
Endenicher Allee 19b � 53115 Bonn � Germany
phone +49 228 73-69828 � fax +49 228 73-69847

www.ins.uni-bonn.de

B. Bohn, M. Griebel, J. Oettershagen

Optimally rotated coordinate systems for
adaptive least-squares regression on sparse

grids

INS Preprint No. 1812

February 2019

Optimally rotated coordinate systems for adaptive
least-squares regression on sparse grids∗

Bastian Bohn† Michael Griebel‡† Jens Oettershagen†

Abstract

For low-dimensional data sets with a large amount of data points,
standard kernel methods are usually not feasible for regression anymore.
Besides simple linear models or involved heuristic deep learning models,
grid-based discretizations of larger (kernel) model classes lead to algo-
rithms, which naturally scale linearly in the amount of data points. For
moderate-dimensional or high-dimensional regression tasks, these grid-
based discretizations suffer from the curse of dimensionality. Here, sparse
grid methods have proven to circumvent this problem to a large extent.
In this context, space- and dimension-adaptive sparse grids, which can
detect and exploit a given low effective dimensionality of nominally high-
dimensional data, are particularly successful. They nevertheless rely on
an axis-aligned structure of the solution and exhibit issues for data with
predominantly skewed and rotated coordinates.
In this paper we propose a preprocessing approach for these adaptive
sparse grid algorithms that determines an optimized, problem-dependent
coordinate system and, thus, reduces the effective dimensionality of a
given data set in the ANOVA sense. We provide numerical examples on
synthetic data as well as real-world data to show how an adaptive sparse
grid least squares algorithm benefits from our preprocessing method.
Keywords: effective dimensionality, ANOVA decomposition, adaptive
sparse grids, least-squares regression.

1 Introduction

In function regression, we determine f from an admissible set S which best
approximates given data (ti, xi)

N
i=1 ⊂ Rd × R, i.e. f(ti) ≈ xi for i = 1, . . . , N .

While for deep neural network classes S a complete theoretical foundation is
still missing, the famous representer theorem provides a direct way to compute
f if S is a subset of a reproducing kernel Hilbert space H [11]. However, the
cost complexity of the underlying algorithm usually scales at least quadratically
in N .

An easy and straightforward way to achieve linear cost complexity with re-
spect to N is to employ grid-based discretizations of localized functions from

∗Supported by CRC 1060 - The Mathematics of Emergent Effects funded by the Deutsche
Forschungsgemeinschaft.
†Institute for Numerical Simulation, University of Bonn, Endenicher Allee 19b, 53115

Bonn, Germany, bohn/griebel/oettersh@ins.uni-bonn.de
‡Fraunhofer Center for Machine Learning, Fraunhofer Institute for Algorithms and Scien-

tific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

1

H. However, standard tensor grids can only be used up to dimension d = 3
because of the exponential dependence of the underlying computational costs
with respect to d. This effect resembles the well-known curse of dimensionality.
Using a sparse grid discretization, which relies on the boundedness of mixed
derivatives up to a fixed order, this exponential dependence is mitigated signif-
icantly while the discretization error is almost of the same order as for tensor
grids [2].

A further reduction of the costs in sparse grid regression can be achieved
when adaptive variants are employed. Here, the algorithm adapts in an a pos-
teriori way to the underlying structure of the data [10]. This is particularly
helpful if f only depends on k < d variables and is (nearly) constant along the
remaining d − k directions. In this case k is called the effective dimension of
f . Note that this is directly related to the concept of an analysis of variance
(ANOVA) decomposition in statistics. Furthermore, there is a direct connection
between the ANOVA decomposition and certain sparse grid discretizations, see
also [5].

Instead of using an Euclidean coordinate system, it is common to employ
problem-dependent coordinates which simplify the description of the underly-
ing problem: Any (sufficiently differentiable) bijection ψ : Rd → Rd describes
a coordinate transformation. Then, if f : Rd → R approximates the data
(ti, xi), the function f̄ = f ◦ ψ : Rd → R approximates the transformed dataset
(ψ−1(ti), xi)

N
i=1. The question is which bijections ψ yield a small effective di-

mension of the transformed data set in the ANOVA sense, are still sufficiently
cheap to represent, and allow for a more efficient approximation of f̄ than the
one using ψ = id.

In this work, we concentrate on problems of effective (truncation) dimension
k < d. More specifically, for a problem with effective dimension k, we will
focus on transformations from the Stiefel manifold Vk(Rd), which consists of
all orthogonal k-frames in Rd. Our goal is to find a Q ∈ Vk(Rd) such that
the computational costs of learning the data (QT ti, xi) are as small as possible.
However, we do not want to solve the regression problem (QT ti, xi)

N
i=1 for

each candidate Q ∈ Vk(Rd) involved in the optimization process. Therefore,
we make an approximation to the true function f by a homogeneous d-variate

polynomial p ∈ P(d)
m of total degree less than m, which has relatively few degrees

of freedom and is invariant under orthogonal transformations. This means that
we can determine p before searching for the optimal Q ∈ Vk(Rd) by minimizing
the effective dimension of the low degree polynomial p ◦ Q with respect to
Q ∈ Vk(Rd). It is important to note that a crude approximation p to f is
sufficient in our case since we are only interested in the rough behavior of the
lower-order ANOVA terms of f ◦ Q and not in f itself. Overall, we aim to
efficiently determine Q ∈ Vk(Rd) such that f ◦Q can be well approximated by
an adaptive sparse grid.

