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Abstract. In this paper, we propose neural networks that tackle the problems of stability and field-of-view of a
Convolutional Neural Network (CNN). As an alternative to increasing the network’s depth or width
to improve performance, we propose integral-based spatially nonlocal operators which are related
to global weighted Laplacian, fractional Laplacian and inverse fractional Laplacian operators that
arise in several problems in the physical sciences. The forward propagation of such networks is
inspired by partial integro-differential equations (PIDEs). We test the effectiveness of the proposed
neural architectures on benchmark image classification datasets and semantic segmentation tasks in
autonomous driving. Moreover, we investigate the extra computational costs of these dense operators
and the stability of forward propagation of the proposed neural networks.
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1. Introduction. We consider the tasks of image classification and segmentation which can
be seen as a data fitting problem in a high-dimensional space. Image classification involves
assigning each element of a dataset to one of the many classes or categories of images. It
forms the basis for several other computer vision tasks such as detection, segmentation and
localization. Let each C-channel image be of dimension RH×W×C , with each image belonging
to one of the k classes. Then the objective is to find a classifier map J : RH×W×C 7→ Rk
such that, for a given x ∈ RH×W×C , we have J (x) ≈ p(x) ∈ Rk, where p(x) represents
the probabilities of x belonging to one of the k classes. The task of semantic segmentation
is similar and can be seen as a multi-dimensional extension of the image classification task.
Here, each pixel of each image is supposed to be assigned to one of the many classes (car, bus,
etc.), i.e. each pixel gets a meaning so that, in the end, individual objects on an image can
be distinguished from one another (see Section 5.3).

Deep Neural Networks (DNNs) can be used to train machines to learn from such examples,
to recognize patterns in the data effectively and to make predictions on unseen examples [12].
DNNs have found several applications in the last decade, such as natural language processing
[6] and solving partial differential equations (PDEs) [31], just to name a few. Convolutional
Neural Networks (CNNs) are a special class of neural networks that make use of spatial
correlations between features by introducing a series of spatial convolution operators into
the network with compactly supported stencils/kernels and point-wise nonlinearities, where
the trainable kernel weights capture hierarchical patterns. CNNs increase the computational
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efficiency of the network due to the sparse connections between the features and due to the
reduction in the number of weights via parameter sharing. Moreover, in [42], it is argued that
CNNs can approximate any continuous function to an arbitrary accuracy if the depth of the
neural network is large enough.

There are several hurdles when it comes to designing and training a neural network. Firstly,
there is the well-known issue of exploding and vanishing gradients [24]. Also, in CNNs, the
convolution operation is local, and, as a consequence, each layer draws inferences based on the
information that is present in a small spatial neighborhood of the image (receptive field) and
therefore lacks a holistic view of the feature maps. This is known as the field-of-view problem
[23]. To make sure that the output layer has a large receptive field and no information of the
image is left out while making the inference, modern architectures tend to go deep [16, 30].
By stacking more convolutional and pooling layers, the receptive field is increased, and large
parts of the image end up having an indirect influence on the output layer. This is helpful
for datasets with long-range spatial dependencies. However, the number of trainable weights
increases rapidly with depth, and this imposes challenges when using mediocre computational
hardware with memory constraints. Thus, the dilemma is whether one should have a very
deep network that has a better performance but makes the training harder for any optimizer
or to have shallower networks that are easier to train but perform relatively worse.

To this end, we propose neural networks that tackle the field-of-view problem of a CNN.
Instead of increasing the network’s depth or width to improve a neural network’s performance,
the introduction of nonlocal operators is advocated. These integral-based spatially nonlocal
operators address the issue of field-of-view and reduce the need for deeper networks if one
needs better performance. The associated forward propagation is inspired by partial integro-
differential equations (PIDEs). Specifically, a corresponding layer that is inspired by a specific
PIDE system is added to a ResNet network of consecutive Hamiltonian blocks. We examine
the effectiveness of the proposed network designs for several image classification benchmark
datasets. Our networks need lesser depth than the conventional CNNs to obtain the same
accuracy and expressibility while maintaining the numerical stability of the network. Addi-
tionally, this paper demonstrates a real-world application, namely our networks are used for
semantic segmentation tasks in autonomous driving.

This paper is organized as follows. In Section 2, a general introduction to Residual Neural
Networks (ResNets), its mathematical formulation and its link with stable dynamical systems
is reviewed. Section 3 introduces the PIDE-inspired nonlocal operators, and a few inherent
properties of such operators are explored and reviewed. These nonlocal operators are then
discretized in Section 4, and several strategies to save computational costs are proposed. In
this section, also the implementation details for the nonlocal operators and the proposed
CNNs are discussed. In Section 5, numerical experiments related to image classification and
semantic segmentation are conducted, and their effectiveness is examined. Section 6 deals
with the forward propagation stability of the proposed CNNs and the computational cost
associated with them. The concluding Section 7 summarizes the results.

2. Mathematical formulation. In this section, we briefly formulate the classification task
as a parameter estimation problem. We also introduce the building blocks of the basic neural
architecture that will be used in the subsequent sections of this paper. For a detailed summary



DEEP NEURAL NETWORKS AND PIDE DISCRETIZATIONS 3

of deep learning, see [12, 38].
Let Y0 be the input to the neural network. The forward propagation of a Residual Neural

Network (ResNet) with N layers is given by

(2.1) Yj+1 = Yj + F(Yj ,Kj) for j = 0, . . . , N − 1,

where Yj are the feature values in the j-th hidden layer, Kj are the learnable (convolutional
and batch normalization) weights in the j-th hidden layer, and F is the residual module that
can come in various forms, for example, F(Yj ,Kj) = σ(B(Kj,2 σ(B(Kj,1Yj+bj)))) [16], where
Kj = {Kj,1,Kj,2}, i.e. the residual module has two convolutional layers. B represents the
batch normalization (BN) layer [18] and σ(·) is the activation function applied component-
wise. For our purposes, we will stick with the the rectifier or ReLU activation function, σ(x) =
max(0, x). YN is the final layer of the neural network. For multi-class classification tasks, this
final layer is passed through a softmax classifier, S : Rk 7→ Rk, [S(x)]i := exi∑k

j=1 e
xj

. It returns

the necessary probability distribution consisting of k probabilities that are proportional to
the entries of the input vector x and are actually the different probabilities of the image/pixel
belonging to each of the k classes.

Essentially, in each step of the iteration, the residual module tries to learn the update
made to Yj . Note that the residual module depends not just on layer weights Kj , but also
on layer biases bj . For simplicity, however, we write F(Yj ,Kj) instead of F(Yj ,Kj , bj). In
the original paper [16], this residual block followed the sequence of convolution-BN-ReLU.
In a follow-up paper [17], He, Zhang, Ren et al. suggest another sequence for computations,
namely BN-ReLU-convolution. Over the last couple of years, ResNet has had a lot of success in
several areas, such as object detection [15, 16] and semantic segmentation [25]. ResNets have
made it possible to train up to hundreds of layers and still achieve compelling performance,
something which was not possible before. Szegedy, Ioffe, Vanhoucke et al. showed in [36] that
residual links in fact speed up the convergence of very deep networks.

