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Abstract

Using the concept of stable Hilbert space splittings, we provide a unified ap-

proach to the convergence analysis for multiplicative Schwarz methods (a version

of alternating directions methods), and in particular Kaczmarz-type methods

for solving linear systems. We consider both fixed cyclic and randomized or-

dering strategies, and cover block versions as well. For the classical Kaczmarz

method with cyclic ordering for solving general linear systems Ax = b, a new

convergence rate estimate in terms of the generalized condition number of A

and logarithmically depending on the rank of A is presented.
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1. Introduction

This paper is a reaction to a number of recent publications [1, 2, 3, 4, 5]

on randomized versions of the Kaczmarz method triggered by [6], and should

be viewed as an addendum to [7, 8]. The latter two papers are devoted to the

theory of so-called Schwarz iterative (or subspace correction) methods for solving5

elliptic variational problems in Hilbert spaces. That the Kaczmarz method is

a particular instance of Schwarz iterative methods has been pointed out in [8].
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Alternatively, the Kaczmarz method is a special case of the Neumann-Halperin

alternating directions method (ADM) for finding a point in the intersection of

many (affine) subspaces of a Hilbert space [9, 10] which in turn is part of the10

family of projection onto convex sets (POCS) algorithms that is popular in

many applications (e.g. [11, 12]).

The classical Kaczmarz method (with relaxation parameter) for solving gen-

eral linear systems Ax = b with given right-hand side b ∈ Cn and matrix

A ∈ Cm×n, originally proposed by S. Kaczmarz [13] in 1937 for the case m = n,

is defined as the iteration

xj+1 = xj + ωj
bij − aijx

j

‖aij‖
2
2

aHij , j = 0, 1, . . . , (1)

where ai ∈ Cn, i = 1, . . . ,m, denote the row vectors of A (thus, aHi are the

column vectors of AH , the Hermitian conjugate of A), and x0 is a given starting

vector. From the update formula (1) it follows that, if we choose as Hilbert space15

the subspace V := Ran(AH) of Cn, the Kaczmarz iteration can be interpreted

as ADM with the m coordinate hyperplanes Mi := {x ∈ Cn : aix = bi}

to project on. The sequence I := {ij}j≥0 determines the ordering in which

ortho-projections onto the hyperplanes Mi are carried out. Typical orderings

are20

• cyclic, where the index set i = 1, . . . ,m is repeatedly traversed in a fixed

order, e.g., ij = j (mod m) + 1,

• random, where ij is randomly and independently determined according to

a fixed probability distribution {pi}, or

• greedy, where ij is picked according to residual information, e.g., to max-25

imize rji := bi − aixj in absolute value,

with many further variations possible. An appealing property of the Kaczmarz

method is that, under mild conditions on the ordering I and the relaxation

parameters ωj ∈ (0, 2), the iteration (1) is convergent. Moreover, if b belongs to

the range of A (consistent case), then it ultimately converges to the least-squares30
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solution xLS = A†b of the system Ax = b. Here A† denotes the pseudo-inverse

of A.

It is well-known that (1) is equivalent to the successive over-relaxation (SOR)

iteration with index sequence I for the system AAHy = b if the starting vector

x0 = AHy0 belongs to Ran(AH). Indeed, the j-th SOR step with relaxation

parameter ωj for this system can be written in the form

xj = AHyj , yj+1
i = yji +

 ωj
bij−aijx

j

‖aij ‖
2
2
, i = ij ,

0, i 6= ij ,
j = 0, 1, . . . .

It is easy to check that then

xj+1 = AHyj + ωj
bij − aijx

j

‖aij‖
2
2

aHij = xj + ωj
bij − aijx

j

‖aij‖
2
2

aHij .

The convergence theory of the Kaczmarz method and its block versions is typi-

cally approached either via the SOR interpretation, or the previously discussed

ADM formulation, even though this is not always made explicit.35

Schwarz iterative methods, see [14, 15, 16, 7] for their origins and an outline

of their theory, are essentially a reformulation of ADM within a more con-

structive framework which was motivated by the need for solving large-scale

discretizations of operator equations in Hilbert spaces, such as elliptic partial

differential and integral equations in Sobolev spaces. This framework is briefly40

introduced in Section 2. It leads to generic upper bounds for the convergence

speed of Schwarz iterative methods (and thus ADM and, in particular, Kacz-

marz methods) for deterministic cyclic [7], greedy, and random orderings [8] in

terms of the spectral properties of a transformed operator equation generated by

the original problem and its splitting into subproblems. Since the convergence45

estimate for cyclic orderings obtained in [7] was not proved in full generality, and

does not seem to appear in the ADM and POCS literature, we state it here as

Theorem 1, and give a short proof of it. We also quote and generalize the conver-

gence estimate for random orderings originated from [6] and extended in [17, 8],

see Theorem 2. Theorem 3 is new, it concerns a different randomized block50

version of the Kaczmarz iteration, and provides a link between the randomized
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Kaczmarz iteration and an iteration with simultaneous (or synchronous) update

rule. In Section 3 we show how the convergence rate estimates of many recent

papers on the Kaczmarz method and its block versions can be obtained from the

existing theory of Schwarz iterative methods in a unified way. We also provide55

an improved convergence bound for the Kaczmarz method with cyclic order-

ings, see Theorem 4. Finally, the concluding Section 4 contains some numerical

experiments that illustrate and complement the theoretical part.

2. Convergence of Schwarz Iterative Methods

2.1. Space Splittings60

We repeat the setup from [8], with the only difference that we explicitly allow

all Hilbert spaces to be over the field C (there is no difference but a notational

one to the case of spaces over R considered in most of the previous papers).

Consider a separable Hilbert space V , let a(·, ·) be a continuous positive definite

Hermitian form on V , and let F be a bounded linear functional on V . We

use the notation Va if we consider V as Hilbert space with the scalar product

given by the form a(·, ·). Obviously, knowing the norm ‖v‖a :=
√
a(v, v) in

Va determines a(v, w) for all v, w ∈ Va. To solve the variational problem, find

u ∈ V such that

a(u, v) = F (v) ∀v ∈ V, (2)

we use the concept of stable space splittings [16]. Let Va be represented by an

at most countable number of Hilbert spaces Vai equipped with positive definite

Hermitian forms ai(·, ·), and associated bounded linear operators Ri : Vai → Va

as follows:

Va =
∑
i

RiVai := {v =
∑
i

Rivi : vi ∈ Vai}. (3)

We allow for redundancy, i.e., we do not assume that Va is the direct sum of its

subspaces RiVai . We call (3) a stable space splitting, if

0 < λmin := inf
u∈Va

a(u, u)

‖|u‖|2
≤ λmax := sup

u∈Va

a(u, u)

‖|u‖|2
<∞, (4)
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where

‖|u‖|2 := inf
vi∈Vai : u=

∑
i Rivi

∑
i

ai(vi, vi).

The constants λmin and λmax are called lower and upper stability constants

respectively, and κ := λmax/λmin is called the condition number of the space

splitting (3).

For better orientation of the reader, we give examples of space splittings

related to the solution of linear systems Ax = b. The first one addresses the case65

of positive definite Hermitian matrices, while the remaining two are underlying

the treatment of Kaczmarz-type methods for general linear systems we focus on

in this paper.

• Example 1. The standard space splitting for solving linear systems Ax =

b with positive definite Hermitian A ∈ Cn×n is given by V = Va = Cn,

with the form a(x, y) = yHAx induced by A, and

Vai = C, ‖xi‖2ai = ai(xi, xi) = aii|xi|2, Rixi = xiei, i = 1, . . . , n,

where ei denotes the i-th unit coordinate basis vector in Cn, and aii the

diagonal elements of A. Then

‖|x‖|2 =

n∑
i=1

aii|xi|2, x =


x1
...

xn

 ∈ Cn,

and the condition of the splitting κ equals the spectral condition number

of D−1/2AD−1/2, where D = diag(A). As will be outlined below, this70

splitting leads to the classical Jacobi-Richardson and Gauss-Seidel-type.

