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The error-function t 7! kenh(t)k
2
L2 satis�es the di�erential inequality

'0(t) � �'(t) + �'(t)r + (t); t 2 [0; T ];(12)

with the constants � = 2����, � = "�1��(2��)1�
2

q j�0j
2

q

1cp, the function  =
(t) = ��1krnh(t)k

2
V �
h
, and the exponent r = 2

q = 1� 2
p 2 (0; 1).

We would like to mention the following interesting analogy: Boundedness of
� is essential in our argument below, as it already was for the discussion of the
equation on the continuous level, cf. [7,37].

Proof. We pick up the argument from Subsection 3.1. We start by estimating
the second summand on the right-hand side of (6) as follows:

����
Z



(�(unh(t))� �(uh(t)))�ruh(t)re
n
h(t)dx

����
� ��k�(unh(t))� �(uh(t))kLq juh(t)jW 1;p jenh(t)jH1

with p�1 + q�1 + 1
2 = 1, i.e. q = 2p

p�2 . Note that we de�ne the W
1;p-semi-norm as

follows:

j'jpW 1;p :=

Z



jr'jp2dx =

Z



 
dX
i=1

�
@'

@xi

�2!p=2
dx:

Next, we apply the well-known Riesz-Thorin interpolation-inequality

kfkLq � kfk
1� 2

q

L1 kfk
2

q

L2 ; f 2 L1; q 2 (2;1);

to the Lipschitz estimate k�(unh(t)) � �(uh(t))kL2 � j�0j1ku
n
h(t) � uh(t)kL2 and

arrive at

(13)

����
Z



(�(unh(t))� �(uh(t)))�ruh(t)re
n
h(t)dx

����
� ��(2��)1�

2

q j�0j
2

q

1juh(t)jW 1;pkenh(t)k
2

q

L2 je
n
h(t)jH1 :

Note that this is the point where uniform boundedness of the nonlinearity � enters.
As before, we will estimate the product of the last two factors by Young's inequality
and move the H1-semi-norm term to the left-hand side of (6) in order to obtain

an ODE for the L2-error. This is why we are not able to convert the kenh(t)k
2=q
L2 -

term to an kenh(t)k
2
L2-term by application of Young's inequality, because we need

to generate an jenh(t)j
2
H1-term from the second factor, such that this term can be

canceled by the left-hand side of (6).
Plugging (13) into (6) and using Young's inequality twice we obtain the fol-

lowing:

d

dt

1

2
kenh(t)k

2
L2 + ����ke

n
h(t)kH1

D
�
�

2
kenh(t)k

2
H1

D

+
1

2�
krnh(t)k

2
V �
h
+ ����ke

n
h(t)k

2
L2

+ ��(2��)1�
2

q j�0j
2

q

1juh(t)jW 1;p �

�
"

2
kenh(t)k

2
H1 +

1

2"
kenh(t)k

4

q

L2

�
:
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Here, "; � > 0 are the parameters appearing in Young's inequality. Choosing them
as in the statement of the lemma yields

(14)
d

dt
kenh(t)k

2
L2 + ����ke

n
h(t)k

2
H1

� ��1krnh(t)k
2
V �
h
+ 2����ke

n
h(t)k

2
L2 + "�1��(2��)1�

2

q j�0j
2

q

1cpke
n
h(t)k

4=q
L2 ;

from which the claim follows. � �

Let us briey comment on the rather challenging structure of (12): First,
note that r 2 (0; 1), i.e. the right-hand side in (12) does only depend Lipschitz-
continuous on '(t), if '(t) stays uniformly away from zero, which can be ensured
only for '(0) > 0. Moreover, the Lipschitz-constant on sets bounded uniformly
away from zero increases, if r gets smaller. The latter, however, is the case if p > d

gets smaller, i.e. if we exploit less regularity of the truth-solution. In other words:
The smaller the initial error, and the less regularity of the truth-solution we use,
the more ill-posed (12) becomes.

