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Chapter 1

Introduction

Partial differential equations (PDEs) play a crucial role in mathematics, physics, engineer-
ing, and various other scientific fields. They provide a rigorous way to describe the evolution
of spatial and temporal dynamics. Prominent examples include the transport of heat, the
propagation of waves, and the diffusion of substances. Although PDEs are essential for de-
scribing these systems, many of them cannot be solved analytically. Therefore we must rely
on numerical solvers like the finite element, finite volume, or finite difference methods.
A key motivation for the development of alternatives to the classical numerical solvers is
the fact that in many applications we need to solve a PDE for multiple initial conditions.
For instance, if we need to model the flow of traffic, the PDE must be solved repeatedly for
multiple initial conditions since the traffic changes depending on road closures, the time of
the day, the weekday, and school holidays.
Because classical solvers must be restarted every time you change a parameter, for example
use a different initial condition, these methods are computationally expensive when solving
a PDE for many different parameter settings.
An alternative approach is the usage of neural networks (NNs). Originally two different
classes of neural networks were introduced to learn the solutions of PDEs, physics-informed
NNs ([32]) and data-driven neural networks ([30], [31]). Both classes have downsides. For
the use of physics-informed neural networks you need to know the physical realities of your
data set before constructing the NN, but in many cases these are not known. Data-driven
neural networks on the other hand do not capture the physical dynamics of the training data
and fail to predict these dynamics for test data if the test data is outside of the training data
distribution.
This is why a third form called neural operators was introduced. These neural operators
learn the nonlinear mapping described by the PDE between two infinite dimensional func-
tion spaces, e.g. the space of initial conditions and the space of solutions of a PDE, and they
rely on the universal operator approximation theorem from [29].
Among the first published neural operators were the DeepONet operator ([14], [15]) and the
graph neural operator (GNO, [16]). Afterwards the Fourier Neural Operator (FNO) was
published in [7] which will be one of the main topics of this thesis. The FNO applies the
Fourier transform on the input data and then learns in both physical and frequency space.
As an improvement to the FNO, the Wavelet Neural Operator (WNO) was introduced in [1].
This operator uses a wavelet transform instead of a Fourier transform. This adjustment will
be investigated later in this thesis.
Now we provide a brief outline of this thesis. We start by introducing the theoretical basis
such as the Fourier and wavelet transforms and we study the network architecture of the
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CHAPTER 1. INTRODUCTION

FNO. Additionally, we explore several strategies to further improve the accuracy of the
FNO, including the introduction of the WNO, parameter tuning, modification of the network
architecture and alternative approaches to the boundary handling during the discrete wavelet
transform.
This thesis will be structured in six chapters. First, we start by briefly providing the the-
oretical background of the Fourier transform. Here we look at the continuous and discrete
Fourier transform and the implementation of the fast Fourier transform (FFT).
The second chapter is focused on wavelets and will cover the derivation by showing filter
banks, the wavelet equation, the continuous and discrete wavelet transform and the different
methods of boundary treatments in the discrete wavelet transform.
In the next chapter, we will define the benchmark problems which are used for comparison
of the different models. For that we will state the PDEs that are used to test the different
neural operators and describe how the training data is generated.
Afterwards, we will introduce the FNO by stating the formal problem formulation, looking
at the original network architecture of the FNO as it was introduced in [7] and look at the
different numerical results from various papers and our own numerical results.
In the fifth chapter, we search for different approaches to improve the performance of the
FNO. Here we will introduce the WNO and also discuss other changes to the network archi-
tecture in order to improve the ability of the WNO to correctly predict the solutions of the
PDEs.
We end this thesis with a discussion of the results and an assessment of the potential of neural
operators.
Our contribution to this topic is the use of boundary filter to treat the signal boundaries in
the WNO instead of signal extensions like in the original WNO paper [1] and the use of a
bias term and noise-augmented training data during the WNO model training as well as a
comparison between the various models we will introduce during this thesis.
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Chapter 2

Fourier Transform

The neural operators covered in this thesis rely on discrete versions of integral transform-
ations to learn mappings between infinite-dimensional function spaces. One of the most
widely known and used transformation in this context is the Fourier transform. It serves as
the foundation of the FNO. The FNO aims to exploit the efficiency of the Fourier transform
in capturing global patterns.
In this chapter we define the key concepts of the Fourier transform, present both the con-
tinuous and discrete Fourier transforms, and the Fast Fourier Transform (FFT) algorithm.
These concepts will be used multiple times in this thesis, such that it is important to start
here with the basic concepts.

2.1 Continuous Fourier Transform

The continuous Fourier transform is an integral operator that decomposes a function into its
constituent frequencies. It provides a powerful tool for analyzing patterns in functions. The
transformation maps a function from the spatial domain to the frequency domain which en-
ables the representation of a function in terms of a basis of complex sine and cosine functions.
The Fourier transform is defined by the following integral operator.

Definition 2.1.1
Let f ∈ L1(Rn), then the Fourier transform F splits f into its frequency components f̂(y)
which are defined by

Ff(y) := f̂(y) :=

∫
Rn

f(x)e−iy·x dx.

The inverse Fourier transform reconstructs the function f from its frequency components:

(F−1f̂)(x) :=
1

(2π)n

∫
Rn

Ff(y)eiy·x dy.

The proof that the inverse Fourier transform is really the inverse of the Fourier transform
is a known result. We will not cover this in this thesis since we will focus on the discrete
version but the proof can be found for example in [17].

2.2 Discrete Fourier Transform

In practice, we need to implement our algorithms for computers and that is why we need
discrete versions of our concepts. In the case of the Fourier transform we define a discrete
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CHAPTER 2. FOURIER TRANSFORM

Fourier transform which does not use a continuous input signal f but a discrete vector x
and transforms this into a vector X where each element represents a frequency which is a
component of the input signal.

Definition 2.2.1
For a discrete sequence x = {xn}N−1

n=0 we define the discrete Fourier transform (DFT) as

Fk(x) := Xk :=
N−1∑
n=0

xne
−2πink

N for k = 0, ..., N − 1.

For the reconstruction of the signal x we can define the inverse discrete Fourier transform
(IDFT) as

xk = F−1
k (X) =

1

N

N−1∑
n=0

e2πi
nk
N ·Xn for k = 0, ..., N − 1.

Given the DFT and IDFT defined as above we now want to prove that the IDFT is really
the inverse of the DFT.

Proof. Let x̃k denote the result of applying the IDFT to {Xn}:

x̃k =
1

N

N−1∑
n=0

Xne
2πink

N

=
1

N

N−1∑
n=0

(
N−1∑
m=0

xme
−2πimn

N

)
e2πi

nk
N

=
1

N

N−1∑
m=0

xm

N−1∑
n=0

e2πi
n(k−m)

N with k,m = 0, ..., N − 1.

The inner sum evaluates to:

N−1∑
n=0

e2πi
n(k−m)

N =

{
N if k = m

0 otherwise.

• Case k = m: The exponent vanishes (e0 = 1), so the sum equals N .

• Case k ̸= m: The sum is a geometric series with ratio r = e2πi
(k−m)

N ̸= 1:

N−1∑
n=0

rn =
1− rN

1− r
=

1− e2πi(k−m)

1− e2πi
(k−m)

N

= 0,

since e2πi(k−m) = 1 for integers k,m.

Thus, only the term where m = k survives:

x̃k =
1

N
· xk ·N = xk.

Therefore F−1(F(x)) = x. The other direction F(F−1(X)) = X can be done analogously.
This proofs that the IDFT is really the inverse of the DFT.
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CHAPTER 2. FOURIER TRANSFORM

2.3 Fast Fourier Transform

In many programs the DFT is called very often such that it is important to optimize the
runtime of our programs. Therefore we need a fast algorithm to calculate the discrete Fourier
transform. This can be achieved by the Fast Fourier Transform (FFT).
The fundamental result for constructing the FFT algorithm is presented in the following
theorem from [10].

Theorem 2.3.1
Assume two discrete data sets of length N x0, ..., xN−1 and xN , ..., x2N−1. Then the discrete
Fourier transform of the data set x0, xN , x1, xN+1, ..., xN−1, n2N−1 can be calculated from the
transformed subsets as in the following:

1

2
(Fk(x0, ..., xN−1) + e−iπ k

N Fk(xN , ..., x2N−1))

= Fk(x0, xN , x1, xN+1, ..., xN−1, n2N−1) for k = 0, ..., N − 1

1

2
(Fk(x0, ..., xN−1)− e−iπ k

N Fk(xN , ..., x2N−1))

= FN+k(x0, xN , x1, xN+1, ..., xN−1, n2N−1) for k = 0, ..., N − 1.

Proof. For k = 0, ..., N − 1 we have

Fk(x0, xN , x1, xN+1, ..., xN−1, n2N−1)

=
1

2N
(

N−1∑
n=0

xne
−i2π 2nk

2N +

N−1∑
n=0

xN+ne
−i2π

(2n+1)k
2N )

=
1

2N
(
N−1∑
n=0

xne
−i2π nk

N + e
−ikπ
N

N−1∑
n=0

xN+ne
−i2π nk

N )

=
1

2
(Fk(x0, ..., xN−1) + e−iπ k

N Fk(xN , ..., x2N−1))

The second equation can be achieved analog.

For stating the algorithm we define an operator which reverses the bit representation of
integers.

Definition 2.3.2
Let q ∈ N0 and n =

∑q−1
l=0 bl2

l the unique binary representation for a number
n ∈Mq := {0, ..., 2q − 1} and bits bl ∈ {0, 1}. Then we define the bit reversing operator as

σq :Mq →Mq,

q−1∑
l=0

bl2
l 7→

q−1∑
l=0

bq−1−l2
l.

The case q = 0 is defined for technical reasons with M0 = {0} and σ0(0) = 0.
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CHAPTER 2. FOURIER TRANSFORM

Algorithm 1 Fast Fourier Transform (FFT) Algorithm

Input: xk for k = 0, . . . , N − 1
1: for k = 0 to N − 1 do
2: fk = F({xk})
3: end for
4:

5: for k = 0 to N − 1 do
6: d(k) = fσq(k)/N
7: end for
8:

9: for r = 0 to q − 1 do
10: M = 2r

11: θ = ei2π/M

12: for k = 0 to M − 1 do
13: for j = 0 to 2q−r−1 − 1 do
14: x = θkd(2jM +M + k)
15: d(2jM +M + k) = d(2jM + k)− x
16: d(2jM + k) = d(2jM + k) + x
17: end for
18: end for
19: end for
Output: d(k) = dk for k = 0, . . . , N − 1

Now we can define the algorithm for the case N = 2q in Algorithm 1. This algorithm
allows us to apply the DFT efficiently. We will exploit this in the FNO where we need to
apply the FFT for each data sample and each training epoch multiple times. This leads to a
substantial increase in the number of Fourier transforms, which highlights the importance of
an efficient implementation of the DFT.

The algorithm has a time complexity of O(NlogN) which can be found in [10].
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Chapter 3

Wavelets

In contrast to the Fourier transform, an alternative approach for transforming signals is the
so-called wavelet transform. While the Fourier transform provides a global representation of
the input function using sinusoidal basis functions, it lacks the ability to capture localized
features. The wavelet transform addresses this issue by using basis functions that are localized
in spatial and frequency domain. These basis functions will be called wavelets and will be
introduced later in this chapter. An important difference between wavelets and the Fourier
basis is that wavelets have compact support, which allows the wavelet transform to represent
local variations more accurately.
In this chapter we will derive the wavelet transform by introducing filters and filter banks
and the dilation and wavelet equations, which are necessary to get to the wavelet basis. This
wavelet basis is then used to define the wavelet transform. As with the Fourier transform, we
will define a continuous and discrete wavelet transform and show an efficient implementation
of the discrete wavelet transform. The derivation of the wavelets will be primarily based on
[6].

3.1 Filters

Filters are discrete objects that are applied to an input vector and they capture various
features in the input signals. First, we define a few basic objects so that we can introduce
filters more formal and precisely.

Definition 3.1.1
A signal x is an infinite vector. We can also view x as a function x : Z → R

Example 3.1.2
One example of a signal is the so-called unit impulse δ which is defined as

δ(n) =

{
1 if n = 0

0 else

7
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Definition 3.1.3
A filter H is a linear operator. It acts on a signal x ∈ ℓ2 and convolute it with a fixed vector
with coefficients h

Hx(n) =
∞∑

k=−∞
h(k)x(n− k) = h ∗ x.

For H to be well defined, we need h ∈ ℓ2.

Example 3.1.4
If we transform the unit impulse we get

Hδ(n) =
∞∑

k=−∞
h(k)δ(n− k) = h(n).

This is why h is also called impulse response.

Definition 3.1.5
A filter with h(n) = 0 ∀n < 0 is called causal.
A filter with h(n) ̸= 0 for only finitely many n is called finite impulse response filter (FIR
filter).

FIR filters are of special interest for practical application since calculating the output of
a filter with infinite length is practically infeasible.

Example 3.1.6
Two important causal FIR filters are the moving average H0 and the moving difference H1.
We will also call these filters Haar filters, since they will be used later to derive Haar wavelets.
The filters are defined by their impulse responses

h0(n) =

{
1
2 if n = 0 or n = 1

0 otherwise,

h1(n) =


1
2 if n = 0

−1
2 if n = 1

0 otherwise.