Replacing the diagonal entries aii by arbitrary constants di > 0 in the

definition of the above space splitting leads to the study of the influence

of diagonal scaling, this modification will appear for Kaczmarz methods

below.75

• Example 2. Let now A ∈ Cm×n be arbitrary. It is convenient to first

consider the special case of a consistent system Ax = b with b ∈ Ran(A)
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(the general case will be discussed in Section 3). Such a system has the

general solution x = xLS + x̂, where xLS ∈ Ran(AH) is the least-squares

solution of Ax = b, and x̂ ∈ Ker(A) is arbitrary, and it is known that the

classical Kaczmarz method will converge to xLS if x0 ∈ Ran(AH). Set

V = Va := Ran(AH) ⊂ Cn with a(x, x) = xHx. The variational problem

(2) is a trivial one: x = xLS (since xLS ∈ Va this makes sense). For the

auxiliary spaces Vai and operators Ri, we set

Vai = C, ‖yi‖2ai = ai(yi, yi) := di|yi|2, Riyi = yia
H
i , i = 1, . . . ,m,

where di > 0 are so far unspecified constants. Let D denote the m ×m

diagonal matrix formed by these di. A straightforward computation leads

to

‖|x‖|2 = inf
yi: x=

∑m
i=1 Riyi

m∑
i=1

diy
2
i = inf

y∈Cm: x=AHy
‖D1/2y‖22

= inf
z∈Cm: x=AHD−1/2z

‖z‖22, x ∈ Va.

Thus, the stability constants of this splitting are λmin = σ2
min(D−1/2A)

(the smallest nonzero eigenvalue of AHD−1A) and λmax = σ2
max(D−1/2A)

(the largest eigenvalue of AHD−1A). Consequently, the condition number

of the splitting equals the essential condition number of AHD−1A, i.e.,

κ = κ̄(AHD−1A) := σ2
max(D−1/2A)/σ2

min(D−1/2A). (5)

• Example 3. The analysis of block-iterative methods requires different

splittings, based either on row or on column partitionings of A. We

mention one such splitting that is related to the results about block-

Kaczmarz solvers in [4, 5]. Consider the same Va and variational prob-

lem (2) as in Example 2. Let T := {τk}Kk=1 be a finite partition of the

row index set {1, 2, . . . ,m}, and denote the associated |τk| × n submatri-

ces of A by Aτk . Define auxiliary positive-definite Hermitian forms on

Vak = Ran(Aτk) ⊂ C|τk| by setting

ak(yτk , yτk) = ‖AHτkyτk‖
2
2, yτk ∈ Vak , k = 1, . . . ,K.
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Finally, let Rkyτk = AHτkyτk be the extension operators from Vak to Va,

k = 1, . . . ,K. Since Ran(AHτkAτk) = Ran(AHτk), by these definitions we

have

‖|x‖|2 = inf
yτk∈Vak : x=

∑K
k=1 Rkyτk

‖Rkyτk‖22 = inf
zk∈Ran(AHτk

): x=
∑K
k=1 zk

K∑
k=1

‖zk‖22.

For x ∈ Va and any decomposition x =
∑K
k=1 zk with zk ∈ Ran(AHτk) we

have

a(x, x) = ‖x‖22 ≤ (

K∑
k=1

‖zk‖2)2 ≤ K
K∑
k=1

‖zk‖22,

which yields the trivial upper bound λmax = λmax,T ≤ K. However, sharp

estimates for the stability constants and condition number κ = κT of80

this splitting valid for general row partitions are difficult to obtain, even

though one would expect a tendency towards improving the condition

number κT when increasing the size of the τk. In particular, if K = 1 and

τ1 = {1, 2, . . . ,m} then obviously κT = 1.

One case, where the estimation of these constants is relatively easy but

does not lead to a small κT , is worth mentioning. Referring to results

concerning the optimal paving of operators on Hilbert spaces, the authors

of [4, 5] consider special row partitions, characterized by the property that

there exist positive constants 0 < α < β <∞ such that

α‖yτk‖22 ≤ ‖AHτkyτk‖
2
2 ≤ β‖yτk‖22, k = 1, . . . ,K. (6)

The existence of such row partitions with α, β ≈ 1 and relatively small K,

at least if the rows of A have unit norm, is related to the Bourgain-Tzafriri

conjecture (see [18] for a discussion of this and many other conjectures,

equivalent to it) which was recently confirmed in [19]. Substituting (6)

into the formula for ‖|x‖|2, we conclude that

‖x‖22
β‖(AH)†x‖22

=
‖x‖22

β infy:AHy=x ‖y‖22
≤ ‖x‖

2
2

‖|x‖|2
≤ ‖x‖22
α‖(AH)†x‖22

,

and thus
α

β
κ̄(AHA) ≤ κT ≤

β

α
κ̄(AHA). (7)
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Therefore, row partitions T satisfying (6) with β/α close to 1, as discussed85

in [4, 5], do not have any preconditioning effect on solving Ax = b but

guarantee fast solvability of the subproblems in block-Kaczmarz iterations

considered in Section 3.2.

2.2. Schwarz Iterative Methods

For the setup of Schwarz iterative methods (or subspace correction methods)

associated with (3) we restrict ourselves to finite splittings (i = 1, . . . , N). We

define linear operators Ti : Va → Vai via the variational problems

ai(Tiv, vi) = a(v,Rivi) ∀ vi ∈ Vai , (8)

to be solved for given v ∈ Va in the spaces Vai , i = 1, . . . , N . Using these

Ti, analogs of the classical Jacobi-Richardson and Gauss-Seidel-SOR iterations,

called additive and multiplicative Schwarz methods associated with the stable

space splitting (3) can be introduced pretty much along the lines of the standard

methods, see [7, 8, 16, 14, 20]. The additive (or parallel or synchronous) Schwarz

iteration is given by

u`+1 = u` + ω`

N∑
i=1

RiTie
`, e` := u− u`, ` ≥ 0, (9)

where a starting point u0 needs to be provided, and u ∈ Va is the solution of

(2). Since

ai(Tie
`, vi) = a(u− u`, Rivi) = F (Rivi)− a(u`, Rivi),

the subproblem results Tie
` are computable from available information, and the

update direction

wj := Pe`, P :=

N∑
i=1

RiTi, (10)

can easily be computed from the subproblem results. If ω` = ω is fixed for all

` ≥ 0 then we get the Richardson method for the operator equation

Pu =

N∑
i=1

Rifi, (11)
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where fi is defined by the variational problems ai(fi, vi) = F (Rivi) valid for all

vi ∈ Vai and i = 1, . . . , N . If the splitting (3) is stable, then the operator P ,

called additive Schwarz operator, is Hermitian and positive-definite on Va, and

satisfies the identity

a(Pv, v) = ‖|Pv‖|2 =

N∑
i=1

ai(Tiv, Tiv) ∀ v ∈ Va. (12)

From the definition (4) and (12) we see that stability constants and condition

number of the splitting (3) are closely related to the spectral properties of P :

λmin = inf
‖v‖a=1

a(Pv, v), λmax = sup
‖v‖a=1

a(Pv, v). (13)

Moreover, (11) is equivalent to (2). Thus, the additive Schwarz method con-

verges for 0 < ω < 2/λmax, and if ω = 2/(λmax + λmin) we have the estimate

for the asymptotically optimal error reduction

‖u− u`‖a ≤ ‖I − ωP‖`Va→Va‖u− u
0‖a =

(
1− 2

1 + κ

)`
‖u− u0‖a. (14)

The multiplicative (or sequential or asynchronous) Schwarz iteration which

we focus on in this paper assumes a certain index ordering I = {ij}j≥0 and

processes subproblems in this order: Given u0, we recursively determine

uj+1 = uj + ωjRijTije
j , ej := u− uj , j ≥ 0. (15)

For the space splittings of Example 1, this iteration (15) reduces to SOR type

methods. Indeed, denoting by xj the j-th iterate and by x the solution of

Ax = b, from (8) we get Tie
j = (aii)

−1(Ax−Axj)i = (aii)
−1(bi−

∑n
k=1 aikx

j
k),

which means that xj+1
k = xjk for k 6= ij , and

xj+1
ij

= xjij +
ωj
aijij

(bij −
n∑
k=1

aijkx
j
k).