Let the output of the softmax layer be called YN+1, with W representing the weights
and biases of this extra layer. Let the collection of weights and biases of the other layers be
represented as K = {Kj}j=Nj=1 , b = {bj}j=Nj=1 , respectively. Then the learning problem can be
cast as a high-dimensional, non-convex optimization problem

min
K,W,b

1

2
S(YN+1,C) +R(K,W, b)

such that Yj+1 = Yj + F(Yj ,Kj) for j = 0, . . . , N − 1,

(2.2)

where S is the loss function that is convex in the first argument and measures the closeness
of the prediction to the ground truth. Usually, S is assumed to be the least-squares function
and cross-entropy loss function for regression and classification tasks, respectively [12]. C is
the label or the ground truth for the example Y0 that is propagated through the network. R
is a convex regularizer that penalizes large weights that are undesirable (see Section 4.5).

The forward propagation of a ResNet can be interpreted as a discretization of an underlying
nonlinear ordinary differential equation (ODE), and in special cases, as a discretization of an
underlying partial differential equation (PDE). We add a step size h to the equation of the
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forward propagation of ResNets [10, 14], i.e.

(2.3) Yj+1 = Yj + hF(Yj ,Kj) for j = 0, . . . , N − 1.

This equation can be interpreted as a forward Euler discretization of the initial value problem

(2.4) Ẏ(t) = F(Y(t),K(t)), Y(0) = Y0,

with the input layer being Y(0) and the output layer values Y(T ) being the solution to the
initial value problem at time T , with T = Nh, T and N being related to the depth of the
network. Thus, each layer of the network can be seen as the discretization of the continuous
solution at discrete time points in [0, T ], and the problem of learning the network weights Kj

can be seen as a parameter estimation problem or an optimal control problem that is governed
by equation (2.4). Moreover, in [41], Zhang, Han, Wynter et al. claim that the presence of the
step size h in ResNet-like networks stabilizes the gradients and allows larger learning rates.

With the introduction of the dummy time variable t, we have a time derivative in the for-
ward propagation. In special cases, such as image classification or segmentation, one mainly
has spatial convolution weights Kj for each layer, instead of dense weight matrices. In such
cases, the convolution weights can be expressed as a linear combination of spatial differential
operators or as a coupled system of partial differential operators in case of multi-channel con-
volutions [28]. As a result, in the case of CNNs, equation (2.1) is a forward Euler discretization
(in the time domain) of an underlying partial differential equation due to the inherent presence
of spatial derivatives in the residual function F . The CNN layer weights determine the order,
type and stability of the underlying PDE.

The stability of the forward propagation of a neural network is of prime importance.
The output of a neural network or the solution to the underlying PDE/ODE is sensitive to
perturbations of the input data that are not perceived by the human eye, which makes a
network vulnerable to adversarial attacks [43]. Similar images might propagate through the
network and yield vastly different outputs and predictions [13], and therefore the network
generalizes poorly on test data. Also, such instabilities make the network harder to train
via backpropagation. Chang, Meng, Haber et al. suggest several stable neural architectures
in [4], which are inspired by stable and well-posed solutions of the underlying PDE/ODE of
the neural network [4, 14]. Among all the three ODE-based networks suggested in [4], the
so-called Hamiltonian network performs the best on standard benchmarks, possibly due to
its two-layer network, where each Hamiltonian block has two convolution and two transposed
convolution operations. Hamiltonian systems are known to conserve energy, and hence, the
forward propagation, in this case, is expected to only moderately amplify or damp the features,
as it is propagated down the network. By introducing an extra augmented variable Z(t) and
two sets of convolution filters K1(t),K2(t), the forward propagation can be interpreted as a
Hamiltonian system, where we have a system of PDEs

Ẏ(t) = KT
1 (t)σ(K1(t)Z(t) + b1(t)),

Ż(t) = −KT
2 (t)σ(K2(t)Y(t) + b2(t)).

(2.5)

Here, Y(t) and Z(t) are channel-wise partitions of the input features, and for our purposes
of image classification and segmentation, Ki(t) is the convolution operator, and KT

i (t) is its
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transpose, i = 1, 2. The discretization of equation (2.5) is done using the Verlet integration
since such symplectic methods capture the long time features of Hamiltonian systems really
well [1]. With the Verlet scheme, we arrive at the following pair of coupled equations shown
below. This computation is placed in a Hamiltonian block (see [4]).

Yj+1 = Yj + hKT
j1 σ(Kj1Zj + bj1),

Zj+1 = Zj − hKT
j2 σ(Kj2Yj+1 + bj2).

(2.6)

3. Nonlocal and pseudo-differential operators for Deep Learning. In a Convolutional
Neural Network, the pooling or subsampling of the image and the convolution operations allow
far-away pixels in an image to communicate with each other, thereby exploiting long-range
correlations in an image and improving the predictions made by the network. At the same
time, convolution is a local operation, and therefore each convolutional layer’s values depend
only on the information present in certain local patches of the image. This is known as the
field-of-view problem [23]. The value of a neuron in a convolutional layer only depends on a
certain subset of the input. This region in the input is the receptive field for that neuron. In
learning tasks with images, each neuron in the output layer should ideally have a big receptive
field, i.e. the values of the output neurons should indirectly depend on large parts of the image
so that no important information of the image is left out when making the predictions. The
receptive field size of a neuron can be increased, for example, by stacking more convolutional
layers and thereby making the network deeper. This enlarges the receptive field size linearly
in theory. Meanwhile, pooling or subsampling allows each pixel to cover a larger area and
facilitates information travel over larger distances, which increases the receptive field size
multiplicatively. However, just stacking up convolutional and pooling layers can have several
disadvantages. In a deeper network, for example, the optimization problem (2.2) might be
hard to solve and repeatedly performing local operations can be computationally inefficient.

In this article, we propose to employ additional layers which involve nonlocal interactions.
Long-range and nonlocal dependencies are ubiquitous in several fields, such as financial mar-
kets [7], physical sciences [9], image denoising [2] or image regularization [11]. We thus look at
a few integral-based spatially nonlocal operators that could be used in CNNs. The underlying
and associated partial integro-differential equation (PIDE) is then discretized in a so-called
nonlocal block and inserted in the neural network. By direct computation of interactions
between each pair of pixels or pair of patches in an image, these operators make sure that the
field-of-view increases drastically. Consequently, the information travels larger distances for a
fixed number of layers in a neural network.

3.1. The nonlocal diffusion operator.

Definition 3.1. Let Ω ⊆ Rn and let v : Rn → Rn be any function, then for x,y ∈ Ω, the
nonlocal diffusion operator can be defined as

(3.1) Lv(x) :=

∫
Ω

ω(x,y)[v(y)− v(x)] dy,

where the kernel ω has the following two properties: (i) ω is symmetric: ω(x,y) = ω(y,x),
∀x,y ∈ Ω and (ii) ω is positivity-preserving: ω(x,y) ≥ 0,∀x,y ∈ Ω.
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The kernel can be viewed as a function that measures the affinity or similarity between points
in Ω. The aim is to apply such a spatial-only operator on a discrete image v, where v : Ω→ RC
is the discrete image with C channels, and v(x) is the set of pixel values of all the channels
at a discrete spatial point x ∈ Ω from the image domain Ω (the pixel strips in Figure 2).

