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Summary: 
 
The CAE product development process can no longer be imagined without numerical simulations. In 
particular, Computational Fluid Dynamics (CFD) plays a vital role in the prediction of flows around 
internal or external geometries that can be found in many products from different industrial sectors. The 
resolution and capability of numerical models have been severely improved, whereas the regulations 
and the requirements on the product behaviour have drastically increased. This trend leads to increasing 
simulation times, and very large development trees for a design development. Together with even 
shorter development times the manual comparison of all these design variants becomes cumbersome 
and is limited to only few simulations.  
 
To address this problem, we propose a machine learning approach to organize the CFD simulations in 
a structured way, enabling the interactive exploration and postprocessing of several simulation results. 
The developed methodology learns from a set of simulations with parameter variations the relationship 
between input and output quantities. For example, the inputs are different variations of the inflow and  
viscosity and the output is the velocity or pressure distribution in the domain.  
In detail, the approach consists of learning a low dimensional parameterization of the flow fields, so in 
essence the shapes of the function distributions are learnt as functions of the input parameters providing 
a completely new way of exploring designs and for postprocessing several design solutions. This low 
dimensional representation of the simulations allows the organization of the simulations in a structured 
way, that is finding clusters of simulations that behave similar, which yields to a major advantage in a 
further prediction step for new sets of parameters. Our proposed method includes a cluster based 
prediction of new designs by radial-basis function surrogate models which yields to much better 
forecasting quality in local details compared to baseline proper orthogonal decomposition (POD) 
approaches.  
The approach is demonstrated on an OpenFoam HVAC duct use case. 
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1 Introduction 

In modern production processes and due to the increase of computing power, Computational Fluid 
Dynamics (CFD) have become an invaluable design tool for industrial applications. The resolution and 
capability of numerical models have been severely improved, whereas the regulations and the 
requirements on the product behaviour have drastically increased. This trend leads to increasing 
simulation times, and very large development trees for a design development. Together with even 
shorter development times the manual comparison of all these design variants becomes cumbersome 
and is limited to only few simulations.  
 
Recently [1,2,3,4] methods have been proposed to cope with the large amount of data that is generated 
during the simulation and to deal with the limitation that classical post-processing starts after the 
simulation is completed. Most notably, the Laplace-Beltrami (LB) shape-feature approach reduces the 
dimensionality of the flow fields, such as pressure or velocity, in a data independent way. The method 
is analogous to a Fourier decomposition of the geometry where the flow is taking place using an 
orthogonal basis that is dependent only on the geometry. This decomposition has been proven to be 
adequate for representing functions on the mesh in a compact form. Since the approach is independent 
of the simulation itself, it can also be used during run-time as soon as a time step is available allowing 
a significant decrease in post-processing time with a convenient overview over several simulations using 
a low dimensional representation. The approach has shown to overcome the classical Proper 
Orthogonal Decomposition (POD) applied to analyse automotive crash data [10]. 
 
Still, in product development several input parameters have to be modified and requires the computation 
of many simulations from which surrogate models can be build using regression. State of the art 
approaches compute a compact representation of the simulation field, the most prominent of it is the 
POD decomposition. Once this representation is available, after several runs, surrogate models can be 
build that approximate complete mesh simulation fields under the assumption that the compact features 
used for the POD decomposition are correlated with the input parameter variations. Still in this case, it 
has been demonstrated that local variations of the simulation field are actually not well represented 
using a POD basis and even more this type of behavior is not detectable using global L2 metrics as it is 
usually done in practice. 
 
To deal with this challenge, we propose the Laplace-Beltrami (LB) shape-feature approach presented 
in [2, 4] and show its capabilities in the CFD data analysis application domain (see also [1] for the first 
application in this area). The methodology consists of mainly three steps: First, dimension reduction, 
second, clustering in the latent space, and third, surrogate modeling for each cluster found.  
These three steps are outlined in Section 2. The approach is demonstrated on the turbulent channel 
flow through a HVAC duct introduced in Section 3. The results for this use case are summarized in 
Section 4. 
 