There are similarities to other established dimensionality reduction and data
transformation algorithms. For instance, a linear preprocessing technique to
solve multivariate integration problems has been used in [7, 8]. Maximizing

2

gradients of transformed functions is the main idea behind the active subspace
method [3]. An active subspace approach based on polynomial surrogates for
data-driven tasks can be found in [4]. One of the main differences to our pro-
posed method is that the authors directly minimize the least-squares regression
error of a linearly transformed polynomial. This leads to a coupled optimiza-
tion problem in the polynomial p and the linear transformation Q. In our case,
however, we exploit the fact that a sparse grid discretization directly benefits
from transformations Q for which p◦Q has a small effective ANOVA dimension.
Therefore, we will fix p a priorily and then search for a Q which minimizes the
effective dimension of p ◦Q. Subsequently, we will learn a sparse grid function
to approximate f ◦Q. In this way, we rely on the polynomial surrogate p only to
determine Q. This makes the optimization with respect to Q much easier and
still allows for efficient sparse grid discretizations of the underlying regression
problem. This procedure is also sketched in Figure 1.

The remainder of this article is organized as follows: In Section 2, we in-
troduce the ANOVA-decomposition and concepts of effective dimensionality.
In Section 3, we reduce the effective dimensionality using coordinate systems
from Vk(Rd). In Section 4, we apply this method to machine learning by trans-
forming a data set and learning an adaptive sparse grid approximation on the
transformed set. Section 5 contains numerical results to validate the benefit of
the coordinate transformation. In Section 6 we give some concluding remarks.

Fig. 1: Data approximated by a polynomial (left). Polynomial and data after
transformation (mid). Adaptive sparse grid approximation of transformed data.
(right)

2 Effective dimensionality of functions

In this section we recall the classical analysis-of-variance (ANOVA) decomposi-
tion and the concept of effective dimensionality. To this end, let Ω ⊆ R be a fixed
domain. For all subsets u ⊆ D := {1, 2, . . . , d}, we define the |u|-dimensional
product domains Ω|u| ⊆ R|u|. In the following, we write uc to denote D \ u.

Let dµ(x) =
∏d
j=1 dµj(xj) be a d-dimensional product of probability measures

µj on the Borel-algebra of Ω. The associated measures on Ω|u| are given by
dµu(xu) :=

∏
j∈u dµj(xj), where xu denotes the |u|-dimensional vector which

3

contains those components of x with indices in u. Let T (d) := L2(Ωd, µ) be
endowed with the inner product

(f, g)µ :=

∫
Ωd
f(x)g(x) dµ(x)

and its induced norm ‖f‖22,µ =
∫

Ωd
f(x)2 dµ(x). For u ⊂ D, the spaces T u :=

L2(Ωu, µu) will be treated as subspaces of T (d) by viewing their elements as
d-variate functions that only depend on the variables j ∈ u, i.e.

T u = {f ∈ T (d) : f(xu,yuc) = f(xu, ỹuc) ∀ yuc , ỹuc}

The basic idea behind the ANOVA decomposition is to define projections
T (d) → T u which will then be employed to decompose a d-variate function
f ∈ T (d) into a sum of low-dimensional functions, i.e.

f(x) = f∅ +

d∑
i=1

f{i}(xi) +
∑

i,j=1,...,d
i<j

f{i,j}(xi, xj) + . . .+ fD(x1, . . . , xd)

This sum will be abbreviated by f(x) =
∑

u⊆D fu(xu).

2.1 The ANOVA decomposition.

We begin by defining the orthogonal projectors Pu : T (d) → T u via

Pu(f)(xu) :=

∫
Ωuc

f(x) dµuc(xuc) for u (D

Pu(f)(x) := f(x) for u = D.

The projections are orthogonal in T (d) and hence give the T (d)-optimal low-
dimensional approximation to f ∈ T (d) by functions from T u. Now, let

fu(xu) := Pu(f)(xu)−
∑
v(u

fv(xv) (1)

for all xu ∈ Ωu. Then it holds

f(x) =
∑
u⊆D

fu(xu) and (fu, fv)µ = 0 for u 6= v.

The 2d summands fu,u ⊆ D, describe the dependence of f on the subset of
variables contained in u. Analogously to the definition of the variance of f ∈
T (d), the variance of the ANOVA term fu for a u 6= ∅ is given by

σ2
u,µ(f) =

∫
Ωu

f2
u dµu −

(∫
Ωu

fu dµu

)2

︸ ︷︷ ︸
=0

=

∫
Ωu

f2
u dµu.

4

Then, due to the orthogonality of the ANOVA-decomposition, the variance
of f can be decomposed into the sum of the variances of all ANOVA terms, i.e.

σ2
µ(f) =

∑
|u|>0

σ2
u,µ(f).

We define the auxiliary quantity

Du(f) :=
∑
v⊆u

σ2
v,µ(f)

(1)
=

∫
Ωu

Pu(f)2 dµu − f2
∅

=

∫
Ωu

(∫
Ωuc

f dµuc

)2

dµu − f2
∅

and use it to determine σ2
u,µ(f) recursively via

σ2
u,µ(f) = Du(f)−

∑
v(u

σ2
v,µ(f). (2)

The value of Du is given by the following Lemma, which we will exploit later.
This result has been proven in Theorem 2 of [12].