If we apply these filter to an input signal x we get

H0x(n) =
1

2
x(n) +

1

2
x(n− 1) (3.1.1)

H1x(n) =
1

2
x(n)− 1

2
x(n− 1) (3.1.2)

These names are intuitive since (3.1.1) shows that H0x(n) is just the average of x(n) and
x(n− 1) and (3.1.2) gives us H1x(n) as half of the difference between x(n) and x(n− 1).

Lemma 3.1.7 (Matrix Representation)
Applying a filter H with impulse response h to a signal x can be written as an infinite matrix
vector product.

8



CHAPTER 3. WAVELETS

Proof. Define the matrix M as Mij = h(i− j).
Then we have

Mx(n) =
∑
j∈Z

Mnjx(j) =
∑
j∈Z

h(n− j)x(j) = (h ∗ x)(n)

Depending on the context we will use H0 and H1 as a notation for the lowpass and
highpass filter or their corresponding matrices.

Example 3.1.8
We can now write the application of the moving average H0 and moving difference H1 as
matrix multiplications. For H0 we get

y = h0 ∗ x⇔



...
y(−1)
y(0)
y(1)
...

 =



. . .
. . .
1
2

1
2
1
2

1
2
1
2

1
2
. . .

. . .





...
x(−1)
x(0)
x(1)
...


and analogously for H1 we have

y = h1 ∗ x⇔



...
y(−1)
y(0)
y(1)
...

 =



. . .
. . .

−1
2

1
2
−1

2
1
2
−1

2
1
2
. . .

. . .





...
x(−1)
x(0)
x(1)
...

 .

3.2 Filter Banks

A filter bank consists of two filters, a lowpass and a highpass filter. As the names suggests,
the lowpass filter removes the high frequency components from a signal and keeps the low
frequencies while a highpass filter does the exact opposite. In our previous example, we had
the moving average, which is a lowpass filter. It removes the difference between two consec-
utive entries of the input signal and with that, it removes the high frequencies. Only changes
in the signal over several entries of the signal, which are the low frequency components, can
still be observed after the transformation.
Separately neither the lowpass filter nor the highpass filter is invertible, but we will show
in the following, that you can retrieve the input signal from the combined results of the
highpass and lowpass filter. But if you need two signals to store the information of your one
input signal you have effectively doubled the needed storage. This is an issue in the practical
implementation of filter banks. The solution for that is downsampling.
Downsampling means that we only keep half of the entries of H0x and H1x. We will see later
that we can still recover x after dropping half of the entries.

Definition 3.2.1
We denote the downsampling operator as (↓ 2). For an input signal x we define the down-
sampling operator as

((↓ 2)y)(n) = y(2n).

9



CHAPTER 3. WAVELETS

So the downsampling operator drops the odd-indexed components of the vector and keeps
the even-indexed components.

Definition 3.2.2
For normalization we define new matrices C and D as

C =
√
2H0 (lowpass filter)

D =
√
2H1 (highpass filter).

which are rescaled versions of the infinite matrices corresponding to the filters.

This normalization factor is introduced to make the rows and columns of the matrices
unit vectors. We can see that in our example of the Haar filters, where now each row of the
rescaled matrix has the euclidean norm√

(

√
2

2
)2 + (±

√
2

2
)2 = 1.

The coefficients of more complex filters will also be normalized in such a way that the rows
of C and D will be unit vectors.

We now combine both operations on one signal, downsampling and normalization, as
multiplication with one matrix. For that we define the following new matrices.

Definition 3.2.3
For combining the application of the lowpass filter C and the downsampling operator, we
define the rectangular matrix L as

L = (↓ 2)C

Here we apply the downsampling operator on the columns of C which effectively drops every
second row of the matrix.
Analogously, we define the matrix B for the highpass filter.

B = (↓ 2)D

To represent our whole filter bank, in the following also called analysis bank, as one
matrix, we combine both matrices into one:[

(↓ 2)C
(↓ 2)D

]
=

[
L
B

]
Example 3.2.4
In the case of the Haar filter, these matrices are

L = (↓ 2)C =


. . .

. . .
1√
2

1√
2

1√
2

1√
2

. . .
. . .


10
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and

B = (↓ 2)D =


. . .

. . .

− 1√
2

1√
2

− 1√
2

1√
2

. . .
. . .

 .
Note here that the rows of C and D are orthonormal to each other which will also be true
for other filters we will introduce later.
If we now combine both matrices, we get the infinite matrix

[
(↓ 2)C
(↓ 2)D

]
=

[
L
B

]
=



. . .
. . .

1√
2

1√
2

1√
2

1√
2

. . .
. . .

. . .
. . .

− 1√
2

1√
2

− 1√
2

1√
2

. . .
. . .


.

This matrix represents the whole analysis bank of the Haar filters. Due to the orthonormality
of its rows, this matrix is orthonormal as a whole.

[
LT BT

] [L
B

]
= LTL+BTB =

1

2
I +

1

2
I = I

The inverse of the analysis bank is called synthesis bank and in case of an orthonormal
filter bank we can represent the synthesis bank as[

L
B

]−1

=
[
LT BT

]
[
LT BT

] [L
B

]
= LTL+BTB =

1

2
I +

1

2
I = I

The orthonormality of the Haar filter bank can easily be seen. If we want this charac-
teristic for more involved filters, we need to choose the impulse responses of the filters, such
that the orthonormality is given by construction.

3.2.1 Orthonormal filter banks

The analysis bank consists of two steps: filtering and downsampling. To invert this process,
we need to define an upsampling operator (↑ 2) and then find matrices C̃ and D̃ to reconstruct
the signal in the following way:

Definition 3.2.5
For an input signal x we define the upsampling operator as

((↑ 2)x)(n) =

{
x(n2 ) if n is even

0 otherwise.

11
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Definition 3.2.6
Let x be our input signal and yl = Lx and yh = Bx the results of the analysis bank. The
synthesis bank now gives us

xrec = C̃(↑ 2)yl + D̃(↑ 2)yh

= C̃(↑ 2)(↓ 2)Cx+ D̃(↑ 2)(↓ 2)Dx.

We say that a filter bank allows perfect reconstruction if there exists an l ≥ 0 such that we
have

x(n) = xrec(n− l)

∀n ∈ N.

Definition 3.2.7
We call a filter bank orthonormal if setting the synthesis filters as

C̃ = CT

D̃ = DT

gives us a perfect reconstruction.

The question that remains is how we can assure that we choose our filters in such a way
that in the end we get an orthonormal filter bank.
We focus on causal FIR-filter, since these are the filters used in practical applications. Assume
we have a lowpass filter with impulse response c(0), . . . , c(N) and a highpass filter with
impulse response d(0), . . . , d(N) with c(0), c(N), d(0), d(N) ̸= 0. All c(n), d(n) are set to 0
for n < 0 and n > N . Then we can summarize the analysis bank in the matrix

H =

[
L
B

]
=



c(N) c(N − 1) c(N − 2) . . . c(0)
c(N) c(N − 1) c(N − 2) . . . c(0)

. . .
. . .

d(N) d(N − 1) d(N − 2) . . . d(0)
d(N) d(N − 1) d(N − 2) . . . d(0)

. . .
. . .


.

To have an orthogonal filter bank we need to fulfill the conditions HTH = I and HHT = I.
The following conclusions are stated in [6].
If we write this out in the block form we get

[
LT BT

] [L
B

]
= LTL+BTB = I (3.2.1)[

L
B

] [
LT BT

]
=

[
LLT LBT

LBT BBT

]
=

[
I 0
0 I

]
. (3.2.2)

To fulfill the condition (3.2.2) the coefficients need to fulfill several conditions. First the
rows of L need to be orthonormal. This can be written as a scalar product in the following
way:

LLT = I ⇔
∑
n∈Z

c(n)c(n− 2k) = δ(k). (3.2.3)

12
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Analogously, the coefficients of the highpass filter need to fulfill

BBT = I ⇔
∑
n∈Z

d(n)d(n− 2k) = δ(k). (3.2.4)

In addition to that each row of B needs to be orthogonal to each row of L. That means

LBT = 0 ⇔
∑
n∈Z

c(n)d(n− 2k) = 0. (3.2.5)

We now have conditions (3.2.1), (3.2.3), (3.2.4), and (3.2.5) for the orthonormality of the
filter bank.
(3.2.3) and (3.2.4) directly rule out filters of odd length. For example if we assume N + 1 =
3 and test k = 1, then we have

(c(0), c(1), c(2))T · (0, 0, c(0))T = c(0)c(2) ̸= 0

which is a contradiction to (3.2.3). For that reason we need to have an even filter length.
Assume now we have coefficients c(0), . . . , c(N), which fulfill (3.2.3). Then we can choose the
coefficients for the highpass filter as

d(k) = (−1)kc(N − k)

We can now check if these coefficients fulfill the other conditions.∑
n∈Z

d(n)d(n− 2k) =
∑
n∈Z

(−1)nc(N − n)(−1)(n−2k)c(N − (n− 2k))

=
∑
n∈Z

(−1)(N−n)+(N−n−2k)c(n)c(n+ 2k)

=
∑
n∈Z

(−1)2(N−n−k)c(n)c(n+ 2k)

=
∑
n∈Z

c(n− 2k)c(n) = δ(k)

which is true by assumption. To assure (3.2.2) we also need to check (3.2.5).∑
n∈Z

c(n)d(n− 2k) =
∑
n∈Z

c(n)(−1)(n−2k)c(N − (n− 2k))

=
∑
n∈Z

c(N + 2k − n)(−1)(N−n)c(N − (N + 2k − n− 2k))

=
∑
n∈Z

c(N − (n− 2k))(−1)n+1c(n))

= −
∑
n∈Z

c(N − (n− 2k))(−1)nc(n))

= −
∑
n∈Z

c(n)d(n− 2k)

⇒
∑
n∈Z

c(n)d(n− 2k) = 0

13
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The last thing we need to check is (3.2.1).

(LTL+BTB)ij =
∑
k∈Z

LkiLkj +
∑
k∈Z

BkiBkj

=
∑
k∈Z

c(2k − i)c(2k − j) +
∑
k∈Z

d(2k − i)d(2k − j)

=
∑
k∈Z

c(2k − i)c(2k − j) + (−1)(i+j)
∑
k∈Z

c(N − (2k − i))c(N − (2k − j))

=
∑
k∈Z

c(2k − i)c(2k − j) + (−1)(i+j)
∑
k∈Z

c(2k − i−N)c(2k − j −N)

=
∑
k∈Z

c(2k − i)c(2k − j) + (−1)(i+j)
∑
k∈Z

c(2k − i+ 1)c(2k − j + 1)

Now let i = j:

(LTL+BTB)ij =
∑
k∈Z

c(2k − i)c(2k − i) + c(2k − i+ 1)c(2k − i+ 1)

=
∑
k∈Z

c(k − i)c(k − i)

=
∑
k∈Z

c(k)c(k)

= 1

For i ̸= j we look at two cases separately. First let j − i = 2d be even.

(LTL+BTB)ij =
∑
k∈Z

c(2k − i)c(2k − j) +
∑
k∈Z

c(2k − i+ 1)c(2k − j + 1)

=
∑
k∈Z

c(2k − i)c(2k − 2d− i) +
∑
k∈Z

c(2k − i+ 1)c(2k − 2d− i+ 1)

=
∑
k∈Z

c(k − i)c(k − 2d− i)

=
∑
k∈Z

c(k)c(k − 2d) = 0

Lastly we look at the case that i− j = 2d+ 1 is odd. So w.l.o.g. assume i es even.

(LTL+BTB)ij =
∑
k∈Z

c(2k − i)c(2k − j) + (−1)(i+j)
∑
k∈Z

c(2k − i+ 1)c(2k − j + 1)

=
∑
k∈Z

c(2k − i)c(2k − j)−
∑
k∈Z

c(2k − i+ 1)c(2k − j + 1)

=
∑
k∈Z

c(2k − i)c(2k − 2d− 1− i)−
∑
k∈Z

c(2k − i+ 1)c(2k − 2d− i)

=
∑
k∈Z

c(2k)c(2k − 2d− 1)−
∑
k∈Z

c(2k + 1)c(2k − 2d)

=
∑
k∈Z

c(2k)c(2k − 2d− 1)−
∑
k∈Z

c(2k + 2d+ 1)c(2k)

= 0

14
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Now we have shown that every condition for an orthogonal filter bank is fulfilled if we assume
(3.2.3). We can summarize these results in a theorem.

Theorem 3.2.8
Let c(0), . . . , c(N) a lowpass filter of even length and choose the highpass filter as

d(k) = (−1)kc(N − k).

Then the resulting filter bank is orthogonal if and only if∑
n∈Z

c(n)c(n− 2k) = δ(k)

Definition 3.2.9
Filter where the impulse response of the lowpass and highpass filter fulfill the condition

d(k) = (−1)kc(N − k).

are called conjugate mirror filter.

Now that we can check if a filter bank is orthogonal, we also directly know how the
synthesis bank of such a filter bank looks like. For orthogonal filter banks with matrix
representation

H =

[
L
B

]
we have the synthesis bank

HT =
[
LT BT

]
For better understanding we will now do an example with our known Haar filters.

