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The analysis of shapes as elements in a frequently infinite-dimensional space
of shapes has attracted increasing attention over the last decade. There are
pioneering contributions in the theoretical foundation of shape space as a Rie-
mannian manifold as well as path-breaking applications to quantitative shape
comparison, shape recognition, and shape statistics. The aim of this chapter is to
adopt a primarily physical perspective on the space of shapes and to relate this
to the prevailing geometric perspective. Indeed, we here consider shapes given as
boundary contours of volumetric objects, which consist either of a viscous fluid
or an elastic solid.

In the first case, shapes are transformed into each other via viscous transport
of fluid material, and the flow naturally generates a connecting path in the space
of shapes. The viscous dissipation rate—the rate at which energy is converted
into heat due to friction—can be defined as a metric on an associated Riemannian
manifold. Hence, via the computation of shortest transport paths one defines a
distance measure between shapes.

In the second case, shapes are transformed via elastic deformations, where
the associated elastic energy only depends on the final state of the deformation
and not on the path along which the deformation is generated. The minimal
elastic energy required to deform an object into another one can be considered
as a dissimilarity measure between the corresponding shapes.

In what follows we discuss and extensively compare the path-based and the
state-based approach. As applications of the elastic shape model we consider
shape averages and a principal component analysis of shapes. The viscous flow
model is used to exemplarily cluster 2D and 3D shapes and to construct a flow
type nonlinear interpolation scheme. Furthermore, we show how to approximate
the viscous, path-based approach with a time-discrete sequence of state-based
variational problems.

1 A review of different shape space concepts

The structure of shape spaces and statistical analyses of shapes have been exam-
ined in various settings, and applications range from the computation of priors
for segmentation [1,2,3] and shape classification [4,5,6,7] to the construction of
standardized anatomical atlases [8,9,10]. Among all existing approaches, a num-
ber of different concepts of a shape are employed, including landmark vectors
[11,1], planar curves [12,13,14], surfaces in R3 [4,15,16], boundary contours of



objects [7,17,18], multiphase objects [19] as well as the morphologies of images
[20].

The analysis of a shape space is typically based on a notion of a distance
or dissimilarity measure d(·, ·) between shapes [21,5,18,17,22,23], whose defini-
tion frequently takes a variational form. This distance can be used to define an
average [24,18] or a median [25,26] S of given shapes S1, . . . ,Sn according to
S = argminS̃

∑n
i=1 d(S̃,Si)p for p = 1 and p = 2, respectively (cf. Sec. 4.1).

Likewise, shape variations can be obtained by a principal component analy-
sis (PCA, cf. Sec. 4.2) or a more general covariance analysis in a way which is
consistent with the dissimilarity measure between shapes [1,27,24,28]. From the
conceptional point of view one can distinguish two types of these dissimilar-
ity or distance measures which may be characterized as rather state-based or
path-based, respectively. While the first approach is independent of the notion
of paths of shapes, the latter distance definition requires the computation of an
optimal, connecting path in shape space. In some cases, both concepts coincide:
The Euclidean distance between two points, for example, can equivalently be in-
terpreted in a state-based manner as the norm of the difference vector or as the
length of the shortest connecting path (we shall provide a physical interpretation
for each case in Sec. 2).

The notion of a shape space was already introduced by Kendall in 1984 [11],
who considers shapes as k-tuples of points in R

d, endowed with the quotient
metric of Rkd with respect to similarity transforms. Often, however, a shape
space is just modelled as a linear vector space which is not invariant with respect
to shift or rotation a priori. In the simplest case, such a shape space is made up
of vectors of landmark positions, and distances between shapes can be evaluated
in a state-based manner as the Euclidean norm of their difference. Chen and
Parent [29] investigated averages of 2D contours already in 1989. Cootes et al.
perform a PCA on training shapes with consistently placed landmarks to obtain
priors for edge-based image segmentation [1]. Hafner et al. use a PCA of position
vectors covering the proximal tibia to reconstruct the tibia surface just from six
dominant modes [30]. Perperidis et al. automatically assign consistent landmarks
to training shapes by a non-rigid registration as a preprocessing step for a PCA of
the cardiac anatomy [31]. Söhn et al. compute dominant eigenmodes of landmark
displacement on human organs, also using registration for preprocessing [32].

As an infinite-dimensional vector space, the Lebesgue-space L2 has served
as shape space, where again shape alignment is a necessary preprocessing step.
Leventon et al. identify shapes with their signed distance functions and impose
the Hilbert space structure of L2 on them to compute an average and dominant
modes of variation [2]. Tsai et al. apply the same technique to 3D prostate
images [33]. Dambreville et al. also compute shape priors, but using characteristic
instead of signed distance functions [34].

A more sophisticated state-based shape space is obtained by considering
shapes as subsets of an ambient space with a metric d(·, ·) and endowing them
with the Hausdorff distance

dH(S1,S2) = max{ sup
x∈S1

inf
y∈S2

d(x, y), sup
y∈S1

inf
x∈S2

d(x, y)}



between any two shapes S1,S2. Charpiat et al. employ smooth approximations of
the Hausdorff distance based on a comparison of the signed distance functions
of shapes [21]. For a given set of shapes, the gradient of the shape distance
functional at the average shape is regarded as shape variation of the average
and used to analyse its dominant modes of variation [27]. Frame indifference is
mimicked by an inner product that weights rotations, shifts, scalings, and the
orthogonal complement to these transformations differently. Charpiat et al. also
consider gradient flow morphing from one shape onto another one which can
be regarded as a means to obtain meaningful paths even in shape spaces with
state-based distance measures.

An isometrically invariant distance measure between shapes (or more general
metric spaces) that is also not based on connecting paths is provided by the
Gromov–Hausdorff distance, which can be defined variationally as

dGH(S1,S2) =
1
2

inf
φ:S1→S2
ψ:S2→S1

sup
yi=φ(xi)

ψ(yi)=xi

|dS1(x1, x2)− dS2(y1, y2)| ,

where dSi(·, ·) is a distance measure between points in Si. The Gromov–Hausdorff
distance represents a global, supremum-type measure of the lack of isometry
between two shapes. Memoli and Sapiro use this distance for clustering shapes
described by point clouds, and they discuss efficient numerical algorithms to com-
pute Gromov–Hausdorff distances based on a robust notion of intrinsic distances
dS(·, ·) on the shapes [5]. Bronstein et al. incorporate the Gromov–Hausdorff
distance concept in various classification and modelling approaches in geometry
processing [35]. Memoli investigates the relation between the Gromov–Hausdorff
distance and the Hausdorff distance under action of Euclidean isometries as well
as Lp-type variants of the Gromov–Hausdorff distance [36].

