Functions defining Arbitrary Meshes

A Flexible Interface between
Numerical Data and Visualization Routines

Martin Rumpf, Alfred Schmidt, Kunibert G. Siebert *

Institut fir Angewandte Mathematik
Universitat Freiburg
Hermann—Herder—Strafle 10
D-79104 Freiburg i. Br., Germany

February 11, 1995

Abstract

Most of the rendering tools in scientific visualization are restricted to special data
structures which differ substantially from the data formats used in numerical applications.
Trying to close this gap, we present an interface between data from numerical methods
on general types of grids — like cuboidal, prismatic, simplicial, parametric, mixed, or
hierarchical meshes — and general visualization routines. It is based on a procedural
approach managing a collection of arbitrary elements and a set of functions describing
each element type. No mapping of (an in general enormous amount of) numerical data
onto new data structures is necessary; a user may use his own data structures and only
has to provide this small set of procedures and functions. The visualization tools will then
use these routines to access (temporarily and locally) data of interest, like information
about a single element. Compared with display routines on a specialized data structure,
this general interface does not produce much cpu overhead.

AMS Classification: 65505, 68P05, 68U05

Keywords: Visualization, arbitrary meshes, mixed elements, procedural access

*EMAIL: mart, alfred, kunibert@mathematik.uni-freiburg.de

1 Introduction

Visualization of numerical data is based on fast access to information about the underlying
mesh (and some values given on that mesh) and display methods that work on this data, also
called the “visualization model” [8].

There are a lot of numerical methods for the computational solution of (physical) problems
which work on different types of underlying meshes. Finite Difference methods work on
structured grids with a logical rectangular structure and implicitely defined adjacencies and
nodes (see [23], e.g.). On the other hand, modern Finite Element and Finite Volume methods
are built on locally refined unstructured grids with explicit element adjacency, mixed element
types, and varying degrees of element parametrization and ansatz functions ([3], [4], [11], [20],
[27]). A variety of data functions with different properties may be produced by the numerical
methods. For example, data may be given by nodal values, a Lagrangian or hierarchical
representation, or as a function piecewisely defined on parts of an element. Additionally,
such data may be only locally continuous but discontinuous over element boundaries.

To understand qualitative and quantitative aspects of the calculated solutions, visualization
is an essential tool. In addition, it supports development and debugging of new numerical
algorithms, especially if they are based on complicated adaptive grid handling strategies.
A desirable feature is the integration of the visualization routines into the numerical code;
the visualization routines can use data of the numerical method, already available in main
memory.

Thus, we are looking for a data interface between numerical methods and display methods,
which meets the following requirements.

— The interface should be able to handle a lot of different types of meshes with data given
on them (at least those mentioned above).

— The interface should not require more storage for the representation of the mesh and
the numerical data on it than the underlying numerical method.

— The interface should include solely information about the mesh which is definitely
needed by the display routines.

— To represent his own type of mesh, a user should be able to use the data structures he
is accustomed to from his numerical method.

The gap between the user’s numerical data formats and the structures usually used by
rendering tools is a wellknown outstanding problem in scientific visualization [14, 24]. Most of
the frequently used visualization software [9, 12, 15, 22, 25] works on prescribed data formats.
A user has to convert his own data into such a format. Well known mesh formats handling
a larger class of meshes is the UCD format implemented in AVS [1, 2] and the HDF format
from NCSA [16] used in the GRASPARC data management system [6], e.g.

In search for conceptional new ideas, the methodology of fibre bundles has been introduced
in [8]. The paper includes a taxonomy of geometries, functions on them, and the appropriate
graphical operations. Related algorithms and data structures are discussed and applied to
overlapping grids in [7], using a procedural handling of elementary geometry data (in the
programming language Fiffel). [10] discusses a refinement of these ideas for scientific data
on structured and unstructured grids; the geometry under consideration consists of “field
elements”, and classes of functions from Lagrangian function bases are discussed. Finally,
subclasses of these arbitrary meshes, with less storage requirements, are inspected.

But there are still a lot of restrictions in these approaches; only a few element types are
supported by the current software and the ansatz functions are limited to the most basic
ones.

In our approach, we try to avoid restrictions on the ansatz functions and on the types of
elements. A grid is defined as a procedurally linked list of mesh elements. FEach single
element is parametrized over a convex polyhedron with an arbitrary number of vertices and
faces, perhaps varying from element to element. In this procedural approach, functions map
from user’s data to a single element; user’s data structures are usually those from his numerical
method, maybe even without an explicit mesh geometry. Given data on the mesh is accessed
elementwise only. The next sections enligthen these points more precisely. Throughout the
description of our approach, we will directly refer to the actual C structures used in our
implementation to demonstrate the flexible features as clear as possible.

The paper is organized as follows: Sections 2 and 3 describe in more detail given numerical
data and requirements of basic visualization methods, to define both sides around a general
data interface. In section 4, we present our concept of such an interface, section 5 discusses the
implementation of visualization methods, and section 6 presents some results. Implementatio-
nal details and a description of the implemented visualization methods will be discussed in
the appendix.

2 Numerical data revisited

Recent numerical methods deliver a large amount of data on a lot of different mesh types.
The following list shows some of these types.

— Structured or unstructured meshes (from Finite Difference or Finite Element / Volume
methods) with a variety of ansatz functions on them.

— Adaptive meshes consisting of a single or of mixed element types, e. g. simplicial,
prismatic, rectangular or cuboidal structure [5, 20] or of more general kind (CSG
modelling of surfaces with smooth corners naturally leads to triangles or pentagons,

e. g.).

— Conforming or non—conforming meshes, where the neighbourhood of elements across
an element side is not one-to-one (for example, locally refined rectangular meshes lead
naturally to non—conforming meshes).

— Meshes with parametric (curved) elements of any of the above mentioned types, with
globally constant or locally changing polynomial order of parametrization.

— Hierarchically structured meshes suitable for efficient numerical solvers (which give
the possibility to choose a coarse hierarchy level for interactivity of time—consuming
operations).

Finite Element / Finite Volume data is usually given by coefficients to ansatz functions with
local support and can easily be evaluated in local coordinates. Therefore a function f on a
specific element e of such a mesh can easily be evaluated by a call like £(e,c) where c is the
local coordinate vector. For example, for piecewise linear data on triangles, the barycentric
coordinates of a point in the triangle are equal to the values of the nodal basis functions.
On the other hand, a piecewise polynomial interpolation of Finite Difference data, which are
given only at the nodal points of a regular grid, can easily be evaluated using local coordinates
as parameters.

As we want to handle ‘general’ elements, we use the following notion of local coordinates that
belong to an element: For each element, we specify the dimension of the local coordinate
system and the coordinates of all vertices of the element in that local system.

Usually, an n—dimensional element can be parametrized by an n—dimensional local coordi-
nate system, but there are situations where it is more intuitive or appropriate to use a higher
dimensional local system. Examples of this are:

— Usage of the full (n+1)-dimensional barycentric coordinate system on an n—dimensional
simplex. If Py,..., P,+1 are the vertices of the simplex, there is a unique representation
of every point P of the simplex as P = M Py + ...+ Ayy1Pyyr with A; > 0 and
M4+ A = 1[13].

— Smooth corners in a surface built out of rectangular patches may be naturally described
as triangles with 3 local coordinates or pentagons with 5 local coordinates.

