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Abstract

In this work, several approaches to handling missing data are analyzed. Discarding in-
complete data during an analysis completely is a very popular approach, but it is usually
not recommendable as there are many better ways to address missing values in a data
set without loosing the information given by the incomplete data.

The statistical concept of imputation is applied to substitute missing values with plaus-
ible replacements. A wide variety of methods for handling missing data are described,
ranging from a simple imputation using the mean of the data as the substitute value
to more complex iterative completion methods utilizing dimensionality reduction ap-
proaches. The introduced methods are then applied to artificially constructed data sets
as well as real-world applications, where the resulting completed data and the perform-
ance of the methods are compared.
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1. Introduction

Today, information has become a significant type of currency. Data gets increasingly
more important as more and more data is available.
Until the era of Big Data found its way into the digital world, analysis methods for
data were normally based on small data sets which were assumed to be complete and
quite noise-free as the data was usually collected for a specific problem. Nowadays
however, data sets increase in size and the data acquisition process is usually no longer
dependent on a specific task, such that the extraction of relevant information becomes
more complicated.
An additional stumbling block in many practical applications is that some data points
can be incomplete, where a data point x is said to be incomplete when some of its entries
are missing or unspecified. Missing data is a common problem in most scientific research
domains, from medicine (see for example [1], [2]) and psychology ([3]) to economics
([4]) and life sciences ([5],[6]), such that most scientists will most likely be confronted
with the problem of missing data at some point. Since more often than not, further
analysis with incomplete data is more complicated or even impossible, as most machine
learning algorithms require that their inputs have no missing values, a major concern is
the completion of the missing entries in a data set with as plausible values as feasible,
possibly as a preprocessing step. In some cases, incomplete data can even lead to false
interpretations of the data since the incomplete data sets can be misleading for statistical
inference. Therefore, the missing entries in the data should be reasonably filled such that
they do not falsely distort the quantities of interest.
Statistical analysis of data with missing values was revolutionized with [7] and [8] in
the late 1980s, several still consistently employed missing data concepts are introduced
therein. Today, many methods for dealing with missing data haven been developed and
most statistical software includes packages for dealing with missing data. The field of
missing data research is vast.
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1.1 Missing Data Patterns and Mechanisms

Based on the descriptions and notations in [8], the rows of a data matrix usually repres-
ent units or observations and the columns represent characteristics or variables measured
for each unit. It is useful to define patterns and mechanisms of missing data, where the
patterns characterize the values which are missing and those which are observed, while
the mechanisms concern the relationship between variables being missing and the values
of those variables.

For a data matrix Y = (yij), i = 1, . . . , n, j = 1, . . . ,K encoding a data set of dimension
n×K, for n units and K variables, yij is the value of the variable Yj for unit i.
A missingness indicator matrix M = mij defines the pattern of missing data with the
binary assignment

mij =

1 if yij is missing

0 if yij is observed.

A common alternative notation is the response indicator matrix R with reverse assign-
ments. The following methods are restricted to the case where M is completely known,
such that there are no unknown unknowns, where additional assumptions have to be
made as the location of the missing data is not known, which may occur in survey data
(see [9]). This still covers many practical applications.
There are several common patterns and it may be beneficial to sort the data matrix in
order to detect if a pattern exists, as some methods are applicable to certain patterns of
missingness. In addition, a pattern may provide practical information to facilitate any
further analysis. For instance, missing values may be confined to one specific variable
which might not be pertinent to the problem that is to be investigated and may there-
fore be deleted from the data set. The remaining data would then be complete such that
any analysis would be more easily conducted without loosing any relevant information.
However, in the subsequent chapters, the pattern of missing data is only secondary and
will not be further discussed in depth.
Additionally, as introduced in [7], it is important to distinguish between unit and item
non response. Unit non response occurs if a subset of units has no observable variables
and item non response presents itself as missing values for certain variables of a specific
unit. In the subsequent chapters only item non response and not unit non response will
be treated as the methods for handling the two problems differ.
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Assuming that the rows (yi,mi) are independent and identically distributed over i, the
missingness mechanism is characterized by the conditional distribution of mi given yi,
fM |Y (mi|yi, θ), for the unknown parameter θ. It is possible to distinguish between three
different categories of missing data mechanisms.
The data is called missing completely at random (MCAR) when the missingness
depends neither on unobserved data nor on observed data. The probability of having a
missing value does not depend on either the known values or the missing data, such that
the cause of the missing data is unrelated to the data itself. More formally, for all i and
distinct yi, y∗i in the sample space Y :

fM |Y (mi|yi, θ) = fM |Y (mi|y∗i , θ)

The missingness mechanism is called missing at random (MAR) if the missingness
may depend on the observed data, but not on the unobserved data. The probability of
a value being missing is the same only within groups defined by the observed data. For
the value yi of unit i, missingness depends on yi only through the observed components
y(0)i and not on the missing components y(1)i, such that for all i and distinct y(1)i, y

∗
(1)i:

fM |Y (mi|y(0)i, y(1)i, θ) = fM |Y (mi|y(0)i, y
∗
(1)i, θ)

The data is missing not at random (MNAR), whenever the missingness may depend
also on the unobserved data. The probability of having a value that is missing var-
ies for reasons that are unknown to us. The distribution of mi depends on the missing
components of yi, such that the equation above does no longer hold for all i and y(1)i, y

∗
(1)i.

The three types of missing data mechanisms arise from different real-world problems.
MAR is a much broader class than MCAR, which is often unrealistic, although it is
nearly impossible to prove that data is MAR. MNAR is more complex and concepts are
very different from those in case of MAR as they are more targeted on finding the causes
of missingness. It is important to note that data which is MCAR will have unbiased
estimates for the most primitive methods, such as the shortly after presented mean
imputation, while data that is MAR leads to unbiased estimates for adequate methods,
such as the later introduced regression imputation, such that for both missing data
mechanisms general methods are available. For data that is MNAR, there is no quick
fix. Most missing data methods presume that the data is MAR and that is the reason
why the focus in the following chapters will be on methods using the MAR assumption.
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1.2 Neural Networks and Recommender Systems

Neural networks and deep learning are considered state of the art in a vast range of
application domains these days. In the following paragraphs, some basic concepts re-
lated to neural networks as well as a few neural network approaches to handling missing
data are briefly introduced. A more extensive explanation of the topics covered in this
section would go beyond the scope of this work. A popular reference for further detailed
information on neural networks and deep learning is [10].
Artificial intelligence is a thriving field with many practical applications and active
research topics. In early days, many intellectually difficult problems were easily solved,
because they could be described by a list of formal rules. The challenge were tasks that
are easy for people to perform, but hard to describe formally. The solution was to learn
from experience.
Machine Learning uses the system’s ability to acquire its own knowledge, by extract-
ing patterns from raw data.
Deep Learning introduces a hierarchy of concepts, with each concept defined through
its relation to simpler concepts, which has become increasingly popular particularly due
to huge improvements in computer infrastructure.

Two neural network approaches to missing data based on distinct problems are autoen-
coders and generative adversarial networks.
An autoencoder is a neural network with the combination of an encoder function, which
converts the input data into a different representation, and a decoder function, which
converts the new representation back into the original format, such that as much inform-
ation as possible is preserved, see chapter 14 in [10].
For an application of autoencoders to missing data, see for example [11] for an approach
to incomplete electronic health data.
A generative adversarial network (GAN), introduced in [12], consists of two neural
networks, the discriminator and the generator, contesting against each other. The gen-
erator produces examples trying to imitate instances of the space of instances, while the
discriminator tries to differentiate between fake and real examples.
Several adaptions of generative adversarial networks to incomplete data are available, see
for instance [13]. There are many applications for missing data available as well, see [14]
for an example of GANs for image imputation and [15] for time series imputation with
GANs.
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Thus, neural networks can be used to handle missing data. However, it is necessary to
have a training set with complete data available and most neural network approaches
today are constructed for specific large data sets. Hence, this might not be a useful
technique for small incomplete problems.

Particularly since the Netflix Prize competition started in 20061, matrix completion and
recommender systems have attracted more attention and both have become an even more
popular field of research.
The Netflix Prize problem consisted of a movie-ratings matrix and the goal was to predict
user ratings for movies, based on other ratings without any other information about the
users or movies (see [18]). Thus, the Netflix Prize was an example of an application of
matrix completion, which is the activity of filling in the missing entries of an incomplete
matrix, very often done with a low rank matrix.
The goal was to find the best collaborative filtering algorithm, which is a strategy used by
recommender systems to suggest items of interest to people based on their own preferences
by collecting preference information from many users. Recommender systems are widely
used in many commercial applications, for more details see for example [16] and [17].
Recommender systems are a special class of methods for dealing with a matrix completion
problem. The analysis of possible approaches is an interesting current research topic
related to missing information, but will not be further discussed since that is not within
the framework of this work.

1see netflixprize.com

https://www.netflixprize.com/
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1.3 Outline

This work is subsequently structured as follows.
Chapter 2 will introduce the concept of imputation, a statistical approach to inferring
missing data from statistical quantities or models. Starting with the simple option of us-
ing single imputation methods in section 2.1 and going forward to the newer and usually
more plausible multiple imputation in section 2.2, which accounts for uncertainty from
missing data by imputing the data several times. Another concept that will be shortly
introduced in section 2.3 is that of maximum likelihood based techniques which does not
impute the data directly but rather analyzes the incomplete data.
In chapter 3, linear and nonlinear dimensionality reduction methods will be introduced,
first the most common linear dimensionality reduction methods principal component
analysis, then a generalization with kernels, the so-called kernel principal component
analysis and last, the nonlinear manifold method diffusion maps, see section 3.1. These
three methods may then also be used for the completion of missing values, first with
rather simple concepts in section 3.2 and then with more complicated completion ap-
proaches in section 3.3.
In the two chapters, algorithms for the handling of rather general data sets with missing
data will be introduced, as they are applicable to a wide variety of applications. The list
of methods cannot be exhaustive as the number of available methods is very large. The
methods here are chosen based on their common use and their potential for application.
More specific problem-based methods for handling missing data will not be examined as
that would go beyond the scope of this work.
Chapter 4 will present several performance criteria for the evaluation of the given meth-
ods in section 4.1 and the methods’ efficiency for a constructed simple linear example as
well as an example with added noise will be analyzed in sections 4.2 and 4.3, respectively.
Chapter 5 will then study the results computed with the methods based on two different
real-world applications, a set of images in section 5.1 and a bundle of time-series in sec-
tion 5.2, where many more data sets with missing data are available since the problem
of missing data is all-encompassing.
Since the focus of the completion methods included is not based on specific examples, as
the given methods may also be applied to images and time series data, sometimes called
longitudinal data, image completion and the completion of time series with possibly more
suitable completion approaches for these specific uses will not be further addressed. For
a short overview, the two types of data sets may be completed with special methods as
follows.
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A specific concept for image analysis is total variation (see [19]), the total variation norm
is the proper norm for images (see [20]).
There are special TV norm based methods for images, which may be motivated by the fact
that, since L2 based methods return smooth results, such as the later describe principal
component analysis, an L1 based approach to image restoration and image denoising is
preferred since images are non-smooth, especially in relation to edge detection. A disad-
vantage is that L1 based estimation methods are nonlinear and computationally complex
(see [21]).
Methods especially used for time series completion (see[22]) include some of the later
described methods such as filling the last observation forward, interpolation and variants
of the expectation-maximization algorithm, as well as methods specifically developed for
time series, for example moving averages (see [23]) or Amelia (see [24]).
In chapter 6, a short conclusion follows.





2. Imputation - A Statistical Concept

In statistics, many concepts for dealing with missing data exist.
One possible way of treating missing data is to discard the affected data entirely. The
so-called complete case analysis uses list-wise deletion to remove all incomplete data
points. However, even though it is very popular and the standard setting in most stat-
istical software, this is not recommended in the majority of cases, since it decreases the
power of the analysis due to the unused partial data and can also lead to false interpret-
ations.
Therefore, the missing entries in the data should be estimated in a meaningful way. The
methods in the following sections are concerned with several possible solutions for infer-
ring the missing values from the existing data from a statistical point of view.
Imputation is a statistical approach for handling missing data by replacing it with sub-
stituted values. A good introduction and a thorough resource for statistical analysis with
missing data and imputation methods is [9] and [8], respectively. As such, this chapter
is largely based on the information given therein.

2.1 Single Imputation Methods

In this section, a short introduction to several single imputation methods is given, where
every missing value is replaced with an estimation. Single imputation can be seen in
contrast to multiple imputation, which will be explained in the next section, where the
value to be substituted is estimated multiple times.

Univariate Methods
A simple method of single imputation replaces missing data with a constant value. The
constant can be chosen a priori for all entries of the data set or the imputed value can
be based on a calculated central tendency of the data, for example the mean, median or
mode of each feature.

9
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Mean imputation for a feature x ∈ Rn with missing data replaces the missing values
with the arithmetic mean x̄ = 1

m

∑m
i=1 xi of all m non-missing values in the feature.

Median imputation substitutes missing values in a feature with the median of the
existing values, which is the middle value of the feature in the data set sorted by size.
Mode imputation finds the values that appear most often in the data set and replaces
the missing data in each feature with the most frequent value for each feature.
These methods are univariate, they only use the non-missing values in the feature di-
mension of the missing data that is to be substituted.
Since for univariate single imputation methods, the imputed value is based on the feature,
the axis on which the computation of the mean, median or mode respectively takes place
has to be carefully identified for the data set. The default setting in most algorithms for
two dimensional data sets encoded in a matrix is based on the feature being specified by
the column. The imputation is therefore calculated with all non-missing values in the
column of the feature with missing data that is being considered.
These imputation methods are an easily and quickly calculated possibility for imputa-
tion of data sets, but they are not very accurate in most cases and may lead to false
conclusions. Additionally, their use might be ill-advised since they disregard correlations
between features, systematically underestimate the variance since the values are constant
and may introduce bias. In general, it can be concluded that imputation by a constant
should be avoided.

Another category of imputation techniques is hot-deck imputation, where the imputa-
tion values are randomly chosen from a set of similar variables in the data set to fill the
missing values. More accurately, hot-deck imputation replaces missing values of a feature
with observed values from a different feature that are similar to the incomplete feature
with respect to observed characteristics. In contrast, the so-called cold-deck imputa-
tion chooses the imputation value from a previously collected data set.
One simple form of hot-deck imputation called last observation carried forward
(LOCF) fills a missing value with the last given value prior to it in the column of the
ordered data set. The ordering can be based on several factors, for example the time of
the observation. A similar method is next observation carrier backward (NOCB)
which fills missing data by imputing the first value given after the missing entry.
Both methods have similar disadvantages as imputation by a central tendency, with the
potential introduction of a bias and possible false interpretations and are therefore also
not recommended in most applications.
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Multivariate Methods
As opposed to the previously described univariate imputation methods, multivariate
imputation algorithms use the entire set of available feature dimensions to estimate the
missing values.
The first multivariate imputation method to be introduced is regression imputation,
where the missing value is replaced by the value predicted by a regression analysis on the
available variables. Hence, the relationship between features in the data set is preserved
to a certain extent. In more detail, firstly a multivariate model is built from the observed
data. Then in a second step, missing values are replaced with predictions calculated for
the missing data with the multivariate model.
Regression models are applied in a large variety of fields using statistical analysis, with
many theoretical sources available, see for example [25] for one of the earliest publications
or [26] for one of the more modern books. To give a short overview, a regression analysis
is used to find relationships between sets of variables that are statistically significant
and to predict trends in the data. For example, assume that a regression model is
to be fitted for a data set {xi, yi}mi=1, such that xi = {xi1, . . . , xin}. Selecting one
i ∈ {1, . . . ,m}, multiple regression analysis predicts the dependent variable yi by using
the other independent variables xi1, . . . , xin which impact the dependent variable. A
simple univariate regression uses only one independent variable xi1 for regressing yi,
such that n = 1.
There are many models in regression analysis, however the most common one is linear
regression, where yi is a linear combination of the parameters a0, . . . an ∈ R using a
model of the type

yi = a0 + a1xi1 + a2xi2 + . . .+ anxin + εi = x>i a + εi,

with the vector of independent variables xi = (1, xi1, . . . , xin)> and the parameter vector
a = (a0, . . . , an)>. An additive error term εi = yi−x>i a has to be introduced since under
most real-world circumstances not all xi lie on a hyperplane.
This model can be written for all i in matrix notation as

y = Xa+ ε,

with the vector of dependent variables y = (y1, . . . , ym)>, the so-called design matrix
X = (x>1 , . . . ,x

>
m) and the error matrix ε = (ε1, . . . , εm).
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Technically, the linear regression model does not need to be linear in the independent
variables, only in the parameters, such that a term of the form xi

d, d > 1 is also valid.
Multivariate regression models are a generalization with a vector-valued dependent vari-
able which may be written as

Y = XA+ E,

where Y is the matrix of dependent variables, X is the design matrix, A is the matrix of
parameters to be estimated and E is the error matrix.
Ordinary least squares (OLS) is a very popular method for the parameter estimation.
The objective is to minimize the sum of squared residuals ε̂i,

min
a

m∑
i=1

ε̂2i = min
a

m∑
i=1

(yi − xi
>a)2.

Visually, these are the perpendicular distances between the data points and the regres-
sion line. The solution of the minimization problem is given by â = (X>X)−1X>y and
the predicted values are ŷ = Xâ.
Since regression imputation is based on a parametric model, it is sensitive to the model
itself and the imputation is only as good as the model. However, it takes a lot of effort
to set up a reasonable model, such that typically for low computational effort, a stand-
ard model is used, for example a multivariate linear or multivariate normal model. The
problem is that the imputed values fall directly on a regression line since they do not
include an error term, which implies an overestimated correlation and an underestimated
covariance.

