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Abstract. Interactive motion segmentation is an important task for
scene understanding and analysis. Despite recent progress state-of-the-
art approaches still have difficulties in adapting to the diversity of spa-
tially varying motion fields. Due to strong, spatial variations of the mo-
tion field, objects are often divided into several parts. At the same time,
different objects exhibiting similar motion fields often cannot be distin-
guished correctly. In this paper, we propose to use spatially varying affine
motion model parameter distributions combined with minimal guidance
via user drawn scribbles. Hence, adaptation to motion pattern variations
and capturing subtle differences between similar regions is feasible. The
idea is embedded in a variational minimization problem, which is solved
by means of recently proposed convex relaxation techniques. For two re-
gions (i.e. object and background) we obtain globally optimal results for
this formulation. For more than two regions the results deviate within
very small bounds of about 2 to 4 % from the optimal solution in our
experiments. To demonstrate the benefit of using both model parame-
ters and spatially variant distributions, we show results for challenging
synthetic and real-world motion fields.

1 Introduction

Motion segmentation refers to grouping together pixels undergoing a common
motion. It aims at segmenting an image into moving objects and is a powerful
cue for image understanding and scene analysis. For a semantic interpretation of
a sequence motion is an important feature just like color or texture. For tracking
and video indexing it is often desirable to divide the scene into foreground and
background objects and to perform independent motion analysis for both classes.
Another perspective application is video compression, where several encoding
standards such as MPEG represent a sequence as objects on a series of layers
and, hence, require the objects to be identified before encoding.
Most motion segmentation methods identify objects by grouping pixels with
approximately constant motion vectors. This approach leads to several problems.

1. Object motion is often characterized by complex motion patterns such as
vortices or curls, which are impossible to be segmented based on constant
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a) Input image b) HSV Motion Field c) User Scribbles d) Interact. Segment.

Fig. 1. Segmentation of a motion field where traditional motion segmentation ap-
proaches fail. The proposed algorithm allows to compute interactive image segmen-
tations based on a spatially varying partitioning of the velocity field (motion field
input data courtesy of Eberhard Bänsch, University of Erlangen-Nuremberg).

motion vectors (Figure 1 shows a water vortex with motion vectors pointing
in all directions along the current). The computation of affine model param-
eters instead in combination with a spatially varying distribution allows for
the grouping of vectors belonging to the same motion pattern.

2. Objects sometimes undergo similar motion as other objects or the back-
ground. In such cases, segmentation approaches not taking into account the
spatial variance of the motion will fail to separate between similarly moving
objects.

3. Moving objects, which are not planar, exhibit different motion in different
parts of the object due to changing depth. Also in such cases segmentation
based on a constant motion field will fail to recognize all parts belonging to
the moving object, e.g. a human with fast moving arms but head and legs
almost at rest.

4. Frequently, there are several similar foreground objects which follow dif-
ferent motion patterns, e.g. cars on a road. Similarity based segmentation
approaches will not assign all of them to the same class.

To summarize, automatic motion segmentation is often problematic and even for
humans it is not clear, where a motion pattern begins and where it ends. Take for
example neighboring vortices in water or heat flows (Figure 1) or sequences with
several distinct foreground objects belonging to the same object class (Figure 4).
By means of minimal user interaction such semantic problems can be overcome.

1.1 Related Work

Non-interactive motion segmentation has been studied in the literature in par-
ticular within the scope of optical flow estimation. In [1], Cremers and Soatto
introduce the concept of motion competition, i.e. a variational model that, given
two consecutive frames of a video, estimates the motion between the given frames
and jointly segments the image domain based on the estimated motion. Therein,
a parametric motion model is used and particularly the case of piecewise affine
motion is considered. Their target functional can be understood as an extension



DAGM 2010 Submission #84. CONFIDENTIAL REVIEW COPY. 3

of the Mumford–Shah functional [2] and the applied minimization techniques
include a multiphase level set formulation based on the Vese–Chan model [3].
Brox et al. [4] propose a variational approach that combines optic flow estimation
with the segmentation of the image domain into regions of similar optical flow,
extending the motion competition concept to non-parametric motion and a more
elaborate data term for the motion estimation while still using a multiphase level
set formulation.

Independently, interactivity has proven itself as a feasible method to facilitate
difficult image segmentation tasks. For instance, Bai and Sapiro [5] presented an
interactive framework for image and video segmentation. Their technique calcu-
lates weighted geodesic distances to scribbles interactively provided by the user,
where the weighting is based on spatial or temporal gradients. The segmenta-
tion then is obtained automatically from these distances. More related to our
approach is the TVSeg algorithm by Unger et al. [6] that also incorporates user
interaction in the segmentation of images into foreground and background. The
actual segmentation uses an geodesic active contour model [7] that integrates
the user input as local constraint and is minimized numerically in a globally
optimal manner using a total variation based reformulation.