Lemma 1. For u ⊆ D it holds

Du(f) + f2
∅ =

∫
Ω2d−|u|

f(xu,xuc) f(xu,yuc) dµu(xu) dµuc(xuc) dµuc(yuc).

The next proposition shows that the σu,µ(f) are invariant with respect to
component-wise coordinate transformations.

Proposition 1. Let Ω, Ω̂ ⊆ R and let µ =
⊗d

j=1 µj be a product measure on

Ωd. Moreover, let Φ : Ω̂d → Ωd be defined by Φ(x) := (φ1(x1), . . . , φd(xd)),

where each φj : Ω̂↔ Ω is a diffeomorphism. Then it holds

σ2
u,µ(f) = σ2

u,µ◦Φ(f ◦ Φ). (3)

Proof. This is a direct consequence of the change of variables formula.

This result is of special interest if the component functions φj of the trans-
formation are the inverses of the cumulative distribution functions of the µj .

Finally, in order to compare the dependence of functions on their respective
ANOVA terms, we define the so-called sensitivity coefficients

su(f) :=
1

σ2
µ(f)

σ2
u,µ(f) for all u ⊆ D.

These coefficients describe the relative importance of the coordinate directions
in u. Note that

∑
u⊆D su = 1.

5

2.2 Notions of effective dimensionality.

The term effective dimensionality is based on the insight that the ANOVA
terms of higher cardinality contribute much less to the total variance than the
lower-order terms for many application-driven problems and that methods for
their solution can benefit from this property. In [9] the mean dimension is
defined by weighting the variances σ2

u of the single ANOVA terms fu with their
cardinalities |u|, i.e. higher-order terms get penalized stronger than lower-order
terms. Notions of effective dimensionality which are not based on the classical
ANOVA-decomposition, but rather on the anchored ANOVA approach can be
found in [7].

In this paper we will employ a generalization of the mean dimension. To
this end, let νu > 0 be an arbitrary set of weights for all u ⊆ D. We define

dν(f) :=
∑
u⊆D

νu su(f). (4)

Thus, sensitivity coefficients in the ANOVA decomposition can be weighted
differently, e.g. according to the number of variables present in each ANOVA
term.

3 Minimizing the effective dimensionality

In the following, we aim to find a coordinate transformation ψ : Ωd → Rd to
reduce the generalized mean dimension (4) for a given f : Rd → R. This directly
leads to the minimization problem

Mf (ψ) :=
∑
u⊆D

νu su(f ◦ ψ) −→ min
ψ∈Ψ

!, (5)

where νu > 0 are prescribed weights that should penalize higher-order terms
and Ψ is a class of suitable diffeomorphisms. The hope is that there exists
a ψ such that f ◦ ψ has a substantially smaller dependence on higher-order
ANOVA terms than the original f did. At this point we should realize that the
approximation of ψ also involves certain costs. Therefore, we need the class Ψ
to be both powerful enough to reduce the effective dimension and small enough
to rely only on a few degrees of freedom so that we do not just shift the costs
from the approximation of the outer function f ◦ ψ to the inner function ψ.

3.1 Equivalent maximization problem.

Penalizing higher-order ANOVA terms makes the functional (5) expensive or
even impossible to evaluate as these terms contribute the most to its value and
their evaluation is based on the evaluation of all lower-order terms for v (u.
Therefore, we are looking for a reformulation of the minimization task (5) which

6

circumvents this problem. To this end, note that

Mf (ψ) =
∑
u⊆D

νu su(f ◦ ψ)

=
∑
|u|<d

νu su(f ◦ ψ) + νD sD(f ◦ ψ)

=
∑
|u|<d

(νu − νD) su(f ◦ ψ) + νD.

Therefore, a minimizer of Mf (ψ) is also a maximizer of − 1
νD

Mf (ψ) and vice
versa and we obtain the following equivalent maximization problem

M̂f (ψ) :=
∑
u(D

(
1− νu

νD

)
su(f ◦ ψ) −→ max

ψ∈Ψ
!. (6)

The main advantage of considering (6) instead of (5) is that we can now omit
sets u with large |u| in (6) and focus the optimization task to sets with small
|u|, i.e. lower-dimensional terms only.

3.2 Choice of the weights.

Let 1 ≤ k < d. In the remainder of the article, we will use

νu :=

{
1− exp (−max{j ∈ u}) if u ⊆ {1, . . . , k},

1 else.

Now we only need to evaluate ANOVA terms of f ◦ ψ corresponding to subsets
of the first k variables since

M̂f (ψ) =
∑

u⊆{1,...,k}

exp (−max{j ∈ u}) su(f ◦ ψ).

In this sense, we try to find a ψ such that ideally all (or at least most) of the
variance of f◦ψ resides in these terms. Such a function is said to have truncation
dimension k in the ANOVA sense.

