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Notation

| · |1 l1 norm in IRd

| · |, | · |2 Euclidean norm in IRd

| · |ε Regularized Euclidean norm in
IRd

| · |∞ Maximum norm in IRd

‖ · ‖X Norm on vector-space X

(·, ·)O Scalar-product on L2(O )

< ·, · > Dual pairing on (H1(Ω))′ ×
H1(Ω)

⊗ Tensor product a⊗ b = (aibj)ij

B(R) Ball of radius R

C0
0 (O ) Space of compactly supported

C0-functions on O
Ck,α(O ) Hölder space on O , α ∈ [0, 1].

D− Backward difference quotient

D+ Forward difference quotient

D± Central difference quotient

Ei Element on the finest level of
the quadtree/octtree T

Eli, Element on level l of the
quadtree/octtree T

h Spatial grid-width

Hm(O ),
Hm,2(O )

Sobolev space of order m and
exponent 2 on O

(H1)′(O ) Dual space of H1(O )

κi Principal curvatures, eigenval-
ues of STxM

κi,σ Regularized principal curva-
tures, eigenvalues of Sσ

TxM σ

Lp(O ) Lebesgue space of exponent
p ∈ [1,∞]

LSC(O ) Space of lower semi-continuous
functions on O

M c, M c(t) Level-set of value c in an image
respectively an image at scale t

M c,s Level-set of value c in frame s
of an image-sequence

M σ
Regularized level-set

N Normal on level-sets

Nσ Regularized normal

N l
Set of nodes of the triangula-
tion on level l

φi Temporal basis function, i =
0, . . . ,M

P (O ) Power set of O
ψα Spatial basis function, α ∈

{0, . . . , N}d

Q Image-sequence domain, I × Ω

ρ Temporal grid-width

Σ Extended regularized shape
operator

S(d) Space of symmetric d × d ma-
trices

S Jacobian of the normal

STxM Shape operator on level-sets of
an image

Sσ Jacobian of the regularized
normal

Sσ
TxM σ Regularized shape operator on

level-sets of an image

si Temporal node, i = 0, . . . ,M

τ Scale-step width

T ,T h
Quadtree/octtree triangula-
tion of Ω or Q

TxM Tangent space of level-sets,
span{wi}
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TxM σ
Regularized tangent space of
level-sets, span{wi,σ}

u(x) Static image u : Ω → IR

u(s, x) Image-sequence u : I × Ω → IR

uh(t, x),
uρ,h(t, s, x)

Discrete finite element func-
tion

unh(x),
unρ,h(s, x)

Discrete finite element func-
tion at scale t = nτ

Uh, Uρ,h Vector of nodal values of uh re-
spectively uρ,h

Unh , Unρ,h Vector of nodal values of unh re-
spectively unρ,h

Uni Vector of nodal values of the
frame unρ,h(si, ·)

Uni,α Nodal value unρ,h(si, xα)

USC(O ) Space of upper semi-
continuous functions on
O

V h
Spatial finite element space

wi Principal directions of curva-
ture, eigenvectors of STxM

wi,σ Regularized principal direc-
tions of curvature, eigenvectors
of Sσ

TxM σ

W h
Temporal finite element space

xα Spatial node, α ∈ {0, . . . , N}d

Ω Image domain, ⊂ IRd.



Chapter 1

Introduction

T
HE USE OF partial differential equations (PDEs) in image processing has become
an interesting research area during the last decade. The idea is to deform a given
image with a PDE and obtain a filtered version of the image as the solution of this

differential equation. The design of such PDEs has lead to evolution models, where a given
image is treated as initial data for a parabolic initial and boundary value problem. The time
parameter of the process represents the so called scale, which leads through the evolution
process from noisy, detailed original image data to coarse, smooth and enhanced versions
of the original image. Advantages of PDE approaches, such as high speed, accuracy, and
stability together with a variety of results from numerical analysis, have made these methods
a growing field of research. The theory of viscosity solutions provides a framework for the
augmentation of PDE-terminology to images, which may neither be differentiable in the
classical nor in the weak sense.

The application of such methods is of special interest in three-dimensional (3D) image
processing. In medical research and diagnosis, various highly developed data acquisition
techniques like computed tomography (CT), nuclear magnetic resonance tomography (MRI)
or 3D-ultrasound deliver high resolution images and time series of measured data. Unfor-
tunately, these images – especially those from ultrasound – carry hight-frequent noise due
to the electronic acquisition process. Also in low-dose CT applications, which become more
popular since they lower the risk for the patient, the signal to noise ratio is very poor. This
makes it even harder for physicians to give a precise diagnosis or to plan surgical treatment.
In medical image-sequence analysis one is interested in the motion, growth and deformation
of the underlying tissue. The observed time-scales range from parts of a second to minutes
and years.

Generally speaking, image acquisition devices measure certain densities of the observed
object and transform them into image intensities (which are usually interpreted as gray
values). The observed density may be the tissue density or a photon emission density
in medical imaging, but also tracer densities in physical experiments, for example porous
medium flow experiments. The consideration of image-sequences taken from an observed
object allows to analyze the underlying physical phenomena which move the densities within
the object. In the case of porous medium flow this reveals information about the quality of
numerical models simulating the flow.

In many applications of PDE methods to image processing the actual image intensity (as
a measure for the observed density) is of minor importance, since it mostly depends on the
modality of the image taking device (cf. Figure 1.1). The user is much more interested in
the iso-surfaces (level-sets) of the image and their shapes: It is much more important to
have a look at the shape of an organ, than its color in the image. Evolution models, which
depend only on the shapes of the level-sets rather than the actual gray values are called
morphologic or geometric.
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Figure 1.1: Images of equal shapes which differ by a transformation of the gray-values.

In this thesis, we consider nonlinear anisotropic geometric evolution problems for the de-
noising and enhancement of images and image-sequences. The nonlinear and anisotropic
character of the models results in the preservation of edges and corners of level-sets while
reducing their noise. Appropriate regularization techniques for the intrinsic geometric quan-
tities of the level-sets lead to a rich class of shapes which are invariant under the diffusion.
The processing of image-sequences additionally takes the direction of motion and the ac-
celeration of the level-sets in time into account. As a consequence the diffusion is coupled
in sequence-time and space and it preserves highly accelerated motions. The results of the
application to multiple problems are shown in various forms throughout the dissertation.
During the remainder of this introductory chapter we review the basic image processing
methodology, together with some tools from differential geometry, which are needed for
the subsequent expositions. In Chapter 2 we discuss a geometric evolution model for the
processing of static images, which is followed by a model suitable for the de-noising of
image-sequences. The necessary regularizations are the topic of Chapter 3. There, we dis-
cuss different non-morphological and morphological regularization variants, and compare
them on different data-sets. The models are treated analytically in Chapter 4, where we
show the existence of viscosity solutions. Discretizational and implementational aspects are
discussed in Chapter 5. For the static image processing model a stability estimate is derived
and an operator splitting scheme is constructed for the image-sequence evolution. Final
conclusions are drawn in Chapter 6.

1.1 Scale-space methods in image processing

The early work on PDEs in image processing goes back to Gabor [34] in 1965, and continued
with the independent contributions of Witkin [81] and Koenderink [50], who introduced the
notion of scale-space, which describes the simultaneous representation of images at multiple
scales. Since the application of an evolution process E(t) to a given image data u0 delivers a
family of representations {E(t)[u0]}t≥0 on successively coarser scales, such a process is also
referred to as multi-scale method or scale-space method. The simplest scale-space method,
the heat equation

∂tu− ∆u = 0 on Ω ⊂ IRd,

with initial data u0 and natural boundary conditions results from the minimization of the
classical Dirichlet integral

u = argmin
v∈H1

0 (Ω)

D(v) := argmin
v∈H1

0 (Ω)

∫
|∇v|2 dx.
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by means of a gradient descent of D in the standard L2-metric. If u : IR+×Ω → IR solves the
above boundary and initial value problem, the corresponding evolution-operator is defined
as

E(t)[u0] = u(t)

generating the scale-space
{E(t)[u0] : t ≥ 0}.

Besides the natural causality assumption

E(t+ s)[u0] = E(t)[E(s)[u0] ] ∀s, t ≥ 0,

scale-spaces generated by various filters have been required to fulfill many other properties
[3]. Many of these properties can be characterized as invariance properties such as invariance
under gray-level transformations, translations, rotations or affine mappings. Indeed the
heat equation is the only evolution, which generates a scale-space and fulfills the linearity
assumption [6]

E(t)[au0 + bv0] = aE(t)[u0] + bE(t)[v0] ∀t ≥ 0, a, b,∈ IR

as well as the isometry invariance [3] for all orthogonal matrices R ∈ O(d):

E(t)[u0(Rx)] = (E(t)[u0])(Rx) ∀x ∈ Ω ⊂ IRd.

But the heat equation unfortunately leads to an undesired loss of edges of the image, which
themselves are characterized by high gradients. A more successful model was presented in
1987 by Perona and Malik [64], improved by the work of Catté et al. in 1992 [15]. They
defined a nonlinear diffusion model with a decreased diffusion coefficient in the vicinity of
edges. Denoting the Euclidean norm with | · | the resulting evolution-problem can be written
as

∂tu− div(Gλ(|∇uσ |)∇u) = 0 on Ω ⊂ IRd,

again with initial data u0 and natural boundary conditions. With increasing t the initial
data u0 = u(t = 0) is being smoothed, its structure is coarsened and the edges are enhanced,
if the coefficient Gλ(·) reduces the diffusion for high gradients (cf. Figure 1.2). The gradient
∇u of the image itself does not enter the definition of the diffusivity Gλ(|∇uσ|), but the
gradient of a regularized image uσ. By choosing Gλ(s) = (1 + s2/λ2)−1, the edges are be
characterized by the constant λ > 0: If |∇uσ| ≥ λ, the process results at least theoretically
in a backward diffusion, whereas for |∇uσ| < λ forward diffusion smoothes the image [49].
The use of the regularized image’s gradient ∇uσ in the definition of the diffusivity makes
the problem well-posed and furthermore stabilizes the process in presence of noise. Because
otherwise on noisy image data, edges may falsely be detected due to the (theoretically
unbounded) gradients of the noise.

Weickert [79, 80] presented a further improvement by taking an anisotropic diffusion char-
acter into account. In his model the Perona-Malik diffusion is only considered in directions
of the gradient of the regularized image uσ. Perpendicular to that direction (i.e. tangential
to the level-sets of uσ) a linear and constant diffusion is applied. This means that the re-
sulting model also smoothes the edges tangentially (“along themselves”) (cf. Figure 1.3).
If the diffusion coefficient depends on the eigenvectors of the structure tensor ∇uσ ⊗ ∇uσ
line-structures in the image are especially pronounced. A similar approach was presented
by Carmona and Zhong [14] who defined the smoothing directions as the eigenvectors of the
Hessian of the image. Another extension considers the dependence of the diffusivity on the
moments of the image density [52], because the moments hold information on the anisotropy
of an image. In [65, 26] the anisotropic Weickert-diffusion was modified to smooth image
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Figure 1.2: Application of the improved Perona-Malik model of Cattè et al. [15] to the noisy
image depicted on the left in Figure 1.1. From left to right successive scale steps of the
evolution on this 513 × 513 image are depicted.

Figure 1.3: Application of the anisotropic diffusion by Weickert [80] to the noisy image
depicted on the left in Figure 1.1. On the left and in the middle successive scale steps of
the evolution on this 513 × 513 image are depicted. The edges of the image are smoothed
in tangential direction as the magnified sections illustrate. The top row of the magnifica-
tions displays the results from the original Perona-Malik model shown in Figure 1.2. The
corresponding magnified sections from the Weickert-diffusion are shown in the bottom row.

data in directions of arbitrary vector fields. The result shows streamline type patterns which
visualize the vector field in a multi-scale fashion.

The numerical issues of PDEs in image processing have been considered in a wide variety:
Within the computer science community they are mostly treated by finite difference (FD)
schemes [2, 4, 82], often coupled with an explicit time stepping [80]. Kačur and Mikula [48]
showed convergence of a semi-implicit finite element (FE) scheme for the improved Perona-
Malik model [15]. Also for this model, adaptivity of triangular meshes was considered by
Bänsch and Mikula [7]. An approach, which treats adaptive quadtree or octtree grids and the
resulting matrices procedurally, was presented in [66]. A natural way of discretizing PDEs
in image processing is to apply finite volume schemes [51], because they consider images to
be a discrete set of constant values on small volumes (the pixels (in 2D) or the voxels (in
3D)), rather than piecewise multi-linear functions. The existence of discrete solutions and
their convergence toward the solution of the continuous problem was proven in this context
by Mikula and Ramarosy [59] for the improved Perona-Malik model of Catté et al.

None of the evolution-operators presented so far is of geometric nature, which means
that they are not invariant under monotone transformations of the gray-value. This fact
is obvious for the Perona-Malik model and its improvements by Catté et al. and Weickert,
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since these models involve the gradient of a regularized version of the image. Transforming
the gray values of the initial image would clearly alter its gradients and thus in general the
edge detection and the diffusion tensor of the evolution process. But also the heat-equation
is in general a non-morphological filter as becomes clear from the equivalence

u(t) = Gσ ∗ u0 with σ =
√

2t,

of the solution of the heat equation u(t) and the convolution of the initial data u0 with the
fundamental solution of the heat-equation: the Gaussian kernel Gσ of variance σ =

√
2t

(cf. [80]). Only for linear transformations, which are not realistic in applications, the heat-
equation behaves geometrically.

Since geometric evolutions are the scope of this work, we continue with a review of ge-
ometric evolution methods and draw analogies to the above presented Euclidean models.
Curvature quantities describing the morphology of images are a basic ingredient of the mod-
els to be presented. Thus, we review the according terminology from differential geometry
first.

1.2 Background from differential geometry

Let us start this section with precise definitions of notions we have already used in the last
section. For a domain Ω ⊂ IRd for d = 2, 3, we consider an image on Ω to be a mapping

u : Ω → IR, with Ω ⊂ IRd.

We call the image two dimensional (2D) if d = 2 and three dimensional (3D) if d = 3. From
a given image u one can easily extract a certain level-set

M c = M c(u) := {x ∈ IRd : u(x) = c} for c ∈ IR,

a process, which is closely related to the so called thresholding, i.e. the extraction of sub-
level-sets {x ∈ IRd : u(x) ≤ c}. For the sake of simplicity we skip the subscript c and the
argument u whenever they are clear from the context. Thus, we denote the level-set under
consideration simply with M . For de-noising or enhancing purposes the application of curve
evolution models on the extracted level-set M c is possible [70]. The final composition of all
processed level-sets forms again an image.

Definition 1.1. The morphology M(u) of an image u : IRd → IR is the set of all level-sets
M c of this image u, i.e.

M(u) := {M c : c ∈ IR} with M c := {x ∈ IRd : u(x) = c}.
Two images u and v are of equal morphology if M(u) = M(v), i.e. each level-set of u
coincides with a level-set of v, but these level-sets need not necessarily have the same gray
values (cf. Figure 1.1).

Image processing operations which depend only on the morphology of an image are called
morphologic. They yield equal results when applied to images with equal morphologies.
Roughly speaking these image processing operations commute with the thresholding. We
obtain the same notion for evolution processes:

Definition 1.2. An evolution process E(t)[u0], which assigns to an image u0 : IRd → IR the
image u0 processed at scale t ≥ 0 is called morphologic (or morphologically invariant), if
for any continuous nondecreasing change of contrast h : IR → IR we have

h ◦ E(t)[u0] = E(t)[h ◦ u0].

If an evolution process is morphologic, we call the corresponding PDE geometric.
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Geometric evolution processes are steered by the morphology of an image rather than
its gray values. The evolution depends only on the intrinsic geometric quantities of the
level-sets.

1.2.1 Implicit surfaces — Level-sets

Clearly the level-sets M c of an image u define curves (level-curves) for 2D images or surfaces
(level-surfaces) for 3D images which are not given in a parameterized form, but in an implicit
definition

u(x) = c for all x ∈ M c.

Assuming that the image u is smooth, we know from the implicit function theorem, that
the level-sets M c describe smooth curves or surfaces, respectively. In the following we are
interested in a characterization of a level-set via intrinsic geometric quantities.

We begin with the definition of a normal to a level-set. If the gradient ∇u(x) of the image
u does not vanish in x ∈ M , we can define a normal N(x) to the level-set via

N(x) :=
∇u(x)
|∇u(x)| , (1.1)

where again |·| denotes the Euclidean norm. Based on the normal we can decompose IRd into
the normal-space span{N(x)} and the tangent space TxM ⊥ span{N(x)} being orthogonal
in the Euclidean sense. Since our d − 1 dimensional level-sets are embedded into IRd the
Euclidean metric of IRd is directly induced to the tangent space.

The characterization of the level-sets is given by the notion of curvature. We make use of
the unique normal (and the orientability of the level-set) we have just defined and consider
the variation of this normal. Denoting the tensor product with v⊗w := (viwj)ij , we define

S(x) : IRd → IRd with S(x) := ∇N(x)

which is the projection of the second derivative D2u onto the tangent space TxM . Because

∂iNj = ∂i
∂ju

|∇u| =
∂i∂ju|∇u| − ∂ju ∂i|∇u|

|∇u|2 =
1

|∇u|

(
∂i∂ju− dju

∑d
l=1(∂lu ∂i∂lu)

|∇u|2

)

the shape operator can be written as

S =
1

|∇u|

(
D2u− ∇u

|∇u| ⊗D2u
∇u
|∇u|

)
=

1

|∇u|
(
Id −N ⊗N

)
D2u, (1.2)

where we have omitted the argument x for reasons of clearness. By construction we have

S(x) : IRd → TxM

and the preceeding projection onto the tangent space delivers the shape operator

STxM := S(x)
(
Id −N(x) ⊗N(x)

)
with STxM : TxM → TxM (1.3)

on the tangent space TxM . The shape operator is a symmetric endomorphism on the
tangent space [27] and thus it is characterized by two real eigenvalues {κ1, κ2} and the
corresponding eigenvectors {w1, w2}. In the basis of the eigenvectors the shape operator
STxM therefore has diagonal form, i.e. denoting the basis transformation from the standard

Euclidean basis {e1, . . . , ed−1} to the basis of eigenvectors {κ1, κ2} with (w1, w2)T we have

STxM = (w1, w2)

(
κ1

κ2

)
(w1, w2)T
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1 2
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1

1 2

N(x)

N(x)

w
w

κ   ≈ κ

w
w

κ   >> κM M

xT M

xT M

Figure 1.4: Sharp edges are indicated by the eigenvalues (=principal curvatures) and eigen-
vectors (=principal directions of curvature) of the shape operator STxM . Right: A sharp

corner is indicated by two high eigenvalues κ1 ≈ κ2 � 1. Left: Along a sharp edge of
a level-set M we have κ1 � κ2 and the corresponding eigenvectors point across the edge
respectively tangentially along the edge.

and furthermore

S = (w1, w2, N)

(
STxM ∗

0 0

)
(w1, w2, N)T .

The eigenvalues {κ1, κ2} are called the principal curvatures and the eigenvectors are the
principal directions of curvature of the level-set surface M . If κ1 > κ2 then indeed w1 and
w2 are the directions in which the normal N has maximum and minimum variation along
the surface M , respectively. We define the mean curvature H = κ1 + κ2 as the sum of the
principal curvatures.

Areas in images containing important geometric information are given by the edges and
the corners of the level-sets. In the non-geometric setting edges are characterized as regions
of high spatial gradients. But from our geometric point of view, the spatial gradient is
not a suitable quantity to describe image information, since we aim at independence from
the gray values of the given image. Important information (which we refer to as features
of the curve or surface, respectively the image) is characterized by curvatures of the level-
set. Clearly from the viewpoint of image-processing only an approximation of edges and
corners of level-surfaces is possible: Edges of level-surfaces are present in areas which have
significantly different principal curvatures, e.g. κ1 � κ2. Corners of level-curves and level-
surfaces are present if the curvatures are “very high”, i.e. κi � 1. An exact location of
edges and corners of analytical level-sets would involve measure-valued shape operators.
Therefore we approximate the features by an indication of high curvature. As seen above,
a quantification of the curvature information is given by the principal curvatures as the
eigenvalues of the shape operator STxM . Moreover the principal directions of curvature,
which are the eigenvectors of STxM , deliver the orientation of edges on surfaces. In the

vicinity of an edge we have one dominant eigenvalue, e.g. κ1 such that κ1 � κ2. Then the
dominant eigenvector w1 lies orthogonal to the edge, whereas the remaining eigenvector w2

points tangentially to the edge (cf. Figure 1.4).

1.2.2 Transformations of the gray-value

We focus, as already pointed out, on morphologically invariant models. By definition 1.2,
morphological invariance means invariance under continuous nondecreasing changes of the
gray value of the image. We sharpen this definition slightly by ruling out transformations
of the gray value which are not twice differentiable and those, which have a vanishing first
derivative. A vanishing first derivative would result in a transformation which clusters level-
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sets – an undesirable property for real applications. We state our notion precisely in the
following definition:

Definition 1.3. An evolution operator E(t)[u0] is called geometric if for any monotone
increasing transformation of the gray value h ∈ C 2(IR) with h′ > 0 the relation

h ◦E(t)[u0] = E(t)[h ◦ u0]

holds.

Indeed the intrinsic shape operator, which describes the corners and edges of level-sets,
is a good candidate for the modeling of geometric evolution processes, since it is invariant
under transformations of the gray value and thus a geometric quantity, as the following
lemma ensures:

Lemma 1.4. The shape operator STxM on the level-sets of an image u is invariant under

monotone increasing transformations h ∈ C2(IR) of the gray value of the image.

Proof. Let us denote the shape operator resulting from the transformed image ũ = h ◦ u by

S̃TxM . Therefore we have to show that

S̃TxM = STxM .

Starting with the definition of the shape operator (1.2), we have

S̃TxM =
1

|∇ũ|

(
Id − ∇ũ⊗∇ũ

|∇ũ|2
)
D2ũ

(
Id − ∇ũ⊗∇ũ

|∇ũ|2
)

=
1

|h′||∇u|

(
Id − h′∇u⊗ h′∇u

|h′|2|∇u|2
)(

h′′∇u⊗∇u+ h′D2u
)(

Id − h′∇u⊗ h′∇u
|h′|2|∇u|2

)

and since h is monotone increasing (h′ > 0)

=
1

h′|∇u|

(
Id − ∇u⊗∇u

|∇u|2
)(

h′′∇u⊗∇u+ h′D2u
)(

Id − ∇u⊗∇u
|∇u|2

)
.

Now, the term h′′∇u⊗∇u vanishes, since ∇u lies in the kernel of the succeeding projection
(Id −N ⊗N). Thus, we have shown that

S̃TxM =
1

|∇u|

(
Id − ∇u⊗∇u

|∇u|2
)
D2u

(
Id − ∇u⊗∇u

|∇u|2
)

= STxM .

1.3 Curve and surface evolutions

Closely related to the evolution of images under geometric PDEs is the movement of curves
and surfaces with curvature-based velocities. Within this area the level-set method of Osher
and Sethian [61] has been an important contribution. Their idea was to represent a given and
deforming curve or surface as a level-set of a higher dimensional hypersurface. This technique
gives a solution to topological issues which had been difficult to handle and moreover it can
be treated more accurately in numerical implementations. The concept that relates the
level-set approach to PDEs in image processing is the consideration of an image as the
collection of all its level-sets (i.e. its morphology).
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Figure 1.5: Application of mean curvature motion to a the noisy image depicted on the left
in Figure 1.1. From left to right successive scale steps of the evolution on the 513 × 513
image are shown. One clearly recognizes how highly curved shapes (as e.g. the shape of the
trees in the foreground) are smoothed rapidly during the evolution.

The rigorous axiomatic work of Alvarez, Guichard, Lions and Morel [3] delivered an ax-
iomatic approach to image processing via PDEs. Their approach allows to classify evolution
processes from the set of fundamental axioms Causality, Regularity, Morphological Invari-
ance, and Euclidean Invariance or Affine Invariance, respectively. Due to the inclusion of
the axiom of morphological invariance, they end up with a class of equations described by

∂tu− |∇u|F
[
div

( ∇u
|∇u|

)
, t

]
= 0. (1.4)

Within this class the evolutions F = const. result in the constant Euclidean motions (dilation
and erosion). The evolution of all level-sets in normal direction according to their mean
curvature H is described by

∂tu− |∇u|div

( ∇u
|∇u|

)
= 0.

Similar to its Euclidean analogue (i.e. the heat equation) this mean curvature motion (MCM)
decreases the “geometric” noise [56] but suffers from a loss of surface features in form
of corners and edges of the level-sets (cf. Figure 1.5). The incorporation of geometric
information into image processing methods has been presented by Pauwels et al. [63], and
Sapiro [69] presented an approach which takes into account the gradient of the image via
the evolution

∂tu− |∇u|div

(
g(|∇uσ |) ∇u

|∇u|

)
= 0.

However none of the above described isotropic methods is capable of retaining the important
geometric content while decreasing the geometric noise.

In terms of evolution of curves and surfaces anisotropic models depending on the eigenval-
ues and the eigenvectors of the shape operator STxM allow the preservation of the surface- or
curve-features. The work of Clarenz et al. [17] considers an anisotropic and nonlinear evolu-
tion of surfaces which decreases the motion speed in the vicinity of edges and corners. The
evolution is modeled in analogy to the anisotropic diffusion of Weickert [80] in the Euclidean
case and it therefore uses an anisotropic weighting in the coordinates of the principal direc-
tions of curvature to evaluate the evolution speed. The model being described in this work
for the processing of static images is closely related to the model by Clarenz et al. [17]. It is
the analogue to their model in the level-set context, which incorporates all the advantages
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which level-set methods have in contrast to explicit models: Topological changes and tan-
gential movements do not impose conflicts. All level-sets are treated simultaneously, which
makes the preceeding identification and extraction of particularly interesting surfaces from
a given data-set via a marching cube algorithm [54] obsolete. The important difference to
existing image processing methodology is, that the anisotropic geometric diffusion model is
capable of retaining structures of codimension 2 (i.e. corners/edges), whereas present models
are characterized by the preservation of codim 1 features (i.e. lines/planes).

For the parametric setting the convergence of a semi-implicit finite element scheme for
MCM was proven by Dziuk [29] already in 1991. The existence of viscosity solutions for the
level-set form of MCM was shown independently by Chen et al. [16] and Evans and Spruck
[32]. Deckelnick and Dziuk proved convergence of a finite element scheme for the level-set
form of MCM in [22, 23]. A more detailed review on the related work in the area of viscosity
solutions is given in Chapter 4, where the existence of viscosity solutions is shown for the
nonlinear anisotropic diffusion models.

1.4 Image-sequence processing

For the processing of image-sequences it is desired to take into account the information
contained in the additional dimension corresponding to the time of the sequence. One tries
to analyze the motion of the gray values within the sequence-time. This problem, also
known as the optical-flow problem, has been studied extensively in the past for sequences of
2D images [37, 5, 24, 31].

In the axiomatic work of Guichard [3] a classification of PDEs has been given for the
processing of sequences of 2D images. From a set of fundamental axioms his work derives
the model

∂tu− |∇u|F
[
div

( ∇u
|∇u|

)
, t, accel(u)

]
= 0,

which assumes the image-sequence is in Lambertian motion, i.e. the gray values do not change
along motion paths. Compared to the static image processing models (1.4) this evolution
depends additionally on the curvature of the trajectories accel(u) which corresponds to an
acceleration quantity (cf. Section 2.2.2).

Mikula et al. [71] presented an extension of the improved Perona-Malik model [15] toward
the processing of sequences of 3D images, by taking into account a modulation of the
diffusion speed in terms of the acceleration accel(uσ) of a regularized image uσ here written
as the curvature of the Lambertian trajectories clt:

∂tu− clt(uσ)div (G(|∇uσ |)∇u) = 0.

Their model increases the diffusivity if the acceleration is high, whereas for uniform motions
(clt(uσ) = 0) the equation is reduced to an algebraic identity. This may result in a loss of
motion information from the sequence, since highly accelerated trajectories are smoothed
significantly. The model behaves as an isotropic filter in the sequence time direction, since
it does not take the direction of motion into account as a smoothing direction.

The evolution problem for image-sequence processing considered in this work (cf. Sec-
tion 2.2) treats all image dimensions in an anisotropic way. This results in a model that
behaves anisotropic also in direction of the sequence-time, and therefore is much more ca-
pable of preserving accelerated motions.



Chapter 2

Anisotropic geometric diffusion in
image and image-sequence processing

T
HE FOLLOWING CHAPTER first presents the anisotropic geometric diffusion of
the level-sets of static images and then deals with image-sequences. When speaking
of static images, we mean mappings u : Ω → IR from a spatial domain Ω ⊂ IRd,

d = 2, 3 into the space of image intensities IR. In contrast to that we speak of image
sequences (also referred to as movies) u : I × Ω → IR, I ⊂ IR, if the mapping goes from a
spatio-temporal domain I × Ω into the space of intensity values IR. For static images, we
speak of 2D or 3D images, whereas we refer to image-sequences as (2+1)D or (3+1)D data.
The section on static images at the beginning of this chapter is followed by a discussion of
the optical-flow problem. Afterwards we go into the details of the image-sequence processing
model. A comparison of the model with existing methodology of image and surface evolution
closes the chapter.