1.2 Contribution

The contribution of this paper is the introduction of locally adaptive model pa-
rameter distributions into a variational motion segmentation approach. Instead
of learning a global motion vector distribution for each object, we make two
important modifications. First, we do not estimate the probability of the motion
vectors directly but of their motion model parameters instead. In this way, the
similarity of vectors belonging to the same moving object is preserved and issue
1 solved. Second, as different objects and object parts can still exhibit varying
affine motion we model a spatially variant distribution, which allows for chang-
ing motion at different image locations. We, thus, solve issues 2 to 4. The locally
adaptive parameter distributions are introduced into a variational framework
which allows for globally optimal segmentation results in case of two regions and
near globally optimal results for more than two regions.

2 A Bayesian Approach to Motion Segmentation

Let v : Ω → R2, Ω ⊂ Rb, b ∈ N denote a given motion field. Motion segmentation
is the computation of such a labeling function u : Ω → {1, .., n} assigning a
specific label u(x) to each pixel x ∈ Ω based on the motion vector v(x), such
that the Ωi = {x ∈ Ω|u(x) = i} are disjoint and Ω =

⋃n
i=1Ωi.

2.1 A Parametric Motion Field Representation

Typical motion vectors resemble specific motion patterns. The easiest pattern
would be a constant planar motion, more difficult ones are for example rotations,
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curls or vortices with spatially varying motion vectors. Only in the first case a
simple grouping of motion vectors can be successful. In order to preserve the
similarity of different motion vectors belonging to the same object, we describe
the motion field by means of model parameters. Similar model parameters then
hint at a common motion pattern. In this paper, we assume an affine motion
model and compute the affine model parameters s : Ω → R6 by solving the
following minimization problem for each pixel x ∈ Ω

s(x) = arg min
s∈R6

∫
Ω

Gσ(y − x) |p(y) · s− v(y)|2 dy, (1)

where p(y) =
(
y1 y2 1 0 0 0
0 0 0 y1 y2 1

)
and Gσ(x) is a Gaussian function with variance σ

and mean 0. In our experiments, we set σ to the pixel size. The optimization
problem can be solved by means of a weighted least squares approach. If we only
aim at the identification of particular types of affine motion we can replace the
general model p(y) by a more specific one. E.g. in case of vortices we consider
skew symmetric affine maps, i.e. looking for a vector of five affine parameters

s : Ω → R5 and replacing p by p(y) =
(
y1 y2 1 0 0
0 −y1 0 y2 1

)
. Alternatively, one could

keep s and p as they are and penalize the defect from the desired family of affine
motion by an additional energy term, e.g. in our case |s2(x) + s4(x)|2.

2.2 The Bayesian Formulation

We want to maximize the conditional probability of u in a Bayesian framework
given the motion parameter field s

arg max
u

P(u | s) = arg max
u

P(s |u) P(u)

P(s)
= arg max

u
P(s |u) P(u). (2)

Assuming that all affine parameter vectors are independent of each other – but
in contrast to previous approaches not independent of space – we obtain

arg max
u

P(s |u) P(u) = arg max
u

(∏
x∈Ω

(
P(s(x) |x, u)

)dx)
P(u), (3)

where the exponent dx denotes an infinitesimal volume in Rb and assures the
correct scaling for decreasing pixel size. Preserving the dependence of the model
parameters on the spatial position is an indispensable prerequisite to cope with
objects effected by different and frequently non constant motion patterns. Such
important information is entirely lost in the traditional space-independent for-
mulation. Consequently probability density functions that can be easily sepa-
rated in parameter-location-space can overlap and make the separation of ob-
jects impossible if only the parameter space is taken into account.
Since the probability of a parameter vector is independent of labels of other
pixels, we deduce from (3) that∏

x∈Ω

(
P(s(x) |x, u)

)dx
=

n∏
i=1

∏
x∈Ωi

(
P(s(x) |x, u(x) = i)

)dx
. (4)
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2.3 Spatially Varying Parameter Distributions

P(s(x) |x, u(x) = i) denotes the conditional probability of a parameter vector
s(x) at location x in the motion field provided x belongs to region Ωi. These
spatially varying probability distributions for each object class i are learned
from user scribbles. Let Ti := {(xji , s(x

j
i )), j = 1, ..,mi} denote the set of user

markings consisting of locations xji and corresponding model parameter vector

s(xji ) for xji ∈ Ωi. We can estimate the probability from user scribbles by means
of the Parzen-Rosenblatt [8, 9] estimator

P̂(s(x) , x|u(x) = i) =
1

mi

mi∑
j=1

GΣ

(
(x, s(x))− (xji , s(x

j
i ))
)
. (5)