As a result, we have to permit local coordinate systems of arbitrary dimension. It is
natural to assume that the underlying coordinate space is a standard Fuclidian vector space.
The following figure shows some examples of possible local coordinate systems for distinct
elements. These elements are given as the following range of local coordinates:

tetrahedron: {(Ag, A1,A2,A3) 1 A; > 0 and > A; =1},

prism: {(Aoy A1, A9,) : 0< A <1, A\ >0and Y A =1},
pyramid: {(pt1,p2,h): 0< R <1 nd —(1—=h)<p <(1-h)},
cube: {(p1, 2, p) 0 < i < 13
h
h[IPG
\
Ao, Ar, Azy A Ao, A, Ay “x\{ Thov W
0, 1, 2, 3

Fig. 1: Possible local coordinate systems of a tetrahedron, a prism, a pyramid and a cube

A general concept should allow to handle at least all of the above mentioned mesh types
together with data from the underlying numerical methods. Again we should underline that
not significantly more storage should be needed for the representation of the mesh than is
used in the numerical methods. This applies especially to the case of structured grids, which
can be represented by only a very small amount of data describing the mesh itself.

3 Essentials for visualization methods on arbitrary grids

Visualization methods can be formulated in a way that they need only a sequential access
to elements of the mesh, either in a list-like order (when looping through all elements) or
in a geometry— (neighbourhood-) related order (when tracing particles in a flow field, e. g.).
None of the usual methods needs a direct access to an arbitrary element of the mesh. Most
visualization methods for 2d or 3d meshes can be carried out by looping over all elements of
the mesh and using only local information on each element.

Geometrical computations are done in local coordinates on a single element whereas world
coordinates are needed for display tasks. Thus, all display methods need access to a trans-
formation routine from local coordinates to world coordinates. Additionally, the inverse trans-
formation from world to local coordinates is needed by some special methods; examples are
data probes at points given in world coordinates and particle tracing methods (see section 5).

Some of the basic tasks which need only some local element information are:

— Display of the mesh or the boundary of the domain.

— Isoline and isosurface display (not the generation of a closed geometrical description,
but only the display generation).

— Clipping of a volume against a plane or, more general, against an implicitly given surface

like a ball.

— Visualizing specific data (as isolines, vectorfields etc.) on a clipping surface.

Additionally, there exist visualization tasks that demand more knowledge about the mesh,
especially about the adjacency of elements:

— Display of element clusters (where the task may be to show a single element or a set
of elements together with all adjacent elements), which needs information about all
elements that are adjacent to one element.

— Particle tracing (generation of streamlines or streaklines), which again needs informa-
tion about the adjacency of elements and additionally needs the transformation from
local coordinates of one element to the local coordinates corresponding to an adjacent
element.

— Search for an element which contains a given point in space (like the starting point for a
particle trace), which can be done in convex domains by starting at an arbitrary element
and jumping afterwards from one element to another, directed by local neighbourhood
information.

To simplify and accelerate the visualization tasks, some methods are able to benefit from a
globalindexing of the element vertices and the elements. So, if possible, a global numbering of
the vertices and the elements should accompany the mesh description, together with an upper
bound for the maximal index. This kind of indexing does not mean that every index value
is used, but only that every vertex resp. element refers to a unique index. A visualization
routine that uses data values at the vertex positions (like an isoline routine) could use this
global index to calculate values at the vertices only once, even if a node occurs as a vertex
of several different elements (in a cuboidal mesh, each inner node occurs as a vertex of eight
different cubes, e. g.).

4 Description of the mesh concept

The requirements from both numerical and visualization methods can be met by the data
interface, which we describe in this section. It uses a procedurally linked list of elements,
where the geometric type of each element may change from element to element. No fixed set
of element types is prescribed, but a geometric description is used which is able to handle all
types of elements which are parametrized over a convex polyhedron.

In the following sections, we describe the underlying concepts and structures (in C—notation)
in a bottom—up way:

— element type description,
— element data,

— mesh data.

We present only the structures for threedimensional meshes. The corresponding structures
for twodimensional meshes are straightforward and quite similar; the main difference is, that
the description of 2D elements is a lot simpler.

Description of the geometric element type

The geometry of a single element is described using a polygon—oriented boundary representa-
tion of the parameter domain. As we support only (curved) polyhedral elements, an element
can be described by the set of its vertices and a description of the boundary polygons.
This applies only to the local coordinates of an element; its shape in world coordinates is
determined by some transformation routine.

For a threedimensional polyhedron, we specify the number of boundary polygons (faces) and
for each of these polygons the number of vertices, the local vertex indices and their order
(thus giving an orientation to the polygon such that the surface normal is the outer normal
to the polyhedron), and the local indices of the adjacent face across each of the edges of the
polygon.

For each vertex, the coordinates in the local coordinate system of the element are given by
the element description. Based on these values, the visualization routines may operate in the
local coordinate space. The pointer to a function check_inside() is provided by the element
description, which checks whether a point in local coordinates is inside the element or not.
The element description is completed by pointers to transformation routines from local
coordinates to world coordinates and vice versa, and routines boundary() and neighbour ()
which give information about the neighbourship of elements. Additionally, the transformation
routine from world to local coordinates checks whether a given point is inside the element or
not.

typedef struct

{
int number_of_vertices; /* number of vertices */
int number_of_polygons; /* number of faces */
int *polygon_length; /* vertex counts of the faces */
int **polygon_vertex; /* face to vertex adjacency */
int **polygon_neighbour; /* face to face adjacency */
int dimension_of_coord; /* dim. of local coordinate system */
float **kcoord; /* local coordinates of the vertices */
int parametric_degree; /* parametric element if > 1 */
int (*world_to_coord) (const ELEMENT3D *, const float *, float *);
void (*coord_to_world) (const ELEMENT3D *, const float *, float *);
int (*check_inside) (const ELEMENT3D *, const float *);

ELEMENT3D *(#*neighbour) (ELEMENT3D *, const int, const int, float *, const float *);
int (*boundary) (const ELEMENT3D #*, const int);
} ELEMENT3D_DESCRIPTION;

The arrays and procedures give following information:

polygon_length[j] is the count of vertices of the j—th face (0 < j < number_of polygons).

polygon_vertex[j] [7] is the (local) index (with range [0,...,number of vertices — 1]) of
the i-th vertex from the j-th face (0 < j < number_of polygons, 0 < ¢ < poly-
gon_length[j]).

polygon neighbour[j][¢] is the index of the adjacent face to the j—th face accross the edge
from vertex polygon vertex[j][] to vertex polygonvertex[jl[i+ 11 (0 < 7 <
number_of polygons, 0 < 7 < polygon length[j]).

coord[k][¢] is the i~th local coordinate of the k—th vertex from the polyhedron (0 < 7 <
dimension_of _coord, 0 < k < number_of vertices).

check_inside(element3d, coord) returns INSIDE (—1) if the point with local coordinates
coord is inside of the element’s parameter range. Otherwise, at least one plane of a
local face separates the element and the given point. In this case the local index of such
a face is returned.

world to_coord(element3d, xyz, coord) transformsa point from given world coordinates
xyz[3] to coord[dimension of coords] in the local coordinate system of element3d.
The return value is identical to that from check_inside().

coord_to_world(element3d, coord, xyz) transforms a point from local coordinates co-
ord[dimension of coords] to world coordinates xyz[3].

neighbour(element3d, polygon, flag, coord, xyz) returns a pointer to an adjacent el-
ement of element3d across face number polygon. Depending on flag, the routine
returns the first neighbour or a next one (in case of non—conforming meshes the ad-
jacency may be not one to one). If coord is not NIL, the routine transforms those
coordinates from the old local coordinate system to the new one. In many cases
this transformation can be supported by the optional parameter xyz, which provides
world coordinates of the point if available, otherwise this parameter has to be NIL. The
structure element3d may be overwritten by the routine.

boundary(element3d, polygon) returns 0, if polygon is an inner face of the mesh, or a
nonzero integer, if polygon is part of the mesh’s boundary.