For the subclass of orthogonal projections Ψ, which we will focus on in
this paper, and for a measure µ which is invariant under orthogonal trans-
formations, such as the Lebesgue or the Gaussian measure on Rd, we obtain
σ2
µ(f) = σ2

µ◦ψ(f ◦ ψ) for all ψ ∈ Ψ. Therefore, we can simply omit σ2
µ(f ◦ ψ) in

the maximization functional in this case and we just maximize

M̂f (ψ) :=
∑

u⊆{1,...,k}

exp (−max{j ∈ u})σ2
u,µ(f ◦ ψ), (7)

which we can evaluate by using (2) and Lemma 1.

7

3.3 Orthogonal transformations.

Due to our specific choice of weights, we can actually restrict ourselves to trans-
formations φ : Ωk ⊆ Rk → Rd instead of having to look for maps with a domain
in Rd. Therefore, let

Vk(Rd) :=
{
Q ∈ Rd×k | QTQ = I

}
,

be our class of valid transformations. Here, the rows of Q ∈ Vk(Rd) represent
an orthogonal k-frame in Rd. This class is actually a submanifold of Rd×k and
it is known as the so-called Stiefel manifold.

As we see, maximizing M̂f (Q) over Q ∈ Vk(Rd) is a highly nonlinear task
with possibly nonunique maximizers. The existence of maximizers can be guar-
anteed for continuous functions f since M̂f is a continuous functional in that
case and Vk(Rd) ⊂ Rd×k is compact. As mentioned earlier, we will substi-
tute f by a polynomial surrogate for the actual optimization for which we can,
therefore, guarantee the existence of maximizers.

3.4 Polynomials as invariant basis.

The largest part of the costs in evaluating M̂f (Q) is the evaluation of each
σ2
u,µ(f ◦ Q), which requires the approximation of high-dimensional integrals.

Therefore, we discretize f in a basis which allows to compute σ2
u,µ(f ◦Q) an-

alytically for Ω = R and which is closed under orthogonal transformations. To
this end, we employ a total degree polynomial space with a homogeneous basis
in Rk, i.e. we take the basis set

B(k)
m := {xα = xα1

1 . . . xαkk | |α|1 ≤ m}

for some m ∈ N. Note that K := |B(k)
m | =

(
k+m
k

)
.

Lemma 2. The basis B(d)
m spans the total degree polynomial space P(d)

m on Rd
which is invariant with respect to all orthogonal transformations Q ∈ Vk(Rd),
i.e.

φ ◦Q ∈ span{B(k)
m } ∀ φ ∈ P(d)

m ,Q ∈ Vk(Rd).

Proof. Let ωα(x) := xα. Using the multinomial theorem with β ∈ Nk0 , we
obtain

ωα ◦Q(x) =

d∏
i=1

 k∑
j=1

Qijxj

αi

=

d∏
i=1

∑
|β|1=αi

αi!

β1! · · ·βk!

k∏
j=1

(Qijxj)
βj

︸ ︷︷ ︸
∈span{B(k)

αi
}

.

Since deg(P ·S) = deg(P) + deg(S) holds for polynomials P and S and because
of |α|1 ≤ m, the claim follows.

8

Lemma 2 shows that we just need to evaluate Du(p) for polynomials p̃ ∈ B(k)
m

regardless of the transformationQ ∈ Vk(Rd) when taking a polynomial surrogate

p ∈ span(B(d)
m) of f . Next, let us define IM (α) :=

∫
Ωk
xα dµ(x) with the

restriction IM (αu) :=
∫

Ω|u|
xαu
u dµu(xu) to the directions that are contained in

u. Then, we have the following result.

Lemma 3. Let p :=
∑
|α|1≤m Cαx

α ∈ B(k)
m . Then, A := Du(p) + f2

∅ from (2)
fulfills

A =
∑
|α|1≤m
|β|1≤m

CαCβ IM (αu + βu) · IM (αuc) · IM (βuc).

Proof. Using Lemma 1 we obtain

A =

∫
Ω2k−|u|

p(xu,xuc) p(xu,yuc)dµ(x)dµuc(yuc)

=
∑
|α|1≤m
|β|1≤m

CαCβ

∫
Ω2k−|u|

xαu+βu
u xαuc

uc y
βuc

uc dµ(x)dµuc(yuc)

and applying Fubini’s theorem finishes the proof.

In the case Ω = R and when µ is the standard Gaussian measure we can
compute IM (α) analytically.

Lemma 4. The expected value of xα with |α|1 = m for α ∈ Nk0 with respect to
the Gaussian measure µ is

Eµ [xα] =

{∏k
i=1(αi − 1)!! if all αi even,

0 else,

where n!! := n · (n− 2) · (n− 4) · . . . · 1.

Proof. We have Eµ [xα] =
∏k
i=1 Eµi(xαi) and since the moments of the standard

normal distribution are

E(xq) =

{
(q − 1)!! q even,

0 q odd,

the claim follows.

With the help of Lemmata 2, 3 and 4, we can compute f∅ and solve all the

integrals involved in the computation of σ2
u,µ(p ◦Q) for all u ⊆ D, p ∈ P(d)

m and

Q ∈ Vk(Rd) analytically if µ is taken as the standard Gaussian measure on the

whole space Rk. Therefore, we know how to evaluate M̂p(Q) in this case.

9

3.5 A manifold CG algorithm on Vk(Rd).

To numerically solve the optimization problem, we propose a descent algorithm
on the submanifold Vk(Rd) ⊂ Rd×k. Algorithm 1 briefly sketches a conjugate
gradient approach for this specific matrix manifold. Before we start the first
iteration, we set the solution to the zero vector and choose a random direction.
For more details on the algorithm and the theory behind optimization on matrix
manifolds, see [1].