For that reason, stochastic regression was introduced to supply some uncertainty
about the value and reduce the bias. Now, the missing values are estimated by a regres-
sion approach plus a random residual value. This noise term improves the reproducibility
of the relationships between variables in comparison with the deterministic approach.
However, stochastic regression imputation may lead to implausible values, such as neg-
ative values for a positive variable in the real data set. Additionally, it uses the same
error term for all values whereas the actual error might differ by a lot between variables,
for example the variability might be increasing in the ordered data set.

As a short excursus, even though not strictly a statistical technique, a similar approach is
interpolation or rather extrapolation, an easy numerical method for handling missing
values with an estimation based on other observations from the same feature. Extrapola-
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tion is an estimation outside of the observation range and therefore more uncertain than
interpolation which calculates estimations within the area of known observations.
Interpolation and extrapolation are usually explained in most introductory numerical
analysis books, see for instance [27] or [28].
The simplest form of interpolation is linear interpolation, where two points are connected
by a line. Outside of the interval given by the two points, this approach is known as
linear extrapolation.
For more than two points which do not lie on a straight line, piecewise linear interpol-
ation may be used. On a data set {(xi, yi)}ni=1, linear interpolants are given as straight
lines between two points {xj , yj} and {xk, yk}, j 6= k, j, k ∈ {1, . . . , n}.
Linear interpolation may be easy to do, but it is not very precise. That is why one
should work with a more general procedure. Polynomial interpolation tries to find the
polynomial function

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n,

with the lowest possible degree that passes through the data points such that f(xi) = yi.
There exists a unique polynomial of degree at most n − 1 for n distinct data points.
This is an infinitely continuously differentiable function and thus lies in the class C∞.
Spline interpolation, where the interpolant is a piecewise polynomial, may be preferred to
higher-dimensional polynomial interpolation, because it avoids the problem of oscillations
at the edges of the interpolation interval, known as Runge’s phenomenon. Polynomial
pieces having degree ≤ n imply that the spline is of degree ≤ n. The classical spline of
degree n, is a function in Cn−1 on the considered interval.
The degree of a polynomial or spline interpolation has to be properly chosen. The in-
terpolation result may also depend on more than one variable. A simple multivariate
interpolation method in more than one dimension is piecewise constant interpolation
which locates the nearest neighbor, more precisely the value of the nearest point. It does
not however consider any other values in the neighborhood.

This previously described method is the special case k = 1 of another widely used im-
putation method that is based on the k-nearest neighbors algorithm (kNN).
KNN is a non-parametric machine learning algorithm that matches a data point with its
k nearest neighbors. The number of neighbors to be considered, k, is a small integer that
should be chosen based on the data. A small k increases the influence of noise while a
large k tends to blur local effects. Since kNN makes no assumptions about the underlying
distribution of the data, it may be used for a wide variety of data sets.
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In a classification context, kNN allocates the training data into several classes based on
specific characteristics and then assigns the test data on the basis of the classes of its k
nearest neighbors in the training data. The prediction of the test data is typically based
on the mode. Imputation with kNN usually replaces the missing data by the mean of
the non-missing values of its k nearest neighbors in the training set. Two data points are
close in this case if their non-missing features are close.
A distance measure needs to be introduced to quantify the similarity between data points.
The distance metric should be chosen based on the properties of the data. For real-valued
data, the Euclidean distance and Manhattan distance are usually very popular. While
the Euclidean distance is beneficial for a data set with similar feature types, the Man-
hattan distance is useful for features which are not of a similar type.
The Euclidean distance is associated with the Euclidean norm, or L2-norm, in an analyt-
ical context usually referred to as l2-norm, and measures the length of the straight line
between two points. More formally, for a point x ∈ Rn, n ∈ N in the training set and a
point y ∈ Rn in the test set, the Euclidean distance is calculated as the square root of
the sum of the squared differences between x and y, such that

d(y, x) = ‖x− y‖2 =

√√√√ n∑
i=1

(xi − yi)2.

The Manhattan distance, associated with the L1-norm, which may similarly to above also
be referred to as l1-norm, is calculated as the sum of the absolute differences between
two points x and y,

d(y, x) = ‖x− y‖1 =
n∑
i=1

|xi − yi|.

Additionally, it is possible to introduce a weight for each neighbor, where standard kNN
can be seen as using the weight 1

k for all k nearest neighbors. A major downside to kNN is
the computational complexity. High-dimensional data incurs the curse of dimensionality.
Moreover, kNN is susceptible to outlier.

All previously described single imputation strategies are easy to apply, but they have
certain disadvantages. The main problem with most single imputation methods is that
maximally likely values are computed and the standard errors are underestimated due to
results having an overstated precision, since the statistical uncertainty in the imputations
is neglected. Imputation results do not reflect any underlying distribution or real-world
noise, but are rather treated with certainty as if all values were the actual true values.
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2.2 Multiple Imputation Methods

To improve on the quality of the imputation results and account for the range of possible
values, multiple imputation methods were developed.
Multiple imputation (MI) imputes missing values in a data set multiple times to
account for uncertainty in the data and the imputations. It can be seen as a further
development of simple imputation methods where missing values are only imputed once.
Introduced by Donald Rubin in the 1970s and further developed in [7], it is now a common
statistical approach to missing data, popular especially in social and economic experi-
ments, and still a relevant research topic.
Multiple imputation is done in three phases: the imputation phase, the analysis phase
and the pooling phase. In the first step, imputation is performed m > 1 times for in-
complete data. The number of imputations m influences the result and is still a topic of
discussion, see for example [29]. It may already be sufficient to use 3− 5 imputations for
a moderate amount of missing information, but it is also theoretically beneficial to set m
to a higher value, for a less biased outcome among other things, which will however need
more computational time and a higher amount of storage. The value of m should hence
in practice be adapted for the data set. A possible criterion for setting m is the average
percentage of missing data. The imputed data sets are identical for the non-missing data,
but they differ in the imputed values based on the method used for the imputation due
to an added error term introduced for the uncertainty in the imputation.
The specification of the imputation model is arguably the most complex step in MI.
Several possible approaches are available. Usually, imputed values are drawn from a sim-
ulated random distribution and as such are different for each missing entry. Stochastic
regression may be used with its normally distributed error terms since they create differ-
ent imputation results. Another possible single imputation method that also works for
multiple imputation is hot-deck imputation where the random choice of the substituted
value makes each MI result slightly different.
As a second step, the m completed data sets are all analyzed separately, as they would
have been had the data been complete, for example to estimate parameters. The statist-
ical analysis of the imputed data differs for all m data sets due to the differently imputed
data that illustrates the uncertainty of the imputed value. In addition, it is important
to analyze the spread of the imputed values. If all imputations are close to each other,
then they have a low variance. Otherwise, the predicted value may not be very reliable.
In the last step, the analysis results are pooled into a final result. Pooling m sets of
results into a single set of results is based on the so-called Rubin’s rules as follows.
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Using a notation similar to [8], the pooled estimate of m parameters θ̂i, i = 1, . . . ,m is
simply the average of all m parameter estimates

θ̄m =
1

m

m∑
i=1

θ̂i.

The variability associated with the pooled estimate θ̄m is composed of the average within-
imputation variance, which captures the typical sampling variability,

W̄m =
1

m

m∑
i=1

Wi,

for the associated sampling variances Wi, i = 1, . . .m, and the between-imputation com-
ponent,

Bm =
1

m− 1

m∑
i=1

(θ̂i − θ̄m)2,

which captures the estimation variability due to missing data.
Thus, the total variability is

Tm = W̄m +
m+ 1

m
Bm,

where (1 + 1/m) is an adjustment for finite m.
If done well, MI thus creates an unbiased estimate with the desired statistical properties
that also preserves the uncertainty about the structure in the data.
An exemplary illustration of the three main steps in multiple imputation (imputation,
analysis and pooling) for m = 4 different imputed data sets can be found in figure 2.1.

One of the preferred multiple imputation methods today is multiple imputation by
chained equations (MICE), also known as "fully conditional specification" or "se-
quential regression multiple imputation". A good introduction is given in [30] and a
more thorough explanation can be found in [9].
Many multiple imputation procedures assume a large joint model for all of the variables,
however these are rarely appropriate in large data sets with variables of varying types.
MICE is a more flexible, iterative approach to these joint models, where a series of re-
gression models is run for each variable modeled according to its distribution conditional
upon the other variables in the data.
To elaborate on the process, MICE can be divided into several steps.
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Imputed dataIncomplete data Analysis results Pooled results

Figure 2.1: Illustration of the main MI steps based on a similar figure in [9].

In the first step, MICE performs a simple imputation for every missing value in the data
set, for example a mean imputation. The imputed values work as place holders for the
following steps.
Then, for every variable with missing data a regression model is applied to impute the
missing values. In this case, the regression model can be chosen from a wide variety of
possibilities. For example, given continuous variables, a modified linear regression model
as well as special cases of hot-deck imputation may be used.
Bayesian and bootstrap multiple imputation modify normal linear regression models by
adding noise and additionally including parameter uncertainty. Since the regression para-
meters are typically unknown for incomplete data sets, they must be estimated from the
data and hence induce uncertainty which is thereby represented in the model. Bayesian
methods draw the parameters directly from their posterior distributions, whereas boot-
strap methods re-sample the observed data and re-estimate the parameters from the
re-sampled data, for more information see for example chapter 3 in [9]. Predictive mean
matching may be seen as a variation of hot-deck imputation which imputes values based
on randomly chosen nearest observed values in the data set.
The iterative imputation step starts with one variable, for which all originally missing
entries are regressed on the other variables in the imputation model, such that this vari-
able is the dependent variable and all the other variables are the independent variables
in the step.
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The missing values in the dependent variable are then replaced with the regression pre-
dictions from the regression model. When this variable is now subsequently used as an
independent variable in the regressions of all other variables, the observed and imputed
values are used.
The previously described steps are repeated for each variable with missing data, which
concludes one iteration with imputed values based on the regression predictions.
This iteration is repeated several times to update the imputation values each time and
the last imputed values are kept as the final imputation results.
Optimally, the parameters of the regression have converged until the final iteration in
the sense that the distribution of the regression parameters becomes stable to avoid de-
pendence on the order of the imputation. However, convergence can only be guaranteed
in several special case, such as under the multivariate normal model.
Thus, generally, the optimal number of iterations needs to be identified for the data set.
Depending upon the amount of missing information in the data, many research papers
use about 10 iterations, while others suggest that as many as 40 imputed data sets can
improve the results (see [29]).
Advantages of MICE include that it is very flexible with respect to its data as it can
handle variables of varying data types as well as complexities such as bounds. A major
disadvantage however is that it does not have the same theoretical justification as other
imputation methods, since the main justification rests on simulation studies.

The other major MI approach not discussed much further uses Markov Chain Monte
Carlo (MCMC). MCMC is a collection of methods for generating pseudo-random draws
from probability distributions via Markov chains whose stationary distribution is a dis-
tribution of interest.
A Markov chain is a memoryless discrete-time stochastic process, more explicitly, it is
a sequence of random variables in which a future event depends only upon the present
state, not on any events that happened in the past. A stationary distribution of a Markov
chain is a probability distribution that is invariant in time.
The goal of MCMC is to generate values of a multidimensional random variable Z with
density f(Z). Instead of drawing from f directly, which might be difficult to do, a
sequence {Z1, . . . , Zt, . . . } is generated with stationary distribution f such that each ele-
ment depends on the preceding one. For a time t sufficiently large, Z(t) is approximately
a random draw from f . Multiple imputation with MCMC simulates approximately in-
dependent random draws of the missing values.
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A data augmentation (DA) approach is the primarily used Markov Chain Monte Carlo
method for handling missing data (see [31]).
Given some initial parameter value θ0 and a data matrix Y = {Yobs, Ymis} with missing
data Ymis and observed data Yobs, it is an iterative method that creates a Markov chain by
iterating a two-step approach to generate a stochastic sequence {(Ymis, θ1), (Ymis, θ

2), . . . }
which converges in distribution to the joint posterior distribution p(Ymis, θ|Yobs).
In the imputation step, DA simulates the missing values Y t+1

mis based on the current para-
meter estimates θt by drawing from the conditional distribution p(Ymis|Yobs, θt).
The posterior step of DA involves the simulation of the parameters θt+1 given the current
completed data by drawing from the posterior distribution p(θ|Yobs, Y t+1

mis ).
For a sufficiently large t, θt can be regarded as an approximate draw from p(θ|Yobs) and
Y t
mis as an approximate draw from p(Ymis|Yobs).

Since of the information from one step of DA is contained in the previous step, the para-
meter estimates and imputed values from two subsequent steps are very similar and not
useful as random draws. Therefore, several steps of DA are performed until a random
draw is selected. The number of iterations between two draws has to be determined such
that they are similar to two random draws.
If certain necessary assumptions are satisfied, DA converges, however the rate of conver-
gence depends on the fractions of missing information for one or more components of θ
and may be very slow for high fractions, see section 3.5 in [32].

As a general final remark about this paragraph, multiple imputation methods are not
to be used as "black box algorithms" to achieve good imputation results. During the
imputation process, several judgments have to be made, especially by setting up an ap-
propriate imputation model, and the defaults should be appropriately adjusted to prevent
misleading results. Sometimes, simpler methods may actually be sufficient and the more
complex methods should not be used to simplify the imputation process.
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2.3 Maximum Likelihood Procedures

This section will shortly introduce another popular approach to handling missing data
based on maximum likelihood (ML), see for example part II in [8] for an in-depth
discussion of likelihood-based approaches to the analysis of data with missing values.
Maximum likelihood estimation is a fundamental statistical method for estimating para-
meters by maximizing a likelihood function.

In a more simple statistical context, for a collection of independent and identically dis-
tributed (iid) random variables X1, . . . , Xn with density function f(x; θ), where θ is in
the parameter space Θ ⊂ Rd, the likelihood function of θ on the basis of X1, . . . , Xn is
the joint density of the random variables, defined as

Ln(θ) =

n∏
i=1

f(Xi; θ).

θ̂ is a maximum likelihood estimate (MLE) of θ, if

Ln(θ) ≤ Ln(θ̂), ∀ θ ∈ Θ.

If the maximum of the likelihood function is unique, the MLE is given as

θ̂ = argmax
θ∈Θ

Ln(θ).

Determining θ̂ would involve calculating the derivative of a product of n functions, so
that typically the log-likelihood function

ln(θ) = logLn(θ) =
n∑
i=1

log(f(Xi; θ))

is maximized instead, since likelihood and log-likelihood have the same extremal points.

Missing data analysis using maximum likelihood, also sometimes called "full information
maximum likelihood", is a method that does not impute any data, but rather analyzes
the full, incomplete data set to compute maximum likelihood estimates. ML does the
parameter estimation by determining the value that maximizes the likelihood function
based on the available data, which is the value of the parameter that is most likely to
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have resulted in the observed data. This means that ML methods handle missing data
and parameter estimation in one step. Hence, the complete-case algorithms typically
used for imputed data sets cannot be applied. Therefore, implemented ML procedures
are only available in a very limited capacity.
Monotone incomplete data is a pattern of missing data where the variables can be ar-
ranged such that for a variable with missing data all variables afterwards have missing
data at least for the same observations.
In a data set with a general monotone pattern of missing data, the likelihood function
may be factorized, such that it is computed for variables with complete data and those
with missing data separately.
The appropriate factorization for this pattern, with Yi being more observed than Yj for
observations i < j, is given as

n∏
i=1

f(yi1, . . . , yi,J |θ) =

n∏
i=1

f(yi1|θ1)

r2∏
i=1

f(yi2|yi1, θ2)

rJ∏
i=1

f(yiJ |yi1, . . . , yi,J−1, θJ),

where for j = 1, ..., J, f(yij |yi1, . . . , yi,j−1, θj) is the conditional distribution of yij given
yi1, . . . , yi,j−1, indexed by the parameter θj (see section 7.4.2 in [8]).
However, incomplete data in practice usually does not have a pattern that allows ML
estimates to be calculated by factorizing the likelihood. Hence, iterative methods are
required to compute ML estimates.

A popular likelihood based iterative technique is an expectation-maximization al-
gorithm (EM) which was introduced in [33]. Nowadays, there are many types of
extensions of EM available.
EM produces maximum likelihood estimates by exploiting the interdependence of the
missing data and the parameters (see [32]). The missing data contains information relev-
ant to estimating the parameters which are helpful for finding likely values of the missing
data. This suggests that parameters may be estimated in the presence of observed values
based on a two-step approach.
EM is a parametric method that solves the incomplete data problem by alternating
between such two steps, the expectation and the maximization step.
After replacing the missing data with a simple imputation by plausible estimated values
and estimating parameters, the expectation and maximization steps are iterated.
During the expectation step, the missing values are estimated, given the observed data
and the current parameter estimates.
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More specifically, for the current estimate θt of the parameter θ, the expectation step
finds the expected complete-data loglikelihood if θ were θt defined as:

Q(θ|θt) = E(ln(θ|y)f(Ymis|Yobs, θ = θt)),

for the missing data encoded in Ymis and the observed data in Yobs.
Thus, the conditional expectation of the missing data given the observed data and current
estimated parameters is computed and these expectations are substituted for the missing
data. In the maximization step, parameters are estimated again, where a maximum like-
lihood estimation of the parameters is performed for the observed and completed data
to check whether the estimate is the most likely one.
More formally, θt+1 is determined by maximizing the expected complete-data loglikeli-
hood:

θt+1 = argmax
θ

Q(θ|θt).