Such operators have been an upshot of several image processing tasks. For example, for
x,y ∈ Ω, consider the functional J(u, t) := 1

4

∫
Ω×Ω

ω(x,y)[u(x, t)− u(y, t)]2 dx dy which sums

up weighted variations of the function u, which is similar to total variational denoising in image
processing. While minimizing the functional, the corresponding Euler-Lagrange descent flow
is given by

(3.2) ut(x, t) = −J ′(u)(x, t) = −
∫
Ω

ω(x,y)[u(x, t)− u(y, t)] dy = Lu(x, t).

Therefore, starting from an initial input image u0(x), the associated partial integro-differential
equation (PIDE) can be written as

(3.3) ut(x, t) = Lu(x, t), u(x, 0) = u0(x),

which is essentially a nonlocal weighted linear diffusion equation. The kernel function ω :
Ω×Ω→ R is here assumed to be of Hilbert-Schmidt type [26], i.e.

∫
Ω

∫
Ω

|ω(x,y)|2 dx dy <∞.

There are several interpretations of the nonlocal diffusion operator that arise, e.g., from a
continuous generalization of graph Laplacians or from a random walk Markov chain on Ω.

The nonlocal diffusion operator L has many properties that are similar to a typical elliptic
operator, such as −L being positive semi-definite. It can be shown that the system governed
by equation (3.3) has energy decay [11], i.e.

d

dt
‖u(x, t)‖2L2 =

d

dt

∫
Ω

u(x, t)2 dx ≤ 0 for all x ∈ Ω,
d

dt
Var[u(x, t)] ≤ 0,

where u(x, t) is the solution of equation (3.3). Since the operator L performs diffusion, the
features tend to smooth out over time, and hence reduce the variance of the image/features.
We will see later that, though the nonlocal interactions help in image classification, over-using
it can damp the features leading to loss of information (see Section 5.2).

Next, we look at a few pseudo-differential operators that can also be represented as
integral-based global operators whose implementations introduce nonlocality into the neu-
ral network. The aim is to define a spatial operator O such that the associated forward
propagation for a given input image (or set of feature maps) u0(x) is governed by a PIDE
that is similar to the form

(3.4) ut(x, t) = Ou(x, t), u(x, 0) = u0(x).

For instance, for a propagation following (3.3), we have O = L.
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3.2. The fractional Laplacian operator. Fractional differential operators appear in sev-
eral interesting problems in physical sciences [3] or in financial mathematics [29]. Let us first
define a few related concepts before we define the operator itself.

Definition 3.2. Let Ω ⊆ Rn, 0 < s < 1. The fractional-order Sobolev space is defined as

Hs(Ω) :=

{
v ∈ L2(Ω) :

∫
Ω

∫
Ω

[v(y)− v(x)]2

|x− y|n+2s
dy dx <∞

}
,

where the Gagliardo seminorm and the norm are defined as

|v|2Hs(Ω) :=

∫
Ω

∫
Ω

[v(y)− v(x)]2

|x− y|n+2s
dy dx, ‖v‖Hs(Ω) :=

(
‖v‖2L2(Ω) + |v|2Hs(Ω)

)1/2
.

Definition 3.3. For v ∈ S(Rn), i.e. the Schwartz space of rapidly decreasing C∞ functions
on Rn, 0 < s < 1, the fractional Laplacian operator (−∆)s is defined as the singular integral
operator

(3.5) (−∆)sv(x) := cn,s P.V.

∫
Rn

[v(x)− v(y)]

|x− y|n+2s
dy = cn,s lim

ε→0+

∫
Rn\Bε(x)

[v(x)− v(y)]

|x− y|n+2s
dy,

where P.V. stands for the Cauchy principal value (of the improper integral), cn,s is a constant

depending on n, s and is defined as cn,s = 4sΓ(n/2+s)

πn/2|Γ(−s)| .

Note that this operator can be seen as a special case of the nonlocal diffusion operator
defined by equation (3.1), with kernel ω(x,y) = |x − y|−(n+2s) and with the flipped term
v(x)− v(y) instead of v(y)− v(x). The term is flipped because we want both operators to be
elliptic, and the corresponding Poisson problem for the nonlocal diffusion operator is written
as −Lv(x) = 0, i.e. with an extra negative sign in front, whereas for the pseudo-differential
operator, we have (−∆)sv(x) = 0.

Connection to pseudo-differential operators. The operator (3.5) can in fact be defined
as a pseudo-differential operator (see Section SM1 in the supplementary material for further
details), which shows the origins of the operator and also characterizes the operator in the
Fourier space. Let the Fourier transform and the inverse Fourier transform of v ∈ S(Rn) be
denoted by v̂(ξ) := Fv(ξ) and v(x) := F−1v̂(x), respectively. It can be then shown that the
fractional Laplacian is the pseudo-differential operator [8] with the Fourier symbol (2π|ξ|)2s

and satisfies

(3.6) F ((−∆)sv)(ξ) = (2π|ξ|)2s v̂(ξ) for 0 < s ≤ 1.

For s = 1, we get the classical Laplacian (−∆) with the Fourier symbol (2π|ξ|)2, i.e.

−∆v(x) = −∆(F−1v̂(x)) = −∆
[ ∫
Rn

v̂(ξ)e2πix·ξ dξ
]
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=

∫
Rn

(2π|ξ|)2 v̂(ξ)e2πix·ξ dξ = F−1

(
(2π|ξ|)2 v̂(ξ)

)
.

For classical PDE operators, the corresponding Fourier symbol is generally a polynomial in ξ,
but by using symbols that are not only a function of ξ but also a function x, we arrive at a
large plethora of pseudo-differential operators. It can be shown that the classical Laplacian is
a limit case of the fractional one [33], i.e. for a certain class of bounded functions v, x ∈ Rn,
we have the point-wise limits lims→0+(−∆)sv(x) = v(x), lims→1−(−∆)sv(x) = −∆v(x). Note
that there are several other equivalent definitions of the fractional Laplacian operator that are
defined via heat semi-groups [35], or as an inverse of the Riesz potential, etc. (see [21]). For
our purposes of image classification and segmentation, we will be using the singular integral
operator from Definition 3.3 that defines the output of the operator point-wise.

3.3. The inverse fractional Laplacian operator. Now we define an analogous operator
(−∆)−s for s > 0, i.e. an inverse fractional Laplacian, which, as we will see, is also a nonlocal
operator. Note that, similar to equation (3.6), we have

(3.7) F ((−∆)−sv)(ξ) = (2π|ξ|)−2s v̂(ξ) for 0 < s < n/2.

One needs the restriction 0 < s < n/2 because if s ≥ n/2, the Fourier symbol/multiplier
(2π|ξ|)−2s fails to define a tempered distribution [29]. The symbol (2π|ξ|)−2s is decaying
with respect to s, and, in the sense of distributions (see [32]), such symbols have the Fourier
inverse F−1(|ξ|−2s) = cn,−s|x|−(n−2s). Using the inverse property for convolutions f ∗ g =
F−1{F{f} ·F{g}} and equation (3.7), we get the following definition.

Definition 3.4. For v ∈ S(Rn), 0 < s < n/2, the inverse fractional Laplacian operator
(−∆)−s is defined as the integral operator

(3.8) (−∆)−sv(x) :=
(
cn,−s|x|−(n−2s)

)
∗ v(x) = cn,−s

∫
Rn

v(y)

|x− y|n−2s
dy,

where cn,−s is the constant given by cn,−s = Γ(n/2−s)
4sπn/2Γ(s)

.