Theorem 3.5. Let Assumptions 2.1 and 3.1 hold, and let p > d and cp > 0
such that

juh(t)jW 1;p � cp 8t 2 I:

Moreover, we assume that the initial error does not vanish, i.e. kenh(0)kL2 > 0.
Let "; � > 0 be chosen such that

���� = � + " � ��(2��)1�
2

q j�0j
2

q

1cp

holds. Given the constants � = 2����, � = "�1��(2��)1�
2

q j�0j
2

q

1cp, and r = 1� 2
p ,

let ': [0; T ]! [0;1) be the solution to

'0(t) = �'(t) + �'(t)r + ��1krnh(t)k
2
V �
h
; t 2 I;

'(0) = kunh(0)� uh(0)k
2
L2 :

Then the following a-posteriori error-estimates hold true:

kenh(t)k
2
L2 � '(t); 8t 2 I; kenhk

2
L2(I;L2) �

Z T

0

'(s)ds;(15)

kenhk
2
L2(I;H1

D
) �

1

����

�
kunh(0)� uh(0)k

2
L2 + ��1krnhk

2
L2(I;V �

h
)

�

Z T

0

'(s)ds+ �

Z T

0

'(s)2=qds

!
:

(16)

Proof. In order to apply [12, Theorem 44] to Lemma 3.4 we have to verify that
f(t; z) = �z+�zr+��1krnh(t)k

2
V �
h
satis�es the required assumption, i.e. that given

'0 > 0 there is " > 0 such that the ODE

'0(t) = f(t; '(t)); '(0) = '0 + �;

has a solution on the time interval I = [0; T ] as long as � 2 [0; "]. Existence of
a local solution on some time interval [0; Tmax) with Tmax 2 (0; T ] is clear due to
Peano's existence-theorem, since t 7! krnh(t)k

2
V �
h
is piecewise continuous on [0; T ]

(see Lemma 3.2) and u 7! �u + �ur even admits a continuous extension R ! R,
u 7! �u+ �sign(u)jujr. Further, due to � > 0; � > 0, and krnh(t)k

2
V �
h
� 0 it is clear
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that ' is monotone increasing for '0 > 0. The theory of ODEs shows that either
Tmax = T or '(t) ! 1 as t ! Tmax. In the latter case there has to be t0 2 (0; T )
such that '(t) > 1 for t � t0. For those t � t0 it holds due to r 2 (0; 1) that

'0(t) = �'(t) + �'(t)r + ��1krnh(t)k
2
V �
h
� (�+ �)'(t) + ��1krnh(t)k

2
V �
h
:

By Gronwall's Lemma [12, Corollary 2] we conclude that '(t) stays bounded on
[0; T ], which contradicts the assumption Tmax < T . Therefore, all solutions '
have to exist on the whole time interval [0; T ]. Thus, we have shown the estimate
for the L1(I; L2)-error, from which we immediately obtain the L2(I; L2)-error by
integration. Following again [39] we integrate (12) to obtain (16). � �

An explicit comparison principle for (12) �a la [12, Corollary 2] would allow
to obtain also explicit formulas in the estimates of Theorem 3.5. Unfortunately,
we only found such results in the literature for the special cases  � 0 or � = 0
[12, Theorems 21 and 23], that are not of interest in the present context.

4. A-posteriori RB- and EIM-error-estimates

It is a well-known issue in RB-methods that the evaluation of nonlinear terms
such as �(u) requires access to the full number of degrees of freedom. Since the
reasoning behind MOR is to avoid such computations within the full model, alterna-
tives have to be found. In order to allow for an e�cient o�ine-online splitting, the
evaluation of nonlinearities in the reduced-order model for (Eq) needs to be done
by methods of hyperreduction, e.g. the Empirical Interpolation Method (EIM, [6]).
In this section we describe a very basic version of the latter technique applied to
our model problem, and show how the additional errors can be incorporated in the
a-posteriori error-estimates of Theorems 3.3 and 3.5 using the same technique as
in [24,25].

4.1. Empirical Interpolation of A. First, we introduce EIM as far as required
for our purpose and as concise as possible. In order to present the main idea as
clearly as possible, we stick to the continuous setting and omit space-discretization;
the generalization to �nite element spaces with a nodal basis is straightforward.
Given so-called snapshots y1; :::; yN 2 C(
), and a tolerance tolEIM > 0, determine
via a Greedy procedure (for details, see e.g. [6, 47]) some functions �1; :::;�m 2
C(
), and interpolation points x1; :::; xm 2 
 such that

�(y`(xj)) =

mX
k=1

c`;k�k(xj); ` = 1; :::; N; j = 1; :::;m:

implies
�(y`)�Pm

k=1 c`;k�k

L1

� tolEIM. For some w 2 C(
) we de�ne the

EIM-approximation of �(w) as

�EIMm (w) =

mX
k=1

ck�k
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where c 2 Rm solves the m �m-system �(w(xj)) =
Pm
k=1 ck�k(xj), j = 1; :::;m.