If the estimate is not the most likely value, the two steps are re-iterated until the estim-
ates converge, such that the estimates do not change any longer between two consecutive
iteration steps.
Important advantages of EM include that the method preserves the relationship with
other variables and that convergence may be observed (see sections 8.3 - 8.4 in [8]).
A major drawback is the slow convergence of EM. The rate of convergence is linear with
rate proportional to the fraction of information that is observed. Additionally, the max-
imization step may not have a closed form solution which complicates the computation
of the parameter estimations.
EM bears a strong resemblance to DA in the previous section. Data augmentation can
be seen as a stochastic version of EM with the imputation step corresponding to the ex-
pectation step and the posterior step corresponding to the maximization step respectively.

This concludes the present chapter on statistical methods for incomplete data. In the
next chapter, several numerical methods for handling missing values are introduced.



3. Matrix Completion by Dimension-
ality Reduction

Nowadays, many practical applications use high-dimensional data. However, the curse
of dimensionality makes working with those high-dimensional data sets quite difficult.
In this context, the term "curse of dimensionality" describes that with an increasing di-
mension of the data, executing an algorithm has an exponentially increasing complexity.
For that reason, a class of unsupervised machine learning algorithms, named dimension-
ality reduction methods, take advantage of the fact that data sets may have an underlying
structure. Hence, the goal is to find this structure in the high-dimensional data set, to
extract the relevant features and disregard redundant information to be able to work
in fewer dimensions. In this chapter several methods for handling missing data in re-
lation to dimensionality reduction are presented. The list of dimensionality reduction
algorithms presented is not comprehensive and the selection is based on the applications
to incomplete data explained in the subsequent sections.

3.1 Dimensionality Reduction Methods

Many practical problems concern high-dimensional data that typically lies close to a
much lower dimensional manifold due to its underlying structure. Only a small number
of degrees of freedom is expected to be required to describe the data to a reasonable
accuracy. The aim is thus to find computationally efficient dimensionality reduction
methods that project data points onto a lower dimensional space.
In many applications, the goal is to infer a quantitative model M of a model class M
for a given set of sample points X = {x1, x2, ..., xN}, xj ⊂ RD. The purpose of these
models very often includes the simplification of the representation of the data set to help
to reveal underlying structures and predict future samples.

23
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3.1.1 Principal Component Analysis

The standard well-known linear method for dimensionality reduction is Principal Com-
ponent Analysis (PCA). By identifying patterns in data, the number of dimensions
can be reduced with little loss of information. This is based on the premise that if the
given data lies close to a linear subspace, then it can be fitted to approximate each data
point mapped to the subspace, such that the distance between the data points and their
projection onto the subspace is minimal.

The following exposition on PCA is largely based on [34]. Geometrically, classical PCA
can be seen as the problem of fitting a low-dimensional (affine) subspace S of dimension
d � D to a set of N data points X = {xj ∈ RD}Nj=1 in a high-dimensional space RD.
Each data point xj can be represented as

xj = µ+ Uyj , j = 1, 2, ..., N,

where µ ∈ S is a point in the subspace, U ∈ RD×d is a matrix that forms a basis for S
and yj ∈ Rd is the vector of new coordinates of xj in the subspace.
To get a unique solution for the problem, common constraints are that the average of
the yj be zero, 1

N

∑N
j=1 yj = 0, and that the columns of U be orthonormal, U>U = Id.

In practice, the given data points are very likely imperfect and can therefore for example
be represented as

xj = µ+ Uyj + εj , j = 1, 2, ..., N

with some additive noise εj . Hence, the goal is to minimize the sum of the squared errors

min
µ,U,{yj}

N∑
j=1

‖xj − µ− Uyj‖2, s.t. U>U = Id and
N∑
j=1

yj = 0.

Calculating a solution for this optimization problem yields the results

µ̂ = µ̂N =
1

N

N∑
j=1

xj and ŷj = U>(xj − µ̂).

Rewriting the optimization problem with the optimal values as

min
U

N∑
j=1

‖(xj − µ̂N )− UU>(xj − µ̂N )‖2 s.t. U>U = Id.
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shows that it can be assumed that all data points have zero mean. Otherwise, one can
simply subtract the mean from each point before computing U. For the matrix of data
points X = [x1, x2, ..., xN ] ∈ RD×N , the singular value decomposition (SVD) can be
written as X = UXΣXV

>
X and XX> = UXΣ2

XV
>
X is the eigenvalue decomposition of

XX>.
A solution of the optimization problem for U is given by the first d columns of UX
which are are the top d eigenvectors of XX> for an ordered ΣX . The columns of
ΣV > = [ŷ1, ŷ2, ..., ŷN ] ∈ Rd×N are the principal components Y = {yj ∈ Rd}Nj=1.

From a statistical point of view, PCA estimates the principal components of a multivari-
ate random variable.
For a random variable x ∈ RD and an integer d < D, the first d principal components
y ∈ Rd of x are defined as the d uncorrelated affine components,

yi = u>i x+ ai ∈ R, ui ∈ RD, i = 1, 2, ..., d,

where ai = −u>i µ, such that the variance of yi is maximized subject to u>i ui = 1

and Var(y1) ≥ Var(y2) ≥ ... ≥ V ar(yd) > 0. The covariance matrix is given by
Σx = E[(x−µ)(x−µ)>] ∈ RD×D, where µ = E(x) ∈ RD is the mean. For rank(Σx) ≥ d,
the unit norm vectors {ui}di=1 are the d eigenvectors of Σx associated with its d largest
eigenvalues {λi}di=1, where λi = Var(yi).
Since Σx and µ may not be known, the sample mean µ̂N = 1

N

∑N
j=1 xj and the maximum

likelihood estimate Σ̂N = 1
N

∑N
j=1(xj − µ̂N )(xj − µ̂N )> can be used instead as they are

a reasonable approximations.

So far, the number d of principal components was assumed as known. In general, how-
ever, d has to be estimated. Noise-free data points would lie exactly in the subspace of
dimension d, so that d can be estimated as d = rank(X). But, the data matrix X is
usually of full rank when there is noise. Therefore, d has to be estimated in some other
fashion, since d = rank(X) would not achieve dimensionality reduction.
It is possible to find a solution to PCA for all d = 1, 2, ..., D, so that the best estimate
d̂ can be chosen by looking at the spectrum of solutions for different values of d, while
keeping the model as simple as possible. For a good balance between the complexity of
the model and the fidelity of the data to the model, a criterion has to be chosen. A simple
model selection criterion is choosing a threshold such that the fraction of information to
be discarded is less than the given threshold.
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Figure 3.1: The explained variance of the 30 shares included in the DAX over the
course of the year 2018 decreases with the eigenvalues, with the first eigenvalue already
explaining more than 50% of the variance and 95% of the variance being explained by

only 7 eigenvalues.

In many applications, the decrease in the absolute value of the ordered eigenvalues is
significant, so that with a small number of eigenvalues a large amount of variance can
already be explained. One example for this phenomenon that gives the motivation for
dimensionality reduction is stock data, which can be seen in figure 3.1.
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3.1.2 Kernel Principal Component Analysis

In the previous section, Principal Component Analysis was used to fit a low-dimensional
linear or affine subspace to data. However, this approach may fail to capture nonlinear
structures. In that case, Cover’s theorem may be useful, which can be paraphrased as
"A complex pattern-classification problem, cast in a high-dimensional space nonlinearly,
is more likely to be linearly separable than in a low-dimensional space, provided that the
space is not densely populated" (page 231 in [35]).
That is to say with a high probability the data can be projected via a nonlinear transform-
ation into a higher dimensional space where it is then linearly separable. The following
explanation is based on [36] and Chapter 4 in [34].

A nonlinear extension of PCA, called Nonlinear Principal Component Analysis
(NLPCA), is based on this principle. NLPCA embeds the data into a high-dimensional
space via a nonlinear mapping and then applies PCA to the embedded data.
More precisely, there exists a nonlinear embedding φ : RD → RM , where RM is a higher-
dimensional space such that the structure of the embedded data is approximately linear
in it.
For a data point x ∈ RD, φ(x) ∈ RM is called the feature and the space RM is called the
feature space. For the sample mean of the feature space φ̂ = 1

N

∑N
j=1 φ(xj), the centered

embedded data matrix is given by

Φ = [φ(x1)− φ̂, . . . , φ(xN )− φ̂] ∈ RM×N .

The principal components are then given by the eigenvectors of the embedded sample
covariance matrix

Σφ(x) =
1

N

N∑
j=1

(φ(xj)− φ̂)(φ(xj)− φ̂)> =
1

N
ΦΦ> ∈ RM×M .

Let ui ∈ RM , i = 1, . . . ,M be the M eigenvectors of Σφ(x),

Σφ(x)ui = λiui, i = 1, . . . ,M,

then the d nonlinear principal components of each x are given by

yi = u>i (φ(x)− φ̂) ∈ R, i = 1, ..., d.
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By a similar argumentation as in the case of PCA, the eigenvalues of Φ>Φ ∈ RN×N and
ΦΦ> ∈ RM×M coincide.
If the dimension of RM is too high for a computation of the nonlinear principal compon-
ents from the eigenvectors of the embedded covariance matrix, but N �M , it may hence
be possible to use the lower-dimensional eigenvalue decomposition of Φ>Φ ∈ RN×N .
For every eigenvector u ∈ RM of ΦΦ> it holds that ΦΦ>u = λu. This can be rewrit-
ten as u = Φ(λ−1Φ>u). Defining w = λ−1Φ>u ∈ RN , it holds that ‖w‖2 = λ−1 and
Φ>Φw = λw, so w is an eigenvector of ΦΦ> with eigenvalue λ 6= 0.
For the eigenvector u of Φ>Φ and the eigenvector w of ΦΦ>, it holds that u = Φw and
the d nonlinear principal components can also be calculated as

yi = w>i Φ>(φ(x)− φ̂) ∈ R, i = 1, ..., d.

A special case of NLPCA called Kernel Principal Component Analysis (KPCA)
is the extension of PCA with techniques of kernel methods. It is used to compute the
nonlinear principal components from the eigenvectors of the kernel matrix directly from
the given data by applying the so-called kernel trick to compute the low-dimensional
embedding without explicitly computing the embedded data.
To elaborate on this, given the embedding function φ : RD → RM , the kernel function
κ : RD × RD → R of two vectors x, y ∈ RD is defined as the inner product of their
features

κ(x, y) = φ(x)>φ(y) ∈ R.

The kernel function κ is symmetric,

κ(x, y) = κ(y, x) ∀x, y ∈ RD,

and positive semi-definite,

∀f ∈ L2(RD) :

∫
RD

∫
RD

κ(x, y)f(x)f(y)dxdy ≥ 0,

where L2(RD) = {f : RD → R s.t.
∫
f(x)2dx <∞} is the space of all square integrable

functions.
The centered kernel can be defined as

κ̃(x, y) = (φ(x)− φ̂)>(φ(y)− φ̂) ∈ R
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and computed from κ via

κ̃(x, y) = κ(x, y)− 1

N

N∑
j=1

κ(x, yj)−
1

N

N∑
i=1

κ(xi, y) +
1

N2

N∑
i=1

N∑
j=1

κ(xi, yj).

Define a kernel matrix K = [κij ] ∈ RN×N as κij = κ(xi, yj) and the centered kernel
matrix K̃ = Φ>Φ as

K̃ = K − 1

N
K11> − 1

N
11>K +

1>K1

N2
11> = (I − 1

N
11>)K(I − 1

N
11>) = K̃ = JKJ

with the centering matrix J = I − 1
N 11>.

For κ̃x = [κ̃(x1, x), . . . , κ̃(xN , x)]> = Φ>(φ(x)−φ̂) ∈ RN and κx = [κ(x1, x), . . . , κ(xN , x)]> ∈
RN it holds that

κ̃x = κx −
1

N
K1− 1

N
11>κx +

1>K1

N2
1.

Therefore, the nonlinear principal components can be computed as

yi = w>i Φ>(φ(x)− φ̂) = w>i κ̃x, i = 1, ..., d,

where wi is the normalized eigenvector of K̃ associated with its i-th largest eigen-
value λi, such that ‖wi‖ = λ−1

i . Since the eigenvalue decomposition of the matrix
K̃ = [κ̃x1 , ..., κ̃xN ] is given as K̃ = VK̃ΛK̃V

>
K̃ , the top d eigenvectors Vd and eigenvalues

Λd yield VdΛ
−1/2
d = [w1, ..., wN ]. As a consequence, the low-dimensional coordinates can

be obtained from the top d eigenvectors and eigenvalues of the centered kernel matrix as

Y = Λ
−1/2
d V >d K̃ = Λ

−1/2
d V >d VKΛKV

>
K = Λ

1/2
d V >d .

Therefore, the nonlinear components are computed directly from the kernel function
κ(x, y) = φ(x)>φ(y) without computing the embedded data φ(x).

Several different possible kernels can be used, popular choices, that where first derived
from support vector machines, include

• polynomial kernel:
κ(x, y) = (γx>y + c)n,

• rbf kernel (radial basis function):

κ(x, y) = exp(−γ‖x− y‖2),
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with the special case of a Gaussian kernel

κ(x, y) = exp(−‖x− y‖
2

σ2
).

• cosine kernel:

κ(x, y) =
x>y

‖x‖‖y‖
,

• sigmoid kernel:
κ(x, y) = tanh(γx>y + c),

which is important for support vector machines.

KPCA with the linear kernel κ(x, y) = x>y yields standard PCA.
The question of choosing the best kernel for a given problem is sadly yet unsolved.

A major advantage of KPCA over other methods of NLPCA is that no nonlinear optim-
ization is involved, so that all minima are global minima.
Unfortunately, KCPA also has its problems. A major downside is that standard PCA is
a basis transformation and allows the reconstruction of the original pattern, whereas in
KPCA this may no longer be possible. A specific vector might not have a pre-image so
that it has to be approximated.
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(a) Original (b) PCA (c) DM

Figure 3.2: The original swiss roll data set in 3D (a) with an unsuitable embedding in
2D given by PCA (b) and a 2D embedding with DM (c).

3.1.3 Diffusion Maps

As addressed in the previous section, PCA is a linear model which might not yield
appropriate results for nonlinear examples. In that case, a nonlinear method that is able
to embed data with an underlying nonlinear structure is preferable.
One useful manifold learning method for dimensionality reduction is Diffusion Maps
(DM), where high dimensional data is embedded into a lower dimensional manifold. For
a canonical nonlinear example where DM is applicable see figure 3.2, which depicts the
so-called swiss roll data set and its two-dimensional embeddings using PCA and DM.

The construction and notation in the following paragraph leading to a dimensionality
reduction method with the diffusion map algorithm is mainly based on [37].

Let (X,A, µ) be a measure space with data set X and probability measure µ.
The diffusion kernel k : X ×X −→ R satisfies for all x, y ∈ X:

• k is symmetric: k(x, y) = k(y, x),

• k is positivity preserving: k(x, y) ≥ 0.

A kernel that is commonly used is the Gaussian kernel

k(x, y) = exp

(
−‖x− y‖

2

σ

)
with σ > 0 a scaling parameter of the kernel.
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For the construction of the diffusion process, the kernel is normalized as follows:
For all x ∈ X, let

v(x) =

∫
X
k(x, y)dµ(y)

and set
a(x, y) =

k(x, y)

v(x)
.

The new kernel a(x, y) is well-defined and non-negative, but not symmetric anymore.
However, the conservation property∫

X
a(x, y)dµ(y) = 1

holds.
The integral operator Ã defined on L2(X) with the kernel

ã(x, y) = a(x, y)

√
v(x)

v(y)

is symmetric and yields the spectral decomposition

ã(x, y) =
∑
i≥0

λ2
iφi(x)φi(y)

with eigenvalues λ0 = 1 ≥ λ1 ≥ λ2 ≥ ... ≥ 0 and eigenvectors φi for i = 1, 2, ... .
Let m ∈ N and ã(m)(x, y) be the kernel of Ãm, then

ã(m)(x, y) =
∑
i≥0

λ2m
i φi(x)φi(y).

The family of diffusion distances {Dm} for m ∈ N is defined by

D2
m(x, y) = ã(m)(x, x) + ã(m)(y, y)− 2ã(m)(x, y)

=
∑
i≥0

λ2m
i (φi(x)− φi(y))2.

To achieve dimensionality reduction, the following key observation is paramount:
Since 0 ≤ λi ≤ λ0 = 1, i = 1, 2, . . . holds and the number of significant eigenvalues
decreases with increasing m, the kernel ã(m)(x, y) and also Dm(x, y) can be calculated
with only a few terms up to an accuracy δ > 0.
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For s(δ,m) = max{l ∈ N : |λl|m > δ|λ1|m}, the approximate diffusion distance with
accuracy δ can be calculated with a finite number of terms:

D2
m(x, y) =

s(δ,m)∑
i=0

λ2m
i (φi(x)− φi(y))2.

Finally, the family of diffusion maps {Φm} can be introduced, such that dimensionality
reduction leads to Φm : X −→ Rs(δ,m) being given by

Φm(x) =


λm0 φ0(x)

λm1 φ1(x)
...

λms(δ,m)φs(δ,m)(x)


for m ∈ N and λ0, ..., λs(δ,m) the s(δ,m) largest eigenvalues and φ0, ..., φs(δ,m) the corres-
ponding eigenvectors.
Φm embeds the data in a Euclidean space of dimension s(δ,m), such that the Euclidean
distance equals the diffusion distance up to δ.
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3.2 Incomplete Dimensionality Reduction - A Missing Data
Approach with Dimensionality Reduction

After looking at imputation methods in the previous chapter, which is the statistical
approach to missing data, the following section addresses a numerical view on handling
incomplete data based on the remarks concerning dimensionality reduction in the previ-
ous section. Starting with the linear dimensionality reduction method PCA, the methods
are adapted to handle missing data.
To recap, PCA calculates the eigenvectors and eigenvalues of the covariance matrix of
the centered data, orders the eigenvectors by the value of the corresponding eigenvalue in
decreasing order and may ignore eigenvectors of lesser significance to achieve dimension-
ality reduction by projecting the data onto its principal components via multiplication
of the data with the feature vector of the eigenvectors.
To reconstruct the original data, the transformed data is multiplied by the inverse of
the feature vector which is the transposed of the feature vector due to the orthogonality
requirement of the eigenvectors and added to the mean. If the data was reduced, then
obviously the reconstructed data is not entirely accurate.