This is the SOR update for the ij-th equation, and in particular the Gauss-Seidel90

update if ωj = 1. The splittings from Examples 2 and 3 cover the classical and

block versions of the Kaczmarz iteration, this will be discussed in Sections 3.1

and 3.2 respectively.
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For a fair comparison with (9), one usually lumps N steps of the recursion

(15) together into one sweep, and compares their joint error reduction effect95

with the error reduction (9) in one step of the additive Schwarz iteration. For

cyclic orderings it is often observed in practice that in this comparison the

multiplicative Schwarz iteration is superior to the additive Schwarz iteration.

However, this has been substantiated only for special problem classes, and is, in

general, not true, see [16]. Finding sharp estimates for the convergence of the100

iteration (15) with cyclic ordering is, despite many attempts [21, 7, 20], not yet

in a final state. The convergence theory for (15) has drawn renewed attention

after Strohmer and Vershynin [6] proved, in an elementary way, a general and

realistic bound for the error decay in expectation of a randomized version of

the Kaczmarz method. This result was immediately taken up and extended in105

various directions, see, e.g., [1, 17, 8]. We also note that related developments

happened independently in the convex optimization community, e.g., for direct

search methods, see [22, 23]. A similarly elementary convergence rate estimate

holds for the iteration (15) with greedy orderings (see [8], to not overload the

present paper, we will not dwell on greedy versions).110

In the remainder of this section, we will state general estimates for the rel-

ative error reduction in multiplicative Schwarz iterations. The first one, for the

standard cyclic ordering with constant relaxation ωj = ω is essentially contained

in [7], where it is proved for the special case of subspaces Vi ⊂ V , and Ri being

the natural injections. To make the paper self-contained, we include the proof.115

The second result is based on results in [6, 17] and quoted from [8]. It concerns

randomized orderings, i.e., in each step we choose an ij ∈ {1, . . . , N} according

to a fixed discrete probability distribution. We also state a convergence esti-

mate for a slight extension of the algorithm (15), where in the j-th step an index

group Ij ⊂ {1, . . . , N} of size 1 ≤ kj ≤ N is picked, and an update similar to120

the one in (9) using subproblem solutions for all i ∈ Ij is performed. Such a

modification has been mentioned without proof in [8] and might prove useful in

further optimizing the performance of randomized algorithms for large-scale lin-

ear systems. It provides a link between the randomized multiplicative Schwarz
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iteration (kj = 1) and the additive Schwarz iteration (9) which corresponds to125

the case kj = N .

2.3. Cyclic Orderings

In this subsection, we consider cyclic orderings I given by ij = j (mod N)+

1, j ≥ 0. The relaxation parameters are constant: ωj = ω ∈ (0, 2). Before

stating the result, we make some theoretical assumptions on norm estimates for

the operators Ri : Vai → Va. In particular, assume we know positive constants

γi ≥ ‖Ri‖2Vai→Va such that

a(Rivi, Rivi) ≤ γiai(vi, vi) ∀ vi ∈ Vai , i = 1, . . . , N. (16)

Also, let γ ≥ λmax be a given upper bound for the upper stability constant of

the splitting (3). We then have

a(
∑
i∈I

Rivi,
∑
i∈I

Rivi) ≤ γ
∑
i∈I

ai(vi, vi) (17)

for all index subsets I ⊂ {1, . . . , N} and all vi ∈ Vai (just set u =
∑
i∈I Rivi, and

look at the definition of ‖|u‖|2 after (4)). In some cases (as for the Kaczmarz

method, see Section 3.1), such constants can be computed explicitly, in others

knowledge about them for the execution of the algorithm can be circumvented

at little extra cost (e.g., by switching to steepest descent updates). To satisfy

(16) and (17), in theory we can always take

γi = γ = λmax. (18)

The following theorem has been stated in [7] for the situation when Vai ⊂ V ,

and the mappings Ri are the natural injections. We repeat it for the present

setting, also because it seems not widely known.130

Theorem 1. Assume that (3) is a stable space splitting of the Hilbert space Va,

with stability constants λmin /max, and condition number κ given by (4). Then:

a) The multiplicative Schwarz iteration (15) with standard cyclic ordering I be

given by ij = j (mod N) + 1, j ≥ 0, and constant relaxation parameters
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ωj = ω ∈ (0, 2/λmax) converges to the solution u of (2), with error decay

given by

‖u− ū`‖2a ≤
(

1− C0

κ

)`
‖u− u0‖2a, (19)

where ū` = u`N is the solution after ` sweeps and

C0 :=
ωλmax(2− ωλmax)

( 1
2blog2(2N)cωλmax + 1)2

.

b) Depending on N and λmax, the relaxation parameter ω can be chosen such

that

‖u− ū`‖2a ≤
(

1− 1

(blog2(2N)c+ 1)κ

)`
‖u− u0‖2a. (20)

Proof. Let Ṽã := Va1 ⊕ Va2 ⊕ ... ⊕ VaN be the direct sum of the Hilbert

spaces {Vai}, with elements denoted by ṽ = (v1, v2, . . . , vN ), and scalar product

given by

‖ṽ‖ã = ã(ṽ, ṽ) :=

N∑
i=1

ai(vi, vi), vi ∈ Vai , i = 1, 2, . . . , N.

Define the linear operator R : Ṽã 7−→ Va by the formula

Rṽ =

N∑
i=1

Rivi, ṽ ∈ Ṽã.

According to (8), its adjoint R∗ : Va 7−→ Ṽã can be expressed by the operators

Ti:

R∗v = (T1v, T2v, ..., TNv), v ∈ Va.

Introduce the linear operator

P̃ = R∗R =



T1R1 T1R2 . . . T1RN

T2R1 T2R2 . . . T2RN

.
...

...
. . .

...

TNR1 TNR2 . . . TNRN


,
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which acts boundedly on Ṽã, and is the counterpart of the additive Schwarz

operator P = RR∗ defined in (10). By the spectral properties of P , see (12)

and (13), we get the lower estimate

ã(R∗Rṽ,R∗Rṽ) = a(PRṽ,Rṽ) ≥ λmina(Rṽ,Rṽ) = λmin‖Rṽ‖2a, (21)

and similarly the norm bound

‖P̃‖Ṽã→Ṽã ≤ λmax, (22)

since

‖P̃ ṽ‖2ã = a(PRṽ,Rṽ) ≤ λmaxa(Rṽ,Rṽ) = λmaxã(P̃ ṽ, ṽ) ≤ λmax‖P̃ ṽ‖ã‖ṽ‖ã.

We can decompose P̃ into strictly lower triangular, diagonal, and strictly upper

triangular parts

P̃ = D̃ + L̃+ L̃∗,

where

L̃ =



0 0 0 . . . 0

T2R1 0 0 . . . 0

T3R1 T3R2 0 . . . 0
...

...
...

. . .
...

TNR1 TNR2 TNR3 . . . 0


, D̃ =



T1R1 0 0 . . . 0

0 T2R2 0 . . . 0

0 0 T3R3 . . . 0
...

...
...

. . .
...

0 0 0 . . . TNRN


.

Since

‖D̃ṽ‖2ã =
N∑
i=1

ai(TiRivi, TiRivi) =
N∑
i=1

a(PRivi, Rivi)

≤ λmax

N∑
i=1

a(Rivi, Rivi) = λmax

N∑
i=1

ai(TiRivi, vi) ≤ λmax‖D̃ṽ‖ã‖ṽ‖ã.

we have

‖D̃‖Ṽã→Ṽã ≤ λmax. (23)

Moreover, as established in [7, Theorem 4], we have the following estimate for

the lower triangular operator L̃:

‖L̃‖Ṽã→Ṽã ≤
1

2
blog2(2N)c‖P̃‖Ṽã→Ṽã . (24)
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which combined with (22) implies

‖L̃‖Ṽã→Ṽã ≤
1

2
blog2(2N)cλmax. (25)

We note that counterparts of (24) for the matrix case have been investigated a

lot, and that the logarithmic dependence of the bound on N cannot be improved135

asymptotically in some instances.