With this we may introduce a RB-EIM-reduced counterpart of (Eq) as

h@tu
n;m
h (t); 'nhiH�1

D
;H1

D
+ hAEIM

m (u
n;m
h (t))u

n;m
h (t); 'nhiH�1

D
;H1

D
= hf(t); 'nhiH�1

D
;H1

D

8t 2 I; 'nh 2 V
n
h ;

u
n;m
h (0) = PnIhu0;

9>=
>;

(Eqh-RBn-EIMm)

where AEIM
m denotes the EIM-reduced version of the nonlinear di�erential operator

de�ned by

hAEIM
m (u)'; iH�1

D
;H1

D
:=

Z



�EIMm (u)�rur'dx; ';  2 H1
D:

Note that there is an e�cient online evaluation of AEIM
m , because the sti�ness-

matrices associated to the operators �r��k�r can be precomputed in the o�ine-
phase. Therefore, we only have to deal with m and n degrees of freedom, respec-
tively, when dealing with AEIM

m . In the following we will denote the EIM-error
by

�EIM
m (u) := k�(u)� �EIMm (u)kL1 :

For sophisticated algorithmic coupling of model order reduction and hyperreduction
we refer to [13,44] for instance. Other kinds of hyperreduction include e.g. discrete
empirical interpolation (DEIM, [11]), or dynamic mode decomposition (DMD, [2]).

4.2. A-posteriori RB-error-estimates including the EIM-error. In this section
we extend the results from Section 3 by incorporating also EIM-errors: It is clear
that A(unh)u

n
h , and therefore rnh , cannot be computed e�ciently during the online-

phase due to the fact that the assembly of the sti�ness-matrix for A(unh) requires us
to use the full number of degrees of freedom. Hence, the estimates of Theorems 3.3
and 3.5 cannot be evaluated e�ciently in the online-phase. Consequently, evalua-
tion of rnh has to be avoided. Instead, given an arbitrary u

n;m
h ful�lling Assumption

3.1, we introduce the EIM-reduced residual r
n;m
h of u

n;m
h as

r
n;m
h (t) := @tu

n;m
h (t) +AEIM

m (u
n;m
h (t))u

n;m
h (t)� f(t) 2 V �

h ,! H�1
D ; t 2 I:

(17)

It is obvious, that r
n;m
h admits an e�cient online evaluation. It remains to show

how the error u
n;m
h � uh to the truth-solution can be estimated in terms of r

n;m
h

instead of rnh . Since all changes in the arguments already known from Section 3
are straightforward utilizing the estimates (18) and (19) below, we omit the details
and only state the results. A short computation as in Section 3.1 shows that the
RB-EIM-error e

n;m
h := u

n;m
h � uh ful�lls

hrn;mh (t); 'hiH�1
D
;H1

D
= h@te

n;m
h (t); 'hiH�1

D
;H1

D
+ hA(un;mh )u

n;m
h �A(uh)uh; 'hiH�1

D
;H1

D

+ hAEIM
m (u

n;m
h )u

n;m
h �A(un;mh )u

n;m
h ; 'hiH�1

D
;H1

D
:
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As before it follows:

(18)
d

dt

1

2
ken;mh (t)k2L2 + ����je

n;m
h (t)j2H1 � hrn;mh (t); e

n;m
h (t)iH�1

D
;H1

D

�

Z



(�(u
n;m
h )� �(uh))�ruhre

n;m
h dx

�

Z



(�EIM(u
n;m
h )� �(u

n;m
h ))�run;mh ren;mh dx:

The second summand on the right-hand side can be estimated as in Subsections
3.2 and 3.3. The third summand is estimated as follows:

(19)����
Z



(�EIM(u
n;m
h )� �(u

n;m
h ))�run;mh ren;mh dx

���� � �EIM
m (u

n;m
h )��jun;mh jH1ken;mh kH1

�
1

2�
�EIM
m (u

n;m
h )��jun;mh j2H1 +

1

2
��EIM

m (u
n;m
h )��ken;mh k2H1 ;

where � > 0 is the parameter in Young's inequality. With this, we are ready to
state the modi�ed versions of the two main results from Section 3, beginning with
the modi�ed version of Theorem 3.3:

Theorem 4.1. Let Assumptions 2.1 and 3.1 hold, and let cLip > 0 such

that

juh(t)jW 1;1 � cLip 8t 2 I:

Given u
n;m
h , choose "; �; � > 0 such that

� + "j�0j1�
�cLip + ��EIM

m �� = ����;

is satis�ed with the EIM-error �EIM
m := supt2I �

EIM
m (u

n;m
h (t)). Moreover, we

introduce the constant � := 2
�
1
2" j�

0j1�
�cLip + ����

�
. Then the following a-

posteriori error-estimates for u
n;m
h hold true:

ken;mh (t)k2L2 � e�tkun;mh (0)� uh(0)k
2
L2

+

Z t

0

e�(t�s)
�
��1krn;mh (s)k2V �

h
+ ��1�EIM

m ��jun;mh (s)j2H1

�
ds;

(20)

ken;mh k2L2(I;L2) � ��1
�
e�T � 1

�
kun;mh (0)� uh(0)k

2
L2

+ ��1
Z T

0

(e�(T�t) � 1)
�
��1krn;mh (t)k2V �

h
+ ��1�EIM

m ��jun;mh (t)j2H1

�
dt:

(21)

ken;mh k2L2(I;H1

D
) � ��1� ��1� e�T kun;mh (0)� uh(0)k

2
L2

+ ��1� ��1�

Z T

0

e�(T�t)
�
��1krn;mh (t)k2V �

h
+ ��1�EIM

m ��jun;mh (t)j2H1

�
dt:

(22)

We also �x the following simpli�ed estimates, that are less sharp but exhibit
a favorable structure: They are weighted sums of the initial L2-error, the L2-V �

h -
norm of the residual, and the EIM-error. This allows to determine the optimal
choice of the parameters "; �; � for these simpler estimates.
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Corollary 4.2. Under the assumptions of the previous theorem it holds:

ken;mh (t)k2L2 � e�tkun;mh (0)� uh(0)k
2
L2 + e�t��1

Z t

0

krn;mh (s)k2V �
h
ds

+ ��1e�t�EIM
m ��

Z t

0

jun;mh (s)j2H1ds;

ken;mh k2L2(I;L2) � ��1
�
e�T � 1

�
kun;mh (0)� uh(0)k

2
L2

+ ��1(e�T � 1)
�
��1krn;mh k2L2(I;V �

h
) + ��1�EIM

m ��jun;mh j2L2(I;H1)

�
ken;mh k2L2(I;H1

D
) � e�T ��1� ��1� kun;mh (0)� uh(0)k

2
L2

+ e�T ��1� ��1�

�
��1krn;mh k2L2(I;V �

h
) + ��1�EIM

m ��jun;mh j2L2(I;H1)

�
The same technique as in Section 3.3 yields the following result:

Theorem 4.3. Let Assumptions 2.1 and 3.1 hold, and let p > d and cp > 0
such that

juh(t)jW 1;p � cp 8t 2 I:

Moreover, we assume that the initial error does not vanish, i.e. ken;mh (0)kL2 >
0. Choose "; �; � > 0 such that

���� = � + " � ��(2��)1�
2

q j�0j
2

q

1cp + ��EIM
m ��

is satis�ed for the EIM-error �EIM
m = supt2I �

EIM
M (u

n;m
h (t)). Given the con-

stants � = 2����, � = "�1��(2��)1�
2

q j�0j
2

q

1cp, and r = 1� 2
p , let ': [0; T ]! [0;1)

be the solution to

'0(t) = �'(t) + �'(t)r + ��1krn;mh (t)k2V �
h
+ ��1�EIM

m ��jun;mh (t)j2H1 ; t 2 I;

'(0) = ken;mh (0)k2L2 :

Then the following a-posteriori error-estimates hold true:

ken;mh (t)k2L2 � '(t); 8t 2 I; ken;mh k2L2(I;L2) �

Z T

0

'(s)ds;