Now, unlike in the previous case, the data set is not complete, therefore a full PCA can
no longer be performed. In that case, consider a complete subset of columns or rows of
the data set which can be used for a standard PCA.
To be more precise, given a data set represented as a matrix of dimension M × L, then
assume that there either exists a subset of dimension m×L or M × l which is complete,
where m or l respectively are not too small. Now, given the complete data matrix of
dimension D ×N , where D ∈ {m,M} and N ∈ {l, L}, the eigenvalue decomposition of
the centered covariance matrix of the data set is calculated for the PCA.
More explicitly, for the centered matrix A = X−µ ∈ RD×N , with data matrixX ∈ RD×N

and mean µ ∈ RD, the covariance is given by C = A>A ∈ RN×N . The non-zero
eigenvalues of the matrices C = A>A and C̃ = AA> coincide, which can be easily seen
by the following explanation.
Let vi be the eigenvectors of A>A with corresponding eigenvalues µi, A>Avi = µivi, and
let ui be the eigenvectors of AA> with corresponding eigenvalues λi, AA>ui = λiui .
Then

A>Avi = µivi.
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Multiplying with A yields
AA>Avi = µiAvi.

Setting C̃ = AA> results in
C̃ui = µiui,

where ui = Avi is the relation of the eigenvectors of C and C̃.
Therefore, it can be computationally efficient to choose between using C if N < D and
C̃, if D < N , for PCA. Although, one has to bear in mind that if the second case holds,
the eigenvectors that are computed by the PCA, have to be multiplied with A as seen
above to obtain the correct solution. Assume for now, that the data set is not too large
and the first case holds, hence PCA is done for C.
The eigenvalues computed with the PCA can be sorted by their size in decreasing order,
whose corresponding eigenvectors are then normalized and saved as columns in a matrix.
However, only a small ratio K of eigenvalues is needed to explain most of the variance in
the data, so that eigenvectors whose corresponding eigenvalues explain only very small
amounts of data are discarded. This threshold for the dimensionality reduction step is
chosen in advance. Each normalized vector can then be represented as a linear combin-
ation of the K eigenvectors up to some small error.
Given the data set without having missing data, one of the vectors to be reconstructed
v ∈ RD is chosen. This vector now includes artificially produced missing values.
The locations of missing entries can be encoded in a vector w.
The weights for the linear combination of the eigenvectors that the incomplete vector v
can be represented with, see for example [38], are given by

ωi = u>i (v − µ), i = 1, ..,K.

The vector can then be reconstructed with

v̂ = µ+
K∑
i=1

ωiui.

Only the unknown values are replaced by the calculated values, so that the reconstructed
vector is determined by

v = w � v + (1− w)� v̂.

This is repeated until the weights have converged, that is until they do not change sub-
stantially any longer from one iteration step to the next.
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Thus, this method is linked to the multiple imputation approach as well as expectation
maximization methods described in the previous chapter.
There is an iterative two step approach to finding the missing values. The weights are
re-calculated at each iteration for the completed vector and then the vector is completed
with the linear combination of eigenvectors using those weights.

Similar to above, KPCA or Diffusion Maps can be utilized instead of PCA with the
data matrix for analogue results, such that the reconstruction of incomplete data with
dimensionality reduction methods can be illustrated in the following steps:

• Use the chosen dimensionality reduction method for the complete sub-matrix X.

• Find the K largest eigenvalues with corresponding eigenvectors given by the di-
mensionality reduction method.

• Iteratively alternate between the following two steps until convergence:

– Calculate the weights needed to represent the given entries of the incomplete
vector v as a linear combination of the computed eigenvectors.

– Complete the missing entries of the vector with the calculated weights while
leaving the existing entries untouched.
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3.3 Matrix Completion with Incomplete PCA

In this last part of the chapter, several different approaches to matrix completion with
principal component analysis are introduced, based on section 3.1 in [34]. They are more
complicated but also more widely applicable than the simple approach in the previous
section.
For the completion method in the previous section, it had to be assumed that a complete
sub-matrix of the incomplete data matrix exists. This may however not always hold true,
especially if the values are missing at random. In that case, the method in the previous
section cannot be applied and a different approach needs to be found. This is where the
motivation of the following methods for PCA with missing data comes from.
First, a very simple method based on mean and covariance completion is described, then
an approach based on iterative PCA similar to the one in the previous section is presented
and in the subsequent paragraphs, methods for solving the matrix completion problem
based on maximum likelihood estimation, convex optimization, and alternating minim-
ization are featured.

Recall that the goal of PCA is to minimize the sum of the squared errors

min
µ,U,{yj}

N∑
j=1

‖xj − µ− Uyj‖2, s.t. U>U = Id and
N∑
j=1

yj = 0,

where the point µ is given by the sample mean

µ̂N =
1

N

N∑
i=1

xj ,

the orthonormal basis U is given by the top d eigenvectors of the covariance matrix

Σ̂N =
1

N

N∑
i=1

(xj − µ̂N )(xj − µ̂N )>,

and the matrix of low-dimensional coordinates Y = [y1, y2, ..., yN ] ∈ Rd×N is given by

yj = U>(xj − µ̂N ), j = 1, ..., N.

Now, a data point x exists which is incomplete.
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If the point x has M missing entries, it can be partitioned, without loss of generality,

as

[
xU

xO

]
, where xU ∈ RM denotes the unobserved entries and xO ∈ RD−M denotes the

observed entries.
Hence, x is known only up to an M -dimensional affine subspace:

x ∈ L =

{[
0

xO

]
+

[
IM

0

]
xU , xU ∈ RM

}
.

The incomplete samples can be arranged as the columns of the incomplete data matrix
X = [x1, x2, ..., xN ] ∈ RD×N and a matrix W ∈ RD×N encodes the locations of missing
entries,

wij =

1 if xij is known

0 if xij is missing.

Let W �X be the Hadamard product of the two matrices, which is defined as the entry-
wise product (W �X)ij = wijxij .
Incomplete PCA now has to find the missing entries (11> −W ) �X additionally to µ,
U and Y from the known entries W � X. Additionally, µ̂N and Σ̂N can no longer be
calculated directly when some entries of xj are missing.

Mean and Covariance Completion
There are several possible approaches to solve the incomplete PCA problem.
The simplest approach computes a mean and covariance from the known entries only
and uses those in the optimization problem associated with PCA, so that

µ̂i =

∑N
j=1wijxij∑N
j=1wij

and σ̂ik =

∑N
j=1wijwkj(xij − µ̂i)(xkj − µ̂k)∑N

j=1wijwkj

with i, k = 1, ..., D. This approach is not recommended for various reasons, although it
is a good initialization for subsequent methods.

Iterative PCA
Another simple method uses iterative PCA (IPCA), which is closely related to multiple
imputation described in 2.2. IPCA can be briefly illustrated analogously to the method
described in the previous section based on the iterative usage of a standard PCA.
After initializing the missing values in the data set, usually with the mean from the
known entries as described above, the following iterative procedure is used.
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In the first step, a principal component analysis is done on the data set which has been
completed by a simple imputation method like mean imputation.
Then, the previously missing entries may be updated with new values, which are com-
puted similar to the previous section as a linear combination of the first several eigen-
vectors from the calculated decomposition. Then, the PCA may once again be done on
the completed data set, such that the two steps are iterated until convergence (see [39]).
Iterative PCA is easily generalized to other dimensionality reduction methods such as
KPCA as described previously.

PPCA and Expectation Maximization
Another approach that will be briefly discussed in this section is an EM algorithm for a
probabilistic PCA (PPCA), see [34] for more information.
PPCA is motivated as follows for the complete case. Since PCA is not a proper generative
model, it cannot be used to generate new samples of the random variable x, as the low-
dimensional representation {yj ∈ Rd} of the data points {xj ∈ RD}, d < D and the error
{εj} are not treated as random variables.
For that reason, y and ε are assumed to be independent random variables with probability
density functions p(y) and p(ε), respectively and new samples of x are generated with

x = µ+By + ε,

where µ ∈ RD is a point on the affine subspace L and B ∈ RD×d is a basis for L. While
B is a matrix of rank d, it is no longer assumed to be orthonormal.
Denote the mean and covariance of y by µy and Σy and assume that ε has zero mean
and covariance Σε, then the mean and covariance of the observations are given by

µx = µ+Bµy and Σx = BΣyB
> + Σε.

The parameters of this model, µ,B, µy,Σy and Σε, may now be estimated from µx and
Σx by the maximum likelihood principle explained in 2.3.
If µx and Σx are known, assume for uniqueness of the parameters that µy = 0, µ may be
estimated in the same way as for PCA as µ̂ = µx. Additionally, assume that Σy = Id ∈
Rd×d and Σε = σ2ID, for σ > 0, such that Σx = BB> + σ2ID.
However, µx and Σx are usually unknown and cannot be used to estimate the parameters
directly. In that case, the iid samples {xj}Nj=1 are used instead to estimate the model
parameters µ,B and σ with the maximum likelihood principle.
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Assuming that y ∼ N (0, I) and ε ∼ N (0, σ2I), the data points are normally distributed,
x ∼ N (µx,Σx) with mean µx and covariance Σx, as previously described.
The maximum likelihood estimates for µx and Σx are obtained from the derivatives of
the log-likelihood of x as

µ̂N =
1

N

N∑
j=1

xj

and

Σ̂N =
1

N

N∑
j=1

(xj − µ̂N )(xj − µ̂N )>.

Using the ML estimates, the model parameters can be estimated just as above.
Now, assume that every incomplete data point x is drawn from a normal distribution
N (µx,Σx), where µx = µ and Σx = BB>+σ2ID as before. The EM algorithm may then
iteratively estimate the model parameters θ = (µ,B, σ) from the incomplete samples.
While the EM approach is simple, it does not necessarily converge to a global optimum.
Thus, the correct solution may not be found.

Convex Optimization
A further alternative for solving the incomplete PCA problem is using a convex relaxa-
tion based on the principle of compressed sensing, see for instance [40] for more details.
The matrix completion is done by minimizing a convex objective function with a guaran-
teed globally optimal minimizer. More explicitly, for a matrix X ∈ RD×N , assume that
only a subset of entries is observed, defined as

Ω = {(i, j) : xij is observed }.

Let PΩ : RD×N → RD×N be the orthogonal projector onto the span of all matrices
vanishing outside of Ω so that

(PΩ(X))ij =

xij , if (i, j) ∈ Ω

0, otherwise.

The missing entries in X may now be completed by finding a complete low rank matrix
A ∈ RD×N coinciding with X on Ω.
This results in the optimization problem

min
A

rank(A) s.t. PΩ(A) = PΩ(X).
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Since this rank-minimization problem is NP-hard, a convex relaxation is considered

min
A
‖A‖∗ s.t. PΩ(A) = PΩ(X),

where ‖A‖∗ =
∑
σi(A) is the nuclear norm of the matrix A which is defined as the sum

of all singular values of A.
Under certain conditions on the measurement operator P, the solution to the convex
optimisation problem coincides with that of the rank minimization problem, which is a
well defined problem with a unique solution (see [40]).
For a simple solution, a penalty term is introduced on A, such that the solution to the
given optimization problem is found by solving

min
A
τ‖A‖∗ +

1

2
‖A‖2F s.t. PΩ(A) = PΩ(X),

where ‖A‖F =
√∑

i

∑
j |aij |2 is the Frobenius norm of a matrix A.

The method of Lagrange multipliers is used to find the optimal solution of this penalized
convex optimization problem. For the Lagrangian function

L(A,Z) = τ‖A‖∗ +
1

2
‖A‖2F + 〈Z,PΩ(A)− PΩ(X)〉,

where Z ∈ RD×N is a matrix of Lagrange multipliers.
The optimal solution is given by the saddle point of the Lagrangian, maxZ minA L(A,Z),
which can be iteratively found. Although this approach yields a correct solution, a major
problem of this method is scalability, since a convex problem has to be solved with the
two matrices A and Z of the same size as X.

Alternating Minimization
The last method in this section involves a reasonable approach to solving the matrix
completion problem for a large matrix X. Unlike the convex optimisation approach, the
alternating minimization algorithm on hand is scalable. However, while these methods
have been successfully used for many years, theoretical guarantees for the convergence
and optimality do not exist. Although under certain conditions, alternating minimiza-
tion methods do converge to the globally optimal solution, see for example [41].
The idea behind alternating minimization is to find µ, U and Y that minimize the error
‖X − µ1> − UY ‖2F for the known entries of X.
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As in the previous approach, let Ω = {(i, j) : wij = 1} be the set of known entries of X,
then the cost function to be minimized is given by

‖PΩ(X − µ1> − UY )‖2F = ‖W � (X − µ1> − UY )‖2F =

D∑
i=1

N∑
j=1

wij(xij − µi − u>i yj)2,

where PΩ : RD×N −→ RD×N is the orthogonal projector onto the span of all matrices
vanishing outside of Ω, that is those with missing entries.
In the case of complete, zero-mean data, this problem reduces to the low-rank matrix
approximation problem based on explicit factorization minU,Y ‖X − UY ‖2F which can
be solved with the singular value decomposition of X. The alternating minimization
algorithm provides an alternative to the SVD solution.
The top d eigenvector of a matrix can be computed by the orthogonal power iteration
method : Suppose that A ∈ RN×N is a symmetric positive semi-definite matrix with
eigenvectors {ui}Ni=1 and eigenvalues {λi}Ni=1 sorted in decreasing order, such that λd >
λd + 1. Let U0 ∈ RN×d be an arbitrary matrix whose column space is not orthogonal to
the subspace {ui}di=1 spanned by the top d eigenvectors. Then, the sequence of matrices

Uk+1 = AUk(Rk)−1,

where QkRk = AUk is the QR decomposition of AUk, converges to a matrix U ∈ RD×d

whose columns are the top d eigenvectors of A with rate of convergence λd+1

λd
.

Power Factorization is a generalization of this approach for computing the top d singular
vectors of a (possibly) non-square matrix X. It iterates between the following two steps
until it converges to the rank-d approximation of X.
Given Y ∈ Rd×N , an optimal orthogonal solution for U of the minimization problem
is the Q factor of the QR decomposition of XY >(Y Y >)−1. Given U , the optimal Y is
U>X.
For matrix completion by power factorization with incomplete, zero-mean data, the two
steps can be adapted. Given Y , the optimal U can be computed from N∑

j=1

wijyjy
>
j

ui =
N∑
j=1

wijxijyj , i = 1, ..., D,

which can be derived from taking the derivative of the cost function with respect to ui and
setting it to zero. U can once again be replaced by the Q factor of the QR decomposition
of U = QR to fulfill the orthogonality constraint U>U = I.
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Similarly, given U , the optimal Y is computed from(
D∑
i=1

wijuiu
>
i

)
yj =

D∑
i=1

wijxijui, j = 1, ..., N,

which is obtained by calculating the derivative of the cost function with respect to yj
and setting it to zero.
The PCA problem with incomplete data can now be solved similarly with the alternating
minimization approach. Since the mean µ is non-zero and has to be recovered, the
derivative of the cost function with respect to µi, N∑

j=1

wij

µi =
N∑
j=1

wij(xij − u>i yj), i = 1, ..., D,

is used to compute the optimal µ. To additionally enforce the uniqueness constraint
Y 1 = 0, µ can be replaced by µ + 1

NUY 1 and Y by Y (I − 1
N 11>). Then, given µ and

Y , the optimal U is computed similarly to before including the non-zero mean and vice
versa.
The complete procedure can be summarized as in algorithm 1.

Algorithm 1 Matrix Completion by Alternating Minimization

Input: Matrices W ∈ RD×N , X ∈ RD×N , dimension d ∈ N

Initialize


u>1
...
u>D

← U0 ∈ RD×d and [y1, · · · , yN ]← Y 0 ∈ Rd×N

while µ1> + UY has not converged do

µi ←
∑N
j=1 wij(xij−u>i yj)∑N

j=1 wij

ui ←
(∑N

j=1wijyjy
>
j

)−1∑N
j=1wij(xij − µi)yj

U =


u>1
...
u>D

← UR−1, where QR =


u>1
...
u>D


Y = [y1, · · · , yN ], where yj ←

(∑D
i=1wijuiu

>
i

)−1∑D
i=1wij(xij − µi)ui

µ← µ+ 1
NUY 1 and Y ← Y (I − 1

N 11>)

Output: µ,U and Y

Algorithm 1 coincides with algorithm 3.5 in [34]





4. Examples with Simulated Data

In the next two chapters, various applications for the completion methods in the previ-
ous chapters are presented to assess the general capabilities of each method for different
real-world problems. The algorithms are implemented in Python 3.7.
In this chapter, the completion methods are used on simulated data sets. In the sub-
sequent chapters, the methods are applied to real data sets, first for images of human
faces in chapter 5.1 and then for share indices in chapter 5.2.
To be able to evaluate the performance of each described method, the next section briefly
introduces the performance criteria used, see [42] for an exemplary paper using several
different performance criteria.

4.1 Performance Criteria

Lp-norm and error
While there are many possible criteria to evaluate the performance of algorithms, one
of the main criteria very often used is related to Lp-norms, also in an analytical context
known as lp-norms, defined as follows.
Let 1 ≤ p <∞ be a real number, then the Lp-norm of a finite vector x = (x1, . . . , xn) ∈
Rn is defined as

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

The Minkowski distance of order p between two points x, y ∈ Rn is similarly defined as

dp(x, y) = ‖x− y‖p =

(
n∑
i=1

|xi − yi|p
)1/p

.