In [37], Manay et al. define shape distances via integral invariants of shapes
and demonstrate the robustness of this approach with respect to noise.

Another distance which also measures the lack of isometry between shapes
can be obtained by interpreting shapes as boundaries of physical objects and
measuring the (possibly nonlinear) deformation energy of an elastic matching
deformation φ between two objects [38,18]. Since, by the axiom of elasticity, this
energy solely depends on the original and the final configuration of the deformed
object but not on the deformation path, the elastic distance measure can clearly
be classified as state-based (as will be detailed in Sec. 3.2). This physical ap-
proach comes along with a natural linearization of shapes via boundary stresses
to perform a covariance analysis [28] and will be presented in Sec. 4. Pennec et
al. define a nonlinear elastic energy as the integral over the ambient space of an
energy density that depends on the logarithm of the Cauchy–Green strain tensor
DφTDφ [39,40], which induces a symmetric state-based distance.

Typical path-based shape spaces have the structure of a Riemannian mani-
fold. Here, the strength of a shape variation is measured by a Riemannian metric,
and the square root of the Riemannian metric evaluated on the temporal shape
variation is integrated along a path of shapes to yield the path length. The



length of the shortest path between two shapes represents their geodesic dis-
tance d(·, ·). Averages are obtained via the Fréchet mean [41], which was further
analysed by Karcher [42]. There is also a natural linear representation of shapes
in the tangent space at the Fréchet mean via the logarithmic map, which enables
a PCA.

A Riemannian shape space which might still be regarded as rather state-
than path-oriented is given by the space of polygonal medial axis representations,
where each shape is described by a polygonal lattice and spheres around each
vertex [43]: Here, the Lie group structure of the medial representation space
can be exploited to approximate the Fréchet mean as exponential map of the
average of the logarithmic maps of the input. Fletcher et al. perform a PCA on
these log-maps to obtain the dominant geometric variations of kidney shapes
[24] and brain ventricles [44]. Fuchs and Scherzer use the PCA on log-maps to
obtain the covariance of medial representations, and they use a covariance-based
Mahalanobis distance to impose a new metric on the shape manifold. This metric
is employed to obtain priors for edge based image segmentation [45,46].

Kilian et al. compute and extrapolate geodesics between triangulated sur-
faces of fixed mesh topology, using isometry invariant Riemannian metrics that
measure the local distortion of the grid [15]. Eckstein et al. employ different met-
rics in combination with a smooth approximation to the Hausdorff distance to
perform gradient flows for shape matching [16]. Liu et al. use a discrete exterior
calculus approach on simplicial complexes to compute geodesics and geodesic
distances in the space of triangulated shapes, in particular taking care of higher
genus surfaces [47].

An infinite-dimensional Riemannian shape space has been developed for pla-
nar curves. Klassen et al. propose to use as a Riemannian metric the L2-metric
on variations of the direction or curvature functions of arclength parameterized
curves. They implement a shooting method to find geodesics [12], while Schmidt
and Cremers present an alternative variational approach [48]. Srivastava et al.
assign different weights to the L2-metric on stretching and on bending varia-
tions and obtain an elastic model of curves [49]. Michor and Mumford examine
Riemannian metrics on the manifold of smooth regular curves [23]. They show
the standard L2-metric in tangent space leading to arbitrarily short geodesics
and hence employ a curvature-weighted L2-metric instead. Yezzi and Mennucci
resolved the problem taking into account the conformal factor in the metric [13].
Sundaramoorthi et al. use Sobolev metrics in the tangent space of planar curves
to perform gradient flows for image segmentation via active contours [50]. Mi-
chor et al. discuss a specific metric on planar curves, for which geodesics can
be described explicitly [14]. In particular, they demonstrate that the sectional
curvature on the underlying shape space is bounded from below by zero which
points out a close relation to conjugate points in shape space and thus to only
locally shortest geodesics. Finally, Younes considers a left-invariant Riemannian
distance between planar curves by identifying shapes with elements of a Lie
group acting on one reference shape [51].



When warping objects bounded by shapes in Rd, a shape tube in Rd+1 is
formed. Delfour and Zolésio [52] rigorously develop the notion of a Courant
metric in this context. A further generalization to classes of non-smooth shapes
and the derivation of the Euler–Lagrange equations for a geodesic in terms of a
shortest shape tube is investigated by Zolésio in [53].

Dupuis et al. [54] and Miller et al. [22,55] define the distance between shapes
based on a flow formulation in the embedding space. They exploit the fact that
in case of sufficient Sobelev regularity for the motion field v on the whole sur-
rounding domain Ω, the induced flow consists of a family of diffeomorphisms.
This regularity is ensured by a functional

∫ 1

0

∫
Ω
Lv · v dx dt, where L is a higher

order elliptic operator [50,51]. Geometrically,
∫
Ω
Lv · v dx is the underlying Rie-

mannian metric, and we will discuss related, path-based concepts in Sec. 3.1.
Under sufficient smoothness assumptions Beg et al. derive the Euler–Lagrange
equations for the diffeomorphic flow field [56]. To compute geodesics between
hypersurfaces in the flow of diffeomorphism framework, a penalty functional
measures the distance between the transported initial shape and the given end
shape. Vaillant and Glaunès [57] identify hypersurfaces with naturally associ-
ated two forms and used the Hilbert space structures on the space of these
forms to define a mismatch functional. The case of planar curves is investigated
under the same perspective by Glaunès et al. in [58]. To enable the statistical
analysis of shape structures, parallel transport along geodesics is proposed by
Younes et al. [59] as the suitable tool to transfer structural information from
subject-dependent shape representations to a single template shape.

In most applications, shapes are boundary contours of physical objects. Fletcher
and Whitaker adopt this viewpoint to develop a model for geodesics in shape
space which avoids overfolding [60]. Fuchs et al. [17] propose a Riemannian met-
ric on a space of shape contours, motivated by linearized elasticity. This metric
can be interpreted as the rate of physical dissipation during the deformation of
a viscous liquid object [61,19] and will be elaborated in Sec. 5.