As pointed out in the introduction, the presented methods are so called level-set meth-
ods which let all level-sets of an image u evolve simultaneously. This is an advantage to
parametric methods, if the level-value of interest is not known a priori. Of course a para-
metric representation of a single level-set can be extracted from the function u e.g. by the
marching-cube algorithm [54]. Vice versa from a parametric surface a level-set represen-
tation can be obtained by means of a signed distance function [40]. In the following we
focus on 3D images, while having in mind, that a reduction to 2D images is straight forward
(cf. Remark 2.3).

2.1 Anisotropic geometric diffusion of static images

Let the domain Ω ⊂ IRd for d = 2, 3 be bounded, with a Lipschitz boundary ∂Ω and let an
initial image be given in terms of the gray-value function u0 : Ω → IR. The level-sets of u0

are given by

M c(0) := {x ∈ Ω : u0(x) = c}.
We assume that the given image u0 is noisy, e.g. due to some measurement errors (cf. Chap-
ter 1), and we seek a multi-scale of smoother images {u(t, ·)}t≥0 with u(t, ·) : Ω → IR and
u(0, ·) = u0(·). As common in multi-scale methods the time t denotes the scale-parameter
and the family of filtered images delivers a family of filtered level-sets {M c(t)}t≥0 via

M c(t) := {x ∈ Ω : u(t, x) = c}.

As defined above M c(0) is the initial level-set described by u0. For the time being let us
assume that the images u(t, ·) are smooth and the gradient does vanish (i.e. ∇u(t, x) 6= 0 for
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all (t, x) ∈ IR+
0 × Ω). Thus, we can apply the terminology from Section 1.2 to the level-sets

of this image u. We relax the assumption of a non-vanishing gradient when considering
suitable regularizations later in Chapter 3.

We are looking for a morphologic smoothing process. Therefore the first choice would be
a mean-curvature-motion filter (cf. Section 1.3). But we moreover want the model to retain
(or even enhance) corners and edges of an image’s level-sets. As already mentioned in the
introduction, the features of surfaces are described by the principal directions of curvature
κi and the principal directions of curvature wi as eigenvalues and eigenvectors of the shape
operator STxM .

The idea for the envisaged evolution is to model the diffusion-tensor such that it depends
on the principal curvatures κi and the principal directions of curvature wi, i = 1, 2. In
contrast to the mean curvature motion we would like to take an anisotropic weighting of the
principal directions of curvature into account. For MCM the speed of the diffusion depends
only on the mean curvatureH = tr(STxM ), but in our anisotropic model the evolution-speed
shall be reduced significantly in presence of an edge or corner feature. We model this by
introducing a weighting of the eigenvalues κi of the shape operator in coordinates of the prin-
cipal directions of curvature wi. This means, that in the vicinity of an edge (i.e. κ1 � κ2),
we prescribe a small diffusion coefficient in direction of the dominant curvature vector w1,
which points across the edge, and a larger fixed diffusion coefficient in direction of w2, i.e. in
the subdominant direction of curvature, which lies tangentially to the edge (cf. Figure 1.4).
The mechanism steering the weighting of the curvatures is obtained by the function

Gλ(s) :=
1

1 + s2/λ2
for λ ∈ IR+, (2.1)

applied to the κi, i = 1, 2. If the situation is locally spherical, i.e. κ1 = κ2, the weights
delivered by Gλ coincide: Gλ(κ

1) = Gλ(κ
2) and the weighting should become isotropic as

in MCM.

Remark 2.1. The function G which steers the evaluation of the curvatures is well known in
image processing. In the prominent Perona-Malik diffusion [64, 15], it plays the role of an
edge indicator together with the gradient of the image. We emphasize that for their model
the parameter λ ∈ IR+ is exactly the switch between forward and backward diffusion [49].

Obviously, the evaluation of the shape-operator, which is calculated from the second
derivatives of the image u, is an unstable process on noisy images. For non-morphologic
methods (e.g. the Perona-Malik model) noise leads to high gradients and therefore the
possible detection of false edges. Here the detection of corners and edges of the level can
also be erroneous with respect to the true corners and edges of the initial image u0. As
a consequence we consider regularizations of the shape operator STxM , before evaluating
its eigenvalues and eigenvectors. The anisotropic weighting of the curvatures will be done
in terms of these regularized shape operators. In the following, regularized quantities are
denoted with a superscript σ, and σ is the parameter controlling the regularization process.

Let us now suppose, we have regularized the shape operator STxM leading to a symmetric
endomorphism

Sσ
TxM σ : TxM σ → TxM σ

with TxM σ
= span{w1,σ , w2,σ}

on a regularized tangent space TxM σ
. By construction Sσ

TxM σ diagonalizes with respect to

the basis {w1,σ , w2,σ} and we extend the new operator to entire IR3 with the mapping

Σ : IR3 → IR3, Σ :=

(
Sσ
TxM σ 0

0 0

)
(2.2)
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in coordinates {w1,σ , w2,σ , Nσ} of the regularized principal curvatures w1,σ, w2,σ and the
regularized normal Nσ ⊥ w1,σ , w2,σ. We call Σ the extended regularized shape operator.
Clearly Σ diagonalizes with respect to the basis {w1,σ, w2,σ , Nσ} and its eigenvectors are
{κ1,σ , κ2,σ, 0}.

Now we are ready to state the anisotropic geometric diffusion problem (cf. [67]):

For given u0 : Ω → IR find a function u : IR+×Ω → IR which is a viscosity solution
of the following evolution problem

∂tu− |∇u|div

(
a(Σ)

∇u
|∇u|

)
= 0 in IR+ × Ω,

a(Σ)
∂u

∂ν
= 0 on IR+ × ∂Ω, (2.3)

u(0, ·) = u0(·) in Ω,

where ν denotes the outer normal to Ω. The diffusion tensor is defined via

a(Σ) = (w1,σ , w2,σ, Nσ)



Gλ(κ

1,σ)
Gλ(κ

2,σ)
0


 (w1,σ , w2,σ, Nσ)T ,

where Gλ is the well known Perona-Malik function (2.1), and (w1,σ, w2,σ , Nσ)T

is the basis transformation from the standard Euclidean basis to the orthonormal
frame {w1,σ, w2,σ , Nσ}.

In the coordinates {w1,σ, w2,σ , Nσ} the diffusion tensor a(Σ) has the diagonal form
diag(Gλ(κ

1,σ),Gλ(κ
2,σ), 0). Moreover, since Nσ ∈ ker a(Σ), the diffusion tensor

a(Σ)
∣∣∣
TxM σ : TxM σ → TxM σ

is a positive definite endomorphism on the tangent space TxM σ
. Depending on the curva-

tures κ1,σ, κ2,σ the principal directions w1,σ, w2,σ are weighted by the function Gλ.
The problem defined in (2.3) is degenerate in normal direction as we will see be-

low. Obviously it is crucial to the model that the diffusion tensor a depends on a
regularized shape-operator Σ. Otherwise we have ker a(STxM ) = span{N} such that

div
(
a(STxM )∇u/|∇u|

)
= 0 — the evolution would run with zero velocity, hence resting

at the initial image u0. The importance of the dependence of the diffusion tensor on reg-
ularized quantities has already been observed for the anisotropic Weickert-diffusion in [80].
Below we will see that for our model the difference between regularized and non-regularized
quantities is steering the evolution.

The MCM evolution is already a problem which is degenerate in normal direction: Taking
into account the relation (1.2) we can write the MCM in level-set form [61] as

0 = ∂tu− |∇u|div

( ∇u
|∇u|

)
= ∂tu− |∇u|tr(DN)

= ∂tu− |∇u|tr
(

1

|∇u|

(
Id − ∇u⊗∇u

|∇u|2
)
D2u

)

= ∂tu− tr

((
Id − ∇u⊗∇u

|∇u|2
)
D2u

)
,

where Id − |∇u|−2∇u ⊗ ∇u = Id − N ⊗ N is the projection onto the tangent space.
Analogously, starting from (2.3) and assuming enough regularity for a(Σ) we see that the
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anisotropic level-set problem (2.3) can be written as

0 = ∂tu− |∇u| div(a(Σ)N) = ∂tu− |∇u|
(
(divA(Σ)) ·N + tr(a(Σ)∇N)

)

= ∂tu− (div a(Σ)) · ∇u− tr

(
a(Σ)

(
Id − ∇u⊗∇u

|∇u|2
)
D2u

)
,

(2.4)

with

div a(Σ) =




d∑

j=0

∂j(a(Σ)ij)



i

.

Thus, also the new model considers considers only the projection of the second derivative
onto the tangent space — it is degenerate in normal direction. Moreover, in general we
cannot assume that the regularized tangent space TxM σ

coincides with the original tan-
gent space TxM . Therefore we cannot guarantee that a(Σ) still acts as a positive definite
endomorphism on TxM . Indeed, we could have Nσ ∈ TxM , which could degenerate the
problem even more. To avoid instabilities we add a small weight α� 1 in normal direction
and thus substitute

a(Σ) ; aα(Σ) = (w1,σ, w2,σ , Nσ)



Gλ(κ

1,σ)
Gλ(κ

2,σ)
α


 (w1,σ, w2,σ , Nσ)T .

However, in our computations we have not experienced any instabilities with the original
model. Consequently we stick to the original diffusion tensor.

Let us characterize the behavior of the anisotropic geometric diffusion with respect to the
evolution of the level-sets in normal-direction:

Theorem 2.2. The anisotropic geometric evolution (2.3) is equivalent to the propagation
of the level-sets M c(t) with normal velocity

f = tr (a (Sσ − S)) + (div a(Σ)) (Nσ −N) , (2.5)

where we have used the definition Sσ = DNσ. Thus, for a parameterization x(t) of the
level-set M c(t) the following holds:

∂tx = fN.

Proof. Let us examine the divergence term of the evolution problem. As above, we can
perform the differentiation to obtain

div(a(Σ)N) = (div a(Σ)) ·N + tr (a(Σ)DN) (2.6)

= (div a(Σ)) ·Nσ − (div a(Σ)) ·Nσ + (div a(Σ)) ·N + tr (a(Σ)DN)

= div(a(Σ)Nσ) − tr (a(Σ)DNσ) + (div a(Σ)) · (N −Nσ) + tr (a(Σ)DN) ,

where we used the relation (div a(Σ)) · N σ = div(a(Σ)Nσ) − tr(a(Σ)DNσ). And because
Nσ ∈ ker a(Σ), we deduce

div(a(Σ)N) = 0 − tr (a(Σ)DN σ) + tr (a(Σ)DN) + (div a(Σ)) · (N −N σ)

= −tr (a(Σ) (DN −DNσ)) + (div a(Σ)) · (N −Nσ) .

So, the anisotropic geometric level-set problem in IR+ × Ω can be written as

∂tu+ |∇u|
(
tr (a(Σ) (DN −DNσ)) − (div a(Σ)) · (N −Nσ)

)
= 0.

And due to the equivalence of the level-set evolution ∂tu + |∇u|f = 0 and its parametric
version ∂tx = fN (cf. e.g. [74]) the assertion of the theorem is verified.
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In the last theorem we have defined Sσ = DNσ, but before we have been working with Σ,
which coincides with Sσ

TxM σ = [S(Id − N ⊗ N)]σ on the regularized tangent space TxM σ
.

In general we have

Sσ(Id −Nσ ⊗Nσ) 6= [S(Id −N ⊗N)]σ =: Σ.

To verify this claim, let us recall, we have assumed that Σ diagonalizes with respect to
the basis {w1,σ , w2,σ , Nσ}. In case we obtain Σ by evaluating the curvatures on a globally
pre-filtered image uσ with the definitions

Nσ(x) :=
∇uσ(x)
|∇uσ(x)| and Σ(x) := DNσ(x)

(
Id −Nσ(x) ⊗Nσ(x)

)
,

for each x ∈ Ω we obviously have Σ ≡ Sσ(Id − Nσ ⊗Nσ). But for local regularizations in
each x0 ∈ Ω and a separate evaluation of the shape operator on the local projections we
have uσx0

(y) and define

Nσ(y) :=
∇yu

σ
x0

(y)

|∇yuσx0
(y)| and Σ(x) := DyN

σ(y)
(
Id −Nσ(y) ⊗Nσ(y)

)∣∣∣
y=x0

,

for which in general Σ 6= Sσ(Id − Nσ ⊗ Nσ). However there are configurations for which
equality still holds. These configurations and the different forms of regularizations are
discussed in detail in Section 3.3.

From Theorem 2.2 we have learned how the speed of the evolution depends on the differ-
ence between regularized and non-regularized quantities. Since the evaluation of the shape
operator is based on second derivatives, whereas the computation of the normals rests on
first derivatives, we expect for noisy images that

‖Sσ(x) − S(x)‖ � ‖Nσ(x) −N(x)‖ for x ∈ Ω.

Thus, the trace-term tr (a(Σ) (Sσ − S)) is be dominant which allows the following charac-
terization:

The anisotropic geometric level-set evolution is mainly steered by the difference
between a shape operator Sσ on regularized data and the true shape operator S
weighted by the coefficients of the diffusion tensor a(Σ).

Let us remark that the evolution speed vanishes for N σ(x) = N(x) and Sσ(x) = S(x). As
we see in the sequel this leads to a rich class of invariant shapes under the evolution.

Remark 2.3. Although we have based the exposition in this section on 3D images, we also
consider examples of the analogous problem in 2D. It is clear that in the 2D case the level-
sets are curves, which we characterize by one curvature quantity κ. Everything said so far
regarding regularizations still applies in the 2D setting and clearly the evolution is steered
by a diffusion tensor, which has the form

a(Σ) = (w1,σ , Nσ)

(
G(κσ)

0

)
(w1,σ , Nσ),

where κσ (which in this case is equal to Sσ
TxM σ) is the regularized curvature and w1,σ =

(Nσ)⊥ the tangent to the regularized level-sets.

The following figures demonstrate the performance of the method. In all applications,
the domain is Ω := [0, 1]d and the grid-width for the computations is set to h = 2−8. As
a test case, Figure 2.1 shows the anisotropic geometric diffusion of a noisy data-set, whose
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Figure 2.1: The anisotropic geometric model has been applied to a sample data-set. The
level-sets of the initial data are squares which are disturbed randomly in normal direction
(see text). From left to right the initial image and several scale steps from the evolution
are shown. In the top row the images are displayed, whereas in the bottom row extracted
sub-level-sets {x : u(x) ≤ .43} from the corresponding images are shown.

level-sets are 2D squares, under the anisotropic geometric diffusion. The smooth initial data
is given by ũ0(x) := |x|1. The level-sets of this function are perturbed by a random factor
rand(x) ∈ [−12h, 12h] in in their normal direction:

u0(x) :=

∣∣∣∣x+ rand(x)
∇ũ0(x)

|∇ũ0(x)|

∣∣∣∣
1

. (2.7)

Thus, the initial image for the evolution consists of level-sets, which are noisy squares. Figure
2.1 shows the noisy initial image and different scale steps from the evolution. Additionally
a single sub-level-set has been extracted to show the preservation of the squares’ corners
better.

In Figure 2.2 the evolution of a 3D test data-set of size 653 (i.e. the grid-width is h = 2−6)
is shown. Similar to the 2D case, the level-sets of the initial image consists of perturbed
octahedrons, but the perturbation is not restricted to the normal direction. Thus, the noisy
initial data is

u0(x) := |x+ rand(x)|1.

Figure 2.2 shows again several scale-steps of the evolution and additionally describes the
evaluation of the curvatures of the level-sets. It is clearly visible how features of the level-sets
are being retained.

Furthermore we apply the anisotropic geometric diffusion model to a real 3D data-set
resulting from echo-cardiography of the human heart (cf. Figure 2.3). From the image-
sequence which was acquired with a 3D ultrasound device during one cardiac cycle of the
heart, we have taken one fixed image as the input to the model described here. The whole
series consists of 16 images of size 1293 (i.e. the grid-width is h = 2−7). For several scale-
steps of the evolution the figure shows always the extraction of the same iso-surface which
corresponds to the blood concentration in the heart. Features clearly visible to the human
eye in the noisy initial data-set are being retained, while the noise is significantly reduced
with increasing scale.
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Figure 2.2: The evolution of the octahedron data-set under the new model is considered.
From left to right the noisy initial data and three scale-steps of the evolution are shown. In
the top row, the extraction of the same iso-surface from the data is shown, whereas the bottom
row illustrates the evaluation of curvature on the corresponding level-sets (cf. Section 3). A
color ramp from blue (=small) to red (=high) indicates the value of the dominant curvature.
The corners and edges of the original data are retained in a very good way during the
evolution.

Figure 2.3: From left to right several scale steps of the application of the anisotropic geo-
metric diffusion to a real 3D ultrasound data-set are shown. Always the same iso-surface
(corresponding to the blood concentration in the left ventricle of the heart) was extracted
from the data-sets. The level-set of the noisy initial data (left) carries edges, which are kept
during the process (see lower right area of the volume). The additional small volumes in
front of the main iso-surface correspond to the blood in the other ventricle of the heart.

The application of the diffusion model to a real data-set is shown in Figure 2.4. Again
several scale steps of the evolution are displayed. In the introduction several other image
processing models have been shown with the same initial data (cf. Figures 1.2, 1.3, and
1.5). A comparison of the model with the existing methodology which we have discussed
in the introduction is given in Figure 2.5. The differences between the models are clearly
visible from the magnified parts of the resulting images after the 10th scale step, which
are shown in the Figure. Since the contrast of the image is very high for example at the
boundary between the mountain and the sky, the non-morphological Perona-Malik model
and the Weickert diffusion give good results. The anisotropic geometric diffusion keeps the
corner of the shape of the objects very good in contrast to the mean-curvature motion.
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Figure 2.4: The evolution of a real data-set under the new model is shown. From left to
right several scale-steps of the diffusion of the noisy image shown on the left in Figure 1.1
are shown. A detailed comparison of different image processing models is shown in Figure
2.5.

Figure 2.5: A comparison of different models applied to the noisy data-set shown on the left
in Figure 1.1 is displayed. From left to right the result from the Perona-Malik model, the
Weickert diffusion, MCM and the anisotropic geometric diffusion model are shown. The top
row shows the results of the different diffusion-models after 10 scale steps. The middle and
the bottom row show magnified sections from the results in the top row. One clearly sees the
difference between the Perona-Malik model and the Weickert diffusion, with its tangential
smoothing. In contrast to MCM the anisotropic geometric model keeps the sharp edges of the
shape of the trees and the mountains. For this application the non-morphological Perona-
Malik model and the Weickert diffusion give very good results, since the contrast – and thus
the gradients – in the image is quite high.
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2.2 Extracting motion velocities — optical-flow

We leave the processing of static images now and start working with image-sequences. The
goal is to augment the anisotropic geometric diffusion for static images, which has been
presented in the last section. The analysis of the underlying motion of the images (the
optical-flow problem) is indispensable for the construction of an anisotropic model, which
takes into account a nonlinear diffusion in the direction of this motion.

As already explained in the introduction, image-sequences result from the observation of
a time-dependent physical process. An image acquisition device (e.g. MRI, CT, ultrasound,
or a standard camera) takes static images ui : Ω → IR at certain (usually equally distant)
times si ∈ I within the observation interval I ⊂ IR. We call the these single static images
ui, which constitute the image-sequence, the frames of the sequence. For the subsequent
analysis it is convenient to relax this setting. Let us assume that the image-sequence data
is continuous in time and space. Thus, we are working with a family of images on a time
interval I := [0, T ], T ∈ IR+, which is smooth in time and space. We denote this continuous
sequence by

u : I × Ω → IR, (s, x) 7→ u(s, x),

and we call
u(s) : Ω → IR, x 7→ u(s, x),

the frame at time s of the image-sequence. Here, again Ω ⊂ IRd, d = 2, 3 is the spatial
domain, which we assume to be fixed over time. Time variables are denoted by r or s,
whereas x and y are spatial coordinates. Below, the multi-scale parameter is again denoted
by t. We refer to the time of the image-sequence always as the sequence-time, whereas the
evolution-time stays the scale just as before.

The focus now lies on the analysis of the intrinsic motion in the image-sequence. As
before, we are interested in the iso-surfaces, for c ∈ IR thus

M c,s := {x ∈ Ω : u(s, x) = c}.

If the considered image-sequence is smooth and, as usually the case, non constant in time,
the level-sets M c,s change smoothly in time, too. Clearly we have the notions of a normal
N = N(s, x) of the level-set and the tangent space TxM c,s as before. One wants to express
the motion of the level-sets in space and time (also referred to as optical-flow) by the vector
field

v : [0, T ] × Ω → IR3 (s, x) 7→ v(s, x).

such that a single trajectory {x(s)}, describing the path of a single point in space-time, is
given by

ẋ(s) = v(s, x(s)).

At any point x = x(s) ∈ M c,s, we can project the velocity onto the tangent space TxM c,s

and the normal space span{N(s, x)} and thus obtain a splitting of v = vn+vtg into a normal
component vn and a tangential part vtg:

vn(s, x) := v(s, x) ·N(s, x)N(s, x) and vtg(s, x) := v(s, x) − vn(s, x).

The optical-flow problem consists of the extraction of the velocity from the given image
data. Early work on the optical-flow problem in a variational framework goes back to
Horn and Schunck in 1981 [41]. Since then, the optical-flow problem has been considered
widely for (2+1)D image-sequences [60]. A standard assumption easily leads to a formula
describing the normal velocity vn. Unfortunately, a formula for the tangential part is not
obtained that easily. Rather the extraction of tangential components of v turns out to
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be an ill-posed task, since tangential movements correspond to reparameterizations of the
level-sets, which are impossible to observe. To treat this ill-posedness, various regularization
techniques have been derived. For example one can consider elastic stresses or viscous fluid
effects to aim for tangential components of v [33, 13, 47]. These approaches work well
in case of large deformations, but are computationally expensive. Stochastical approaches
have been considered as well [9, 55]. Various other techniques in the related area of image
matching have been developed [77, 75, 28], where, however, one has only two images: a
reference and a template image. The goal is to find a deformation which maps the template
image onto the reference image.

2.2.1 Normal velocity

In the following we make different assumptions on the underlying image-sequence. This
enables us to derive equations which describe the motion:

(A1) Intensities are preserved along motion trajectories:

u(s0, x(s0)) = u(s0 + τ, x(s0 + τ)) for − s0 ≤ τ ≤ T − s0.

This assumption is reasonable since it is related to the invariance of the image
acquisition device, which measures physical quantities like density and con-
centration. If this physical quantity moves in time, so does the corresponding
image intensity, since at any time s same densities are mapped to the same in-
tensities. With this assumption we rule out image-sequences in which e.g. the
observed objects changes luminosity, shadows or opacity within time. In the
literature [37, 71, 58] this assumption is referred to as Lambertian motion
assumption or brightness conservation constraint equation (BCCE).

The first assumption (A1) provides us with a condition for the normal part vn := v ·N N of
the velocity. Since we have assumed smoothness of the sequence, we can define the normal N
and tangent space TxM to a level-set — as before in the setting for static images. Starting
from a point x0 := x(s0) ∈ Ω within a frame u(s0) we differentiate (A1) with respect to τ
and obtain

∂τ

(
u(s0 + τ, x(s0 + τ)) − u(s0, x0)

)∣∣∣
τ=0

= 0 ⇒ ∂su(s0, x0) + ∇u(s0, x0) · v(s0, x0) = 0.

Assuming |∇u(s0, x0)| 6= 0 and dividing by |∇u(s0, x0)| we obtain an expression for the
normal velocity

vn(s0, x0) = v(s0, x0) ·N(s0, x0)N(s0, x0) = − ∂su(s0, x0)

|∇u(s0, x0)|
N(s0, x0).

If we knew that v is orthogonal to the level-sets, by additional assumptions on the observed
underlying physical process, we would have v = vnN . In this case the motion would be com-
pletely described by the above equation. Such settings are considered in some applications
at the end of this section.

2.2.2 Apparent velocity

In general one cannot assume that the tangential component vtg vanishes. But extracting
these tangential motions is an ill-posed task. Consider, for example, a parameterized curve
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C(s, p) : [0, T ) × S1 → IR2 which moves in time s according to

∂C

∂s
= v with v = vnN + vtgN

⊥,

and an arbitrary reparameterization C̃(s, p) = C(s, p̃(s, p)). Then the reparameterization
corresponds to a tangential motion, because

∂C̃

∂s
=
∂C

∂s
+
∂C

∂p

∂p̃

∂s
= vnN + vtgN

⊥ +
∂C

∂p

∂p̃

∂s
= vnN + vtgN

⊥ +
∂p̃

∂s

∂l

∂p
N⊥,

where we used the fact that for the arclength l the relation

∂C

∂p
=
∂C

∂l

∂l

∂p
=
∂l

∂p
N⊥

holds [27]. Thus, the reparameterization corresponds to the tangential motion w := ∂ep
∂t

∂l
∂pN

⊥

which does not change the curve as can be seen easily from the level-set formulation: Let
M c be the level-set defining the curve C. As above, we have for any x ∈ M c

u(s, x(s)) = c ⇒ ∂su+ ∇u · ∂sx = ∂su+ ∇u · v = 0,

but since ∇u||N , we have w ·∇u = 0. Consequently, tangential motions of level-sets cannot
be extracted from an image-sequence since they only change parameterizations of the level-
sets, still defining the same sets in IRd.

With the following assumption we restrict the set of possible tangential velocities which
leads us to the notion of the apparent velocity.

(A2) Locally the underlying motion is a translation:

N(s0, x(s0)) = N(s0 + τ, x(s0 + τ)) for − s0 ≤ τ ≤ T − s0.

Assuming that the scenery consists of solid objects being translated in space,
this assumption is of course fulfilled.

This time we differentiate (A2) with respect to τ and evaluate the result at τ = 0 to
obtain

∂τN(s0 + τ, x(s0 + τ))
∣∣∣
τ=0

= 0 ⇒ ∂sN(s0, x0) +DN(s0, x0)v(s0, x0) = 0. (2.8)

We analyze this equation more closely: We already know from Section 1.2 that
DN = S : IR3 → TxM . Moreover ∂sN ⊥ N , because

0 = ∂s(N ·N) = 2∂sN ·N,

and therefore ∂sN is also contained in the tangent space TxM . Thus, equation (2.8) can be
interpreted pointwise as an equation on the tangent space, and we write

∂sN(s0, x0) + STxM vtg(s0, x0) = 0,

because STxM := S(Id −N ⊗N) = S|TxM . Now, if the shape operator STxM is invertible,
we can solve this equation for vtg to obtain

vtg(s0, x0) = −S−1
TxM ∂sN(s0, x0). (2.9)
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Figure 2.6: Left: In case of an (infinitely extended) moving cylinder the velocity component
vaxial parallel to the axis of the cylinder can not be extracted. The image-sequence is indeed
invariant under motions along this axis. This corresponds to the fact that the axis of the
cylinder is the principal direction of curvature for the eigenvalue zero. Right: From the set
of all possible solutions the apparent velocity vapp is the one minimizing the variations of
the normal in direction of the trajectory (cf. Guichard [37]).

At this point it becomes clear, which circumstances allow us to speak of a tangential ve-
locity: If the shape operator STxM is invertible, assuming the presence of local translations,
we can define a tangential velocity vtg by means of the latter formula. The invertibility
of STxM implies that its eigenvalues do not vanish. Since the eigenvalues are the principal
directions of curvature of the level-set a necessary condition for the extraction of vtg is a
non-vanishing Gaussian curvature (K = κ1κ2) of the level-surfaces. Such a situation may
correspond to the presence of a surface feature such as a corner or an edge. In contrast to
that we know that for a non-invertible shape operator the level-set is flat in at least one
direction (cf. Figure 2.6). For example we can imagine (infinitely extended) concentric
cylinders, moving in time and this way generating an image-sequence. On one hand we
cannot see this motion, if the cylinders move in direction of their axis. On the other hand
the direction of their axis is the principal direction in which the cylinders are flat, i.e. their
curvature is zero. For situations which are locally like this cylindrical case, we cannot expect
to be able to extract the tangential motion. For planar cases (κ1 = κ2 = 0), where both
curvatures vanish, the extraction of tangential motions is impossible as well.

As a logical consequence of this example, we would like to treat situations, which are lo-
cally like the cylindrical or planar case, such that our definition of the tangential velocity still
makes sense. Here we use a tool from numerical linear algebra, where the inversion of singu-
lar systems of equations is treated by the singular value decomposition or the pseudo-inverse
[25]. If in our case the Shape operator STxM is singular (corresponding to the cylindrical or

planar case), we replace the inverse S−1
TxM in the definition (2.9) of the tangential velocity vtg

by its pseudo-inverse S†

TxM . For any matrix W ∈ IRn×m the pseudo-inverse W † is uniquely

defined by the Penrose axioms

(W †W )T = W †W, (WW †)T = WW †, W †WW † = W †, WW †W = W.