With this notation at hand, we can reformulate (2) as variational problem

on Ṽã, namely, find ũ ∈ Ṽã such that

ã(P̃ ũ, ṽ) = a(Rũ,Rṽ) = F (Rṽ) ∀ ṽ ∈ Ṽã,

and view the cyclic Schwarz iteration in Ṽã as an SOR-type iteration on a linear

equation of the form P̃ ũ = b̃, where the right-hand side b̃ satifies ã(b̃, ṽ) = F (Rṽ)

for all ṽ ∈ Ṽã. Details can be found in [16, 7]. The result is the following formula

for the error propagation per sweep of (15) with cyclic ordering, where as before

we denote by ū` = u`N the iterate after the `-th sweep, and by u the solution

of (2):

ū`+1 − u = (I − ωR(Ĩ + ωL̃)−1R∗)(ū` − u), ` ≥ 0.

Here I and Ĩ denote the identity operators on Va and Ṽã respectively. Thus,

the error decay per sweep of the cyclic Schwarz iteration is determined by the

error propagation operator

Q = I − ωR(Ĩ + ωL̃)−1R∗ : Va → Va. (26)

To estimate its norm as map in Va, we use the identity

Q∗Q = (I − ωR(Ĩ + ωL̃)−∗R∗)(I − ωR(Ĩ + ωL̃)−1R∗)

= I − ωR(Ĩ + ωL̃)−∗(Ĩ + ωL̃+ Ĩ + ωL̃∗ − ωR∗R)(I + ωL)−1R∗

= I − ωR(Ĩ + ωL̃)−∗(2Ĩ − ωD̃)(Ĩ + ωL̃)−1R∗.

14



Thus,

‖Q‖2Va→Va = sup
‖v‖a=1

a(Q∗Qv, v)

= 1− ω inf
‖v‖a=1

ã((2Ĩ − ωD̃)(Ĩ + ωL̃)−1R∗v, (Ĩ + ωL̃)−1R∗v)

≤ 1− ω(2− ωλmax) inf
‖v‖a=1

ã((Ĩ + ωL̃)−1R∗v, (Ĩ + ωL̃)−1R∗v)

≤ 1− ω(2− ωλmax)

( 1
2ωblog2(2N)cλmax + 1)2

inf
‖v‖a=1

ã(R∗v,R∗v)

≤ 1− ω(2− ωλmax)λmin

( 1
2ωblog2(2N)cλmax + 1)2

.

The first inequality follows from (23), the second from (25), and the last from

(21). This proves (19).140

Straightforward minimization leads to (20) if we choose ω according to

ω =
1

( 1
2blog2(2N)c+ 1)λmax

. (27)

This establishes Theorem 1. 2

Remarks.

1) The estimates (19) and (20) for the convergence rate of the multiplicative

Schwarz iteration are uniform with respect to ordering - all quantities entering it

do not change if the enumeration of subproblems is changed. This is a drawback145

of the estimation technique. Numerical examples show that the convergence rate

of the cyclic Schwarz iteration may significantly change when the subproblems

are randomly reordered before execution (this may serve as another indication

for the sometimes observed speed-up when random orderings I are used).

2) An advantage of our bounds (19) and (20) is that they highlight the

dependence of convergence rates on spectral properties of the operator P , and in

particular on its spectral condition number, which equals the condition number

κ of the underlying space splitting (3). This makes them also comparable with

the recently obtained bounds for similar iterations using randomized and greedy

orderings. Previous convergence estimates for cyclic orderings, most notably the

Whitney-Meany estimate [10, Theorem 2.77, Theorem 4.4] and the results in

15



[20], both based on analyzing the product representation

Q = (I − ωRNTN ) . . . (I − ωR1T1)

of the error propagation operator (26), are different in nature and, in many150

cases, weaker than (20).

2.4. Random Orderings

The following theorem can be found in [8, Theorem 1, b)], it generalizes the

results of [6, 17] to the case of Schwarz iterations based on space splittings. Its

proof is completely elementary, and will not be repeated here (see the proof of155

Theorem 3 below for a similar argument).

Theorem 2. Assume that (3) is a stable space splitting of the Hilbert space Va,

with lower stability constant λmin given by (4), and assume that the constants

γi > 0, i = 1, . . . , N , satisfy (16). Create a random ordering I by setting ij = i

with probability pi = γi/(γ1 + . . . + γN ), independently for different j ≥ 0.

Finally, set ωj = ω/γij , where ω ∈ (0, 2) is fixed.

Then the multiplicative Schwarz iteration (15) with random ordering I converges

in expectation with the expected error decay given by

E(‖u− uj‖2a) ≤
(

1− ω(2− ω)λmin

γ1 + . . .+ γN

)j
‖u− u0‖2a, j ≥ 1. (28)

At first glance, the estimates suggest that ω = 1 is the best choice for the

relaxation parameter, even though it is well-known that for certain applications,

over- (ω > 1) or under-relaxation (ω < 1) pays off. The question of choosing ω is

intertwined with our choice of the probability distribution pi which is determined160

from the γi defined by (16). This is related to the problem of optimal scaling

of the subproblems in Vai which does not have a trivial solution in general (see

[24, 25] for recent discussions of the scaling aspect).

If we choose equal γi = λmax as in (18), then (28) implies the estimate

E(‖u− uj‖2a) ≤ (1− c0
Nκ

)j‖u− u0‖2a, j ≥ 1,

16



where c0 = ω(2− ω) ≤ 1. Therefore, N steps of this randomized multiplicative

Schwarz iteration correspond to one sweep, and thus comparable to one step of

the additive Schwarz iteration (9), the expected square energy error reduction

is roughly bounded by a constant factor

(1− 1/(Nκ))N ≈ e−1/κ ≈ 1− 1/κ, (29)

if κ >> 1 and ω = 1. This is qualitatively as good as the estimate (14). Note

that (28-29) represent upper bounds for the expected convergence rate, whereas165

(14) is asymptotically sharp and deterministic. The estimate (28) is superior to

(14) if
∑
i γi << Nλmax.

We present next a more general block-random Schwarz iteration, the j-th

step of which is as follows: Instead of picking a single index ij ∈ {1, . . . , N}, we

now pick (randomly and uniformly, and independently for different j) a whole

index set Ij ⊂ {1, . . . , N} of size kj ∈ {1, . . . , N}, and update according to

uj+1 = uj + ωj
∑
i∈Ij

RiTie
j . (30)

The case kj = 1 corresponds to (15) with random ordering, while kj = N is

equivalent to (9).

Theorem 3. Assume that (3) is a stable space splitting of the Hilbert space Va,

with stability constants λmin /max and condition number κ given by (4). Assume

ωj = ω ∈ (0, 2/λmax), and let the random index sets Ij of size kj be generated

as described above.

Then the modified Schwarz iteration (30) converges in expectation, and the ex-

pected error decays according to

E(‖u− uj+1‖2a) ≤
(

1− C1kj
Nκ

)
E(‖u− uj‖2a), j ≥ 0, (31)

where C1 = ωλmax(2− ωλmax) ∈ (0, 1].170

Proof. For the following calculations, recall that a(v,Rivi) = ai(Tiv, vi) for

all v ∈ Va and vi ∈ Vai , and that (17) holds for any γ ≥ λmax. For given uj , ωj ,

17



and a randomly chosen Ij according to (30) we have

‖ej+1‖2a = a(ej − ω
∑
i∈Ij

RiTie
j , ej − ω

∑
i∈Ij

RiTie
j)

= ‖ej‖2a − 2ω
∑
i∈Ij

a(ej , RiTie
j) + ω2a(

∑
i∈Ij

RiTie
j ,
∑
i∈Ij

RiTie
j)

≤ ‖ej‖2a − 2ω
∑
i∈Ij

ai(Tie
j , Tie

j) + ω2λmax

∑
i∈Ij

ai(Tie
j , Tie

j)

= ‖ej‖2a

(
1− ω(2− ωλmax)

∑
i∈Ij ai(Tie

j , Tie
j)

‖ej‖2a

)

= ‖ej‖2a

(
1− C1

λmax

∑
i∈Ij ai(Tie

j , Tie
j)

‖ej‖2a

)
,

where in the inequality step (17) was used. Now recall that Ij ⊂ {1, . . . , N} is

a uniformly chosen random subset of kj indices. This, and the inequality

λmina(v, v) ≤ a(Pv, v) =

N∑
i=1

ai(Tiv, Tiv) ∀ v ∈ Va,

implied by the lower spectral bound of P , give the following bound for the

conditional expectation of ‖ej+1‖2a, given the current error ej :175

E(‖ej+1‖2a | ej) ≤ ‖ej‖2a

(
1− C1

λmax

kj
N

∑N
i=1 ai(Tie

j , Tie
j)

‖ej‖2a

)

≤ (1− C1kjλmin

Nλmax
)‖ej‖2a = (1− C1kj

Nκ
)‖ej‖2a.