Finally, a shape space is sometimes understood as a manifold, learnt from
training shapes and embedded in a higher-dimensional (often linear) space. Many
related approaches are based on kernel density estimation in feature space. Here,
the manifold is described by a probability distribution in the embedding space,
which is computed by mapping points of the embedding space into a higher-
dimensional feature space and assuming a Gaussian distribution there. In gen-
eral, points in feature space have no exact preimage in shape space so that
approximate preimages have to be obtained via a variational formulation [62].
Cremers et al. use this technique to obtain 2D silhouettes of 3D objects as priors
for image segmentation [3]. Rathi et al. provide a comparison between kernel
PCA, local linear embedding (LLE), and kernel LLE (kernel PCA only on the
nearest neighbours) [63]. Thorstensen et al. approximate the shape manifold us-
ing weighted Karcher means of nearest neighbour shapes obtained by diffusion
maps [64].



F = C(x2 − x1)
F = 2µv

= 2µ(x2 − x1)

x1

x2

x1

x2

Fig. 1. The force F of an elastic spring between x1 and x2 is proportional to
(x2 − x1), as well as the force F of a dashpot which is extended from x1 to x2

within time 1 at constant velocity v. The spring energy reads W =
∫
F dx =

1
2C‖x2 − x1‖22 and the dashpot dissipation Diss =

∫
F · v dt = 2µ‖x2 − x1‖22.

2 Recalling the finite-dimensional case

At first, let us investigate distances and their relation to concepts from physics in
the simple case of Euclidian space. In Euclidean space, shortest paths are straight
lines, and they are unique so that the distance computation involves only the
states of the two end points: The geodesic distance between any two points
x1, x2 ∈ Rd is given by the norm of the difference, ‖x2−x1‖2, which implies the
equivalence of the state-based and the path-based perspective. A corresponding
physical view might be the following. Considering that—by Hooke’s law—the
stored elastic energy of an elastic spring extended from x1 to x2 is given by
W = 1

2C‖x2 − x1‖22 for the spring constant C, the distance can be interpreted
in a state-based manner as the square root of the elastic spring energy (Fig. 1).
Likewise, from a path-based point of view, the minimum dissipated energy of
a dashpot which is extended from x1 to x2 at constant speed within the fixed
time interval [0, 1] reads Diss =

∫ 1

0
2µ‖v‖22 dt = 2µ‖x2 − x1‖22, where 2µ is the

dashpot parameter and the velocity is given by v = x2 − x1. Using this physical
interpretation, we can express for instance the arithmetic mean x = 1

n

∑n
i=1 xi =

argminx̃
∑n
i=1 ‖xi − x̃‖22 of a given set of points x1, . . . , xn ∈ Rd either as the

minimizer of the total elastic deformation energy in a system where the average
x is connected to each xi by elastic springs or as the minimizer of the total
viscous dissipation when extending dashpots from xi to x.

Before we investigate the same concepts on more general Riemannian man-
ifolds, let us briefly recall some basic notation. A Riemannian manifold is a
set M that is locally diffeomorphic to Euclidean space. Given a smooth path
x(t) ∈M, t ∈ [0, 1], we can define its derivative ẋ(t) at time t as a tangent vector
toM at x(t). The vector space of all such tangent vectors makes up the tangent
space Tx(t)M, and it is equipped with the metric gx(t)(·, ·) as the inner product.
The length of a path x(t) ∈ M, t ∈ [0, 1], is defined as

∫ 1

0

√
gx(t)(ẋ(t), ẋ(t)) dt,

and locally shortest paths are denoted geodesics. They can be shown to minimize∫ 1

0
gx(t)(ẋ(t), ẋ(t)) dt [65, Lemma 2.3]. Let us emphasize that a general geodesic is

only locally the shortest curve. In particular there might be multiple geodesics of
different length connecting the same end points. The geodesic distance between
two points is the length of the shortest connecting path. Finally, for a given
x ∈ M there is a bijection expx : TxM → M of a neighborhood of 0 ∈ TxM
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Fig. 2. The logarithmic map assigns each point xi on the manifold M a vector
in the tangent space TxM, which may be seen as a linear representative.

into a neighborhood of x ∈M that assigns to each tangent vector v ∈ TxM the
end point of the geodesic emanating from x with initial velocity v and running
over the time interval [0, 1] ([66, Thm. 1.6.12] or [67, Chp. 9, Thm. 14]).

We can now define the (possibly non-unique, cf. Sec. 6) mean x of a num-
ber of n points x1, . . . , xn ∈ M in analogy to the Euclidian case as x =
argminx̃

∑n
i=1 d(xi, x̃)2, where d(·, ·) is the Riemannian distance on M. This

average is uniquely defined as long as the geodesics involved in the distance
computation are unique, and it has been investigated in differential geome-
try by Karcher [42]. Furthermore, on a Riemannian manifold M, the inverse
exponential map logx = exp−1

x provides a method to obtain representatives
logx(xi) ∈ TxM of given input points xi ∈ M in the (linear) vector space
TxM (Fig. 2). On these we can perform a PCA, which is by definition a linear
statistical tool.

In a Riemannian space M, the path-based approach can immediately be
applied by exploiting the Riemannian structure, and

∫ 1

0
gx(t)(ẋ(t), ẋ(t)) dt can

be considered as the energy dissipation spent to move a point from x(0) to
x(1) along a geodesic. The logarithms logx(xi) in this model correspond to the
initial velocities of the transport process leading from x to xi. When applying
the state-based elastic model inM, however, there is no mechanically motivated
notion of paths and thus also no logarithmic map. Only if we suppose that the
Riemannian structure of the space M is not induced by changes in the inner
structure of our objects, the physical model based on elastic springs still coincides
with the viscous model: We consider elastic springs stretched on the surface M
and connecting the points x and xi with a stored energy 1

2Cd(x, xi)2. Then, as
before in the Euclidian case a state-based average x of input points x1, . . . , xn
can be defined. Furthermore, interpreting spring forces acting on x and pointing
towards xi as linear representatives of the input points xi one can run a PCA on
these forces as well. However, for any reasonable (even finite-dimensional) model
of shape space, objects are not rigid, and the inner relation between points as
subunits (such as the vertex points of polygonal shapes) essentially defines the
Riemannian (and thus the path-based) structure of the space M: The rate of
dissipation along a path in shape space depends on the interaction of object
points. Physically, the corresponding point interaction energy is converted into
thermal energy via friction. This dissipation depends significantly on the path in
shape space traversed from one shape to the other. In contrast, when applying



the state-based approach to the same shape space, we directly compare the
inner relations between the subunits, i. e. we have no history of these relations.
This comparison can be quantified based on a stored (elastic) interaction energy
which is then a quantitative measure of the dissimilarity of the two objects but
in general no metric distance.