From these axioms one derives that W †W is an orthogonal projection from Rm onto {v ∈
IRm : Wv = 0}⊥. In view of numerical approximations and noisy image data, we modify

this definition slightly, by considering a projection S†

TxM STxM from IRd onto the space

Tδ := span{wi : |κi| > δ, i = 1, 2}.
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Thus, S†

TxM inverts STxM only on Tδ, i.e.

S†

TxM = (w1,σ , w2,σ)

(
fδ(κ

1,σ) 0
0 fδ(κ

2,σ)

)
(w1,σ , w2,σ)T with fδ(s) =

{
1
s if |s| > δ,

0 else,

and so

S†

TxM STxM =

{
Id on Tδ,

0 else.

Obviously for invertible Shape operator and δ = 0 the pseudo inverse S †

TxM coincides with

the inverse S−1
TxM . Finally we have the definition

vtg(s0, x0) = −S†

TxM ∂sN(s0, x0),

which in regular situations with invertible Shape operator and for δ = 0 gives us a continuous
tangential velocity vtg. However, we emphasize here that for δ > 0 the resulting tangential
velocity need not be continuous.

Together with the equation for the normal component we obtain the following formula

vapp(s0, x0) = −
(
∂su

|∇u|N + S†

TxM ∂sN

)
(s0, x0), (2.10)

which defines the so called apparent velocity. It is a generalization of the velocity which was
derived for 2D image-sequences by Guichard in [36, 37]. Equation (2.10) is valid for d ≥ 2,
since it involves the intrinsic geometric shape operator STxM . Finally we can characterize

the apparent velocity as follows for δ = 0 and existing inverse S−1
TxM :

From the set of all possible tangential motions the apparent velocity vapp selects
the one that corresponds to a translation of the normal. Thus, it minimizes the
variations of the normal along the trajectories of the level-sets (cf. Figure 2.6).

The fact, that the apparent velocity minimizes the variations of the normal along trajec-
tories is a direct consequence of its construction. Denoting the material derivative (i.e. the
space-time derivative along trajectories) with D

∂s we have

D

∂s
N := ∂sN +DNvapp = ∂sN −DN

(
∂su

|∇u|N + S−1
TxM ∂sN

)
,

but according to (2.8) ∂sN = −DNvapp and so

D

∂s
N = 0. (2.11)

Still we stick to the assumption that the definition of a normal is possible, i.e. the spatial
gradient of the images does not vanish. This assumption is dropped as soon as the apparent
velocity is going to be regularized in an appropriate way in Section 3. Let us finally ensure
that the apparent velocity indeed is a morphological quantity.

Lemma 2.4. The apparent velocity vapp depends only on the morphology of the image.

Proof. We are going to show that the apparent velocity vapp is invariant under a strictly
monotone C1-transformation h : IR → IR of the gray-value. To this end let us consider the
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Figure 2.7: The extraction of motion velocities from a 2D sample data-set is displayed. From
left to right several frames of the sequence are shown, whose level-sets are squares bouncing
at some invisible object. The top row shows the images of the sequence, and in the middle
row the extraction of always the same level-set from the frames is shown. Finally the bottom
row shows the extracted velocities. The computations were performed on a 33 × 33 grid.

terms in (2.10) separately and denote the quantities resulting from the transformed image
with a tilde (˜). We already know from Section 1.2 that

S̃TxM = STxM

and therefore using h′ > 0

ṽtg = S̃TxM
†
∂sÑ = S†

TxM
h′(u)

|h′(u)|∂sN = S†

TxM ∂sN = vtg.

Analogously for the normal component we have

ṽn =
∂sh(u)

|∇h(u)| Ñ =
h′

|h′|
∂su

|∇u|
h′

|h′|N =
∂su

|∇u|N = vn,

and so ṽapp = vapp.

In Figure 2.7 the extraction of velocities of a sample 2D data-set is shown. The image-
sequence consists of 40 frames

u(si, x) := |x− d(si)|, i = 1, . . . , 40, with d(si) =

{
si if si < 20,

40 − si else,

i.e. d(s) models the bouncing of the images at the upper boundary. Each level-set traced
during the image-sequence therefore shows a circle bouncing at some invisible object at the
top of the domain.

The application of the optical-flow extraction to a real data-set is shown in Figure 2.8.
The classical taxi-sequence is one of the standard applications in the image processing
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Figure 2.8: The extraction of velocities from the classical taxi-sequence data-set is shown.
The top row shows several frames from the sequence, whereas the extracted velocities are
drawn in the bottom row.

community. However, we are not going to compare our results from the taxi sequence with
existing methodology, since the main scope of the approach are 3D applications.

A sample 3D image-sequence is considered in computations whose results are depicted in
Figure 2.10. The image-sequence consists of ellipsoidal level-sets, which oscillate over one
half-axis in time. Thus, each frame of the sequence is given by

u(s, x) :=
x2

1

a(s)
+

x2
2

b(s)
+ x2

3, with a(s) = 4s− (1 − s), b(s) = s− 4(1 − s)

for sequence times s ∈ [0, 1]. Figure 2.9 shows on a certain level-set the splitting of the
velocity into the normal and the tangential component.

Figure 2.11 shows the extraction of velocities from the observation of a porous medium
flow experiment. The saltpool experiment [62] consists of a cubical container containing
small solid balls, thus modeling a porous medium. First the container is filled with fresh
water. Then a hole is opened at the bottom of this container and a salt-concentration is
flowing in. Finally an outlet is opened at one of the top corners of the container through
which the liquid leaves the pool. During the experiment the salt concentration is measured
using a MRI device and the resulting image-sequence is taken as an input for the velocity
extraction. Since the porous medium flow obeys Darcy’s law, we conclude that in this simple
setting the flow is aligned with the concentration gradient, i.e. the normal to the level-sets.
Therefore in this case it is indeed sufficient to extract the normal velocities from the given
image-sequence.

The processing of a medical data-set is shown in Figure 2.12. From the noisy ultrasound
image-sequence showing the human heart during one cardiac cycle the motions of the level-
sets of the blood concentration have been extracted. Since the image data is very noisy
each frame has been treated with the level-set method for anisotropic geometric diffusion
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Figure 2.9: For one frame of the image-sequence showing oscillating ellipsoidal level-sets, the
splitting of the apparent velocity into its normal (blue arrows) and tangential (red arrows)
component is shown. The color coding from blue to green to red indicates the absolute value
|vtg| of the tangential velocity.

Figure 2.10: Velocities have been extracted from a 3D sample data-set. The image-sequence
shows level-sets which are ellipsoids oscillating over one half axis (see text). From left to
right several frames of the sequence are shown. Always the same iso-surface was extracted
and — to emphasize the 3D character of the data — drawn together with a slice through the
volume. In the top row the color coding shows the normal component of the velocity vn (blue
= moving inward, red = moving outward). In the bottom row the color ramp from blue to
green to red shows the absolute value of the tangential component |vtg|.

(cf. Section 2.1) in advance. This can be considered as a sophisticated kind of regularization
which however does not take the sequence character of the images into account. The splitting
of the apparent velocity vapp into the normal and the tangential component is demonstrated
in Figure 2.13, where the regularizing effect of the pseudo-inverse is shown.
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Figure 2.11: A real 3D data-set is considered as the input for the motion extraction process.
The physical experiment being observed is the flow of a fluid in a porous medium container.
From top left to bottom right several stages of the experiment are depicted. Always the same
level-set has been extracted from the data. Again the color-coding shows the normal velocity
of the iso-surfaces (cf. Figure 2.10). The upper row shows data from the first stage of
the experiment, where a salt concentration flows into a pool filled with fresh water. In the
lower row the second part of the experiment is shown, where the fluid leaves the container
through a hole at the top left corner. All computations were performed on a 653 grid. The
experimental data has been used by courtesy of S. Oswald [62].

Figure 2.12: From an echo-cardiographical data-set, showing the left ventricle of the human
heart during one cardiac cycle, velocities of the level-sets have been extracted. From top left
to bottom right a color coding (cf. Figure 2.10) shows the normal component of the velocity
always on the same iso-surface of different frames of the sequence. Each frame has been
processed with the anisotropic geometric diffusion method for static images. The splitting of
the apparent velocity into its normal and tangential component is shown in Figure 2.13. All
computations have been performed on a 1293 grid. The data has been used by courtesy of C.
Lamberti from DEIS, Bologna University.
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Figure 2.13: For one frame of the ultrasound data-set the splitting of the apparent velocity
vapp into its tangential and normal component is shown. The top row shows the absolute
value |vtg| of the tangential velocity with a color coding from blue to green to red, whereas
the bottom row shows magnified sections of the extracted iso-surfaces. Arrow symbols show
the tangential (red arrows) and the normal (blue arrows) part of vapp. From left to right the
threshold value δ for the computation of the pseudo inverse of the regularized shape operator
Σ† (cf. Section 3) is 0.1, 1 and 10, corresponding to local radii r := 1/δ of the objects being
damped out, while the computational domain is Ω = [0, 1]3. Clearly the tangential motion
becomes more regular, as the threshold δ suppresses more and more geometric noise.
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2.2.3 General motions

The apparent velocity is based on the assumption that the underlying motion is locally a
translation. Based on this assumption we could state the local invariance of the normals
along motion trajectories (A2) and from that derive a formula for the tangential part vtg. Let
us for a while consider motion described by an arbitrary vector field. As already discussed
in the last section the extraction of the motion velocities is an ill-posed task, because for any
given v respecting the gray value invariance (A1) we can add any w ∈ TM from the tangent
bundle, with v+w generating the same image-sequence: There is no continuous dependence
of the solution of the optical-flow problem on the input data and the resulting vector-fields
can become arbitrary irregular. From the set of all possible solutions, the apparent velocity
vapp is one choice which minimizes the variations of the normal (cf. (2.11)) by definition and
due to assumption (A2). In the following paragraph we try to relax this assumption (A2)
and take general motions into account. Unfortunately, this still gives no more information
on the tangential velocity but leads to a condition for the equality v = vapp, moreover it does
not deliver a comparison between the real velocity and the apparent velocity for arbitrary
motions.

The velocity v induces a flux for the points x0 = x(s0) ∈ Ω contained in a level-set M (s0),
which is denoted by

Θτ (s0, x0) = x(s0 + τ) with ẋ(r) = v(r, x(r)).

This flux also describes the deformation of the image frame u(s0) to the frame u(s0 +
τ). Of course the normals of the level-sets deform according to the flux. Precisely, the
transformation of the normals is controlled by the transposed inverse of the Jacobian of the
flux:

N(s0 + τ, x(s0 + τ)) =
(∇Θτ )

−TN

|(∇Θτ )−TN |(s0, x0). (2.12)

For the following analysis it is convenient to consider a first order series expansion of the
flux’ Jacobian:

∇Θτ = Id + τ∇v + o(τ 2),

and thus, for the transposed inverse of the Jacobian of Θτ

(∇Θτ )
−T = Id − τ(∇v)T + o(τ2).

Now, we differentiate the identity (2.12) above, written as

|(∇Θτ )
−T (s0, x0)N(s0, x0)| N(s0 + τ, x(s0 + τ)) = (∇Θτ )

−T (s0, x0)N(s0, x0), (2.13)

with respect to τ and evaluate it at the starting point, i.e. τ = 0. Recalling that for any
vector-valued mapping W (τ) the derivative of the norm of W can be computed with

∂τ |W (τ)|
∣∣∣
τ=0

=
W (0)

|W (0)| ·
(
∂τW (τ)

∣∣∣
τ=0

)
,

we can compute the first factor in the left-hand-side of (2.13) to obtain

∂τ |(∇Θτ )
−TN | = N ·

(
∂τ (∇Θτ )

−T
∣∣∣
τ=0

N
)

= −N · (∇v)TN.
Using this, one gets from (2.13)

0 =
∣∣(∇Θτ )

−T (s0, x0)N(s0, x0)
∣∣ ∂τN

(
(s0) + τ, x((s0) + τ)

)∣∣∣
τ=0

+ ∂τ
∣∣(∇Θτ )

−TN
∣∣
∣∣∣
τ=0

N(s0, x0) − ∂τ (∇Θτ )
−T
∣∣∣
τ=0

N − (∇Θτ )
−T∂τN(s0, x0)

= ∂sN + ∇Nv − (∇v)TN ·NN + (∇v)TN.
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In the last row, we have omitted the arguments for the clearness of the presentation, keeping
in mind the terms are evaluated at (s0, x0). Using the projection Π := (Id−N ⊗N) on the
tangent space TxM , and S = DN = |∇u|−1ΠD2u (cf. (1.2)), we can express this result as

0 = [∂sN + Sv] + (Id −N ⊗N)
(
(∇v)TN

)
. (2.14)

As (2.8), this is an equation on the tangent space TxM as well, and it is the key to a better
understanding of the apparent velocity vapp. Writing

∇(v ·N) = (∇v)TN + (∇N)T v = (∇v)TN + ST v

and therefore

(∇v)TN = ∇(v ·N) − ST v,

and substituting this into (2.14), which we interpret on the tangent space TxM , we find

0 = ∂sN + STxM vtg + Π
(
∇(v ·N) − ST v

)
. (2.15)

This equation can be simplified by using the relation

STxM = SΠ ⇔ STxM = ST
TxM = ΠST

and the linearity of the projection to obtain

0 = [∂sN + STxM vtg] + Π∇vn − STxM vtg = ∂sN + Π∇vn. (2.16)

So if the shape operator STxM is invertible and the velocity v solves the partial differential
equation

Π∇vn − STxM vtg = 0,

then v = vapp, because the remaining term in brackets ([∂sN + STxM vtg] = 0) uniquely
defines (vapp)tg (cf. equation (2.10)). Unfortunately there is not much additional information
contained in (2.16): The tangential part has vanished from the equation. This again shows
the ill-posedness of the problem, but also that it is impossible to obtain a comparison between
v and vapp. Moreover we see from (2.16) that the variation of the normals in direction of the
trajectory must be captured by a tangential change of the normal velocity, which is indeed
the case for a velocity that fulfills assumption (A1) as can be verified by a straight-forward
calculation.

Coming back to the case v = vapp, we can insert the apparent velocity into the left part
of equation (2.16) to see that

0 = Π
(
∇(vapp ·N) − STxM vapp

)

= Π∇(vapp ·N) − STxM vapp,

which is an equation on the tangent space. And so

(vapp)tg = S−1
TxM Π∇(vapp)n = S−1∇(vapp)n.

Thus, the tangential component of the apparent velocity is the variation of the normal
velocity weighted on the tangent space according to the shape of the level-set.
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2.3 Apparent acceleration

The final goal is to derive a model for image-sequence de-noising, simultaneously in space
and sequence-time. Since we have derived an expression, which allows the extraction of an
apparent velocity from the underlying data, we can now analyze how much the apparent
trajectories x(s) with

ẋ(s) = vapp(s, x(s))

of the level-sets are curved within sequence-time. This would enable to distinguish between
uniform and rapidly changing motions. The physical quantity describing the variation of
the velocity along the trajectories is the acceleration vector, defined by

a (v) := ∂τv(s+ τ, x(s+ τ))
∣∣∣
τ=0

= ∂sv + (∇v)v.

Since we are not going to give any further interpretation of the apparent acceleration vector
a app we close this section with the definition of the apparent acceleration accelapp as the
length of a app:

accelapp := | ∂svapp + (∇vapp)vapp |,

assuming we have enough regularity to perform the differentiation. Later we will perform the
differentiation coupled with a regularization, which ensures the existence of the derivatives.
The apparent acceleration is a measure for the curvature of the apparent trajectories in
sequence-time. In the work of Guichard [37] for 2D image-sequences this quantity was also
referred to as the curvature of Lambertian trajectories (CLT).

2.4 Coupled spatio-temporal smoothing of image-sequences

We now consider the case that the given image-sequence is noisy, where this noise results
for example from the electronic acquisition process of the sequence. One possibility to de-
noise the sequence is the application of the anisotropic geometric evolution from Section
2.1 to each frame of the sequence. This has been done for the data-set shown in Figure
2.12 (cf. [57, 58]). Unfortunately this approach does not respect the underlying correlation
between the different frames. In the worst case it can destroy the correlation and the
processed image-sequence may be non-smooth in the sequence-time direction.

Approaches taking into account the apparent curvature of the trajectories accelapp have
been considered by Mikula et al. in [71, 58]. Their models consider a smoothing in sequence
time direction which is directly proportional to the value of the apparent acceleration. For
highly accelerated motions this results in a significant smoothing of the highly curved trajec-
tories in sequence-time (cf. Section 2.5), resulting in a decrease of this temporal curvature.
Such a behavior however is undesired in many applications. In this section we derive a
model, which also behaves nonlinear in the sequence-time direction and thus avoids this
smoothing out of “temporal edges”. The model takes into account the additional infor-
mation of the sequence — given in form of the motion vapp and acceleration accelapp of
the level-sets, which we are now able to approximate. Again suitable regularizations are
indispensable with respect to noisy image-sequences.

As the static image processing model we base the image-sequence processing model on
regularized quantities which are again denoted by a superscript σ. We do not want to
sacrifice the good properties of the anisotropic level-set method from Section 2.1. Therefore
the purely spatial diffusion does not differ from the one presented for static images. In
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addition, we consider a smoothing in direction of the apparent velocity vapp. Thus, we
introduce the space-time apparent velocity

V σ
app :=

1√
1 + |vσapp|

(
1

vσapp

)
,

which has the direction of the apparent velocity in space, but points “across” the image
frames in the sequence-time direction. The diffusivity in that direction is steered by the
curvature of the trajectory in sequence-time, i.e. the apparent acceleration accelapp. We end
up with the following coupled spatio-temporal evolution problem in Q := I × Ω (cf. [57]):

For a given sequence u0 : Q → IR find a function u : IR+ × Q → IR which is a
viscosity solution of the following initial-value problem

∂tu− |∇(s,x)u|div(s,x)

(
a(s,x)

∇(s,x)u

|∇(s,x)u|

)
= 0 in IR+ ×Q,

u(0, s, x) = u0(s, x) in Q,

(2.17)

where ∇(s,x) := (∂s,∇) and div(s,x) is the dual operator to ∇(s,x) in the L2(Q)-
sense. The function u shall satisfy one of the following boundary conditions:

(BC1) It satisfies a Neumann boundary condition on the whole spatio-temporal
boundary ∂Q := {0, T} × Ω ∪ (0, T ) × ∂Ω, i.e. if ν(s,x) denotes the outer
normal to the sequence-time/space cube Q, then

∇(s,x)u · ν(s,x) = 0 on IR+ × ∂Q,

or

(BC2) if the initial data u0 is periodic in sequence time, u retains this periodicity
and fulfills a Neumann condition on the spatial domain, i.e. if ν denotes the
outer normal to ∂Ω, then

∇u(t, s, ·) · ν = 0 on ∂Ω, and u(·, 0, ·) = u(·, T, ·) in IR+ × Ω.

Moreover, for V σ
app := (1, vσapp)T /|(1, vσapp)| (cf. (2.10)) the spatio-temporal diffusion

tensor a(s,x) is defined by

a(s,x) := avV
σ
app ⊗ V σ

app +

(
0 0

0 a(Σ)

)
(2.18)

with the anisotropic spatial diffusion tensor a(Σ) from the level-set evolution for
static images (cf. Section 2.1) and a regularized apparent velocity vσapp. The tem-
poral diffusion coefficient av depends on the apparent acceleration via the definition

av := Gλ(accel
σ
app) with Gλ(s) :=

1

1 + s2/λ
, λ > 0,

where Gλ is the indicator function already defined in (2.1).

As before the variable t is the multi-scale parameter. The two different boundary con-
ditions have the following meaning: In (BC1) we prescribe generally natural boundary
conditions to the whole sequence, i.e. we have no flux across the spatial boundary of the
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single frames and no flux at the beginning and the end of the sequence. It may be more
convenient to impose natural boundary conditions in space and periodicity in sequence-time
which is stated in (BC2), if this is consistent with the initial sequence u0.

Since the decomposition given in (2.18) is in general not orthogonal, there is an additional
spatial diffusion part resulting from the velocity. Only in case the apparent velocity vapp

vanishes, we have V σ = (1, 0) and the process performs a linear diffusion in direction of the
sequence-time coordinate. For non-vanishing vσapp this is the real coupling of the space and
sequence-time diffusion, as we will see below.

In Figure 2.15 we have applied the coupled anisotropic diffusion to an image-sequence
similar to the one used in Figure 2.7. This time the level-sets are noisy squares, i.e. we
obtain the noisy initial image from

ũ0(x) = |x|1
by adding random distortions in normal direction (cf. (2.7)):

u(si, x) :=
∣∣∣x− d(si) + rand(x)

∇ũ0(x− d(si))

|∇ũ0(x− d(si))|
∣∣∣
1
, i = 1, . . . , 40.

Each level-set is distorted in normal direction by a random factor rand(x) ∈ [−12h, 12h],
where h is the spatial grid-width for the computations, and the motion d(s) models bouncing
at some object as in Figure 2.15. Again the sequence consists of 40 frames each given on a
129 × 129 grid. Clearly the image-sequence is smoothed, while the edges of the quadratical
level-sets are preserved. The anisotropic character becomes even more obvious when consid-
ering Figure 2.19, which is discussed in more detail in the next section. For a similar noisy
image-sequence, we have integrated apparent trajectories through the sequence-time/space
cube in Figure 2.14. This time the image-sequence consists of circular level-sets being dis-
turbed in normal direction and again the motion reflects the circles’ bouncing off a solid
object. Clearly for the noisy initial image data the apparent trajectories do not reflect the
motion at all. After several scale steps of the nonlinear coupled anisotropic diffusion we
are able to integrate the trajectories from the start of the sequence to the end following a
good approximation of the original motion. In fact, the coupled evolution can be seen as
a sophisticated regularization variant for the extraction of motion velocities. In contrast
to linear filters (as convolutions, heat-equation, projections, MCM) it preserves edges and
corners of the level-sets in space and accelerations of the trajectories in sequence-time.

The application to a real (2+1)D image-sequence is shown in Figure 2.16. From the
(3+1)D image-sequence, taken from ultrasound imaging of the human heart during a cardiac
cycle, one slice through the 3D volume has been extracted and taken as an input for the
anisotropic coupled diffusion. Unfortunately it is hard to comment on the quality of the
diffusion process by looking at the static frames of the resulting sequence. Therefore, we
identify the (2+1)D sequences with 3D space in the next section. This allows a better
comparison of the coupled diffusion method with existing methods.

2.5 Comparison with existing models

Finally we would like to rank the diffusion models, we have defined so far, within the existing
methodology of image processing. We thereby refer to the models that have been reviewed
in the introduction. In particular we focus on the non-morphologic improved Perona-Malik
model by Catté et al. [15], on the non-morphologic anisotropic Weickert model [80], on
morphological mean curvature motion and for the processing of image-sequences on the
clt-model of Mikula et al. presented in [58].

At the very beginning of the discussion, it must be emphasized that a fair comparison
between existing image processing methodology is very hard and it might not be possible
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Figure 2.14: From an image-sequence showing noisy spherical level-sets (left) bouncing at
some solid object (left, thick red line) we have integrated apparent trajectories (right, blue
and red line). Obviously from the initial noisy image-sequence (middle left), we are not able
to extract the underlying motion. For later scale-steps of the evolution (middle right: 5th
scale, right: 9th scale), we are able to integrate a good approximation of the real trajectories.

at all. All models depend on many parameters to be provided by the user. Especially the
choice of the edge indication function G(s) (defined in (2.1)) and even more the stopping
scale t, at which we evaluate the result of the models, are crucial parameters. Since the
results are mostly compared visually, there is no objective control of errors. Furthermore,
the results depend heavily on the discretization. Here we mention just a few parameters:
explicit, semi-implicit or fully-implicit time-stepping, discretization with finite differences or
finite elements, grid-width h, range of the image data in [0, 256] or [0, 1], stopping criterion
of the iterative solver, etc. Moreover many of these parameters are not independent from
the others.

In the following we try to compare the qualitative behavior of the present models. We
choose most of the above parameters to be equal for each computation. Thus, the results
reflect only a principle behavior of the models.

Static images

In Figure 2.17 a comparison of applications to the noisy octahedron data-set (cf. Figure 2.2)
is shown. For the evolution always the result at the scale t = 0.00375 is shown. All
models have been discretized using a semi-implicit time-stepping scheme and finite elements
on hexahedral 653 grids. The built-in regularizations have been adjusted such that they
correspond to a filter width σ = 4h. For the anisotropic diffusion we use local L2 projections
to regularize, whereas for the non-morphological models a short time step of size σ2/2 of
the heat-equation is used (cf. Section 3). A similar comparison for a real data-set on a 1293

grid is shown in Figure 2.18.

As expected, the mean curvature motion has a good smoothing character, which however
also smoothes out the edges and corners. Much more interesting is the behavior of the
isotropic and the anisotropic Perona-Malik models. For the octahedron data-set the Perona-
Malik model behaves similar to MCM although edges seem to be preserved better. The
Weickert-model instead delivers a fairly good result: The edges are kept quite well, however
straight edges become curved and corners are rounded very much. The disadvantage of the
Perona-Malik model as a non-morphological model becomes clear in Figure 2.18. Due to
the presence of high gradients in the noisy ultrasound data, the model tries to keep much
of that noise, which is removed by the tangential smoothing of the anisotropic Weickert
model. In both applications however the anisotropic geometric evolution visually gives the
best result. It preserves edges very well, and in the case of the sample-data it is visually
closest to the original non-noisy input.
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Figure 2.15: The application to a sample
(2+1)D image-sequence is illustrated. The
input data is given by ũ0(s, x) := |x−d(s)|1,
where d(s) is such that the motion reflects
bouncing at the red line. The level-sets of
ũ0 have been disturbed in normal direction.
From top to bottom the extraction of the
same sub-level-set from several frames of the
sequence is shown. The left column shows
the initial data; the third scale step is shown
in the right column for succesive frames.

Figure 2.16: From the (3+1)D ultrasound
image-sequence shown in figure 2.12 one
slice has been extracted from the 3D volume
and taken as (2+1)D image-sequence. From
top to bottom successive frames of the se-
quence are displayed. The left column shows
the noisy image-sequence and the right col-
umn the result after the third scale step.
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Figure 2.17: Comparison of the principle behavior of different image processing models on
the noisy octahedron data-set shown in Figure 2.2. From left to right, the result of the
anisotropic geometric diffusion, mean curvature motion, the isotropic improved Perona-
Malik model [15], and the anisotropic Weickert diffusion [80] are displayed. Always the
same iso-surface has been extracted from the data.

Figure 2.18: One frame of the noisy 3D echo-cardiographical data-set (left) shown in Fig-
ure 2.3 is taken as input for different image processing methodology. From middle left to
right the results from the application of the isotropic improved Perona-Malik model [15], the
anisotropic Weickert diffusion [80], and the anisotropic geometric diffusion are displayed.
Always the extraction of the same iso-surface from the data-sets is shown.

Image-sequences

As already noticed in the last section, a judgment on the coupled spatio-temporal diffusion
is difficult from static images of the sequences. A comparison between different models be-
comes even harder. Therefore we are restricting our comparison to (2+1)D image-sequences
and identify the sequence-time direction with a third space-dimension. For a comparison we
then draw iso-surfaces in the 3D space, which show the movement of single level-sets within
the sequence. In Figure 2.19 such iso-surfaces of the noisy image-sequence already shown in
Figure 2.7 are shown. The image-sequence now consists of 61 frames

ũ0(si, x) := |x− d(si)|, for i = 0, . . . , 60, and 0 = s0 ≤ · · · ≤ s60 = 1,

where d(·) models the bouncing of the image-sequence at some solid object as for the data
shown in Figure 2.7. We add a small amount of noise in normal direction to the original
image-sequence (cf. Figure 2.15). The application of a diffusion model then delivers a scale
of image-sequences u : IR+ × [0, 1] × [0, 1]2 → IR, (t, s, x) 7→ u(t, s, x) as the solution of
the parabolic PDE. From this scale of image-sequences, we generate a scale of 3D images
U : IR+ × [0, 1]3 → IR by

U(t, x) := u(t, x1, y), for x1 = 0, . . . , 60 and x = (x1, x2, x3), y = (x2, x3).

If we fix a scale t0, the 3D image U(t0, ·) then shows the motion of the sequence smoothed at
scale t0. The frames of the smoothed sequence correspond to slices through the 3D image.
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s

Figure 2.19: We compare existing image processing methodology applied to a noisy image-
sequence, which shows noisy spherical level-sets bouncing at some solid object (cf. Figures
2.7 and 2.15). On the left one iso-surface from the 3D representation of the image-sequence
smoothed at scale 3 is displayed. The leftmost image shows the result of the model (2.19)
which smoothes out the highly accelerated motion of the level-sets. In contrast to that, the
anisotropic geometric model (middle left) preserves this behavior quite well. The right images
show magnified sections from the iso-surface representations (middle right: model (2.19),
right: anisotropic geometric model).