Taking expectations with respect to ej on both sides, we arrive at (31). Theorem

3 is established. 2

Remarks. 3) Taking into account that one update step (30) is essentially

equivalent to kj single steps in (15), the upper bound (31) leads to an expected

error reduction per sweep comparable with (29). Indeed, assuming kl/(Nκ) <<

1 the guaranteed relative error reduction factor after j-steps of the block-random

Schwarz iteration (30) is given by

j∏
l=1

(1− C1kl−1
Nκ

) ≈ (1− C1(k0 + . . .+ kj−1)

Nκ
).

The numerical experiments reported in Section 4 are confirming this.
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4) As already noted, relaxation can boost convergence. However, there is no

general recipe for choosing ωj optimally. For the considered random iterations,

computing ωj by the steepest decent formula

ωj =
a(ej , wj)

a(wj , wj)
, ej = u− uj , (32)

in an update step of the form uj+1 = uj + ωjw
j is a provably good alternative.

This is because steepest decent guarantees maximal error reduction in the given180

search direction wj , and thus any of the above recursive estimates for expected

square errors will hold, with best possible constants, for the steepest decent

update as well.

5) Although the presented Schwarz iteration framework is essentially equiv-

alent to ADM, it is more constructive by emphasizing the component structure185

of the iterations, and suggests optimization rules. Indeed, in order to arrive at

efficient methods, one needs to have an as small as possible condition number

κ of the underlying space splitting and, at the same time, cheap components

(execution of Ti, involving residual computations and subproblem solves, and

Ri). In many problems, slow convergence is due to bad conditioning of the190

space splitting underlying the given iterative method, and can only be cured by

some kind of preconditioning, e.g., by changing the splitting. For elliptic PDE

solvers, this approach has been proven very successful. Another aspect is to

realize that the auxiliary spaces Vai need not form direct sum decompositions

nor be even subspaces of Va, and that the subproblems defined by the auxiliary195

forms ai(·, ·) may not be directly related to the original problem (2). E.g., in

applications to solving linear systems we may easily allow for overlapping block

covers rather than block partitions of A, and approximate subproblem solves.

3. Applications to Kaczmarz Iterations

In order to apply the Schwarz iteration theory based on a Hilbert space set-200

ting for the solution (in a least-square sense) of a linear system Ax = b with

arbitrary A ∈ Cm×n, one usually considers the normal equations AHAx = AHb,
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or the system AAHy = b, each having Hermitian positive semi-definite coeffi-

cient matrices. The latter formulation is behind the Kaczmarz-type algorithms

considered in this section. Our goal is to demonstrate how various recent results205

on Kaczmarz-type iterations [6, 1, 4, 5, 3] can be obtained in a unified way from

the convergence theory for Schwarz iterative methods outlined in Section 2 by

applying it to the space splittings of Example 2 and 3. In addition, we provide

an improved convergence rate estimate for cyclic orderings.

3.1. Kaczmarz Methods: Single Row Updates210

It is convenient to first consider the special case of a consistent system Ax = b

with b ∈ Ran(A). Such a system has the general solution x = xLS + x̂, where

xLS ∈ Ran(AH) is the least-squares solution and x̂ ∈ Ker(A) is arbitrary. The

general case will be considered at the end of this Section. Example 2 of Section

2.1 is the space splitting which provides the framework for analyzing Kaczmarz

methods with single row updates as multiplicative Schwarz method. Using

the notation introduced in Section 2, a straightforward computation leads to

Tix = d−1i aix for x ∈ Va and all i = 1, . . . ,m. Thus, Tie
j = Ti(xLS − xj) =

d−1i (bi − aixj), and (15) specializes to

xj+1 = xj + ωj
bij − aijx

j

dij
aHij , (33)

which is identical with the Kaczmarz iteration (1) if the diagonal scaling is set

to di = ‖ai‖22.

Throughout the rest of this section we will silently assume that the starting

vector of the iterations satisfies x0 ∈ Va. Indeed, for arbitrary x0, it is obvious

from the update formula (33) that

xj = x̃j + x̂0,

where x0 = x̃0 + x̂0 is the orthogonal decomposition of the starting vector into

x̃0 ∈ Va and x̂0 ∈ V ⊥a = Ker(A), and x̃j denotes the iterates with starting vector

x̃0. Thus, since under the conditions discussed below the iterates x̃j converge215
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to xLS , we have xj → xLS + x̂0, and all convergence rate estimates stay in place

with x̂0 properly subtracted. Choosing x0 = 0 is a universally safe choice.

Convergence Estimates: Cyclic Orderings. Consider the cyclic order-

ing ij = j (mod m) + 1, j ≥ 0, and choose a constant relaxation parameter

ωj = ω. Under the above assumptions on b and x0, Theorem 1 implies that

the Kaczmarz iterates xj defined by (33) converge to the least-squares solution

xLS of Ax = b for 0 < ω < 2/λmax, with an error decay rate given by (19).

Moreover, as a consequence of (20) and (5), the error decay after ` sweeps is

given by

‖xLS − x̄`‖22 ≤
(

1− 1

(blog2(2m)c+ 1)κ̄(AHD−1A)

)`
‖xLS − x0‖22, ` ≥ 1,

(34)

if ω is chosen appropriately, e.g., according to (27). We are not aware of any

appearance of such an error decay estimate in terms of κ̄(AHD−1A) and loga-

rithmically depending on the dimension m of A in the literature.220

One may, however, wonder if the estimate (34) can be improved if r :=

rank(A) = dimVa << m. The answer is yes, and may be interesting in cases

when the original system Ax = b is heavily overdetermined.

Theorem 4. The cyclic Kaczmarz iteration (33) with appropriately chosen re-

laxation parameter ω and row scaling induced by D for solving a linear system

Ax = b with rank(A) = r ≤ min(n,m) possesses an error bound

‖xLS − x̄`‖22 ≤
(

1− C

(ln(r) + 1)κ̄(AHD−1A)

)`
‖xLS − x0‖22, ` ≥ 1, (35)

where C is an absolute constant.

Proof. Following step by step the proof of Theorem 1 applied to our situ-

ation, one easily sees that (35) follows if the inequality (24) is replaced by the

estimate

‖LB‖2 ≤ C(1 + ln(r))‖B‖2, (36)

applied to the matrix B = AD−1AH playing the role of P̃ . Here, LB denotes225

the strictly lower-triangular part of B, and ‖·‖2 stands for the `2-induced matrix
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norm. We will show that (36) indeed holds with some absolute constant C for

arbitrary positive semi-definite Hermitian matrices B of rank r.

Without loss of generality, assume that ‖B‖2 = λ1 = 1, where λ1 ≥ λ2 ≥

. . . ≥ λr > 0 and λk = 0 for k = r + 1, . . . ,m are the eigenvalues of B. The

main ingredient is an estimate for the Schatten p-norm ‖L‖σ,p of strictly lower-

triangular matrices L:

‖L‖σ,p ≤ C0p‖L+ LH‖σ,p, 2 ≤ p <∞,

where C0 is an absolute constant, independent of p and m. It follows from

Macaev’s Theorem proved in a more general setting in, e.g., [26, Theorem 6.2],

where also estimates for C0 are given. Recall that the Schatten p-norm of a

matrix is defined as the `p norm of its singular values. Thus, if DB denotes the

diagonal part of B then

‖DB‖σ,p = (

m∑
i=1

|bii|p)1/p ≤ (

m∑
i=1

bii)
1/p = (

r∑
j=1

λj)
1/p ≤ r1/p.

Here we have used that 0 ≤ bii ≤ λ1 = 1. Similarly,

‖B‖σ,p = (

r∑
j=1

λpj )
1/p ≤ r1/p.