The right-hand side of the definition is called the Riesz potential. This singular integral is well-
defined, provided v decays sufficiently rapidly at infinity (see [32]), for instance, if v ∈ Lp(Rn)
with 1 ≤ p < n

2s .
Recently, a fundamental solution for the case s = n/2 has been proposed [34], which

can also be used in the neural network as a nonlocal operation. As pointed out in [32], the
logarithmic kernel defined below can be seen as a vague limit of the Riesz potentials defined
by (3.8).

Definition 3.5. Let v ∈ S(Rn) with
∫
Rn
v = 0, x ∈ Rn, and s = n/2. Then we have

(3.9) (−∆)−sv(x) := cn

∫
Rn

(
− 2 log |x− y| − γ

)
v(y) dy,
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where the Euler-Mascheroni constant γ is given by γ = −
∞∫
0

e−r log r dr ≈ 0.5772156649, and

the constant cn is given by cn = 1
(4π)n/2Γ(n/2)

.

As such, the Riesz potential kernel 1
|x−y|n−2s may not always satisfy the square-integrability

condition. Besides, in the case of the log kernel from equation (3.9), the kernel is no longer
positivity-preserving. While implementing these nonlocal operators for images, methods used
to bypass this issue and to avoid the blowing up of values are discussed in Sections 4.3 and 4.4.
It is interesting to note that the kernels of the pseudo-differential operators are translation
invariant and isotropic. Also, from Definition 3.4, it is clear that the operators from equations
(3.8) and (3.9) can be seen as convolutions on a global scale (spatially), whereas the operators
L and (−∆)s from equations (3.1) and (3.5), respectively, define a diffusion-like operator on
a global scale (spatially).

4. Implementation details. In this section, we first look at the implementation of the
Hamiltonian network that will be used as the base network. Then, several discretization details
about the nonlocal blocks, which contain the proposed integral operators, will be introduced.
We explore a few strategies to reduce the computational effort of such global operators and
discuss how the respective tensors are dealt with when such operators are applied on images
or feature maps. Finally, the general implementation details for the numerical experiments,
including the regularization techniques, are discussed.

4.1. Hamiltonian networks with Verlet scheme. The Hamiltonian network will be used
as the base architecture to ensure stability of the forward propagation, and changes are made
to it by introducing nonlocality in the network. Similar to the ResNet architecture, several
of the Hamiltonian blocks [4] are stacked up to form a Unit and several of these reversible
Units together form the entire network. Figure 1 shows a 2-Unit Hamiltonian network as an
example, where we see that the input is passed through an initial convolution layer and then
through each Unit of the network. Similar to the original ResNet architecture [16], after each

Reversible Unit 1 Reversible Unit 2

C
on

v
.

P
o
ol

in
g

C
on

v
.

1x
1

P
o
o
li
n
g

F
C Cat

Figure 1. The Hamiltonian Network with two Units having three Hamiltonian reversible Blocks each when
used for image classification.

Unit (of m Hamiltonian blocks), a pooling operation reduces the feature map size by half, and
the number of channels is increased by using a 1×1 convolution layer (with ReLU). After the
final Unit, the features are subsampled and passed on to the fully-connected layer (for image
classification tasks), where the predictions are made. The number of Units is kept fixed.

In our case, the networks will always contain three Units, each of which has m Hamilton-
ian blocks. In terms of the ODE/PDE interpretation, each block represents a time step of
the discretization, and the final output YN is the output of the last block in this network.
Therefore, a normal Hamiltonian network has 12m + 2 layers, with 4m layers in each Unit
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(2 convolutions and 2 transposed convolutions per Hamiltonian block). To include the global
operators into the network the nonlocality is added after the second Hamiltonian block in each
Unit, i.e. the feature maps obtained after the second block are passed through the nonlocal
block. The output of the nonlocal block is then fed into the next normal Hamiltonian block.
Hence, altogether we have three additional nonlocal blocks in our network, one in each Unit.

4.2. Nonlocal diffusion operator. Let X ∈ RH×W×C be the input to the nonlocal block
that is supposed to contain the nonlocal interactions. Let Xi denote each pixel of the image,
i.e. for an input X with C channels, Xi ∈ RC stands for the C channel values for each pixel
position. These vectors will be called pixel strips from here on. To implement the nonlocal
diffusion operator L defined by equation (3.1) in the nonlocal block, we discretize the PIDE-
inspired operator using a 2-step computation, which strengthens the nonlocal interactions
between the features:

[B1]i = Xi + hK1

[
1∑

j

ω(Xi,Xj)

∑
j

ω(Xi,Xj)(Xj −Xi)

]
,

[B2]i = Xi + hK2

[
1∑

j

ω(Xi,Xj)

∑
j

ω(Xi,Xj)
(

[B1]j − [B1]i

)]
,

(4.1)

where [B1]i and [B2]i are the individual pixel strips of the intermediate feature maps B1 and
the output feature maps B2 respectively, h is the discretization step size, and K1, K2 are 1×1
convolution operators, followed by ReLU activation and batch normalization. The output B2

is then fed into the next normal block in the Unit.

Relation to Verlet time-discretization. Let us investigate how (4.1) can be interpreted
as a Verlet time-discretization of a system of ODEs, which represent a spatial discretization of
the PIDE (3.4). To this end, set Vold := Xold := X ∈ RC×HW and Wold := −Xold ∈ RC×HW .
Now, for i = 1, . . . ,H ×W , we define a two-step iteration scheme by

Vnew
i = Vold

i + hK1

[
1∑

j

ω(Vold
i ,Vold

j )

∑
j

ω(Vold
i ,Vold

j )(Wold
i −Wold

j )

]
,

Wnew
i = Wold

i − hK2

[
1∑

j

ω(−Wold
i ,−Wold

j )

∑
j

ω(−Wold
i ,−Wold

j )
(
Vnew
j −Vnew

i

)]
.

(4.2)

We directly see that Vnew
i = [B1]i and Xnew

i := −Wnew
i = [B2]i. Moreover, (4.2) is a Verlet

scheme for a specific system of PIDEs as we will see now. To this end, let the RHW×HW -valued
operators Ω1,Ω2 be defined by[

Ω1(X)
]
jk

:=
ω(Xj ,Xk)∑
m ω(Xk,Xm)

and
[
Ω2(X)

]
jk

:=
ω(−Xj ,−Xk)∑
m ω(−Xk,−Xm)

.
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Note that Ω1(Vold) = Ω2(Wold). Furthermore, we define the operator Diff : RC×HW →
RHW×HW×C by

[
Diff(X)

]
jk

= Xk − Xj . With these operators we rewrite (4.2) as ma-

trix/tensor equation

Vnew = Vold + hK1

[
diag12

(
Ω1(Vold) Diff(Wold)

)T]
,

Wnew = Wold − hK2

[
− diag12

(
Ω2(Wold) Diff(Vnew)

)T]
,

where diag12 : RHW×HW×C → RHW×C denotes the diagonal operator with respect to the first
two dimensions, i.e. [diag12(Y)]jk := Yjjk. Note that the multiplication of Ω1 or Ω2 with the
output of the Diff operator has to be understood in analogy to a multiplication between a
HW ×HW matrix and a HW ×HWC matrix. With this, we can finally define the nonlinear
system of ODEs

V̇(t) = K1(t)

(
diag12

(
Ω1(V(t)) Diff(W(t))

)T)
,

Ẇ(t) = −K2(t)

(
− diag12

(
Ω2(W(t)) Diff(V(t))

)T)
.