Algorithm 1 One step of the matrix manifold CG algorithm on Vk(Rd) to

determine a maximizer of M̂p.

Input: Iterate Q ∈ Vk(Rd), direction M ∈ Rd×k.
Output: New iterate Q̄ ∈ Vk(Rd), new direction M̄ ∈ Rd×k.

Line search for δ > 0 along Q+ δM .
QR decomposition: QR← Q+ δM (“retraction”).
Define new iterate: Q̄← Q.

Polak-Ribiere: β ← ∇M̂p(Q̄)T (∇M̂p(Q̄)−∇M̂p(Q))
∇M̂p(Q)T∇M̂p(Q)

.

M∗ ← (I − Q̄Q̄T
)M + 1

2Q̄(Q̄
T
M −MT Q̄) (“parallel transport”).

Define new direction: M̄ ← −∇M̂p(Q̄) + βM∗.

As we see, we need matrix-matrix multiplications, a QR decomposition of a
d × k matrix and a gradient computation of M̂p, which has to be understood
as calculating the usual gradient in Rd×k. We do the latter by using first order
forward finite differences.

Proposition 2. Let µ = N (0, I) be the standard Gaussian measure. The total
number of operations to perform one CG iteration of Algorithm 1 is bounded by

O
(
kd ·

(
d

(
d+m

d

)
+

(
k

(
k +m

k

))2
))

= O
(
kdm+2 + k2m+3d

)
.

Proof. Since computing the QR decomposition of a d×k matrix costs O
(
k2 · d

)
operations and the costs for computing the matrix products in the parallel
transport step scale like O

(
k2 · d+ k · d2

)
= O

(
k · d2

)
, we directly see that the

most expensive part is computing the derivative ∇M̂p(Q̄) by finite differences,

for which we need to perform 2kd evaluations of M̂p. To this end, letQ ∈ Vk(Rd)
be given and assume that we want to compute M̂p(Q). We first need to calculate

the coefficients of p ◦ Q in the basis B(k)
m as done in the proof of Lemma 2.

Here, we store the intermediate values si :=
∑k
j=1Qijxj for all i = 1, . . . , d

and subsequently compute
∑
|α|1≤m cα

∏d
i=1 s

αi
i for the coefficients cα of p.

This costs O(d ·
(
d+m
d

)
) operations since there are

(
d+m
d

)
monomials. Next, we

evaluate M̂p at Q. To this end, note that the computation of Du(p ◦Q) - with

10

given coefficients for p ◦Q - takes O(
(
k+m
k

)
·
(
k+m
k

)
· k) operations as proven in

Lemma 3 and Lemma 4. It remains to show that we can evaluate M̂p(Q) by
using only O(k) different sets u ⊂ {1, . . . , k} and their corresponding Du(p◦Q).
Indeed, let ν̂u := exp (−max{j ∈ u}) and let [i] := {1, . . . , i}. According to (7),
we actually need to compute

M̂p(Q) =
∑
u⊆[k]

ν̂uσ
2
u,µ(f ◦ ψ)

=
∑

u⊆[k−1]

ν̂uσ
2
u,µ(f ◦ ψ) + exp (−k) ·

(
D[k](p ◦Q)−D[k−1](p ◦Q)

)
= . . .

=

k∑
i=1

exp (−i) ·
(
D[i](p ◦Q)−D[i−1](p ◦Q)

)
,

where we set D∅ := 0. This can be done with O(k) evaluations of different Du,
which completes the proof.

For small m, algorithm 1 is applicable in moderate dimensions (d . 50),
which could be improved by using smaller polynomial spaces, e.g. based on
hyperbolic crosses. Finally note that a similar approach with a Newton-type
optimizer has been introduced in [4]. There the surrogate p for f and the
transformation Q ∈ Vk(Rd) are optimized at the same time. In our case, the
polynomial just serves to coarsely represent the ANOVA structure of f . Since
we want to obtain a cost-efficient representation of f ◦Q ≈ p◦Q before actually
solving the underlying transformed least-squares problem on a sparse grid, we
take the generalized mean dimension M̂f as a complexity indicator to optimize
with respect to Q. Subsequently, we solve a least squares problem in a sparse
grid space as described in the next section.

4 Application to regression with sparse grids

In this section, we briefly recapitulate least squares regression on sparse grids,
see e.g. [6, 10], and discuss a space- and dimension-adaptive variant based on
the concepts of [5, 10]. Then, to reduce the computational costs of the adaptive
regression algorithm, we suggest a preprocessing step based on the preceding
section.

4.1 Multivariate regression on sparse grids

Let z := {(ti, xi) ∈ T × R | i = 1, . . . , N} be N given samples, where T :=
[0, 1]d. If a different domain is used, the data has to be rescaled appropriately.
Generally, least squares regression determines a minimizer to

min
f∈S
Ez with Ez(f) :=

1

N

N∑
i=1

(xi − f(ti))
2 (8)

11

0 1
0

1

Fig. 2: Hierarchical basis functions up to ` = 3 (left) and regular 2d sparse grid
of level ` = 4 (right).

over some set of functions S. If S is a reproducing kernel Hilbert space the fa-
mous representer theorem states that the solution can be determined by solving
a (usually dense) N × N system of linear equations [11]. Naively, this would
need O(N3) floating point operations. While some algorithms solve these ker-
nel systems approximately, they still scale worse than linearly in N in general.
Therefore, we will employ a space S of sparse grid functions instead, which nat-
urally leads to an algorithm that scales linearly in N and circumvents the curse
of dimensionality of standard tensor grid approaches [2]. Several variants of
such sparse grid least squares algorithms have been very successfully employed
for different regression tasks, see e.g. [6, 10].