45
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This is closely related to the generalized mean defined as

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

|xi|p
)1/p

and a generalized mean error given as

MEp(x1, . . . , xn) =

(
1

n

n∑
i=1

|xi − yi|p
)1/p

.

The limit case p =∞ for all these quantities is given as a variant of the first limit case,
which is defined as maxi |xi|.
The calculations for the completion methods are usually done with the Euclidean dis-
tance, which is the special case p = 2 of the Minkowski distance. For example, OLS and
PCA are dependent on the L2-norm.
This is the reason why the Root-Mean-Square Error (RMSE) is an evaluation criterion
used in the subsequent analysis of the algorithms applied to various data sets.
The RMSE for the observed values xobs and the completed values x̂ is defined as the
square root of the mean square error (MSE), the case p = 2 for the generalized mean
error, such that

xRMSE =
√
xMSE =

√√√√ 1

n

n∑
i=1

(xobsi − x̂i)2.

Another criterion used is the Mean Absolute Error (MAE), the average of the difference
between the actual values and the completed values of the data, given as the case p = 1,
defined as

xMAE =
1

n

n∑
i=1

|xobsi − x̂i|.

For some applications it might be relevant to not only look at a mean error, but to look
at the error for each missing value. Especially in the later chapters on real-world applic-
ations, the absolute error for each completed value is computed and then displayed for
further inspection.
Another point of view is to be taken for noisy data, especially in the following sections,
where the error should be calculated from the underlying model and not from the actual
event, such that in the subsequent sections with noisy data the error is calculated as a
deviation from the expected value.
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For example, in the case of absolute values, the deviation may be calculated as the
average absolute deviations from the mean,

xdev =
1

n

n∑
i=1

|xobsi − x̄|,

for x̄ being the mean of x for the noisy data.
The standard deviation, typically used in a statistical analysis, is defined as the square
root of the average of the squared deviations from the mean,

xstd =

√√√√ 1

n

n∑
i=1

(xobsi − x̄)2.

Execution time
The second criterion used for the subsequent examples is another relevant factor for com-
paring the completion methods. The time needed for the execution of the algorithm is
important, especially for large data sets. Algorithms especially developed for very large
data sets exist and other algorithms do not scale well. Hence, the execution time of each
method applied to the data sets is evaluated as well.

While the previously described criteria are applicable very well to all data sets, particular
examples require special criteria to be better able to compare the results. Several real
world applications have introduced their own terms for the comparison of results since
an L2-distance might not make sense in the context of the task.
However, the algorithms for completion are usually computed with the L2-norm, if ap-
plicable, and the results are then judged by an additional criterion to compare it in a
task specific way. Specialized methods for those criteria and applications do exist, but
they will not be further investigated as that would go beyond the scope of this work.

Total Variation (TV)
As one of the more specific concepts for image analysis is total variation, it will be used
in section 5.1 to compare the results calculated with standard methods.
For a smooth u defined on the space Ω ∈ R2, the total variation norm is essentially an
L1-norm of the gradient of u, defined as

‖u‖TV (Ω) =

∫
Ω
|∇u|dx.
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Images usually have discrete values and grayscale images are typically described with
256 possible pixel values which encode levels of grey ranging from black, given by the
value 0, to white, encoded as 1, and all levels of grey with values in (0, 1), since they are
normalized, such that an image u is defined on Ω = [0, 1]2.
Total variation may be discretized (see [43]), such that for the matrix (ui,j) encoding the
discrete image for i, j = 1, . . . , n pixels, it holds that

‖u‖TV (Ω) ≈
∑
i,j

√
(∇xu)2

i,j + (∇yu)2
i,j ,

where ∇x,∇y are discretizations of the derivatives.
Possible discretizations of the derivatives include central differences,

(∇xu)i,j =
ui+1,j − ui−1,j

2
and (∇yu)i,j =

ui,j+1 − ui,j−1

2

or, more commonly used, one-sided finite differences,

(∇xu)i,j = ui+1,j − ui,j and (∇yu)i,j = ui,j+1 − ui,j .

Other more complex nonlinear discretisations exist as well to achieve symmetry and pos-
sibly even consistency (see [44]).

Directional accuracy
After discussing a relevant error measure for images in section 5.1, two useful measures
to check the precision of the share data completion in section 5.2 are introduced.
The completion approaches specifically targeted to time series data were not the focus of
the introduced methods, as more general concepts were addressed. However, the results
calculated with those algorithms may still be analyzed with a more fitting measure for
time series data. While an error norm yields a comparable result, it is not necessarily as
meaningful in a stock exchange environment, whereas the directional accuracy is more
significant. If it is high enough, then shares can be bought and sold more efficiently.
The directional accuracy of the completion methods is computed, such that the direction
of the observed share price is compared with the direction of the completed share price
for each trading day. The trend of the share price from one trading day to the next,
given by the closing price of a share, may be encoded with the values {−1, 0, 1}, where
−1 stands for a decrease in the share price, 1 is equivalent to an increased share price
and 0 encodes the unlikely event of no change in share price.
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More formally, for a share price vector x ∈ Rn on n trading days, the direction of the
share d(xi) on day i is given as

d(xi) = sgn(xi − xi−1)

with sgn(x) being the sign-function of x taking the values as described above.
Comparing the direction of the observed share price d(xobsi ) and the completed share
price d(xcompli ) may also be encoded by the values {−1, 0, 1} as

derr(xi) = sgn(d(xobsi )− d(xcompli )).

The directional accuracy of a method may then be calculated with the mean of the
absolute values of derr(xi) over all completed trading days m < n as

daccm (x) = 1− 1

m

m∑
i=1

|derr(xi)| ∈ [0, 1],

similar to the MAE. This results may be multiplied with 100 to receive percentage values
in the range [0, 100]. The higher the directional accuracy in this context, the better.

Another closely related possibility to measure the performance of the algorithm is calcu-
lating the difference of the rate of change for two consecutive trading days between the
actual share values and the completed share values, which is equivalent to a discretized
version of a derivative for a time step 1 and as such similar to the TV norm explained
above.

Thus, based on the fact that the missing data is artificially introduced in the following
examples and a completion error can be calculated exactly, the performance criteria for
comparing the completion methods in the following applications include mean errors,
execution time, total variation and the directional accuracy.
If the incomplete data is not artificial, only the quality of the method may be evaluated,
see section 2.5.2 in [9] for possible evaluation criteria which also include the root mean
square deviation.
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4.2 Linear Example

Since several methods mentioned in the previous chapters use linear models, the first
simple example is based on a linear function.
An inclined two-dimensional plane in the three-dimensional real space is given as follows:
For two real-valued vectors x and y, whose entries are evenly spaced samples over a
specified interval that form a grid, z is given as the linear function

z = f(x, y) = ax+ by + c

for fixed constants a, b, c ∈ R.
In the following, the variables are exemplary set as a = 5, b = −2 and c = 10 and the
two vectors x, y are given as 100 evenly spaced samples over the interval [−1, 1] which
induces a grid of dimension 100 × 100 with 10000 grid points. The data for z is hence
given on those grid points and stored in a matrix of dimension 100× 100. This example
is also illustrated later in figure 4.3a.
The results are similar for a grid with more data points and less data points as well.
Since the underlying structure is very simple, very few data points suffice to be able
to accurately find the data structure with most methods. A denser grid increases the
computation time, but does not improve the following results. Hence, the used number
of data points is quite arbitrarily chosen in this example.
If the data were preprocessed, such that it were centered to the mean and maybe even
additionally component-wise scaled to unit variance, the axis intercept given by c would
be irrelevant for the completion due to centering the data. The slope of the plane however
would not be changed by this type of preprocessing.
The preprocessed data would result in perfect completion results in the linear example
described above, however this would be a very constructed example since the mean and
the variance of the complete data are used and the missing data is only introduced af-
terwards such that the complete data is known and used during the preprocessing step,
which is not realistic. Hence, this is not relevant for any type of real-world example.
Using a standardization with incomplete mean and variance, which only includes the
mean and variance of the known data and ignores missing values, would not change the
results significantly in the following examples since the relevant algorithms include cal-
culations with nonzero mean.
Thus, the data is utilized in the following completion methods without scaling or trans-
forming the data.
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(a) PCA (b) KPCA with a polynomial
kernel

(c) KPCA with radial basis
functions

Figure 4.1: The first three principal components and their explained variance ratios of
the linear example computed by PCA and Kernel PCA with a polynomial kernel and

radial basis functions respectively.

Using implementations given by the machine learning library scikit-learn [45] for the
subsequent methods, PCA and Kernel PCA are computed for the complete data.
In figure 4.1, the principal components and the explained variance ratios are depicted.
The bar plot illustrates the individual explained variance ratios calculated by PCA, which
is the same as KPCA with a linear kernel, as well as KPCA with an exemplary chosen
polynomial kernel of degree 3 and Gaussian radial basis functions, respectively, where
the line illustrates the cumulative explained variance ratio.

Due to the underlying simple linear structure of the data, only one principal component
is needed for linear PCA and KPCA with a polynomial kernel to explain the variance.
Since a polynomial kernel is a generalization of a linear kernel, as a linear kernel is a
polynomial kernel of degree 1, it is possible to achieve the same results for both methods
in this example.
Interestingly, for more complex nonlinear kernels in KPCA, more components are intro-
duced and the explained variance ratio of the main component decreases. Since KPCA
can be described as embedding the data nonlinearly into a high dimensional space to be
able to use linear PCA there, the dimension of the data is artificially increased. Thus,
the possible number of components increases.
For example, KPCA with radial basis functions needs more principal components to
describe the variance in the data with the first principal component explaining slightly
less than 50% and the first three principal components explaining approximately 90%,
whereas five principal components yield a cumulative explained variance ratio of 99%.
Overall, it might be suggested that a dimensionality reduction with standard PCA is
better suited for this linear data set than a dimensionality reduction with KPCA and
more complex kernels.
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(a) PCA (b) KPCA with a polynomial
kernel

(c) KPCA with radial basis
functions

Figure 4.2: Two-dimensional embedding of the linear example data given by PCA and
Kernel PCA with a polynomial kernel and radial basis functions respectively.

The corresponding two-dimensional embeddings of the data computed by PCA and
KPCA with a polynomial kernel and radial basis functions can be seen in figure 4.2.
A clear structure can be found in all three embeddings. PCA yields an embedding which
is linear, while the embeddings given by KPCA with a polynomial kernel of degree three
and the one calculated with Gaussian radial basis functions are both nonlinear.
The first principal component for KPCA with a polynomial kernel technically does not
include 100% of the explained variance ratio, but only about 99%, which explains the
possibility of a nonlinear two-dimensional embedding. The first principal component of
linear PCA however includes 100% of the explained variance ratio up to machine pre-
cision. Thus, the first two embeddings include almost all of the variance in the data,
whereas the two-dimensional embedding given by KPCA with radial basis functions is
based on the first two principal components, which only include approximately 80% of
the explained variance ratio.

So far in the analysis, the data set has been complete as depicted in figure 4.3a. Now, by
introducing missing values and setting the chosen points in the data that are supposed
to be missing to "NaN" (not a number), the data is no longer complete and the missing
values need to be reconstructed. To achieve that goal, the methods which were introduced
in chapters 2 and 3 may be applied to complete the missing data.
In the following paragraphs, two cases of missing data in the given linear example are
analyzed. In the first example, an area of missing data is artificially introduced, as
pictured in figure 4.3b, with a square in the interior of the plane being missing. The
second example includes a percentage of random missing points as illustrated in figure
4.3c, where the percentage of missing data is exemplary chosen as 10%.
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(a) Complete example (b) Missing area (c) Missing random points

Figure 4.3: Linear example

Starting with the first case, the linear example includes an illustrated missing square of
data which is imputed with the described methods.
Completing the data with a simple imputation method like using a central tendency
(mean, median or mode) as well as filling the missing values backwards or forwards with
the last observation carried forward or the next observation carried backward, respect-
ively, does not yield reasonable results, with the example of mean imputation shown in
figure 4.4a.
Due to the underlying structure, interpolation is a good alternative. The calculated in-
terpolation results are based on all available grid points, where the number of necessary
neighboring grid points is dependent on the degree of the polynomial. It utilizes the
values on and close to the boundary of the missing area. Choosing more or less grid
points for a finer or coarser grid respectively does not change the interpolation results.
Since the data is derived from a linear object, it is possible to fill the missing square
without error with a linear interpolation. Quadratic interpolation and higher polynomial
interpolations yield the same result, but they are not necessary, since the coefficients of
the terms with higher exponents than the linear term will be zero. Spline interpolation is
also a viable method. As an example, figure 4.4b shows the result of a linear interpolation
of the missing data, which is an exact reconstruction of the original structure in the data.
Similarly, an imputation based on a linear regression produces a good completion result,
as can be seen in figure 4.4c. Although, the illustration shows that the imputation is not
perfect.
Looking at more complicated imputation methods, it can be seen in figures 4.4d and
4.4e that imputation with kNN and especially using the likelihood based expectation-
maximization algorithm are not reasonable choices for completing the data in this ex-
ample. Utilizing multiple imputation by chained equations, the resulting completed data
set does not differ from the original data, as seen in figure 4.4f. Thus, MICE is a very
good choice for the imputation method in this example.
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Going further, the methods using dimensionality reduction can be considered as well.
Linear PCA yields an acceptable result, with a slight tilting due to the complete PCA
only being run on two dimensions and the third dimension being the one with incomplete
data. Another complicating factor is that PCA is being done globally on the data, so
that missing data might result in PCA trying to fit a different structure which might be
nonlinear, even though the underlying structure is linear.
Using Kernel PCA as well as Diffusion Maps for completing the data does not improve
on the results of PCA in this case, with figure 4.4g showing the completion results with
the missing entries being calculated via a single PCA of the complete subset of the in-
complete data.
Iterative PCA completes each column of the incomplete data iteratively, similar to MICE.
After a simple imputation with a constant value for all missing values, in this case set-
ting all unknown values to zero, all previously missing entries in a specified column are
imputed. This is done by calculating the weights needed for the principal components
to represent the given entries of the incomplete column. The principal components are
computed by PCA on the completed data without the chosen column. This is then iter-
ated for all other columns with missing data, where the imputed data is updated in each
step. The difference to incomplete PCA is that here, the data to be used for PCA is
first completed by a simple imputation method of choice and then updated in each step,
such that only one column is not used for PCA in each iteration, whereas for incomplete
PCA, the analysis is only done on the complete subset and thus not applicable to data
with missing values in most of the columns. Figure 4.4h illustrates that iterative PCA
improves on the results of incomplete PCA.
Using matrix completion by alternating minimization improves the completion results
even further compared to the simpler incomplete PCA, as can be seen in figure 4.4i.
However, it does not reach the exact result as interpolation and MICE do.

Considering some of the evaluation criteria introduced in the previous section, it can be
observed that none of the errors yield surprising results based on the illustrated com-
pleted data. The Lp-error for p = 1, 2 as well as the total variation varies between zero for
the best result calculated with various interpolation methods and the highest error given
by mode imputation. The root mean square error for the interpolation results as well as
the results of MICE is zero, while mode imputation produces the highest RMSE with a
value of 0.6. The mean absolute error ranges similarly between zero for interpolation as
well as MICE and the highest MAE being assigned to mode imputation. All methods are
adequately fast for this example, even though it already becomes apparent that MICE
is the slowest method in comparison with all other tested methods.
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(a) Mean imputation (b) Imputation by linear
interpolation

(c) Imputation by linear
regression

(d) KNN imputation (e) Imputation by
expectation-maximization

(f) Multiple imputation by
chained equations

(g) Incomplete PCA (h) Iterative PCA (i) Alternating minimization

Figure 4.4: Completion results for the linear example with an area of missing data.

Thus, it may be concluded that for the first example, interpolation as well as MICE are
the preferred choices for reconstructing the missing data, while imputation by linear re-
gression and matrix completion by alternating minimization also yield acceptable results.
However, this example does not include random missing data points, but only one large
area of missing data and is as such not necessarily a good indicator for the performance
of the methods with practical applications that include more scattered missing data.

Thus, more randomly distributed missing values are achieved by looking at the second
example, where a certain percentage of values is artificially removed, which implies that
the data is missing at random.
In the following illustrations of the reconstructions computed with the described meth-
ods, the imputed values are colored in red to better distinguish the completed results
from the incomplete data.
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The simple imputation results behave in a similar way as they did in the first example,
this time with imputation by LOCF in figure 4.5b in addition to mean imputation in
figure 4.5a as the illustrated examples. It can be discerned that simple imputation by a
central tendency does not result in reasonable results. While filling the missing values
by using the LOCF or the NOCB improves on these results, the imputation computed
by filling the values forward or backward is still not very accurate.
As in the previous example, interpolation yields good results due to the underlying struc-
ture of the data, see figure 4.5c for the results of linear interpolation, even though there
are some aberrations on the boundary for polynomial interpolation results since it is
problematic to interpolate with the missing boundary terms. However, the imputation
results for linear regression worsen, with several gaps in the illustration of the completed
data, see figure 4.5d.
Using the expectation-maximization algorithm yields bad results, as it did in the first
example, with many outlier, see figure 4.5f. Imputation using kNN does not fill the gaps
correctly either, as can be seen in figure 4.5e.
Incomplete PCA is not applicable in this example, since there is no complete sub-matrix
that may be used for the computation. In contrast, iterative PCA may be applied, but
the results are not satisfactory, as shown in figure 4.5h.
MICE as well as matrix completion by alternating minimization yield accurate comple-
tions, with the results of MICE shown in figure 4.5g, while the results given by alternating
minimization are illustrated in figure 4.5i.