2 LB-Shape Feature Approach  

2.1 Dimension reduction 

As used in [3, 4, 1] the Laplace-Beltrami operator is computed on a surface mesh embedded in three 
dimensional space. This operator is actually a Laplace operator, the difference is, that it is evaluated on 
the surface which is represented in three dimensional space. 
The numerical evaluation of the LB operator requires the use of a metric that measures the distance  
along the surface. This distance is called geodesic distance and it is computed based on the shortest  
path algorithm for triangular surface meshes as described in [11]. The approach in [2,4] was shown to 
provide a compact representation for functions defined on the mesh, for example the deformations. In 
general, for functions defined on a surface, it has been shown that the eigenfunctions of the Laplace-
Beltrami operator are optimal for representing smooth functions [6]. 
The eigenvectors 𝜑𝑖 of the operator can be used to represent a function with n components as  
follows, 
 

𝑓 = ∑ ⟨𝑓, 𝜑𝑖⟩𝜑𝑖
𝑛
𝑖=1 . 

 
Dimensionality reduction is then achievable using only few coefficients obtained through the scalar 
product ⟨𝑓, 𝜑𝑖⟩ (the spectral coefficients). Then, data analysis can be performed by using only those 
coefficients.  



In the presented use case, the actual flow data is three dimensional, but one can consider sections of 
the domain, for example the mid plane section or the duct walls. This gives as a result a geometrical 
surface. The proposed procedure of deriving a reduced representation of the flow data consists of two 
major steps: 
1) Evaluate the discrete Laplace Beltrami operator on each respective geometric surface and calculate 
the eigenvalue and eigenvectors. 
To reduce storage space, only the first ten percent of eigenvectors with the largest eigenvalues are 
determined. They form a subspace consisting of the spectral components with the largest spatial 
wavelengths. It is worth noting that the resulting basis solely depends on the geometry of the respective 
duct part and is independent of the flow solution. This computation is performed only once per geometry 
part, before the actual numerical simulation.  
2) Project all flow variables for each time step and part separately on the respective spectral basis. 
If the flow variables are vectors, each component, such as Ux, Uy, Uz, is treated independently. This 
results in one coefficient per basis vector, flow variable component, time step and geometry part. 
Considering the independence of the basis from the solution, the coefficients are particular suitable for 
a comparative analysis of large numbers of different simulations.  
In a practical workflow the spectral basis has to be computed only once for each geometry part. This is 
done prior to the first transient simulation. During the run time of the simulations, the solution of one time 
step can be transformed to the new representation as soon as it is available. There is no need to store 
all transient flow data in order to perform an analysis afterwards and only the coefficients for the reduced 
basis are kept during run time. Besides, the projection onto the new basis can easily be done on 
subareas of the geometry, e.g. the meshes that result from the parallel execution of the core solver on 
different processes. In addition, it is possible to do this directly in memory which will reduce IO–
operations considerably.  
 

2.2 Clustering 

The projection coefficients obtained by the step above can be used as low dimensional representation 
of the simulations.  
In this work we use DBSCAN which stands for "Density-Based Spatial Clustering of Applications with 

Noise" and represents a density-based spatial clustering method with outlier detection. It is based on 

the fact that we perceive clusters as denser than the points outside. If points are less dense cluster, we 

perceive them as outliers, also called noise. 

The DBSCAN algorithm can be summarized into the following steps:[12] 

 Find the points in the Epsilon neighborhood of every point, and identify the core points with more 

than MinPts neighbors. 

 Find the connected components of core points on the neighbor graph, ignoring all non-core 

points. 

 Assign each non-core point to a nearby cluster if the cluster is an Epsilon neighbor, otherwise 

assign it to noise. 

A maximum group of density-connected points defines a cluster. That is, all points that are not in one of 

the clusters found in this way are classified as noise. Thus, the algorithm determines the number of 

clusters with the help of the density itself. For this, Epsilon and MinPts are needed as parameters. Since 

there are no unique optimal values, these must be optimized by algorithms or searches. 