Example 3.2.10
First we check if the filter bank is orthogonal:
The lowpass filter has length 2 and d(k) = (−1)kc(N−k). So the assumptions of the theorem
above are fulfilled.
Now let k = 0: ∑

n∈Z
c(n)c(n− 2k) =

∑
n∈Z

c(n)c(n) = 2(

√
2

2
)2 = 1

Since the filter has only length 2, for every other k we have∑
n∈Z

c(n)c(n− 2k) = 0.

Therefore we now know that the Haar filter bank is an orthogonal filter bank. So the synthesis
bank consists of CT and DT . Let us now take x = (1, 2, 3, 4, 5, 6)T as the input signal.
This signal has compact support so we extend it with x(n) = 1 for all n < 0 and n > 6. Since
all of these entries are 0 we can This gives us the output signals

yl(1) = Lx(1)

= Cx(2)

=

√
2

2
(1 + 2)

=
3
√
2

2
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We can calculate the other entries analogously and get yl(2) = 7
√
2

2 and yl(3) = 11
√
2

2 . For

the highpass filter we get yh = (
√
2
2 ,

√
2
2 ,

√
2
2 ). From these two output signals we should be

able to reconstruct our input signal.
For that we apply the inverse matrices CT and DT and apply the upsampling operator to the
matrices. Previously applying the downsampling operator to a matrix meant to drop every
second row, we now drop every second column. That means we get

x =
1√
2



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 yl +
1√
2



−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1

 yh
= (1, 2, 3, 4, 5, 6)T

In the result we have reconstructed our signal from the downsampled outputs of the lowpass
filter and highpass filter.

We can summarize the previous section in a scheme

x(n)

C

D

↓ 2

↓ 2

↑ 2

↑ 2

F

G

x(n− 1)

y0

y1

v0

v1

u0

u1

ω0

ω1

where F = C−1 and G = D−1 or we can write it more compact as

x(n)

L

B

LT

BT

x(n− 1)

v0

v1

ω0

ω1

where the shift in the index is a result of applying the infinite filters and the inverses
rigorously, but with this simple shift, no information is lost.

3.3 Dilation Equation

In this section we will present the dilation equation which is the first step in constructing
wavelets. Wavelets are a special kind of basis for a function space which is used to deconstruct
a signal and store the information in spatial and frequency domain separately. Wavelets arise
from filters with impulse response hl and hh for the lowpass and highpass filter by solving the
dilation equation which we will define now and the wavelet equation which will be introduced
in the next section.
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Definition 3.3.1
For a lowpass impulse response hl the dilation equation is

ϕ(t) = 2

N∑
k=0

hl(k)ϕ(2t− k)

or in terms of the rescaled coefficients of the filter bank it is

ϕ(t) =
√
2

N∑
k=0

c(k)ϕ(2t− k).

The solution to this equation is called scaling function.

Example 3.3.2
For the example of the Haar filters we have the lowpass coefficients hl(0) = hl(1) = 1

2 .
Therefore we have

ϕ(t) = 2
N∑
k=0

hl(k)ϕ(2t− k)

= ϕ(2t) + ϕ(2t− 1).

The solution to that is the box function

ϕ(t) =

{
1 for 0 ≤ t < 1

0 otherwise

which we can confirm easily by plugging the function into the dilation equation.

The scaling behavior of the scaling function is strongly related to the scaling of the impulse
response hl as we can see in the following theorem from [6].

Theorem 3.3.3

If

∫ ∞

−∞
ϕ(t) dt = 1 then

N∑
n=0

hl(n) = 1

Proof. First we see that

1 =

∫ ∞

−∞
ϕ(u) du

= 2

∫ ∞

−∞
ϕ(2t− k) dt (set u = 2t− k).

So we have
∫∞
−∞ ϕ(2t− k) dt = 1

2 .

17
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Integrating both sides of the dilation equation gives us

1 =

∫ ∞

−∞
ϕ(t) dt

= 2

∫ ∞

−∞

∑
k

hl(k)ϕ(2t− k) dt

= 2
∑
k

hl(k)

∫ ∞

−∞
ϕ(2t− k) dt

= 2
∑
k

hl(k)
1

2

⇒
∑
k

hl(k) = 1

3.4 Wavelet Equation

After stating the dilation equation and solving it for the scaling function, we can now use the
highpass coefficients and define the wavelet equation. The solution of the wavelet equation
will be called mother wavelet and is fundamental to the construction of the wavelet basis.

Definition 3.4.1
Let hh be the impulse response of the highpass filter and let ϕ(t) the scaling function corres-
ponding to the lowpass coefficients hl. Then

ω(t) = 2

N∑
k=0

hh(k)ϕ(2t− k)

is called wavelet equation. In terms of the rescaled coefficients of the filter bank this equation
becomes

ω(t) =
√
2

N∑
k=0

d(k)ϕ(2t− k)

where ω is called mother wavelet.

Example 3.4.2
In the case of the Haar filter we have the highpass coefficients hh(0) =

1
2 and hh(1) = −1

2 so
the wavelet equation simplifies to

ω(t) = ϕ(2t)− ϕ(2t− 1).

If we plug in the scaling function of the Haar filter we get the Haar wavelet

ω(t) =


1 if 0 ≤ t < 1

2

−1 if 1
2 ≤ t < 1

0 otherwise.

If we have a wavelet ω, which is called mother wavelet, we now construct the rest of the
set of wavelets by shifting and compressing the mother wavelet.
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Definition 3.4.3
Define ωjk(t) = ω(2jt− k) for j ∈ N0, 0 ≤ k < 2j .
Then we can define the wavelet basis as {ωjk}

Now we can examine the properties of this basis. We will do that for the example of the
Haar wavelets. The more general case can be looked up in [6] on page 186.

Theorem 3.4.4
The Haar wavelets in combination with a new scaling factor are defined as
ωjk(t) = 2j/2ω(2jt− k). Now the rescaled Haar wavelets form an orthonormal basis:∫ ∞

−∞
ωjkωJK dt = δ(j − J)δ(k −K).

Proof. First we take a look at one rescaled Haar wavelet.

ωjk(t) = 2j/2ω(2jt− k) =


2

j
2 if k

2j
≤ t <

k+ 1
2

2j

−2
j
2 if

k+ 1
2

2j
≤ t < k+1

2j

0 otherwise

That also means that supp(ωjk) = [ k
2j
, k+1

2j
).

We now treat the three different cases separately.

1. j = J and k = K ∫ ∞

−∞
ωjkωJK dt =

∫ ∞

−∞
ω2
jk dt

=

∫ k+1

2j

k

2j

22
j
2 dt

= 2j
1

2j

= 1

2. j = J and k ̸= K∫ ∞

−∞
ωjkωJK dt = 0 since supp(ωjk) ∩ supp(ωjK) = ø

3. j ̸= J Without loss of generality we assume j < J . Then either we have
supp(ωjk) ∩ supp(ωJK) = ø, then we automatically have∫ ∞

−∞
ωjkωJK dt = 0

or we have supp(ωJK)⊆ [ k
2j
,
k+ 1

2

2j
) or supp(ωJK)⊆ [

k+ 1
2

2j
, k+1

2j
). Then we have∫ ∞

−∞
ωjkωJK dt =

∫ ∞

−∞
±ωjk dt

= 0

We now have shown that the Haar filters form an orthonormal basis but we also want to
construct other orthonormal wavelet basis in the next section.
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3.5 Daubechies Wavelets

Up to this point, we looked at the concept of wavelets only in an abstract way and using the
example of the Haar wavelets, which are the simplest form of wavelets. Haar wavelets have
the advantage that they have a closed form, the derivation is straightforward, they have a
compact support, and they form an orthonormal basis. On the other hand, one issue with
Haar wavelets is that they are not continuous.
In the following section, we want to construct a class of wavelets that also have compact
support to be able to catch localized patterns and they should form a orthonormal basis to
make the wavelet transform possible, but they should have a prescribed number p of vanishing
moments (Definition 3.5.1). These wavelets will be able to detect changes and patterns over
longer ranges in the input signals since their impulse responses will be longer than the two
entries of the impulse responses of the Haar filters.
To avoid confusion we need to clarify the notation. In this section we will call wavelets ψ
and use ω for the variable in the Fourier domain.

Definition 3.5.1
A wavelet ψ has p vanishing moments if∫

ψ(x)xj dx = 0 j = 0, 1, ..., p− 1.

We now want to construct an orthonormal wavelet basis which has compact support of
minimal size and p vanishing moments. The resulting family of wavelets is called Daubechies
wavelets, which was first introduced by Ingrid Daubechies in [12]. We follow the construction
of this class of wavelets from [13]. To tackle this construction we first take a look at two
results from [13]. First proposition 7.2 from [13] gives us a connection between the compact
support of a wavelet and the support of the filter and the scaling function.

Theorem 3.5.2
The scaling function ϕ has a compact support if and only if hl has a compact support and
their support is equal. If the support of hl and ϕ is
[N1, N2] then the support of ψ is [(N1 −N2 + 1)/2, (N2 −N1 + 1)/2].

This shows that if we want to get a wavelet with compact support, we need to look for
a lowpass filter with compact support. This is fulfilled by a causal finite impulse response
filter. Assuming a causal FIR lowpass filter h,

ĥ(ω) =

N−1∑
n=0

h[n]e−inω

is a trigonometric polynomial. In the next step we need Theorem 7.4 from [13].
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Theorem 3.5.3
Let ψ and ϕ be a wavelet and a scaling function that generate an orthogonal basis. Suppose
that |ψ(t)| = O((1 + t2)−p/2−1) and |ϕ(t)| = O((1 + t2)−p/2−1). Then the four following
statements are equivalent:

• The wavelet ψ has p vanishing moments.

• ψ̂(ω) and its first p− 1 derivatives are zero at ω = 0.

• ĥ(ω) and its first p− 1 derivatives are zero at ω = π.

• For any 0 ≤ k < p,

qk(t) =
∞∑

n=−∞
nkϕ(t− n)

is a polynomial of degree k.

The assumptions of this theorem are fulfilled since we assume wavelets with compact
support.
To ensure that the wavelet we seek has p vanishing moments Theorem 3.5.3 shows that we
need to choose h in such a way, that ĥ has a zero of order p at ω = π.
To ensure the zero of order p we write ĥ as

ĥ(ω) =
√
2(
1 + e−iω

2
)pR(e−iω) (3.5.1)

since the factor (1+e−iω

2 )p is polynomial of minimal degree with a zero of order p at ω = π.
To create an orthonormal wavelet, the filter also needs to fulfill

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 (3.5.2)

according to [13]. The deduction of this equation can also be looked up in section 5.2 in [6].

Before we can go into the final steps of the construction of the Daubechies filter, we need
the Bezout theorem on polynomials from [18] which can also be found in Theorem 7.5 in [13].

Theorem 3.5.4
Let Q1(y) and Q2(y) be two polynomials of degrees n1 and n2 with no common zeroes. Then
there exists two unique polynomials P1, P2 of degrees n2 − 1 and n1 − 1 such that

Q1(y)P1(y) +Q2(y)P2(y) = 1.

The proof of this theorem can be found in [18].
Up to this point we know the conditions on ĥ to assure that the corresponding wavelets form
an orthonormal basis, have p vanishing moments and compact support. Now we need to
construct R from (3.5.1) to have a close form of ĥ. This will be the result of the constructive
proof of the following theorem which can be found as Theorem 7.5 in [13].

Theorem 3.5.5
Let h be a real conjugate mirror filter, such that ĥ(ω) has p zeros at ω = π. Then h has at
least 2p non-zero coefficients. Daubechies filters have 2p non-zero entries.
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Proof. Since we chose a real filter h(n), |ĥ(ω)|2 is an even function and can be written as
a polynomial in cosω. This also means that |R(e−iω)|, where R is defined in (3.5.1), is a
polynomial in cosω. Due to the trigonometric identity

cos(ω) = 1− 2 sin2(
ω

2
)

we can also write
|R(e−iω)| = P (sin2(

ω

2
))

where P is a polynomial. Combining this with (3.5.1), we get

|ĥ(ω)|2 = 2(cos
ω

2
)2pP (sin2

ω

2
).

By substituting y = sin2(ω2 ), we can rewrite (3.5.2) as

(1− y)pP (y) + ypP (1− y) = 1

for any y = sin2(ω/2) ∈ [0, 1]. We now need to find a polynomial P (y) ≥ 0 to minimize the
number of non-zero terms of the finite Fourier series ĥ(ω) to get wavelets of minimal size.
Since (1 − y)p and yp are two polynomials of degree p with no common zeros, the existence
and uniqueness of the polynomials P1(y) and P2(y) such that

(1− y)pP1(y) + ypP2(y) = 1

is guaranteed by Theorem 3.5.4. The searched polynomials are P2(y) = P1(1− y) = P (1− y)
with

P (y) =

p−1∑
k=0

(
p− 1 + k

k

)
yk.

This polynomial is of degree p− 1 and P (y) ≥ 0.
The next step is to construct a polynomial with minimal degree m

R(e−iω) =
m∑
k=0

rke
−ikω = ro

m∏
k=0

(1− ake
−iω)

such that |R(e−iω)|2 = P (sin2 ω
2 ). Since we have real coefficients, we have R∗(e−iω) = R(eiω)

and

|R(e−iω)|2 = R(eiω)R(e−iω)

= P (sin2
ω

2
)

= P (
2− eiω − e−iω

4
)

= Q(e−iω).