(4.3)

Now it is easy to observe that the Verlet time-discretization of this system results in (4.2).
The latter resembles a spatially discretized variant of

ut(x, t) = Ou(x, t), u(x, 0) = u0(x),

with O = L and an additional outer convolution by K1 and K2. This has to be seen as an
analogy to the system (2.5) and its time-discretization (2.6) from [4]. Thus, our nonlocal block
iteration (4.1) resembles the Verlet discretization of a specific spatially discretized PIDE.

Affinity kernel and outer convolution. There are several things to note here regarding the
kernel and the 1×1 convolution. The kernel ω(x,y) measures the affinity or similarity between
each pair of pixel strips of the image/feature maps. For choosing the right kernel, there are
several suggestions made by Wang, Girshick, Gupta et al. in [39], such as the Gaussian

function ex
Ty, the embedded Gaussian eθ(x)Tφ(y) and the embedded dot product θ(x)Tφ(y).

All these kernels seem to work equally well. We will be using the scaled embedded dot product
λθ(x)Tφ(y), where θ and φ are 1× 1 convolutional embeddings, and λ > 0 is a scaling factor.
Essentially, it means that the input X is passed through two different 1 × 1 convolutions to
obtain embeddings θ(X) and φ(X). Then the kernel ω measures the affinity between the
pairs of pixel strips θ(Xi) and φ(Xj) (see Figure 2). To reduce complexity, subsampling, e.g.
pooling, can be applied within a pixel strip, see Figure 2 (right).

One can also use the scaled Gaussian kernel if one needs a positivity-preserving kernel
eλθ(x)Tφ(y). Note that the embedded kernels are not symmetric. If one needs a symmetric
kernel with embeddings of the input, then one can pre-embed the features to get θ(X) and
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then feed it to the PIDE-inspired nonlocal block with the kernel ω(Xi,Xj) in (4.1) replaced

by ω(θ(Xi), θ(Xj)). Then one can use the scaled Gaussian kernel ω(x,y) = eλx
Ty or the

scaled dot product ω(x,y) = λxTy, both of which are symmetric. The term
∑

j ω(Xi,Xj)

Figure 2. Pixel strips of embedded versions of X with C channels, which are used to compute the unsub-
sampled kernel entry ω(Xi,Xj) (left) and the subsampled version of the kernel entry ω(Xi, X̂j) (right).

is a normalizing factor. For the sake of simplicity, and for easier gradient computations, as
suggested in [39], we choose this factor to be N , where N = H ×W is the number of pixel
strips in the input X. For instance, in Figure 2, the number of pixel strips is 36 for a 6 × 6
image. Without this normalizing factor, the computations might blow up for inputs of larger
sizes.

After the normalization, a 1 × 1 convolution K1 is applied, along with ReLU and batch
normalization, and then the result is added to the pixel strip of the original input, i.e. Xi.
Instead of simply discretizing the PIDE (equations (3.3) and (3.4)) using the forward Euler
scheme, this computation is iteratively repeated several times, as shown in Figure 3. This
allows us to extract more nonlocal information from the dataset. The advantage of this

X
X

S
ta
g
e
1

h +B1

S
ta
g
e
2

h +B2 B2

Figure 3. The two-stage computation of a Nonlocal Block with skip connections.

multi-stage operation is that one can perform nonlocal operations several times, which widens
the field-of-view of the network further, but the kernel ω is computed only once at the start,
which saves computational time and effort. At the same time, one cannot have too many
stages in one nonlocal block because, for instance, after Stage 5, we have the output B5, but
the pre-computed kernel would fail to characterize the affinity between pairs of pixel strips
of the features properly since the features would change quite a bit after each stage (see
Section 5.2). Here, we restrict ourselves to a two-stage forward propagation, i.e. we repeat
the computation twice.



DEEP NEURAL NETWORKS AND PIDE DISCRETIZATIONS 13

It is important to note that this nonlocal block differs from the one suggested in [37] be-
cause, as shown in Figure 3, it contains identity skip connections. Similar to skip connections
in ResNets, which have performed well for deep networks, skip connections in the nonlocal
block are introduced to make sure that the nonlocal block does not impede the flow of in-
formation, which would force the network to perform worse. The experiments in Section 5.1
confirm this, showing that including skip connections in the nonlocal computations can be
beneficial. This way, in the presence of nonlocal blocks, the network at least does not deliver
a worse performance than a network without the nonlocality in the worst case. The exact
details of how the tensors are dealt with and propagated forward in the nonlocal block are
shown in SM3 in the supplementary material.

4.3. Fractional Laplacian operator (−∆)s. As discussed before, the fractional Laplacian
operator (3.5) can be seen as a special case of the nonlocal diffusion operator with kernel
ω(x,y) = |x−y|−(n+2s). Thus, the discretization can follow a similar procedure. In this case,
we have the two-stage forward propagation

[B1]i = Xi + hK1

[
cn,s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n+2s

2

(Xi −Xj)

]
,

[B2]i = Xi + hK2

[
cn,s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n+2s

2

(
[B1]i − [B1]j

)]
,

(4.4)

where θ and φ are again 1× 1 convolutional embeddings, ‖ · ‖2 is the L2 norm, 0 < s < 1, and
λ > 0 is a scaling constant that is used to have greater control over the diffusion kernel. A
small value of λ leads to a weak interaction between the different pixel strips, whereas a large
value of λ damps the signal quickly. The rest of the expression is implemented in a similar
fashion, with normalizing constant N , etc (see Section SM3 in the supplementary material
for further details). The forward propagation of the features through this 2-stage process can
be again seen as a discretization of an underlying PIDE (equation (3.4) with O = L).

Besides, we have a singularity in the kernel if the embeddings of the pixel strips, i.e. θ(Xi)
and φ(Xj), are the same. From Section SM2 in the supplementary material, we know that
there is no net contribution to the integral when y→ x. Hence we just perform a safe divide,
i.e. the kernel entry ω(Xi,Xj) = λ∥∥θ(Xi)−φ(Xj)

∥∥n+2s

2

is replaced with 0 if the denominator

turns out to be zero.

4.4. Inverse fractional Laplacian operator (−∆)−s. The inverse fractional Laplacian
operator for 0 < s < n/2, defined by equation (3.8), can be discretized in a similar fashion
using a two-stage method with skip connections, i.e.
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[B1]i = Xi + hK1

[
cn,−s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n−2s

2

Xj

]
,

[B2]i = Xi + hK2

[
cn,−s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n−2s

2

[B1]j

]
.

(4.5)

For s = n/2, we have a log kernel (3.9), which is implemented in the nonlocal block as

[B1]i = Xi + hK1

[
cn∑

j

ω(Xi,Xj)

∑
j

(
− 2λ log

(∥∥θ(Xi)− φ(Xj)
∥∥

2

)
− γ
)
Xj

]
,

[B2]i = Xi + hK2

[
cn∑

j

ω(Xi,Xj)

∑
j

(
− 2λ log

(∥∥θ(Xi)− φ(Xj)
∥∥

2

)
− γ
)

[B1]j

]
.