(23)

ken;mh k2L2(I;H1

D
) �

1

����

�
kun;mh (0)� uh(0)k

2
L2 + ��1krnhk

2
L2(I;V �

h
)

+ ��1�EIM
m ��jun;mh j2L2(I;H1) +�

Z T

0

'(s)ds+ �

Z T

0

'(s)2=qds

!
:

(24)

Let us point out that the EIM-error �EIM
m (u

n;m
h ) at u

n;m
h cannot be computed

without referring to the full number of degrees of freedom; however, computation of
k�(un;mh )� �EIMm (u

n;m
h )kL1 in the full degrees of freedom is still much cheaper than

computation of the respective full sti�ness-matrices associated with the nonlinear
elliptic operator that would be required for the computation of rnh . In contrast, note
that the H1-semi-norm of u

n;m
h required in Theorems 4.1 and 4.3 admits e�cient

online evaluation, because it is induced by a bilinear form whose matrix w.r.t. the
basis of V nh can be precomputed and saved. Similarly, also the weight-matrices for
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the evaluation of the EIM-reduced residual can be precomputed and saved in the
o�ine-phase.

To conclude this section, we shortly outline a possibility to relax Assumption
3.1 (2) in order to allow error estimation also for a discontinuous in time trajectory.

Remark 4.4. Let u
n;m
h e.g. be given as

u
n;m
h := 1f0gU

n;m
h;0 +

NtX
`=1

1(t`�1;t`]U
n;m
h;` ; U

n;m
h;` 2 V nh ; ` = 0; :::; Nt;

for a partition 0 = t0 < t1 < ::: < tNt�1 < tNt
= T . Such u

n;m
h might be obtained by

applying the backward Euler method in its DG0-formulation to (Eqh-RBn-EIMm).
Since our error-estimates do not apply directly to u

n;m
h due to discontinuity w.r.t.

time, we replace u
n;m
h by its piecewise linear and continuous w.r.t time interpolation

û
n;m
h w.r.t. the same partition de�ned by û

n;m
h (t`) := u

n;m
h (t`) = U

n;m
h;` for ` =

0; :::; Nt. Obviously, Theorems 4.1 and 4.3 apply to û
n;m
h , and to obtain an estimate

for the overall error we need to add the interpolation error û
n;m
h �un;mh . The latter

can be computed explicitely:

kun;mh � û
n;m
h k2L1(I;L2) � max

1�`�Nt

kUn;mh;` � U
n;m
h;`�1k

2
L2 ;

kun;mh � û
n;m
h k2L2(I;L2) �

NtX
`=1

1

3
(t` � t`�1)kU

n;m
h;` � U

n;m
h;`�1k

2
L2 ;

kun;mh � û
n;m
h k2L2(I;H1) �

NtX
`=1

1

3
(t` � t`�1)kU

n;m
h;` � U

n;m
h;`�1k

2
H1 ;

The appearance of such jump-terms is what we may expect for an a-posteriori error
for a discontinuous-in-time trajectory. Note that compared to classical a-posteriori
error-estimates for discontinuous-in-time methods, see [33,45] for instance, we do
not assume that u

n;m
h is the solution to a discrete-in-time analogue to (Eqh-RBn).

5. Numerical Illustration for POD-MOR

In this �nal section of the paper we illustrate and compare the quality of our
RB-EIM-a-posteriori error-estimates numerically for three prototypical test prob-
lems. Although the results of this paper apply to general RB-methods, our particu-
lar focus is on POD-MOR. Therefore, we restrict ourselves to reduced ansatz-spaces
V nh spanned by a POD-basis of rank n in our numerical tests.

5.1. Test Problems and Technical Details. The two-dimensional domain 
 =
[0; 1]2 and the time interval [0; T ] = [0; 1] are the same in all three test problems.
We �x two discs C1 = B 1

5

�
1
4 ;

1
4

�
and C2 = B 1

5

�
3
4 ;

3
4

�
, and the three boundary parts

�1 = fx 2 @
: x2 = 1g, �2 = fx 2 @
: x1 = 0; x2 <
1
2g, �3 = fx 2 @
: x1 =

1; x2 <
1
2g. The nonlinearity is given by

�(u) =
3

4
+

1

2(1 + e5u)
:

We introduce the three test problems P1-P3 by equipping the equation

@tu�r � �(u)ru = 10 sin(2�t)1C1
� 10 cos(2�t)1C2

;

with the following boundary and initial conditions, respectively:
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(P1) Pure homogeneous Dirichlet boundary conditions. and zero initial condition.
(P2) Pure homogeneous Neumann boundary conditions. and zero initial condi-

tion.
(P3) Mixed boundary conditions: homogeneous Dirichlet boundary condition

u = 0 on I � �1, non-homogeneous Neumann conditions �(u)@nu = sin(2�t)
on I � �2, and �(u)@nu = � cos(2�t) on I � �3, and natural boundary condi-
tion @nu = 0 on the remaining part of the boundary. The initial condition is
[u(0)](x1; x2) :=

1
10 (1� x1).

Space- and time-discretization. All computations are done utilizing FEniCS [3,
34] and piecewise linear �nite elements on a mesh generated by mshr, the mesh-
generation tool of FEniCS, withNh = 5769 degrees of freedom and maximum cell di-
ameter hmax � 2:1 �10�2. The POD-basis is generated with snapshots coming from
an (implicit) Crank-Nicolson solution of the equation with Nt = 2500 timesteps
(\reference solution"). Hereby, the appearing nonlinear equations are solved by the
built-in nonlinear solver of FEniCS. The same set of snapshots is also used to gener-
ate the EIM-approximation of the nonlinearity in a standard greedy procedure with
L1-tolerance 10�6. The POD-EIM-reduced equation is again solved utilizing the
(implicit) Crank-Nicolson scheme with Nt = 2500 timesteps, whereby the nonlinear
algebraic equations appearing in every timestep are solved by a standard Newton-
method that is initialized with a semi-implicit Euler step as �rst guess (\reduced
solution"). Approximate true L2(I; L2)-, L1(I; L2), and L2(I;H1)-errors are com-
puted with respect to a further numerical solution that is computed on the same
�nite element mesh, but with a four times higher number of timesteps than for the
snapshot generation (\truth-solution"). Finally, to ensure comparability between
the di�erent test problems and norms, all errors and estimates are relative errors,
i.e. the absolute error or error-estimate is divided by the corresponding norm of
the truth-solution.

Estimation of the required parameters. Parameters like ��; ��; j�
0j1 etc. are

known from the problem data. The solution-dependent parameters are found as
follows: The norms of uh are computed exactly based on the truth-solution in order
to give the possibility to determine whether our estimates are sharp or not under
the exact data. However, in real applications we would have to estimates those
norms appropriately. The quality of the error-estimates {as absolute values{ will
heavily deteriorate in case of \safe" (i.e. large) estimates for the parameters. The
same might happen in case of just inconvenient problem data due to the exponen-
tial terms in the estimates. However, we would like to point out that one might
still hope in such a case that the relative behavior of the estimates, i.e. whether
they decrease/increase by some factor, provides some information on the quality of
the reduced model. Although we compute the EIM-error �EIM

m as de�ned in Sub-
section 4.1 by accessing the full number of degrees of freedom, we did not observe
signi�cant time consumption for this.

Choice of the exponent p. In order to obtain expressive results we had to use
relatively large values for p, e.g. p = 16. Therefore, choosing p according to the
requirements of [7], i.e. only slightly larger than d in general, seems to be di�cult.

Estimates for Approach I (Theorem 4.1). For Approach I we determine the pa-
rameters "; �; � in such a way that the simpler estimates for the L2(I;H1)-error in
Corollary 4.2 become optimal, and plug in the same parameters into the estimates
from Theorem 4.1. Integrals with respect to time (residuals or weighted residuals
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Figure 1. Test problem P1 (homogeneous Dirichlet boundary
conditions): a) Estimates from Approach I (�: Theorem 4.1 with
optimized parameters, dashed lines: Corollary 4.2). b) Estimates
from Approach II (N: p = 6, �: p = 16, �, p = 32). L1(I; L2)-
, L2(I; L2)-, and L2(I;H1)-errors are displayed in black, blue,
and red, respectively. Approximate true errors w.r.t. the truth-
solution are included in dotted lines.

in the formulas of Theorem 4.1) are evaluated using Gauss-quadrature of order 2
on every subinterval given by the timesteps.