Combining the last three inequalities, we obtain

‖LB‖2 ≤ ‖LB‖σ,p ≤ C0p‖LB + LHB ‖σ,p ≤ C0p(‖B‖σ,p + ‖DB‖σ,p) ≤ 2C0pr
1/p.

Choosing here p = ln(r), and taking into account the trivial bound

‖LB‖2 ≤ ‖LB‖F ≤
1√
2
‖B‖F =

1√
2
‖B‖σ,2 ≤

√
r

2
,

establishes (36) for all r, and proves the statement of Theorem 4. 2

Convergence Estimates: Random Orderings. We now apply Theorem

2 and 3. For the splitting from Example 2, we have γi := d−1i ‖ai‖22, i = 1, . . . ,m.

Theorem 2 suggests the selection of the random index sequence I using the

discrete probability distribution

pi =
γi

γ1 + . . .+ γm
=

‖ai‖22
di‖D−1/2A‖2F

, i = 1, . . . ,m, (37)
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and the update formula

xj+1 = xj + ω
bij − aijx

j

‖aij‖
2
2

aHij , (38)

i.e., again (1) with fixed ωj = ω ∈ (0, 2). The expected square error estimate

then reads

E(‖xLS − xj‖22) ≤
(

1− ω(2− ω)σ2
min(D−1/2A)

‖D−1/2A‖2F

)j
‖xLS − x0‖22, j ≥ 1.

(39)

which can be upper-bounded for ω = 1 by

E(‖xLS − xj‖22) ≤
(

1− 1

rκ̄(AHD−1A)

)j
‖xLS − x0‖22, j ≥ 1, (40)

where r = dimVa ≤ min(n,m). For di = 1, (39) is the result of [6], the230

introduction of a diagonal scaling has also been discussed there. Recall that for

a fair comparison of the error estimates for cyclic versus random orderings, we

need to combine m steps of the randomized iteration into one sweep, yielding

a reduction factor of the expected square error per sweep of approximately

≈ 1 − cm/(rκ) in the randomized iteration, compared to a reduction of the235

square error per sweep of 1 − C/((ln(r) + 1)κ) for cyclic ordering, where κ =

κ̄(AHD−1A).

Finally, for the application of Theorem 3, assume for simplicity constant

ωj = ω. Then the update formula (30) reads

xj+1 = xj + ωwj , wj :=
∑
i∈Ij

bi − aixj

di
aHi , (41)

where Ij ⊂ {1, . . . ,m} is a uniformly and independently chosen random index

set of size kj , and the error estimate per step (31) for the expected squared error

gives

E(‖xLS − xj+1‖22) ≤
(

1− kj
mκ̄(AHD−1A)

)
E(‖xLS − xj‖22), j ≥ 0, (42)

if we set ω = 1/λmax.

As was remarked in Section 2.4, the estimates (39), (40), and (42) remain

true if ωj is determined from the steepest descent rule (32). This makes any240

preknowledge about λmax superfluous.
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Inconsistent Systems. The inconsistent (or noisy) case b 6∈ Ran(A) is

practically important (note that in principal, due to rounding errors, any system

Ax = b needs to be considered inconsistent). Let b̂ be the projection of b onto

Ker(AH) ⊥ Ran(A), and set b̃ = b− b̂. Using the decomposition b = b̂ + b̃ and

the fact that Ax = b̃ is a consistent system with the same least-squares solution

xLS as Ax = b, we can easily extend the analysis to the inconsistent case. E.g.,

according to (33), in the cyclic case we can write

xj+1 = xj + ω
b̃ij − aijx

j

dij
aHij +

ωb̂ij
dij

aHij ,

which gives an inhomogeneous recursion for the error ej = xLS −xj of the form

ej+1 = ej − ω
aije

j

dij
aHij −

ωb̂ij
dij

aHij ,

where ij = j (mod m) + 1, j ≥ 0. Thus, when combining the first m steps,

we get ē1 = Qe0 + Rb̂ with certain matrices Q,R depending on A, D, and

ω. Under the assumptions of Theorem 1, Q is contractive on Ran(AH) and

obviously Ran(R) ⊂ Ran(AH). Thus,

ē` = Q`e0 + (I +Q+ . . .+Q`−1)Rb̂,

and the iterates xj converge to xLS − (I −Q)−1Rb̂, still under the assumption

that x0 ∈ Va = Ran(AH). The error estimate after ` cyclic sweeps is

‖xLS − x̄`‖2 ≤ ‖Q‖`2‖xLS − x0‖2 +
‖Rb̂‖2

1− ‖Q‖2
, x̄` = x`m,

where, according to Theorem 4 the spectral norm of Q : Va → Va is bounded

by

‖Q‖22 ≤ 1− C

(ln(r) + 1)κ̄(AHD−1A)
.

Thus the iteration converges to a point that sits in a ball of radius proportional

to ‖b̂‖2 around xLS (see [10, Theorem 4.32] for a formula expression of the

limit).

A similar approach applies to the random Kaczmarz iteration resulting from

Theorem 2. Indeed, the error recursion for the update (38) can be written as

ej+1 =

(
ej −

aije
j

‖aij‖
2
2

aHij

)
+

(1− ω)aije
j − ωb̂ij

‖aij‖
2
2

aHij ,

24



with the two terms orthogonal to each other. Thus, a quick computation shows

‖ej+1‖22 = (‖ej‖22 −
|aije

j |2

‖aij‖
2
2

) +
|(1− ω)aije

j − ωb̂ij |2

‖aij‖
2
2

.

For ω = 1 (this is the case covered in [1]), we continue with computing the245

conditional expectation of ‖ej+1‖22 with respect to given ej , recall that the

probability distribution underlying the choice of ij is given by (37):

E(‖ej+1‖22 | ej) ≤ ‖ej‖22 −
m∑
i=1

|aiej |2

di‖D−1/2A‖2F
+

m∑
i=1

|b̂i|2

di‖D−1/2A‖2F

≤
(

1− ‖D−1/2Aej‖22
‖ej‖22‖D−1/2A‖2F

)
‖ej‖22 +

‖D−1/2b̂‖22
‖D−1/2A‖2F

≤
(

1− σ2
min(D−1/2A)

‖D−1/2A‖2F

)
‖ej‖22 +

‖D−1/2b̂‖22
‖D−1/2A‖2F

.

Taking the expectation with respect to ej , we get

E(‖ej+1‖22) ≤
(

1− σ2
min(D−1/2A)

‖D−1/2A‖2F

)
E(‖ej‖22) +

‖D−1/2b̂‖22
‖D−1/2A‖2F

, j ≥ 0,

and iterating this inequality results in

E(‖xLS−xj‖22) ≤
(

1− σ2
min(D−1/2A)

‖D−1/2A‖2F

)j
‖xLS−x0‖22+

‖D−1/2b̂‖22
σ2
min(D−1/2A)

, j ≥ 1.

For ω 6= 1, one can first use the elementary inequality

(a+ b)2 ≤ (1 + t)a2 + (1 +
1

t
)b2, a, b, t > 0,

with

t = (1− C2)
ω(2− ω)

(1− ω)2
, a =

(1− ω)|aije
j |

‖aij‖2
, b =

ω|b̂ij |
‖aij‖2

, 0 < C2 < 1,

and then repeat the computation of expectations. This leads to a slightly worse

recursive estimate

E(‖ej+1‖22) ≤
(

1− C2ω(2− ω)σ2
min(D−1/2A)

‖D−1/2A‖2F

)
E(‖ej‖22)+

(1− C2ω(2− ω))ω‖D−1/2b̂‖22
(1− C2)(2− ω)‖D−1/2A‖2F

,

j ≥ 0, but a similar conclusion: For inconsistent systems, the random Kacmarz

iteration stabilizes in expectation (at almost the same linear convergence rate
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as in the consistent case) into a ball around xLS with radius proportional to250

‖D−1/2b̂‖2 measuring the inconsistency of the right-hand side b. Similar ar-

guments can be provided for the block-random Kaczmarz iteration covered by

Theorem 3 and for the block-Kaczmarz iterations discussed in the next subsec-

tion.