(4.6)

For the case 0 < s < n/2, the kernel entry is again replaced with zero, in case the denominator
happens to be zero. For the case s = n/2, if the term log

(
‖θ(Xi)− φ(Xj)‖2

)
turns out to be

undefined, the term is then replaced by − γ
2λ so that it does not contribute to the overall sum.

These two operators are different from the previous two discussed in this section. While for
the diffusion-like operators, the kernel is integrated with the term Xj−Xi (and [B1]j− [B1]i),
for these two operators, we have the term Xj (and [B1]j) only. This is reflected in the per-
formance of the overall network, as we will see in Section 5.1. The computations and forward
propagations of the tensors for these two nonlocal blocks with and without subsampling are
treated in a similar fashion as discussed before (see Figure SM2 in the supplementary mate-
rial).

The PIDE-based nonlocal blocks discussed here have several advantages over other layers
in the neural network. Firstly, it is clear that, for all the operators introduced here, the pixel
strips’ values of the nonlocal block output depend on each pixel strip of the input tensor. This
block is also different from a fully-connected layer because it computes activations based on
relationships between different regions of the image, and these long-range dependencies are a
function of the input data. This is different in a fully-connected layer, where the relationship
is established using trainable weights. Secondly, a fully-connected layer can usually only be
added at the end of the network due to computational cost reasons, and the local information
is lost by flattening the image. On the other hand, the nonlocal block can be added anywhere
in the network, and it preserves the 2D structure of images. Besides, the output and input
shapes of this implementation are the same. Therefore, this block can be plugged into any
neural network architecture associated with computer vision to accelerate the communication
of information across pixels.

Note furthermore that the analogy to a Verlet time-discretization of a PIDE system can
again easily be deduced as in Section 4.2. More specifically, the Diff operator in (4.3) and its
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implicit application in (4.2) just need to be substituted by the identity operator to obtain the
corresponding systems for this case.

4.5. Regularization. The weight-decay or L2 regularization will be used in our experi-
ments. It penalizes large weights in the hidden layers of the network and is equivalent to
the well-known Tikhonov regularization. Let K denote some (convolutional) weights of the
network, then the L2 regularizer is given by

(4.7) R1(K) =
α1

2
‖K‖2F ,

where ‖ · ‖F represents the Frobenius norm, and α1 is the regularization hyperparameter that
controls the trade-off between larger and smaller trainable weights (see Section SM4).

For a stable forward propagation, we would ideally want the weight matrices K(t) to
change smoothly with time, i.e. we would like convolution weights to be piecewise smooth in
time. To this end, as suggested in [4], we use weight smoothness decay in combination with
L2 regularization. The smooth weight decay can be written as

(4.8) R2(K) = α2 h
N−1∑
j=1

2∑
k=1

∥∥∥∥Kj,k −Kj+1,k

h

∥∥∥∥2

F

,

where h is the step size, α2 is again a hyperparameter (see Section SM4), and j represents each
time step or each block of the PDE-based neural network. Here it is assumed that there are
two convolution layers/weights K1 and K2 in each block/time step (in Hamiltonian blocks,
for example). Because of the unique nature of nonlocal blocks, the weight smoothness decay
is only applied to the normal blocks and not to the nonlocal blocks, whereas L2 weight decay
is applied to all the convolutional network weights. Both regularization terms are then added
to the objective function (2.2), which the optimizer tries to then minimize.

4.6. Further implementation details. After the starting layer of 3× 3 convolutions, the
original Hamiltonian network consists of 3 Units [4] with m Hamiltonian blocks each. Average
pooling with pool size 2 is used to decrease the size of the feature map between the Units,
followed by 1 × 1 convolution (with ReLU) instead of zero-padding to increase the number
of channels. The convolutions within each block are all 3× 3 convolutions with spatial zero-
padding to maintain feature map size. Further implementation details regarding the choice of
hyperparameters etc. can be found in the supplementary material (Section SM4).

The nonlocal block is then added after the second block in each Unit, and this network
is trained and tested on several image classification benchmark datasets, such as CIFAR-10,
CIFAR-100 [19] and STL-10 [5]. The networks are also used for the semantic segmentation
task in autonomous driving. To this end, the BDD100K dataset [40] is used, which is a
large-scale dataset of visual driving scenes. The resolution of each image in this dataset is
1280×720. To demonstrate the performance for the segmentation task, we use small networks,
and therefore we resize the images to a resolution of 160×90. This is done by removing every
second row and column from each image and performing the same operation iteratively on
the resulting image.

For training with CIFAR-10 and CIFAR-100, the mini-batch size is kept at 100. The
per-pixel mean from the input image is subtracted before training [20], and the means of



16 B.BOHN, M. GRIEBEL, AND D. KANNAN

the training data are used to perform per-pixel mean subtraction on the test data. Common
data augmentation techniques [22] are performed, such as padding 4 zeros around the image,
followed by random cropping and random horizontal flipping. This makes the network more
robust and helps it to generalize better. At the end of the network, before the fully-connected
layer, we have an average pooling layer with a pool size of 2 (Figure 1). For subsampling
within the nonlocal block, max-pooling is performed with a pool size of 2, i.e. 2 × 2 patches
of the image are used to compute the affinity kernel ω.

For the STL-10 dataset, the mini-batch size is 50. The same preprocessing and data
augmentation techniques are used but with a padding of 12 zeros around the image before
cropping, instead of 4, because the images in the STL-10 dataset are significantly larger. At
the end of the network, before the fully-connected layer, we have an average pooling layer
with pool size 8. For subsampling within the nonlocal block, max-pooling is performed with
a pool size of 4 in this case.

For the segmentation task with the BDD100K dataset, the mini-batch is of size 8. This
value is intentionally kept small to avoid a large memory footprint due to the kernel computa-
tion and the relatively high image resolution. For the data augmentation, the per-pixel mean
subtraction is performed, and then the image is randomly flipped horizontally. In a usual
neural network for semantic segmentation tasks, the image is subsampled several times and
then upsampled again to get a high-dimensional output. We use a simple architectural design
here, i.e. the pooling layers that are shown in Figure 1 are left out. This way, the spatial di-
mensions of the image are maintained. At the end of the network, instead of a fully-connected
layer, the output of the last unit is passed through a 1× 1 convolutional layer with 20 filters,
which gives us the prediction of each of the pixels in the image. For subsampling within the
nonlocal block, max-pooling is performed with a pool size of 3.

5. Numerical Experiments. We will denote the networks with the nonlocal blocks as
nonlocal Hamiltonian networks, and the one without the nonlocality is just called Hamiltonian
network. Each experiment is run five times with different random seeds, and the median test
accuracy is reported in each case. In [4], the smallest Hamiltonian network proposed is a
network with 74 layers, with 6 Hamiltonian blocks in each of the three Units (6-6-6). The
initial convolutional layer has 32 filters, and the number of channels in each Unit is {32, 64,
112}. Such architectures with three Units have been used in ResNets and its variants, and
have become a common blueprint for a well-performing CNN. We stick to the simple (6-6-6)
architecture for our experiments. The last Unit intentionally has 112 channels to make sure
that the resulting network is comparable to the baseline ResNet-44, in terms of the number
of trainable parameters.