Estimates for Approach II (Theorem 4.3). Based on several tries we choose the
following parameters:

� =
1

10
(1��EIM

m )����; " =
9

10

1��EIM
m

��(2��)1�
2

q j�0j
2

q

1cp

; � =
����

��
:

Note that optimization of the parameters as in Approach I is not possible be-
cause we do not have an explicit formula at hand. The ODE for the evaluation
of ' is solved utilizing the backward di�erence formulae solver (BDF) within the
solve ivp-routine from scipy.integrate, with relative tolerance rtol=10�6, and
absolute tolerance atol=10�3 � kuh(0)� u

n
h(0)k

2
L2 . The maximal allowed step size

is the same as the size of timesteps in the reduced model. We found that among
other methods (Runge-Kutte with 2/3 and 4/5 stages, Radau) this choice deliv-
ered the best results. However, it is clear that the numerical approximation of ' is
challenging (in particular for small p or small initial values), which might inuence
the reliability of the results.

5.2. Discussion of the results. Figures 1-3 show the results of our experi-
ments. It can be seen that Approach I yields better results the smoother the
truth-solution is: Test problems P1 and P2 (homogeneous boundary conditions)
perform better than the problem with mixed boundary conditions (Test problem
P3). Moreover, we observe that the a-posteriori error-estimates of both approaches
start stagnating at about the same point at which also the true errors stagnate
due to time-discretization. This fact will be advantageous in practice: Having a
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Figure 2. Example P2 (homogeneous Neumann boundary condi-
tions): a) Estimates from Approach I (�: Theorem 4.1 with opti-
mized parameters, dashed lines: Corollary 4.2). b) Estimates from
Approach II for p = 16. L1(I; L2)-, L2(I; L2)-, and L2(I;H1)-
errors are displayed in black, blue, and red, respectively. Approx-
imate true errors w.r.t. the truth-solution are included in dotted
lines.
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Figure 3. Example P3 (mixed boundary conditions): a) Esti-
mates from Approach I (�: Theorem 4.1 with optimized param-
eters, dashed lines: Corollary 4.2). b) Estimates from Approach
II for p = 16. L1(I; L2)-, L2(I; L2)-, and L2(I;H1)-errors are
displayed in black, blue, and red, respectively. Approximate true
errors w.r.t. the truth-solution are included in dotted lines.
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Computing times for Example P1 Example P2 Example P3

number of EIM-basis functions 28 36 49
Setup EIM-reduced model 50-57% 70% 99-157%

POD-EIM-reduced model 1% (0.9%) 1% (1.1%) 1-4% (1.6%)

Approach I 2-3% (3%) 2-4% (4%) 3-6% (5%)
Approach I optimized 3-6% (6%) 3-9% (8%) 5-12% (10%)
Approach II 3-15% (9-15%) 4-22% (18%) 6-15% (11%)

Table 1. Computing times for the setup of the EIM-reduction of
the nonlinearity, the evaluation of the POD-EIM-reduced model,
and the error-estimates, respectively. 100% correspond to the time
that is required to compute the snapshots (\reference solution").
We show the range of times observed in the experiments from
Figures 1-3, and in brackets we give the time observed for n = 13
POD-basis functions.

combined POD- and time-discretization-error prevents us from choosing an un-
necessarily large POD-basis whose accuracy is below the error level inferred from
time-discretization anyway.

How much Approach II depends on the choice of the exponent p can be seen in
Figure 2b). The estimates stagnate very early for small p, i.e. Approach II unfortu-
nately does not yield reasonable results in that case. For large p the estimates seem
to get closer to the values of Approach I. In this sense one might interpret Approach
II as a modi�cation of Approach I that trades strength of the required assumption
(bigger p means stronger assumption) against quality of results (smaller p means
less meaningful results and numerical instability).

For the computing times observed in our numerical experiments we refer to
Table 1: The evaluation of the POD-EIM-reduced model is about 25- to 100-
times faster than the evaluation of the full model. We believe that even higher
speedups might be possible in case of �ner �nite element discretization. Compared
to the computing time for the full model, evaluation of the a-posteriori error-
estimates from Approach I is quite cheap: Evaluation of the POD-EIM-reduced
model together with computation of an error-estimate still yields a speedup of
factor at least 10. As expected, evaluation of the estimates from Approach II needs
slightly more time.
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