Once again, the performance criteria may be examined. They do not include any sur-
prising results based on the illustrations of the complete data. Matrix completion by
alternating minimization, MICE and the various interpolation methods achieve negli-
gible Lp-errors for p = 1, 2 as well as total variation.
While the RMSE for matrix completion by alternating minimization, multiple imputation
by chained equations and spline interpolation is zero and negligible for the other polyno-
mial interpolation results, albeit not being zero due to the problems on the boundary, the
results computed with the imputation by a central tendency as well as the expectation-
maximization algorithm and iterative PCA yield a high RMSE, with mode imputation
once again having the highest RMSE. Similar results can be found for the MAE of the
completion methods.
Table 4.1 summarizes the results of the performance criteria for the completion methods
applied to the second example with the relevant errors rounded to three decimal places.



4.2. LINEAR EXAMPLE 57

(a) Mean imputation (b) Imputation by LOCF (c) Imputation by linear
interpolation

(d) Imputation by linear
regression

(e) KNN imputation (f) Imputation by
expectation-maximization

(g) Multiple imputation by
chained equations

(h) Iterative PCA (i) Alternating minimization

Figure 4.5: Completion results for the linear example with random missing data.

Hence, it may be concluded that MICE and alternating minimization are two very useful
methods in this context, which shall be further underlined in the next chapters with
real-world applications. However, linear interpolation results in (almost) perfect recon-
struction due to the data structure and is hence the preferred method for this example.
This is, however, not really the case anywhere but in a strategically modeled example and
the conclusion may already be discarded with the following slightly more complicated
constructed example.
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Method L2 L1 TV RMSE MAE Time

Mean 29.847 50.837 48.747 0.571 0.246 <0.1s
Median 30.267 53.818 51.354 0.585 0.255 <0.1s
Mode 60.765 104.242 93.859 1.131 0.496 <0.1s
LOCF 2.922 7.556 5.414 0.060 0.026 <0.1s
NOCB 2.905 7.556 5.414 0.061 0.026 <0.1s
Linear Regression 1.679 2.912 3.131 0.048 0.015 <1s
Linear Interpolation 0.718 1.131 0.566 0.008 0.000 <0.1s
Quadratic Interpolation 0.718 1.131 0.566 0.008 0.000 <0.1s
Spline Interpolation 0.000 0.000 0.000 0.000 0.000 <0.1s
KNN 1.467 3.911 3.046 0.037 0.013 <0.1s
EM 32.902 66.161 81.684 0.800 0.324 <1s
MICE 0.000 0.000 0.000 0.000 0.000 ∼1s
Iterative PCA 23.022 85.269 74.969 0.488 0.195 <1s
Alternating Minimization 0.000 0.000 0.000 0.000 0.000 <0.1s

Table 4.1: Overview of the performance criteria for the completion methods applied to
the linear example with 10% random missing data.

4.3 Noisy Linear Example

To make the previous example slightly more challenging and more similar to a real-
life application, noise can be added to the data by randomly drawing samples from a
normal distribution for all matrix entries and adding a sample to each one of them. The
probability density function of a normal distribution is given by

φ(x) =
1√

2πσ2
exp−

(x−µ)2

2σ2

with the mean and standard deviation in the present case chosen as µ = 0 and σ = 0.1,
respectively. With the added noise, the computations from the previous section may be
repeated for the new data set.
The explained variance ratios of the principal components for the noisy data computed via
PCA and KPCA with a polynomial kernel as well as radial basis functions achieve values
similar to the linear model without noise, where the first principal component of standard
PCA and KPCA with a polynomial kernel achieves almost 100% of the explained variance
ratio, whereas KPCA with an rbf kernel needs more than one component, such that the
first component includes around 50% of the explained variance ratio and the first three
principal components explain approximately 90% of the variance.
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(a) PCA (b) KPCA with a polynomial
kernel

(c) KPCA with radial basis
functions

Figure 4.6: Two-dimensional embedding of the linear example data given by PCA and
Kernel PCA with a polynomial kernel and radial basis functions respectively.

The two-dimensional embeddings of the noisy data shown in figure 4.6 however differ
from their counterpart without noise. While the embedding of the noisy data given by
KPCA with radial basis functions is akin to the embedding without noise and as such
apparently rather robust, the two-dimensional embedding given by the first two principal
components computed by KPCA with a polynomial kernel is slightly more noisy than the
embedding for the data without noise, but an underlying structure is still clearly visible.
However, the embedding given by the components calculated with PCA is quite chaotic
and no clear structure is visible. Even though the data still has an underlying linear
structure, standard PCA is no longer able to recognize this structure after the addition
of some noise, which is a displeasing result.

Now, introducing missing information in the data again, the previously discussed ex-
ample with an artificially introduced area of missing values resembling a square may be
analyzed as a first example with added noise, where a few selected results are depicted
in figure 4.7.
Imputation by a central tendency as well as filling the missing values by using the LOCF
or the NOCB achieves similar results as before, where none of the imputation results are
satisfactory, whereupon mode imputation once again brings up the rear with respect to
the error of the imputed values. Interestingly, while linear interpolation doesn’t decline
much in quality, polynomial interpolation of degree ≥ 2 worsens noticeably compared
with the noise-free data. This can be easily explained by the interpolation trying to
find higher dimensional structures in the noisy data for higher exponents, whereas lin-
ear interpolation yields acceptable results. Despite that, spline interpolation of higher
degree is able to achieve acceptable results as before, apparently with a piecewise linear
interpolation.
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(a) Imputation by cubic
interpolation

(b) Imputation by spline
interpolation

(c) Imputation by linear
regression

(d) Multiple imputation by
chained equations

(e) Incomplete PCA (f) Alternating minimization

Figure 4.7: A selection of completion results for the noisy linear example with a large
area of missing data.

While imputation with linear regression involved worse results than polynomial interpol-
ation of higher degree in the linear data without noise, this is no longer the case for the
given noisy data. Now, linear regression is able to achieve better results than interpol-
ation with higher dimensional polynomials, even though linear interpolation an spline
interpolation still produces better results. Imputation by kNN and the expectation-
maximization algorithm yield unsatisfactory results as before, while MICE still produces
a very accurate imputation. Examining the matrix completion methods using dimen-
sionality reduction, incomplete PCA as well as iterative PCA produce inadequate results,
while the completed values calculated with alternating minimization are more acceptable.

The performance criteria once again include no surprises after looking at the illustrations
of the completed data. First, the Lp-errors and total variation as well as the RMSE and
the MAE are examined, which underline the described results.
None of the simple imputation methods have small errors, with mode imputation in-
volving the highest errors, followed by the errors for the expectation-maximization al-
gorithm, while imputation with kNN causes slightly lower errors. Polynomial interpola-
tion of a higher degree also yields rather high errors, while linear and spline interpolation
lead to negligible errors. In this example, MICE causes the smallest errors, while the
matrix completion methods all give rise to mediocre error results.
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(a) Median imputation (b) Imputation by quadratic
interpolation

(c) Imputation by linear
regression

(d) Multiple imputation by
chained equations

(e) Iterative PCA (f) Alternating minimization

Figure 4.8: A selection of completion results for the noisy linear example with a
percentage of randomly missing data.

Additionally, the evaluation criteria for this example may also include the comparison of
the deviations, since the error terms are calculated with noisy data and should therefore
be taken with a grain of salt as the distance of the completed value to the actual value
may be comparatively high, while the deviation of the completed value would be actually
very small and as such rather accurate. To incorporate this phenomenon in the analysis,
the mean average deviation as well as the standard deviation of the completed data is
computed alongside the errors and studied in relation with the MAD and STD of the
given complete data, respectively, with comparable results. Comparing the MAD of the
completion methods, it can be seen that especially mode imputation as well as EM to
a slightly lesser degree increase the MAD of the data significantly, whereas MICE and
spline interpolation are able to complete the data such that the MAD remains the same.
All other methods do not change the MAD very much, it is only slightly increased, but
none of the methods decrease the MAD.

Turning towards the second example introduced in the previous section, where a percent-
age of data points is randomly missing, normally distributed noise is once again added
to the data. A selection of the previously addressed completion methods applied to the
noisy data is illustrated in figure 4.8.
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Unsurprisingly, none of the simple imputation methods yield very accurate results. Sim-
ilar to the first noisy example, the interpolation results deteriorate with higher dimen-
sional polynomial functions, while spline interpolation is still able to achieve a good
completion of the missing values. In contrast to before, linear regression is not a good
choice for this example, as there are outlier in the completed data.
Using the maximum-likelihood based EM algorithm gives poor results, while imputation
by kNN again produces a mediocre outcome. Once more, MICE is a good choice for the
imputation of the missing information. As in the noise-free example, iterative PCA does
not compute acceptable results, while matrix completion by alternating minimization
produces very good results.

The analysis of the performance criteria leads to expected outcomes. Imputation by a
central tendency, once again especially mode imputation, and the EM algorithm as well
as iterative PCA entail high errors, followed by linear regression. While no method is
obviously without error due to the noise addition, linear and spline interpolation, MICE
as well as matrix completion by alternating minimization lead to small errors. Filling the
values forward or backward as well as imputing the values by using kNN entails mediocre
error results. Looking at the deviation of the completed data, it can be seen that mode
imputation and EM increase the MAD significantly, while mean and median imputation
as well as linear regression and iterative PCA increase it to a lesser degree, whereas the
other methods do not change it substantially. Once again, no method decreases the MAD.

Effect of the percentage of randomly missing data
The percentage of randomly missing data up to this point has been manually set to 10%.
However, this is an arbitrary choice and therefore, the impact of the missing percentage
on the completion results is examined in the following paragraph.
For that matter, the previously used methods are applied to a range of percentages of
randomly missing data in the last example of a linear noisy data set, starting with 1% and
ranging up to 80% of missing data in 1% steps. Increasing the percentage of randomly
missing data even further may lead to problems in the completion methods, starting
with completely missing columns or rows, which most methods do not have the ability to
handle, as well as columns or rows which are very sparsely filled. As an example in that
case, polynomial interpolation of a higher degree may run into problems, since several
entries are necessary for the interpolation to be feasible. Other completion methods do
encounter similar problems for very sparse matrices, for instance if the matrix is singu-
lar, which means that the determinant of the matrix is zero, it is no longer possible to
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compute the eigenvectors of the matrix as they do not exist in this regard, such that a
PCA is no longer possible. Thus, the percentage of missing data has been capped at 80%

for the analysis. Additionally, an amount of missing data higher than that is usually
unfit for most further treatment as the amount of missing information grows too large.
To prevent any outlier in the randomly chosen missing data from strongly impacting
the results, the completion is performed several times. The performance criteria applied
to the results are then averaged over all executions. Hereinafter, the computations are
performed 100 times. To avoid complications in the error calculations, boundary values
that may not be filled by using the LOCF are imputed with the NOCB instead to avoid
not being able to impute those entries.

Several of the evaluation criteria, namely the
L1-error and the L2-error as well as the root mean
square error and the mean absolute deviation, are
plotted for a diverse selection of the completion
methods for the range of randomly missing data
percentages spanning from 1% to 80%. They are
illustrated in figure 4.10.
On the right-hand side, the legend for the
performance criteria of the illustrated methods is
shown, as it is the same for all the plots. Figure 4.9: Legend of methods

In the first subfigure, the L1-error is depicted for the selected methods. As expected,
the error reaches the highest values for mode imputation, followed by the expectation-
maximization algorithm, mean imputation and iterative PCA, in that order. Not depic-
ted are the errors for median imputation, which are very close to the ones calculated for
mean imputation. The lowest error is reached for spline interpolation closely followed by
the rest of the selected methods, including the described methods that are not depicted.
Interestingly, all methods behave in an approximately linear fashion, with a few peaks,
such that it can be said that no matter which percentage of missing data is chosen, the
magnitude of the error for each method may be ordered in the same way.
Lp-errors are closely related to each other, such that the correspondence between the
L1-error and the L2-error is given as

‖x− y‖2 ≤ ‖x− y‖1 ≤
√
n‖x− y‖2,

which follows from the Cauchy-Schwarz inequality. The norms are thus equivalent.
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(a) L1-error (b) L2-error

(c) RMSE (d) MAD

Figure 4.10: A selection of evaluation criteria for the possible percentages of randomly
missing data.

Thus, it is not surprising that the same associations between the different methods and
for the different values of the percentage of randomly missing data can be found for
the L2-error as they were portrayed for the L1-error, though the L2-error develops in a
slightly smoother mode.
Interestingly, similar performances may be detected for the RMSE and the MAD, which
are illustrated in the second row of the figure. If one would plot the mean absolute error,
the standard deviation or the total variation error of the methods, the results would be
comparable to RMSE, MAD and Lp-errors, respectively.
The same succession of the error size computed from the completion methods can be
discovered for RMSE and MAD, where mode imputation leads to the highest RMSE and
MAD, followed by EM, mean imputation and iterative PCA in that order. Smaller errors
may be found with the other methods. In the case of RMSE, spline interpolation causes
the smallest error closely followed by alternating minimization and the other depicted
methods. However, the RMSE performs asymptotically more like a logarithmic function
instead of having a linear behavior as the error does not increase linearly with the per-
centage of missing data.
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Hence, the behavior of the completion methods may be viewed as being independent of
the chosen percentage of randomly missing data, such that using 10% in the previously
described examples does not have any negative consequences for the analysis. If one were
to illustrate the time needed to compute the imputation results for various percentages
of missing data, it would be noticeable that the execution time does not change much
for the range of the percentage of randomly missing data considered and is thus not
dependent on the percentage itself. However, it is already observable that MICE has
the longest execution time by far, followed by EM and iterative PCA. All other methods
need very little time for one particular imputation of the incomplete data. More details
about the execution time may be found in the following paragraph.

Effect of the size of the incomplete data set
The size of the data set had been set at beginning of this section, such that a grid of
size 100 × 100 was used. However, it is possible to increase or decrease that size and
analyze the impact on the computations. Hereinafter, whenever the size of the data set
is referred to as a number n, it means that the grid is of size n×n. Thus, until now, the
size of the data set was fixed as n = 100. Looking at several different grid sizes, ranging
from a very small grid of size 10 × 10 to a data set of size 1000, it is possible to study
the impact on the evaluation criteria. With increasing size of the data set, the Lp-errors
understandably increase while keeping 10% as the percentage of missing values fixed in
each incomplete data set, which implies more missing values in nominal terms for larger
data sets. RMSE and MAE as well as MSD and STD do not change with the data size.
As previously noted, the defining effect of the size of the incomplete data set is realized
on the execution time of the completion methods. Looking at several different grid sizes,
it is possible to plot the execution time of each method for a selection of grid sizes.
In figure ??, the execution times are depicted for grids of size k2×k2, where k = 3, . . . , 32,
such that the possible grid sizes range from 9 × 9 to 1024 × 1024. It is easy to see that
MICE is very slow, with nonlinear time complexity, while the other methods are much
faster, even though EM and iterative PCA take longer than the other methods as well
and the time needed increases for larger grid sizes. For MICE, only the execution time up
to a data size of 400 is depicted in the figure. The time needed for much larger data sets
is no longer reasonable compared with the other completion methods. Thus, the effect
of the size of the incomplete data set on the execution time is especially pronounced for
MICE. It may be said that, while MICE may be an accurate imputation method and
particularly useful for small data sets, it is not wise to apply it to larger data sets.
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Figure 4.11: The execution time for some of the completion methods dependent on the
size of the incomplete data set.

As a short side note, one may also look at nonlinear constructed data via some function
f(x, y) = axm + byn + c, for example with the same variables a = 5, b = 2 and c = 10 as
well as m = 1 and n = 3 on the given grid constructed with x, y as evenly spaced samples
on [0, 1]. The results however do not include any surprises. They are very similar to the
observations made with the previously described linear example. Thus, they will not be
included here.

As a conclusion, it can be noted that since most real world application are noisy to
a certain extent, the previously described examples are already a good indication why
several of the imputation methods are not a reasonable choice and others are a sensible
option for the imputation of incomplete data. In the linear examples under consideration
interpolation was a sensible option, owing to the clear underlying structure of the data,
which is usually not the case for real-world applications. MICE is normally a very good
choice for small data sets as well, which leads to accurate results. Matrix completion
by alternating minimization is another reasonable choice for the completion of data sets
with missing data, also for larger data sets.
In the next chapter, real-world applications are analyzed.



5. Two Real-World Applications

In this chapter, several different real-world data sets are used to evaluate the performance
of the completion methods.
In the first section, a data set of human face images is used to analyze the possibility of
completing parts of a picture based on the other face images and the complete part of
the image.
The second section treats an application in the financial world. Considering stock indices,
the defined completion methods are used to complete parts of a share based on the other
share prices and the existing portion of the share price in question.