5.1. Training on benchmark datasets. Firstly, the nonlocal Hamiltonian networks are
tested on the benchmark datasets CIFAR-10, CIFAR-100 and STL-10. The original Hamil-
tonian network, ResNet-44 and PreResNet-20 [17] are used as baseline networks for comparison
and are trained on each of the three datasets. The main results with the test accuracies are
shown in Table 1. The best result for each benchmark dataset is marked in boldface.

The figures in Table 1 show that all of the nonlocal Hamiltonian networks perform better
on the benchmark datasets than the baseline networks. They also have fewer parameters
than the baseline networks of ResNet and PreResNet networks (for CIFAR-10 and STL-
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Table 1
Test accuracies on benchmark datasets for different nonlocal Hamiltonian networks.

Network
CIFAR-10 CIFAR-100 STL-10

Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

ResNet-44 0.66 92.64 0.66 69.51 0.66 75.79

PreResNet-20 0.57 92.35 0.59 71.07 0.57 77.39

Hamiltonian-74 0.50 92.75 0.67 70.38 0.50 79.95

Nonlocal diffusion L

0.56

93.27

0.72

71.81

0.55

82.62

Pseudo-differential (−∆)1/2 93.21 71.84 81.88

Pseudo-differential (−∆)−1/2 93.08 71.24 81.56

Pseudo-differential (−∆)−1 92.88 71.25 80.73

10). The nonlocal diffusion L network performs the best, closely followed by the pseudo-
differential (−∆)1/2 network, which can be seen as a special case of the nonlocal diffusion
operator, as pointed out in Section 3.2. The inverse Laplacian operator (−∆)−1 with the log
kernel performs the worst, but it nevertheless outperforms the baseline networks. Besides, the
accuracies of our networks are rather comparable to that of ResNet-56 and ResNet-110 and
not to ResNet-44 (see [16]). This reiterates the fact that the nonlocal connections and their
larger receptive fields somewhat compress the ResNet-like architectures. These connections
partially alleviate the necessity to have very deep networks, and hence, we can save training
time by training shallower networks with nonlocal blocks in them.

The nonlocal diffusion network performs better than the one proposed in [37], which did
not have any skip connections in the nonlocal block. This suggests that introducing skip
connections within the nonlocal block makes sure that the network learns only the update
(or the residual) made to the identity function, and hence avoids any impedance when the
information travels through the nonlocal block.

The nonlocal diffusion L network and the pseudo-differential (−∆)1/2 network perform
comparatively better than the other two proposed neural networks. This is possibly because
of the difference term [u(x) − u(y)] (and [u(y) − u(x)]). When computing each pixel in
the output feature map, this term compares and computes the relative differences between
the neighboring pixel values of the input feature map, whereas the operator (−∆)−1/2 just
computes a weighted sum of u(y) (see Definition 3.4). Also, we see the biggest increase in
accuracy for the STL-10 dataset. This is due to the fact that the images in this dataset are
relatively larger than the ones in CIFAR-10/100, and therefore the nonlocality plays a more
vital role in widening the receptive field of the network, which enables direct communication
between pixels on opposite ends of the image. As an example, the test accuracy curves (till the
160th epoch) for the nonlocal diffusion network with each of the three datasets are shown in
Figure 4. The Hamiltonian-74 network is used for comparison since it has the best performance
out of all the three baseline networks.

The nonlocal Hamiltonian networks can actually achieve better results for the STL-10
dataset. With a larger step size h, around 84%-84.5% test accuracy on STL-10 can be attained.
For example, the pseudo-differential (−∆)1/2 network was trained with a higher value of h,
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Figure 4. Test accuracy curves for the nonlocal diffusion L network in comparison to the original Hamil-
tonian network.

namely h = 0.15, and it achieved a median test accuracy of 84.12%. The value of h is
intentionally kept low because, as pointed out in [41], a small h encourages the model to have
smaller weights. A model with larger weights tends to suffer from overfitting. Such models
are also vulnerable to adversarial attacks.

It has been seen that although the pseudo-differential (−∆)1/2 network performed slightly
worse than the nonlocal diffusion network on the benchmark datasets (Section 5.1), it is at
times more robust to noise and perturbations [13] than the nonlocal diffusion and Hamiltonian
networks. This shows that a higher test accuracy of a network does not automatically mean
more robustness to noise. The experiments have also shown that the nonlocal Hamiltonian
networks, on average, need lesser training data to learn the features in the dataset and to
achieve a certain generalization power.

5.2. Multi-stage nonlocal blocks. The discretizations of the nonlocal operators relate to
a 2-stage computation (Figure 3). To see the effect of the number of stages in the nonlocal
block, the nonlocal diffusion network with four stages is taken as an example and is trained
on the datasets. The results are shown in Table 2.

Table 2
Test accuracies on benchmark datasets for the nonlocal diffusion L network with different number of stages

in the nonlocal block.

# Stages
CIFAR-10 CIFAR-100 STL-10

Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

2 0.56 93.27 0.72 71.81 0.55 82.62

4 0.59 93.09 0.76 71.25 0.59 81.36

The figures indicate that too many stages in the nonlocal block damp the signal in the
network, and hence, the network performs worse or at least does not perform any better than
the network with a 2-stage nonlocal block. This is in line with the observations made in
[37]. Operators similar to the inverse fractional Laplacian also suffer from instabilities if the
number of stages is increased (see [37]). Therefore, although a nonlocal operation of this kind
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Table 3
Pixel accuracies and meanIoU for the semantic segmentation task on the BDD100K dataset using the

nonlocal Hamiltonian networks.

Network
BDD100K

Params (M) P. Acc. (%) mIoU (%)

ResNet-44 0.66 83.50 63.42

PreResNet-20 0.57 77.86 52.12

Hamiltonian-74 0.49 84.47 64.40

Nonlocal diffusion L

0.54

84.80 67.01

Pseudo-differential (−∆)1/2 85.24 66.71

Pseudo-differential (−∆)−1/2 85.21 66.52

Pseudo-differential (−∆)−1 84.95 66.26

improves performance when the number of stages is kept low, overusing the nonlocal operation
can lead to a lossy network.

5.3. Semantic segmentation on BDD100K. The aim of semantic segmentation is to
predict the class of each pixel and thereby partition the image into different image classes or
objects. This gives us an idea of where the object is present in the image and which pixels
belong to it. This is of paramount importance, for example, for self-driving cars because the
position and type of the object in front are necessary inputs to any self-driving algorithm.

The nonlocal Hamiltonian networks are used to segment images from the BDD100K
dataset [40], which consists of images with everyday driving scenarios. An example of an
image, along with its segmentation mask, is provided in Figure 5. Our aim here is to show
the increase in performance due to the presence of nonlocal connections and not to challenge
the state-of-the-art networks. Therefore, we employ simple architectures with no pooling lay-
ers to maintain the spatial dimension of the feature maps, and we work with smaller image
resolutions, as mentioned in Section 4.6.

Figure 5. Input images and corresponding labels from Berkeley DeepDrive (BDD100K) dataset for the
semantic segmentation task [40].