The number of such element descriptions and therefore the amount of storage for them is
equal to the number of different element types in one mesh. There are no copies of this
necessary for each element.

In the Figures 2-4, examples of vertex and face relationships for cubes, tetrahedra, and prisms
are depicted. check_inside() is easily implemented using the local coordinates mentioned
in section 1.

The user’s data structures (from a numerical method, e.g.) may be completely different to
the structures described above. In case of implicitely given Finite Difference meshes, the
functions neighbour and boundary are implemented using simple index arithmetic (for a C
implementation we refer to Appendix B). Unstructured grids usually provide such information
explicitely.

0\1 0\1/

Fig. 2: Prototype of a cube

3:\\\\\\ 3””////5 5
| & —,

T
5
e

o\u/

Fig. 3: Prototype of a tetrahedron Fig. 4: Prototype of a prism

1

Element data

We use a procedural access to single elements in this mesh concept. The procedures return
element data in a small structure. This structure for an element of the mesh consists mainly
of a pointer to an element description, which contains all information described above, and
a vector of pointers to the world coordinates of the element’s vertices.

Such information may be enlarged by optional global eindex and vindex[] integer indices
of the element itself and its vertices and a pointer to a data area which contains additional
information that may be used by the transformation routines or any other of the user-supplied
routines.

The vertex indices, if present, allow the visualization routines to minimize the number of
calls to the data function, if the data values are globally continuous. In this case, the values
at a node are uniquely defined, independent of the element where it belongs to. If the data
is not continuous between elements, the global vertex index may also be used to compute a
continuous approximation to the data by averaging the values at the nodes.

The global element indices for example may be used to specify a set of elements of special
attention and to display only these elements (or their neighbourhood).

typedef struct

{
MESH3D *mesh; /* this is an element of ’mesh’ */
float **kyvertex; /* world coordinates of vertices */
int *vindex; /* indices of vertices */
int eindex; /* index of the element */
ELEMENT3D_DESCRIPTION *descr; /* connectivity, ... */
int size_of_data; /* optional size of user data area */
void *data; /* optional pointer to user data */

/* of this element */
} ELEMENT3D;

Mesh

The mesh is just a collection of elements, as they are described in the previous section,
together with an optional data function on the mesh.

We restrict the access to the elements to a procedural interface, that delivers pointers to
elements in one of two possible ways:

— by building a procedurally linked list of elements, that runs sequentially through all
elements in the mesh via two procedures

ELEMENT #first_element(mesh),
ELEMENT #next_element(element),

which return the anchor to the list resp. the next element in the list.

— we can go from one element to an adjacent element (in space) accross the face polygon
via the routine

ELEMENT *neighbour(element, polygon, flag, coord, Xyz).

Both the next_element () and neighbour() routines may overwrite the element data struc-
ture, so that no additional storage is needed for the next element’s data structures. In case
that one needs to collect information about several elements, a routine

ELEMENT #*copy_element (element)
gives a copy of an element, which can be deleted later by
free element(element).

This procedural access to the mesh elements allows the generation of local element data at
the time when it is actually needed. Otherwise, in case of an array or pointered list, complete
information for all elements of the mesh would have to be present at the same time (and
occupy much more storage).

The routines which generate the element data structures have to convert between the rep-
resentations via user’s data structures and the element structures. They do this mainly by
filling out vertex and index information for an element and refering to a previously prepared
description. As mentioned above, in case of structured meshes this is done mainly by index
arithmetic, whereas for unstructured meshes such information is usually stored with the mesh.
The MESH data structure contains values for the allocation of temporary memory that some
routines may need:

— An upper bound max_number_of _vertices for the number of vertices of any element in
the mesh, so that a routine which wants to store local vertex information knows how
much memory it has to allocate.

— Upper bounds max_eindex and max_vindex for the element index and vertex index, if
such information is supplied (then the eindex and vindex[] entries in the ELEMENT data
structure deliver values in the range [0, ..., max_eindex—1] resp. [0, ..., max_vindex—1]).
If any one of the max_?index values is smaller or equal to zero, the elements do not
give corresponding index information.

At last, the MESH structure contains an interface to data given on the mesh. Here we want
to support a situation where different types of data at the same time are given on the same
mesh with different value dimensions and other characteristics (example: a piecewise linear,
scalar pressure, a piecewise quadratic, vector-valued velocity, and some more), together with
some method to select one of the data values for display. The data characteristics may change
between two visualization tasks. Additionally, there may be data characteristics which change
from element to element in the same mesh, for example the polynomial degree of the ansatz
functions. To handle all these situations, we use a rather general interface for the functions
on the mesh. Instead of describing functions in terms of a Langrangian basis, compare for
instance [10], in our concept a user supplied function pointer evaluates any type of user
function, for example also Hermitian or only piecewisely defined on several parts of a single
element.

In detail the following entries are included in the MESH data structure:

— A function f_info(el) which gives information about the current data values on the
mesh and on the current element. It returns the pointer to a structure that includes

— a description of the current data values (“pressure”, e.g.),

the current dimension_of _value,
— the local polynomial _degree of data values on an element,

— a flag continuous data which is 1, if the current data is continuous between
elements, and 0 otherwise.

— The data function f(el, ind, coord, val) itsell generating dimension of value-
dimensional values at a position which has to be specified in local coordinates on an
element. This function may also be called with parameters coord=NIL and a local index
ind of one of the element’s vertices.

— A data pointer data and the size of the underlying memory area size_of data. This
simplifies read and write operations and the simultaneous handling of multiple mesh3d
data sets.

typedef struct

{
ELEMENT3D *(*first_element) (const MESH3D *);
ELEMENT3D *(*next_element) (ELEMENT3D *);
ELEMENT3D *(*copy_element) (const ELEMENT3D *);
void (#free_element) (ELEMENT3D *);
int max_number_of_vertices; /* max. number of vertices of */
/* one single element */
int max_eindex; /* max. global element index */
int max_vindex; /* max. global vertex index */
int max_dimension_of_coord; /* max. dimension of the local */
/* coordinate system */
void (#f)(const ELEMENT3D *, const int, const float[], float[]);
F_INFO *(*f_info) (const ELEMENT3D *);
int size_of_data; /* optional size of user data */
void *data; /* optional pointer to user data */
} MESH3D;
typedef struct
{
char *name; /* textual data description */
int dimension_of_value; /* dimension of data values */
int polynomial_degree; /* local polynominal degree of data */
int continuous_data; /* data globally continuous? (0/1) */
} F_INFO;

5 A sketch of the basic visualization methods

Up to now we have discussed the fundamental structures of arbitrary meshes and especially
the description of single elements. In the following we will briefly examine that they fulfill
the requests of most of the visualization methods. Therefore we will focus on two significant
rendering techniques, a clipping algorithm which visualizes a scalar function or a vectorfield

on the surface of intersection and the tracing of a single particle in a 3D vectorfield. This
should point out that the set of functions describing a single element and the procedures
managing a mesh by giving access to its elements form a natural and minimal set of routines
to deal with arbitrary meshes.