5.1 Faces

The first real-world example of an application for data completion are face images with
missing data. Two different scenarios for missing values in face images will be presented.
The data set of face images used is given as a complete data set and missing values are
artificially introduced to be better able to compare the completions and evaluate the
performance of each method.
In the first problem setting, a set of face images without missing values is given in a first
step. Then, the problem is to find the missing values of a new face image by using the
already given data. This is equivalent to having a complete subset of the data as in the
first example in the previous chapter with a missing square of information.
The other problem setting will only include a set of incomplete face images, so that for
all face images the missing values have to be found. This is to be understood analogously
to the second example in the previous chapter with a percentage of randomly missing
data.
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Figure 5.1: The principal components and their explained variance ratio of the Olivetti
faces data set computed with PCA

Suppose that there is a set of N face images, where each image is of size d × d. Every
image is flattened to a vector of size D = d2 which is saved as a column in the matrix of
dimension D×N . In this example, the Olivetti faces data set from AT&T Laboratories
Cambridge ([46]) is utilized. Each face image is a grayscaled image with every pixel
having an integer value between 0 and 256, which has been converted to a floating point
value in [0, 1]. The data set includes 400 images of size 64 × 64 which are saved in a
matrix of dimension 4096× 400.
For the given complete data set, it is more efficient to compute the eigenvectors and
eigenvalues of the smaller matrix C = A>A ∈ R400×400 than those of AA> ∈ R4096×4096.
Similar to the previously used constructed linear example, the principal components
and their explained variance ratio can be exemplary calculated with PCA. The first
30 principal components are depicted in figure 5.1. While the decay of the individual
explained variance ratio is not as noticeable as in the previous examples, it is possible to
observe that a small ratio of all 400 possible eigenvalues is already sufficient to encode
a large amount of the explained variance ratio, such that 2 eigenvalues include 50% of
the explained variance ratio and 17 eigenvalues are needed for 80% of the variance. For
a cumulative explained variance ratio of 90% and 95%, 47 and 98 principal components
are needed, respectively. This is a sizeable reduction from all 400 eigenvectors.
Reshaping the normalized eigenvectors ui, i = 1, ...,K as images of the original size
64× 64, the so-called eigenfaces can be pictured. The first few eigenfaces of the Olivetti
faces are depicted in figure 5.2, where it becomes clear why they are also sometimes called
ghost faces.
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Figure 5.2: The first 12 eigenfaces of the Olivetti faces data set from AT&T.

For the first scenario of missing data, assume that there is a set of n < N face images of
size d×d that are complete, where N is the number of all face images. The complete face
images are flattened and saved in the matrix of dimension D × n, where D = d2. The
new face image X̃new ∈ Rd×d is flattened such that Xnew ∈ RD which includes artificially
produced missing values. In the given example with the Olivetti data set, there is one
selected image of missing data, such that n = N − 1 = 399. Assume further that the
missing data is located in one region, such that the face image is known only up to the
area of one eye. The first and second subfigure of figure 5.3 depict the original image
and the incomplete image, respectively.
Starting with the statistical approach to missing data, different imputation methods in-
troduced in section 2 can be applied to the entire data set of dimension D × N with
missing data in the column of the previously chosen incomplete face image. Several il-
lustrations of the results of the completion methods for one selected image can be found
in figure 5.3. The results are heavily dependent on the axis chosen for the reconstruc-
tion. Since the images are all cropped and centered, all given methods impute values
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that can be depicted as an eye in the face image for the correctly chosen axis. Here, the
imputation is done along the row axis. A reconstruction along the column axis results
in a reconstruction that would only depend on the given face image, which would lead
to a grey reconstruction without structure. Simple imputation methods like mean and
median imputation yield good results, since they can impute the mean or median of all
eyes respectively, where the mean imputation can be seen in the third subfigure. Mode
imputation does not impute the data such that an eye can be illustrated. The mode of
each pixel is apparently distinct and as such not useful for the imputation of a missing
eye in the image. Imputation by forward filling, depicted in the fourth subfigure, uses
the area of the image of the previous person in the data set to fill the missing data
points, hence the entries for the area around the eye of the previous person are imputed,
which yields an eye which does not really fit the original. The same holds for NOCB.
EM has similar problems as mode imputation, with the completed data being rather
chaotic without a discernible structure. Using kNN to impute the data yields accurate
results, where apparently neighboring values may be found which impute the data prop-
erly. Linear regression is also a good choice, while the interpolation results, with linear
interpolation and spline interpolation depicted in the seventh and eighth subfigure, are
not performing as precisely, despite the results being graphically acceptable, since they
derive from the interpolation over values corresponding to the entries responsible for the
eyes. The imputation given by spline interpolation does accomplish better results com-
pared with the polynomial interpolations, that achieve similar imputations for varying
degrees, where the linear interpolation results are depicted. MICE once again leads to
an accurate and visually pleasing result. The problem in this case is that the data set is
not very small and thus, the computation of the imputation takes much longer than for
any of the other cases.
Moving on to the completion methods introduced in section 3.2, the dimensionality re-
duction methods are initially used on the complete subset of the data of dimension D×n,
which does not include the image with missing data. Given the eigenvectors of the data
set with no missing data, computed by PCA, KPCA or DM, the weights for the linear
combination of the eigenvectors, that the new face image can be represented with, can
now be calculated and the incomplete face vector can then be reconstructed with them.
As an example, the results given by incomplete PCA are depicted in figure 5.3. Similarly,
iterative PCA may also be used with the corresponding results depicted in the second to
last subfigure. The alternating minimization approach introduced in 3.3 is depicted in
the last subfigure with results comparable to the other matrix completion methods using
dimensionality reduction.
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(a) Original image (b) Corrupted image (c) Mean imputation

(d) Imputation by LOCF (e) KNN imputation (f) Linear regression

(g) Linear interpolation (h) Spline interpolation (i) MICE

(j) Incomplete PCA (k) Iterative PCA (l) Alternating minimization

Figure 5.3: A selection of completion methods for a face image with missing data from
AT&T’s Olivetti faces data set.
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Since many values in face images depend on the neighboring values, it is recommendable
to smoothen the reconstructed values to obtain a more visually appealing image for the
viewer instead of having a large discrepancy between the reconstructed entries and the
correct entries. If an area of data is missing in the face image, then only the recon-
structed boundary terms should be influenced. The interior of the reconstructed area
should not be affected by the smoothing procedure. To this effect, a possible transition
for the missing area is given by compensating with a weighted average that is taken
with the correct neighboring values. If the missing entries are not constricted to one
area, but scattered around the image, then all the missing values should be smoothened
by a weighted average with the given neighboring values. However, a smoothing of the
boundary entries has not been applied to the reconstructions in figure 5.3 to be better
able to compare the completion methods.
Examining the performance criteria introduced at the beginning of the last chapter,
the error of the completion methods restricted to the area of the missing data can be
considered. It may be noticed that mode imputation, LOCF/NOCB, EM as well as poly-
nomial interpolation yield relatively high L1 and L2-errors, while kNN, MICE and linear
regression involve small errors and the completion methods via dimensionality reduction
induce mediocre errors. The same holds for the total variation which was previously
indicated as the important error measure for images, and RMSE as well as MAE. It is
important to note that while most methods are able to impute the missing area in less
than a second, linear regression as well as MICE take much longer, with MICE having
a computation time of almost two minutes for completing the small area, which is more
than 200 times the time needed for alternating minimization.

Another interesting perspective can be found by looking at the error restricted to the area
of the missing data for each pixel. In figure 5.4, the errors of three selected completion
methods for each pixel of the missing area are displayed. It holds that the darker the
color the higher the absolute error of the reconstruction. All the completion methods of
the previous figure may be characterized by one of the three error heat maps shown.
The first subfigure shows the absolute error for linear interpolation, which is similar to
the pixel-wise error for polynomial interpolations of higher degree as well as LOCF and
NOCB, while the second subfigure depicts the absolute error of MICE, similar to kNN
and linear regression. In the last subfigure, the absolute error in the area of missing
data between the original data and the reconstructed part for alternating minimization
is depicted, with incomplete PCA and iterative PCA, mean and median imputation as
well as spline interpolation having a similar error plot.
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(a) Linear interpolation (b) MICE (c) Alternating
minimization

Figure 5.4: Absolute error for each pixel between the original image and the
reconstruction for three of the completion methods shown in the previous figure.

This can also be linked to the errors discussed above, with the first subfigure relating
to the highest errors. The error for every pixel illustrates that the pixels in the upper
left area of the missing area, as well as in the left part of the eye, differ more strongly
than in the rest of the image. The second subfigure is relating to the lowest errors, while
the methods with an error plot similar to the third subfigure lead to moderate errors,
where the error is once again higher on the upper boundary of the missing area as well
as in the area of the left part of the eye. The completion methods are apparently only
able to reconstruct the larger underlying structure of the data and not every last detail.
Especially the interpolation methods have an additional large error in the upper region
of the image, which can also be deduced from the reconstruction.

Until now, the area of missing data was suitably chosen corresponding to the eye region,
since the reconstruction is not trivial, but yields good result with the chosen methods.
However, there are other possible ways of introducing missing data. Two different regions
of missing data are illustrated in figure 5.5 with the corresponding completion methods,
which were also chosen for the previous figure.
The first subfigure shows that removing the entries corresponding to one cheek in the
face image also results in a good reconstruction for several methods. This is largely due
to the fact that the image of a cheek does not have large variations in the pixel values.
This result is hence not very meaningful, and a simple mean imputation would already
be sufficient.
Another example, which usually does not obtain very good results for most methods, is
the reconstruction of the nose area in a face image. Since the images in this data set
are of low quality, a nose cannot be effectively reconstructed up to the last detail, as for
example shown with a dimensionality reduction method in the last subfigure.



74 5.1. FACES

(a) Linear interpolation (b) MICE

ii) Missing cheek

(c) Alternating minimization

(d) Linear interpolation (e) MICE

i) Missing nose

(f) Alternating minimization

Figure 5.5: Example for the reconstruction of a face image with different areas of
missing data from AT&T’s Olivetti faces data set.

For the last example of image completion, consider the second scenario where the entire
data set is incomplete. As in the first example, the Olivetti data set is used. Since
removing a specific feature for all face images cannot yield an accurate reconstruction of
that feature, it is not a well-posed problem and should be avoided. Generating a percent-
age of random missing entries is however still a reasonable task for the entire data set.
This is also a possibility for one image of missing data only as in the previous example,
which yields similar results as the subsequent example and will therefore not be further
discussed to avoid repetition. Since incomplete PCA, incomplete KPCA and incomplete
DM use a previously given complete data set, it is not possible in this example to apply
those methods. All other methods can be used for the completion of the random missing
entries.
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As fixed in the analogous example in the previous chapter, 10% of randomly missing
data is artificially introduced. Once again, the first and second subfigure of figure 5.6
depict the original image and the incomplete image, respectively. Beginning with simple
imputation methods, it is observable that results of an imputation by a central tendency
are dependent on the axis on which the reconstruction takes place. The reconstruction
based on the axis corresponding to the chosen image yields the same colour value for
all missing entries, the mean or median of the image values in the specific image, and
is hence not a good reconstruction choice. On the other hand, imputing missing values
with the central tendency chosen, based on the axis corresponding to a specific pixel
of all face images, leads to a slightly more accurate completion, which is illustrated for
mean imputation in the third subfigure.
LOCF and NOCB yield results that do not have a color value close to the actual value
due to being constrained to the images listed before and after the image shown. If the
images are completed with the LOCF along the other axis, that is filling the values based
on the neighboring value in the same image, the error reduces itself, but the results con-
sist of color stripes as can be seen for imputation with the LOCF in the fourth subfigure.
Interpolation and regression results achieve similarly acceptable results. Higher poly-
nomial interpolations and spline interpolation yield the same results and are therefore
omitted from the figure.
This time, imputation using kNN is not one of the better methods, as the completed face
image includes several outlier which can be seen in the corresponding subfigure.
In the given example, MICE produces the best results with a relatively low error, while
matrix completion via alternating minimization is not quite as accurate or visually pleas-
ing. Iterative PCA yields the same results in this example and are thus not portrayed.
An advantage of alternating minimization is the transposition invariance of the algorithm,
that is to say in contrast to all other methods applied in this example, the alternating
minimization approach yields the same reconstruction independent of the axis. Hence,
the matrix of images can be transposed without changing the result. Furthermore, if
one where to use the previously defined smoothing operation, the results would be much
more visually pleasing.
With regard to the performance criteria, MICE causes the smallest errors, while taking
the longest with an computation time of almost ten minutes compared to a few seconds
for the other methods. Interestingly, in contrast to the constructed example in the pre-
vious chapter, all methods decrease the deviation of the data set or keep it at the same
value, while the completion methods increased the MAD and STD for the example data
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(a) Original image (b) Corrupted image (c) Mean imputation

(d) Imputation by LOCF (e) KNN imputation (f) Linear regression

(g) Linear interpolation (h) MICE (i) Alternating minimization

Figure 5.6: A selection of completion methods for a chosen image with 10% of
randomly missing data from AT&T’s Olivetti faces data set.

in the previous chapter. The variance of the data is hence decreased by the completion.
To conclude, the first real-world application yields promising results for linear regression
and MICE as well as in a limited capacity for kNN and especially matrix completion by
alternating minimization, especially since it is much faster than the regression approach
for the entire data set.
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5.2 Shares

After looking at image completion in the previous section, the next real-world application
is based on a bundle of time series in a financial setting. More specifically, given a share
index, the daily closing prices of the individual shares are collected. 1 The price history
of each share is then saved as a column in the matrix that includes all shares of the
specific share index, such that for a specific point in time, the share prices of all shares
in the index can be read off the row corresponding to the date.
The previously described completion methods will be subsequently used for missing
entries in the share price indices which have been artificially introduced.

Two share indices are further discussed in the following paragraphs. The German share
index DAX (Deutscher Aktienindex) is a well known share index in Germany, it
includes 30 major German companies which are listed at the Frankfurt Stock Exchange.
The Dow Jones Industrial Average similarly includes 30 large companies listed at
stock exchanges in the United States, the New York Stock Exchange and the Nasdaq
Stock Market. The companies that were included in the DAX and the Dow at the end
of the year 2018 are listed in table 5.1.
Several possible reasons for a change in the company composition in an index exist, which
depend on the market capitalization and stock market turnover of the already included
companies and possible replacements. The composition has been modified since the end
of 2018 and also during the year 2018. However, in the following paragraphs, the com-
putations are done with the company composition given at the end of the year 2018 to
be able to compare the results better. One company in each share index has only been
given with incomplete data for 2018 and will therefore be excluded from further analysis
for better comparison and study of the results.

In the following part, all individual share prices of the DAX and Dow companies during
the year 2018 are each saved alphabetically in a matrix of dimension 251 × 29, where
251 is the number of banking days for which share price data is available and 29 is the
number of shares in the index with complete data.
The share prices for the DAX companies in 2018 are depicted in figure 5.7. It can be
seen that the share prices of almost all shares have not fluctuated much and that there
were apparently no major events that impacted the entire market.

1share data downloaded with permission from ariva.de.

https://www.ariva.de
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Table 5.1: The companies included in the DAX and Dow at the end of
2018

DAX Dow

Adidas 3M Company
Allianz American Express
BASF Apple
Bayer Boeing
Beiersdorf Caterpillar
BMW Chevron
Continental Cisco
Covestro Coca-Cola
Daimler Dow Inc.*

Deutsche Bank Exxon Mobil
Deutsche Börse Goldman Sachs
Deutsche Post The Home Depot
Deutsche Telekom IBM
E.ON Intel
Fresenius Johnson& Johnson
Fresenius Medical Care JPMorgan Chase
HeidelbergCement McDonald’s
Henkel Merck&Co.
Infineon Microsoft
Linde* Nike
Lufthansa Pfizer
Merck Procter&Gamble
Munich Re The Travelers Companies
RWE UnitedHealth Group
SAP United Technologies
Siemens Verizon
ThyssenKrupp Visa
Volkswagen Walmart
Vonovia Walgreens Boots Alliance
Wirecard The Walt Disney Company

* shares are omitted in the following analysis
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Figure 5.7: Individual prices for the shares included in the DAX for the year 2018 with
the unweighted mean of all individual shares illustrated as the red dotted line.

However, the year 2018 was not really successful for many stocks in the DAX. On av-
erage, the DAX share prices declined during the year, such that the individual share
prices decreased by approximately 16%, where the unweighted mean of the share prices
is additionally illustrated for each banking day as a dotted red line in figure 5.7, which
shows no peaks over time with a slightly decreasing trend.
If one were to look at the weighted share prices as they are used in the DAX, the decrease
would be by approximately 18%. The DAX developed from a value of 12871, 39 at the
beginning of the year to a value of 10558, 96 at the end of December 2018.
The share with the largest loss in the DAX in nominal values was the automotive com-
pany Continental with a decrease of more than 100e. The share price started in January
2018 at 225e and the end price had decreased to 120.75e in December, which is a decline
of more than 45%. The largest real loss was recorded for the Deutsche Bank share with
a loss of 56% from a starting price of 15.96e to an end price of 6.97e. Only five DAX
companies could observe an increase in their share price, with the top stock gainer Wire-
card being the only DAX component with a two digit increase in 2018. Wirecard’s share
price increased from 93.28e to 132.80e by about 42%. The financial service provider
had a high volatility during the year with a maximum price of 195.75e on September, 3rd.
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The situation in the US market was slightly better than in Germany, even though it was
still not a lucrative year for more than half of the companies included in the Dow. On
average, the share prices decreased by 5%, while the Dow lost about 6% with a value of
24824.01 in January and a closing level at the end of the year of 23327.46.
The largest decrease in nominal and real values was observed at the investment bank
Goldman Sachs with a 34% decrease from a share price of 255$ to 167$. The highest
percentage increase could be recorded for the pharmaceutical company Merck with an
increase of more than 35% from 56$ to 76$, while the health care company UnitedHealth
Group registered the highest nominal increase from 221$ to 249$.