In Figure 2.19 we compare the different behavior of the new space-time anisotropic diffu-
sion model from the last section with the model presented by Mikula et al. in [71]:

∂tu− clt(uσ)div (G(|∇uσ|)∇u) = 0. (2.19)

which steers the diffusion speed by the apparent acceleration accelapp, here written as the
curvature of the trajectories clt (cf. Section 1.4). The above non-morphological model (2.19)
does not have an anisotropic character and in contrast to our anisotropic geometric model
it increases the diffusion if the apparent acceleration is high. This is the main reason for the
different behavior of the two models in case of highly accelerated motions. The numerical
example shown in Figure 2.19 shows that in case of the model (2.19) the high acceleration
of the trajectories is not preserved well during the evolution. In particular the temporal
corner, where the motion changes its direction, i.e. the point where the balls bounce at the
solid object, is rounded during the evolution, whereas it is kept sharp for the anisotropic
geometric model. The magnified sections shown in Figure 2.19 underline even more how the
acceleration increases the diffusion speed at the motion-corner.
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Chapter 3

Regularized geometric quantities

I
N THE EXPOSITION of the last chapter, we have intensively made use of a regularized
shape operator Sσ

TxM σ , an extended regularized shape operator Σ, a shape operator on

regularized data Sσ = DNσ, regularized normals Nσ, a regularized apparent velocity
vσapp and moreover a regularized apparent acceleration accelσapp, which are part of the defini-
tion of the diffusion tensors a(Σ) and a(s,x) = a(s,x)(Σ, v

σ
app, accel

σ
app). These regularizations

are discussed in this chapter. They are necessary for various reasons:

• Robustness of the edge, velocity and acceleration detection with respect to noisy image
and image-sequence data is needed;

• Omitting the regularization would result in a trivial evolution u(t, ·) = u0(·) for the
static image smoothing model;

• The geometric quantities STxM , N and vapp become singular for a vanishing image
gradient |∇u|.

In terms of the robustness of the resulting models, the regularization process is equiv-
alent to a classification of the noise. Naturally, the driving force of an evolution process
should depend on such a classification. In particular for the static-image processing model
presented in Chapter 2 we have shown that the force depends on the difference between
regularized noisy and real data (Theorem 2.2). In general there are different methods for
suitable regularizations or classifications at hand. As we have seen in the last Chapter
(cf. Figure 2.14), it is crucial to have a regularization simultaneous in sequence-time and
space for image-sequence processing. Only such a coupled regularization ensures the ro-
bustness of the model with respect to sequence-time dependent quantities, such as vapp and
accelapp. Although the discretization of the regularized quantities with linear finite elements
is later the topic in Chapter 5, we already emphasize at this point that the computation
of all the geometric quantities STxM , vapp, and accelapp involves higher order derivatives of
image functions, which are typically given as piecewise constant or piecewise bi- or trilinear
functions. Therefore it is useful to combine the regularization aspect with the consistent
definition of higher order derivatives on data having low regularity.

First we discuss various regularization methods themselves, before going into the details
of the regularizations of the geometric quantities. The regularization methods under con-
sideration are divided into global and local variants. The different behavior of suitable
regularizations is shown for test-data as well as for real data-sets. A section on optimal
regularization parameters concludes the chapter. Although the regularization of spatial
data is presented first, corresponding remarks comment on the easy augmentation to the
regularization of spatio-temporal data.
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3.1 Global regularizations

A very first attempt to regularize the geometric quantities STxM , vapp, accelapp is the
component-wise smoothing of these quantities with a standard linear filter such as the heat-
equation. Regardless of the question how to compute the initial non-regularized quantities,
one might encounter inconsistencies with this approach: For example it is no longer guaran-
teed that Sσ

TxM diagonalizes with respect to {w1,σ , w2,σ , Nσ} if N is regularized separately

from STxM . As a consequence, we do not consider such component-wise regularizations in
the following. Instead we always base the regularization method on a regularization of the
image u and derive Σ, vσapp, and accelσapp from this regularized image data.

(R1) Morphologic regularizations

For a morphologic model, it is desirable to consider regularizations, which are also invariant
under monotone transformations of the gray-value. Consequently the morphologic character
of the whole model would not be altered. The simplest morphological filter possible is the
mean curvature flow (cf. Section 1.3): For a given image u : Ω → IR (or an image-sequence
u : Q→ IR) one considers the evolution

∂tw − |∇w|div

( ∇w
|∇w|

)
= 0

with initial data w(0, ·) = u and natural boundary conditions. For a fixed stopping time
t := σ the definition uσ(·) := w(σ, ·) defines the regularized data, which can be taken
for the computation of geometric quantities. However, the definition of the higher order
derivatives needed for the computations is still a problem. For example one could use
difference quotients, which have a poor approximation order though. For our model, we
therefore consider one of the regularizations discussed below, which combine the aspects of
regularization and definition of the derivatives.

(R2) Convolution with Gaussian kernels

Closely related to the first attempt at the beginning of this section is the most prominent way
of regularizing image data in the image processing community. We consider the convolution
of the image u with a smoothing kernel Kσ. If we choose a Gaussian kernel Kσ having
variance σ, the convolution uσ := Kσ ∗ u coincides with the evolution of u under the heat
equation

∂tw − ∆w = 0 (3.1)

with initial data w(0, ·) = u and natural boundary conditions, evaluated at a time t = σ2/2.
Thus, uσ(·) = w(σ2/2, ·). Still this approach does not provide a definition of the second
derivative directly. But if for a multi-index γ we compute the convolution of the image data
with the derivatives DγKσ of the kernel, the convolution property

Dγ(Kσ ∗ u) = (DγKσ) ∗ u = Kσ ∗ (Dγu) (3.2)

would provide us with approximations of the desired derivatives of the image function u.
Unfortunately, due to the non compact support of Kσ, a good approximation of the con-
volution DγKσ ∗ u is computationally expensive and an efficient approximation of (3.1) is
possible only with multi-grid-methods [38].



Regularized geometric quantities 41

(R3) Convolution with derivatives of C∞
0 -kernels

The convolution property (3.2) is now used to define regularizations uσ and the naturally
assigned spatial as well as temporal derivatives Dγuσ via

uσ := Kσ ∗ u and Dγuσ := (DγKσ) ∗ u.

To allow an efficient implementation, we use kernels with compact support in the imple-
mentation and then base the convolution on discrete summations with appropriate weights.
For a spatial regularization, a suitable C∞

0 -kernel which has already successfully been used
in [59] is given by

Kσ(x) :=





1

M
exp

( |x|2
|x|2 − σ2

)
if |x|2 ≤ σ2,

0 else.

(3.3)

For a spatio temporal regularization, we use the following compactly supported kernel

Kσ(s, x) :=





1

M
exp

(
s2 + |x|2

s2 + |x|2 − σ2

)
if |x|2 + s2 ≤ σ2,

0 else.

(3.4)

The constant M is chosen such that
∫
Kσ = 1. For this type of regularization, we set

B σ(x) := supp Kσ(x) or B σ(s, x) := supp Kσ(s, x), respectively. Based on the regularized
data uσ the geometric quantities can be computed.

3.2 Local regularizations

So far we have presented global regularization variants. Since the latter variant is based on
compactly supported kernels we can consider it as a local process as well. In the following,
we are going to present another regularization variant which combines the regularization
with a consistent definition of derivatives. The method is based on local projections of the
image data onto polynomial spaces. It turns out to have a more robust regularization effect
than the convolution with derivatives of smoothing kernels.

(R4) Local L2-projections

Let us study a purely spatial local regularization first. We consider a finite dimensional space
Q ∗ ⊂ C2(Ω) of higher regularity than the given image u. Later we choose Q∗ = P l(IR

d)
to be the space of polynomials of degree l ≥ 2; other projection spaces might be useful in
certain applications. To regularize the image data, we compute a least squares fit (a local
L2-projection) of the data onto the space Q ∗. To this end let us fix a point x ∈ Ω contained
in the level-set M and a neighborhood B σ of x and denote a basis of Q ∗ by

Q ∗ = span{qi(y), i = 1, . . . ,dim Q ∗}.

By definition the L2-projection uσx(y) of the image u onto Q ∗ is defined via the orthogonality
relation ∫

B σ(x)

(uσx − u) q dy = 0 ∀q ∈ Q ∗. (3.5)

Locally we obtain the iso-surface of uσx in x, whose tangent space in general does not coincide
with the the tangent space TxM of the iso-surface of u in x. But as before we base the
computations of the geometric quantities on the regularized image data.
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For the spatio-temporal regularization we proceed in a similar manner. Let Q ∗ ⊂ P l(Q)
and a basis of Q ∗ shall be given by span{qi(r, y)}. Then the projection uσ(s,x) in sequence-
time and space fulfills the orthogonality relation

∫

B σ(s,x)

(
uσ(s,x) − u

)
q dr dy = 0 ∀q ∈ Q ∗, (3.6)

for a neighborhood B σ(s, x) of a space-time point (s, x) ∈ Q. Although this approach
delivers very robust local regularizations of image-sequences, it turns out to be compu-
tationally too expensive in applications, particularly in the spatio-temporal applications
(cf. Section 5).

3.3 Regularized Shape Operator

Now we discuss the application of the different regularization approaches to the quantities
defining our diffusion tensors. Since the regularization variants (R1) and (R2) do not deliver
a definition of higher order derivatives on the image data, we do not consider them any
longer. Instead we apply the variants (R3) and (R4) to the definition of a regularized shape
operator and moreover examine the consistency of these definitions.

So far, we have not yet treated the singularities which appeared in the definition of the
geometric quantities N , STxM , and vapp. In general, we cannot assume ∇u 6= 0 even if
the initial data fulfills the regularity assumption ∇u 6= 0. Evans and Spruck [32] gave
an example of the level-set approach of mean curvature motion, where a certain level-set
degenerates and fattens, such that it does not describe curves or surfaces any longer.

In case the image gradient ∇u vanishes, the definition of a normal does not make sense.
Therefore also the definition of a normal velocity (vapp)n is not meaningful any more. Hence,
the definition of the shape operator STxM fails as well. Nevertheless we have to define a
suitable diffusion tensor a(Σ) in that case. For discretization issues (in Chapter 5) we
follow the proposal of Evans and Spruck [32] who replaced the Euclidean norm | · | with an
approximation | · |ε, where for small ε� 1

| · |ε :=
√

| · |2 + ε2.

Here, we define the diffusion tensor a(Σ) = Id in case |∇u| = 0. This reduces the anisotropic
diffusion to an isotropic mean curvature motion, which was handled successfully by Evans
and Spruck with the above regularization | · |ε.

Let us now give the definitions of the regularized shape operator on a level-set going
through a point x0 ∈ Ω assuming that we have excluded the latter case ∇u = 0. Since
we base the computations on regularized images rather than component-wise regularized
geometric quantities, we ensure that always

Sσ
TxM σ : TxM σ → TxM σ

with TxM σ ⊥ span{Nσ}.

Finally as defined in (2.2), we get the extended regularized shape operator Σ from

Σ :=

(
Sσ
TxM σ 0

0 0

)

in coordinates {w1,σ , w2,σ, Nσ} of the regularized principal curvatures w1,σ , w2,σ and the
regularized normal Nσ ⊥ w1,σ, w2,σ .
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Variant (R3): Convolution with derivatives of C∞
0 kernels

The regularization uσ is given by convolution of u with the kernel Kσ and the derivatives
Dγuσ are given by convolution with DγKσ. Thus, we have the definitions

Nσ(x0) =
∇Kσ ∗ u
|∇Kσ ∗ u| (x0),

Sσ
TxM σ(x0) =

1

|∇Kσ ∗ u|
(
(Id −Nσ ⊗Nσ) (D2Kσ ∗ u) (Id −Nσ ⊗Nσ)

)
(x0)

(3.7)

and in particular we have Σ = DN σ (Id −Nσ ⊗Nσ) = Sσ (Id −Nσ ⊗Nσ), because

∂i(N
σ)j = ∂i

∂jK
σ ∗ u

|∇Kσ ∗ u| =
∂i∂jK

σ ∗ u|∇Kσ ∗ u| − ∂jK
σ ∗ u ∂i|∇Kσ ∗ u|

|∇Kσ ∗ u|2

=
1

|∇Kσ ∗ u|

(
∂i∂jK

σ ∗ u− ∂jK
σ ∗ u∑d

l=1(∂lK
σ ∗ u ∂i∂lKσ ∗ u)

|∇Kσ ∗ u|2

)

=
1

|∇Kσ ∗ u|
(
Id −Nσ ⊗Nσ

)
D2Kσ ∗ u.

Variant (R4): Local L2-projections
In the local projection approach on B σ(x) the local regularization uσx(y) is given by the
solution of the linear system (3.5). The normal and the shape operator are then defined via

Nσ(x0) =
∇yu

σ
x(y)

|∇yuσx(y)|
∣∣∣
y=x0

,

Sσ
TxM σ(x0) =

1

|∇yuσx(y)|
(
(Id −Nσ ⊗Nσ)D2

yu
σ
x(y) (Id −Nσ ⊗Nσ)

) ∣∣∣
y=x0

,

(3.8)

and since we evaluate the projection and consequently the normal and the shape oper-
ator separately for each x0 ∈ Ω, we have in general Σ 6= DxN

σ (Id −Nσ ⊗Nσ) =
Sσ (Id −Nσ ⊗Nσ). But there is one special configuration for which we have the identity
Σ = Sσ (Id −Nσ ⊗Nσ): Consider an image which has the form

u(x) =
∑

i≤dim Q∗
uiqi(x) ∈ Q ∗,

thus being an element of our projection space Q ∗. Then, obviously, the projection onto Q ∗

is the identity, i.e. we have uσ = u globally. Then u has enough regularity to define N σ and
Sσ
TxM σ as in (1.1) and (1.3), and clearly N σ = N and Σ = Sσ(Id−N⊗N) = S(Id−N⊗N)

hold. Indeed

uσx(y) = u(x) ∀x ∈ Ω ∀y ∈ Ω

and thus for any multi-index γ

Dγ
yu

σ
x(y) = Dγ

xu(x).

We have seen in Chapter 2 that the diffusion is steered by the difference between the
regularized quantities and their non-regularized counterparts, according to Theorem 2.2.
Since for the case u ∈ Q ∗ these differences vanish, all the elements of Q ∗ remain invariant
under the evolution. For example, if Q ∗ = P 2(IR

d) the invariant images are quadratic
functions, and their level-sets are ellipsoids.

For a 2D data-set of size 257 × 257, whose level-sets are ellipsoids, the evaluation of
curvature is shown in Figure 3.1. The regularization variants (R3) and (R4) are compared
for different sizes of σ (cf. Chapter 5). In the next step the latter 2D data-set is disturbed
using random noise, which is added to the nodal values. We note that in the presence
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Figure 3.1: Curvature evaluation on a 2D ellipsoid data-set, i.e. u(x) = x2
1 + x2

2/b, b > 1.
Top row: Evaluation via convolutions. Bottom row: Evaluation via projections. Left column:
Smooth data-set l = 2. Middle column: Smooth data-set l = 4. Right column: Noisy data-set
l = 2. A color ramp from blue to green to red indicates the curvature of the level-sets.

of noise the local projections behave more robust, i.e. the curvature evaluated using local
projections is visually closer to the curvature of a smooth image. This behavior becomes
even more obvious when comparing the 3D evaluations in Figure 3.3. In Figure 3.1 the
same comparison has been performed for a data-set whose level-sets are squares. Again the
projection approach behaves more robust in the presence of noise.

In Figures 3.3 and 3.4 we have compared the regularization variants (R3) and (R4) on 3D
data-sets. Again we see that the L2-projection behaves more robust in case of noisy data.
Especially for the octahedron data-set, the edges and corners are detected much better by
the regularization via local projections. The evaluation of curvature on a 3D medical data-
set is illustrated in Figure 3.5, where the curvatures of the gray matter of the human brain
are shown.

In the remaining paragraphs we examine the consistency of the approximations we make
with the regularization process. In particular it is of interest, how good we can approximate
the curvature of a given level-set with the two different approaches. We consider the spherical
level-sets of the image u(x) := |x− r|2, r = (R, . . . , R) ∈ IRd and define an error

ei :=
∥∥κσ,i − 1/R

∥∥
L2(Ωσ)

which measures the difference between the curvature κσ,i of the projection and the real
curvature 1/R in the L2-norm on Ωσ ⊂ Ω = [0, 1]d. To avoid interference of the convolution
or the projection with the boundary of Ω we have chosen Ωσ such that dist(Ωσ,Ω) >
1/4. This is the maximum subset such that the convolution or projection stencil is always
completely contained in Ω (cf. Figure 3.6). In Tables 3.1 and 3.2 we have collected the error
values for different grid sizes and stencil widths for both regularization variants (R3) and
(R4). The computation is performed with the parameter R = 4, different grid-widths h and
increasing size of σ ∼ diam B σ(x) which corresponds to an increasing size of the projection
stencil B σ(x). Later in Chapter 5 we will use balls in the | · |∞ norm to define B σ such
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Figure 3.2: Curvature evaluation on a 2D octahedron data-set, i.e. u(x) = |x|1. Top row:
Evaluation via convolutions. Bottom row: Evaluation via projections. Left column: Smooth
data-set l = 2. Middle column: Smooth data-set l = 4. Right column: Noisy data-set l = 2.
Again a color ramp from blue to green to red indicates the curvature of level-sets.

that σ = lh = diamB σ. From the table we see that the approximation of the curvatures is
second order: An enlargement of the projection stencil by a factor 2 decreases the error by
a factor 1/4. As expected the error is independent of the grid-width h. In Section 5.4 we
deal with the choice of optimal regularization parameters.

3.4 Regularized apparent velocity and acceleration

So far we have discussed the regularization of the normals and the shape operators, but
for the processing of image-sequences we also need a regularized apparent velocity and
acceleration. In general, the definitions of the regularized shape operator Σ and the normal
Nσ are done in exactly the same way as in the last section, where of course the corresponding
spatial part from the regularizations is used. Earlier we have already seen that the definition
of an apparent normal velocity (vσapp)n makes no sense if we do not have the definition of
a normal (∇u = 0). Therefore we exclude this case in the following. Furthermore we had

replaced the inverse of the shape operator by the pseudo inverse S †

TxM , consequently we

replace the inverse of the regularized shape operator by its pseudo inverse Σ†.

Variant (R3): Convolution with derivatives of C∞
0 kernels

We are going to treat the sequence-time derivatives we need as a convolution with the
derivative ∂sK

σ of the smoothing kernel Kσ(s, x) defined in (3.4). Consequently we can
define

vσapp(s0, x0) = −
(
∂sK

σ ∗ u
|∇Kσ ∗ u|N

σ + Σ†(∂sK
σ ∗Nσ)

)
(s0, x0)

accelσapp(s0, x0) =
(
∂sK

σ ∗ vσapp + (∇Kσ ∗ vapp)vapp

)
(s0, x0)

(3.9)

Variant (R4): Local L2-projections
The local projections delivered a consistent approximation of the shape operator STxM on
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Figure 3.3: Curvature evaluation on a 3D ellipsoid data-set, i.e. u(x) = x2
1 +(x2

2 +x2
3)/b, b >

1. Top: Evaluation via convolutions. Bottom: Evaluation via projections. Left column:
Smooth data-set l = 2. Middle column: Smooth data-set l = 4. Right column: noisy data-
set l = 2. A color ramp from blue to red indicates the dominant curvature of the level-sets.

data of low regularity. Thus, we would like to carry on this good approximation character
to the computation of the regularized apparent velocity vσapp and the regularized appar-
ent acceleration accelσapp. Unfortunately, we have to enlarge the projection space for this
purpose, because even more regularity is required. For the computation of Σ it has been
sufficient to have Q ∗ ⊂ P 2(Ω) whereas for the additional sequence-time quantities we need
tensor product polynomials in sequence-time and space having the appropriate regularity.
In particular we need the following spaces:

vσapp(s0, x0) : uσ(y) ∈ P 1(I) ⊗ P 2(Ω),

accelσapp(s0, x0) : uσ(y) ∈ P 2(I) ⊗ P 3(Ω).
(3.10)

Assume we have computed the local projection uσ(s,x)(r, y) ∈ P 1(I) ⊗ P 2(Ω) as the solution
of a linear system. We then define

vσapp(s0, x0) = −
(

∂ru
σ
(s,x)(r, y)

|∇yuσ(s,x)(r, y)|
Nσ + Σ†(r, y)(∂rN

σ)(r, y)

)∣∣∣
r=s0,y=x0

. (3.11)

For the computation of the regularized apparent acceleration accelσapp a closed formula in
terms of the derivatives of uσ(s,x)(r, y) ∈ P 2(I)⊗P 3(Ω) can be used. Alternatively, a separate

projection of vσapp would lead to a different definition of accelσapp. But as we see in Chapter 5
the enlarged projection spaces make the regularization variant impracticable, since they
involve huge amounts of numerical integrations. Therefore we are not going into the details
of the definition of accelσapp for the projection regularization approach. In applications we
will always use variant (R3).
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Figure 3.4: Curvature evaluation on a 3D octahedron data-set, i.e. u(x) = |x|1. Top: Eval-
uation via convolutions. Bottom: Evaluation via projections. Left column: Smooth data-set
l = 2. Middle column: Smooth data-set l = 4. Right column: noisy data-set l = 2. A color
ramp from blue to red indicates the dominant curvature of the level-sets.

Figure 3.5: The computations of curvature on a segmented 3D medical data-set of the gray
matter of the human brain are shown. On the left the evaluation with convolutions is dis-
played, whereas on the right the result of the projection method is shown. Again a color
ramp from blue to green to red codes the dominant curvature of the level-sets. The data-set
was of size 1293.
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Figure 3.6: Analysis of the consistency of the regularizations for the evaluation of curvatures
on spherical level sets.

Projection Convolution
h l=σ/h e e

1/32 2 5.998e-02 9.327e-02
4 1.559e-02 1.627e-02
8 3.934e-03 5.974e-03
16 9.858e-04 2.683e-04

1/64 2 5.998e-02 9.309e-02
4 1.559e-02 1.619e-02
8 3.934e-03 5.962e-03
16 9.857e-04 2.677e-04
32 2.466e-04 2.414e-05

Projection Convolution
h l=σ/h e e

1/128 2 5.998e-02 9.301e-02
4 1.559e-02 1.617e-02
8 3.934e-03 5.956e-03
16 9.857e-04 2.675e-04
32 2.466e-04 2.412e-05
64 6.165e-05 3.285e-07

Table 3.1: Consistency errors for the evaluation of curvature on regularized 2D data for
different sizes of h and increasing stencil width l of the L2-projection and the convolution
with derivatives of smoothing kernels, respectively. We see that the consistency error is
rather independent of the grid-size, i.e. decreasing h does not decrease the error if l is kept
fixed. If the value of l is increased by a factor 2 we see that the error is decreased by
approximately a factor 1/4.

Projection Convolution
h l=σ/h e1 = e2 e1 = e2

1/32 2 5.451e-02 4.987e-02
4 1.398e-02 1.723e-03
8 3.517e-03
16 8.806e-04

1/64 2 5.479e-02 5.016e-02
4 1.405e-02 1.460e-03
8 3.535e-03
16 8.852e-04
32 2.214e-04

Projection Convolution
h l=σ/h e1 = e2 e1 = e2

1/128 2 5.493e-02 4.974e-02
4 1.409e-02 1.718e-03
8 3.544e-03
16 8.875e-04
32 2.220e-04
64 5.549e-05

Table 3.2: Consistency errors for the evaluation of curvature on regularized 3D data for
different sizes of h and increasing stencil width l of the L2-projection and the convolution
with derivatives of smoothing kernels, respectively. If the value of l is increased by a factor
2 we see that the error is decreased by approximately a factor 1/4. Moreover for fixed l the
error is rather independent of h.
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Existence of viscosity-solutions

I
N THE FOLLOWING we consider the evolution problems we have defined in the last
chapter from a theoretical point of view. The interest now lies in the existence of
solutions in the viscosity sense. The notion of viscosity solutions was introduced by

Crandall and Lions in [20] for Hamilton-Jacobi equations. At this time uniqueness results
were only available for the first order case, thus the first presentation of the theory was
based on first order partial differential equations. Meanwhile the theory has been extended
to second order PDEs, allowing merely continuous functions to be solutions of fully nonlinear
(possibly degenerate) equations.

In our setting we are dealing with parabolic fully nonlinear degenerate equations of second
order, which moreover have a singularity if the gradient of the solution vanishes. For mean
curvature motion the existence and uniqueness of a viscosity solution have been proved
independently by Evans and Spruck [32] and by Chen et al. [16]. It has been shown for
non-convex initial surfaces M c(0) that topology changes of this surface can occur in finite
time [32]. If u is the viscosity solution of the MCM problem given a smooth level-set
M c(0) := {u0(x) = c} as initial data, then M c(t) = {u(t, x) = c} indeed represents the
classical evolution of a parameterization of M c(0) under mean curvature up to this time T .
But this is not a problem for the level-set approach where also in less regular settings the
evolution of the initial level-set is defined via M c(t) := {u(t, x) = c} for all scales t ∈ IR+.
The existence of a viscosity solution is also guaranteed, even if its gradient vanishes and
the definition of a normal does not make sense any more. The convergence of the solution
of a finite element scheme toward the viscosity solution has been proven by Deckelnick and
Dziuk [22] for MCM of graphs and MCM in the level-set context.

The goal of this chapter is first to prove existence of solutions for a linear anisotropic
level-set problem, which results from the models we have considered in the last chapter
by replacing the nonlinear diffusion tensor A(uσ) by a diffusion tensor A(v) that depends
on a fixed image or image-sequence v ∈ C0. The existence proof uses the Perron method
introduced by Ishii [42] and a comparison theorem for sub- and super-solutions [35]. The
second part of the chapter deals with the continuity of the solution-operator, which means
the continuous dependence of the problems on the functions v, which define the diffusion
tensor. This leads to the existence of a solution of the nonlinear problem with the Schauder
Fixed-Point Theorem.

Unfortunately, the theory currently present for MCM does not transfer to the nonlinear
evolution problems we have modeled in the last chapter. Also existing work on fully non-
linear problems [45, 44, 46] and degenerate equations [72] is not applicable, since we do
not have any monotonicity assumptions on the diffusion tensor. Fortunately the notion of
viscosity solutions exhibits a great flexibility in passing to limits in various settings, which
enables us to prove the results in the second part of the chapter. Thereby we make use of
the notion of Γ+/− limits, which were introduced first by De Giorgi [21]. But before we go
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into the details, let us recall some facts of the basic theory.

4.1 Reviewing basic theory of viscosity-solutions

The notion of viscosity solution is a purely pointwise definition. As already pointed out,
solutions u can be merely continuous. In general, derivatives of u do not have the classical
meaning. Indeed the theory of viscosity solutions encompasses classes of problems that
do not have solutions which are differentiable in the classical sense [19]. In the theory of
viscosity solutions the notion of derivatives of u is replaced by the so called jets of the
function u. To precise this notion, it is useful to have the following notations

USC(O ) := {u : O → IR : u is upper semi-continuous },
LSC(O ) := {v : O → IR : v is lower semi-continuous }.

Furthermore, in the following S(d) denotes the symmetric matrices of dimension d×d. The
power set of a set O is denoted with P (O ). As usual we denote the Hölder spaces with
Ck,α(O ), for α ∈ [0, 1]. We denote by C0

0 (J × O ) for J ⊂ IR+ the space of all continuous
functions u : J × O → IR such that u(t, ·) has compact support in O for all t ∈ J . Since in
this chapter all solutions are to be seen in the viscosity sense, we will often simply speak of
solutions omitting the term “viscosity”.

Definition 4.1. For the time space cylinder Q := J × Ω, J ⊂ IR+
0 over the spatial domain

Ω ⊂ IRd consider a function u ∈ USC(Q). The parabolic second order super-jet of u,
denoted with P2,+

Q u, is a mapping

P2,+
Q u : Q→ P

(
IR × IRd × S(d)

)
,

from Q into the power-set of IR × IRd × S(d), where S(d) denotes the symmetric d × d
matrices. For any (t, x) ∈ Q, P2,+

Q u(t, x) is the set of (a, p,X) ∈ IR × IRd × S(d) such that

u(s, y) ≤ u(t, x) + a(s− t) + 〈p, y − x〉 +
1

2
〈X(y − x), (y − x)〉 + o(|s− t| + |y − x|2)

for (s, y) → (t, x) in Q. For v ∈ LSC(Q) the parabolic second order sub-jet P 2,−
Q v is defined

analogously. The relation P2,−
Q v(t, x) = −P2,+

Q (−v(t, x)) holds.

Remark 4.2. As long as (t, x) is an interior point of Q the jets P 2,+
Q u and P2,−

Q u are

independent of Q. We indicate this fact by omitting the subscript Q and writing P 2,+u and
P2,−u whenever we are working on open sets Q = J×Ω. Furthermore for twice continuously
differentiable functions u ∈ C2(Q) the classical derivatives lie in the intersection of the sub-
and super-jet. In particular, we then have

{(∂tu,∇u,D2u)(t, x)} = P2,+u(t, x) ∩ P2,−u(t, x).