3 Path-based viscous dissipation versus state-based
elastic deformation for non-rigid objects

In the following, we will especially consider two different physically motivated
perspectives on a shape space of non-rigid volumetric objects in more detail. In
the first case we will adopt a path-based view, motivated by the theory of viscous
fluids, while the second, state-based approach will be motivated by elasticity.
We will regard shapes S as boundaries S = ∂O of domains O ⊂ Rd which will
be interpreted as physical objects. The resulting shape space structure depends
on the particular type of physical objects O: An interpretation of O as a blob of
a viscous fluid will yield an actually Riemannian, path-based shape space, while
the interpretation as an elastic solid results in a state-based perspective, which
will turn out to be non-Riemannian by construction.

3.1 Path-based, viscous Riemannian setup

Shapes will be modeled as the boundary contour of a physical object that is
made of a viscous fluid. The object might be surrounded by a different fluid (e. g.
with much lower viscosity and compression modulus), nevertheless, without any
restriction we will assume void outside the object in the derivation of our model.
Here, viscosity describes the internal resistance in a fluid and is a macroscopic
measure of the friction between fluid particles, e.g. the viscosity of honey is
significantly larger than that of water. The friction is described in terms of the
stress tensor σ = (σij)ij=1,...d, whose entries describe a force per area element. By
definition, σij is the force component along the ith coordinate direction acting on
the area element with a normal pointing in the jth coordinate direction. Hence,
the diagonal entries of the stress tensor σ refer to normal stresses, e. g. due to
compression, and the off-diagonal entries represent tangential (shear) stresses.
The Cauchy stress law states that due to the preservation of angular momentum
the stress tensor σ is symmetric [68].

In a Newtonian fluid the stress tensor is assumed to depend linearly on the
gradient Dv := ( ∂vi

∂xj
)ij=1,...d of the velocity v. In case of a rigid body motion

the stress vanishes. A rotational component of the local motion is generated
by the antisymmetric part 1

2 (Dv − (Dv)T ) of the velocity gradient, and it has
the local rotation axis ∇ × v and local angular velocity |∇ × v| [69]. Thus, as
rotations are rigid body motions, the stress only depends on the symmetric part
ε[v] := 1

2 (Dv+ (Dv)T ) of the velocity gradient. For an isotropic Newtonian fluid
we get σij = λδij

∑
k(ε[v])kk + 2µ(ε[v])ij , or in matrix notation σ = λtr(ε[v])1+

2µε[v], where 1 is the identity matrix. The parameter λ is denoted Lamé’s first



coefficient. The local rate of viscous dissipation—the rate at which mechanical
energy is locally converted into heat due to friction—can now be computed as

diss[v] =
λ

2
(trε[v])2 + µtr(ε[v]2) . (1)

This is in direct correspondence to the mechanical definition of the stress tensor
σ as the first variation of the local dissipation rate with respect to the velocity
gradient, i. e. σ = δDvdiss . Indeed, by a straightforward computation we obtain
δ(Dv)ij

diss = λ trε[v] δij+2µ (ε[v])ij = σij . Here tr(ε[v]2) measures the averaged
local change of length and (trε[v])2 the local change of volume induced by the
transport. Obviously divv = tr(ε[v]) = 0 characterizes an incompressible fluid.

Now, let us consider a path (O(t))t∈[0,1] of objects connecting O(0) with
O(1) and generated by a time-continuous deformation. If each point x ∈ O(t)
of the object O(t) at time t ∈ [0, 1] moves in an Eulerian framework at the
velocity v(t, x) (ẋ = v(t, x)) so that the total deformation of O(0) into O(t) can
be obtained by integrating the velocity field v in time, then the accumulated
global dissipation of the motion field v in the time interval [0, 1] takes the form

Diss
[
(v(t),O(t))t∈[0,1]

]
=
∫ 1

0

∫
O(t)

diss[v] dxdt . (2)

This is the same concept as employed by Dupuis et al. [54] and Miller et al.
[55] in their pioneering diffeomorphism approach. They minimize a dissipation
functional under the simplifying assumption that the material behaves equally
viscous inside and outside the object. Also, diss[v] = λ

2 (trε[v])2 + µtr(ε[v]2) is
replaced by a higher order quadratic form Lv · v which plays the role of the
local rate of dissipation in a multipolar fluid model [70]. Multipolar fluids are
characterized by the fact that the stresses depend on higher spatial derivatives
of the velocity. If the quadratic form associated with L acts only on ε[v] and is
symmetric, then rigid body motion invariance is incorporated in the multipolar
fluid model (cf. Section 5). In constrast to this approach we here measure the
rate of dissipation differently inside and outside the object and rely on classical
(monopolar) material laws from fluid mechanics.

On this physical background we will now derive a Riemannian structure
on the space of shapes S in an admissible class of shapes S. The associated
metric GS on the (infinite-dimensional) manifold S is in abstract terms a bilinear
mapping that assigns each element S ∈ S an inner product on variations δS of
S (cf. Sec. 2 above). The associated length of a tangent vector δS is given by
‖δS‖ =

√
GS(δS, δS). Furthermore, as we have already seen above the length

of a differentiable curve S : [0, 1] → S is then defined by L[S] =
∫ 1

0
‖Ṡ(t)‖ dt =∫ 1

0

√
GS(t)(Ṡ(t), Ṡ(t)) dt, where Ṡ(t) is the temporal variation of S at time t. The

Riemannian distance between two shapes SA and SB on S is given as the minimal
length taken over all curves with S(0) = SA and S(1) = SB or equivalently (cf.
Sec. 2 above) as the length of a minimizer of the functional

∫ 1

0
GS(t)(Ṡ(t), Ṡ(t)) dt.

For shapes S ∈ S an infinitesimal variation δS of a shape S = ∂O is associated



with a transport field v : O → R
d. This transport field is obviously not unique.