Clipping: A variety of information may be displayed on the intersection of a volume with
an implicitly given surface. The actual clipping of the elements is independent of the specific
rendering style we will use later on. Let us suppose that the visible part of the volume
should be that part where a given function g is non—positive. The intersection surface is then
the zero level of g on the mesh. The following algorithm find_clip() runs over all elements
searching for intersections. If successful on a certain element, it pushes a structure clip frame
describing the local intersection with the element into a rendering routine render clip().
In there, the actual rendering takes place and for example the degree of refinement, a color
shading or an isoline image of a scalar function, or the projection of a vectorfield is displayed.
In addition, a routine draw_boundary() visualizes the remaining visible parts of the mesh
boundary. To simplify the presentation, we did not make use of the possible indexing of
elements and vertices.

void find_clip(const MESH3D *m, const float (*g)(), const void (*render_clip)())
{

ELEMENT3D *e;

ELEMENT3D_DESCRIPTION =#*descr;

CLIP_FRAME *clip_frame;

int i,countp,countm; /* #vertices with g>=0 or g<0 */
for (e = m—>first_element(m); e != NIL; e = m—>next_element(e)) {

descr = e—>descr;
countp = countm = 0;
for(i=0; i < descr->number_of_vertices; i++)
if(g(e->point[i],var) >= 0) countp++;
else countm++;
if(countm) {
for (i=0; i < descr->number_of_polygons; i++)
if (descr->boundary(e,i)) draw_boundary(e,i,g);
if (countp) {
clip_frame = <local geometry of the clipping>;
render_clip(clip_frame);
}
}
}
}

Particle tracing: A fundamental technique to understand flow phenomena is to look at
test sets, like single particles, curves, or surfaces moving in the 3D vectorfield and to record
their traces. A procedure trace() following one particle for a period of time T starting at a
position x in an element e is sketched below.

To keep the algorithm efficient on arbitrary grids and to avoid global searches, it is essential
to use adjacency information. For the clarity of the algorithmical presentation we restrict
ourselves here to a first order Euler scheme with step length dt to integrate the underlying
ordinary differential equations.

10

void trace(float x[3], ELEMENT3D *e, const float dt, const float T)

{
int i;
float *c, v[3], t, s;
ELEMENT3D_DESCRIPTION =*descr = e->descr;
MESH3D m = e—->mesh;

<memory allocation for c[m->max_dimension_of_coord]>
£=0.;
descr->world_to_coord(e,x,c);
while (t < T) {
s = (t+dt < T) ? dt : T-t;
m->f(e,-1,c,v);
X=X+ s % v,
<direct rendering of the trace would take place here>
descr->world_to_coord(e,x,c);
while((i = check_inside(e,c)) !'= -1)
e = descr->neighbour(e,i,FIRST_NEIGHBOUR,c,x);

Here we do not discuss other existing rendering tools based on isosurfaces or on the extraction
of specific sets of elements. Some additional examples can be found on the pictures pages.

6 Applications

Our implementation of the general interface for arbitrary meshes is embedded into the
interactive graphical environment GRAPE developed at the SFB 256 at Bonn University
[17, 18, 19, 26]. The staff at the Institut fiir Angewandte Mathematik at Freiburg University
substantially contributes to its design and features.

A set of visualization methods is available from the authors. At the moment, there are still
some restrictions. Isoline and isosurface rendering techniques are based on linear interpolation
although the functions might be of higher order. Furthermore the integration techniques are
not fully implemented. An outstanding task is also to include timedependent geometries and
data.

We present the application of this implementation to two totally different numerical methods.
The first one is a CFD—-computation of vortex breakdown behind a cylindrical obstacle using
a Finite Difference method (Figs. 5-10). This computation was done at the Aerodynamischen
Institut of Prof. Krause at RWTH Aachen. We would like to thank for the opportunity to
test our visualization tools on this data.

Figs. 5, 7, 8 show norm of the velocity, density and energy on a clipping plane. Fig. 6 gives
a view on the vectorfield on two different planes. The color indicates the normal component
of the projected vectors. Fig. 9 presents shrunken elements from a coarse version of the
underlying 113x41x33 Finite Difference grid. Fig. 10 contains an isosurface of the norm of
the velocity.

The second application is a Finite Element computation of the electric potential in a particle
detector (Figs. 11-13). For the computation, we use a locally refined prismatic grid. Due
to the presence of non—conforming nodes produced by the local refinement, we may either
build a conforming closure of the grid involving pyramids and tetrahedra [20] or we may use
a constrained approximation on the non—conforming purely prismatic grid [21].

In Fig. 11 we zoom into a coarse version of the conforming mesh containing the three different
element types.

11

The last two figures show calculation on the non—conforming mesh using constrained approxi-
mation techniques. Fig. 12 shows isolines and the underlying grid on two clipping planes. In
Fig. 13, we cut a step out of the computational domain and show the underlying grid.

Finally, we have to investigate the question what is the price in speed we have to pay for the
flexibility we achieved by our general concept. The following table lists the rendering times
(computation and graphical output on an SGI Extreme with R4400 Processor) of some basic
visualization methods, applied to a mesh consisting of about 150,000 tetrahedra and 200,000
nodes from a Finite Element computation. Times are given from specialized display routines
for tetrahedral meshes and from our general routines, producing equivalent results.

display method rendering time (sec.)

tetrahedral grid code | general mesh code
clipping the volume against a ball 1.02 1.81
extracting a layer of elements 5.10 5.75
color shading on a clipping plane 1.46 2.23
Conclusions

We have described in this paper a concept how to attack visualization of data on arbitrary
meshes. It overcomes some of the fundamental difficulties in data handling and closes a part
of the gap between user’s numerical data and rendering tools.

In comparison to dedicated software, a cpu overhead is produced by the general mesh concept.
For our applications, this has turned out to be acceptable.

12

Picture page 1

13

i

i i trahedra
11: A mixed type mesh with prisms, pyramids and tetr
Fig. 11: Am

A A AN NN, 7 N7 N
DT DS S = —
e:e%gxzex%e%@e@eﬁex&i&‘iﬁ D
SRR SETETAA SEEZXLITFS 2
S S IP AL SETIIST LI 5252
SSSSOEPISASET LI RIS
S IIRRR ﬁ%l?:l‘:li‘lélélﬁ:léléﬁ:»—ff—‘:@"'
S Tetev: LI TCT
e e =

74
SENLT

EEET T
A
ESESE2

—

=
A(A()
KD
%g@é&ﬁ@ﬁﬁA
2 SODTHNID

DD

SIS
SRASSIT LB
I ITL G IIASLL
SDSELL LA ASESES
<25 el

=5

SIS
()’:;V)':)‘A“:(A—(E‘—‘— XL =
CTL55C
‘«»:1»—«»—»—«»—«»—?’v’»—?»%:’é"':’ﬁ‘:":'"(X
LR ER AR

~NEEXLEDER 2

AT
XS

e
ORSSoS
SISO
255
=X

= =
A I I TS S S oo
SEEDS

=

S S
A ‘1AVAVAVAVA§'\§'Av
N5 Vi
—ELERERR

AV
Z BLO =S

Fig. 13: Part of the pure prismatic mesh

14

References

[1] Advanced Visual Systems, Inc.: AVS developer’s guide , Waltham, 1992
[2] Advanced Visual Systems, Inc.: AVS user’s guide , Waltham, 1992