For semi-continuous functions u the elements of the jets P 2,+u and P2,−u replace the
(possibly non existing) classical derivatives of u. Figuratively speaking the jets contain all
paraboloids lying locally above or below u (cf. Figure 4.1). This is furthermore motivated
by the following equivalent definition (a proof of the equivalence is given in [53]), which is
used more often throughout our analysis:
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φ

u
φ

u
u

u

Figure 4.1: Left: The super-jet P2,+u contains all paraboloids φ lying locally above the
function u. In the case illustrated here, the sub-jet P 2,−u is empty. Right: The sub-jet
P2,−u contains paraboloids φ lying locally below the function u. In the setting displayed in
the figure the super-jet P2,+u is empty.

Lemma 4.3. The following definitions of the super- and sub-jet are equivalent to definition
4.1 (cf. Figure 4.1):

P2,+
Q u(t, x) := {(a, p,X) ∈ IR ×Rd × S(d) : ∃φ ∈ C2(Q) such that

(a, p,X) = (∂tφ,∇φ,D2φ) and u− φ has a local maximum at (t, x)},
P2,−
Q v(t, x) := {(a, p,X) ∈ IR ×Rd × S(d) : ∃φ ∈ C2(Q) such that

(a, p,X) = (∂tφ,∇φ,D2φ) and v − φ has a local minimum at (t, x)}.

We call the C2-functions φ whose derivatives form the super-jet and sub-jet the test-
functions.

Using the jets, we are now able to give the definition of viscosity sub- and super-solutions
(cf. [19]):

Definition 4.4. A function u ∈ USC(Q) is called a viscosity sub-solution of
F (t, x, u, ∂tu,∇u,D2u) = 0, if for all (t, x) ∈ Q

F (t, x, u(t, x), a, p,X) ≤ 0 ∀(a, p,X) ∈ P2,+
Q u(t, x).

A function u ∈ LSC(Q) is called a viscosity super-solution of F (t, x, u, ∂tu,∇u,D2u) = 0,
if for all (t, x) ∈ Q

F (t, x, u(t, x), a, p,X) ≥ 0 ∀(a, p,X) ∈ P2,−
Q u(t, x).

Finally, a function u ∈ C0(Q) is called a viscosity solution of F (t, x, u, ∂tu,∇u,D2u) = 0,
if it is a sub- and a super-solution of F = 0.

This definition will not be the one, we use for our existence analysis here. Because of the
fact, that the geometric problems are degenerate in normal direction, we have to relax the
definition slightly as we will see below.

An important device in viscosity solution theory is the doubling of spatial variables, where
the sum of viscosity sub- and super-solutions is considered. Let us record the following
important lemma concerning possible choices of test-functions for the doubling of variables:

Lemma 4.5 (Crandall, Ishii [18]). Let ui ∈ USC((0, T ) ×Ω), with ui <∞ in (0, T ) ×Ω
for i = 1, . . . , k, T > 0, and Ω ⊂ IRd open and bounded. Furthermore let the function w be
defined on (0, T ) × Ω × · · · × Ω via

w(s, z) := u1(s, z1) + · · · + uk(s, zk)
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with z = (z1, . . . , zk) ∈ Ω × · · · × Ω. For (s, z) ∈ (0, T ) × (Ω × · · · × Ω) let

(τ, p, Z) ∈ P2,+
Ω×···×Ωw(s, z) ⊂ IR × IRkd × S(kd),

with p = (p1, . . . , pk), pi ∈ IRd, and let the functions ui be viscosity solutions of

∂tu+ Fi(t, x,∇u,D2u) ≤ 0

in a neighborhood of (s, zi) ∈ (0, T ) × Ω for i = 1, . . . , k, where the functions Fi : (0, T ) ×
Ω × IRd × S(d) → IR are lower semi-continuous. Then for each γ > 0 there exist Xi ∈ S(d)
such that

(τ, pi, Xi) ∈ P2,+ui(s, zi) and so τ +

k∑

i=1

Fi(s, zi, pi, Xi) ≤ 0.

Furthermore the estimate

−
(

1

γ
+ ‖Z‖

)
Id ≤




X1 · · · O
...

...
O · · · Xk


 ≤ Z + γZ2

holds. Here Id is the identity matrix, and ‖ · ‖ denotes the spectral norm on S(kd).

Concerning the test functions of w(s, z) = u1(s, z1)+ · · ·+uk(s, zk) we need the following
elementary lemma, whose proof can be found in e.g. [19].

Lemma 4.6. Let Ω ⊂ IRd and J := (0, T ). Consider a non-negative test function Φ ∈
USC(Ω × · · · × Ω), Φ ≥ 0 and for w as in Lemma 4.5 the suprema

Mα = sup
J×(Ω×···×Ω)

(w(t, x) − αΦ(x))

for α > 0 and x = (x1, . . . , xk). Furthermore let −∞ < limα→∞Mα <∞ and let the family
( (tα, xα) )α ⊂ J × (Ω × · · · × Ω) be chosen such that

lim
α→∞

(Mα − (w(tα, xα) − αΦ(xα))) = 0.

Then

(i) limα→∞ αΦ(xα) = 0

(ii) Φ(x̂) = 0 and
lim
α→∞

Mα = w(t̂, x̂) = sup
{Φ(x)=0}

w(t, x)

if (tα, xα) → (t̂, x̂) ∈ J × (Ω × · · · × Ω) for α→ ∞.

4.2 Anisotropic linear geometric diffusion

After this review of the basic concepts of the viscosity solution theory, let us first consider
the linear anisotropic problem. In the following we no longer make a distinction between
the static-image model and the model for image-sequence processing. The assumptions we
make below on the diffusion tensor A immediately apply to both of the models. In one case
we work on Ω ⊂ IRd and in the other case on Ω ⊂ IR+

0 × IRd. Therefore we make a small
change of notation here and write Ω regardless whether we are working on a static image
or an image-sequence.
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But furthermore for reasons of simplicity we replace the domain Ω ⊂ IRd by whole IRd.
Thus, we do not have to deal with the Neumann boundary conditions any longer. However,
the comparison and existence results we discuss below, consider functions in

C0
0(Q) := {v ∈ C0(Q) : ∃R > 0 such that v(t, x) = 0 for x 6∈ B(R)},

i.e. functions which are constant outside some spatial ball around the origin. Here and
in the following for Ω ⊂ IRd the parabolic domain is Q := J × Ω where J := [0, T ) for
any finite scale T > 0. For bounded Ω we denote the parabolic boundary of J × Ω by
∂pQ := {0} × Ω ∪ J × ∂Ω.

In this section we are considering the following problem:

Given g ∈ C0
0 (IRd) and v ∈ C0

0 (J × IRd) find u ∈ C0(J × IRd) such that

∂tu− |∇u|div

(
A(v)

∇u
|∇u|

)
= 0 in J × IRd,

u(0, ·) = g(·) in IRd.

4.2.1 Compactness of the diffusion tensor

In the problem above the nonlinearity A is always a compact operator

A : C0(Q) → C1,1(Q,S(d)), 0 ≤ A(v)(t, x) ≤ ΛId, λ <∞, (4.1)

giving symmetric, bounded and elliptic diffusion coefficients A(v)(t, x). In Section 2 we have
constructed the diffusion tensor A such that it depends on regularized curvatures κi,σ or
additionally the apparent velocity vσapp and acceleration accelσapp. The weighting is thereby
steered by the function G(·) ≤ 1, thus giving a bounded diffusion tensor A(v) ≤ Id.

Lemma 4.7. The diffusion tensors a(Σ) and a(s,x)(Σ, v
σ
app), whose arguments result from the

regularization variants (R3) and (R4) are compact operators from C 0(Q) into C1,1(Q,S(d)).

Proof. Since a(Σ) and a(s,x)(Σ, v
σ
app) depend on the first and second derivative of a regular-

ized version of the image, we assume that we can write them as

(A(vn)(t, x))ij = a ij(∇(vn)σ(t, x), D2(vn)σ(t, x)) for a ij ∈ C1,1(IRd × S(d)).

Now let (vn)n be a bounded sequence in C0(Q). We show that there exists a A∗ ∈
C1,1(Q,S(d)) such that for a subsequence vnj

A(vnj ) → A∗ in C1,1(Q,S(d))

for j → ∞. Because a ij ∈ C1(IRd × S(d)), it suffices to show the existence of w ∈ C4(Q)
and the convergence in C2(Q) of

∇(vn)σ → ∇w and D2(vn)σ → D2w. (4.2)

This is what we show below for the two regularization variants under consideration:

• Convolution with C∞
0 kernels. For a multi-index γ, let Dγ be a spatial derivative of

order less than six, i.e. |γ| < 6. Substituting the definition of (vn)σ = Kσ ∗ vn, we have

‖Dγ(Kσ ∗ vn)‖L∞(Q) ≤ sup
(t,x)∈Q

∫

Ω
|(DγKσ)(x− y)| |vn(t, y)| dy ≤ C‖vn‖L∞(Q).
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Figure 4.2: We interprete the local L2-projection as a local filter, where the C∞
0 function φ

cuts off the monomials qi outside B σ(1+ε).

This is a bound of Dγ(vn)σ in C0(Q) and we can use Arzela-Ascoli’s Theorem and the
compact inclusion C5 ↪→ C4,α to get the existence of a w ∈ C4(Q) such that (vnj )σ → w in
C4(Q) for a subsequence vnj .

• Local L2-projection onto a polynomial space. We consider the local L2 projection vn,σ(t,x) ∈
Q ∗ ⊂ P l(IR

d) of vn(t, ·) onto Q ∗. Let us denote basis-functions of Q ∗ with qi, i.e. Q∗ :=
span{qi : i = 1, . . . ,K}. We have seen in Chapter 3 that the projection is given as the
solution of a linear system of equations for a fixed t ∈ J

∫

B σ(x)
vn,σ(t,x)(t, y) qi(y) dy =

∫

B σ(x)
vn(t, y) qi(y) dy for i = 1, . . . ,K.

If we write the projection in terms of the basis qi

vn,σ(t,x)(t, y) =

K∑

i=1

wtiqi(y)

for wti = wti(x) ∈ IR. Note that here and below the superscript t indicates the dependence
on t ∈ J and not as usual the transposition operation. We can rewrite the above system of
equations as

Hwt(x) = Rt(x),

with wt(x) = (wti(x))i, R
t(x) = (Rti(x))i, H = (Hij)ij where

Hij =

∫

B σ(0)
qi qj(y) dy and Rti(x) =

∫

B σ(x)
vn(t, y) qi(x− y) dy.

So the coefficients wt(x) are computed via wt(x) = H−1Rt(x). Now, we replace the inte-
gration of the components of the right-hand-side (Rt

i(x)) by the following global filters

R̃ti(x) =

∫

B σ(1+ε)(x)
φ(x− y)qi(x− y)vn(t, y) dy,

where ε > 0 and φ ∈ C∞
0 (Ω) is chosen such that (cf. Figure 4.2)

φ(x− y) = 1 for y ∈ B σ(x) and φ(x− y) = 0 for y 6∈ B σ(1+ε)(x).

Considering the solution of the system w̃t(x) = H−1R̃t(x), we see that the following estimate
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holds for any multi-index γ:

‖Dγw̃t(x)‖L∞(Q) ≤ sup
(t,x)∈Q

C|DγR̃t(x)|

≤ sup
(t,x)∈Q

C
(∫

B σ(x)
|Dγqi(x− y) vn(t, y)| dy+

∫

B σ(1+ε)(x)\Bσ(x)
|Dγ(φ(x− y)qi(x− y)) vn(t, y)| dy

)

≤ sup
(t,x)∈Q

C
(
‖vn(t, ·)‖L∞(B σ(x)) + ε‖vn(t, ·)‖L∞(B σ(1+ε)(x)\Bσ(x))

)
.

But since the vn are bounded in C0(Q), this estimate means that for ε→ 0 we have

‖Dγwt‖ ≤ C‖vn‖L∞(Q),

which is again a bound on the derivatives of the regularization in C 0(Q). Now we apply the
Theorem of Arzela-Ascoli again, to finish the proof as above.

Remark 4.8. If (vn)n ⊂ C0(Q) such that vn → w in C0(Q) then this convergence in C0(Q)
is transformed by A into convergence A(vn) → A(w) in C1,1(Q). Indeed, for the convolution
regularization variant, we can write for any multi-index γ:

‖Dγ((vn)σ − wσ)‖L∞(Q) ≤ sup
(t,x)∈Q

∫

Ω
|DγKσ(x− y)| |vn −w|(t, y) dy ≤ C‖vn − w‖L∞(Q),

which in particular means the convergence of Dγ(vn)σ → Dγwσ in C0(Q).

For the projection approach, we denote the coefficients of the projection vσ(t,x) by W̃ t(x)
and as in the proof of the lemma, we obtain

‖Dγ(w̃t(x) − W̃ t(x))‖L∞(Q) ≤ C‖vn − v‖L∞(Q),

which means the C0(Q) convergence of the derivatives as well.

4.2.2 A comparison theorem

Let us first outline the course of the existence proof for the linear problem, which is the
topic of the following sections. A comparison principle was proven by Giga et al. [35] for
bounded domains Ω ⊂ IRd. We provide one sub- and one super-solution, which fulfill this
requirement, and the application of Ishii’s Perron-Method delivers a solution which has
compact support as well.

Let us provide a strong formulation for the problem above. Similar to the computations
in (2.4) the differentiation of the term |∇u|div(A(v)N) leads to the definition of F [v] :
J × IRd × IRd \ {0} × S(d) → IR with

F [v](t, x, p,X) := −div(A(v)(t, x)) · p− tr ((A(v))(t, x)ΠX) , (4.3)

where Π := Id− (p⊗ p)/|p|2 is the projection onto the tangent space and (divA(v)(t, x))i =∑d
j=1 ∂j(aij(v))(t, x). Now we can rewrite our problem for Ω ⊂ IRd as:

For g ∈ C0
0 (Ω) and arbitrary but fixed v ∈ C0

0 (J × Ω) find a viscosity solution
u ∈ C0(J × Ω) of

∂tu+ F [v](t, x,∇u,D2u) = 0 in J × Ω,

u(0, ·) = g(·) in Ω.

}
(P[v])
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Still the function F [v] is singular in points where the gradient vanishes. But fortunately
the theory of viscosity solutions allows the application to semi-continuous problems. There-
fore we consider the semi-continuous envelopes of the given F to provide a value at the
point p = 0. This gives us semi-continuous functions F [v] and F [v] on which we base the
existence analysis below. For the construction of these functions, we require the following
observation:

Lemma 4.9. The function F [v] defined in (4.3) has the following properties:

(i) The estimate

−div(A(v)(t, x)) · p− dΛ‖X‖ ≤ F [v](t, x, p,X) ≤ −div(A(v)(t, x)) · p+ dΛ‖X‖, (4.4)

holds, or in other words we have

|tr ((A(v))(t, x)ΠX) | ≤ dΛ‖X‖,

where ‖ · ‖ denotes the spectral-norm on S(d).

(ii) F is degenerate elliptic, i.e. for all (t, x, p,X, Y ) ∈ J × IRd × Rd \ {0} × S(d) × S(d)
with X ≤ Y

F (t, x, p,X) ≥ F (t, x, p, Y ).

Proof. (i) Since Π is the projection onto a d−1 dimensional subspace (the tangent space),
Π has eigenvalues {0, 1, . . . , 1} and so it is clear that ‖ΠX‖ ≤ ‖X‖. Moreover we have
−d‖X‖ ≤ tr(X) ≤ d‖X‖, from which the claim follows at once using the upper bound
on A.

(ii) For any W ≥ 0 we have tr(W ) ≥ 0 and thus tr(ΠW ) ≥ 0 as well. Since the dif-
fusion tensor is positive definite, we conclude that for W := Y − X ≥ 0 we have
tr(A(t, x)Π(Y −X)) ≥ 0 and so

−(divA)(t, x) · p− tr(A(t, x)ΠX) ≥ −(divA)(t, x) · p− tr(A(t, x)ΠY ).

Now we define the function F [v] ∈ LSC(J × IRd × IRd × S(d)) and the function F [v] ∈
USC(J × IRd × IRd × S(d)) as

F [v](t, x, p,X) :=

{
F [v](t, x, p,X) if p 6= 0,

−dΛ‖X‖ else,

F [v](t, x, p,X) :=

{
F [v](t, x, p,X) if p 6= 0,

dΛ‖X‖ else,

(4.5)

and the first estimate of Lemma 4.9 ensures that they are indeed the lower and upper
semi-continuous envelope of F [v]. We emphasize the important fact

F [v](t, x, 0, O) = F [v](t, x, 0, O), (4.6)

where O denotes the “zero” matrix in S(d). Furthermore for the later use, let us introduce
the positive function

l : [0,∞) → IR, s 7→ s ‖divA(v)‖L∞(Q) + dΛ,

such that we can rewrite the estimate (4.4) for X = ±Id in the form

F (t, x, p,−Id) ≤ l(|p|) and F (t, x, p, Id) ≥ −l(|p|). (4.7)
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Remark 4.10. Throughout the remainder of this section, notation is chosen such that
upper semi-continuous functions are indicated by an upper bar, e.g. u, lower semi-continuous
functions carry a lower bar, e.g. v. The correspondence between functions and problems is
always such that upper and lower bars appear as couples, e.g. u solves F ≤ 0. Similar
notation is chosen for the ∗ super-/subscripts, which appear later.

Now we can formulate our definition of viscosity solutions of the problem (P[v]) as usual
for singular problems (cf. e.g. [19, 43]) based on F [v] and F [v]:

Definition 4.11. An upper semi-continuous function u ∈ USC(J × Ω) is called viscosity
sub-solution of (P[v]) on Ω ⊂ IRd, if

a+ F [v](t, x, p,X) ≤ 0 for all (t, x) ∈ J × Ω, and (a, p,X) ∈ P 2,+u(t, x),

u(0, x) ≤ g(x) for all x ∈ Ω.

Analogously, a lower semi-continuous function u ∈ LSC(J × Ω) is called viscosity super-
solution of (P[v]) on Ω ⊂ IRd, if

a+ F [v](t, x, p,X) ≥ 0 for all (t, x) ∈ J × Ω, and (a, p,X) ∈ P 2,−u(t, x),

u(0, x) ≥ g(x) for all x ∈ Ω.

A function u ∈ C0(J × Ω) is called viscosity solution of (P[v]) if it is a sub-solution and a
super-solution of (P[v]).

Obviously this definition makes sense, because for non-singular problems it results in the
original definition of viscosity solutions 4.4. The following lemma is a basic fact, which we
need later for the construction of an initial sub- and a super-solution. A proof of the lemma
can be found in e.g. [19].

Lemma 4.12. Let A be a nonempty family of sub-solutions of (P[v]) and the function u be
defined via

u(x) := sup{v(x) : v ∈ A} for x ∈ Q.

If u is bounded, then u is a sub-solution of (P[v]). An analogue result holds for super-
solutions.

Before we come to the comparison theorem let us note a result concerning a temporal
perturbation of sub-solutions, which acts as a temporal barrier for t→ T :

Lemma 4.13. Let the function u be the solution of a problem F (t, x,∇u,D2u) ≤ 0, i.e. a
sub-solution of F (t, x,∇u,D2u) = 0 fulfilling the initial condition u(0, ·) = g(·). Then the
function

uε := u− ε

T − t

solves the problem with strict inequality, i.e. F (t, x,∇uε, D2uε) < 0, and it fulfills the initial
condition

uε(0, x) ≤ g(x) for x ∈ Ω.

Proof. We choose (a, p,X) ∈ P 2,+uε(t, x) for any (t, x) ∈ Q. Then

(
a+

ε

(T − t)2
, p,X

)
∈ P 2,+u(t, x)

holds and therefore we can insert the latter into the problem to obtain

a+
ε

(T − t)2
+ F (t, x, p,X) ≤ 0.
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In other words

a+ F (t, x, p,X) ≤ − ε

(T − t)2
≤ − ε

T 2
=: −c(ε) < 0.

Clearly the original initial condition is weakened by the subtraction of ε/(T−t), i.e. uε(0, ·) ≤
u(0, ·) = g(·).

Theorem 4.14 (Comparison principle [35]). Let u ∈ USC(J × Ω) be a sub-solution,
and u ∈ LSC(J × Ω) be a super-solution of (P[v]) for bounded Ω ⊂ IRd. Suppose furthermore
u ≤ u on the parabolic boundary ∂pΩ = {0} × Ω ∪ J × ∂Ω. Then u ≤ u on J × Ω.

Proof. This comparison principle is Theorem 4.9 in the work of Giga et al. [35] for problems
described by functions H, which fulfill the following conditions

(F1) H : J × Ω × (IRd \ {0}) × S(d) → IR is continuous

(F2) H is degenerate elliptic

(F3) −∞ < H(t, x, 0, O) = H(t, x, 0, O) < ∞, where H and H are the semi-continuous
relaxations of H

(F8) There is a modulus σ2 such that for x, y ∈ Ω, p 6= 0

|H(t, x, p,X) −H(t, y, p,X)| ≤ σ2(|x− y|(|p| + 1))

(F11) H is geometric, i.e. for p 6= 0 and λ > 0, µ ∈ IR

H(t, x, λp, λX + µp⊗ p) = λH(t, x, p,X)

(F12) There exists a function c ∈ C1([0,∞)) such that c(0) ≥ c0 > 0 for some constant c0
and

H(t, x, p,−Id) ≤ c(|p|) and H(t, x, p, Id) ≥ −c(|p|).

Thus, we have to check these assumptions for H = F . The assertion of (F1)-(F3) is already
given by Lemma 4.9 and equation (4.6). Let us construct the modulus σ2 from (F8). We
have

|F [v](t, x, p,X) − F [v](t, y, p,X)| = |(divA(v)(t, x)) · p− (divA(v)(t, y)) · p|
≤ |(divA(v)(t, x)) − (divA(v)(t, y))||p|
≤ C|x− y||p|,

because divA(v) is Lipschitz due to assumption (4.1). Clearly F is geometric, due to the
built-in projection (Id − |p|2(p⊗ p)), i.e.

F (t, x, λp,X + µp⊗ p) = −(divA(v)(t, x)) · (λp) − tr(A(v)(t, x)Π(λX + p⊗ p))

= −λ(divA(v)(t, x)) · p− λtr(A(v)(t, x)ΠX).

This ensures (F11). Finally the function c from (F12) is equal to the function l, which we
have constructed in (4.7).
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4.2.3 Existence of a viscosity solution

We continue the course of this chapter with the validity of the above comparison theorem
for bounded domains Ω ⊂ IRd. A unique viscosity solution can now be obtained by the
application of Ishii’s Perron Method [42]: We have to construct one sub-solution and one
super-solution, which is done in the following paragraph. But before, we need to improve
our results concerning the transformations of gray values:

Lemma 4.15. Let u ∈ USC(Q) be a bounded viscosity solution of F [v] ≤ 0. Then for any
continuous nondecreasing transformation of the gray-values h : IR → IR, the function h(u)
is also a viscosity solution of F [v] ≤ 0. An analogue result holds for super-solutions.

Proof. The proof of the lemma, which is given in e.g. [16], is only sketched roughly here:
First the assertion is obtained for strictly increasing h ∈ C 2(IR). Thereby, the proof makes
use of sup-convolutions, which are semi-convex and Lipschitz. The degenerate ellipticity of
F [v] can be used with the second derivative of D2h(u) at a maximum point ŷ of h(u) − φ,
where φ is a suitable test function. To approximate this maximum point with a sequence
yk → ŷ the semi-continuity of F [v] is utilized. In a final step h ∈ C 0(IR) is approximated
by a sequence hk ∈ C2(IR) with h′k > 0.

Theorem 4.16 (Global existence and uniqueness). There exists a unique viscosity
solution u ∈ C0(J × IRd) of the problem (P[v]) on Ω = IRd. Furthermore there exists a
constant

R1 = R1(g, ‖divA(v)‖L∞(J×IRd)), (4.8)

such that u(t, x) = 0 for |x| > R1 and t ∈ J , i.e. u ∈ C0
0 (J × IRd). The following estimate

holds:

‖u‖L∞(J×IRd) ≤ ‖g‖L∞(Rd). (4.9)

Proof. In the proof we construct a sub- and a super-solution u and u which are compactly
supported, to show that also the solution u has compact support. The constant R1 is then
obtained from this construction. If we construct u and u such that they fulfill the initial
condition

u(0, x) = u(0, x) = g(x) for x ∈ IRd,

we can apply the Perron Method [42] to obtain a continuous u ∈ C 0(J × IRd) such that

u ≤ u ≤ u

by comparison. For the construction of u and u, we are inspired by the ideas of Chen
et al. [16] for MCM.

• Step 1. Let us first construct barriers to handle the unbounded domain Ω = IRd. We
define

ψ±(t, x) =

{
∓(|x| − ωt)4 if |x| > ωt

0 else,

where ω > 0 will be chosen appropriately below. Then ψ− and ψ+ are a sub- respectively
a super-solution of the problem. We prove this assertion only for ψ−. Because ψ− ∈ C2 is
convex, we can use the degenerate ellipticity of F [v] to derive for ∇ψ− 6= 0

F [v](t, x,∇ψ−, D2ψ−) ≤ F [v](t, x,∇ψ−, O)

= −(divA(v)(t, x)) · ∇ψ− ≤ ‖divA(v)‖L∞(Q) |∇ψ−|.
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Ωx{t=0}Ωx{t=t }
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Figure 4.3: Left: Illustration of the barrier function θ−(ψ−) which is a sub-solution of the
problem. Right: Illustration of the transformed initial sub-solutions hy(w

−
y ).

A straightforward calculation shows that ψ− solves ∂tψ
− + ω|∇ψ−| = 0 so choosing ω >

‖divA(v)‖L∞(J×IRd) leads to

∂tψ
− + F [v](t, x,∇ψ−, D2ψ−) ≤ ∂tψ

− + ‖divA(v)‖L∞(Q) |∇ψ−|
≤ ∂tψ

− + ω|∇ψ−| = 0.

Additionally for ∇ψ− = 0, we have

∂tψ
− + F [v](t, x, 0, D2ψ−) = ∂tψ

− − dΛ‖D2ψ−‖ ≤ 0,

since ∂tψ
− ≤ 0 for all (t, x) ∈ Q.

• Step 2. In the second step we will modify the functions ψ± such that they are constant
on J × {x ∈ IRd : |x| > R1} for some R1 > 0. Let us consider the following continuous and
nondecreasing transformations of the gray-values for L > 0

θ−(s) := min{s− L, 0} and θ+(s) := max{s+ L, 0},

which again deliver a sub-solution θ−(ψ−) and a super-solution θ+(ψ+) in view of Lemma
4.15. We choose the constant L > 0 large enough so that θ−(ψ−(0, x)) ≤ g(x) ≤
θ+(ψ+(0, x)) (cf. Figure 4.3). Thus, θ−(ψ−) and θ+(ψ+) respect the initial conditions
and we have

θ−(ψ−(t, x)) = 0 for (t, x) ∈ J × {x ∈ IRd : |x| > R1},
θ+(ψ+(t, x)) = 0 for (t, x) ∈ J × {x ∈ IRd : |x| > R1},

for R1 = R1(g, ‖divA(v)‖L∞(J×IRd)) appropriately chosen. Obviously g has compact support

in B(R1).
• Step 3. So far the sub- and super-solution θ−(ψ−) and θ+(ψ+) do not attain the initial

value at scale t = 0. We now construct functions which fulfill the initial condition and then
combine these functions with θ−(ψ−) and θ+(ψ+) in the last step.

For any fixed y ∈ Ω we define the functions

w±
y (t, x) = ±(t+ e(|x− y|)) with e(ρ) =

∫ ρ

0
s/l(s) ds.

Then w−
y is a solution of F [v] ≤ 0 and w+

y a solution of F [v] ≥ 0. Again we ensure this
property for w−

y . Obviously for x = y (i.e. ρ := |x − y| = 0) the function w−
y is not twice

continuously differentiable and thus, we have to consider the jet of w−
y and show that

a+ F [v](t, x, p,X) ≤ 0 for (a, p,X) ∈ P2,+
Q w−

y (t, x).

But for x = y (i.e. ρ := |x − y| = 0) the super-jet of w−
y is given by P2,+

Q w−
y (t, x) =

{−1} × {0} × S(d) and so

−1 + F [v](t, x, 0, X) = −1 − dΛ‖X‖ ≤ 0 for X ∈ S(d).
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It remains to show that w−
y is a sub-solution for x 6= y, i.e. ρ 6= 0. We have

∇e(ρ) = e′(ρ)∇ρ, D2e(ρ) = e′′(ρ)∇ρ⊗∇ρ+ e′(ρ)D2ρ, D2ρ =
1

ρ
(Id −∇ρ⊗∇ρ) .

and since e′(ρ) = ρ/l(ρ)

∇e(ρ) =
ρ∇ρ
l(ρ)

, D2e(ρ) =

(
e′′(ρ) +

ρ

l(ρ)ρ

)
∇ρ⊗∇ρ+

1

l(ρ)
Id.