To evaluate the performance, two metrics will be used. The first one is the pixel accuracy.
The second metric that we use is the Intersection-over-Union (IoU) metric (or the Jaccard
index ). This is calculated on a per-class basis, and the mean is then taken over all the classes,
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which gives us the meanIoU (mIoU) metric. The results for the proposed neural networks can
be seen in Table 3. When we consider the pixel accuracy and the mIoU metric, the nonlocal
Hamiltonian networks perform better than the baseline networks. The nonlocal Hamiltonian
networks’ metric values are very close to each other. We see that the nonlocal Hamiltonian
networks have a performance gain of around 2–2.5 mIoU percentage points when we compare
it to the original Hamiltonian network and around 3–3.5 mIoU percentage points when we
compare it to ResNet-44. To make sure that the networks actually learn to segment the images
from driving scenes into semantically meaningful parts, we look at the predictions made by
the networks. Figure 6 shows the true label of a test image (with a taxi) and the different
predictions made by some of the networks discussed above. The results discussed here can be

Figure 6. The true labels/masks of a test image from the BDD100K dataset and the predictions made by
the different networks.

improved by performing segmentation using encoder-decoder models like U-Net [27] or data
augmentation techniques, which we did deliberately not use here to completely focus on the
comparison of the networks architectures themselves.

6. Computational cost and forward propagation stability.

6.1. Computational cost of the nonlocal blocks. The nonlocal blocks come with a com-
putational cost that needs to be taken into consideration while inserting them into any neural
network. The number of FLOPs (multiply-adds) associated with the proposed networks for
the image classification task are shown in Table 4. To ensure the stability of the forward
propagation, we can observe that the Hamiltonian-74 network has roughly 1.5 times more
FLOPs than the traditional ResNet-44. Also, the ResNets generally have only two convolu-
tional layers in a Residual block. In comparison, Hamiltonian blocks have 2 convolutions and
2 transposed convolutions, which explains the higher number of FLOPs. The nonlocal blocks
by themselves add only little extra floating-point operations for CIFAR-10 and CIFAR-100
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Table 4
Number of floating-point operations for each of the networks when trained on the image classification

benchmark datasets.

Network
CIFAR-10 CIFAR-100 STL-10

FLOPs (M) FLOPs (M) FLOPs (M)

ResNet-44 98.3 98.3 879.5

Hamiltonian-74 159.6 159.9 1432.5

Nonlocal diffusion L 192.9 193.2 2003.7

Pseudo-differential (−∆)1/2 193.4 193.7 2012.5

Pseudo-differential (−∆)−1/2 193.2 193.5 2011.0

Pseudo-differential (−∆)−1 193.6 193.9 2019.5

but nevertheless help the networks achieve better accuracy on the benchmark datasets. For
the effect of subsampling on the computational costs for STL-10 computations, see section
SM5 in the supplementary material.

6.2. Stability of the PIDE-based forward propagation. It is crucial that the newly in-
troduced PIDE-based nonlocal block does not introduce any instabilities in the forward prop-
agation. If it did, then it would nullify the advantage of the PDE-based Hamiltonian network
having the stability of the forward propagation. The spectral norms of the weight matrices
have a major role to play in this regard. To investigate this, we look at the spectral nature of
the weights in the nonlocal block.

Other than the embeddings θ and φ, the nonlocal block has two 1× 1 convolutional layers
K1 and K2 for the two stages. For the four nonlocal Hamiltonian networks used in Section
5.1, the weights of the convolution layers have the dimensions K1,2 ∈ R32×32, K1,2 ∈ R64×64,
K1,2 ∈ R112×112, and they belong to the three Units of the network, respectively. The outputs
of these transformations are the feature maps that are used later on in other blocks of the
network. Thus, we look at the eigenvalues of these matrices to see how the features are
transformed by these trainable weights. Figure 7 shows the real parts of the eigenvalues of
the weight matrices K1 and K2 in each Unit of the nonlocal diffusion network while training
on STL-10. The real parts of the eigenvalues for the other nonlocal Hamiltonian networks can
be found in the supplementary material.

The plots show that the real parts of the eigenvalues of the trainable weights are mostly
very close to zero. The “+” sign in each plot indicates the fraction of eigenvalues that have
positive real parts. In the ideal case, this value should stay close to 0.5. Too many eigenvalues
with positive real parts would lead to amplification of the signal resulting in instabilities in the
forward propagation. On the other hand, too many eigenvalues with negative real parts would
lead to a lossy network. The plots for the nonlocal diffusion network are pretty symmetric.
The plots for the pseudo-differential networks (−∆)1/2, (−∆)−1/2 and (−∆)−1 (Figures SM3,
SM4, and SM5 in the supplementary material) show that the real parts are slightly more
asymmetrically distributed, which partly explains their relatively worse performance.

There is another way of looking at the properties of the transformations carried out by
the trainable weight matrices K1 and K2. Let K ∈ {K1,K2}. Then the amplification or
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Figure 7. Real parts of the eigenvalues of weight matrices K1, K2 in the nonlocal block placed in each Unit
of the nonlocal diffusion L network while training on STL-10.

damping of the features by K ∈ Rn×n is mainly determined by the associated quadratic form
xTKx ∈ R, for x ∈ Rn. We can decompose K into a symmetric and an antisymmetric part

K =
K +KT

2
+
K −KT

2
= Ks +Kas.

Then the quadratic form of K is given by xTKx = xTKsx, where the quadratic form of the
antisymmetric matrix Kas is zero. Therefore, the quadratic form of the symmetric part of K,
i.e. the quadratic form of Ks, determines the spectral properties of the transformations. Since
Ks is symmetric, the eigenvalues are all real.

Figure 8 shows the eigenvalues of the symmetric parts of the weight matrices K1 and K2 in
each Unit in the nonlocal diffusion network while training on STL-10. The eigenvalues of the
symmetric parts for the other nonlocal Hamiltonian networks can be found in the supplemen-
tary material (Figures SM6, SM7, and SM8). The “+” sign in each plot indicates the fraction
of positive eigenvalues. The plots show that most of the eigenvalues are well-bounded and
symmetric, unlike in the case of the network suggested in [39], where the eigenvalues of the
symmetric part are significantly larger when multiple stages are added to the nonlocal block,
as shown in [37]. This well-boundedness of the eigenvalues makes the task of the optimizer
easier, which leads to faster convergence.

7. Conclusion. The proposed neural networks achieve better accuracy than the original
Hamiltonian model and the widely-used state-of-the-art ResNets. Due to an appropriate
combination of local and nonlocal information, the network gets a more comprehensive view
of each example during training. The nonlocal diffusion L network and the pseudo-differential
(−∆)s network perform slightly better than the other two proposed networks. Moreover,
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Figure 8. Eigenvalues of the symmetric parts of weight matrices K1, K2 in the nonlocal block placed in
each Unit of the nonlocal diffusion L network while training on STL-10.

the PIDE-based nonlocal block maintains the 2D structure of the images and has the same
output shape as the input shape. Hence, they can be seamlessly inserted into any network.
This can be useful if a neural network is to be trained and tested on a dataset that warrants
nonlocal connections between the regions of the image. Using spectral properties of the
transformation matrices, we showed that the nonlocal blocks do not destabilize the original
Hamiltonian network in any way, and consequently, the stability of the forward propagation
is still preserved.
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