If we substitute z = e−iω and extend the function to the whole complex plane we get

R(z)R(z−1) = r20

m∏
k=0

(1− akz)(1− akz
−1) = P (

2− z − z−1

4
) = Q(z).

Due to the real coefficients of Q(z) we know that if ck is a root, then c∗k is also a root. We
also see that Q is a function of z+ z−1 and this shows that if ck is a root, then 1

ck
and 1

ck∗ are
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also roots. To design R(z) in a way that it satisfies the equation above, we choose each root
ak among a pair (ck,

1
ck
) and also include a∗k to assure real coefficients. Due to Theorem 3.5.4

this yields a polynomial of degree m = p− 1 with r0 = 2p−1. The resulting filter h has
N = p+m+ 1 = 2p non-zero coefficients.
The minimum phase solution R(e−iω) is obtained if we also choose ak out of (ck,

1
ck
) such

that |ak| ≤ 1 ([19]).
We now have constructed R and can calculate the lowpass Daubechies filter h for a given
number p of vanishing moments from

ĥ(ω) =
√
2(
1 + e−iω

2
)pR(e−iω).

Since we assumed a conjugate mirror filter we get the highpass filter from the lowpass filter
and get to the wavelets from there.

The proof shows how we can construct the filter with minimal support for p vanishing
moments.

p n hp[n]

2

0 0.482962913145

1 0.836516303738

2 0.224143868042

3 -0.129409522551

3

0 0.332670552950

1 0.806891509311

2 0.459877502118

3 -0.135011020010

4 -0.085441273882

5 0.035226291882

4

0 0.230377813309

1 0.714846570553

2 0.630880767930

3 -0.027983769417

4 -0.187034811719

5 0.030841381836

6 0.032883011667

7 -0.010597401785

Table 3.1: Low-pass filter coefficients hp[n] for Daubechies wavelets with p = 2, 3, 4.

The following theorem which is proposition 7.4 from [13] shows that the wavelets which
correspond to the filters above, have minimal support. The wavelets for p = 2, 3, 4 are shown
in Figure 3.1 as an example.
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Theorem 3.5.6
If ψ is a wavelet with p vanishing moments that generates an orthonormal basis of L2(R),
then the length of the support of ψ is at least 2p− 1. A Daubechies wavelet has a minimum
size support equal to [−p + 1, p]. The support of the corresponding scaling function ϕ is
[0, 2p− 1].

Figure 3.1: Scaling functions and Daubechies wavelets for p = 2, 3, 4 vanishing moments.

3.6 Wavelet transform

Now we can get to the wavelet transform. The continuous wavelet transform decomposes a
given function at different scales and allows us to analyze the frequencies both in time and
spatial domain simultaneously. Unlike with the Fourier transform we can use the localized
basis functions to see at which spatial regions which frequency occurs.
In the following example we look once again at the Haar wavelets to get an intuition for the
concept of the wavelet transform.

Example 3.6.1
Our goal is to decompose the signal from Figure 3.2 using the Haar wavelets.

The principle ansatz is to get a representation of our input function in terms of the Haar
wavelet basis ωj,k where ωj,k(t) = ω(2j − k) for j ∈ N0, 0 ≤ k < 2j and

ω(t) =


1 if 0 ≤ t < 1

2

−1 if 1
2 ≤ t < 1

0 otherwise.

In order to make this example more readable, we omit the scaling factor 2j/2 here.
First, we look at the coarsest scale j = 0. We see that the mean of our input signal f in the
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f

Input signal f

Figure 3.2: Input signal f

interval [0, 0.5) is 1 and in [0.5, 1) it is -1. Therefore we now subtract ω0,0 once, which means
that our coefficient is b00 = 1

−0.5 0 0.5 1 1.5

−2

0

2

t

f

(a) f and ω0,0

−0.5 0 0.5 1 1.5

−2

0

2

t

f

(b) f − ω0,0

Figure 3.3: First level of decomposition

Now we analyze the result at the next finer resolution and look at intervals with width
0.25. In the first interval we see that the signal is 1 in [0, 0.25) and -1 in [0.25, 0.5). Therefore
b1,0 = 1. in the second interval [0.5, 1) we don’t see differences in the mean of the first and
second subinterval.
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(a) f − ω0,0 and ω1,0

−0.5 0 0.5 1 1.5

−2
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f

(b) f − ω0,0 − ω1,0

Figure 3.4: Second level of decomposition

Lastly we want to look at the next finer scale and we see the step in the interval [0.75, 1)
so b2,3 = 1

−0.5 0 0.5 1 1.5

−2

0

2

t

f

(a) f − ω0,0 − ω1,0 and ω2,3

−0.5 0 0.5 1 1.5

−2

0

2

t

f

(b) f − ω0,0 − ω1,0 − ω2,3

Figure 3.5: Third level of decomposition

We see now that we can express f as f = ω0,0+ω1,0+ω2,3, so we have a basis representation
of f which can be stored in the form of the wavelet coefficients b0,0, b1,0, b2,3.

One important note on this example, which also holds true in general, is that the wavelet
transform only works for functions with zero mean, but this is not really an issue since you
can just transform your input signal as

f̃ = f − 1

|D|

∫
D
f(t) dt

where D is the domain of f and we can store the mean of the function to be able to recon-
struct the signal.
Now we want to be able to define the continuous wavelet transform in a more formal and
more general way than in the example above.

Let {ωjk} be a wavelet basis of L2(R) and f ∈ L2(R). Then we can analyze the function
in terms of our wavelet like in [6] (1.38):

bjk =

∫ ∞

−∞
f(t)ωjk(t) dt
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The coefficients bjk are the result of the wavelet transform and are sufficient to reconstruct
the input function f

f(t) =
∑
j,k

bjkωjk(t).

Alongside the continuous wavelet transform, there is also a discrete version. Here we have
a discrete signal x as an input and we use discrete wavelets, stored in a matrix A, which will
be constructed in the following. Then the analysis and synthesis are

Analysis: b = Ax

Synthesis: x = Sb.

In case of an orthonormal wavelet basis we have S = A−1 = AT .

3.6.1 Fast wavelet transform

The fast wavelet transform is an algorithm which calculates the discrete wavelet transform
(DWT) efficiently.
Here we will focus on a version that can be implemented. Therefore we will not use an infinite
wavelet basis, but only use wavelets up to a certain level J of detail. That means we have a
basis {ωjk|0 ≤ j ≤ J, 0 ≤ k < 2j}.
We will start the analysis of the input signal at the finest level of details. We apply the
lowpass filter C and highpass filterD to the input signal and apply the downsampling operator
afterwards.

x

C

D

↓ 2

↓ 2 (bjk)
2j−1
k=0

(ajk)
2j−1
k=0

Figure 3.6: First level of fast wavelet transform

In the case of the Haar wavelets we can directly see a recursive connection between the
detail level j and j − 1:

aj−1,k =
1√
2
(aj,2k + aj,2k+1)

bj−1,k =
1√
2
(aj,2k − aj,2k+1).

That means we can express the output of the filter at level j− 1 by applying the filter to the
output of the filters at level j. This is used by the algorithm also for other wavelets.
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x

C

D

↓ 2

↓ 2 (bjk)
2j−1
k=1

C

D

↓ 2

↓ 2 (bj−1,k)
2j−1−1
k=1

C

D

Figure 3.7: Second level of the fast wavelet transform

After each step we store the output of the highpass filter and after the last step we also
store the output of the lowpass filter a0,0.
These information are sufficient to reconstruct the signal. The analysis started at the finest
detail level j and ended at the coarsest level 0. The reconstruction will do it the other way
around. Starting at level 0 we have the coefficients a0,0 and b0,0 which is enough to reconstruct
the output of the highpass filter at the level 1 which was (a1k)

1
k=0. We also stored (b1k)

1
k=0

so we can reconstruct (a2k)
3
k=0. Like that we can reconstruct our input to the finest detail

level and apply the inverted analysis bank to recreate the input signal x. In the case of
orthonormal filters we use the inverse matrices for reconstruction

((↓ 2)C)−1 = L−1 = LT

((↓ 2)D)−1 = B−1 = BT .

This sequence of analysis and reconstruction can be shown like in the following scheme where
we do a discrete wavelet analysis and synthesis with maximum detail level j = 1.

x

L

B

L

B

LT

BT

LT

BT

x

Figure 3.8: Fast wavelet transform and reconstruction

We know that the discrete wavelet transform has the structure c = Ax where c =
[
a b

]T
are our coefficients and x is the input. Now we can ask ourselves how A looks like. We start
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at the finest level j. This has a signal length L = 2j . We know the application of the filter
bank can be written as [

aj
bj

]
=

[
L2j

B2j

]
x. (3.6.1)

In the second step we keep bj and apply the filter bank to aj which has length 2j−1.

[
aj−1

bj−1

]
=

 L2j−1

B2j−1

I4

[aj
bj

]
=

 L2j−1

B2j−1

I4

[L2j

B2j

]
x

From here we can easily see the pattern. For example if we have j = 3, we can write A as

A =


L2

B2

I2
I4


 L4

B4

I4

[L8

B8

]

or more general

A =

 L21

B21

I2j−21

 L22

B22

I2j−22

 . . .
 L2j−1

B2j−1

I2j−2j−1

[L2j

B2j

]
.

The time complexity of the fast wavelet transform for signals of length L = 2n is O(L)
([6]) which makes the scaling behavior even better than the FFT with its time complexity of
O(L logL).

3.6.2 Boundary treatment

We started this thesis by defining the application of filter to infinite signals. In practice you
usually have only a signal of finite length x(0), . . . , x(L − 1). We defined the application of
a filter as a convolution of the input signal with a coefficient vector. For a causal FIR filter
this means

(Hx)(n) =
N∑
k=0

h(k)x(n− k).

This can lead to problems on the boundary when not defined signal entries x(n) with n < 0
or n ≥ L are used in the convolution. We will now discuss two approaches to this problem,
signal continuation and boundary filters. A similar discussion of the boundary treatment is
provided in [3] and yields a the basis for this chapter.

Signal continuation

A simple and widely used approach to solve this issue is signal continuation. Here, the signal
is extended by assigning values to the undefined entries of x to certain values up to the point
that we can calculate all entries of the filter output which uses original entries of x.
One simple example to this would be padding where you append a constant value, here 0, to
both ends of the input signal by defining a new signal

x̃(n) =


0 if n < 0

x(n) if 0 ≤ n < L

0 if n ≥ L

.
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Now we can cut the matrix of the FWT such that only the rows and columns, which are
applied to real values of x, are used and we have an input x̃ with the right dimensions. There
are also other signal continuation techniques like periodic extension, symmetric extension or
constant extension, which can be seen in Section 3.6.2.

t0 1 2−1

(a) padding with zeros

t0 1 2−1

(b) periodic extension

t0 1 2−1

(c) symmetric extension

t0 1 2−1

(d) constant extension

Figure 3.9: Different approaches to signal continuation

In the implementation of the WNO from [1] the symmetric signal extension mode was
used which is formally defined by

x̃(n) =


x(−n+ 1) if n < 0

x(n) if 0 ≤ n < L

x(2L− n) if n ≥ L.

Boundary filters

The second approach for handling issues at the signal boundaries is boundary filters. In
contrast to the signal extension, where you adjust the input signal, boundary filters do not
enlarge or change the input signal, but change the filter bank.

Here we start with our infinite filter bank
[
L B

]T
and want to construct an orthogonal

L× L matrix which we can apply to the finite signal.
We begin with our known filter bank:

[
L
B

]
=



c(N) c(N − 1) c(N − 2) . . . c(0)
c(N) c(N − 1) c(N − 2) . . . c(0)

. . .
. . .

d(N) d(N − 1) d(N − 2) . . . d(0)
d(N) d(N − 1) d(N − 2) . . . d(0)

. . .
. . .


.
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The first step is defining the block Toeplitz matrix. This matrix is constructed by interleaving
the rows of L and B like

Hb =



. . .
. . .

c(N) c(N − 1) c(N − 2) . . . c(0)
d(N) d(N − 1) d(N − 2) . . . d(0)

c(N) c(N − 1) c(N − 2) . . . c(0)
d(N) d(N − 1) d(N − 2) . . . d(0)

. . .
. . .


or more formal as {

(Hb)2i,j = Li,j ,

(Hb)2i+1,j = Bi,j .

The second step is extracting all columns of the Toeplitz Band Hb which are not affected by
the not defined input signal entries. So the i-th row is unaffected if (Hb)ij = 0 for all j < 0
and j ≥ L. This leads to the finite matrix

Hin =



c(N) c(N − 1) . . . c(0)
d(N) d(N − 1) . . . d(0)

. . .
. . .

. . .
. . .

c(N) c(N − 1) . . . c(0)
d(N) d(N − 1) . . . d(0)


which has L columns and (L − N + 1) rows. Since we started with an orthonormal filter
bank, the columns of the matrix are still orthonormal, so we have

(Hin)(Hin)
T = I.

The third step is to add N+1
2 rows, that use entries from the Toeplitz matrix, to the top and

bottom of the matrix. The additional rows can be written as

Ht =



c(1) c(0) 0 . . .
d(1) d(0) 0 . . .
c(3) c(2) c(1) c(0) 0 . . .
d(3) d(2) d(1) d(0) 0 . . .

. . .
. . .

c(N − 2) c(N − 3) . . . c(1) c(0) 0 . . .
d(N − 2) d(N − 3) . . . d(1) d(0) 0 . . .


and

Hd =



. . . 0 c(N) c(N − 1) . . . c(3) c(2)

. . . 0 d(N) d(N − 1) . . . d(3) d(2)
. . .