 

2.3 Surrogate Model Computation  

A radial basis function (RBF) surrogate model is created for each derived cluster based on the 
corresponding subset of simulation results to represent the dependency between input parameters and 
flow variables on the mesh. These surrogate models are used to predict the distribution of the field 
quantities for a new set of input parameters within the valid parameter design space. The data matrix  

𝑀 = (𝑚𝑖𝑗 , 𝑖 = 1, . . . , 𝑁𝑑𝑎𝑡𝑎 , 𝑗 = 1, . . . , 𝑁𝑠𝑖𝑚) 

is formed of one simulation per each column (𝑁𝑠𝑖𝑚 is the total number of simulations considered), where 
the rows correspond to each data item varied over the simulations, e.g. 𝑥, 𝑦, 𝑧, 𝑈𝑥, 𝑝 per node in our use 

case. That is, 𝑁𝑑𝑎𝑡𝑎 = 𝑁𝑛𝑜𝑑𝑒𝑠 ∗ (3 + 𝑁𝑣𝑎𝑙𝑠), where 𝑁𝑛𝑜𝑑𝑒𝑠 is the number of nodes and 𝑁𝑣𝑎𝑙𝑠the number of 
flow variables. 
In the LB shape-feature approach, an RBF surrogate model using the multiquadric function is chosen 
which provides the non-degeneracy of the interpolation matrix for all finite data sets of distinct points 
and all dimensions [7]. The nonlinear RBF surrogate model is extended with polynomial terms in order 



to reconstruct polynomial dependencies, especially linear dependencies, exactly. To accelerate the 
computation a singular value decomposition (SVD) of the data matrix can be performed and used in the 
RBF metamodeling. Moreover, the precision of the prediction can be estimated using a cross validation 
procedure which leads to predicted local model tolerances in each test point. 
Details on the chosen RBF surrogate model and its SVD acceleration can be found in [8]. In particular, 
the chosen surrogate model approach yields to accurate prediction results with only a low number of 
data points used which is a huge advantage especially over neural network approaches. 
 

3 HVAC Test-Case and Numerical Setup 

 
The turbulent channel flow through a HVAC duct was chosen as a suitable test case. It provides both, 
an industrial relevant application and complex flow features that allow the demonstration of advanced 
data analysis. The geometry is set up according to the description in [9] to allow a comparison with their 
experimental and numerical studies. It consists of a duct with a rectangular cross section and a bend of 
90 degrees. In the lower part of the duct, a flap is placed with an angle of 30 degrees towards the wall. 
Inside the bend and behind the flap, a flow separation is observed. Both a Reynolds Averaged Navier-
Stokes (RANS) simulation and a Large-Eddy Simulation (LES) have been performed to investigate the 
global shape of the flow field, the drag force that acts on the flap, as well as the aeroacoustic noise 
generated by the flap. However, the results of this study only focus on the RANS computations to 
demonstrate the principal workflow and methods on less complex input data. In a more general setting, 
the presented techniques can also be employed to transient LES results if the time component is 
released by computing statistical quantities, time-averaged values or modal structures, such as by the 
Proper Orthogonal Decomposition (POD), before running the analysis.  
 

 
A parameter study of a total of 60 simulations is conducted by varying the volume flow V through the 

duct as well as the kinematic viscosity ν of the fluid both sampled from a symmetric Gaussian distribution 

with the corresponding mean, -3 sigma and +3 sigma values as shown in Table 1. This leads to a 

variation of the Reynolds number ReD in respect to the height of the duct between around 4,400 and 

134,000 throughout the study. 

 V [m3/s] ν [m2/s] ReD [-] 

+3 sigma 0.128 1.818 * 10-5 134,000 

mean 0.064 1.506 * 10-5 53,120 

-3 sigma 0.0064 1.194 * 10-5 4,400 

Table 1:  Configuration of parameter design space used throughout the study and corresponding 
Reynolds number. 
 
In the following analyses we will investigate two kind of quantities of interest. First, the drag force 

coefficient Cd, which quantifies the force onto the flap in horizontal direction caused by the surrounding 

flow. It represents a common scalar quantity of interest that is oftentimes subjects of an optimization 

task. It is non-dimensionalized by the constant input velocity and density of the flow and the area of the 

duct‘s cross section. Second, we investigate the global shape of the velocity in x direction (Ux) and 

pressure field (p) defined on a mesh section in the midplane of the duct. As the flow is mostly constant 

in the normal direction of the plane, all important features can be observed in this simplified two 

Fig. 1: Geometric dimensions and sensor position of the HVAC duct ([9]) 



dimensional view on the results while reducing computational efforts for the analysis. Here, we are 

essentially interested in the prediction of the principal shape of the global function and finding regional 

features such as flow separations in contrast to the analysis of scalar values which is restricted to local 

effects. 