Indeed, given any vector field w on O with w(x) ∈ TxS for all x ∈ S = ∂O (where
TxS denotes the (d − 1)-dimensional tangent space to S at x), the transport
field v + w is another possible representation of the shape variation δS. Let us
denote by V(δS) the affine space of all these representations. As a geometric
condition for v ∈ V(δS) we obtain v(x) · n[S](x) = δS(x) · n[S](x) for all x ∈ S,
where n[S](x) ∈ R

d denotes the outer normal to S ⊂ R
d in x ∈ S. Given

all possible representations we are interested in the optimal transport, i. e. the
transport leading to the least dissipation. Thus, using the definition (1) of the
local dissipation rate we finally define the metric GS(δS, δS) as the minimal
dissipation rate on motion fields v which are consistent with the variation of the
shape δS,

GS(δS, δS) := min
v∈V(δS)

∫
O

diss[v] dx = min
v∈V(δS)

∫
O

λ

2
(trε[v])2 +µ tr(ε[v]2) dx . (3)

Let us remark that we distinguish explicitly between the metric g(v, v) :=∫
O diss[v] dx on motion fields and the metric GS(δS, δS) on shape variations.

Finally, integration in time leads to the total dissipation (2) to be invested in
the transport along a path (S(t))t∈[0,1] in the shape space S. This implies the
following definition of a time-continuous geodesic path in shape shape:

Definition 1 (Geodesic path) Given two shapes SA and SB in a shape space
S, a geodesic path between SA and SB is a curve (S(t))t∈[0,1] ⊂ S with S(0) = SA
and S(1) = SB which is a local solution of

min
v(t)∈V(Ṡ(t))

Diss
[
(v(t),O(t))t∈[0,1]

]
among all differentiable paths in S.

The Riemannian distance between two shapes SA and SB induced by this def-
inition is given by the length of the shortest (geodesic) path S(t) between the
two shapes, i. e.

dviscous(SA,SB) = L[(S(t))t∈[0,1]] .

Fig. 3 shows two different paths between the same pair of shapes, one of them
being a (numerically approximated) geodesic. Note that the chosen dissipation
model combines the control of infinitesimal length changes via tr(ε[v]2), and the
control of compression via tr(ε[v])2. Fig. 4 evaluates the impact of these two
terms on the shapes along a geodesic path.

3.2 State-based, path-independent elastic setup

Now, objects bounded by a shape contour S are no longer composed of a viscous
fluid but are considered to be elastic solids. To describe object deformations, we
aim for an elastic energy which is not restricted to small displacements and which
is consistent with first principles. Alongside the shape space modelling we will



Fig. 3. A geodesic (top, path length L = 0.2225 and total dissipation Diss =
0.0497) and a non-geodesic path (bottom, L = 0.2886, Diss = 0.0880) between
an A and a B. The intermediate shapes of the bottom row are obtained via linear
interpolation between the signed distance functions of the end shapes. The local
dissipation rate is color-coded as .

Fig. 4. Two geodesic paths between dumbbell shapes varying in the size of the
ends. In the top example the ratio λ/µ between the dissipation parameters is
0.01 (leading to rather independent compression and expansion of the ends since
the associated change of volume implies relatively low dissipation), and 100 in
the bottom row (now mass is actually transported from one end to the other).
The underlying texture on the objects is aligned to the transport direction, and
the absolute value of the velocity v is color-coded as .

recall some background from elasticity. For details we refer to the comprehensive
introductions in the books by Ciarlet [71] and Marsden and Hughes [72].

For two objects OA and OB with shapes SA = ∂OA and SB = ∂OB we
assume a deformation φ to be defined on OA and constrained by the assumption
φ(SA) = φ(SB). For practical reasons one might consider OA to be embedded
in a very soft elastic material occupying Ω \OA for some computational domain
Ω. There is an elastic energy Wdeform[φ,OA] associated with the deformation
φ : Ω → R

d. By definition, elastic means that this energy solely depends on the
state and not on the path along which the deformation proceeds in time. More
precisely, for so-called hyper-elastic materials, Wdeform[φ,OA] is the integral of
an energy density W depending solely on the Jacobian Dφ of the deformation



φ, i. e.

Wdeform[φ,OA] =
∫
OA

W (Dφ) dx . (4)

This elastic energy is considered as a dissimilarity measure between the shapes
SA and SB . As a fundamental requirement one postulates the invariance of
the deformation energy with respect to rigid body motions, Wdeform[Q ◦ φ +
b,SA] = Wdeform[φ,SA] for any orthogonal matrix Q ∈ SO(d) and translation
vector b ∈ Rd (the axiom of frame indifference in continuum mechanics). From
this one deduces that the energy density only depends on the right Cauchy–
Green deformation tensor DφTDφ. Hence, there is a function W̃ : Rd,d → R

such that the energy density W satisfies W (F ) = W̃ (FTF ) for all F ∈ Rd,d. The
Cauchy–Green deformation tensor geometrically represents the metric measuring
the deformed length in the undeformed reference configuration. For an isotropic
material and for d = 3 the energy density W can be further rewritten as a
function Ŵ (I1, I2, I3) solely depending on the principal invariants of the Cauchy–
Green tensor, namely I1 = tr(DφTDφ), controlling the local average change of
length, I2 = tr(cof(DφTDφ)) (cofF := detF F−T ), reflecting the local average
change of area, and I3 = det(DφTDφ), which controls the local change of volume.
For a detailed discussion we refer to [69,71]. We shall furthermore assume that
the energy density is polyconvex [73], i. e. a convex function of Dφ, cofDφ, and
detDφ, and that isometries, i. e. deformations with DφT(x)Dφ(x) = 1, are local
minimizers with W (Dφ) = W̃ (1) = 0 [71]. Typical energy densities in this class
are of the form

Ŵ (I1, I2, I3) = a1I
p
2
1 + a2I

q
2
2 + Γ (I3) (5)

for a1, a2 > 0 and a convex function Γ : [0,∞)→ R with Γ (I3)→∞ for I3 → 0
and I3 → ∞. In nonlinear elasticity such material laws have been proposed
by Ogden [74], and for p = q = 2 (the case considered in our computations)
we obtain the Mooney–Rivlin model [71]. The built-in penalization of volume
shrinkage, i. e. Ŵ (I1, I2, I3) I3→0−→ ∞, enables us to control local injectivity (cf.
[75]).

Incorporation of such a nonlinear elastic energy allows to describe large de-
formations with strong material and geometric nonlinearities, which cannot be
treated by a linear elastic approach (cf. Hong et al. [38]). Furthermore, it bal-
ances in an intrinsic way expansion and collapse of the elastic objects and hence
frees us from imposing artificial boundary conditions or constraints.

As in the previous section, the local force per area, induced by the deforma-
tion, is described at a point φ(x) ∈ φ(O) by the Cauchy stress tensor σ. It is
related to the first Piola–Kirchhoff stress tensor σref = W,F (Dφ) := ∂W (F )

∂F |F=Dφ,
which measures the force density in the undeformed reference configuration, by
σref = σ ◦ φ cofDφ.