Here, GΣ denotes the multivariate Gaussian kernel centered at the origin with
covariance matrix Σ. For uniformly distributed samples this estimator converges
to the true probability distribution for mi → ∞ [10]. In case of user scribbles,
however, the samples are spatially not uniformly distributed. Therefore, we make
use of the separability of the Gaussian kernel and choose Σ such that

GΣ

(
(x, s(x))− (xji , s(x

j
i ))
)

= Gρ(x− xji )Gσ(s(x)− s(xji )) (6)

Commonly, the spatial variance, Gρ(x− xji ), has been neglected so far. We will
call this previous approach the spatially invariant approach.
We now introduce a spatially variable kernel function by choosing the spatial
kernel width ρ(x) at image location x proportional to the distance from the k-th
nearest sample point xvk ∈ Ti, ρ(x) = α‖x− xvk‖2.

P̂(s(x) , x|u(x) = i) =
1

mi

mi∑
j=1

Gρ(x)(x− xji )Gσ(s(x)− s(xji )). (7)

Thus, the influence of each sample point in Ti at a given location x is deter-
mined by the distance of the k-th nearest neighbor to x. If many sample points
are close to x, ρ(x) becomes small and the corresponding kernel becomes peaked.
Hence, the influence of the samples further away is reduced. In contrast, if no
samples are close by Gρ(x) tends towards a uniform distribution as in the spa-
tially independent approach. Therefore, the spatially variant approach can be
understood as a generalization of the original, spatially independent approach.
The spatially variant approach yields a different parameter distribution for each
location in the motion field, whereas the original, invariant approach yields the
same distribution at all locations. Using

P̂(s(x) |x, u(x) = i) =
P̂(s(x) , x|u(x) = i)

P̂(x|u(x) = i)
=
P̂(s(x) , x|u(x) = i)∫
s
P̂(s, x|u(x) = i)ds

(8)

we can now derive the conditional probability of a parameter vector s(x) given
at location x and label i based on user scribbles Ti.
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The parameter α directly determines the variance of the kernel function k and,
thus, the locality of the user input. The smaller α the more locally limited is the
influence of the user scribbles. This effect can be examined by means of motion
synthesis shown in Figure 2. Motion synthesis means that we randomly draw
samples from the foreground distribution by means of the inverse distribution
function. For all experiments done in Section 3, we set α = 0.3 and k = 10.

a) original flow b) α = 0.1 c) α = 0.3 d) α = 0.5

Fig. 2. The influence of the user scribbles on their neighborhood is determined by the
parameter α and can be examined by means of motion synthesis. Here, for each pixel
we randomly draw a motion vector from the spatially varying distribution. The smaller
α the more local is the influence of the user scribbles and the more deterministic is the
drawn motion vector.

2.4 The Variational Approach

To solve the optimization problem (3) we specify the prior P(u) favoring shorter
boundaries between different regions, i.e. P(u) ∝ exp

(
−λ2

∑n
i=1 Per(Ωi, Ω)

)
,

where Per(Ωi, Ω) denotes the perimeter of Ωi in Ω, cf. [11]. The optimization
problem can be solved by minimizing its negative logarithm

E(Ω1, . . . , Ωn) =
λ

2

n∑
i=1

Per(Ωi, Ω) +

n∑
i=1

∫
Ωi

fi(x) dx, with (9)

fi(x) = − log

mi∑
j=1

kρ(x)(x− xji )kσ(s(x)− s(xji )) + log

mi∑
j=1

kρ(x)(x− xji ). (10)

Using the coarea formula in BV, the function space of bounded variation (cf. [11]),
we can replace the sum of the perimeters by the total variation of u and arrive
at energy minimization problem

∑n
i=1

∫
Ωi
fi(x) dx + λ

∫
Ω
|Du| dx → min . To

transform this energy minimization into a convex variational problem we ap-
ply the multilabel approach [12] in combination with [13] by Pock et al., which
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is solved numerically in a primal-dual-minimization scheme. To this end, the
multilabel function u : Ω → {1, . . . , n} is expressed in terms of its upper level
sets, i.e. θi(x) = 1 if u(x) ≥ i + 1 and else 0 for all i = 1, . . . , n − 1, where
θ ∈ BV(Ω, {0, 1})n and θ0 = 1 and θn = 0. The final energy to be minimized is

min
θ∈B

sup
ξ∈K

{
−λ

n−1∑
i=0

∫
Ω

θi div ξi dx+

∫
Ω

|θi(x)− θi+1(x)| fi(x) dx

}
(11)

with B and K defined as

B = {θ = (θ1, .., θn−1) ∈ BV(Ω, {0, 1})n−1
∣∣ 1 ≥ θ1 ≥ . . . ≥ θn−1 ≥ 0} (12)

K =

{
ξ = (ξ1, .., ξn−1) ∈ C1

c (Ω,Rb)n−1
∣∣∣∣∣
∣∣∣∣∣ ∑
i1≤i≤i2

ξi(x)

∣∣∣∣∣ ≤ 1 ∀i1 ≤ i2

}
(13)

where ξi ∈ C1
c (Ω,R2) denotes the dual variable and C1

c the space of smooth
functions with compact support.