Looking at the situation approximately ten years earlier, the individual share prices of
companies in the Dow during the financial crisis in 2007 − 2009 are an example where
shares underwent large deviations. An interesting analysis can be conducted by looking
at the correlation between the individual share prices. For that, the available individual
share prices of the companies included in the Dow 2018 that are given on 454 working
days between June 2007 and April 2009 are saved alphabetically in a matrix and the
pairwise correlation of the values is computed. However, only 20 of the 30 companies
now in the Dow were included at that time, such that the companies analyzed in the
subsequent paragraphs were not all included in the Dow at that time.
The linear correlation coefficient for two company’s share price vectors x, y with values
on n = 454 working days is calculated as

Corr(x, y) =

∑n

i=1
(xi − x̄)(yi − ȳ)√∑n

i=1
(xi − x̄)2

√∑n

i=1
(yi − ȳ)2

,

where x̄, ȳ are the respective mean share prices and xi, yi are the share prices at time i.
Linear correlation is a possible measure of a linear relationship between the two vectors
with values between −1 and 1, where Corr(x, y) = 0 implies that no linear correlation
between x and y is present.
In figure 5.8, the correlation heat map for the companies during the financial crisis de-
picts that apart from two firms, all other company’s share prices seem to have behaved
similarly with a positive linear correlation. The two companies whose shares are negat-
ively correlated to most of the other company’s shares are McDonald’s and Walmart. It
may be concluded that during the financial crisis in 2007 − 2009 most share prices fell,
while the share prices for those two companies did not decrease.
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Figure 5.8: Correlation heat map of the individual share prices that are included in the
Dow during the financial crisis 2007-2009.

Looking at the share prices during that time, as shown in figure 5.9, this assessment can
be confirmed. McDonald’s and Walmart did not loose their market value in the winter of
2008-2009 while the other company’s share prices decreased. On average, the share prices
did decrease during that time and the Dow index, which was heavily volatile during that
winter, fell to a new low on March 09th, 2009. More precisely, between June 2007 and
April 2009, on average the share prices decreased by about 47%, with American Express
being the top loser with a decrease of 78%. Goldman Sachs had the highest nominal
decrease of almost 120 points, from 230$ to 110$, which was a decrease of 52%. The
only two companies with a share price increase were Walmart (+6.9%) and McDonald’s
(+8.5%). Therefore, it can be said, that between mid-2007 and mid-2009, during the
height of the financial crisis, the Dow shares decreased significantly on average, while
McDonald’s and Walmart shares increased slightly.
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Figure 5.9: Share prices of the companies McDonald’s and Walmart in comparison with
an unweighted mean of all Dow share prices during the financial crisis 2007-2009.

Under more common circumstances, the behavior of share prices may be exceedingly
diverse. During a less strenuous market situation, not all industry sectors are always
impacted by a specific event. For instance considering the US market in 2018, phar-
maceutical companies like Pfizer and Merck were highly positively correlated in 2018
with a linear correlation coefficient of 0.946, companies like Walmart and IBM (0.008) or
Home Depot and Merck (−0.009) were pretty much uncorrelated and the two companies
Goldman Sachs and Merck were highly negatively correlated with a linear correlation
coefficient of −0.795.
The share price behavior impacts the ensuing analysis as well. Once again, the principal
components and their explained variance ratio calculated with PCA may be evaluated.
Looking at figure 5.10, it can be observed that due to the similar trend of most of the
company’s share prices, there are less principal components needed during the time of
the financial crisis to explain the variance in the data than during the year 2018, where
the share price development was not heavily influenced by a crisis and the behavior of
the shares was more diverse. More detailed, looking at the share prices during the fin-
ancial crisis in 2007-2009, the first principal component already includes almost 90% of
the explained variance ratio, while 3 principal components are sufficient for more than
95% of the variance in the data. In contrast, for the data of the individual share prices
of the Dow in 2018, the first principal component only explains about 47% of the data
and 6 principal components are needed to explain 95% of the variance. The principal
components and their explained variance ratio for the DAX in 2018 were depicted as the
leading example for the introduction of PCA in section 3.1.1 with similar results.
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(a) Dow 2007-2009 (b) Dow 2018

Figure 5.10: The principal components and their explained variance ratio of the
individual share prices included in the Dow computed with PCA for two different time

frames.

In the subsequent paragraphs, the data set is no longer complete as missing data is arti-
ficially produced.
In a first example, one share in the share index is selected and for a randomly chosen
time frame, here chosen as one month, the data of the share price is removed. The second
example once again includes a percentage of randomly missing data.
As previously explained in section 4.1, it may be noted that while an error norm is a pos-
sible criterion, it may not be the most fitting for share data. As the directional accuracy
is refutably more significant, it is calculated for each method to check for the correctness
of the reconstruction in this paragraph. Additionally, the nominal change in the data
between the completed data and the actual data is compared for each time step with
missing data.
Below, various share prices in different time frames are looked at for a diverse analysis.
As before, the different described approaches for the completion of the missing values are
examined. The completed part will be subsequently graphically represented in red.
For the first example, the individual share prices of the DAX companies during the year
2018 are used. The matrix of the share prices is of size 29× 251, where 29 is the number
of shares and 251 is the number of banking days. By removing information in one of the
29 shares randomly and using the data of the other 28 shares as the complete sub-matrix,
data completion with the previously described methods can be achieved.
The results for one share with missing data pertaining to one specific month is depicted
in figure 5.11, which shows a selection of completion methods for the Fresenius Medical
Care share with missing information for April 2018, where the imputation is done along
the axis corresponding to the individual share.
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As a short side note, if one were to use the completion along the axis corresponding to
the time instead of along the axis linked to the individual share, most methods would
have an improved directional accuracy, especially the imputation methods using mean,
median or mode as well as filling the values with the LOCF or the NOCB. However,
the error would be much larger due to the reconstruction not being close to the original.
This is explained by the share prices not being similar on average. For example, a simple
forward filling uses the share price data of another company which does not necessarily
have matching values.
Now, for the completion along the axis corresponding to the share, the simple imputa-
tion methods, namely using the mean, median, mode, LOCF or NOCB, do not lead
to acceptable results in relation to the directional accuracy, with directional accuracies
around 10%, as the imputation is constant with time, which is exemplary illustrated for
the mean imputation in 5.11a with the imputed results depicted in red. The outcome
for kNN imputation is much better with a directional accuracy of almost 70%, see figure
5.11b, while EM entails very erratic values with a directional accuracy of around 45%.
Looking at interpolation with polynomial functions and splines, the results are inaccur-
ate and the directional accuracy lies only between 50% and 60%, see subfigures 5.11c
and 5.11d for linear interpolation and spline interpolation, respectively. Linear interpol-
ation finds a linear interpolant between the last known share price and the next known
share price and is as such also not close to the actual behavior of a share price. Higher
polynomial interpolants achieve even worse results with imputed values not lying close
to the actual values. Spline interpolation causes similar results as linear interpolation,
even for splines of higher degree, such that it may be said, that the results for splines in
this context are once again better than those for polynomials.
Linear Regression and MICE, shown in subfigures 5.11e and 5.11f respectively, involve
a good completion with a directional accuracy of over 80%. The same may be said for
the matrix completion approaches using dimensionality reduction. Incomplete PCA and
iterative PCA as well as alternating minimization achieve a directional accuracy of over
85% in this case with the completion results for incomplete PCA and alternating min-
imization shown in 5.11g and 5.11h, respectively.
Overall, it can be seen that many of the results yield a very good outcome. The recon-
structed part lies close to the original, where the completed part is colored in red.
Conspicuously, almost all of the completion approaches yield results that achieve a dir-
ectional accuracy that is better than 50%, which would equate to guessing the direction
randomly. Only the simpler imputation methods as well as EM do no cause a directional
accuracy higher than by guessing randomly.
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(a) Mean imputation (b) KNN imputation

(c) Linear interpolation (d) Spline interpolation

(e) Linear regression (f) MICE

(g) Incomplete PCA (h) Alternating minimization

Figure 5.11: A selection of completion methods (in red) for a share price development
with missing data corresponding to one month using the Fresenius Medical Care share
price included in the DAX with missing information for April 2018 as an example.
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The directional accuracy as well as the error for each value may be considered as well,
for a diverse selection of the element-wise results of the missing area see figure 5.12.
For simple imputation methods like mean imputation, the directional accuracy is not very
high with many peaks in both directions, while kNN imputation has much less peaks in
both directions. Interestingly, while interpolation is never positive for negative trends,
the opposite may be said for the regression approaches such as MICE. Matrix completion
by alternating minimization has very few inaccuracies in this instance, in both directions.
As a final note on this first example, there are 348 combinations of 29 shares with 12

possible missing months (29∗12 = 348). It is possible to average over the respective per-
centages representing the mean directional accuracies for the completion methods applied
to all possible cases of having one individual share with a month of missing information
as well as looking at the ratio of cases where the completion methods have achieved the
highest directional accuracy compared with all other completion methods.
As explained above, it is easy to understand that all the simpler imputation methods,
like using the mean, median, mode, LOCF or NOCB, have a mean directional accuracy
of around 10 − 15%, which means that they are not useful for this specific application.
The various interpolation approaches achieve a mean directional accuracy of 51%−56%,
with the polynomials of higher degree having a lower directional accuracy and spline in-
terpolation achieving the highest directional accuracy out of these methods. Imputation
using kNN has a mean directional accuracy of 46% and the EM algorithm achieves 54%.
Using matrix completion methods achieves a directional accuracy of 67% on average and
the best directional accuracy in 36% of the cases, while the regression approaches with
MICE achieve a slightly higher 71% directional accuracy with the best directional accur-
acy in 44% of the cases. Thus, MICE as well as the dimensionality reduction approaches
achieve a mean directional accuracy of more than 50%. All other methods are hence not
much more useful, or even less so, than randomly choosing a direction.

Now consider the individual share prices of the Dow companies during the same time
period as the DAX, the matrix of the share prices has dimensions 29× 251. Once again,
one specific example of a share price with a time frame of one month of missing data
is exemplary chosen and the completion results as well as the directional accuracies of
the two previously well-performing methods MICE and alternating minimization may
be analyzed. This time, the Exxon Mobile share with missing information in November
2018 is selected. The directional accuracy for MICE is 71%, while matrix completion by
alternating minimization achieves an even higher percentage of 83%, which is the best
directional accuracy compared with all other approaches.
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(a) Directional accuracy (left) and element-wise error (right) for mean imputation

(b) Directional accuracy (left) and element-wise error (right) for kNN imputation

(c) Directional accuracy (left) and element-wise error (right) for linear interpolation

(d) Directional accuracy (left) and element-wise error (right) for MICE

(e) Directional accuracy (left) and element-wise error (right) for alternating minimization

Figure 5.12: The directional accuracy and the error of a selection of completion methods
for the Fresenius Medical Care share price with missing information for April 2018.
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(a) MICE (b) Alternating minimization

Figure 5.13: Completion results (in red) and the directional accuracy of two completion
methods for the United Technologies share price with missing information for

September 2008.

As the last example of a share index for a certain time frame in this section, the individual
share prices of the Dow companies during the financial crisis 2007-2009 are examined.
The time series in this case is longer than before.
The completion results as well as the directional accuracies for one share with a month
of missing data are depicted in figure 5.13. The figure illustrates the completion results
computed with the two approaches MICE and alternating minimization applied to the
United Technologies share with missing information corresponding to September 2008
limited to the area of missing data with the completed share prices shown in red as well
as the directional accuracies for the month of missing data on each banking day.
Both MICE and alternating minimization have a directional accuracy of 75%, such that
both approaches have the best directional accuracy compared with all other completion
methods, although the inaccuracies do not take place at the same time steps and do not
necessarily occur in the same direction. In addition, the figures of the results illustrate
that MICE underestimates the values for the first few days, while alternating minimiza-
tion overestimates the last few values.

As in the DAX example, there are 348 possible combinations of missing data for the Dow
in 2018. The time of the financial crisis analyzed here includes 22 months, such that the
number of possible combinations increases to 572. The averages over all mean directional
accuracies for the completion methods as well as the ratios of having the best directional
accuracy compared with all other methods are displayed in table 5.2.
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Method Mean directional accuracy Best case ratio
2018 2007-2009 2018 2007-2009

Mean 12.78% 13.02% 0% 0%
LOCF 15.19% 13.93% 2% 1%
KNN 52.12% 51.56% 2% 4%
EM 54.02% 54.41% 6% 4%
MICE 71.33% 73.51% 47% 54%
Linear Regression 70.47% 73.03% 38% 49%
Linear Interpolation 54.46% 56.98% 6% 6%
Spline Interpolation 56.14% 57.47% 9% 6%
Incomplete PCA 65.45% 70.52% 31% 39%
Iterative PCA 65.45% 70.52% 31% 39%
Alternating Minimization 65.45% 70.52% 31% 39%

Table 5.2: Averaged mean directional accuracy and best case ratio for several
completion methods applied to all combinations of missing information for each month

and each individual share listed in the Dow in 2018 and 2007-2009.

It is important to clarify that if the directional accuracy of two or more methods coin-
cides, then all methods with the highest directional accuracy are counted as having the
best directional accuracy. For that reason, the sum of the so-called best case ratio over
all methods is not equal to 100%. The regression approaches achieve the best results,
with 71% and 73.5% directional accuracy for MICE in 2018 and 2007-2009 respectively,
closely followed by the dimensionality reduction approaches, where all methods achieve
the same directional accuracies of 65% and 70.5% for the two time periods.
The percentages do not vary too much between the two time frames, it is however notice-
able that the completion methods are on average more successful in 2007-2009. This is
especially significant for the dimensionality reduction approach, due to the lower amount
of dimensions needed for a high amount of explained variance. In approximately half
of the possible cases, MICE is able to achieve the best directional accuracy, while the
dimensionality reduction approaches are the best method in that respect for 31%/39%

of the cases. All other methods can be disregarded for this application as the best direc-
tional accuracy is almost exclusively achieved by those two types of approaches.

Similarly to all the previous example applications, a percentage of missing data may also
be artificially introduced. In the given case, 10% of the share prices are unknown as
well as the share price on the day before and on the day after, such that for 10% of the
banking days, the data for three subsequent days is missing.
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Iterating 1000 times over 10% of randomly chosen missing data to improve on the quality
of the analysis, different areas for missing data in the shares are introduced. For all three
previously considered data sets, namely the individual share prices included in the DAX
in 2018, in the Dow in 2018 and in the Dow during the financial crisis, the completion
methods may be applied to the constructed incomplete data sets. Regarding the direc-
tional accuracies of the methods, the percentages do not really vary much (±1%) between
the share indices and the choice of the data set is thus not relevant for the subsequent
analysis. Since the missing areas in the time series are rather small, not many outlier are
possible.
For example, the mean of the directional accuracy over all artificially produced 1000 cases
for the Dow in 2007-2009 ranges between 71% and 87% for the completion methods, with
the simple imputation methods using a central tendency and a forward/backward filling
approach having the lowest at around 74% and 71%, respectively, the EM algorithm
having a directional accuracy of 83% on average and the other methods using a nearest
neighbors, regression, interpolation or dimensionality reduction approach ranging around
86%− 87%.

To conclude, the two approaches MICE and alternating minimization once again achieve
the best results out of the described methods. The directional accuracy is higher and it
is also relevant that the reconstructed part usually lies close to the original data.



6. Conclusion

In this work, several different methods for completing missing data were analyzed.
As a first strategy, the statistical concept of imputation was utilized for dealing with
incomplete data by replacing the missing values with a substitute. The single imputa-
tion methods were the simplest options, which include univariate methods like using the
mean, median or mode of the incomplete data as substitutes. Imputation with the last
observation carried forward or the next observation carried backward were also simple
to apply. One type of multivariate simple imputation used regression, while the sim-
ilar interpolation approach was another candidate. The last simple imputation method
introduced was using the k-nearest neighbors algorithm. More advanced methods used
multiple imputation, where missing values are imputed several times to account for the
uncertainty in the data and the imputations. One of the state of the art methods in stat-
istics is multiple imputation by chained equations, where a stochastic regression model
is applied several times. Another course of action was a maximum likelihood based tech-
nique, the expectation-maximization algorithm.
After considering the statistical approach by imputing the values with a substitute, an-
other approach with dimensionality reduction methods like PCA, the more general KPCA
and the nonlinear manifold method diffusion maps was introduced, with the most ad-
vanced technique using alternating minimization for the completion of the data.

All the described methods were first applied to a simulated example, where a linear three-
dimensional object was constructed and later noise was added to increase the similarity
to a real-world application. All applications used two different types of missing data. In
the first case, one large area of missing data was generated, such that a subset of the data
columns or rows was still complete. For the second instance, a percentage of randomly
missing data was artificially introduced. The completion strategies were applied to both
cases and the results already indicated that the statistical approach with MICE and
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the dimensionality reduction approach with alternating minimization were the two most
reasonable choices out of the considered methods for completing the missing data. The
choice of dimensionality reduction method made virtually no difference for the results,
such that PCA lead to the same completion as KPCA or DM.
This assertion was substantiated by the two chosen real-world applications. The first
example were face images taken from the Olivetti faces data set and the second example
were the individual share prices included in the share indices DAX and Dow for a period
of time. Thus, the two approaches MICE and alternating minimization were the most
effective for the given data sets.
Nevertheless, it became clear that while MICE was usually the best choice for the com-
pletion based on the performance criteria applied, MICE is very slow for large data sets
as the execution time increases very fast due to having to work with a regression model
several times.

However it is important to note that there is no perfect way to compensate for missing
values in a data set. Every method for completing missing values may perform better
for certain data sets, but may not work well on other types of data sets. As addressed
during the introduction of the performance criteria, there do exist special methods for
images or time series based on specific error norms or concepts. However, the completion
algorithms discussed here are applicable to a wide variety of problems. Even though
these algorithms may not provide the best results for specific problems, they are a useful
general tool for missing data.

The handling of missing data with statistical methods as well as matrix completion are
an active field of research with many algorithms available and only a small collection of
widely applicable and generally used techniques were evaluated.
To conclude, the method used for handling missing data should always be dependent
on the data set itself as well as on the type of missing information. There have not
been any universal rules developed for completing missing information and the task of
choosing the most appropriate method lies with the user. Nonetheless, MICE for small
data sets and alternating minimization for larger data sets are a good starting point,
especially compared with removing incomplete data points or using the usually applied
simple imputation methods.
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