Based on these concepts from nonlinear elasticity we can now define a dis-
similarity measure on shapes

delast(SA,SB) := min
φ,φ(SA)=SB

√
Wdeform[φ,OA] . (6)
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Fig. 5. Example of elastic distances between different shapes. The arrows in-
dicate the direction of the deformation, the color-coding represents the local
deformation energy density (in the reference as well as the deformed state).

Fig. 5 shows some applications of this measure. Obviously, the elastic energy
is in general not symmetric so that delast(SA,SB) 6= delast(SB ,SA). Indeed, by
construction delast(·, ·) does not impose a metric structure on the space of shapes
(we refer to Sec. 3.3 for a detailed discussion). Nevertheless, it can be applied to
develop physically sound statistical tools for shapes such as shape averaging and
a PCA on shapes, as outlined below in Sec. 4.

Let us make a brief remark on the mathematical relation between the two
different concepts of elasticity and viscous fluids. If we assume the Hessian of
the energy density W at the identity to be given by W,FF (1)(G,G) = λ(trG)2 +
µ
2 tr((G+GT )2) (which can be realized in (5) for a particular choice of a1, a2, and
Γ , depending on the exponents p and q), then by the ansatz φ(x) = x + τv(x)
and a second order Taylor expansion we obtain

W (Dφ) = W (1) + τW,F (1)(Dv) +
τ2

2
W,FF (1)(Dv,Dv) +O(τ3)

= 0 + 0 + τ2

(
λ

2
(trDv)2 +

µ

4
tr
((
Dv + (Dv)T

)2))
+O(τ3) . (7)

In effect, the Hessian of the nonlinear elastic energy leads to the energy density
in linearized, isotropic elasticity

W lin(Du) =
λ

2
(trε[u])2 + µ tr(ε[u]2) (8)

for displacements u with φ(x) = x + u(x). This energy density, acting on dis-
placements u, formally coincides with the local dissipation rate diss[v], acting
on velocity fields v, in the viscous flow approach.

Finally, let us deal with the hard constraint φ(SA) = SB , which is often
inadequate in applications. Due to local shape fluctuations or noise in the shape
acquisition, shape SA frequently contains details that are not present in SB and
vice versa. These defects would imply high energies in a strict 1-1 matching
approach. Hence, we have to relax the constraint and introduce some penalty



functional. Here, we either measure the symmetric difference of the input shapes
SA and the pullback φ−1(SB) of the shape SB given by

F [SA, φ,SB ] = Hd−1(SA4φ−1(SB)) , (9)

where A4B = A \B ∪B \A, or alternatively the volume mismatch

F [SA, φ,SB ] = vol(OA4φ−1(OB)) . (10)

3.3 Conceptual differences between the path- and state-based
dissimilarity measures

The state-based, elastic approach to dissimilarity measurement between shapes
conceptually differs significantly from the path-based viscous flow approach. In
the elastic setup, the axiom of elasticity implies that the energy at the deformed
configuration SB = φ(SA) is independent of the path from shape SA to shape
SB along which the deformation is generated in time. Hence, there is no notion
of shortest paths if we consider a purely elastic shape model, and different from a
path-based approach there might not even exist an intermediate shape SC with
delast(SA,SB) = delast(SA,SC) + delast(SC ,SB).

Unlike in the elasticity model, in the Newtonian model of viscous fluids the
rate of dissipation and the induced stresses solely depend on the gradient of
the motion field v. Even though the dissipation functional (2) looks like the
deformation energy from linearized elasticity as outlined above, the underlying
physics is only related in the sense that an infinetisimal displacement in the fluid
leads to stresses caused by viscous friction, and these stresses are immediately
absorbed via dissipation.

Surely, every (path-based) Riemannian space is metrizable (and in that sense
state-based), and for many sufficiently regular (state-based) metric spaces we can
devise a corresponding (path-based) Riemannian metric. However, from our me-
chanical perspective, the conceptual difference between the path-based, viscous
and the state-based elastic approach is striking. In the path-based approach the
structure of the space is too complicated for a closed formula of the geodesic
distance so that the actual computation of a path is required. In the state-
based approach there is no underlying path (i. e. no S(t)t∈[0,1] such that for any
0 ≤ t1 ≤ t2 ≤ t3 ≤ 1 we have d(S(t1),S(t3)) = d(S(t1),S(t2)) + d(S(t2),S(t3))),
except the shape space structure is simple enough to allow for a closed formula
of the geodesic distance as in Euclidean space.

Mathematically, the path-based nature of the viscous flow approach and the
fact that an inversion of the motion field v → −v leads to a path from shape SB
to SA in shape space with the same dissipation and length, i. e.

Diss
[
(v(t),O(t))t∈[0,1]

]
= Diss

[
(−v(1− t),O(1− t))t∈[0,1]

]
,

ensures that the associated distance dviscous is actually a metric. In particular, the
symmetry condition dviscous(SA,SB) = dviscous(SB ,SA) and the triangle inequality
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Fig. 6. Left: Viscosity-based (time-discrete) geodesics between the shapes at the
corners (the shapes are taken from [17]). The triangle inequality holds. Right:
Elastic distances delast(·, ·) =

√
W ≡

√
Wdeform between the same shapes, where

the arrows point from the reference to the deformed configuration. The triangle
inequality does not hold.
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Fig. 7. The state-based elastic distance delast is not symmetric (as opposed to the
path-based, viscous distance dviscous): In this example, it costs much more energy
to drag out the protrusion than to push it in. The color-coding represents the
local deformation energy density in the reference and the deformed configuration.

dviscous(SA,SC) ≤ dviscous(SA,SB)+dviscous(SB ,SC) hold. As we have already seen,
the symmetry condition does not hold for the elastic dissimilarity measure. Also,
the triangle inequality cannot be expected to hold. Indeed, if a deformation φA,B
maps OA onto OB and a deformation φB,C maps OB onto OC , then φA,C :=
φB,C ◦ φA,B deforms OA onto OC . However, based on our elastic model, OB is
considered to be stress-free when applying the deformation φB,C (although it
is actually obtained as the image of object OA under the deformation φA,B).
Hence, the “history” of the deformation φA,B is lost when measuring the energy
of φB,C . In addition, the energy density is highly nonlinear. As a consequence, in
general we cannot expect delast(SA,SC) ≤ delast(SA,SB) +delast(SB ,SC). Indeed,
Fig. 6 gives an example where the triangle inequality holds in the viscous, path-
based and fails in the elastic, state-based approach. Furthermore, Fig. 7 depicts
another example for the lack of symmetry already apparent in Fig. 5 with a
particularly pronounced mechanical difference of the two dissimilarity measures.