. . .

. . . 0 c(N) c(N − 1) c(N − 2) c(N − 3)

. . . 0 d(N) d(N − 1) d(N − 2) d(N − 3)
. . . 0 c(N) c(N − 1)
. . . 0 d(N) d(N − 1)


.
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These matrices have N+1
2 rows and L columns. They have a block structure Ht =

[
L 0

]
and Hd =

[
0 R

]
. Our new matrix has now the following structure[L 0

]
Hin[
0 R

]


Due to (3.2.3) - (3.2.5) we know that the rows of L and R are orthogonal to the rows of Hin.
If we assume L >> N , we also have that the rows of R are orthogonal to the rows of L.
The last step is to orthonormalize the rows of L and R, for example using the Gram-Schmidt
orthogonalization. This yields the matrices L′ and R′ with orthonormal rows, giving the
orthogonal matrix

Hboundary =

[L′ 0
]

Hin[
0 R′]

 (3.6.2)

which we can now use as our filter bank and apply the discrete wavelet transform to our
signal of length L.

3.7 2D Signals

Up to this point we only discussed one-dimensional signals f ∈ L2(R) or x ∈ ℓ2. Now we
want to extend this theory to 2D signals and follow the construction in [3].
There are two different types of wavelet filters in two dimensions, separable and non-separable
filters. Separable filters are products of one-dimensional filters and that is why they are quite
easy to construct. Non-separable filters are harder to construct and therefore they are out of
the scope of this thesis.
We will now construct the two-dimensional wavelet transform in the separable case for a
discrete input signal X ∈ R(N+1)×(N+1) and also take a (N+1)×(N+1) matrix representing
the one-dimensional wavelet transform e.g. we can use the previously constructed matrix
H := Hboundary to apply boundary filters. Now we apply the wavelet transform to each
column of X separately which gives us a matrix Ycol where the i-th column of Ycol is the
output signal of the application of the filter bank H to the i-th column of X.

Ycol := HX

Now we apply the filter bank to the rows of Ycol and that gives us the output Y of the
two-dimensional signal X.

Y := (HY T
col)

T = HXHT

In the one-dimensional case the output signal is split into a high frequency part and a low
frequency part. In the two-dimensional case, we split the output signal along each axis. That
means that we can split the two-dimensional output signal into four parts. High frequency for
the rows and high frequency for the columns, low frequency for rows and columns as well as
the two mixed parts. This is portrayed in the figure Figure 3.10 where a is the low frequency
part, d is the high frequency part and b and c are the mixed parts.
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a b

c d

Figure 3.10: Output signal split into four parts

As in the one-dimensional case we can now apply the filter bank again to the output
signal iteratively and get a wavelet transform for a two-dimensional input signal.

aa ab

ac ad

ba bb

bc bd

ca cb

cc cd

da db

dc dd

Figure 3.11: Second level wavelet transform to the whole signal

Analogously to the one-dimensional case, we also can only apply the filter to the low
frequency parts in the next iteration and can construct the fast wavelet transform similar to
the 1D scenario.

ab

ac ad

aaa aab

aac aad

b

c d

Figure 3.12: Third level FWT

Now we have the theoretical toolbox to build neural operators which uses the Fourier or
wavelet transform to learn the nonlinear mapping between two infinite dimensional function
spaces. This will allow us to learn and approximating PDE solutions for many different initial
conditions.
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Chapter 4

Benchmark Problems

To evaluate the model performance, the FNO and the variations that will be introduced in the
later chapters are tested on benchmark problems. We present the PDEs which will be used
for the various comparisons. We use the initial conditions and their corresponding solutions
of the PDEs as training and test data. In this work the one-dimensional Burgers equation,
the two-dimensional Darcy flow equation, the two-dimensional incompressible Navier–Stokes
equation and the Euler equations will be used as benchmark problems. Not every model
will be tested on every problem, but at some points we will look at the problem that best
illustrates the differences between the models at that moment. In the following the problems
are stated and the data generation is described.
The first three problems are PDEs which are stated similar in [1].

4.1 The 1D Burgers Equation

The 1D Burgers equation serves as a simplified model for a range of systems involving convec-
tion and diffusion, such as traffic flow, gas dynamics, and turbulence modeling. The formal
formulation is typically stated as

∂tu(x, t) +
1

2
∂xu

2(x, t) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1]

u(0, t) = u(1, t), x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1)

where u0(x) ∈ L2
per((0, 1);R) is the initial condition from the set of periodic L2 func-

tions, and ν > 0 is the viscosity. Depending on the viscosity parameter, the solution can
exhibit smooth evolution or develop sharp gradients and discontinuities, making it a valuable
test for evaluating the capacity of machine learning models to capture nonlinear transport
phenomena.

In this work we assume ν = 0.1 and want to learn the operator D : u0(x) 7→ u(x, 1). The
used data set consists of 1100 samples of initial conditions and the corresponding solutions
of the Burger equations. They have a maximum resolution of 213 which can be downsampled
by a subsampling factor r such that the used resolution is h = 213

2r .
The data generation process is described in appendix A.3.1 in [7]. They generated the initial
condition according to u0 ∼ N (0, 625(−∆ + 25I)−2) with periodic boundary condition and
solved the equation with a split step method. First the heat equation part is solved exactly in
the Fourier domain and afterwards the non-linear part solved in Fourier space with a forward
Euler method. The data is generated with a spatial mesh with resolution 213 = 8192.
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4.2 The 2D Darcy Flow Equation

The Darcy flow equation is used to model the flow of fluids through a porous medium. In
two spatial dimensions, it is given by

−∇ · (a(x, y)∇u(x, y)) = f(x, y) x, y ∈ (0, 1)

u(x, y) = u0(x, y) (x, y) ∈ ∂(0, 1)2

where u(x, y) is the pressure field, a(x, y) is the spatially varying permeability, f(x, y) is
a source term and u0(x, y) is the initial condition. For the practical use of the equation we
restrict the domain to a unit box x×y ∈ (0, 1)2 with zero Dirichlet boundary conditions. For
data generation (compare Appendix A.3.2 in [7]) the coefficients a(x, y) were drawn according
to a ∼ ψ#N (0, (−∆ + 9I)−2) and the boundary condition was a zero Neumann boundary
condition on the Laplacian of u. The push-forward in the data generation was defined point-
wise and the mapping ψ : R → R returns 12 for the positive part of the real line and 3 for
negative numbers. f(x, y) = 1 was assumed throughout the simulation. The solutions u were
calculated with a second-order finite difference scheme on a 421 × 421 grid and solution for
different grids were obtained by downsampling.

4.3 2D Navier-Stokes Equation

The Navier-Stokes equation is used in fluid flow problems and is classified as a second order
nonlinear parabolic PDE. Here the incompressible Navier-Stokes equation is given in the
vorticity-velocity form:

∂tω(x, y, t) + u(x, y, t) · ∇ω(x, y, t) = ν∆ω(x, y, t) + f(x, y), x, y ∈ (0, 1), t ∈ (0, T ],

∇ · u(x, y, t) = 0, x, y ∈ (0, 1), t ∈ [0, T ],

ω(x, y, 0) = ω0(x, y), x, y ∈ (0, 1).

The viscosity of the fluid is given by ν ∈ R and f(x, y) is the source function and the functions
u and ω are the velocity and vorticity fields. The initial condition is given by ω0(x, y) and
the viscosity is set to ν = 10−3.
We use the vorticity field at the time steps t ∈ [0, 10) as the input for our models and we want
to do two different experiments. Once we only aim to predict the vorticity field just at time
step t = 10 and once we want to predict the vorticity field for all time steps t ∈ [10, 20] like
it is common in the literature ([7], [1]). In the following we will refer to these two variants as
the single-step Navier-Stokes problem and the multi-step Navier-Stokes problem.
During the data generation in Appendix A.3.3 from [7] a fixed forcing

f(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(x+ y)))

is assumed and ω0(x, y) is drawn according to N (0, 73/2(−∆+49I)−2.5) with periodic bound-
ary conditions. To solve this the authors of [7] used the stream-function formulation and a
pseudo-spectral method and they solved the equation on a 256× 256 grid.
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4.4 Euler Equations

The 1D compressible Euler equations in conservation form is given by:

∂

∂t

 ρ
ρu
E

+
∂

∂x

 ρu
ρu2 + P
(E + P )u

 = 0.

Here ρ represents the density, u the velocity, P is the pressure and E is the total energy.
The equations are also used in fluid dynamics. The equation will be applied to a Riemann
Problem, a 1D initial value with a discontinuity at the center and piecewise constant initial
conditions. This formulation is stated similarly in [9]. We will not do our own numerical
experiments with this problem, but refer to results from the literature.
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Chapter 5

Fourier Neural Operator

Often PDEs are hard or even impossible to solve analytically. Usually we would now use
a numerical solver like the finite element, finite difference or finite volume method. These
can be computationally expensive, especially if you want to solve the PDE multiple times for
different initial conditions.
The approach we now want to use to solve this issue is using a neural network. These need to
be trained only once, which may require large computational resources, but after the training
process, the application of the neural network is much faster than using one of the previously
mentioned numerical techniques.
In this case we begin by introducing the Fourier Neural Operator (FNO) which was presented
in [7]. We start this chapter by stating the formal problem formulation our model will be
trained to solve. Afterwards we introduce the network architecture and the algorithm of the
model. We conclude the chapter by summarizing the results from [7] and examining the
problems of the FNO with our own numerical experiments and the results from [9].

5.1 Problem Formulation

Like in [1], we formulate the PDE as an operator D : A 7→ U , where A and U are normed
vector spaces with functions taking values in Rda and Rdu . The functions are assumed to
be sufficiently smooth to admit the required partial derivatives, so A := C(D;Rda) and
U := C(D;Rdu) where D is a given domain D ⊂ Rn. We now want to approximate the
operator D with a neural network

D̃ : A× ΦNN 7→ U

where ΦNN are the weights and biases of the neural network.
The input functions a ∈ A and output functions u ∈ U are continuous functions but for
practical implementation, we need to approximate them by finite dimensional input and
output signals. Therefore we use a discretization of D using nD points {xj}nD

j=1 ⊂ D and
assume that we have access to the evaluations of all input and output functions a and u at
all points in {xj}nD

j=1. So we have a data set

{ai ∈ RnD×da , ui ∈ RnD×du}Ni=1

where N is the number of input-output pairs we have to train and test the neural network.
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5.2 Network Architecture

The Fourier Neural Operator is a special neural network to solve partial differential equations
for multiple initial conditions. It is introduced in the paper [7]. For better comparison with
the WNO we use the notation from [1].
The construction of the FNO will be shown in the following section. It uses a regular con-
volutional neural network (CNN) as well as layers which use the Fourier transformed input
signal as an input.

The first step is lifting the input signal a(x) ∈ Rda to a higher dimensional space with
dimension dv. To do that we use a transformation P (a(x)) : Rda 7→ Rdv .
We define v0(x) = P (a(x)).
After that we define an update operator G : Rdv 7→ Rdv and a number l of update steps.
Applying the operator means we define vj+1 = G(vj)∀j = 0, . . . l − 1.
The update operator is defined as

vj+1 := g((K(a;ϕ) ∗ vj)(x) + Cvj(x)). (5.2.1)

Here C is a linear transformation from Rdv to Rdv which will be represented by a convolutional
neural network.
K : A×Φ 7→ L(U ,U) is an integral operator on A with parameter ϕ ∈ Φ which is defined as

(K(a;ϕ) ∗ vj)(x) :=
∫
D⊂Rd

k(a(x), x, y;ϕ)vj(y) dy

This integral operator is also called Fourier layer when we talk about the network architecture.
In practice this is split into two steps. First we apply a transformation T (vj(x)) and apply a
kernel in the transformed space Rϕ ∗ T (vj(x)). Then we apply the inverse transformation
T−1(Rϕ ∗ T (vj(x))).
The function g is a non-linear activation function which is not applied if j = l − 1. The last
step is applying a backward transformation Q(vl(x)) : Rdv 7→ Rdv where the output Q(vl(x))
is our solution u(x).

P
Fourier
Layer 1

. . . Fourier
Layer l

Q
(a(x), x) v0 v1 vl−1 vl u(x)

Figure 5.1: FNO Network Architecture

F Rϕ F−1

C + g
vi−1(x)

vi(x)

Figure 5.2: i-th Fourier layer of the FNO

In our example from [7] we use a shallow fully connected neural network as the trans-
formation P . C is a convolutional neural network (CNN), T is the discrete Fourier transform
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F , the applied kernel Rϕ are weights from the neural network, g is a activation function, in
our case the Gaussian error linear unit (GELU)

GELU(x) =
1

2
x(1 + erf(

x√
2
))

where erf is the gaussian error function and Q is another shallow FNN.
In Algorithm 2 we write this procedure in an algorithm as pseudo-code.

Algorithm 2 Algorithm of the FNO

Input: N -samples of the pair {a(x) ∈ RnD×da , u(x) ∈ RnD×du}, coordinates x ∈ D, and
network hyperparameter θNN.