Proposition 1. Let u′ ∈ B be the global minimizer of the original problem (11),
u∗ ∈ B the binarized solution of the relaxed problem and ũ ∈ B̃ the result of the
proposed algorithm, where

B̃ = {θ = (θ1, .., θn−1) ∈ BV(Ω, [0, 1])n−1
∣∣ 1 ≥ θ1 ≥ . . . ≥ θn−1 ≥ 0}. (14)

Then an energy bound γ(u∗, ũ) exists such that E(ũ)− E(u′) ≤ γ(u∗, ũ).

Proof. Since B ⊂ B̃, we have E(u∗) ≤ E(u′). Therefore,

E(ũ)− E(u′) ≤ E(ũ)− E(u∗) =: γ(u∗, ũ). (15)

3 Results

In this section we provide experimental results for the interactive segmentation
of real and synthetic motion fields. We compare four settings: model-independent
and model-based (see section 2.1), spatially invariant and spatially varying dis-
tributions (see section 2.3).

3.1 Model Based vs. Non Model Based

Since motion vectors belonging to the same motion pattern often exhibit very
different direction and length, it is important to segment model parameter maps
instead of the motion field itself. Difficulties arise next to motion boundaries,
where different motion models coincide. These situations lead to large residuals
in the least squares approach (1) and can, thus, easily be detected. We set all data
terms to 0 in these situations. Figure 3 shows a segmentation example, which
demonstrates that segmentations based on affine parameter maps usually yield
better results than segmentations based on the motion field itself. It displays
four planes varying in depth, which strongly influences the speed at different
locations of the planes. The parameter map reduces this effect and even reveals
underlying structure and, thus, makes an (almost) correct segmentation possible.
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a) image b) HSV c) affine d) no model e) model

Fig. 3. Comparison of segmentation results based on the original flow field and on affine
parameter maps using the spatially invariant dataterm, a) underlying image data, b)
HSV-coded motion field with user scribbles, c) affine parameter map, d) segmentation
based on motion only, e) segmentation based on affine parameter map.

a) image b) HSV c) invariant d) variant

Fig. 4. Segmentation results based on the spatially variant compared to the spatially
invariant dataterm, a) underlying image data, b) HSV-coded motion field with user
scribbles, c) segmentation based on spatially invariant dataterm, d) segmentation based
on spatially variant dataterm.

3.2 Spatially Variant vs. Spatially Invariant Distributions

There are several situations where the spatial adaptability of the estimated mo-
tion distributions is indispensable, e.g. in case of different objects exhibiting
similar motion or in case of one or similar objects exhibiting different motion
patterns in different locations. Figure 4 shows results for spatially variant com-
pared to spatially invariant distributions on a dataset with three cars on a road
exhibiting very different motion direction and speed. These variations are cap-
tured by the spatially variant distribution.

3.3 Model Based Spatially Variant Distributions

In order to allow for spatially changing motion models we combine the spatially
variant and the model based approach by computing spatially variant param-
eter distributions. Figure 5 shows original HSV-coded motion fields with user
scribbles, the original segmentation result without parameter maps based on
spatially invariant distributions and the improved segmentation result based on
parameter maps and spatially adaptive parameter distributions. In case of more
than two regions, a global optimal solution cannot be guaranteed.

In our experiments, the energy gap between the binarized relaxed and the
optimal solution lies between 2 and 4 % of the original energy (numerically
evaluated using Proposition 1) and confirms that the solutions for more than
two regions are very close to the globally optimal solution.
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4 Conclusion

In this paper, we proposed an algorithm for interactive motion segmentation,
which is based on spatially variant motion model parameter distributions. The
suggested segmentation algorithm provides two advancements: 1) it reliably de-
tects regions of difficult motion patterns such as vortices or curls due to its
operation in the motion model parameter space, 2) it can handle even spatially
varying motion patterns due to the spatial adaptivity of the parameter distri-
butions. Few user indications are sufficient to accurately segment objects with
strongly varying motion. The approach is formulated as a convex energy mini-
mization problem, which yields the global optimum for two regions and nearly
optimal results for more than two regions.
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a) image b) HSV field c) no model, invar. d) model, variant

Fig. 5. Segmentation results based on the spatially variant, affine parameter distribu-
tions for HSV coded motion fields. a) underlying image data, b) HSV-coded motion
field, c) result of non-model based, spatially invariant approach, d) result of model-
based, spatially variant approach.