[3] Angermann, L.: Numerical solution of second—order elliptic equations on plane domains,
Model. Math. Anal. Numer. 25, 169-191, 1991

[4] Demkowicz, L., Oden, J. T., Rachowicz, W., Hardy, O.: Toward a universal h—p adaptive
finite element strategy, Part 1 — Part 3. Comp. Meth. Appl. Mech. Engrg. 77, 79-212, 1989

[5] Bansch, E.: Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg.
3, 181-191, 1991

[6] Brodlie, K.; et al.: GRASPARC — A problem solving environment integrating computa-
tion and visualization, Proc. IEEE Visualization 1993, 102-109

[7] Butler, D. M.; Bryson, S.: Vector—bundle classes form powerful tool for scientific
visualization, Computer in Physics 6, 576-584, 1992

[8] Butler, D. M.; Pendley, M. H.: A visualization model based on the mathematics of fibre
bundles, Computer in Physics 3, 45-51, 1989

[9] Dyer, D. S.: A dataflow toolkit for visualization, IEEE CG&A 10, No. 4, 60-69, 1990

[10] Haber, R. B.; Lucas, B.; Collins, N.: A data model for scientific visualization with
provisions for regular and irregular grids, Proc. IEEE Visualization 1991

[11] Hackbusch, W.: On first and second order box schemes, Computing 41, 277-296, 1989

[12] IBM, Inc.: IBM AIX Visualization Data Explorer, user’s guide, IBM Publication SC38-
0081

[13] Kardestuncer, K.: Finite element handbook, McGraw-Hill, New York, 1987

[14] Lang, U.; Lang, R.; Riihle, R.: Integration of visualization and scientific calculation in
a software system, Proc. IEEE Visualization, 1991

[15] Lucas, B.; et. al. : An architecture for a scientific visualization system, Proc. IEEE
Visualization, 1992

[16] NCSA HDF specification manual, available via anonymous ftp from ftp.ncsa.uiuc.edu

[17] Rumpf, M.; Geiben, M.: Visualization of finite elements and tools for numerical analysis,
Advances in Scientific Visualization, Eds. F. Post, A. H. Hin, Springer, 1993

[18] Rumpf, M.; Geiben, M.: Moving and tracing in timedependent vector fields on adaptive
meshes, Report, SFB 256, Bonn, 1994

[19] Rumpf, M.; Schmidt, A.; et. al.: GRAPE graphics programming environment, Report
8, SFB 256, Bonn, 1990

[20] Siebert, K. G.: Local refinement of 3D-meshes consisting of prisms and conforming
closure, IMPACT Comput. Sci. Engrg. 5, 271-284, 1993

[21] Siebert, K. G.: An a posteriori error estimator for anisotropic refinement, Preprint 313,
SFB 256, Bonn, 1993 (to appear in Num. Math.)

15

[22] Silicon Graphics Computer Systems, Inc.: IRIS Explorer, Tech. Report BP—~TR-1E-01,
1991

[23] Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.: Numerical grid generation, North—
Holland, 1985

[24] Treinish, L. A.: Data structures and access software for scientific visualization, Computer
Graphics 25, 104-118, 1991

[25] Upson, C.; et. al.: The Application Visualization System: A computational environment
for scientific visualization, IEEE CG&A 9, No. 4, 30-42, 1989

[26] Wierse, A.; Rumpf, M.: GRAPE, Eine objektorientierte Visualisierungs— und Numerik-
plattform. Informatik Forschung und Entwicklung 7, 145-151, 1992.

[27] Wierse, M.: Higher order upwind schemes on unstructured grids for the compressible
euler equation in timedependent geometries in 3d, Dissertation, Freiburg, 1994

16

Appendix A (GRAPE Methods)

This section and the next one will recall and describe in detail the underlying class Mesh3d,
the corresponding C structures and the basic visualization methods. We again emphazise
that the work left to the user is to set up the interface dealing with his specific type of
elements. The second part of this appendix will discuss concrete examples for parts of this
interface. Nethertheless for Finite Difference applications two input formats are listed below.
Furthermore tetrahedral meshes can be converted to Mesh3d instances.

This appendix should be seen as a reference manual.

Mesh3d

First we should recall for reference purposes Mesh3d, and collect the structures already
introduced in the previous sections. The visualization system requires the following informa-
tion:

o For each element type a description of the shape, functions to give information of
adjacencies in the grid and functions to handle local and global coordinates:
ELEMENT3D DESCRIPTION

e For each element the whole geometric description: ELEMENT3D

e For the mesh a procedurally linked list with functions to create a first element and to
run through the list: MESH3D

#define INSIDE -1

#define EXACT_NEIGHBOUR -1
#define FIRST_NEIGHBOUR O
#define NEXT_NEIGHBOUR 1

typedef struct element3d_description ELEMENT3D_DESCRIPTION;
typedef struct element3d ELEMENT3D;
typedef struct mesh3d MESH3D;

struct element3d_description

{

int number_of_vertices;

int number_of_polygons;

int *polygon_length;

int **polygon_vertex;

int **polygon_neighbour;

int dimension_of_coord;

float **kcoord;

int parametric_degree;

int (*world_to_coord) (const ELEMENT3D *, const float *, float *);
void (*coord_to_world) (const ELEMENT3D *, const float *, float *);
int (*check_inside) (const ELEMENT3D *, const float *);

ELEMENT3D *(#*neighbour) (ELEMENT3D *, const int, comnst int, float *, const float *);
int (*boundary) (const ELEMENT3D #*, const int);
};

17

struct element3d

{
MESH3D *mesh;
float *kvertex;
int *vindex;
int eindex;
ELEMENT3D_DESCRIPTION *descr;
int size_of_data;
void *data;

};

typedef struct f_info

{
char *name;
int dimension_of_value;
int polynomial_degree;
int continuous_data;

} F_INFO;

struct mesh3d
{ /* SYSTEM */

CLASS *class;

char *name ;

INSTANCE *next;

unsigned int refcount;

/* USER */

ELEMENT3D *(*xfirst_element) (const MESH3D *);
ELEMENT3D *(*next_element) (ELEMENT3D *);
ELEMENT3D *(*copy_element) (const ELEMENT3D *);
void (#free_element) (ELEMENT3D *);

int max_number_of_vertices;

int max_eindex;

int max_vindex;

int max_dimension_of_coord;

void (*#f) (const ELEMENT3D *, const int, const float[], float[]);
F_INFO *(*f_info) (const ELEMENT3D *);

int size_of_data;

void *data;

};

Methods on Mesh3d

GRAPE(mesh, ”display”)()
MESH3D *mesh

The Mesh3d instance mesh is rendered on the standard device in a default manner. All the
boundary faces of the elements are displayed as flat shaded patches in patch mode and in
grid mode the edges of these faces are drawn.