 

4 Results 

 
The LB-shape feature approach outlined in Section 2 is used to predict the velocity in x direction (Ux) 
and pressure field (p) as a nodal grid function for the HVAC duct use case described in Section 3. A 
dimensionality reduction using the Laplace-Beltrami operator as described yields to the three 
dimensional embedding of the simulation points as shown in Fig. 2. In this latent space a correlation 
between the input volume flow V and the embedding coefficients becomes visible. A clustering of the 
simulation points in the embedding space results in two clusters, Cluster I and Cluster II, and some 
outlier points which are too far away from the other points and yet not considered in the further data 
analysis. Simulations within a cluster behave much more similar than outside a cluster. Outliers show 
different behavior with respect to the distribution of the analyzed field quantities. Table 2 summarizes 
some features of the two clusters.  
 

 
Fig. 2: Embedding of the simulation points in three dimensions and split in two clusters. Color coding 
shows correlation with input volume flow V. 
 

 Cluster I Cluster II 

Count total 20 36 

Vmin 0.02 0.05734 

Vmax 0.05734 0.12787 

Count train 14 22 

Count test 6 13 

Table 2: Features of the two resulting clusters and their split into train and test data sets. 
 
The second cluster with 36 simulation points contains some points with V around 0.05 to 0.06 which 
could not be assigned clearly to that cluster. A further possibility would be to split this cluster up in again 
two clusters. This might be reasonable since the behavior of these simulation points mark some kind of 
“transition” between the two clusters regarding the velocity distribution Ux. Since a further split of Cluster 
II in two clusters lead to very few data points per cluster, we decided not to separate them further. 
 



For each of the clusters we perform a train test split of the data points, so that the test data points lay 
inside the corresponding design space which is visualized in Fig. 3. 

 
Fig. 3: Overview of the data points in the design space and split into train and test data for Cluster I and 
Cluster II. 
 
Following the LB-shape feature approach, we create a surrogate model for each cluster using the 
corresponding training data sets as inputs. We compare the prediction results of the cluster approach 
against a single surrogate model using a combination of the training data points in Cluster I and Cluster 
II, called Cluster I+II in the following. As error measure we compute the relative difference with respect 
to the simulated result, that is 

𝑑𝑖𝑓𝑓𝑟𝑒𝑙 = |
𝑦𝑟𝑒𝑎𝑙−𝑦𝑝𝑟𝑒𝑑

𝑦𝑟𝑒𝑎𝑙
|. 

4.1 Prediction of scalar key values 

In a first step, usually some global scalar engineering quantities of interest are investigated. We use the 
surrogate models per cluster to predict the drag force coefficient Cd. A summary of the results is given 
in Table 3. In all three cases, the relative difference between the simulated and the predicted result is 
very small, that is for all test points the maximal deviation is < 0.058%, where the mean deviation is < 
0.02%. Using one surrogate model per each separate cluster even further improves the overall 
prediction accuracy. Additionally, the predicted precision of the interpolation is visualized as error bars 
in each test point in Fig. 4 using Cluster I+II. This shows, that the prediction is highly accurate, only the 
test point 652 shows some higher tolerance value, which can be explained by the position of the test 
point at the border of the design space since the used interpolation method is not suited for extrapolation. 
 

  Cluster I 
(Cluster I+II 
training) 

Cluster II 
(Cluster I+II 
training) 

Cluster I Cluster II 

 count 6 13 6 13 

diff_rel (Cd) mean 0.000166 0.000209 0.000068 0.000191 

std 0.000183 0.000175 0.000042 0.000171 

max 0.000445 0.000580 0.000104 0.000554 

Table 3: Statistics of scalar prediction results for the different sets of training data used. 



 
Fig. 4: Prediction results of Cd together with local model tolerances as error bars using Cluster I+II. 

4.2 Prediction of field quantities 

We have seen that the surrogate models are very well suited for the prediction of the scalar values. 
Therefore, we use them to predict the field quantities of interest, that is for each node of the mesh the 
velocity in x direction as well as the pressure is predicted. As described in Section 2.3 one metamodel 
is created for all the nodal values. Again, we compare the prediction quality of using the two separate 
clusters against the model based on using all data points in the design space. 
First, we look at Cluster I corresponding to the points with low input volume flow values. In detail we 
exemplary investigate the test point 620 within the design space, see Fig. 3. 
 