4 Elasticity-based shape space

In this section we will perform a statistical analysis on shapes up to the second
moment, i. e. we will consider shape averaging and a principal component anal-
ysis on shapes as two exemplary applications of the state-based elastic shape
space.

4.1 Elastic shape averaging

As usual, we consider objects O as open sets in Rd with the object shape given
as S := ∂O. Given n sufficiently regular shapes Si = ∂Oi, i = 1, . . . , n, we are
interested in an average shape which reflects the geometric characteristics of the
input shapes in a physically intuitive manner. Suppose S = ∂O ⊂ Rd denotes a
candidate for this unknown shape. As it is characteristic for the elastic approach,
the similarity of the input shapes Si to S is measured by taking into account
optimal elastic deformations φi : Oi → R

d with φi(Si) = S. The elastic energy
Wdeform[φi,Oi] of these deformations has the interpretation of a dissimilarity
measure (cf. Sec. 3.2) so that we obtain a natural definition of an average shape
as the minimizer of the sum of these terms (cf. Sec. 1).

Definition 2 (Elastic shape average) Given shapes S1, . . . ,Sn in some shape
space S, the elastic shape average S is the minimizer of

n∑
i=1

delast(Si,S)2 =
n∑
i=1

inf
φi:Oi→Rd,φi(Si)=S

Wdeform[φi,Oi] .

If the input objects Oi have Lipschitz boundary and the integrand of the de-
formation energy Wdeform[φi,Oi] =

∫
Oi
W (Dφi) dx is polyconvex and bounded

below by C1‖Dφi‖p − C2 for p > d, C1, C2 > 0, the existence of a Hölder-
continuous elastic shape average and deformations φi ∈ W 1,p(Oi) which realize
the above infimum is guaranteed [76].

An example of a shape average is provided in Fig. 8. Obviously, the process of
shape averaging is a constrained variational problem in which we simultaneously
have to minimize over n deformations φi and the unknown shape S under the n
constraints φi(Si) = S.

The necessary conditions for a set of minimizing deformations are the cor-
responding Euler–Lagrange equations. As usual, inner variations of one of the
deformations lead to the classical system of PDEs divW,F (Dφi) = 0 for every
deformation φi on Oi \ Si, meaning a divergence-free, equilibrized stress field
(cf. Sec. 3.2). Furthermore, the coupling between the deformations via the con-
straints (φi(Si) = S)i=1,...,n allows to derive a stress balance relation on S:
Consistent variation of all deformations φi and the average S by some displace-
ment u : O → R

d via (1 + δu) ◦ φi and (1 + δu)(S) results in the optimality
condition d

dδ

∑n
i=1Wdeform[(1 + δu) ◦ φi,Oi]

∣∣
δ=0

= 0, which after integration by
parts leads to

∑n
i=1

∫
Si
W,F (Dφi)(u ◦ φi) · ν[Si] da[Si] = 0 for the outer normal



Fig. 8. Elastic shape average (bottom right) of five human silhouettes. For the
computation, all shapes have actually been described as phase fields, and the
elastic deformations are extended outside the input objects Oi (cf. Sec. 7.2). The
objects Oi are depicted along with their deformations φi (acting on a checker-
board) and the distribution of local length change 1√

2
‖Dφi‖ and volume change

det(Dφi) (range [0.97, 1.03] color-coded as ).

ν[Si] to Si. We have here exploited divW,F (Dφi) = 0 on Oi \ Si. Now, we con-
sider displacements u with local support and let this support collapse at some
point x on S. This yields the pointwise condition

0 =
n∑
i=1

(σref
i ν[Si] da[Si])(φ−1

i (x)) and thus 0 =
n∑
i=1

(σiν[S])(x) (11)

for x ∈ S, where we have used the relation

(σref
i ν[Si] da[Si])(φ−1

i (x)) = (σiν[S] da[S])(x)

between first Piola–Kirchhoff stress σref
i = W,F (Dφi) and Cauchy stress σi =

(σref
i (cofDφi)−1) ◦φ−1

i . Hence, the shape average can be interpreted as that sta-
ble shape at which the boundary stresses of all deformed input shapes balance
each other (Fig. 9). Obviously, there is a straightforward generalization involv-
ing jumps of normal stresses on interior interfaces in case of multi-component
objects.

In order to ensure a certain regularity of the average shape S, in addition
to the sum of deformation energies in Def. 2 one can consider a further energy
contribution which acts as a prior on S in the variational approach. In the ex-
emplary computations shown (Figs. 10 to 12), the (d−1)-dimensional Hausdorff
measure L[S] = Hd−1(S) has been employed as regularization.
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Fig. 9. Sketch of the pointwise stress balance relation on the averaged shape.

Fig. 10. Average of 18 hand silhouettes, taken from [1].

4.2 Elasticity-based PCA

As already explained in Sec. 2, a principal component analysis (PCA) is a linear
statistical tool which decomposes a vector space into the direct sum of orthogonal
subspaces. These subspaces are ordered according to the strength of variation
which occurs along each subspace within a random set of sample vectors. We
would like to interpret a given set of input shapes S1, . . . ,Sn as such a random
sample and perform a corresponding PCA, however, due to the linearity of a
PCA we first have to identify linear representatives for each shape on which a
PCA can then be performed. For a Riemannian shape space, we have outlined
in Sec. 2 that such linear representatives are given by the logarithmic map of the
input shapes, but we have also learnt in Sec. 3.3 that a state-based elastic shape
space is incompatible with a Riemannian structure.

To prepare the definition of appropriate linear representatives of shapes in
an elastic shape space, let us briefly review the physical concept of boundary
stresses. By the Cauchy stress principle, each deformation φk : Ok → O is
characterized by pointwise boundary stresses on S = ∂O in the deformed con-
figuration. The stress at some point x on S is given by the application of the
Cauchy stress tensor σk to the outer normal ν on S. The resulting stress σkν is a
force density acting on a local surface element of S. The shape S is in an equilib-
rium configuration if the opposite force is applied as an external surface load (cf.
Fig. 9). Otherwise, by the axiom of elasticity, releasing the object O, the elastic
body will snap back to the original reference configuration Ok. Let us assume the
relation between the energetically favorable deformation and its induced stresses
to be one-to-one so that the average shape S can be described in terms of the
input shape Sk and the boundary stress σkν, and we write S = Sk[σkν]. Upon
scaling the stress with a weight t ∈ [0, 1] we obtain a one-parameter family of
shapes S(t) = Sk[tσkν] connecting Sk = S(0) with S = S(1). Thus, we can
regard σkν as a representative of shape Sk in the linear space of vector fields on
S.