18

GRAPE(mesh, ”clip”)(f,var,draw_clip,scal)
GRAPE(mesh, ”clip-ball-disp”)()
GRAPE(mesh, ”clip-plane-disp”)()
GRAPE(mesh, ”clip-deg-fine-disp”)()
GRAPE(mesh, ”clip-isoline-disp”)()
GRAPE(mesh, ”clip-vect-disp”)()

MESH3D *mesh

float (*f)(VEC3 x,void *var)

void *var

int (*draw_clip)(CLIPM3D_PAR)

void *scal

These methods are designed to support general clipping facilities with varying hypersurface
and local rendering function. The most basic method with the greatest flexibility is the
method ”clip”. The others are special predefined interactive methods derived from the latter
one. The domain of the mesh is splitted by the implicitly given clipping function £ into a
visible (f > 0) and an invisible (f < 0) part. The zero level of this clipping function defines
the intersection surface.

The variable var in the parameter list of the method call and of this function £ must be of
the same type. The parameter *var allows an interactive varying of the clipping function.
The implicit functions describing a plane or a ball are predefined:

typedef struct {float n_x, n_y, n_z, distance;} MPLANE_PARN;
extern float mplane(VEC3 x, MPLANE_PARM *var);

typedef struct {float center_x, center_y, center_z, radius;} MBALL_PARN;
extern float mball(VEC3 x, MBALL_PARM *var);

The pointer draw_clip points to a function which renders the surface of intersection on a
single element. This function works on the data corresponding to one single clipped element.
A NIL pointer causes the standard visualization of the surfaces including normal shading.
There are some predefined local rendering functions:

e draw _clipm isoline: generates an isoline image of a one dimensional FEM function
or of the absolute value of a vector-valued function.

e draw _clipm deg fine: shows the size of each clipped element in colour.

o draw_clipm_vect: draws a mesh of vector valued function values projected onto the
tangent plane of the intersection surface, where the colour represents the component
normal the tangent plane (only applicable if the function is three dimensional).

The interactive methods ”clip-isoline-disp”, ”clip-deg-fine-disp”, ”clip-vect-disp” use these
routines while calling the standard clipping method ”clip”.

To construct a new private rendering method working on the surface of intersection, the
user can add new clipping methods by using other and different surfaces or by adding new
local rendering functions. Therefore we now explain the parameter structure for the local
rendering function draw_clip. The general 'clip’ method calls this function in the following
way:

draw _clip((CLIPM3D_PAR *clip3d_par)
The structure clip3d_par with the following typedef is filled by the general ”clip” method.

19

typedef struct clipm3d_par

{
ELEMENT3D *e;
int n;
VEC3 *V;
float *coord;
float (*£)(O);
void *var;
void *scal;
int flag ;
int dimension_of_value;

} CLIPM3D_PAR;

This structure describes the intersection of the hypersurface with a single element. The filled
structure is delivered by the actual method ”clip”. The variable e points to the intersected
element and n gives the number of intersection points of one connected intersection patch. The
array v[0---n —1][0---2] contains the global Euclidian coordinates of these points. They are
located on edges of the element’s boundary at a linearly interpolated intersection position.
In all the listed interactive methods a plane is used as the clipping function. coord is a
pointer to a list of the local coordinates of the intersection points , which are stored in global
coordinates in v. In this 1D array the i’th coordinate vector starts at position (coord+ i *d)
where d is the dimension of coordinate space on the current element. The pointer var points
to the parameters of the function describing the intersecting hypersurface.At the memory
address scal the function draw_clip finds a user defined structure filled with parameters
for the specific rendering style. These parameters can be influenced interactively, if the user
supports this in an appropriate interactive method (see also the GRAPE reference manual).

GRAPE(mesh, ”shrink”)(p,f,fpar)
GRAPE(mesh, ”shrink-disp”)()
GRAPE(mesh, ”shrink-focus-element-disp”)()
GRAPE(mesh, ”shrink-layer-disp”)()
MESH3D *mesh
float p
int (*f)(ELEMENT3D *el,void *fpar)
void *fpar

The set of elements belonging to the Mesh3d instance is displayed on the standard device as
a patch or grid model. They are separated from each other by a small gap of relative width
p, this makes it possible to identify each element. There is a selection criterion for those
elements which are of interest. The main method is called ”shrink”. Here a specific element
is displayed if £(ELEMENT3D *el, void *fpar) is true otherwise it is skipped. There are
several interactive versions with different predefined functions f.

e 7shrink-disp” displays all elements.

e 7shrink-layer-disp” displays all elements those center of mass of vertices lies in a layer
surrounding a certain plane.

”

e 7shrink-focus-element-disp” displays the neighbourhood of a certain elements. The
index of this element and the depth of neighbourhood are accessible by integer rulers.

20

GRAPE(mesh, ”level”)(func,lev)

GRAPE(mesh, ”level-disp”)()

GRAPE(mesh, ”sub-level-disp”)()

GRAPE(mesh, ”super-level-disp”)()
MESH3D *mesh
void (*func)(ELEMENT3D *el, float *coord, float *val)
float lev

The slices of those elements where the one-dimensional finite element function func has the
level lev are calculated and displayed. The paramters of func are equal to those used for
a one dimensional FEM function on a Mesh3d instance: £(ELEMENT3D *el, float *coord,
float *val). If func is NIL and mesh includes a function then this finite element function
is taken into account. If its dimension of value is greater than 1 the absolute value of the
value vector defines the function under consideration. The resulting 2D level surface consists
of a polygonal approximation. The ”super” and the "sub”-methods display the super or sub
volumes of the function on the volume geometry.

Conversion Methods

The major purpose of the Mesh3d concept is to allow the access to data of various formats in
a unique way. Therefore there is not one single format to read or write this data. It highly
depends on the numerical method and the users data structures. Nevertheless some data
formats will be supported. They will be discussed in the following.

(MESH3D *)GRAPE(tr3d, ”convert-to-mesh”)()
(MESH3D *)GRAPE(fe3d, ”convert-to-mesh”)()
GRAPE(scene, ”convert-to-mesh-send”)()
TRIANG3D *tr3d
FE3D *fe3d

A Triang3d or Fe3d object is referred to by a Mesh3d instance which is the returned value of
the first two methods. The original triangulation and data are kept unchanged. The Mesh3d
evaluation functions only refer to them. Later changes in tr3d or fe3d will therefore also
effect the new Mesh3d instance. The methods ”convert-to-mesh-send” on Scene replaces the
object in the instance scene by a Mesh3d object refering to the previous object data.

(MESH3D *)GRAPE(Mesh3d, ”read-ascii-fdiff””)()
(MESH3D *)GRAPE(Mesh3d, ”read-binary-fdiff”)()
(MESH3D *)GRAPE(Mesh3d, ”write-binary-fdiff”)()

These three methods support the reading and writing of finite difference data on a possibly
deformed cubic mesh. The values of several solution functions can be handled at the same
time. A button in the interactive environment deals with the switching between them. An
automatic compression of large data sets to a smaller space resolution is possible. A ruler
effects the rate of discretizations points which will be taken into account in each coordinate
direction.

Remark : The coord_to_world function works correctly if and only if the deformation of
the standard reference cube onto the deformed cube has a constant normal direction in two
directions and a varying one solely in the third direction. For arbitrary deformations the user

21

has to exchange this function by an appropriate one.