We shortly recall the sparse grid discretization based on the modified linear
basis from [10]. Let

Φ(t) := max (1− |t|, 0) and Φl,i(t) := Φ(2l · t− i)|[0,1]

for l, i ∈ N+. To construct the modified hierarchical linear basis let Il := {i ∈
N+ | 1 ≤ i ≤ 2l − 1, i odd}. For l = 1 we set γ1,1 := 1. For l ≥ 2 we
define γl,i := Φl,i for i ∈ Il \ {1, 2l − 1} and γl,1(t) := max

(
2− 2lt, 0

)
|[0,1] and

γl,2l−1(t) := γl,1(1− t), see also Figure 2(left).
The d-variate basis functions are then built via the tensor product construc-

tion

γl,i(t) :=

d∏
j=1

γlj ,ij (tj),

where l = (l1, . . . , ld) ∈ Nd+ is the multivariate level and i = (i1, . . . , id) ∈
Nd+ denotes the multivariate position index. Let Il := ⊗dj=1Ilj . Then, Wl :=
span {γl,i | i ∈ Il} denotes the so-called hierarchical increment space of level l.
We now define the (regular) sparse grid space of level ` > 0 by

V ` :=
⊕

k∈Nd+,|k|1≤ `+d−1

Wk. (9)

12

Instead of 2`d degrees of freedom as in the full grid case, the sparse grid space
only contains M := dim(V `) = O(2``d−1) basis functions. A 2d sparse grid, i.e.
the centers of the supports of all basis function of V `, can be found in Figure
2(right). For more details on sparse grids and a thorough comparison to full
grids regarding cost complexity and approximation rates we refer to [2].

Representing f ∈ V ` in the hierarchical basis yields

f(t) =
∑

|k|1≤`+d−1

∑
i∈Ik

βk,iγk,i(t).

We now consider the Tikhonov-regularized version

min
f∈S

1

n

n∑
i=1

(xi − f(ti))
2 + λ‖~β‖22 (10)

of the least squares problem (8) for S = V `. Then, the coefficient vector ~β is
given by (

BTB + λI
)
~β = BT ~x, (11)

where B ∈ RN×M with entries Bi,(l,j) = γl,j(ti) and ~x = (x1, . . . , xN)T . We
employ a conjugate gradient solver to obtain the solution. For details on the
linear equation system and the fast numerical treatment in the sparse grid case
we refer to [5, 10].

4.2 Adaptive sparse grids.

If certain spatial directions or regions are more important than others, e.g. when
the solution of (10) varies strongly in one part of the domain but is almost
constant in others, it is reasonable to adjust the underlying discretization to
this behavior. To this end, space- and dimension-adaptive sparse grids can be
employed [5, 10]. They adapt according to an error indicator which determines
where the grid will be refined. Here, we use a combination

εl,i := βl,i

N∑
j=1

γl,i(tj) · (f(tj)− xj)2
,

between the coefficients and the least-squares error. This serves to indicate how
much γl,i contributes to the least squares error in the actual discretization.

The actual adaptive algorithm starts with V = V ` for small ` and solves
(10) to obtain the solution f ∈ V . Then, an initial compression step is per-
formed, i.e. we mark all those basis functions from V for which εl,i is smaller
than a fixed threshold. Subsequently, all marked basis functions are removed
from V . However, due to the hierarchical structure, we do not remove γl,i if
one of its successors, i.e. a basis function whose support is a subset of the sup-
port of γl,i, is not marked. Finally, we run a series of refinement steps, which

13

consist of solving (10) over V , marking the L > 0 refinable1 basis functions in
V with the largest value of εl,i and then refining the marked functions. In this
paper, we consider two different kinds of refinement: The first one, referred to
as “standard” refinement, inserts all 2d children of each marked function. The
second one, referred to as “ANOVA” refinement, only inserts children in those
directions k, for which lk > 1. This ensures that f remains constant in direc-
tions which the compression step has deemed to be irrelevant. The complete
space- and dimension-adaptive procedure is described in Algorithm 2. For more
details on adaptivity, its relation to the anchored ANOVA decomposition and
fast sparse grid traversal algorithms we refer to [5].

Algorithm 2 The adaptive sparse grid algorithm

Input: ` ∈ N, Threshold t > 0, L ∈ N, numIt ∈ N.
Output: Adaptive sparse grid space V .