Because F [v] considers only the projection Π of the second derivative onto the tangent space
span{∇ρ}⊥, a calculation yields

F [v](t, x,∇w−
y , D

2w−
y ) = F [v]

(
t, x,− x− y

l(|x− y|) ,−
1

l(|x− y|) Id

)

=
1

l(|x− y|) F [v](t, x,−(x − y),−Id).

Together with the temporal derivative we now have due to (4.7)

∂tw
−
y + F [v](t, x,∇w−

y , D
2w−

y ) = −1 +
1

l(|x− y|) F [v](t, x,−(x − y),−Id) ≤ 0,

which shows that w−
y is a sub-solution if ρ 6= 0. Thus we have asserted that w−

y is a solution

of F [v] ≤ 0. Analogously one ensures that w+
y is a solution of F [v] ≥ 0.

Since w−
y (t, x) is nondecreasing with respect to |x−y| and t, the continuity of g guarantees

the existence of a continuous nondecreasing function hy : IR → IR with hy(0) = g(y) and
such that

hy(w
−
y (t, x)) ≤ g(x)

(cf. Figure 4.3). Due to the fact that F [v] is geometric, the function hy(w
−
y ) is a sub-solution

and by Lemma 4.12 the function

w−
h (t, x) := sup{hy(w−

y (t, x)) : y ∈ Ω}

is again a sub-solution of F [v] ≤ 0. But this function now fulfills the initial condition,
because hy(w

−
y (0, y)) = g(y). Similarly we construct a super-solution

w+
h (t, x) := inf{hy(w+

y (t, x)) : y ∈ Ω}

• Step 4. Finally we can combine the sub- and super-solutions we have found in the last
steps. Due to Lemma 4.12 the following functions again are sub- and super-solution

u := max{w−
h , θ

−(ψ−)} and u := min{w+
h , θ

+(ψ+)},

such that u(0, x) = g(x) because of θ−(ψ−(0, x)) = g(x) and w−
h (0, x) ≤ g(x) and similarly

u(0, x) = g(x). Moreover u and u have compact support in B(R1(g, ‖divA(v)‖L∞(Q))).
We apply the Perron Method to obtain a continuous solution, for which u ≤ u ≤ uo

holds. Thus, the function u has compact support as well. This verifies the assertion of the
theorem.

It remains to show that u is bounded by the initial value ‖g‖L∞(IRd). Clearly the func-

tion, which is constant equal −‖g‖L∞(J×IRd) is a sub-solution and analogously ‖g‖L∞(J×IRd) a

super-solution. If we consider these constant functions on the domain J×B(R1), we can ap-
ply the comparison theorem 4.14, to obtain the desired estimate estimate ‖u‖L∞(J×B(R1)) ≤
‖g‖L∞(IRd) and thus ‖u‖L∞(J×IRd) ≤ ‖g‖L∞(IRd).
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4.3 Toward anisotropic nonlinear geometric diffusion

In the following sections we prove the existence of a solution for the nonlinear problem
(P[u]). We consider the operator P [·] from above, i.e.

P : C0
0 (J × Ω) → C0

0 (J × Ω), v 7→ Solution of P [v],

such that P [v] is the solution of the problem (P[v]) in which the diffusion tensor is defined
by v. The results of the last section ensure the existence of this solution. Below we show the
continuity of this operator, which enables us to apply the Schauder Fixed-Point Theorem
to assert the existence of a solution of the nonlinear problem (P[u]). The central result of
this section is the following:

Theorem 4.17 (Continuity of P [·]). Let (vn)n∈IN ⊂ C0
0 (J × IRd) be such that vn → v

in C0
0 (J × IRd) for n → ∞ and let un be the viscosity solution of the problem (P[vn]) on

Ω = IRd. Then there exists a continuous function u such that un ⇒ u, and u is the viscosity
solution of the problem (P[v]).

The results from the last sections ensure the existence of the solution un of (P[vn]). Since
all the problems (P[vn]) have the same initial condition, we have

‖un‖L∞(Q) ≤ ‖g‖L∞(J×IRd)

independently of n. Moreover, the compactness of A delivers a bound on
‖divA(vn)‖L∞(J×IRd) for the bounded sequence (vn)n ⊂ C0

0 (J × IRd) independently of n.

Indeed we can bound any derivative of A(vn) by the C0 norm of vn and thus in view of (4.8)
there exists a constant

R(g) := sup
n∈IN

R1

(
g, ‖divA(vn)‖L∞(J×IRd)

)
<∞

which is independent of n, and such that the functions un are constant outside a ball of
radius R(g) around the origin, i.e.

un(t, x) = 0 for (t, x) ∈ J × {x ∈ IRd : |x| > R(g)}. (4.10)

Concerning the sequence vn, we have seen in Remark 4.8 that the compactness of A trans-
forms the convergence in C0(J × IRd) into convergence in C1,1(J × IRd). This means in
particular

A(vn) ⇒ A(v) and div(A(vn)(·)) ⇒ div(A(v)(·)) for n→ ∞, (4.11)

as well, and we denote the semi-continuous problems resulting from the diffusion tensor
A(v) with F

∞
and F∞. Furthermore we introduce the notation F n and F

n
instead of F [vn]

and F [vn] as well to simplify the notation.

4.3.1 Γ
+/− - limits of the linear problems

Now we associate the following limits with the sequence of solutions un and the sequence of
problems F n and F

n
:

Definition 4.18. For a subset L ⊂ B of a Banach-Space B and a sequence of functions
hk : L→ IR, k = 1, 2, . . . the Γ−-limit h∗ ∈ LSC(L) is defined via

h∗(x) := lim inf*k→∞
hk(x) := lim

k→∞
inf

{
hl(y) : ‖y − x‖ ≤ 1

k
, l ≥ k

}
.
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The Γ+-limit h∗ ∈ USC(L) is defined by

h∗(x) := lim sup*
k→∞

hk(x) := lim
k→∞

sup

{
hl(y) : ‖y − x‖ ≤ 1

k
, l ≥ k

}
.

Remark 4.19. If hk = h for all k the Γ−-limit h∗ is called the lower semi-continuous
relaxation of h, because h ∈ LSC(L). Of course an analogue remark holds for the Γ+-limit.

The notion of Γ+/−-limits was introduced by De Giorgi [21]. It is especially important in
the calculus of variations and also in stochastic control theory. From there we take the next
result concerning the stability of viscosity solutions.

Theorem 4.20 (Barles, Perthame [8]). For Ω ⊂ IRd and J ⊂ IR, let wn and wn

be sequences of sub- and super-solutions of the problems Gn(t, x, ∂tu,∇u,D2u) = 0 and
G
n
(t, x, ∂tu,∇u,D2u) = 0 on J × Ω with initial value f ∈ C0(Ω). Then the function

W∗(t, x) := lim sup*
n→∞

wn(t, x) ∈ USC(Q)

is a sub-solution of the problem

G∗ := lim inf*n→∞
Gn = 0,

supposed W∗ and G∗ are locally bounded. Similarly the function

W ∗(t, x) := lim inf*n→∞
wn(t, x) ∈ LSC(Q)

is a super-solution of the problem

G∗ := lim sup*
n→∞

G
n

= 0,

again supposed W ∗ and G∗ are locally bounded.

This theorem also considers the Γ+/−-limits of the problems Gn and G
n
. The application

of definition 4.18 (for L := J × IRd × IR × IRd × S(d)) gives us the precise meaning: The
Γ−-limit of Gn is given by

lim inf*n→∞
Gn(t, x, a, p,X) := lim

n→∞
inf

{
Gl(s, y, b, q, Y ) : |s− t| ≤ 1

n
, |y − x| ≤ 1

n
,

|b− a| ≤ 1

n
, |q − p| ≤ 1

n
, ‖Y −X‖ ≤ 1

n
, l ≥ n

}

and analogously the Γ+-limit of the problems G
n

is defined.

Remark 4.21. It is quite natural to consider the Γ+/− - limits as in the theorem. Indeed,
if Gn was independent of n, the theorem would reduce to the observation that the limsup
of sub-solutions is again a sub-solution, which is exactly the device that is employed with
Perron’s method for existence [42] (cf. also Lemma 4.12). In this sense passing to the Γ+/−

- limits can be considered as a kind of diagonal version of Perron’s method.

Although the proof of the theorem is given in [8] we repeat it here since we use a sim-
ilar technique to derive a subsequent result. We need the following result according the
approximation of the Γ+/−-limits, whose proof is given in e.g. [8, 19]:
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Lemma 4.22. Let (wn)n∈IN ⊂ USC(Q) be a sequence of upper semi-continuous functions,
(s, z) ∈ Q and furthermore W∗ < ∞. For any triple (a, p,X) ∈ P 2,+W∗(s, z) there exist
sequences

nj → ∞, (sj , zj) ∈ Q, (aj , pj, Xj) ∈ P 2,+wnj (sj, zj)

such that

(sj, zj) → (s, z),

wnj (sj, zj) →W∗(s, z),

aj → a, pj → p, Xj → X.

The analogue result holds for lower semi-continuous functions.

Proof of Theorem 4.20. For the sequence of sub-solutions (wn)n∈IN ⊂ USC(Q), (s, z) ∈ Q
and (a, p,X) ∈ W∗(s, z) let us consider the sequences provided by Lemma 4.22. We then
clearly have

Gnj (sj, zj , aj , pj , Xj) ≤ 0,

since (aj, pj , Xj) ∈ P 2,+wnj (sj , zj) and because the wnj are sub-solutions of Gnj = 0. In
the definition of G∗ we now insert these sequences we have found and therefore get an upper
estimate

G∗(s, z, a, p,X) = lim inf*n→∞
Gn(s, z, a, p,X) ≤ lim inf

j→∞
Gnj (sj, zj , aj , pj , Xj) ≤ 0,

because passing to the sub-sequence nj increases the limes inferior. Since we have chosen
(a, p,X) ∈ W∗(s, z) the function W∗ is a sub-solution of G∗ = 0. The proof for W ∗ and G∗

follows the same pattern.

Assigning the Γ+/−-limits with the sub-sequence of solutions un of the problems (P[vn]),
we learn from the last theorem that

U∗ := lim inf*n→∞
un and U∗ := lim sup*

n→∞
un,

which are bounded in consequence of Theorem 4.16, solve the problems

F ∗ := lim sup*
n→∞

(
a+ F

n)
= a+ lim sup*

n→∞
F
n ≥ 0

and

F ∗ := lim inf*n→∞
(a+ F n) = a+ lim inf*n→∞

F n ≤ 0,

supposed F ∗ and F ∗ are locally bounded, which we verify in Section 4.3.4.
To prove Theorem 4.17 it remains to assert the following statements, which is the goal of

the rest of this section

• The limit function of the Γ+/−-convergence is continuous, i.e. we have U∗ = U∗ =:
u ∈ C0(J × IRd). This is shown in Sections 4.3.2 and 4.3.3.

• The Γ+/−-limit function u fulfills the initial conditions. This is asserted in Section
4.3.2.

• The limit problem is the anisotropic level-set problem corresponding to v,
i.e. F ∗(t, x, a, p,X) = a + F [v](t, x, p,X) and F ∗(t, x, a, p,X) = a + F [v](t, x, p,X).
This identification is treated in Section 4.3.4.
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4.3.2 Continuity of the limit function

Theorem 4.23. Let (un)n∈IN ⊂ C0(J × IRd) be the sequence of solutions of (P[vn])n∈IN.
Concerning the limits

U∗ := lim sup*
n→∞

un and U∗ := lim inf*n→∞
un

we have U∗ = U∗ =: u ∈ C0(J ×Rd).

Proof. Per definition we know that U ∗ ≤ U∗. Thus, it remains to show that U∗ ≤ U∗. Again
we divide the proof into smaller steps.

• Step 1. For a fixed ε > 0 let us consider the functions unε defined in Lemma 4.13 and

U∗ε := lim sup*
n→∞

unε .

We then have

U∗ε(t, x) = lim sup*
n→∞

(
un − ε

T − t

)
= lim sup*

n→∞
un − ε

T − t

and therefore U∗ε ↗ U∗ in J × IRd with ε → 0. So if we could prove U∗ε ≤ U∗, we would
in the limit ε→ 0 obtain the desired result. Moreover from Lemma 4.13 we know that U∗ε

solves F ∗ ≤ −c(ε) < 0.
• Step 2. We show U∗ε ≤ U∗. Assume there exists a point (s, z) for which

0 < δ := U∗ε(s, z) − U ∗(s, z). (4.12)

For α > 0 fixed we take the test function φ(x, y) := α
4 |x − y|4 and consider the maximum

point (t̂, x̂, ŷ) of

w(t, x, y) − φ(x, y) := U∗ε(t, x) − U ∗(t, y) − φ(x, y).

Such a maximum point exists in view of the semi-continuity of U ∗ and U∗ε. And for α large
enough this maximum point lies in the interior of the domain (0, T ) × B(R(g)) × B(r(g))
due to the initial condition, U∗ε → −∞ for t→ T and the bound (4.10).

We apply the parabolic Ishii-Lemma (Lemma 4.5, k = 2, u1 = U∗ε, u2 = −U∗, Z =
D2φ(x̂, ŷ), p = ∇φ(x̂, ŷ)) and get

(a, q,X) ∈ P2,+U∗ε(t̂, x̂) and (−b,−r,−Y ) ∈ P2,+(−U∗)(t̂, ŷ)

such that again

a = b = ∂tφ(x̂, ŷ) = 0

q = r = ∇xφ(x̂, ŷ) = α|x̂− ŷ|2(x̂− ŷ) (4.13)

and for the setting γ = ‖Z‖−1 in Lemma 4.5

−2‖Z‖Id ≤
(
X 0
0 −Y

)
≤ Z +

1

‖Z‖Z
2 (4.14)

with

Z = D2φ(t̂, x̂, ŷ) = 3α(x̂− ŷ) ⊗ (x̂− ŷ)

(
Id −Id
−Id Id

)
.

From (4.14) we conclude that for µ := 6α‖(x̂− ŷ) ⊗ (x̂− ŷ)‖

‖X‖, ‖Y ‖ ≤ µ. (4.15)
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Using P2,+(−U∗) = −P2,−U∗, we have now (a, q,X) ∈ P2,+U∗ε(t̂, x̂) and (b, r, Y ) ∈
P2,−U∗(t̂, ŷ), which we approximate by sequences given from Lemma 4.22. Thus, we have

tj → t̂, sj → t̂,

xj → x̂, yj → ŷ,

aj → a, bj → b,

qj → q, rj → r,

Xj → X, Yj → Y,

u
nj
ε (tj, xj) → U∗ε(t̂, x̂), umj (sj , zj) → U∗(t̂, ŷ).

Obviously we cannot choose the same sequences to approximate the jets. We insert these
sequences into the problems, which our candidates U∗ε and U∗ solve, to obtain (as before
in the proof of Theorem 4.20)

F ∗(t̂, x̂, a, q,X) ≤ lim inf
j→∞

(aj + F nj (tj , xj , qj, Xj)) ≤ −c(ε)

F ∗(t̂, ŷ, b, r, Y ) ≥ lim sup
j→∞

(
bj + F

mj (sj, yj , rj , Yj)
)
≥ 0.

Subtracting the two rightmost inequalities delivers

lim sup
j→∞

(
bj + F

mj (sj , yj, rj , Yj)
)
− lim inf

j→∞
(aj + F nj (tj, xj , qj , Xj)) ≥ c(ε) > 0

and thus by passing to sub-sequences (for which we do not change notation)

lim
j→∞

(
bj − aj + F

mj (sj, yj , rj , Yj) − F nj (tj , xj , qj , Xj)
)
≥ c(ε) > 0. (4.16)

Let us closer analyze the term inside the limes. Because we could not choose the same
sub-sequences for the F ∗ and the F ∗ we have to add zeroes in the following form:

bj − aj + F
mj (sj , yj, rj , Yj) − F nj (tj , xj,qj, Xj) = bj − b+ a− aj

+ F
mj (sj, yj , rj , Yj) − F

∞
(sj, yj , rj , Y ) (4.17)

+ F
∞

(sj, yj , rj, Y ) − F∞(tj , xj , qj, X) (4.18)

+ F∞(tj, xj , qj , X) − F nj (tj, xj , qj , Xj). (4.19)

We estimate these terms separately. Clearly bj − b+ a− aj goes to zero as j → ∞. For the
rest, we choose η > 0 arbitrary and using the notation

Πθ :=

(
Id − θ ⊗ θ

|θ|2
)

for vectors θ ∈ IRd \ {0} we make a distinction between the following cases:
Case 1: p = q 6= 0. Without loss of generality we can assume that qj 6= 0 6= pj for all j.

We consider the first term (4.17) and have

F
mj (sj, yj , rj, Yj) − F

∞
(sj , yj, rj , Y ) = −div(A(vmj )(sj , yj)) · rj + div(A(v)(sj , yj) · rj

− tr(A(vmj )(sj , yj)ΠrjYj) + tr(A(v)(sj , yj)ΠrjYj)

− tr(A(v)(sj , yj)ΠrjYj) + tr(A(v)(sj , yj)ΠrjY )

≤ η

(4.20)
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for all j > j1 large enough. The same estimate holds with j > j2 large enough for the third
term (4.19). Let us now consider the middle term (4.17). For all j > j3 large enough:

F
∞

(sj , yj, rj , Y ) − F∞(tj , xj, qj , X) = −div(A(v)(sj , yj)) · rj + div(A(v)(sj , yj)) · r
+ div(A(v)(tj , xj)) · qj − div(A(v)(tj , xj)) · q
+ div(A(v)(tj , xj)) · q − div(A(v)(sj , yj)) · r
+ tr(A(v)(sj , yj)ΠrY ) − tr(A(v)(sj , yj)ΠrjY )

+ tr(A(v)(tj , xj)ΠqjX) − tr(A(v)(tj , xj)ΠqX)

+ tr(A(v)(t̂, ŷ)ΠrY ) − tr(A(v)(sj , yj)ΠrY )

+ tr(A(v)(tj , xj)ΠqX) − tr(A(v)(t̂, x̂)ΠqX)

+ tr(A(v)(t̂, x̂)ΠqX) − tr(A(v)(t̂, ŷ)ΠrY )

≤ η + tr(A(v)(t̂, x̂)ΠqX) − tr(A(v)(t̂, ŷ)ΠrY ).

But we can choose α large so that |x̂− ŷ| ≤ η according to Lemma 4.6 and thus ‖A(v)( t̂, x̂)−
A(v)(ŝ, ŷ)‖ ≤ Cη and finally

tr(A(v)(t̂, x̂)ΠqX) − tr(A(v)(t̂, ŷ)ΠrY )

= tr(A(v)(t̂, ŷ)Πq(X − Y )) + tr(Πq(A(v)(t̂, x̂) −A(v)(t̂, ŷ))X) ≤ Cη

because X ≤ Y .
Case 2: Let us now assume that q = r = 0. If qj 6= 0 6= rj we are back in the first case

so let us now first assume qj = rj = 0. Then obviously for term (4.17) we have for j > j4
large enough

F
mj (sj, yj , rj , Yj) − F

∞
(sj, yj , rj , Y ) = dΛ(‖Y ‖ − ‖Yj‖) ≤ η. (4.21)

And for the middle term (4.18) we use X ≤ Y

F
∞

(sj, yj , rj, Y ) − F∞(tj , xj , qj, X) = dΛ(‖X‖ − ‖Y ‖) ≤ 0 ≤ η.

Finally we assume qj 6= 0 = rj (the case qj = 0 6= rj is treated equivalently). Then
for (4.17) we can use the estimate (4.21) and for (4.19) the estimate (4.20) from above.
It remains to estimate (4.18). We use the information ‖X‖, ‖Y ‖ ≤ Cα|x̂ − ŷ|2 from the
Ishii Lemma (estimate (4.15)) to conclude that if r = q = α|x̂ − ŷ|2(x̂ − ŷ) = 0 then
‖X‖ = ‖Y ‖ = 0 and thus

F
∞

(sj , yj, rj , Y ) − F∞(tj, xj , qj , X) = div(A(v)(tj , xj)) · qj ≤ ‖divA(v)‖L∞(Q) |qj| ≤ η.

Summarizing the last results, we find for arbitrary η > 0 a fixed constant α large enough
and j > max{j1, j2, j3, j4, j5, j6, j7} such that

F
mj (sj , yj, rj , Yj) − F nj (tj , xj, qj , Xj) < η.

But this is a contradiction to (4.16) for η < c(ε).

4.3.3 Uniform convergence toward the Γ
+/−-limit

In the last paragraph we have shown that the limit function u is continuous. We now
conclude that the un converge uniformly toward u. Then obviously u fulfills the initial
condition of (P[v]).
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Lemma 4.24. The functions un converge uniformly toward the Γ+/−-limit u.

Proof. Because according to (4.10) the functions un have a compact support in B(R1)
independently of n, it suffices to show the uniform convergence on the bounded set J×B(R1):
Assume the convergence were not uniform, i.e. there exists an ε > 0 and a sub-sequence
nj → ∞, J ×B(R1) 3 (sj, xj) → (s, x) ∈ J ×B(R1) such that

unj (sj , xj) − u(sj , xj) > ε or unj (sj, xj) − u(sj , xj) < −ε.
We then would derive

ε ≤ lim sup
j→∞

(unj (sj , xj) − u(sj , xj)) or ε ≤ lim inf
j→∞

(u(sj , xj) − unj (sj , xj))

≤ lim sup*
j→∞

(unj (s, x) − u(s, x)) ≤ lim inf*j→∞
(u(s, x) − unj (s, x))

= lim sup*
j→∞

unj (s, x) − u(s, x) = U(s, x) − lim inf*j→∞
unj (s, x)

= u(s, x) − u(s, x) = 0 = u(s, x) − u(s, x) = 0

where we have used the continuity of u. But this is a contradiction and thus the convergence
uniform.

A trivial consequence of the uniform convergence is that u fulfills the initial condition

un(0, x) = g(x) ⇒ u(0, x) = g(x).

Finally u has compact support as it is claimed by Theorem 4.17, since un ∈ C0
0 (J × IRd).

4.3.4 Identification of the limit problems

To finish the compactness result it remains the identification of the limit problems. So far
we know that u solves F ∗ ≤ 0 and F ∗ ≥ 0 with the appropriate initial condition. Thus, it
remains to show that

F ∗(t, x, a, p,X) = a+ F∞(t, x, p,X) and F ∗(t, x, a, p,X) = a+ F
∞

(t, x, p,X).

Let us recall the definition:

F ∗(t, x, a, p,X) = a+ lim inf*n→∞
F n(t, x, p,X).

= a+ lim
n→∞

inf

{
F l(s, y, q, Y ) : l ≥ n, |s− t|, |y − x|, |q − p|, ‖Y −X‖ ≤ 1

n

}

(4.22)

Assume that p = 0. Due to the lower estimate (4.4) we know the infimum in (4.22) is
reached in F n(s, y, 0, Y ) independently of s, y, and Y , thus obviously

F ∗(t, x, a, p,X) = a+ lim inf
n→∞

dΛ‖X‖ = a+ dΛ‖X‖ = a+ F∞(t, x, 0, X).

So let us now assume p 6= 0. For n large enough we have q 6= 0 for all |q − p| ≤ 1
n ,

and F n is continuous on J × IRd × IRd \ {0} × S(d). Moreover since A(vn) ⇒ A(v) and
divA(vn) ⇒ divA(v) we can easily pass to the limit to obtain

lim inf*n→∞
F n(t, x, p,X) = lim

n→∞
inf
{
F l(s, y, q, Y ) : l ≥ n, |s− t|, |y − x|,

|q − p|, ‖Y −X‖ ≤ 1

n

}

= −div(A(v)(t, x)) · p+ tr (A(v)(t, x)ΠX)

= F∞(t, x, p,X),

because the functions converge locally uniformly (cf. [11]) for p 6= 0. Analogously we ensure
the identification of the upper semi-continuous limit problem F ∗ = F [v].
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4.4 Existence of a solution of the nonlinear problem

With the tools from the last section we are now able to prove the existence of a solution of
the nonlinear problem:

Theorem 4.25. For the problems (2.3) and (2.17) there exists a solution u : J × Ω → IR
in the sense that for given initial condition g ∈ C 0

0 (IRd) the function u is defined as the
viscosity solution of P [u]. Moreover u ∈ C0

0 (J × Ω) and the following estimate holds:

‖u‖L∞(J×IRd) ≤ ‖g‖L∞(IRd).

Proof. We consider functions v ∈ C0
0 (J× IRd) such that ‖v‖L∞(J×IRd) ≤ ‖g‖L∞(IRd) and thus

v ∈ B := {w ∈ C0
0 (J × IRd) : ‖w‖L∞(J×IRd) ≤ ‖g‖L∞(IRd)} ⊂ C0

0 (J × IRd).

Clearly B is a convex subset of C0
0 (J × IRd) and due to the estimate (4.9) we can interpret

P [·] as a mapping
P : B → B.

Moreover we know from Theorem 4.17 that P is a continuous operator, because for a con-
vergent sequence wn → w in C0(J × IRd) we have wn ⇀ w in L2(J × IRd). And the
corresponding solutions un again converge uniformly toward u.

Thus, the assumptions for the application of the Schauder Fixed-Point-Theorem are ful-
filled, which finally gives us the existence of a fixed-point u ∈ B of the continuous and
compact operator P [·].
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Chapter 5

Discretization and implementation

I
N THIS CHAPTER the focus lies on the discretization and the implementation of the
previously defined models. First we will consider the spatial discretization of the image
domain Ω and the image-sequence domain Q. After a discussion of the discrete variants

of the involved geometric quantities, we deal with the scale-discretization and derive linear
systems of equations via the standard continuous Galerkin method. Thereby for the image-
sequence evolution a detailed analysis with suitable integration schemes leads to a simple
block-system of equations, where each block corresponds to an image in the sequence. The
resulting system is solved by a symmetric block Gauß-Seidel solver.

Throughout the chapter we make use of multi-indices, when denoting grid-elements and
-nodes. For an index set Y we denote the components of a multi-index i ∈ Y d by (i1, . . . , id).
The multiplication of i with a scalar λ is defined by λi := (λi1, . . . , λid). Furthermore for
open sets O we denote by Lp(O ) the Lebesgue space of exponent p ∈ [1,∞] on O and by
Hm,2(O ) or just Hm(O ) the Sobolev spaces for m ∈ IN. For the dual space of H 1(O ) we
write (H1)′(O ). The dual pairing on (H1)′(O )×H1(O ) is denoted with < ·, · >. Moreover
(·, ·)O is the scalar product on L2(O ) and the norm on Lp(O ) is denoted with ‖ · ‖Lp(O ).

5.1 Finite-Elements on uniform spatial grids

To begin with, let us focus on the spatial discretization and introduce suitable triangulations
on Ω. Naturally, we assume that Ω = [0, 1]d, because images are usually given on rectangular
areas. Obviously, for image processing purposes it is most efficient to discretize the domain Ω
with a regular quadrilateral or hexahedral grids, where the unknowns on the grid correspond
to the given pixels or voxels of the image.

Definition 5.1. For given lmax ∈ IN a Quadtree-grid (Octtree-grid) T ∗
of Ω := [0, 1]d, for

d = 2 (d = 3) is the set

T ∗
:=
{
Eli : l ∈ {0, . . . , lmax}, i ∈ {0, . . . , 2l − 1}d

}

with the elements, which carry a multi-index subscript i,

Ω ⊃ El
i :=

{
[i12

−l, (i1 + 1)2−l] × [i22
−l, (i2 + 1)2−l] if d = 2,

[i12
−l, (i1 + 1)2−l] × [i22

−l, (i2 + 1)2−l] × [i32
−l, (i3 + 1)2−l] if d = 3.

We call lmax the depth of the Quadtree (Octtree), l the level of the element E l
i and i its

index. For a multi-index α ∈ {0, . . . , 2l}d we denote the set of the Nodes

Ω 3 xlα := 2−lα =

{
(α12

−l, α22
−l)T if d = 2,

(α12
−l, α22

−l, α32
−l)T if d = 3,
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on level l by

Ω ⊃ N l
:=
{
xlα : α ∈ {0, . . . , 2l}d

}
.

For the quadtree- or octtree-grid of Ω we have the following properties:

• For a fixed 0 ≤ l0 ≤ lmax the elements of level l0 cover Ω
⋃

i∈{0,...,2l−1}d

Eli = Ω.

• For a fixed 0 ≤ l0 ≤ lmax and i 6= j

El0i ∩El0j =





∅,
common node xl0α ,

common edge (d = 2, 3) or common face (d = 3).

• Each element El
i on level 0 ≤ l < lmax has 2d child-elements on level l + 1

Eli =
⋃

j={1,...,2d}

El+1
ij

, with ij ∈ {0, . . . , 2l+1 − 1}d.