The global shape of the velocity in x direction is very well captured by the prediction, as can be seen in 
Fig. 5 in both cases, that is using Cluster I as well as with Cluster I+II. Nevertheless, using samples from 
the entire design space (Cluster I+II) yields to some higher local errors inside the bend and behind the 
flap, which are exactly the local areas of interest where a flow separation can be observed for higher 
volume flow values. Thus, the sample points with a high volume flow seem to affect the prediction results 
especially in these local regions of interest. Thus, the LB-shape feature approach with using only 
samples from Cluster I locally improves the prediction quality, see Fig. 5, in the regions of interest, as 
expected. 
 

   

 
Fig. 5: Comparison of prediction results of grid flow variable Ux exemplary in test point sim620. 
1st column: real simulation result and position of test point in latent space,  
2nd and 3rd column: predicted result, and relative differences, using simulations in Cluster I+II (left) and 
Cluster I separately (right) as training data. 
 



Fig. 6 shows the prediction results for the same test point 620 for the pressure field. Again, we observe 
that using only points from Cluster I improves the overall prediction of the pressure field, and especially 
in the local areas of interest the accuracy is highly improved. 
 

 

 
Fig. 6: Comparison of prediction results of grid flow variable p exemplary in test point sim620 belonging 
to first cluster. 
1st column: real simulation result and position of test point in latent space,  
2nd and 3rd column: predicted result, and relative differences, using simulations in Cluster I+II (left) and 
Cluster I separately (right) as training data. 
 
For the other test points in Cluster I very similar prediction results are obtained. 
Second, we look at Cluster II corresponding to the points with medium and higher input volume flow 
values. Exemplary, we investigate the two test points 643 (see Fig. 7) inside the cluster and test point 
640 (see Fig. 8) which is one of the socalled transition points. The prediction of the pressure field gives 
in all cases good and similar results to the points considered in cluster I. Therefore, we focus on the 
results of the velocity field in x direction, especially on the detection of the flow separations. The global 
shape of the velocity in x direction is also well captured by the prediction in both cases, as can be seen 
in Fig. 7 and Fig. 8. Nevertheless, we observe again higher local errors inside the bend and behind the 
flap, where a flow separation can be observed looking at the simulation results.  
 

   
Fig. 7: Comparison of prediction results of grid flow variable Ux exemplary in test point sim643 belonging 
to second cluster: position of test point in latent space (left), relative differences in Ux using simulations 
in Cluster I+II (middle) and Cluster II separately (right) as training data. 
 
Using only training points from Cluster II to generate the surrogate model, the local accuracy behind the 
flap is clearly improved in both the test points considered. On the other hand, the local prediction 
accuracy is still not adequate inside the bend, especially for the transition point, see Fig. 8. A further 
split of this cluster could be an adequate way to further improve the prediction quality locally. 
 

 
Fig. 8: Comparison of prediction results of grid flow variable Ux exemplary in test point sim640 belonging 
to second cluster: position of test point in latent space (left), relative differences in Ux using simulations 
in Cluster I+II (middle) and Cluster II separately (right) as training data. 
 
 



5 Conclusion 

In this study, preliminary results are presented for a new approach for the analysis of turbulent flow data. 
Thereby, the flow solutions are projected to a spectral basis derived from the Laplace-Beltrami operator 
on a geometric surface. The resulting coefficients are used to cluster simulations with respect to some 
field quantities like velocity or pressure. The coefficients are shown to be correlated with the input 
parameters volume flow and kinematic viscosity. Based on this relationship, a predictor can be 
constructed using simulations that are a) more similar and b) correlated to the input quantities. 
A predictor adapted to the so derived clusters is shown to improve the prediction quality with respect to 
the case of taking all simulations together. We have shown that with only a few simulations (around 20 
per cluster), the prediction of localized velocity changes can be improved with respect to state of the art 
approaches like the RBF surrogate models which take also non-linearity into account.  
Future work will include improvements for clustering and specially the treatment of time dependent 
cases. An automatic workflow will be developed that, given a set of simulations, automatically detects 
interesting time steps where clusters start to develop, and next generates predictors for field quantities 
based on the clusters and the correlation to input parameters.  
Furthermore, we research on the mathematical theory to develop a way to justify theoretically to which 
extension a correlation between spectral coefficients and input parameters can be found. 
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