Solve (10) over V := V ` and compress(V , t).
for i = 1 . . . numIt do

Solve (10) over V and refine(V , L).
end for

4.3 The final preprocessing method.

Let α1 := 0 and let αi, i = 2, . . . , K̄ =
(
d+m
d

)
be an arbitrary enumeration of all

indices |α|1 ≤ m corresponding to the basis set B(d)
m of polynomials with total

degree less than m. The final ingredient to our overall algorithm is solving the

unregularized least squares problem (8) over span(B(d)
m) to build the polynomial

surrogate p =
∑K̄
i=1 cαit

αi . Its coefficients are the minimizers of

min
~w∈RK̄

‖A~w − ~x‖2 = min
~w∈RK̄

‖W ~w − V T ~x‖2 (12)

and can be determined by backsubstitution after computing a QR decomposition
of the Vandermonde matrix

VW = A :=

 1 tα2
1 . . . t

αK̄
1

...
...

...
1 tα2

N . . . t
αK̄
N

 .

Now, let C be the cumulative distribution function of the k-variate normal
distribution N (0, I), which we apply to rescale the data to [0, 1]k for the sparse
grid algorithm. The final optimally rotated, adaptive sparse grid least-squares
method is presented in Algorithm 3. If the distribution of the input data is
known to be non-Gaussian, it might be more sensible to use a different trans-
formation for the rescaling onto [0, 1]k.

1We call a basis function refinable if not all of its children are already included in the grid.
By children of γl,i we mean all successors on levels l + ek, where ek denotes the k-th unit
vector.

14

Algorithm 3 Optimally rotated, adaptive sparse grid least-squares algorithm

Input: Initial data z = {(ti, xi) | i = 1, . . . , N}.
Output: A Q ∈ Vk(Rd) and a sparse grid function f : [0, 1]k → R such that
f ◦ C ◦QT approximates z.

Determine p via (12).
Determine Q with Algorithm 1.
Transform data to z̃ = (C(QT ti), xi)

N
i=1.

Compute f : [0, 1]k → R with Algorithm 2 on z̃.

To understand the reasoning behind algorithm 3, let us briefly recapitu-
late that the sparse grid function f : [0, 1]k → R not only approximates the
transformed data z̃ but also employs small higher-order variance terms σ2

u,λ(f)

for large |u| and the Lebesgue measure λ. Indeed, note that p ≈ f ◦ C ◦ QT

after running the algorithm. Therefore, it holds p ◦ Q ≈ f ◦ C because Q is
the Moore-Penrose inverse to QT . Since algorithm 1 determines Q ∈ Vk(Rd)
such that (7) is maximized, the variance of p ◦Q resides mostly in the lower-
order ANOVA terms, i.e. σ2

u,ρ(p ◦Q) is small for large |u|, where ρ denotes the

standard Gaussian measure in Rk. Applying proposition 1, we obtain

σ2
u,λ(f) = σ2

u,ρ(f ◦ C) ≈ σ2
u,ρ(p ◦Q),

which shows that also f employs a favorable ANOVA structure in terms of the
distribution of its variance.

5 Numerical results

For our computations, we employ the SG++ sparse grid library [10] and choose
the following parameters for all experiments: total degree m = 3, truncation
parameter k = min(d, 3), compression threshold t = 0.1, number of points to
refine L = 10, initial grid level ` = 3. The CG algorithm for solving (11) is
iterated until the norm of the residual has decreased by a factor of 10−12. To
measure our performance, we use the normalized RMSE

NRMSE :=

√√√√∑i

(
f
(
C
(
QT (t̃i)

))
− x̃i

)2

∑
i x̃

2
i

,

where (t̃i, x̃i) is some test data. We compare this value to the NRMSE of
Algorithm 2 on the untransformed data. Note that the runtimes of Algorithm
3 were (often magnitudes) smaller than the runtimes of Algorithm 2 on the
untransformed data set for all of our experiments.

5.1 Two-dimensional ridge function.

We draw N = 105 i.i.d. N (0, I) distributed points ti ∈ R2 and choose the
ridge function xi = tanh([ti]1 + [ti]2) + εi, i.e. we evaluate tanh on the sum of

15

101 102
10−5

10−4

10−3

10−2

10−1

grid points

N
R
M

S
E

no Q, sr
no Q, Ar
Q, sr
Q, Ar

0 1
0

1

0 1
0

1

Fig. 3: NRMSE for 2d tanh ridge function (top). Ar = ANOVA refinement,
sr = standard refinement. First 200 sparse grid points inserted by Ar for un-
transformed data (bottom left) and transformed data (bottom right).

the coordinates of each data vector and add i.i.d. white noise εi ∼ N (0, 10−8).
We also create a test data set (t̃i, x̃i) of size N with the same distribution but
without the noise. Since N is significantly larger than the sparse grid sizes we
use, we set λ = 0. The refinement process is iterated until the number of grid
points exceeds 500. The resulting errors for each refinement after the initial
compression and the employed sparse grids are illustrated in Figure 3 for both
Algorithm 3 and Algorithm 2 on original data.

As we observe, Algorithm 3 achieves an NRMSE, which is several magni-
tudes smaller than the NRMSE of the adaptive sparse grid algorithm on the
untransformed data for both ANOVA and standard refinement. Obviously, the
ANOVA refinement is too restrictive in the untransformed case and only stan-
dard refinement seems to converge. The remarkable performance of Algorithm
3 is obvious as the specific ridge function example has a rotated one-dimensional
structure, which the preprocessing is able to pick up. This can be seen in the
grid in Figure 3(right), where most points are spent along the horizontal line in
the middle of the domain.