Per definition quadtree- and octtree-grids induce a hierarchy of grids. This allows for the
efficient handling of multi-grid as well as adaptivity [66]. However, adaptivity has so far not
been implemented for the evolution problems we consider here, thus, we will only use the
finest level lmax of a grid in the following. Consequently the triangulation T h

given by

T ∗ ⊃ T h
:=
{
Ei := Elmax

i : i ∈ {0, . . . , N − 1}d
}

with N := 2lmax

is the base for our discretization. The super-index h denotes here the grid-width h = 2−lmax .
Below we omit the superscript l for the elements Ei and the nodes xα.

Obviously, the nodes of the quadtree and octtree grids cannot carry pixel data for arbitrary
image dimensions. We assume that the resolution of the given image data is 2lmax + 1,
lmax ∈ IN in each space-dimension, i.e. the images consist of (2lmax + 1)d pixels or voxels.
This is not a severe restriction, since an image that does not fit into this size can be enlarged
e.g. by mirroring it at its boundaries.

Now we introduce a finite dimensional space V h
on T h

as a subspace of H1(Ω)

V h
:= {v ∈ H1(Ω) : v

∣∣
Ei

is bilinear (d=2) or trilinear (d=3) for all Ei ⊂ T h},

on which the H1 norm is induced. Functions u ∈ H2 can be approximated by functions

uh ∈ V h
and the approximation error between u and the approximation uh can be measured

by [10, 12]
‖u− uh‖Hm(Ω) ≤ Ch2−m‖u‖H2(Ω) for 0 ≤ m ≤ 2. (5.1)

A basis of V h
is given by the so called hat-functions

{
ψα ∈ V h

: ψα(xβ) = δαβ , xβ ∈ N lmax
}
α∈{0,...,2lmax}

with δαβ =

{
1 if α = β,

0 else,

and as a consequence each function uh ∈ V h
can be written as

uh(x) =
∑

α

(Uh)αψα(x). (5.2)

The vector Uh ∈ IRd(N+1) of the nodal values uh(xα) contains the degrees of freedom of the
approximation uh. Here and in the following we will denote discrete quantities by upper case
letters and discrete functions will carry a subscript h if an explicit distinction is necessary.
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5.2 Tensor product finite-elements in sequence-time and space

We continue with the introduction of the sequence-time discretization. We assume that the
frames have a uniform distance ρ > 0 in sequence-time. Recalling I = [0, T ], we define
M := T/ρ and introduce the intervals

Ij := [jρ, (j + 1)ρ] for j = 0, . . . ,M − 1,

and the corresponding temporal nodes

sj := jρ for j = 0, . . . ,M.

As in the spatial case, we define a finite dimensional subspace W ρ
of H1(I) by

W ρ
:= {wρ ∈ H1(I) : wρ

∣∣
Ij

is linear for j = 0, . . . ,M − 1}.

Again a basis is given with the hat-functions

{
φi ∈ W ρ

: φi(sj) = δij , j = 0, . . . ,M
}
i=0,...,M

and the above approximation estimates (5.1) hold.

We combine now the finite elements in space and the ones in sequence-time to discretize
image-sequences. For this purpose, we consider the tensor product space

W ρ ⊗ V h
,

for which a basis is given by tensor products of the hat-functions, i.e.

W ρ ⊗ V h
= span

{
φiψα : i = 0, . . . ,M, α ∈ {0, . . . , N}d

}
.

Thus, each discrete image-sequence function uρ,h(s, x) ∈ W ρ ⊗ V h
can be expressed as

uρ,h(s, x) =
∑

i

∑

α

(Uρ,h)i,αφi(s)ψα(x). (5.3)

The vector Uρ,h ∈ IR(M+1)d(N+1) contains the nodal values uρ,h(si, xα) of the approximation
uρ,h. To distinguish between temporal and spatial nodes, we will denote the temporal nodes
with Latin indices, and the spatial nodes with Greek indices.

5.3 Geometric quantities on discrete data

In Chapter 3 we have already introduced various methods for the regularization of the
image data, which lead to the definition of regularized geometric quantities involving higher
order derivatives of the image. Let us now turn to the actual implementation of these
regularization approaches and again pick up the two promising variants (R3) and (R4).

In general we will compute geometric quantities on nodes and not on elements, although
element values are needed for the final integration of the local matrices. In case of the
convolution regularization an element-wise evaluation would not be as efficient as the nodal
approach. Moreover for further post-processing nodal values are more convenient.
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5.3.1 Discrete shape-operator on discrete data

Let us first consider the static-image evolution model (2.3), whose diffusion tensor a(Σ)
takes into account an extended regularized shape operator Σ.

Variant (R3): Convolution with derivatives of C∞
0 kernels

We have to evaluate the shape operator according to the formula given in (3.7), which
involves the convolution of the image with derivatives of the smoothing kernel K σ defined
in (3.3). We will only discuss how this convolution is computed, since the rest of the task is
just to substitute the convolutions into (3.7).

Now let us fix a point x ∈ Ω. The kernel is designed such that the kernel itself and also its
derivatives DγKσ have the same compact support, so we can replace the integration on Ω
by the integration on the support of Kσ. Naturally we should take into account the uniform
structure of the quadtree or octtree. Thus, we define the neighborhood Bσ in the maximum
norm. In particular, we set l ∈ {2m : m ∈ IN} such that

supp DγKσ ⊂ Bσ := [−lh,+lh] × · · · × [−lh,+lh].

Setting σ = diam Bσ(x) = 2lh we obtain a relation between the regularization parameter
σ and the discrete neighborhood. For the integration we enlarge the latter neighborhood
slightly (cf. Figure 5.1), to define appropriate nodal weights below. In particular we define

the neighborhood B̃ σ used for the numerical integration as

B̃σ := [−(l + 1/2)h, (l + 1/2)h] × · · · × [−(l + 1/2)h, (l + 1/2)h] =
⋃

i

Ẽi

such that still supp DγKσ ⊂ B̃σ, but the integration is performed on the dual cells Ẽi.
These dual cells Ẽi for a multi-index i ∈ {−l, . . . , l}d are given by

Ẽi := [(i1 − 1/2)h, (i1 + 1/2)h] × · · · × [(id − 1/2)h, (id + 1/2)h].

Consequently we can write

(DγKσ ∗ uh)(x) =

∫

eBσ

DγKσ(y)uh(x− y) dy ≈
∑

eEi⊂
eBσ

uh(x− xi)

∫

eEi

DγKσ(y) dy,

where xi ∈ N is the node that is located at the center of the dual cell Ẽi. Clearly, the
integral in this sum can be precomputed for fixed choices of σ. A lookup table containing
the weights

ωi :=

∫

eEi

DγKσ(y) dy

can be used to replace the convolution with a weighted sum over the nodes xi ∈ (Bσ + x),
i.e.

(DγKσ ∗ uh)(x) =
∑

xi∈(Bσ+x)

uh(xi)ωi.

Variant (R4): Local L2-projections
For the local projection variant, we start with the formula given in (3.8) to compute the
shape operator. Since we treat a purely spatial projection for the computation of the shape
operator, we again fix a point x ∈ Ω. A translation does not affect the local projection and
for the evaluation of derivatives the subtraction of a constant does not matter. Therefore
we can assume without loss of generality that x = 0 and moreover uh(x) = 0.



Discretization and implementation 75

�������
�������
�������
�������

�������
�������
�������
�������

���������
���������
���������
���������

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

���������
���������
���������
���������

���������
���������
���������
���������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	


�
�
�


�
�
�


�
�
�


�
�
�


�������
�������
�������
�������

�������
�������
�������
�������


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������
���������
���������
���������

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

x x

~
i

supp K

dual cells E

σ

cells E~i

Figure 5.1: Left: The convolution of the image data with the compactly supported kernel is
performed on the dual cells Ẽi (shaded rectangles) which cover the support of the kernel Kσ

(shaded disc). This allows the definition of suitable nodal integration weights. Right: The
local projection of the image data onto a polynomial space is performed on the elements Ei

(shaded rectangles), which constitute the neighborhood B σ.

We do not work with the dual cells mentioned above, but consider a patch of elements
around x (cf. Figure 5.1). As before we select an even l ∈ {2m : m ∈ IN} and define

Bσ := [−lh,+lh] × · · · × [−lh,+lh] =
⋃

i

Ei,

i.e. Bσ is the patch consisting of (2l)d elements having x = 0 at its center. If we set
σ = diam Bσ we obtain σ = 2lh for the regularization parameter.

The assumption uh(x) = 0 leads to a projection space Q ⊂ Q ∗, which does not contain the
constant functions any more. In particular for the computations we consider the subspaces

Q :=

{
span{y2

1 , y
2
2 , y1y2, y1, y2} if d = 2,

span{y2
1 , y

2
2 , y

2
3, y1y2, y1y3, y2y3, y1, y2, y3} if d = 3,

of P 2, which do not contain the constant monomial. Any uσx ∈ Q can then be written as a
linear combination

uσx(y) :=

dim Q∑

i=1

bi qi(y),

in the above canonical basis, where the dimension of Q is 5 or 9. If uσx is the local projection,
the vector of coefficients (bi)i ∈ IRdim Q solves the system (cf. equation (3.5)):

dim Q∑

j=1

(∫

Bσ(x)
(qi qj)(y) dy

)
bj =

∫

Bσ(x)
uh(y) qi(y) dy for i = 1, . . . ,dim Q . (5.4)

As before we pre-compute the inverse of the matrix

H :=

(∫

Bσ(x)
(qi qj)(y) dy

)

i,j

.

From the given coefficients bi of the projection we can now easily derive the expressions for
the geometric quantities we are interested in. In two dimensions (d = 2) we have

∇yu
σ
x(y)

∣∣∣
y=x=0

=

(
b4
b5

)
, D2

yu
σ
x(y)

∣∣∣
y=x=0

=

(
2b1 b3
b3 2b2

)
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l diam Bσ (R3) (R4)

1 2h 3 sec 179 sec
2 4h 10 sec 622 sec
3 6h 52 sec 4912 sec

Table 5.1: Computational cost for the evaluation of apparent velocities via regularization
variant (R3) and (R4) for different σ and a fixed problem size of 129 × 129 × 129. The
execution times were measured on an Intel P4, 1.7 GHz PC.

and in the three-dimensional case (d = 3)

∇yu
σ
x(y)

∣∣∣
y=x=0

=



b7
b8
b9


 , D2

yu
σ
x(y)

∣∣∣
y=x=0

=




2b1 b4 b5
b4 2b2 b6
b5 b6 2b3


 .

These expressions can be substituted into (3.8), to compute N σ and Σ.
It remains to comment on the quadrature rules, which are applied for the computation

of the right hand side of (5.4). Since the basis functions qi(y) are of second order at most
and the image function uh(y) is bi-/trilinear on an element Ei, a quadrature rule for the
integration of third order polynomials should be used. We employ a tensor product of a two
point quadrature rule, thus using 2d interpolated values on an element E to compute the
integral on E. This ensures an exact integration of the right-hand-side of (5.4).

Finally, in Table 5.1 we have compared the computation times for the evaluation of
apparent velocities for different σ via regularization variant (R3) and (R4). In Chapter 3 we
have noted that variant (R4) behaves much more robust in the presence of noise, but as we
see from the table the computational price is very high. This is due to the computation of
the right hand side of (5.4), which involves many local 2d-point integrations on the elements
— in contrast to the convolution approach which just computes weighted sums on nodal
values without any interpolations. This can be handled very efficiently on state-of-the-art
processors, e.g. Intel P4. A possible improvement could be to use inexact quadrature rules
for the integration in (5.4), but this is not considered here.

5.3.2 Apparent velocity and apparent acceleration on discrete data

So far we have considered the discrete evaluation of the regularized normal N σ and the
extended regularized shape operator Σ for static images. The discretization of the regular-
ization approaches does not change much for image-sequences.

Variant (R3): Convolution with derivatives of C∞
0 kernels

Here we take the kernel defined in (3.4), which has compact support in space and sequence-
time, and evaluate the apparent velocity vσapp and acceleration accelσapp according to (3.9).

With the given equidistant sequence-time stepping, we consider dual cells Ĩj × Ẽi in space
and sequence-time, where

Ĩj := [(j − 1/2)ρ, (j + 1/2)ρ],

and pre-compute the weights

ωj,i =

∫

eIj× eEi

DγKσ(s, x),

where the multi-index γ stands for sequence-time derivatives as well as spatial derivatives.
Consequently the spatio-temporal convolution can be replaced by a weighted sum over the
frames and the pixels or voxels within the frames.
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Variant (R4): Local L2-projections
As already described earlier, the computation of the local L2-projections is even more ex-
pensive than in the purely spatial case and therefore not applicable to the computation of
the acceleration. Indeed, if we consider the projection spaces from (3.10) we notice that in
three-dimensions (d = 3)

dim(P1(I) ⊗ P2(Ω)) = 20,

dim(P2(I) ⊗ P3(Ω)) = 51.

Not all monomials of the canonical bases are needed to compute vσapp and accelσapp. For
example the projection can be restricted to a 13-dimensional subspace to compute the
apparent velocity, because only the derivatives of these 13 monomials define vapp as an easy
calculation shows. However, the integrations require enormous costs that do not justify
the use of this approach for the spatio-temporal computations. As a compromise for the
computation of vσapp we restrict the diameter of Bσ in sequence-time direction to contain
only three frames. To be more precise, let us fix a point (s, x) in Q. For an even l ∈ {2m :
m ∈ IN} we define

Bσ := [s− ρ, s+ ρ] × [x1 − lh, x1 + lh] × · · · × [xd − lh, xd + lh] =
⋃

i,j

Ij ×Ei,

to be the patch containing (2l)d elements and having (s, x) at its center. As before the
projection uσ(s,x)(y) is now given by the solution of the system (5.4) or (3.6), respectively,

which delivers vectors (bi)i ∈ IRdim Q . Finally b can be substituted into the equation (3.11)
to compute the apparent velocity.

For the integration of the right hand side of the system, in direction of the sequence-time
a trapezoidal rule is sufficient, because the sequence-time basis-functions are only linear. In
the space dimension again a tensor product 2d-point integration rule is applied.

5.4 Optimal regularization-parameters

In this section we discuss the consistency of the regularizations from a theoretical point of
view. We consider only a convolution regularization variant here, since we expect the L2

projection onto polynomials (R4) to behave similar concerning the choice of h and σ. The
smoothing kernel used for the regularization was defined by (3.3), but for the subsequent
analysis, we consider the scaled kernel K̃(y) for y = x/σ, which has support in B1(0):

K̃σ(y) :=





1

M
exp

( |y|2
|y|2 − 1

)
if |y|2 ≤ σ2,

0 else.

We intend to estimate the difference between the regularized discrete geometric quantities
and their true geometric counterpart. For this purpose we assume that the image is contained
in the Sobolev space H2(Ω). For the sake of simplicity, we derive an estimate for the second
derivatives of u instead of deriving an estimate for the shape operator:

‖D2(K̃σ ∗ uh) −D2u‖L2(Ω) ≤ ‖D2K̃σ ∗ (uh − u)‖L2(Ω) + ‖K̃σ ∗D2u−D2u‖L2(Ω). (5.5)

We estimate these terms separately. For the first term we apply the approximation inequality
(5.1) and obtain

‖D2K̃σ ∗ (uh − u)‖L2(Ω) ≤ ‖D2K̃σ‖L∞(Ω) ‖(uh − u)‖L2(Ω) ≤ C
h2

σ2
‖u‖H2(Ω),
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because for the derivatives of K̃σ we have for |y|2 ≤ σ2

∂

∂xi
K̃σ(y) =

2
σyi(|y|2 − 1) − |y|2 2

σyi

(|y|2 − 1)2
exp

( |y|2
|y|2 − 1

)
=

2yi
σ(|y|2 − 1)2

exp

( |y|2
|y|2 − 1

)

and for |y|2 ≤ σ2 as well

∂

∂xj

∂

∂xi
K̃σ(y) =

(
4yiyj

σ2(y2 − 1)4
+ 2

(δij − 4yiyj)(y
2 − 1)2

σ2(y2 − 1)4

)
exp

( |y|2
|y|2 − 1

)
.

This yields

‖D2K‖L∞(Ω) ≤
1

σ2
C

for our estimate above. The second term in (5.5) is estimated using standard results for
convolutions with Gaussian kernels [1]

‖K ∗D2u−D2u‖L2(Ω) ≤ Cσ‖D2u‖L2(Ω).

Altogether we have

‖D2(K ∗ uh) −D2u‖L2(Ω) ≤ C

(
h2

σ2
+ σ

)
‖u‖H2(Ω),

in which we would like to balance the term in parentheses. Assuming σ = hγ and thus for
the balance

h2−2γ = hγ

we obtain an optimal regularization parameter with the choice σ = h2/3. We conclude that
for decreasing h the regularization parameter must be increased.

For non-smooth images u 6∈ H2(Ω) the above estimate is non-realistic, but for computa-
tions the size of the stencil B σ has to be fixed somehow. In the applications shown in this
thesis the value l = 2 (i.e. σ = 4h) is suitable if not described different. We emphasize that
the actual choice of l is of minor importance, since the qualitative behavior of the method
is nearly invariant under changes of σ as Figure 5.2 illustrates. The method only needs
values indicating high curvatures for the classification of edges. The real curvatures of the
regularized surface are not important, since they are not a descriptor of the optimal limit
shape.

5.5 Discretization of the evolution of static images

So far we have shown how to obtain the geometric quantities consistently in a discrete
setting, we can proceed with the discretization of the evolution models themselves. We
start with the variational form of the problem and continue to derive the linear system of
equations, which needs to be solved.

We still have the problem of defining a normal in case the gradient of the image ∇u
vanishes. To prove existence of solutions for a linear anisotropic problem, we had overcome
this singularity earlier by a relaxation of the problems (cf. Section 4) defining a semi-
continuous continuation into the point ∇u = 0. Here we follow the method presented by
Evans and Spruck in [32], who replaced the Euclidean norm |∇u| with

|∇u|ε :=
√
ε2 + |∇u|2

for a small ε > 0 (cf. Section 3.3). In the computations we set ε ≈ h as proposed by
Deckelnick and Dziuk [23].
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Figure 5.2: The influence of the choice of σ on the evolution is shown for the projection
regularization variant (R4). From left to right results from the evolution of the noisy oc-
tahedron data-set are shown for σ = 2h, σ = 4h, and σ = 8h. The top row displays the
first scale step of the evolution, the bottom row displays the third scale step. The qualitative
behavior of the method is rather invariant under these choices of σ.

{u (0,x)=0}ε {u (t,x)=0}ε

Mε(t)

RI{u (0,x)=0}ε x RI{u (t,x)=0}ε

RI d RI d

Mε(0)

x

Figure 5.3: The problem which uses the regularized Euclidean norm | · |ε corresponds to the
graph-evolution in IRd+1. The original evolution thereby corresponds to the evolution of the
zero level-set. Choosing ε > 0 small approximates the cylinder {uε(t, x) = 0}× IR (cf. Evans
and Spruck [32])

Remark 5.2. The use of the regularized Euclidean norm |·|ε corresponds to an embedding of
the problem into IRd+1 as follows: Assume uε(t, x) is a smooth solution, write y = (x, xd+1)
and define vε(t, y) := uε(t, x) − εxd+1. Then |∇yvε|2 = |∇uε|2 + ε2 = |∇uε|2ε. Thus, the
problem becomes

∂tv
ε − tr

(
Ã

(
Id − ∇yvε ⊗∇yvε

|∇yvε|2
)
D2
y v

ε

)
= 0 in I × IRd+1, (5.6)

where

Ã :=

(
A(Σ) 0

0 1

)
and D2

y v
ε =

(
D2uε 0

0 0

)
.
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Now each level-set of vε evolves according to (5.6) and particularly the zero level-set

M ε(t) := {y ∈ IRd+1 : vε(t, y) = 0},

for which xd+1 = ε−1uε(t, x). Consequently the problem with the regularized norm | · |ε
corresponds to the evolution of the graph {xd+1 = ε−1uε(t, x)} (cf. Ecker and Huisken [30]).
For small ε > 0 this graph approximates the cylinder {uε(0, x) = 0} × IR (cf. Figure 5.3).
With the approximation it is expected that the complicated behavior, which might be singular,
is approximated by the smooth evolution of the graph (cf. [32]).

Variational form

The variational form of the problem (2.3) is obtained as usual: Let ϑ ∈ H 1(Ω) be a test
function. We multiply the equation with ϑ and integrate over Ω. Clearly the boundary
terms vanish because of the Neumann conditions, we imposed on ∂Ω. Furthermore we
denote the L2-scalar product on Ω by (·, ·) and the dual-space of H 1(Ω) by (H1)′(Ω). With
the corresponding dual pairing on (H1)′(Ω)×H1(Ω) denoted by 〈·, ·〉, we obtain the following
weak problem

Find u ∈ L2(IR+;H1(Ω)) such that ∂tu ∈ L2(IR+; (H1)′(Ω)) and for almost every
t ∈ IR+

〈
∂tu

|∇u|ε
, ϑ

〉
+

(
a(Σ)

∇u
|∇u|ε

,∇ϑ
)

= 0, ∀ϑ ∈ H1(Ω),

u(0, ·) = u0(·) in Ω.

(5.7)

Here L2(IR+;H1(Ω)) and L2(IR+; (H1)′(Ω)) denote the Bochner spaces equipped with the
norms

‖v‖L2(IR+;H1(Ω)) :=

∫

IR+
‖v‖H1(Ω) and ‖v‖L2(IR+;(H1)′(Ω)) :=

∫

IR+
‖v‖(H1)′(Ω).

Let us mention that even though for the solutions of the linear problem we had only found
u ∈ C0(Q) in Chapter 4, we ask for H1 regularity in (5.7) for the approximate solutions.
We obviously have this regularity for the FE solutions of the discrete problems, but the
convergence of the discrete solutions toward the viscosity solution is not proven. For mean
curvature motion the convergence of a finite element scheme towards the viscosity solution
was shown by Deckelnick and Dziuk in [22, 23].

Time-discrete problem

To proceed, we discretize the scale t with an equidistant stepping of size τ and a semi-implicit
backward Euler scheme. The scale-derivative ∂t is replaced by the backward difference
quotient

∂tu ;

un − un−1

τ
=: D−

t u
n,

where un := u(tn) and tn := nτ . This backward-scheme becomes semi-implicit, if on scale
(n+1)τ the nonlinear terms a(Σ) and |∇u|−1 are evaluated on the previous scale nτ . We will
use the notation an := a(Σ(u(tn)) in the following, i.e. an is the diffusion tensor evaluated
at the scale-step tn. The time-discrete problem now reads:
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Find a sequence (un)n∈IN, un ∈ H1(Ω) such that

(
un − un−1

τ |∇un−1|ε
, ϑ

)
+

(
an−1(Σ)

∇un
|∇un−1|ε

,∇ϑ
)

= 0 ∀ϑ ∈ H1(Ω),

u0(·) = u0(·) in Ω,

(5.8)

where an means the evaluation of the diffusion tensor a at scale tn.

We thus have transformed the parabolic problem into a sequence of elliptic problems. Since
the resulting bilinear forms on H1(Ω) ×H1(Ω)

bn(v, w) :=

(
v

τ |∇un−1|ε
, w

)
+

(
an−1(Σ)

∇v
|∇un−1|ε

,∇w
)

are coercive and continuous, the Lax-Milgram Theorem [1] guarantees the existence of the
un. Finally we consider the Rothe-approximation

u(n)(t) := un + (t− tn)D
−
t u

n+1 for tn ≤ t ≤ tn+1

as an approximation to the continuous solution.

Fully-discrete problem

We proceed in the discretization process with the spatial approximations. We replace the

solution space H1(Ω) with the finite dimensional subspace V h
, which was introduced above.

We only have to test with functions in V h
, and furthermore we can substitute the basis

decomposition (5.2) for the approximation uh. Testing subsequently with all basis functions
ψα, one obtains a system of equations for each scale step. In matrix form the system is
written as (

Mn−1 + τLn−1
)
Unh = τF n−1, (5.9)

where the definitions

Mn :=

( (
ψα

|∇un|ε
, ψβ

) )

α,β

mass matrix, (5.10)

Ln :=

( (
an

∇ψα
|∇un|ε

,∇ψβ
) )

α,β

stiffness matrix,

F n := MnUnh right hand side

have been used. These systems of equations are symmetric, positive definite and they are
solved by a diagonally preconditioned conjugate gradient method (CG) [73]. All integrations
are performed element-wise and a midpoint integration rule is used to approximate the
integrals. Obviously, the integration has to be performed over the support of ψαψβ only.
For example, the entries of the stiffness matrix are computed via

(Ln)α,β =

(
an

∇ψα
|∇un|ε

,∇ψβ
)

=
∑

E⊂supp(ψαψβ)

∫

E
an

∇ψα
|∇un|ε

· ∇ψβ dx

≈
∑

E⊂supp(ψαψβ)

1

|∇un(cE)|ε

∫

E
an(cE)∇ψα · ∇ψβ dx,

where cE is the center of an element E. Thus, we have assumed the gradient ∇unh and the
diffusion tensor an being element-wise constant.
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Mass-lumping

Alternatively to the application of the standard mass matrix (5.10) the use of lumped masses
is possible. The lumped mass-matrix [76] is diagonal due to one of the following equivalent
approximations:

1. The integration is performed with a nodal integration formula. This means an integral
is replaced by a weighted sum over the nodal values. Denoting the weights with ωγ
we have

(Mlumped)αβ =

∫
ψαψβ =

∑

xγ∈supp(ψαψβ)

ωγψα(xγ)ψβ(xγ) = ωαδαβ

and in particular for the quadtree- and octtree-grids, we have ωγ = hd.

2. For the integration of the masses as little regularity as needed is imposed for the basis
functions. Thus, the original basis functions are replaced with functions, which are
constant on the dual cells Ẽi. Then clearly

supp(ψαψβ) =

{
∅ if α 6= β,

supp ψα else.
⇒ (Mlumped)αβ = δαβ |supp ψα| = δαβh

d.

3. The lumped mass matrix arises from a contraction of the row-entries of the original
mass matrix to the diagonal elements. This means

(Mlumped)αβ = δαβ
∑

γ

Mαγ .

In any case we have a convergence of the lumped mass matrix Mlumped to the original mass
matrix M for h→ 0 (cf. [76]).

If we use lumped masses in the discretization instead of the matrix (5.10), we can easily
prove L∞ stability of the whole discrete evolution.

Theorem 5.3. There exists a limit unh of a subsequence uε,nh for ε → 0, where uε,nh is the
solution of the system (5.9) with mass lumping. For this generalized solution unh, we have
the following estimate independent of ε:

‖unh‖∞,Ω ≤ ‖u0
h‖∞,Ω.

Proof. We follow the ideas of Walkington [78] and Handlovičová et al. [39] in the proof. Let
us denote the nodal values of uε,nh by U ε,n

h := (U ε,n
α )α. To prove the inequality we further

assume that the maximum of U ε,n
h is achieved in U ε,n

β . We write down the equation from
(5.9) corresponding to the node xβ with lumped masses:

(Mn−1
lumped)β,βU

ε,n
β + τ


U ε,nβ (Ln−1)β,β +

∑

xα 6=xβ

U ε,nα (Ln−1)β,α


 = (Mn−1

lumped)β,βU
n−1
β (5.11)

Since the stiffness matrix is an M -matrix, the term in parentheses is non-negative, as an
easy calculation shows. Thus, we have

U ε,nβ ≤ Un−1
β ≤ max

{
Un−1
α : α ∈ {0, . . . , N}d

}
.

Analogously we obtain the following estimate for the minimum

min
{
Un−1
α : α ∈ {0, . . . , N}d

}
≤ U ε,nβ ,
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from which we recursively obtain

‖uε,nh ‖∞,Ω ≤ ‖u0
h‖∞,Ω.

Since this estimate is independent of ε we have the existence of a subsequence of vectors
U ε,nh converging to Un

h as ε → 0. We denote the corresponding finite element function by

unh ∈ V h
and it is clear that unh fulfills the first estimate of the theorem.

5.6 Discretization of the evolution of image-sequences

The expositions of the following section deal with the discretization of the anisotropic evo-
lution for image-sequences. The discretization is in many parts similar to the discretization
presented in the last section. Again we use the regularized Euclidean norm and again we
assume H1 regularity in the variational form. However, the image-sequence evolution is a
four or five dimensional problem (scale, sequence-time, space IRd) for which especially in
the case d = 3 a finite element approach is non-desirable, due to the high numerical efforts
involved. In case of the ultrasound image-sequence of the human heart, this would result
in a problem having 16 × 129 × 129 × 129 ≈ 225 ≈ 3 · 107 unknowns. The corresponding
matrix would have bandwidth 81 and a supercomputer would be needed for its storage and
an iterative solution. By choosing appropriate quadrature rules and a mass-lumping in se-
quence time, we derive a coupled finite difference/finite element scheme. But we start with
the introduction of the weak form of the problem.