We will now list the input format for the read method dealing with the ASCII data type (the
parentheses at the end of the lines contain comments) :

time

geo (flag == 1 x_i y_i z_i are defined, == 0 not defined)
dim (dimension of the solution vector)

parts (number of segments in the solution vector,

for example velocity, pressure, density, grad pressure ...)
part_O name_O (index to segment O of the function vector and its name)

part_(parts-1) name_(parts-1) (index of the last segment and its name)
n_xn.ynz (int number of steps in x,y,z direction)
(n =n_x *ny*n_z)
x_ 0 y_ 0z 0 £ 0[0]..f_0[dim-1] (x_i y_i z_i only if geo == 1)
(x is the slowest running index)
(z the fastest)
(point[i,j,kl=(x,y,z) [(i*y_n+j)*z_n+k])
. (f_. solution vector on the points)
x_(n-1) y_(n-1) z_(n-1) £_(n-1)[0]..f_(n-1)[dim-1]

The following example illustrates this. A small 3D mesh is defined with a velocity and
pressure defined on it.

0 velocity
3 pressure

333

.012
.012
.018
.018
.008
018
012
018
.008
.018
.012
.018
.008
012
.008
.018
.012
.008
.012
.008
018
.008
.012

H R RPR R, PO O0O0000000O0O0OO0O00O00OOO0OO0
CO00OoNMPNNNN NN NOOOOOO OO O
OC OO OO Hr PR HPLPOOOOOOR,RRERLRPL,LOOOOOO
NN O0O00O0ONNNOOOOOONMNNOO O
OCOH OO, OO OO, OO, OO OO OO
NOONOONOONOONOONOONO O MO
HOROFHROKRROKRORKRREROKRRERKEORKERER
CONDOVWONWDOONONDNONWONNO O
NNRERNMNONNNENMNMNNMRERNMRERNDRBEODAENDESRNDN
OCNONONODNONDODINDODND ®O O
HOOOFRrROFROOFROOHH OOOFR,ROOOORK
ONMNONONMNONNONNNOUN NN NO O

22

1.00.51.0 0.9 2.2 0.7 0.008
1.01.00.0 1.0 2.01.0 0.012
1.01.00.5 1.0 2.01.0 0.012
1.01.01.0 1.0 2.01.0 0.012

If possible, the following binary format is preferable. It consists in replacing above all ASCII
written integers and floats to binary written onces and the character strings by char arrays
of fixed length 100. Furthermore, the block of function data information is separated from
the coordinate arrays.

(float) time

(int) geo,dim,parts
(int) part_0,(char[100]) name_0

(int) part_(parts-1),(char[100]) name_(parts-1)
(int) n_x,n_y,n_z
(float) x_0,y_0,z_0

&éioat) x_(n-1),y_(n-1),z_(n-1)
(float) f_o[0], .. f_0[dim-1]

&éioat) f_(n-1)[0], .. f_(n-1)[dim-1]

Mesh2D

In the above discussion we always have considered the three dimensional case and argued
that it is of more interest. Discussing the 2D structures is more or less straight forward. Here
we present now the appropriate 2D structures including the class Mesh2d. The meaning of
the structure entries are analogous to those already discussed in 3D.

typedef struct element2d_description ELEMENT2D_DESCRIPTION;
typedef struct element2d ELEMENT2D;
typedef struct mesh2d MESH2D;

struct element2d_description

{

int number_of_vertices;

int dimension_of_coord;

float **kcoord;

int parametric_degree;

int (*world_to_coord) (const ELEMENT2D *, const float *, float *);
void (*coord_to_world) (const ELEMENT2D *, const float *, float *);
int (*check_inside) (const ELEMENT2D *, const float *);

ELEMENT2D *(#*neighbour) (ELEMENT2D *, const int, const int, float *, const float *);

int (*boundary) (const ELEMENT2D #*, const int);
};
struct element2d
{

MESH2D *mesh;

float **kvertex;

23

int *vindex;

int eindex;
ELEMENT2D_DESCRIPTION =*descr;
int size_of_data;
void *data;
};
struct mesh2d
{
CLASS *class;
char *name ;
INSTANCE *next;
unsigned int refcount;
ELEMENT2D *(*xfirst_element) (const MESH2D *);
ELEMENT2D *(*next_element) (ELEMENT2D *);
ELEMENT2D *(*copy_element) (const ELEMENT2D *);
void (#free_element) (ELEMENT2D *);
int max_number_of_vertices;
int max_eindex;
int max_vindex;
int max_dimension_of_coord;
void (*#f) (const ELEMENT2D *, const int, const float[], float[]);
F_INFO *(*f_info) (const ELEMENT2D *);
int size_of_data;
void *data;
};

Appendix B, Examples for the implementation of element types

In the remainder we give some examples for the ELEMENT3D DESCRIPTION. We point out one
possible way how to define parts of the ELEMENT3D _DESCRIPTION for a cube, a prism, and a
tetrahedron. For all elements we define local_coord, polygon_length, polygon vertex, and
polygon neighbour. In the case of a cuboidal grid we define the main part of the function
neighbour(). The second function boundary() uses the same ideas as neighbour() but is
much easier to implement.

As a first example we start with one of the simplest mesh types and consider a set of
equidistributed points given by a Finite Difference method. This should underline that beside
arbitrary meshes containing various types of elements also the most basic grids can easily be
handled by this concept. The whole grid is totally described by the constant mesh sizes h_x,
h_y, h.z and the numbers of mesh points n.x, n_y, n.z in the x, y, and z-direction. Such
information can be handled by the following

typedef

{
int n_x, n_y, n_z; /* number of points in x, y, z-direction */
float h_x, h_y, h_z; /* distance of points in x, y, z-direction */
float =**f_data; /* pointer to data matrix */

} USER_DATA;

This set of points describes a cuboidal grid. All cubes of the grid are of equal shape with
diameters h x, h_y, h.z. A single cube is totally described by the index tripel of one vertex,
for example the vertex with smallest x, y and z coordinates.

24

typedef
{

int i_x, i_y, i_z; /* user’s reference for the actual cube */
} CUBE;

For a cube with index (ix, iy, i-z) the world coordinates of the reference vertex are
simple (i x*h x, i_y*hy, i_z*h z). The world coordinates of the other vertices are calcu-
lated in a similar way. This is done by a procedure £ill points (ELEMENT3D *el).

We use the following components of the ELEMENT3D_DESCRIPTION for one single cube (Fig. 2):

/* vertex indices of the polygons */
static int c_vo[4] = {0,3,2,1}, c_vi[4] = {4,5,6,7}, c_v2[4] = {0,1,5,4};
static int c_v3[4] = {1,2,6,5}, c_v4[4] = {2,3,7,6}, c_v5[4] = {0,4,7,3};

/* polygon adjacencies */
static int c_p0[4] = {5,4,3,2}, c_pi[4] {2,3,4,5}, c_p2[4] =
static int c_p3[4] = {0,4,1,2}, c_p4[4] {0,5,1,3}, c_p5[4]
/* local coordinates of the vertices */

|
-~
(@]
w

-
[
o
[}

1}
-~
N
[
.
S
O
[t}

static float c_c0[3] = {0.,0.,0.}, c_c1[3] = {1.,0.,0.3};
static float c_c2[3] = {1.,1.,0.}, c_c3[3] = {0.,1.,0.3};
static float c_c4[3] = {0.,0.,1.}, c_c5[3] = {1.,0.,1.3};
static float c_c6[3] = {1.,1.,1.}, c_c7[3]1 = {0.,1.,1.3};

static float *cube_coord[8] = {c_c0,c_cl,c_c2,c_c3,c_c4,c_c5,c_c6,c_cT};
static int cube_polygon_length[6] = {4,4,4,4,4,4};

static int *cube_vertex[6] = {c_v0,c_vl,c_v2,c_v3,c_v4,c_vb};
static int *cube_next_polygon[6] = {c_pO,c_pl,c_p2,c_p3,c_p4,c_p5};