3.2. Kaczmarz Methods: Block Updates and Least-Squares Solvers255

Block-iterative methods for general linear systems [27] often lead to better

cpu-time efficiency in implementations, even though this cannot always be sub-

stantiated theoretically. In the language of ADM, this means to go away from

one-dimensional search directions given by the columns of AH (and projections

onto hyperplanes), and replace them by more general search directions or sub-260

space search. For reasons explained in the previous subsection, we can w.l.o.g.

assume that Ax = b is consistent, i.e., b ∈ Ran(A), and that x0 ∈ Ran(AH).

Block-Kaczmarz iterations based on a row partitioning T as introduced in

Example 3 have been proposed in slightly more general form in [27], the update

formula reads

xj+1 = xj + ωjA
†
τkj

(bτkj −Aτkj x
j). (43)

The more recent papers [4] and [5, Algorithm 1] deal with randomized versions,

under the assumption that the row partition T leads to invertible and well-

conditioned matrices AτkA
H
τk

. It is easy to check that the iteration (15) based

on the splitting from Example 3 leads to exactly the update formula (43), which

allows us to deduce convergence results for both cyclic and randomized block-

Kaczmarz iterations from the theorems in Section 2. In particular, for the cyclic

ordering kj = j (mod K) + 1, j ≥ 0, we obtain from Theorem 1 that

‖xLS − x̄`‖22 ≤
(

1− 1

(blog2(2K)cκT

)`
‖xLS − x0‖22,

where x̄` = x`K , ` ≥ 1, if ω is chosen properly. Here, κT is the condition number

of the splitting in Example 3. Similarly, since for this splitting obviously γk = 1,

k = 1, . . . ,K, Theorem 2 implies

E(‖xLS − xj‖22) ≤
(

1− λmin,T

K

)j
‖xLS − x0‖22, j ≥ 1,
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for the randomized block-Kaczmarz iteration with underlying uniform probabil-

ity distribution and relaxation parameter ω = 1. The estimate remains valid if

ωj is computed by the steepest descent formula. As was mentioned in Section265

2.1, the stability constants λmax /min,T are hard to assess for general row parti-

tions T . For T satisfying (6), the estimation of the condition number κT leading

to (7) reveals that λmin,T ≥ σ2
min(A)/β, and we arrive at exactly the result of

[4, Theorem 1.2] for the consistent case (the inconsistent case b 6∈ Ran(A) can

be handled as described in Section 3.1). We refer to [4] for a discussion of the270

state of the art of finding partitions T with properties close to (6).

Our approach can be used to design and analyze other block iterations.

For instance, if we change in Example 3 the auxiliary spaces to Vak = C|τk|,

and the auxiliary scalar products to ak(yτk , yτk) =
∑
i∈τk di|yτk,i|

2 but keep

all other components of the space splitting as they are, then it is not hard to

see that the stability constants and condition numbers for this modified space

splitting coincide with those of the splitting from Example 2, in particular,

κ = κ̄(AHD−1A). Since Tkx = (D−1A)τkx, we get the update formula

xj+1 = xj + ωAHτkj
D−1τkj

(bτkj −Aτkj x
j), kj = j (mod K) + 1, (44)

for cyclic orderings, and an error estimate of

‖xLS − x̄`‖22 ≤
(

1− 1

(blog2(2K) + 1)cκ̄(AHD−1A)

)`
‖xLS − x0‖22,

where again x̄` = x`K , ` ≥ 1, and ω is chosen optimally.

For random orderings, the update reads

xj+1 = xj +
ω

γkj
AHτkj

D−1τkj
(bτkj −Aτkj x

j), j ≥ 0, (45)

and k = kj is picked from the index range {1, . . . ,K} according to the prob-

ability distribution pk = γk/(γ1 + . . . + γK), where γk = ‖(D−1/2A)τk‖22,

k = 1, . . . ,K. The difference of the update in (45) with the similar update

formula (41) obtained from Theorem 3 is that there we choose uniformly ran-

domly an arbitrary subset Ij ⊂ {1, . . . ,m}, whereas now we only pick randomly

an index subset among the subsets τk from a fixed partition T . However, the
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estimates for the expected square error are similar. Indeed, the application of

Theorem 2 to the iteration (45) yields

E(‖xLS − xj‖22) ≤

(
1− ω(2− ω)σ2

min(D−1/2A)∑K
k=1 ‖(D−1/2A)τk‖22

)j
‖xLS − x0‖22, j ≥ 1,

if ω ∈ (0, 2). Again, this is not too explicit as the constants γk depend on the

partition T , it is, however, worth mentioning that

σ2
max(D−1/2A) ≤

K∑
k=1

‖(D−1/2A)τk‖22 ≤ ‖D−1/2A‖2F .

We conclude this subsection with a few remarks on obtaining the least-

squares solution xLS = A†b for inconsistent linear systems Ax = b, where the

Kaczmarz-type algorithms discussed so far converge only to a point in a neigh-

borhood of xLS of radius proportional to the distance of b to Ran(A). One

work-around are the algorithms proposed in [3, 5] which are based on apply-

ing Kaczmarz-type iterations in an alternating fashion to the block-triangular

system

Ax = b− y, AHy = 0,

with starting vectors x0 = 0, y0 = b. According to the above theory, the

iterates yj converge to b̂ (the projection of b onto Ker(AH)), and since b− b̂ ∈

Ran(A) as well as x0 ∈ Ran(AH), the iterates xj must converge to xLS . The

following extended randomized Kaczmarz method was proposed and analyzed

in [3]: Given x0, y0, for j = 0, 1, . . ., choose a column ākj of A, where kj ∈

{1, . . . , n} are i.i.d. random variables with discrete probability distribution qk =

‖āk‖22/‖A‖2F , k = 1, . . . , n, and set

yj+1 = yj − ω
āHkjy

j

‖ākj‖22
ākj . (46)

Next, choose a row aij of A, where ij ∈ {1, . . . ,m} is an i.i.d. random vari-

able with discrete probability distribution pi = ‖ai‖22/‖A‖2F , i = 1, . . . ,m, and

update

xj+1 = xj + ω
bij − aijx

j − yjij
‖aij‖

2
2

aHij . (47)
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A block version of this algorithm has been considered in [5], where it is assumed

that both A and AH admit, after respective column and row scaling, pavings

with constants α, β in the corresponding assumptions (6) such that β/α ≈ 1,275

thus fitting the discussion of the block-Kaczmarz iterations in the previous sub-

section. Cyclic versions are possible as well: One would perform a full sweep

for AHy = 0 to update from ȳ` to ȳ`+1, followed by a full sweep for Ax = b− y`

(or, equally well for Ax = b− y`+1) to update from x̄` to x̄`+1. Finally, instead

of alternating between y and x updates, one can also leave the decision to the280

randomization process: In the j-th step, with equal probability, choose first

whether to update xj or yj . For an x-update, compute xj+1 according to the

instructions in (47) and set yj+1 = yj while for a y-update yj+1 is obtained by

(46) and xj+1 = xj . The analysis of all these versions for finding xLS can be

done using the framework of Schwarz iterative methods using appropriate split-285

tings, with the additional advantage that this theory also provides convergence

estimates if cyclic orderings are preferred.

4. Numerical Tests

In this section we illustrate some of the main results of this paper, in par-

ticular, the convergence bounds for Kaczmarz iterations with cyclic ordering in

comparison with random orderings, by numerical experiments. Test matrices

from three families of matrices are considered below. The first one (referred to

as Toeplitz matrices) is taken from [28], and consists of finite m × n sections

A = ((Aj−k))j=1,...,m, k=1,...,n of a Hermitian positive-definite Toeplitz operator

on `2(Z) given by the sequence

A0 = 1, A2k = 0, A±(2k−1) =
c0(−1)k−1

2k − 1
, k = 1, 2, . . . , 0 < c0 <

2

π
.

We have chosen c0 = 0.2 in our tests. All matrices A chosen from this family

have full rank r = min(m,n), and are well-conditioned with almost constant290

condition numbers κ̄(AHA) ≈ 3.671.