1: Stack the inputs: {a(x), x} ∈ RnD×2da .
2: for epoch = 1, . . . , epochs do
3: Uplift the input using transformation P (·): v0(x) = P ({a(x), x}).
4: for j = 1, . . . , l do
5: Decompose the input using Fourier transform: F(vj(x)).
6: Parameterize the NN kernel kϕ in the frequency space: Rϕ ∗ F(vj(x)).
7: Reconstruct the convolved input: v1j+1(x) = F−1(Rϕ ∗ F (vj(x))).
8: Perform the linear transform: v2j+1(x) = Cvj(x) using a CNN C.

9: Add the outputs of steps 7 and 8: ṽj+1(x) = (v1j+1 + v2j+1)(x).
10: if j ̸= l then
11: Apply the activation to complete the iteration: vj+1 = g(ṽj+1(x)).
12: end if
13: end for
14: Compute the final output: û(x) ∈ RnD×du = Q(vl(x)) where Q(·) : Rdv → Rdu is an

FNN.
15: Compute the loss: L(u, û).

16: Compute the gradient of the loss: ∂L(u,û)
∂θNN

.
17: Update the parameters of the network using the gradient.
18: end for

Output: Predicted solution û ∈ U , parameters of NN θNN.
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5.3 Numerical Results

In [7] the FNO was tested on the 1D Burgers equation and the 2D Darcy flow and it was
compared against several other networks trained for solving these equations. For comparison
the following models were used in [7].

• NN: Neural Network for point-wise feedforward operations

• RBM: Reduced Basis Method [22]

• FCN: Neural network architecture that utilities Fully Convolutional Networks [23]

• PCANN: A neural network using principal component analysis on the data [24]

• GNO: Graph Neural Operator [16]

• MGNO: Multipole Graph Neural Operator [25]

• LNO: neural operator based on low rank decomposition of kernels [15]

The simulations were done with different resolutions and the FNO was the best operator
among all tested models for all resolutions.

Network s=256 s=512 s=1024 s=2048 s=4096 s=8192

NN 0.4714 0.4561 0.4803 0.4645 0.4779 0.4452
GCN 0.3999 0.4138 0.4176 0.4157 0.4191 0.4198
FCN 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
GNO 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189
MGNO 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139

Table 5.1: Table 3 from [7]: Relative errors for Burgers equation at different resolutions

In Section 5.3 we can see that the FNO performed about 29% better than the LNO which
was in most cases the second best operator. Another thing that you can see in the data is
that the performance is consistent across different spatial resolutions.
In the case of the 2D Darcy Flow equation, we see in Section 5.3 that the advantage of the
FNO becomes even more clear since the error of the FNO is 58% smaller than the error of the
second best operator, the RBM. Here the FNO performs best for the highest resolution but
the difference is small and for the other resolutions, the performance of the FNO is consistent.

According to section 5.4 of [7] the FNO was even able to predict the solutions of the PDEs
for higher resolution than the operator was trained on. In this setting the FNO was trained
on the Navier-Stokes equation with a spatial resolution of 64×64 and a temporal resolution
of 20 and it was able to transfer to a resolution of 256×256×80. Among the other tested
benchmark operators U-Net, TF-Net and ResNet it was the only model that was able to do
zero-shot super resolution.
Once trained, the model can predict the outcome of the problems much faster than classical
solvers. In [7] the FNO had an inference time of 0.005s for the Navier-Stokes problem on a
256×256 grid while the pseudo-spectral method had a runtime of 2.2s. That shows that the
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Network s=85 s=141 s=211 s=421

NN 0.1716 0.1716 0.1716 0.1716
FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
GNO 0.0346 0.0332 0.0342 0.0369
LNO 0.0520 0.0461 0.0445 –
MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0108 0.0109 0.0109 0.0098

Table 5.2: Table 4 from [7]: Relative errors for Darcy Flow at different resolutions.

FNO can significantly speed up calculations if you need to solve a problem for many initial
conditions.
We now want to take a deeper look at the numerical results of the FNO and test it with
different parameters for the one-dimensional Burgers equation. The model should learn the
solution operator that maps from the initial condition to the solution at the fixed final time
T = 1.
To be able to compare the results to the WNO and use the same data loader in the imple-
mentation. For these reasons we do not use the implementation from [7] but use the code
basis from the WNO [2] and replace the discrete wavelet transform with the real fast Fourier
transform.
The model is trained using the Adam optimizer for 500 epochs with a weight decay of 10−6

and an initial learning rate of 10−3. The learning rate is scheduled to be halved every 50
epochs. During training the relative L2-error is the loss function and a batch size of 20 is
used.
The model used the 1D version of the FNO parameterized by the modes, which is the number
of Fourier modes retained in the spectral convolution, the width, which is the dimension of
the linear transformation denoted as dv in Section 5.2 and the resolution h. We performed a
grid search over the parameters with

r ∈ {102, 103, 104}
modes ∈ {10, 12, 14}
width ∈ {32, 40, 64}

The results are portrayed in table Table 5.3
The results clearly show that the performance depends on the width since for each resol-

ution and width, the largest width yields the best results.
The results for the other two parameters are harder to interpret since there are parameter
configurations where 12 modes perform better than 14 and other combinations of resolution
and width where 14 modes are better than 12 modes. 10 modes seem too few since 12 and
14 modes perform consistently better in our tests.
Which resolution is the best also depends on the other parameters which becomes clear if
you look at the resolution of 512. If you combine this with 10 modes and a width of 32 you
get the worst observed results and on the other hand with 14 modes and a width of 64 you
get the best observed results.
We now take a look at the results of the best model from above. From the 100 test samples,
we look at the three with the smallest error and the three samples with the largest error.
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Resolution Modes Width Mean Error in %

512 10 32 0.1190
512 10 40 0.0751
512 10 64 0.0622
512 12 32 0.0838
512 12 40 0.0692
512 12 64 0.0641
512 14 32 0.1235
512 14 40 0.0750
512 14 64 0.0507
1024 10 32 0.0915
1024 10 40 0.0741
1024 10 64 0.0623
1024 12 32 0.0871
1024 12 40 0.0674
1024 12 64 0.0564
1024 14 32 0.0867
1024 14 40 0.0733
1024 14 64 0.0545
2048 10 32 0.0919
2048 10 40 0.0747
2048 10 64 0.0620
2048 12 32 0.0874
2048 12 40 0.0662
2048 12 64 0.0559
2048 14 32 0.0858
2048 14 40 0.0741
2048 14 64 0.0549

Table 5.3: FNO model performance for Burgers equation sorted by resolution, modes, and
width.

Sample Error

2 0.00016
53 0.00016
70 0.00017
...

...
76 0.00259
96 0.00385
94 0.00453

Table 5.4: Test errors per test sample ordered by test error

We see here that the error can differ significantly from sample to sample such that the
largest error is more than 28 times larger than the smallest error. Samples with small errors
have smaller maximal absolute values in the initial condition and PDE solution than samples
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with large errors.
To back up this observation we calculate the range

Rx := max
x

(u(x, 0))−min
x

(u(x, 0))

Ry := max
x

(u(x, 1))−min
x

(u(x, 1))

of our samples.

Figure 5.3: Comparison of the three smallest and largest prediction errors for the FNO model.
In the top row, we see the initial conditions and on the bottom, we see the corresponding
PDE solutions. On the left we see the test samples the model performed best on and on the
right are the worst test samples.

We now look at the connection of the error with the range of the initial condition and
the solution. To assess the linear dependence between the error E and the signal ranges
Rx and Ry, we compute the Pearson correlation coefficients between E and each of the two
quantities. The results were:

Corr(E,Rx) = 0.71

Corr(E,Ry) = 0.67

These values indicate a relevant positive correlation between the relative error and both
the range of the input and the range of the target output. In particular, the model tends to
produce larger relative errors for samples with a wider spread in the input or solution values.
This observation was also reproduced in a similar setting in [8], where it was also shown that
the FNO struggles with discontinuous inputs. In [8] the FNO was tested on the wavefront
tracking scheme from [20] and the Godunov scheme from [21]. For each problem, it was
trained on an easy data set with few discontinuities and a small range and a complex data
set with more discontinuities and a greater range of the input. In Table 2 and Table 3 of [8]
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you can see that the test error of the FNO is smaller for the easy data set and nearly twice
as high for the complex data set. The exact numbers are depicted in Table 5.5.

Problem Easy Data Set Complex Data Set

Wavefront Tracking Scheme 0.078 0.127
Godunov Scheme 0.064 0.114

Table 5.5: Relative L2 loss of the FNO for easy and complex data sets from [8].

This shows that the FNO is not able to predict with the same precision for complex
inputs as it is for the easy data set even though the models were trained with 8040 complex
and 2960 easy samples for the wavefront tracking scheme and 8040 complex and 3000 easy
samples for the Godunov scheme. So even though the model trained on the complex data had
more samples, it could not achieve the same small error as the model trained on the easy data.
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Chapter 6

Network Variations

We now have introduced the FNO and have seen that the FNO performs better than the
previously known neural operators. But also we have seen that the FNO struggles with
discontinuities and big ranges in the input data. In the following we will try different ap-
proaches to improve the FNO in ways such that it either improves the general performance
or specifically tackles the weaknesses of the FNO.

6.1 Bias

The nature of the FNO is that the operator learns the data in a spectral domain, which
by definition learns patterns in the data globally. The problem with that is that the FNO
struggles to detect sudden shifts and discontinuities as we have seen above.
One option to improve the operator here is by adding a bias as it was introduced in [9]. The
authors modified the architecture of the FNO by adding a bias term to each Fourier layer.
The biases are element-wise constants and should capture and sharpen the corners of discon-
tinuities which the model could not capture in spectral domain or with the linear weighting
terms.

F Rϕ F−1

C

b

+ g
vi−1(x) vi(x)

Figure 6.1: Fourier layer with bias

The authors also changed the uplifting operator P from a fully connected neural network
to a convolutional neural network to reduce the number of network parameters and they
experimented by training the model with different loss functions like the usual L2 norm but
also the L1 and Sobolev norm.
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The tests in [9] showed that the modified FNO with the L1 loss function had a means squared
error (MSE) of 0.058% while the original FNO had a MSE of 0.2%. But even if you compare
the baseline FNO with the modified FNO with L2 loss function the modified version only
had a MSE of about 0.082%, which is less then half the error of the original FNO by [7].
In Figure 6.3 we compare the exact solution to the predictions of the original FNO and the
modified FNO with L1 loss function for discontinuous initial conditions.
The modified FNO performed way better at the edges of discontinuities in comparison to
the original FNO. If we used the L2 or Sobolev loss function the modified FNO still outper-
forms the original but we get more noise around the edges as we can see in the appendix of [9].

We have seen that with the modifications the FNO performed better around corners with
discontinuous initial conditions and it had the better overall MSE. One downside is that
the model lost its upscaling ability. The authors of [9] trained the models on a data set
with resolution 256 and the original FNO was able to keep nearly the same average MSE for
upscaled test data sets with a resolution up to 8196. The modified FNO with L2 loss function
was not able to keep the same average MSE in the early stages of upscaling. However it was
still able to outperform the original FNO for all resolutions up to the maximum of 8196 as we
can see in Figure 6.2. We also see that both models clearly outperform the U-Net operator.

Figure 6.2: Upscaling performance of models
trained on 256-resolution data, evaluated on
up to 8196-resolution data (Figure 3a from
[9]).

Figure 6.3: Comparison of the predictions of
the original and the modified FNO at discon-
tinuities (Figure 4a from [9]).

6.2 Wavelet Neural Operator

Based on the FNO another neural operator was introduced in [1]. While the FNO exploits
the period and global nature of the Fourier transform to learn mapping between the initial
conditions and the solutions of PDEs, it can have problems to model localized features or
discontinuities. To address these problems, the wavelet neural operator (WNO) was proposed
in [1]. It is based on the model architecture of the FNO but the core difference lies in the
choice of basis in the transform. The FNO uses the Fourier basis, while the WNO uses
a wavelet basis, which has the advantage of an localized function basis which enables the
detection of localized patterns and sharp transitions.
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6.2.1 Network Architecture

The network architecture of the WNO follows the same principles as the FNO: lifting the
input to a higher dimensional space, iteratively applying an integral kernel and a nonlinear
activation function and then transforming back to the initial dimension to get the solution.
The difference is that the WNO does not use the Fourier transform F but the wavelet
transform W and then the convolution is carried out on the wavelet coefficients instead of
the Fourier coefficients.

Algorithm 3 Algorithm of the WNO

Input: N-samples of the pair {a(x) ∈ RnD×da , u(x) ∈ RnD×du}, coordinates x ∈ D, and
network hyperparameters θNN.

1: Stack the inputs: {a(x), x} ∈ RnD×2da .
2: for epoch = 1, . . . , epochs do
3: Uplift the input using transformation P (·): v0(x) = P ({a(x), x}).
4: for j = 1, . . . , l do
5: Decompose the input using wavelet transform: W(vj(x)).
6: Parameterize the NN kernel kϕ in the wavelet domain: Rϕ ∗W(vj(x)).
7: Reconstruct the convoluted input: v1j+1(x) = W−1(Rϕ ∗W(vj(x))).

8: Perform the linear transform: v2j+1(x) = Cvj(x) using a CNN C.

9: Add the outputs of steps 7 and 8: ṽj+1(x) = (v1j+1 + v2j+1)(x).
10: if j ̸= l then
11: Apply the activation to complete the iteration: vj+1 = g(ṽj+1(x)).
12: end if
13: end for
14: Compute the final output: û(x) ∈ RnD×du = Q(vl(x)) where Q(·) : Rdv → Rdu is an

FNN.
15: Compute the loss: L(u, û).