16

5.2 Five-dimensional sum of ridge functions.

We draw N = 105 points ti ∼ N (0, I) in R5 and use xi = tanh(
∑5
j=1[ti]j) +

max(0,
∑5
j=1(−1)j [ti]j) + εi with εi ∼ N (0, 10−8). Since this test function is

non-smooth, it is more complicated than the one from the last section. Nonethe-
less, it is a simple sum of two ridge functions and our algorithm should be able
to exploit this. We set λ = 0 and terminate the adaptive algorithm after the
number of grid points has reached 1000. The results can be found in Figure 4.
As in the previous example, we clearly see that the data transformation benefits
the adaptive sparse grid algorithm significantly.

102 103

10−2

10−1

grid points

N
R
M

S
E

no Q, sr
no Q, Ar
Q, sr
Q, Ar

Fig. 4: NRMSE for 5d sum of ridge functions. Ar = ANOVA refinement,
sr = standard refinement.

5.3 Ten-dimensional PDE problem.

In this example from [4], 104 vectors ti ∈ R10 are drawn according to N (0, I).
These reflect the parameters of the diffusion coefficient a in the two-dimensional
elliptic PDE

−∇s · (a(s, t)∇su(s, t)) = 1 s ∈ [0, 1]2

with Neumann boundary conditions on the right side of the domain and Dirich-
let zero boundary conditions on the other sides. The ti represent the first ten
coefficients of a truncated Karhunen-Loéve decomposition of log(a) with corre-
lation kernel exp(−‖r−s‖1). For each ti, the PDE is solved and xi is set to the
spatial average of the solution on the Neumann boundary. Solving regression
problems of this kind is an important task in uncertainty quantification, see
[3] for details. We present averaged results over 20 random splits of the data
into 5000 training and 5000 test points for different regularization parameters
λ ∈ {10−2, 10−4, 10−6} in Figure 5.

The smallest error with the least amount of grid points is achieved with trans-
formed data and ANOVA refinement. For this example, the ANOVA refinement

17

101 102

10−1

10−0.8

10−0.6

10−0.4

10−0.2

grid points

A
v
e
ra

g
e
d
N
R
M

S
E

no Q, sr, λ = 10−2

no Q, sr, λ = 10−4

no Q, sr, λ = 10−6

no Q, Ar, λ = 10−2

no Q, Ar, λ = 10−4

no Q, Ar, λ = 10−6

Q, sr, λ = 10−2

Q, sr, λ = 10−4

Q, sr, λ = 10−6

Q, Ar, λ = 10−2

Q, Ar, λ = 10−4

Q, Ar, λ = 10−6

Fig. 5: Averaged NRMSE for the 10d PDE problem. Ar = ANOVA refinement,
sr = standard refinement.

performs better than standard refinement also in the case of untransformed data.
However, standard refinement seems to produce more stable results with respect
to λ. For ANOVA refinement, transformed data and λ = 10−4 we achieve an
averaged NRMSE smaller than 0.1, which is competitive with the best results
from [4]. For all choices of λ, we also outperform the LASSO and Gaussian
processes approaches tested there.

6 Conclusion

In this paper we have discussed the idea of preprocessing data in regression tasks
in order to achieve a beneficial error decay and possibly smaller computational
costs of the underlying algorithm. Our approach is motivated by the ANOVA
decomposition and works best with regression methods based on tensor-product
functions, e.g. on full grids and sparse grids. We provided an efficient algorithm
to find the optimal matrix Q ∈ Vk(Rd) to transform the data at hand. Subse-
quently, we discussed an adaptive sparse grid least-squares regression algorithm,
which is able to adapt to the underlying regressor function. We showed how our
preprocessing method significantly enhances the performance of the adaptive
sparse grid algorithm for both artificial toy problems and a real-world applica-
tion from uncertainty quantification.

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.

18

[2] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:1–123,
2004.

[3] P. Constantine. Active Subspaces: Emerging Ideas in Dimension Reduction
for Parameter Studies. SIAM, Philadelphia, 2015.

[4] P. Constantine and J. Hokanson. Data-driven polynomial ridge approxima-
tion using variable projection. SIAM J. Sci. Comput., 40(3):A1566–A1589,
2018.

[5] C. Feuersänger. Sparse Grid Methods for Higher Dimensional Approxima-
tion. Dissertation, Institut für Numerische Simulation, Universität Bonn,
2010.

[6] J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids.
Computing, 67(3):225–253, 2001.

[7] M. Griebel and M. Holtz. Dimension-wise integration of high-dimensional
functions with applications to finance. J. Complexity, 26:455–489, 2010.

[8] J. Imai and K. Tan. Minimizing effective dimension using linear trans-
formation. Monte Carlo and Quasi-Monte Carlo Methods, 2002:275–292,
2004.

[9] A. Owen. The dimension distribution and quadrature test functions. Sta-
tistica Sinica, 13:1–17, 2003.

[10] D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. Spatially adaptive sparse
grids for high-dimensional data-driven problems. J. Complexity, 26:508–
522, 2010.

[11] B. Schölkopf and A. Smola. Learning with Kernels – Support Vector Ma-
chines, Regularization, Optimization, and Beyond. The MIT Press – Cam-
bridge, Massachusetts, 2002.

[12] I. Sobol. Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates. Math. Comput. Simulation, 55:271–280, 2001.

19