The second family (referred to as Fourier matrices) originates from the clas-

sical problem of reconstructing 1-periodic band-limited functions from samples
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at non-uniformly spaced points, and was already used in, e.g., [6]. Let A be

defined by its entries as

Ajk =
√
wje

2πiktj , wj =
tj+1 − tj−1

2
,

where {tj}j=1,...,m is an increasing sequence of non-uniformly spaced sampling

points in the periodic unit interval drawn from a uniform distribution, and

k = −K, ...,K (i.e., n = 2K+ 1). As was justified in [6], the introduction of the

above weight factors wj , and a sufficiently large oversampling rate m/n >> 1295

guarantee that condition numbers fall in a reasonable range. In our experiments,

we chose K = 50 and m = 500, and generated A of size 500 × 101, with full

column rank r = n = 101, and with κ̄(AHA) ≈ 312.5.

Finally, a third family (referred to as Tomography matrices) was generated

using the Matlab Regularization Toolbox by P.C. Hansen, described in [29] and300

available at http://www.imm.dtu.dk/∼pcha/Regutools/. Its routine tomo al-

lows for the generation of certain 2D tomography problems Ax = b of size

m = fN2 by n = N2, where N and the oversampling rate f are user-supplied

constants. Each row in A corresponds to the absorption characteristics along a

randomly placed line through a N ×N box grid. In our tests, we chose N = 20305

and various values for f (below, results are reported only for f = 3). Again,

if the oversampling rate f is significantly larger than 1, the condition number

κ̄(AHA) tends to become reasonably small while for f ≈ 1 it may become very

large, mostly due to a few very small non-zero singular values of A.

In our experiments with the first two families, we solved the homogeneous310

problem Ax = 0 with a starting unit vector x0 in Ran(AH), hence the iteration

converges to xLS = 0. The vector x0 is randomly chosen but kept fixed in all

experiments, thus the results are comparable. For the third family, we solved

the consistent problem Ax = b with b and x = xLS supplied by the routine

tomo. Our primary index of performance measurement is the number of sweeps315

or cycles needed to reach a given precision level (measured by relative error).

The cycle count is defined as number of single row updates divided by m for

the standard Kaczmarz iteration, and analogously as number of block updates
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multiplied by k/m for block-Kaczmarz iterations with constant block size k.

Finally, unless otherwise specified, the shown graphs depict always the average320

of 5 independent experiments whenever the iteration involves random row/block

selection or random row permutations.

Our tests concentrate on the following questions related to the theoretical

material of this paper:

1) Our convergence rate estimates for multiplicative Schwarz iterations, and325

in particular Kaczmarz iterations, with cyclic orderings deteriorate loga-

rithmically in the number of subproblems resp. the rank of A (Theorems

1 and 4). That such a deterioration cannot be excluded, is shown by tests

with the first family of matrices. For the other matrix families related to

more natural recovery problems from sampled information, such an effect330

is not visible.

2) The actual convergence of the cyclic iteration depends on the ordering of

equations in Ax = b although the convergence bounds in Theorems 1 and

4 do not reflect this: Premultiplying the system by any m × m permu-

tation matrix Pπ neither changes the rank r nor the condition number335

κ̄(AHA). We have tested the behavior of Kaczmarz iterations with cyclic

ordering after a random row permutation was applied (random row shuf-

fling followed by Kaczmarz iteration with cyclic ordering). Such a simple

preprocessing leads to results at least as good as achieved by iterations

with random orderings.340

3) We also implemented randomized block-Kaczmarz iterations, where in

each step we chose, uniformly at random, row subsets of fixed but small

size k > 1, and performed updates of the form (44) (called for short Jacobi

updates) or (43) (called for short least-squares updates). In the reported

tests, due to the lack of good information on the scaling constants γi,345

we have defined relaxation parameters by the steepest decent formula

(32). The main observation is that, at least for the considered families

of problems and relatively small block size k, the different randomized
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block-Kaczmarz iterations possess similar convergence behavior but do

not outperform standard Kaczmarz iterations in relation to the overall350

number of rows touched during the iteration process.

4.1. The logarithmic factor
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Figure 1: Necessity of the logarithm factor

In the first experiment (Figure 1a), we applied the Kaczmarz iteration with

cyclic ordering to linear systems with square matrices A of sizes 40× 40, 160×

160, 640 × 640 from the first family (Toeplitz matrices). As the matrix size355

quadruples, a linear decay of the error reduction rate can be clearly observed.

Since the condition numbers for the matrices from this family remain almost

perfectly constant, this demonstrates the necessity of the logarithmic factor in

the error estimate of Theorem 2.

The second experiment (Figure 1b) aims at illustrating the relevance of the360

ln(r) factor in Theorem 4. We applied the cyclic Kaczmarz method to A from

the first family (Toeplitz matrices) with variable row dimension 20 ≤ m < 800

but fixed column dimension n = 20, 80, 320 respectively, and recorded the cycles

needed for the error norm to drop below 10−10. It can be clearly seen that the

error reduction rate is dependent on the rank r = min(m,n).365

32



4.2. Row Shuffling
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(a) Row Shuffling on Toeplitz Matrix
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Figure 2: Improvement by Row Shuffling

As mentioned before, the error decay bound for cyclic orderings stated in

Theorem 4 is invariant under row shuffling. However, the actual convergence

rates may well change, as the lower triangular matrix LAAH crucially enters the

estimates and depends on row permutation. We did experiments on both the370

first (Toeplitz matrix of size 640×640) and second (Fourier matrix of size 500×

101) family of matrices, in each of the 50 recorded experiments we used cyclic

iteration but with different fixed row ordering. As a comparison we also included

experiments using the random Kaczmarz iteration described in Theorem 2. For

both families of matrices, one-time row shuffling followed by cyclic Kaczmarz375

iteration outperforms the cyclic Kaczmarz iteration in the initially given order,

and is even better than the random Kaczmarz iteration (see Figure 2). This

experiment suggests that a simple preprocessing step of a one-time row shuffling

before cyclic iteration, especially in applications where we are not sure if the

given ordering is optimal, may lead to performance as good as for iterations380

with more sophisticated or costly randomization strategies. Since one cycle of

the Kaczmarz iteration after random row shuffling is equivalent to a cycle of a

Kaczmarz iteration where indices are chosen randomly but without repetition,
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this is in line with the often observed behavior of randomized iteration schemes

with and without repetition, see [30] for a discussion of this aspect.385

4.3. Block Iterations
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(a) on Toeplitz Matrix
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Figure 3: Block Iteration

In Figure 3 (a) and (b), we show error decay graphs for block-Kaczmarz

iterations for the 640×640 Toeplitz matrix, and another matrix from the second

family (Fourier matrix) respectively. We implemented (44) and (43), both with

fixed block-size kj = k = 3, 6, 12, and randomly chosen τkj . The first version

(Jacobi update) is based on Theorem 3, and uses Bτkj = AHτkj
, the second (least-

squares update) uses Bτkj = A†τkj
as suggested in [4, 5]. In both cases, ωj is

chosen according to the steepest descent rule, i.e., ωj = 1 for the least-squares

update, and

ωj =
‖rj‖22
‖AHτkj r

j‖22
, rj := bτkj −Aτkj x

j ,

for the Jacobi update.

The results for the Jacobi update case are in full agreement with the bounds

given in Theorem 3, for small block-sizes k = kj the cycle count for reaching a

certain error reduction only slightly increases with k. Moreover, for this range390

of k, the two methods are of comparable performance and cost. Note that, to
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our knowledge, there is no theoretical convergence rate bound available for the

implemented version with least-squares updates. One can only speculate that

this method becomes more competitive as kj is chosen larger, at the expense of

increased computational cost compared to the simpler Jacobi updates.395

4.4. Tomography Matrices
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(a) Single row iteration
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Figure 4: Iterations on Tomography Matrix

For the tests illustrated by Figure 4, we generated a matrix A of size 1200×

400 and with condition number κ̄(AHA) ≈ 625 from the tomography family

using the routine tomo with parameters N = 20 and f = 3. As shown in Figure 4

(a), in contrast to the previously reported findings, the cyclic Kaczmarz iteration400

(without any row shuffling) behaves as good as shuffled versions. The reason

might be that the rows of matrices created by tomo are already shuffled, as

they result from taking intensity measurements along a set of randomly chosen

lines crossing a two-dimensional grid. The tests with block-Kaczmarz iterations

reported in Figure 4 (b) are in line with the observations from the previous405

subsection.
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