16: Compute the gradient of the loss: ∂L(u,û)
∂θNN

.
17: Update the parameters of the network using the gradient.
18: end for

Output: Predicted solution û ∈ U , parameters of NN θNN.

6.2.2 Numerical Results

The WNO performed better than the FNO in four out of five tested problems. Only in the
one-dimensional Burgers equation, the FNO performed better. The WNO, on the other hand,
outperforms the FNO in every two-dimensional problem. The exact results from [1] are given
in Table 6.1. Here we can see that the FNO performed slightly better than the WNO for
the Burgers equation and the WNO slightly better than the FNO for the Darcy flow equa-
tion and significantly better for the Navier-Stokes, Allen-Cahn andWave-advection equations.

Besides the overall better performance, the WNO has two major advantages compared to
the FNO.
The first point is that the WNO was able to learn the problem also for more complex geometry
as well. While the FNO is only able to train and run on a rectangular domain, the WNO
could also be used with a triangular domain. The WNO predictions had a mean relative L2
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Problem FNO WNO

Burgers Equation ≈ 1.6% ≈1.75%
Darcy Flow Equation ≈ 1.08% ≈ 0.84%

Navier-Stokes ≈ 1.28% ≈ 0.31%
Allen-Cahn ≈ 0.93% ≈ 0.21%

Wave-advection ≈ 47.7% ≈ 0.62%

Table 6.1: Test errors of the WNO and FNO from table 3 in [1]

error of approximately 0.77% for the Darcy flow equation on a triangular domain, which is
even slightly better than the performance on a rectangular grid.
The second point is that the wavelet transform stores spatial information, which allows the
WNO to perform well in modeling sharp jumps in the solution fields. The model was tested
for a variation of the Burgers equation where discontinuities occurred in the solution field.
The exact formulation of the used PDE is

∂tu(x, t) +
1

2
∂xu

2(x, t) =
0.01

π
∂xxu(x, t), x ∈ [0, 1], t ∈ [0, 1]

u(x = −1, t) = u(x = 1, t) = 0, t ∈ [0, 1]

u(x, 0) = − sin(πx) + ζ sin(πx), x ∈ [0, 1]

where ζ is randomly chosen from [0,0.5]. The WNO now not only learns the velocity field at
t = 10 but for t ∈ (10, 50] or, more formally, it learns the operator

u|(−1,1)×[0,10] 7→ u|(−1,1)×[10,50].

The model was trained with a spatial resolution of 512 and a time step of 0.02.
The model achieved a mean relative L2 error of 0.23% and the predictions in Figure 5 of [1]
shows that the model was able to predict sharp jumps.
On the other hand the paper [8], which showed that the FNO struggles with complex data
sets, also tested the WNO and got similar results shown in Table 6.2. The results of the
WNO are slightly better than the results of the FNO but the general trend is the same here.
The WNO also struggles with the more complex data sets in this examples, which shows that
the WNO is not generally able to predict discontinuities or handle a wide range in the input
data.

Problem Easy Data Set Complex Data Set

Wavefront Tracking Scheme 0.076 0.126
Godunov Scheme 0.063 0.113

Table 6.2: Relative L2 loss of the WNO for easy and complex data sets from [8].

As a remark regarding the runtime of the WNO, we would like to point out that the
WNO exhibits a significantly slower runtime compared to the FNO, even though the discrete
wavelet transform theoretically scales better than the FFT. In [8] the authors measured the
runtime of the FNO and WNO for the wavefront tracking scheme and the Godunov scheme
for both easy and complex data sets and yielded the results in Table 6.3.
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Wavefront Tracking Scheme Godunov Scheme

Problem Easy Data Set Complex Data Set Easy Data Set Complex Data Set

FNO 6.91s 18.78s 42.98s 111.34s
WNO 5.04s 14.56s 42.46s 119.45s

Table 6.3: Training Time per Epoch of the FNO and WNO ([8])

6.3 Boundary Wavelets

The WNO from [1] uses symmetric padding to continue their signals in the discrete wavelet
transform. This leads to synthetic signals at the edges of the domain which do not represent
the physical or mathematical reality of the PDE. This could interfere with the WNOs ability
to learn the patterns of the data around the edges. If we test the WNO on simple boundary
conditions like the zero boundary conditions in the Darcy flow problem, this is not a big
issue since the prediction of the boundary values is simple regardless of the exact boundary
treatment.
But we can observe bigger errors near the boundary if we train the WNO on problems with
more involved boundary conditions like we see in Figure 6.4.

Figure 6.4: Navier-Stokes equation with a spatial resolution of 64× 64. We train the model
with the vorticity data for t < 10 and predict the vorticity field at t = 10. In the first row we
see the initial condition of the vorticity field, the second row is the truth at t = 10, the third
row depicts the prediction of the WNO and the fourth row shows the error of the WNO.
Each column represents a sample of the test data set.
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We can clearly see that for each sample the biggest errors occur at or near the edges.
For this reason we created a version of the WNO which uses boundary wavelets in the discrete
wavelet transform. Like that we do not need to expand the signals with artificial entries at
the edges but we can rely purely on the original data. For the implementation we used
the python library ptwt which was published on [5] and used the Matrixwavedec function to
perform the DWT. We need to make sure in the implementation, that the DWT input has
even length, otherwise the python function needs to add an entry to run.
The model with boundary wavelets outperforms the original WNO on the Navier-Stokes
equation which we can see on the left side in Figure 6.5.

Boundary
Treatment
Method

Test
Error

Symmetric padding 0.071%
Boundary filter 0.027%

Figure 6.5: (Left) Test error comparison of the WNO with signal extension (padding) and
boundary filter on the example of the Navier-Stokes equation.
(Right) Navier-Stokes equation with a spatial resolution of 64×64. We train the model with
the vorticity data for t < 10 and predict the vorticity field at t = 10. The plot shows the
mean difference over all test samples of the error of the WNO with signal extension and the
WNO with boundary filter in the spatial domain. The regions with positive (red) values are
the regions where the WNO with boundary filters performed better.

We do not only observe that the overall accuracy improved with the boundary filter but
we also that the improvements mainly occur on the edges of the domain which is depicted in
Figure 6.6 and on the right of Figure 6.5.

This shows that using boundary filter instead of extending the signal with artificial entries
can improve the overall performance of the model and especially the error near the edges of
the domain if the boundary conditions of the PDE are sufficiently complex.

Although the model accuracy at the boundary increases, the model also becomes more
susceptible to error propagation. To show this we simulate the Navier-Stokes equation not
only for the next time step but the next ten time steps by always including the results of the
current time step to solve for the next one. The results can be seen in Figure 6.7 where we
can see that the model struggles with predicting the correct values at the corners when we use
our simulated data as our input. We have seen that using boundary filters help predict the
value at the boundary once but it is not flexible such that we clearly see an error propagation.
The WNO with signal extension has more parameters to adjust the model around the edges
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Figure 6.6: Navier-Stokes equation with a spatial resolution of 64× 64. We train the model
with the vorticity data for t < 10 and predict the vorticity field at t = 10. In the first row
we see the initial condition of the vorticity field, the second row depicts the error of the
WNO with boundary filter, the third row shows the error of the WNO with symmetric signal
extension and the forth row shows the difference between the error of the WNO with signal
extension and the WNO with boundary filter where red and yellow values indicate that the
boundary filters performed better. Each column represents a sample of the test data set.

and we can hypothesize that this can help the model avoid error propagation.
The results in Figure 6.8 show that the error propagation is more randomly distributed

if we use signal extension and does not focus on corners or edges. On the other hand we see
in Figure 6.7 that while we use boundary filters, the error around the edges becomes worse
at later time steps.
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Figure 6.7: Navier-Stokes equation with a spatial resolution of 64× 64. We train the model
with the vorticity data for t < 10 and predict the vorticity field at t = 10, ..., 19. We can
see here the mean error of the WNO with boundary filter over all test data samples for each
time step.

Figure 6.8: Navier-Stokes equation with a spatial resolution of 64× 64. We train the model
with the vorticity data for t < 10 and predict the vorticity field at t = 10, ..., 19. We can see
here the mean error of the WNO with signal extension over all test data samples for each
time step.
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6.4 Convolution in Fourier Domain

The authors of [1] have provided another version of the WNO, which can be found as version
3.0.0 in [2], where they changed the way the weights are applied to the wavelet coefficients
in the wavelet layer. Instead of applying them directly to the wavelet coefficients, they apply
the Fourier transform to the wavelet coefficients and then learn the weights on the Fourier
transformed wavelet coefficients.
For a more formal understanding of this change we look at the update operator of the neural
operator which was introduced in Section 5.2

vj+1 := g((K(a;ϕ) ∗ vj)(x) + Cvj(x)).

Now we take a deeper look at the integral operator K. In the first version of the WNO
the kernel consists of the discrete wavelet transform W, the convolution with the weights
and the inverse discrete wavelet transform W−1. Now we first apply the wavelet transform
W , then the Fourier transform F , apply the weights in the Fourier space and then apply the
inverse transforms F−1 and W−1. The full algorithm is then presented in Algorithm 4.

Algorithm 4 Algorithm of the WNO updated Version

Input: N-samples of the pair {a(x) ∈ RnD×da , u(x) ∈ RnD×du}, coordinates x ∈ D, and
network hyperparameters θNN.

1: Stack the inputs: {a(x), x} ∈ RnD×2da .
2: for epoch = 1, . . . , epochs do
3: Uplift the input using transformation P (·): v0(x) = P ({a(x), x}).
4: for j = 1, . . . , l do
5: Decompose the input using wavelet transform: W(vj(x)).
6: Apply discrete Fourier transform to the wavelet coefficients: F(W(vj(x))).
7: Parameterize the NN kernel kϕ in the Fourier domain: Rϕ ∗ F(W(vj(x))).
8: Reconstruct the convolved input: v1j+1(x) = W−1(F−1(Rϕ ∗ F(W(vj(x))))).

9: Perform the linear transform: v2j+1(x) = Cvj(x) using a CNN C.

10: Add the outputs of steps 8 and 9: ṽj+1(x) = (v1j+1 + v2j+1)(x).
11: if j ̸= l then
12: Apply the activation to complete the iteration: vj+1 = g(ṽj+1(x)).
13: end if
14: if j = l then
15: vj+1 = ṽj+1(x)
16: end if
17: end for
18: Compute the final output: û(x) ∈ RnD×du = Q(vl(x)) where Q(·) : Rdv → Rdu is an

FNN.
19: Compute the loss: L(u, û).

20: Compute the gradient of the loss: ∂L(u,û)
∂θNN

.
21: Update the parameters of the network using the gradient.
22: end for

Output: Predicted solution û ∈ U , parameters of NN θNN.

Since this modification in the network architecture can have a significant influence on the
model performance for different parameters, we perform a parameter tuning. Similar to the
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Wavelet Level Test Error

db2 1 0.09
db4 1 0.118
db6 1 0.136
db2 3 0.19
db4 3 0.29
db6 3 0.52
db2 5 0.906
db4 5 0.9825
db6 5 3.9

Table 6.4: Test errors by wavelet type and decomposition level

Fourier Neural Operator we evaluate the Wavelet Neural Operator on the one-dimensional
Burgers equation. Since their are no published numerical results of this WNO version, we
need to make experiments ourselves. For these experiments, we use the WNO variant where
convolution is applied in the Fourier domain after wavelet decomposition.
The models are trained on the same problem and the same data as the FNO. We train the
model for 500 epochs with an initial learning rate of 10−3 which is halved every 50 epochs.
The batch size is 20 and the weight decay is 10−6.
We first evaluate the model across different wavelet types and levels of wavelet decomposition
while keeping a constant width of 40 and a subsampling factor r = 23.
The results indicate that the model performs best with low-level decompositions and wavelets
with shorter filters, such as db2. This is supported by the fact that with the db2 wavelet and
a level 1 decomposition, the model yields the best results.
This is the combination of parameters that produces the most detailed representation of the
input data with the most coefficients of the input data. This suggests that retaining more
wavelet coefficients at finer scales is beneficial, possibly because they capture high-frequency
details that are preserved through the subsequent Fourier transform. The Fourier transform
now replaces the higher levels of the wavelet decomposition and catches the low-frequency
patterns in the data.
This implies that in this version of the WNO, we need to use different parameters than in the
original version from [1] which was trained with a level 6 decomposition and db6 wavelets.
Tests with different parameters showed that increasing the resolution did not improve the
model performance significantly. Using the WNO model with db2 wavelets and a width of
40, we test different spatial resolutions with results shown in Table 6.5.

Resolution Test Error in %

1024 0.09
2048 0.087
4096 0.085

Table 6.5: Test errors for different resolutions

Although increasing the resolution yields small improvements on the order of 10−5, these
are negligible relative to the overall error magnitude.
Increasing the width improves the model accuracy more significantly. Up to this point the
models had a width of 40 and an error of 0.09% and increasing the width to 64 and 128
decreases the error to 0.076 and 0.07 respectively. So the changes are in the order of 10−4 but
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comes with the downside that it increases the number of model parameters and with that the
storage and time efficiency of training and saving the model. The model with width 40 has
about 3.3 million parameters while the model with width 64 has approximately 8.5 million
parameters and the model with width 128 has about 33.9 million parameters.
It is remarkable that the accuracy improved significantly in comparison to the original WNO
which had a L2 test error of 1.75%.