Variational form

As before we denote the sequence-time/space cylinder with Q := (0, T )×Ω. Again, we take
a test-function ϑ ∈ H1(Q), multiply (2.17) with ϑ and integrate over Q. Since we have
either imposed natural boundary conditions (BC1) or periodicity of the sequence (BC2),
the boundary terms from the integration vanish: Green’s formula yields

∫

Q
div

(
a(s,x)

∇(s,x)u

|∇u(s,x)|ε

)
ϑ dx =

∫

Q
a(s,x)

∇(s,x)u

|∇u(s,x)|ε
· ∇(s,x)ϑ dx

+

∫

∂Q

∇(s,x)u

|∇u(s,x)|ε
· ν(s,x)ϑ dH n−1

,

where ν(s,x) is the outer normal to the cylinder Q and dH n−1
is the area element. The

area integral over ∂Ω clearly vanishes if (BC1) is satisfied. But also if u fulfills the second
boundary condition variant (BC2), the boundary integral is zero, because we have ∂Q =
(∂I × Ω) ∪ (I × ∂Ω). And we can split up the integral

∫

∂Q

∇(s,x)u

|∇u(s,x)|ε
· ν(s,x)ϑ dH n−1

=

∫

Ω

( ∇(s,x)u

|∇u(s,x)|ε
· ν(s,x)ϑ

) ∣∣∣∣∣
s=T

dH n−1

−
∫

Ω

( ∇(s,x)u

|∇u(s,x)|ε
· ν(s,x)ϑ

) ∣∣∣∣∣
s=0

dH n−1

+

∫

I

∫

∂Ω

∇(s,x)u

|∇u(s,x)|ε
· ν(s,x) ϑ dH n−1

.

The first two terms cancel out, due to the assumed periodicity and the last term vanishes,
too, because on I×∂Ω the condition ∇u ·ν = 0 implies ∇(s,x)u ·ν(s,x) = (∂su,∇u) ·(0, ν) = 0,
if ν denotes the outer normal to ∂Ω.
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Using again the regularized Euclidean norm | · |ε, we have derived the following weak form
of the evolution problem, denoting the dual pairing on (H 1)′(Q) ×H1(Q) by 〈·, ·〉 and the
L2 scalar-product on Q by (·, ·):

Find u ∈ L2(IR+;H1(Q)) such that ∂tu ∈ L2(IR+; (H1)′(Q)) and for almost every
t ∈ IR+

〈
∂tu

|∇u(s,x)|ε
, ϑ

〉
+

(
a(s,x)

∇(s,x)u

|∇u(s,x)|ε
,∇(s,x)ϑ

)
= 0 ∀ϑ ∈ H1(Q),

u(0, ·) = u0(·) in Q.

(5.12)

Time-discrete problem

We proceed as for the static image processing model. Dividing the scale into equidistant
steps of size τ , using a backward semi-implicit Euler scheme and again denoting tn := nτ ,
un := u(tn), we obtain the time-discrete problem:

Find a sequence (un)n∈IN un ∈ H1(Q) such that

(
un − un−1

τ |∇un−1
(s,x)|ε

, ϑ

)
+

(
an−1

(s,x)

∇(s,x)u
n

|∇un−1
(s,x)|ε

,∇(s,x)ϑ

)
= 0 ∀ϑ ∈ H1(Q),

u0(·) = u0(·) in Q,

(5.13)

where an(s,x) means the evaluation of the diffusion tensor a(s,x) at time tn.

Again the resulting bilinear forms

bn(v, w) :=

(
v

τ |∇un−1
(s,x)|ε

, w

)
+

(
an−1

(s,x)

∇(s,x)v

|∇un−1
(s,x)|ε

,∇(s,x)w

)

on H1(Q) ×H1(Q) are coercive and continuous, which ensures the existence of the un via
the Lax-Milgram Theorem.

Fully-discrete problem

At least formally we now derive the fully discrete problem, although this is not the variant,
which is used for the actual solution. As mentioned before, we will utilize appropriate
quadrature rules to simplify the scheme significantly.

The solution space is replaced by the finite dimensional subspace W ρ×V h
. Inserting the

basis decomposition (5.3) into the equation and testing with each basis function, one again
obtains a linear system

(Mn−1 + τLn−1)Unρ,h = τF n−1,

where

Mn + τLn =

( (
ψα

|∇(s,x)un|ε
, ψβ

)
+ τ

(
an(s,x)

∇(s,x)ψα

|∇(s,x)un|ε
,∇(s,x)ψβ

) )

(i,α),(j,β)

F n = MnUnρ,h.

The system can be solved using an iterative solver, but the effort is enormous, as motivated
above: The use of the spatio-temporal finite elements is non-desirable especially in the case
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t ∈ IR+
0 scale

s ∈ I sequence-time coordinate
x ∈ Ω spatial coordinate

n ∈ IN scale step
i, j ∈ {0, . . . ,M} temporal node (= sequence-frame)
α, β ∈ {0, . . . , N}d spatial node (= Pixel/Voxel in a frame)

τ scale step width
ρ temporal step width (= sequence step width)
h spatial step width

Table 5.2: Meaning of indices in the discretized coupled diffusion problem.

of (3+1)D image-sequences. As a consequence we proceed with a strong simplification of
the system matrix, we have formally obtained above. The simplified scheme is a coupled
finite-difference/finite-element scheme, which is solved by a block solver.

But before we proceed to the simplification of the system matrix M n+τLn, let us analyze
how the diffusion tensor an(s,x) acts within the bilinear form. We obtain for two functions u
and w:

an(s,x)∇(s,x)u · ∇(s,x)w = anv (V
σ · ∇(s,x)u)(V

σ · ∇(s,x)w) + an(Σ)∇u · ∇w
= ãnv (∂su+ vσapp · ∇u)(∂sw + vσapp · ∇w) + an(Σ)∇u · ∇w

=: ãnv
D

∂s
u
D

∂s
w + an(Σ)∇u · ∇w,

(5.14)

where D
∂s := ∂s + vσapp · ∇ denotes the material derivative along the apparent trajectory and

ãnv = anv/|(1, vσapp)|2. In the following, we assume vσapp being adjusted such that |(1, vσapp)| = 1
and thus ãnv = anv . The decomposition given in the latter equation, is used in the next section
to split up and simplify the system matrix.

5.6.1 Finite-Elements in space – finite differences in time

For the detailed analysis of the matrix system it is necessary to refine the notation: As
introduced above the temporal degrees of freedom (i.e. the frames of the sequence) are
denoted with Latin indices i, j ∈ {0, . . . ,M}. The spatial degrees of freedom (i.e. the
pixels/voxels within the frames) are denoted with Greek indices α, β ∈ {0, . . . , N}d. For
a scale-step n we write a super-index n and define uni (αh) = un(iρ, αh). Furthermore we
introduce the following abbreviations for the vectors containing the nodal values:

Un := Un
ρ,h = (Un

i )i = (Un
0 , . . . , U

n
M ),

Uni = (Un
i,α)α = (Un

i,0, . . . , U
n
i,Nd−1).

For the sake of the presentation’s clearness we omit the index ρ, h for the discrete functions

unρ,h and the vectors of the nodal values here and below. Consequently for each u ∈ W ρ⊗V h

we have the abbreviation

u(nτ, iρ, αh) = Un
i,α.

To avoid any confusion, a list of all indices in use is given in Table 5.2.

Let us again write down the matrix resulting from the discretization of the image-sequence
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evolution. Using the observation (5.14), we obtain

(Mn + τLn)(i,α),(j,β) =

(
φiψα

|∇(s,x)un|ε
, φjψβ

)

Q

(MM)

+τ

(
anv

|∇(s,x)un|ε
D

∂s
(φiψα),

D

∂s
(φjψβ)

)

Q

(CP)

+τ

(
an(Σ)

|∇(s,x)un|ε
∇(φiψα),∇(φjψβ)

)

Q

. (ML)

The first term (MM) corresponds to a spatio-temporal mass matrix, the third term (ML)
contains the purely spatial stiffness-matrix, whereas the middle term (CP) consists of the
actual coupling in sequence-time and space (cf. Figure 5.4). The key for the simplification
is a mass lumping in sequence time, which results in a diagonalization of the mass matrix
(see Section 5.5 and p. 82).

Spatio-temporal mass-matrix

Our first observation concerns the mass matrix (MM). In all terms, containing the tem-
poral mass, we approximate the denominator |∇(s,x)u

n|ε by a central temporal difference

|D±
(s,x)u

n
i |ε on the intervals containing si. For one entry (i, α), (j, β) we thus have

(MM)(i,α),(j,β) =

(
φiψα

|∇(s,x)un|ε
, φjψβ

)

Q

=

T∫

0

∫

Ω

φiψα
|∇(s,x)un|ε

φjψβ dx ds

≈
∑

k

sk+1∫

sk

∫

Ω

φiψα

|D±
(s,x)u

n
k |ε

φjψβ dx ds.

In direction of sequence time, the integration has to be performed of course only on the
support of φiφj . Incorporating the mass lumping in our setting, we need to consider only
the diagonal entries i = j for which

∫
φ2
i = 1. Using Fubini’s Theorem we obtain

(MM)(i,α),(j,β) ≈ δij

si+1∫

si−1

φ2
i ds

∫

Ω

ψαψβ

|D±
(s,x)u

n
i |ε

dx = δijρ

∫

Ω

ψαψβ

|D±
(s,x)u

n
i |ε

dx.

Denoting the spatial mass matrix of frame i in scale n with M n
i (1), the above simplifications

result in the following block-diagonal form for the spatio-temporal mass matrix




. . .

ρMn
i (1)

. . .


 , with Mn

i (b) :=

( (
b ψα

|D±
(s,x)u

n
i |ε

, ψβ

)

Ω

)

α,β

. (5.15)
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„

φiψα

|∇(s,x)un|ε
, φjψβ

«

Q

Sequence-temporal/spatial

mass matrix (MM)

+ τ

 

a
n
v

D
∂s
φiψα

|∇(s,x)un|ε
,
D

∂s
φjψβ

!

Q

Coupled diffusion terms

(CP)
↓

↓ ↓ ↓

+ τ

„

a
n(Σ)

∇φiψα

|∇(s,x)un|ε
,∇φjψβ

«

Q

Spatial stiffness matrix

(ML)

→

9

>

>

>

=

>

>

>

;

→

→

„

an
v

|∇(s,x)un|ε
∂s(φiψα), ∂s(φjψβ)

«

Q

+

„

an
v

|∇(s,x)un|ε
∂s(φiψα), v · ∇(φjψα)

«

Q

+

„

an
v

|∇(s,x)un|ε
v · ∇(φiψα), ∂s(φjψβ)

«

Q

+

„

an
v

|∇(s,x)un|ε
v · ∇(φiψα), v · ∇(φjψα)

«

Q

Temporal stiffness matrix

(CP1)

Mixed nonlinear stiffness
matrix (CP2) and (CP3)

Anisotropic spatial stiffness

matrix (CP4)

Figure 5.4: The matrix of the system splits up into various parts. The sequence-time/space
matrix (upper row, left term) and the spatial stiffness matrix (upper row, right term) lead
to diagonal blocks in the resulting scheme, whereas the coupled diffusion terms (upper row,
middle term) split up further (inner box).

Temporal mass — spatial diffusion

In a similar manner the term (ML) can be handled. Since we again have a temporal mass
involved, we can apply the lumping of these masses, which results in

(ML)(i,α),(j,β) ≈ τ
∑

k

∫ sk+1

sk

∫

Ω
an(Σ)

φi∇ψα
|D±

(s,x)u
n
k |ε

· (φj∇ψβ) dx ds

= τδij

∫ si+1

si−1

φ2
i

∫

Ω
ani (Σ)

∇ψα
|D±

(s,x)u
n
i |ε

· ∇ψβ dx ds

= τρδij

∫

Ω
ani (Σ)

∇ψα
|D±

(s,x)u
n
i |ε

· ∇ψβ dx.

Here, ani is the spatial diffusion tensor on frame i. As before, the simplification results in a
block diagonal matrix, here having the form




. . .

τρLni
. . .


 , with Lni :=

( (
ani (Σ)

∇ψα
|D±

(s,x)u
n
i |ε

,∇ψβ
)

Ω

)

α,β

, (5.16)

where the Lni denotes the spatial stiffness matrix of frame i at scale n.

Spatio-temporal diffusion

Finally, the simplification of the coupled spatio-temporal diffusion term (CP) remains. Ac-
cording to the definition of the material derivative along the apparent trajectory vσapp, we
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can write

(CP)(i,α),(j,β) = τ

(
anv

|∇(s,x)un|ε
D

∂s
(φiψα),

D

∂s
(φjψβ)

)

Q

= τ

(
anv

|∇(s,x)un|ε
∂s(φiψα), ∂s(φjψβ)

)

Q

(CP1)

+ τ

(
anv

|∇(s,x)un|ε
∂s(φiψα), v

σ
app · ∇(φjψα)

)

Q

(CP2)

+ τ

(
anv

|∇(s,x)un|ε
vσapp · ∇(φiψα), ∂s(φjψβ)

)

Q

(CP3)

+ τ

(
anv

|∇(s,x)un|ε
vσapp · ∇(φiψα), v

σ
app · ∇(φjψα)

)

Q

, (CP4)

whose terms are again considered separately.

Temporal stiffness matrix. The first component (CP1) is the sequence-time elliptic term.
As before, we split up the integration to the small sequence-time intervals, but now we use
a forward difference quotient D+unk for the evaluation of the denominator on an interval Ik.
Thus, an entry of the corresponding matrix is given by

(CP1)(i,α),(j,β) = τ

T∫

0

∫

Ω

anv
∂s(φiψα)

|∇(s,x)un|ε
∂s(φjψβ) dx ds

= τ
∑

k

sk+1∫

sk

∂sφi∂sφj ds

∫

Ω

(anv )kψαψβ

|D+
(s,x)u

n
k |ε

dx,

because the temporal derivative is constant on each interval Ik. Obviously the supports of
φi and φj overlap only in the case |i− j| ≤ 1, therefore we consider the following two cases:

• i = j: Using ∂sφi = 1/ρ, where ρ is the temporal grid-width, we get for the diagonal
entries

(CP1)(i,α),(i,β) = τ

si∫

si−1

∂sφi∂sφj ds

∫

Ω

(anv )i−1ψαψβ

|D+
(s,x)u

n
i−1|ε

dx

+ τ

si+1∫

si

∂sφi∂sφj ds

∫

Ω

(anv )iψαψβ

|D+
(s,x)u

n
i |ε

dx

=
τ

ρ

∫

Ω

(
(anv )i−1

|D+
(s,x)u

n
i−1|ε

+
(anv )i

|D+
(s,x)u

n
i |ε

)
(ψαψβ) dx,

where (anv )i denotes the local temporal diffusivity in scale step n which we assume to
be constant on an interval Ii.

• i+ 1 = j: For the off-diagonal entries we use ∂sφi = −∂sφi+1 = 1/ρ to obtain

(CP1)(i,α),(i+1,β) = τ

si+1∫

si

∂sφi∂sφj ds

∫

Ω

(anv )iψαψβ

|D+
(s,x)u

n
i |ε

dx = −τ
ρ

∫

Ω

(anv )iψαψβ

|D+
(s,x)u

n
i |ε

dx.
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Consequently, each row and the resulting matrix has 3-band form




. . .
. . .

. . .

− τ
ρB

n
i−1

τ
ρ

{
Bn
i−1 +Bn

i

}
− τ
ρB

n
i

. . .
. . .

. . .


 , with Bn

i := Mn
i ((anv )i) (5.17)

We emphasize that this scheme is similar to a finite difference scheme with the stencil
[−1, 2,−1].

Mixed derivatives. We consider the mixed derivative terms (CP2) and (CP3) next. They
contain temporal and spatial derivatives and carry the actual coupling of the spatial and
temporal diffusion. If the temporal diffusion coefficient were constant, these terms would
cancel out for symmetry reasons. But in general we have to take them into account. Obvi-
ously, only indices i, j for |i − j| ≤ 1 have to be considered. For the diagonal i = j we get
the sum

((CP2) + (CP3))(i,α),(i,β)

= τ

∫ si

si−1

∂sφiφi

∫

Ω

(anv )i−1

|D+
(s,x)u

n
i−1|ε

(ψα v
σ
app · ∇ψβ + vσapp · ∇ψα ψβ) dx

+ τ

∫ si+1

si

∂sφiφi

∫

Ω

(anv )i

|D+
(s,x)u

n
i |ε

(ψα v
σ
app · ∇ψβ + vσapp · ∇ψα ψβ) dx.

Using
∫
Ii−1

∂sφiφi = −
∫
Ii
∂sφiφi = −ρ/2, we obtain for the diagonal components

((CP2) + (CP3))(i,α),(i,β)

=
τρ

2

∫

Ω

(
(anv )i

|D+
(s,x)u

n
i |ε

− (anv )i−1

|D+
(s,x)u

n
i−1|ε

)
(ψα v

σ
app · ∇ψβ + vσapp · ∇ψα ψβ) dx.

The temporal off diagonal entries vanish, as one can see from
∫
Ii
∂sφi+1φi = −

∫
Ii
∂sφiφi+1,

which leads to

((CP2) + (CP3))(i,α),(i+1,β)

= τ

∫ si+1

si

(∂sφiφi+1 + ∂sφi+1φi) ds

∫

Ω

(anv )i

|D+
(s,x)u

n
i |ε

(ψα v
σ
app ·∇ψβ + vσapp ·∇ψα ψβ) dx

= 0.

Summarizing the last results, we see that the matrix resulting from the terms (CP2) and
(CP3) has block diagonal form 



. . .
τρ
2 R

n
i

. . .


 ,

with

Rni =

( ∫

Ω

(
(anv )i

|D+
(s,x)u

n
i |ε

− (anv )i−1

|D+
(s,x)u

n
i−1|ε

)
(ψα v

σ
app · ∇ψβ + vσapp · ∇ψα ψβ) dx

)

α,β

. (5.18)

Anisotropic elliptic matrix. The remaining term is an anisotropic spatial elliptic term, which
contains anisotropic spatial derivatives. Since there is no temporal derivative involved, we
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can again perform a mass lumping. The denominator is again replaced with the central
difference quotient. We have

(CP4)(i,α),(i,β) =
τρ

2

∫

Ω

{(anv )i−1 + (anv )i}
|D±

(s,x)u
n
i |ε

(vσapp · ∇ψα) (vσapp · ∇ψβ) dx.

And so denoting the anisotropic spatial stiffness matrix for scale n and frame i with Qn
i the

resulting matrix has block-diagonal form




. . .
τρ
2 Q

n
i

. . .


 ,

with

Qni =

( (∫

Ω

{(anv )i−1 + (anv )i}
|D±

(s,x)u
n
i |ε

(vσapp · ∇ψα) (vσapp · ∇ψβ) dx.
) )

α,β

. (5.19)

Let us summarize the analysis of the system matrix. We have incorporated a mass lumping
in sequence time which has led to a 3-band block-matrix. Within this block matrix the off-
diagonal blocks solely result from the temporal derivatives. Furthermore we observe, that
each row of the block-matrix corresponds to one single frame of the sequence. This fact
helps us in the next section to derive a simple block solving scheme.

5.6.2 An operator-splitting scheme

To discuss the operator-splitting scheme, let us consider one block-row of the simplified
matrix. The system described by this row is (cf. (5.15) - (5.19))

ρMn
i U

n−1
i =

(
ρMn

i + τρ

[
Lni +

1

ρ2
(Bn

i−1 +Bn
i ) +

1

2
(Rni +Qni )

])
Uni

− τ

ρ

(
Bn
i−1U

n
i−1 −Bn

i U
n
i+1

)
(5.20)

and due to the 3-band structure only the frames U n
i−1, U

n
i and Un

i+1 are coupled in this
system. Thus, one block-row of the system can be rewritten in the form

0 = 〈En
i (Uni−1, U

n
i , U

n
i+1), ψα〉 for all spatial test-functions ψα, α ∈ {0, . . . , N}d,

where the operator En
i (·, ·, ·) has the matrix decomposition (5.20) and the vectors U n

i ∈ IRNd

correspond to the frames (unρ,h)i of the discrete function (unρ,h). The successive solving of
the systems En

i for i = 0, . . . ,M is — figuratively speaking — the movement of a 3-frame
window over the whole sequence (cf. Figure 5.5).
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-

si−3 si−2 si−1 si si+1 si+2 si+3

Sequence-
time s

→ F ni+1

→ F ni

→ F ni−1

Figure 5.5: In each step of the inner frame loop, the block solver always considers only three
successive images of the sequence. This corresponds to the fact that the resulting system
matrix has a 3-band block-structure.

Finally, we use the following symmetric block Gauß-Seidel solver, in which we consider
the appropriate terms to be handled implicitly respectively explicitly with respect to the
iteration cycle. Schematically the block-solver can be sketched as follows:

Scale iteration: For each scale n = 0, 1, . . . do

Initialization: For each frame i = 0, 1, . . . ,M set U n+1,0
i = Uni .

Solver iteration: For k = 1, 2, . . . , kmax do

Block iteration from front to back: For each frame i = 0, 1, . . . ,M
solve for Un+1,k

i the following system

〈Eni (Un+1,k
i−1 , Un+1,k

i , Un+1,k−1
i+1 ), ψα〉 = 0 ∀α ∈ {0, . . . , N}d.

Block iteration from back to front: For each frame i = M,M−1, . . . , 0
solve for Un+1,k

i the following system

〈Eni (Un+1,k−1
i−1 , Un+1,k

i , Un+1,k
i+1 ), ψα〉 = 0 ∀α ∈ {0, . . . , N}d.

Storage of the result: For each frame i = 0, 1, . . . ,M set U n+1
i = Un+1,kmax

i .

In this scheme we have to respect the temporal boundary conditions. If we have prescribed
the Neumann boundary conditions in sequence-time (BC1), we set

Un−1 = Un0 and Un
M+1 = UnM

to evaluate the previous and next image-frame at the beginning and at the end of the
sequence. In case of the periodic boundary conditions in sequence-time (BC2), we set

Un−1 = UnM and Un
M+1 = Un0 .

Running the above scheme with kmax = 1 one obtains a solver which is explicit in sequence-
time, because the coupling between successive frames is not considered any more. This is
not desirable since, obviously the strength of the evolution model lies in the nonlinear
sequence-time behavior. A good compromise between effort and implicity of the scheme in
sequence-time is the fixation of a small kmax. In the applications shown in Figures 2.14,
2.15, and 2.16 we always choose kmax = 3. Within the block Gauß-Seidel solver the solution
of the subsystems En

i is done by a conjugate gradient (CG) method, which is preconditioned
by diagonal scaling.
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Chapter 6

Conclusions

I
N THIS THESIS anisotropic geometric diffusion models for the processing of images
and image-sequences have been discussed. The diffusion for static images is driven
by the intrinsic geometric quantities of the level-sets of the images: The shape operator

characterizes the corners and edges of the level-sets in terms of its eigenvalues – the principal
curvatures – and the corresponding eigenvectors – the principal directions of curvature. The
presence of such a surface feature is indicated by (at least) one high principal curvature.
The orientation of an edge is given by the principal directions of curvature, which point
across and along the edge, respectively.

In particular on noisy image data a regularization of these geometric quantities is needed
to obtain a robust anisotropic model. The diffusion tensor for the static image processing
model depends on a regularized shape operator. In coordinates of the regularized principal
directions of curvature and the regularized normal it weights the directions nonlinearly
according to the corresponding regularized principal curvature. The well known Perona-
Malik edge indicator function is used for this weighting of the curvatures. The resulting
model is capable of retaining corners and edges of level-sets while smoothing their geometric
noise. It turns out that the diffusion is steered by the difference between regularized and
true geometric quantities. Dependent on the regularization, this leads to a rich class of
shapes which are invariant under the diffusion.

The model which has been presented for the diffusion of image-sequences shares this
corner and edge preserving behavior. Moreover it takes into account the correlation of the
level-sets between successive frames of the sequence. The extraction of this correlation is an
ill-posed task. One possible regularization is the consideration of the apparent velocity. Of
all possible solutions it is the one, which minimizes the variations of the normal along the
trajectories of level-sets. The curvature of these apparent trajectories is measured by the
apparent acceleration. In the image-sequence diffusion model this apparent acceleration is
weighted by the Perona-Malik edge indicator function to distinguish uniform motions (which
can be smoothed significantly) from highly accelerated motions (which must be kept). This
temporal diffusion coefficient steers the anisotropic smoothing in direction of the apparent
velocity. The resulting model is a coupled spatio/temporal diffusion, which smooths image-
sequence data while retaining spatial edges and corners as well as highly accelerated motions.
Obviously on noisy image data a suitable spatio-temporal regularization is indispensable.

Different local and global variants for the regularization of the image data have been pre-
sented in this work. Since the definition of the shape operator involves higher order deriva-
tives on low-regularity image data, it is convenient to combine the regularization method
with a consistent definition of the necessary spatial derivatives of the regularized data. The
convolution of the data with the derivatives of compactly supported smoothing kernels is
one possible regularization variant. A different approach utilizes local L2-projections onto
polynomial spaces. A comparison of the two approaches on test data-sets has shown that the
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projection regularization behaves much more robust in the presence of noise. However the
convolution approach is much faster in terms of computing time, since in an implementation
it results in the computation of weighted sums. Both approaches however deliver a consis-
tent approximation of the curvature of data-sets whose level-sets are spheres. Thereby, the
approximation is of second order, i.e. a doubling of the stencil width of the regularization
reduces the difference between real and computed curvature by a factor 1/4.

For the geometric diffusion models related to the two approaches we have proven the
existence of viscosity solutions on unbounded domains. Since the problems are undefined if
the definition of a normal is not possible, semi-continuous relaxations had to be considered
as common in the theory of viscosity solutions. The construction of one sub- and one super-
solution then lead to a continuous solution via the Perron method by Ishii and a comparison
principle by Giga et al. In a second step the continuity of the solution operator was shown.
For a sequence of problems defined by a sequence of continuous functions the corresponding
solutions converge uniformly toward the solution of the limit problem. Thereby, the semi-
continuous limit problem and the limit solutions are the Γ+/− limits of the linear problems
and their solutions. Since the solutions are bounded by the initial data, this continuity
result allowed the application of the Schauder Fixed-Point Theorem to obtain a solution for
the nonlinear problem.

The two models have been implemented using finite elements on quadtree- and octtree-
grids, respectively. For the time stepping an semi-implicit scheme was employed, which
treats the nonlinearities at the old time-step. The Euclidean norm in the denominator was
regularized following Evans and Spruck. For the static image model the resulting system
of equations is solved by a diagonally preconditioned CG method. But in the case of the
image-sequence model, which is a 5D problem for (3+1)D image-sequences, the solution
of such a system resulting from space/time finite elements involves huge computational
efforts. Therefore a suitable operator splitting scheme has been discussed, which simplifies
the system of equations significantly. The resulting final system has a 3-band block-structure
and is very similar to a mixed finite difference/finite element scheme. Since each block
corresponds to one image of the sequence, the system can be solved by a symmetric block
Gauß-Seidel solver, which loops over the separate frames. To keep the effort reasonable only
a few steps of this block solver are performed.

Future work directions in the theoretical analysis of the models include the convergence of
the finite element scheme. Concerning the discretization of the model, the consideration of
faster regularizations based on local projections and adaptive schemes is needed for larger
data-sets. Since this thesis has shown that curvature based diffusion models in level-set
formulation yield good results for the de-noising of images, the extension of these models to
other areas of image processing is a future research direction. Ongoing work is being done
for example in the area of image in-painting, where destroyed areas of images (i.e. areas on
which the image is completely lost) are to be restored.
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[28] M. Droske and M. Rumpf. A variational approach to non–rigid morphological registra-
tion. SIAM Appl. Math., 2002. submitted.

[29] G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58:601–611, 1991.

[30] K. Ecker and G. Huisken. Mean curvature evolution of entire graphs. Ann. of Math.,
130:453–471, 1989.

[31] W. Enkelmann. Investigation of multigrid algorithms for the estimation of optical flow
fields in image sequences. Computer Vision, Graphics and Image Processing, 43:150–
177, 1988.

[32] L. Evans and J. Spruck. Motion of level sets by mean curvature I. J. Diff. Geom.,
33(3):635–381, 1991.

[33] M. Ferrant, S. K.Warfield, C. R. Guttmann, R. V. Mulkern, F. A. Jolesz, and R. Kiki-
nis. 3D image matching using a finite element based elastic deformation model. In
Proceedings Medical image computing and computer-assisted intervention - MICCAI
1999, pages 202–209. Springer, 1999.

[34] D. Gabor. Information theory in electron microscopy. Lab. Invest., 14:801–807, 1965.

[35] Y. Giga, S. Goto, H. Ishii, and M.-H. Sato. Comparison principle and convexity pre-
serving properties for singular degenerate parabolic equations on unbounded domains.
Ind. Math. J., 40(2):443–470, 1991.



97

[36] F. Guichard. Axiomatisation des analyses multi-échelles d’images et de films. PhD
thesis, University Paris IX Dauphine, 1994.

[37] F. Guichard. A morphological, affine, and galilean invariant scale–space for movies.
IEEE Transactions on Image Processing, 7(3):444–456, 1998.

[38] W. Hackbusch. Multi-Grid Methods and Applications. Springer, 1985.
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