The procedure which gives adjancency information on the grid can be implemented in the
following way:

static ELEMENT3D *cube_neighbour (ELEMENT3D *el, const int pn, const int flag,

float *coord, const float *xyz)

CUBE *cd;
USER_DATA =*ud;

cd
ud

(CUBE*)el->data; /* triple index of the acual element */
(USER_DATA*)el->mesh->data; /* user data */

if (flag == NEXT_NEIGBOUR) return(NIL);

switch(pn) {

case 0
if (cd->i_z == 0) return(NIL);
cd->i_z--;
£ill_points(el);
if (coord) coord[2] += 1.0;
return(el);

case 1:
if (cd->i_z == ud->n_z-2) return(NIL);
cd->i_z++;
£ill_points(el);
if (coord) coord[2] -= 1.0;
return(el);

case 2:

25

The description of a cube then simply is:

static ELEMENT3D_DESCRIPTION cube_descr =

{
8, 6, cube_polygon_length, cube_vertex, cube_next_polygon,
3, cube_coord, 1,
cube_world_to_coord, cube_coord_to_world, cube_check_inside,
cube_neighbour, cube_boundary

};

The basic functions of MESH3D are first_element() and next_element(). The first one has
to allocate memory for one single element and for the triple index of the “user’s element”.

static ELEMENT3D *cube_first_element(const MESH3D #*mesh)
{

ELEMENT3D *el;

CUBE *cd;

if (mesh == NIL) return(NIL);
if ((el = (ELEMENT3D#*)malloc(sizeof(ELEMENT3D))) == NIL) return(NIL);

el->mesh = (MESH3D *)mesh;

el->vertex = (float**)malloc(8*sizeof(float*));
el->vindex = (int*)malloc(8*sizeof(int));

el->data = (void*)(cd = (CUBE*)malloc(sizeof(CUBE)));
el->size_of_data = sizeof (CUBE);

el->descr = &cube_descr;

cd->i_x = cd->i_y = cd->i_z = 0;
£ill_points(el);
return(el);

}
static ELEMENT3D *cube_next_element(ELEMENT3D *el)
{

CUBE *cd;

USER_DATA *ud;

if (el == NIL) return(NIL);

cd = (CUBE*)el->data;

ud = (USER_DATA*)el->mesh->data;

if(++cd->i_x == ud->n_x-1) {
cd->i_x = 0;
if(++cd->i_y == ud->n_y-1) {

cd->i_y = 0;

if(++cd->i_z == ud->n_z-1) {
cube_free_element(el); /* el was last element of the grid */
return(NIL);

}

}
}
£ill_points(el);
return(el);

}

For the visualization of given data from a numerical method we have to implement a procedure
£ () with corresponding £_info(). Usually, Finite Difference methods only give values at the

26

nodes of the grid. Such data can be interpolated by a piecewise trilinear function. In the
concept of local coordinates it is very easy to evaluate such a function. Let u[0],...,ul7] be
those values at the vertices of one cube of the grid (for the sake of simplicity we assume that
these are scalar values). The main part of the function £(el, ind, coord, val) would be

if (coord == NIL)
*val = ulind];

else {
*val

(1-coord[2]) * ((1-coord[1])*((1-coord[0])*ul[0]+coord[0]*ul1])+

coord[1]*((1-coord[0])*u[3]+coord[0]*ul[2]));
*val += coord[2] * ((1-coord[1])*((1-coord[0])*ul[4]+coord[0]*u[5])+
coord[1]*((1-coord[0])*u[7]+coord[0]*ul6]));

The values of u[0],...,ul7] can easily be obtained from the user’s arrays (possibly stored
at el->mesh->data) and some index arithmetic.

In the second example we give definitions for local_coord, polygon_length, polygon ver-
tex, and polygon neighbour for tetrahedral and prismatic elements (see Figures 3 and
4). Since usually these elements occur in methods using unstructured grids, the adjacency
connectivity of the elements can not be computed by indexing operations as described above.
But for the Finite Element / Finite Volume methods itself the underlying user’s data structure
usually provides such information. Thus the functions *neighbour() and *boundary() can
be implemented very easily from user’s data.

/* vertex indices of the polygons for a prism and a tetrahedron */
static int p_vo[4] = {1,2,5,4}, p_vi[4] = {0,3,5,2}, p_v2[4] = {0,1,4,3};
static int p_v3[3] = {0,2,1}, p_v4[3] = {3,4,5};

static int t_vO[3] {1,2,3}, t_vi[3] = {2,0,3};

static int t_v2[3] {0,1,3}, t_v3[3] = {2,1,0};

/* polygon adjacencies for a prism and a tetrahedron */
static int p_pO[4] = {3,1,4,2}, p_pi[4] = {2,4,0,3}, p_p2[4] = {3,0,4,1};
static int p_p3[3] = {1,0,2}, p_p4[3] = {2,0,1%};

static int t_p0[3] = {3,1,2}, +t_pi[3] = {3,2,0%};

static int t_p2[3] {3,0,1}, t_p3[3] = {0,2,1%};

/* local coordinates of the vertices for a prism and a tetrahedron */
static float p_cO[4] = {1.,0.,0.,0.}, p_ci[4] = {0.,1.,0.,0.3;

static float p_c2[4] = {0.,0.,1.,0.}, p_c3[4] = {1.,0.,0.,1.3;

static float p_c4[4] = {0.,1.,0.,1.}, p_c5[4] = {0.,0.,1.,1.3};

static float t_c0[4] = {1.,0.,0.,0.}, t_c1[4] = {0.,1.,0.,0.};

static float t_c2[4] = {0.,0.,1.,0.}, t_c3[4] = {0.,0.,0.,1.};

static int prism_polygon_length[5] = {4,4,4,3,3};

static int *prism_vertex[5] = {p_vO0,p_v1l,p_v2,p_v3,p_v4};
static int *prism_next_polygon[5] = {p_pO,p_pl,p_p2,p_p3,p_p4%,};
static float *prism_coord[6] = {p_cO0,p_cl,p_c2,p_c3,p_c4,p_cb};
static int tetra_polygon_length[4] = {3, 3, 3, 3};

static int *tetra_vertex[4] = {t_v0,t_vi,t_v2,t_v3};

static int *tetra_next_polygon[4] = {t_pO,t_pl,t_p2,t_p3};

static float *tetra_coord[4] = {t_c0,t_cl,t_c2,t_c3};

The ELEMENT3D DESCRIPTION for a prism and a tetrahedron then would be

27

static ELEMENT3D_DESCRIPTION prism_descr =

{
6, 5, prism_polygon_length, prism_vertex, prism_next_polygon,
4, prism_coord, 1,
prism_world_to_coord, prism_coord_to_world, prism_check_inside,
prism_neighbour, prism_boundary

3

static ELEMENT3D_DESCRIPTION tetra_descr =

{
4, 4, tetra_polygon_length, tetra_vertex, tetra_next_polygon,
4, tetra_coord, 1,
tetra_world_to_coord, tetra_coord_to_world, tetra_check_inside,
tetra_neighbour, tetra_boundary

};

28