6.5 Noise-Augmented Training Data

A common issue in machine learning is that the model performs better on the training data
than on the test data ([11]). To decrease the gap between the training and the test error we
try to avoid overfitting. For this reason we take a look at Section 5.1 and change the training
data to

{ai ∈ RnD×da , ui + ϵ ∈ RnD×du}Ni=1

where ϵ is randomly drawn from the normal distribution N (0, σ(u)2) where σ(u) is the stand-
ard deviation of {ui}Ni=1. To avoid overfitting to the new noise-augmented data, we redraw ϵ
after each epoch during the training process. The formal algorithm of the WNO with noisy
data is shown in Algorithm 5.

Algorithm 5 Algorithm of the WNO

Input: N-samples of the pair {a(x) ∈ RnD×da , u(x) ∈ RnD×du}, coordinates x ∈ D, and
network hyperparameters θNN.

1: Stack the inputs: {a(x), x} ∈ RnD×2da .
2: for epoch = 1, . . . , epochs do
3: Uplift the input using transformation P (·): v0(x) = P ({a(x), x}).
4: for j = 1, . . . , l do
5: Decompose the input using wavelet transform: W(vj(x)).
6: Parameterize the NN kernel kϕ in the wavelet domain: Rϕ ∗W(vj(x)).
7: Reconstruct the convolved input: v1j+1(x) = W−1(Rϕ ∗W(vj(x))).

8: Perform the linear transform: v2j+1(x) = Cvj(x) using a CNN C.

9: Add the outputs of steps 7 and 8: ṽj+1(x) = (v1j+1 + v2j+1)(x).
10: if j ̸= l then
11: Apply the activation to complete the iteration: vj+1 = g(ṽj+1(x)).
12: end if
13: end for
14: Compute the final output: û(x) ∈ RnD×du = Q(vl(x)) where Q(·) : Rdv → Rdu is an

FNN.
15: Draw ϵ ∼ N (0, σ(u)2)
16: Compute the loss: L(u+ ϵ, û).

17: Compute the gradient of the loss: ∂L(u+ϵ,û)
∂θNN

.
18: Update the parameters of the network using the gradient.
19: end for

Output: Predicted solution û ∈ U , parameters of NN θNN.

In Figure 6.9 we see the train and test error of the WNO during a training process with
the original data of the 2D Darcy flow problem. We can see that the model performs better
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on the training data, which is usual since the model already knows the training data, but have
never seen the test data. The question is whether we can improve the model performance
with the test data by adding noise to the training data. As we increase the standard deviation
of the noise ϵ it becomes harder for the model to perform on the training data. That means
the training error will increase but we avoid overfitting and can improve on the test error. If
we choose a too large standard deviation, we may obtain underfitting which means that the
model is not able anymore to learn the problem sufficiently well. A parameter fitting for the
standard deviation of ϵ yields the result that the standard deviation of the training data u is
the best choice. With this setting we train the model on the noise-augmented data and get
the result Figure 6.10. We see that the training error is worse than in Figure 6.9 but the test
error improves, leading to a better model accuracy. This shows that adding noise to the data
can improve the overall model performance.

Figure 6.9: Train and test error of the WNO
during training for the 2D Darcy flow equa-
tion process with the original data.

Figure 6.10: Train and test error of the WNO
during training process for the 2D Darcy flow
equation with the noise-augmented data.

6.6 Combinations

We have introduced several changes to the FNO network architecture which either tackled
special issues of the FNO or tried to improve the overall model accuracy. We added a bias,
changed the integral transformation to the wavelet transform and got to the WNO, changed
the way the WNO handled signal boundaries, analyzed two different ways the WNO applied
the weights of the neural network, and used noise augmented training data. Each of these
adaptations could improve the model performance in some scenarios but we only applied one
improvement at a time. Now we try to combine the different changes to the model to get
the best model possible with the given tools. We start by testing the created models on the
single step Navier-Stokes equation because this problem has non-zero boundary condition
which allows us to test the model’s capabilities to predict the PDE outcome on the edges.
First we try to combine the original WNO from Section 6.2 and [1] and add a bias like in
Section 6.1. Analogous to Figure 6.1 we get the wavelet layer Figure 6.11.

The modified wavelet layer trained on the Navier- Stokes equation has a relative L2 error
of 0.046% which is a significant improvement over the test error of 0.071% from the original
WNO (Figure 6.5), but it is still worse than the WNO with boundary filters which has a
test error of 0.027%. We see in Figure 6.12 and Figure 6.5 that the improvements with the
boundary filters and the bias terms were in similar regions and the model performed better
at the edges and especially the top corner. If we now try the WNO with boundary filters and
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Figure 6.11: Wavelet layer with bias

the bias terms, we can further improve the model accuracy and get a test error of 0.025%, but
the improvement is small in comparison to the WNO with just boundary filters. A possible
explanation for that is that both changes could improve the WNO in the same spatial regions
such that the strengths of both changes cannot add up.
We also see in Figure 6.13 that the difference between the test and training error is very small
which is a strong indication that the model does not overfit in this situation. This suggests
that there is no basis for using noise-augmented training data.
If we try to use it anyway, the accuracy of the model decreases. Adding the random noise
like in Section 6.5 to the model leads to an increased test error of 0.074%. Even if we use a
small random ϵ ∼ N (0, 0.05σ(u)2) the model accuracy drops to 0.033%.

Figure 6.12: Difference of the mean test
error for the single-step Navier-Stokes
equation for the WNO without bias term
and the WNO with bias term. In red areas
the WNO with bias performed better than
the original WNO.

Figure 6.13: Training and test error of the
WNO with boundary filters and bias term in
the context of the single-step Navier-Stokes
equation.

If we test the WNO with the convolution in the Fourier domain (Section 6.4), we get a
relative L2 error of 0.007% which is more than three times better than the best model up to
this point. If we add a bias term the error gets even smaller to 0.005%. The gap between
the test and training error is again too small to suspect overfitting and experiments with
noise-augmented training data could not improve the model.
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Convolution in Boundary Treatment Bias Noise-Augmentation Test L2 Error in %

Spatial Domain Signal Extension No No 0.071
Spatial Domain Signal Extension Yes No 0.046
Fourier Domain Boundary Filters No No 0.027
Fourier Domain Boundary Filters Yes No 0.025
Fourier Domain Boundary Filters Yes Yes 0.033

Table 6.6: L2 Test errors of variations of the WNO for the single-step Navier-Stokes equation

Combining the convolution in the Fourier space with the use of boundary filters in the discrete
wavelet transform yields a test error of 0.006% which is better than the model performance
with signal extension. Adding the bias terms improves the test error to 0.004%. As in
the previous scenario, adding noise to the training data could not improve the accuracy.
An overview of the model performance on the Navier-Stokes problem for one time step is
presented in Table 6.6 and we see the both boundary filters and the bias terms improve the
model while noise augmented training data could not further increase the accuracy in this
setting.
This means that the best possible combination of network variations of the FNO we could
achieve is using the discrete wavelet transform instead of the Fourier transform and apply
the NN weights to the Fourier transformed wavelet coefficients. We also add a bias term to
the update operator and in this way we achieve the best model performance. The complete
model is described in Algorithm 6 and we will refer to this model as the modified wavelet
neural operator (MWNO).

We now apply this model for other problems to check if the improvements also carry over
to the other problems. For this we train the model on the 1-D Burgers equation, the 2-D
Darcy flow equation and the 2-D Navier-Stokes equation.
We see in Table 6.7 that the MWNO outperforms the other two models significantly for
the Burgers equation, but does not reach the performance of the WNO for the Darcy Flow
equation. If we simulate the Navier-Stokes equation for only one time step, we see that
the MWNO improves upon the WNO but the FNO outperforms both of them, which is
remarkable since the WNO is superior to the FNO if we simulate for several time steps.
For the Darcy Flow equation we can use noise-augmented training data and further improve
the accuracy to get a test error of 0.94%, which is nearly as good as the performance of the
WNO.

Problem WNO FNO MWNO

Burgers Equation 1.75% 1.60% 0.06%
Darcy Flow 0.84% 1.08% 1.14%

Single Step Navier-Stokes Equation 0.071% 0.002% 0.025%
Multi Step Navier-Stokes Equation 0.31% 1.28% 0.002%

Table 6.7: Comparison of MWNO L2 test errors with WNO and FNO literature results from
[1] and own numerical results in the case of the single-step Navier-Stokes equation
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Algorithm 6 Algorithm of the MWNO

1: Stack the inputs: {a(x), x} ∈ RnD×2da .
2: for epoch = 1, . . . , epochs do
3: Uplift the input using transformation P (·): v0(x) = P ({a(x), x}).
4: for j = 1, . . . , l do
5: Decompose the input using wavelet transform: W (vj(x)).
6: Apply discrete Fourier transform to the wavelet coefficients: F(W (vj(x))).
7: Parameterize the NN kernel kϕ in the wavelet domain: Rϕ ∗ F(W (vj(x))).
8: Reconstruct the convolved input: v1j+1(x) =W−1(F−1(Rϕ ∗ F(W (vj(x))))).

9: Perform the linear transform: v2j+1(x) = Cvj(x) using a CNN C.

10: Calculate the bias term: v3j+1(x) = B(vj(x))

11: Add the outputs of steps 8 and 9: ṽj+1(x) = (v1j+1 + v2j+1 + v3j+1)(x).
12: if j ̸= l then
13: Apply the activation to complete the iteration: vj+1 = g(ṽj+1(x)).
14: end if
15: if j = l then
16: vj+1 = ṽj+1(x)
17: end if
18: end for
19: Compute the final output: û(x) ∈ RnD×du = Q(vl(x)) where Q(·) : Rdv → Rdu is an

FNN.
20: Compute the loss: L(u, û).

21: Compute the gradient of the loss: ∂L(u,û)
∂θNN

.
22: Update the parameters of the network using the gradient.
23: end for

Output: Predicted solution û ∈ U , parameters of NN θNN.
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Chapter 7

Conclusion and Discussion

In this thesis, we began by revisiting the well-established Fourier transform as a foundational
tool for analyzing signals and systems. To address some of its limitations, especially the lack
of different basis for the function space during the transform and the lack of spatial resol-
ution, we introduced the wavelet transform as an alternative that provides a more flexible
representation, particularly for problems with localized or multi-scale features.
Based on the concept of the Fourier transform, we introduced the Fourier neural operator.
We showed that the FNO is able to predict the solution of parametric PDEs up to a certain
level and we have seen its inability to detect and model sharp edges and discontinuities. To
tackle these issues and improve the overall performance of the FNO the main contribution
of this thesis is presenting the wavelet neural operator and several changes to its network
architecture.
In more detail we added a bias term to the network architecture which enabled us to detect
sharp edges and discontinuities in the data sets.
Afterwards we changed the way how we treated the signal edges during the discrete wavelet
transform in the WNO. Instead of expanding the signal, we used boundary filter. This allowed
us to avoid artificial signals and rely exclusively on data, that reflects the mathematical-
physical reality of the corresponding equations.
Then we looked at a different way to apply the weights of the NN to the wavelet coefficients,
which was introduced by the authors of [1] in an update of their code [2]. Here we Fourier
transformed the wavelet coefficients and then applied the NN weights. That led to a change of
our network parameters, but it also improved the model performance significantly depending
on the equation we worked on.
In some scenarios we could observe a big difference between the training and the test error
during the model training process which is an indicator for overfitting. In these cases, adding
random noise to the training data could improve the model performance in terms of the test
error.
Lastly we tried to combine the changes to the network architecture and could improve the
model performance for two benchmark problems and we could observe that different models
performed best, depending on the problem.
One insight we found in this thesis is that we have no model that is better than the rest for
all problems. The MWNO outperformed the FNO and WNO on the Burgers equation and
Navier-Stokes equation while the WNO was the best on the Darcy flow equation and the
FNO hat the best result with the single step Navier-Stokes equation. Also noise augmented
training data was only helpful in the context of the Darcy flow problem, but could not im-
prove the model accuracy for the other equations. This clearly indicates that we have not yet
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found a model architecture that is the best fit for all problems. We also do not know yet for
which classification of PDEs Fourier or wavelet based models suit better or how the model
performances depend on the distribution of the training data sets.
Furthermore, we did only try to improve the FNO and WNO in this thesis but we did not try
to construct a completely new network architecture. While the FNO performed better than
most other models for most problems (Section 5.3, Section 5.3), we do not know if there is a
better way to construct a model which is able to perform across a wide range of benchmark
problems.
Lastly, the reliance on simulated data instead of analytical solutions represents a limitation,
especially if we have a problem formulation where error propagation could play a role. Fu-
ture work could aim to validate these models on real-world data sets or PDEs with analytical
solutions for many initial conditions to make sure that they do not suffer from numerical
errors in the training data.
In summary, this thesis contributes with a summary of the theoretical methods for the Fourier
and wavelet transform, the network architecture of the FNO and WNO and ways to improve
the model performances with network architecture modifications. While our improvements
demonstrate the possibilities to further improve the models while maintaining the basic con-
cepts of the FNO, the broader landscape of operator learning remains rich with opportunities
for further exploration of different machine learning models for advancements in PDE solving.
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