Fig. 11. Five segmented kidneys and their average (right). For the first two input
kidneys the distribution of 1√

3
‖Dφi‖, 1√

3
‖cof(Dφi)‖, and det(Dφi) is shown on

sagittal cross-sections (the range [0.85, 1.15] is color-coded as ). While
the first kidney is dilated towards the average, the second is compressed.

Fig. 12. 24 given foot shapes (courtesy of adidas), textured with the distance to
the surface of the average foot (bottom right). Values range from 6 mm inside
the average foot to 6 mm outside, color-coded as .

Physically it is more intuitive to identify a displacement uk instead of the
normal stress σkν as the representative of an input shape Sk. Hence, let us study
how the average shape S varies if we increase the impact of a particular input
shape Sk for some k ∈ {1, . . . , n}. For this purpose, we apply the Cauchy stress
σkν to the average shape S, scaled with a small constant δ. This additional
boundary stress δσkν may be seen as a first Piola–Kirchhoff stress acting on the
(reference) configuration S. The elastic response is given by a correspondingly
scaled displacement uk : O → R

d. Here, to properly incorporate the nonlinear
nature of the second moment analysis, O should be interpreted as the compound
object which is composed of all deformed and thus prestressed input objects
φi(Oi). This interpretation is reflected by the elastic material law employed to
compute the displacements uk. In detail, uk is obtained as the minimizer of the
free mechanical energy

Ek[δ, u]=
1
n

n∑
i=1

Wdeform[(1+δu)◦φi,Oi]−δ2
∫
S
σkν ·uda (12)

under the constraints
∫
O uk dx = 0 and

∫
O x× uk dx = 0 of zero average trans-

lation and rotation. These displacements uk are considered as representatives
of the variation of the average shape S with respect to the input shape Sk, on
which a PCA will be performed.

As long as F 7→ W (F ) is not quadratic in F , uk still solves a nonlinear
elastic problem. The advantage of this nonlinear variational formulation is that



it is of the same type as the one for shape averaging, and it encodes in a natural
way the compound elasticity configuration of the averaged shape domain O.
However, for the linearization of shape variations we are actually only interested
in the displacements δuk for small δ. Therefore, we consider the limit of the
Euler–Lagrange equations for δ → 0 and after a little algebra obtain uk as the
solution of the linearized elasticity problem

div (C ε[u]) = 0 in O , C ε[u] ν = σkν on S (13)

for the symmetrized displacement gradient ε[u] = 1
2 (Du+DuT ) under the con-

straints
∫
O udx = 0 and

∫
O x × udx = 0, where the in general inhomogeneous

and anisotropic elasticity tensor C reads

C =
1
n

n∑
i=1

(
1

detDφi
DφiW,FF (Dφi)DφT

i

)
◦ φ−1

i .

Next, for a PCA on the linearized shape variations uk we select a suitable
inner product (metric) g(u, ũ) on displacements u, ũ : O → R

d. Note that g
induces a metric g̃(σν, σ̃ν) := g(u, ũ) on the associated boundary stresses so that
instead of analyzing the uk the covariance analysis can equivalently be performed
directly on the boundary stresses σ1ν, . . . , σnν, which we originally derived as
linear shape representatives. Indeed, the solvability condition

∫
O div(C∇u) dx =∫

S C∇uν da[S] is fulfilled, and thus the solution uk for given boundary stress
σkν = C∇uν is uniquely determined up to a linearized rigid body motion (i. e.
an affine displacement with skew-symmetric matrix representation), which is
fixed by the conditions of zero mean displacement and angular momentum for
u. Then, due to the linearity of the operator σν 7→ u, the metric g̃ is bilinear
and symmetric as well, and its positive definiteness follows from the positive
definiteness of g and the injectivity of the map σν 7→ u.

We consider two different inner products on displacements u : O → R
d:

– The L2-product. Given two square integrable displacements u, ũ we define

g(u, ũ) :=
∫
O
u · ũdx

This product weights local displacements equally on the whole object O.
– The Hessian of the energy as inner product. Different from the L2-metric, we

now measure displacement gradients in a non-homogeneous way. We define

g(u, ũ) :=
∫
O

Cε[u] : ε[ũ] dx

for displacements u, ũ with square integrable gradients. Hence, the contri-
bution to the inner product is larger in areas of the compound object which
are in a significantly stressed configuration.



Given an inner product, we can define the covariance operator Cov by

Cov u :=
1
n

n∑
k=1

g(u, uk)uk

(note that the stresses σkν and thus also the displacements uk have zero mean
due to (11)). Obviously, Cov is symmetric positive definite on span(u1, . . . , un).
Hence, we can diagonalize Cov on this finite-dimensional space and obtain a
set of g-orthonormal eigenfunctions wk : O → R

d and eigenvalues λk > 0 with
Covwk = λkwk. These eigenfunctions can be considered as the principal modes
of variation of the average object O and hence of the average shape S, given
the n sample shapes S1, . . . ,Sn. Their eigenvalues encode the variation strength.
The diagonalization of Cov can be performed by diagonalizing the symmetric
matrix 1

n (g(ui, uj))ij = OΛOT, where Λ = diag(λ1, λ2, . . .) and O is orthogonal.
The eigenfunctions are then obtained as wk = 1√

λk

∑n
j=1Ojkuj .

Being displacements on O, the modes of variation wk can easily be visualized
via a scalar modulation δwk for varying δ (cf. the vizualization in Figs. 16 to 18
or the red lines in Figs. 13 and 15). If an amplified visualization of the modes
is required, it is preferable to depict displacements wkδ which are defined as
minimizers of the nonlinear variational energy 1

n

∑n
i=1Wdeform[(1+w)◦φi,Oi]−

δ2
∫
S C∇wkν · w da (cf. (12)).
Let us underline that this covariance analysis properly takes into account

the usually strong geometric nonlinearity in shape analysis via the transfer of
geometric shape variation to elastic stresses on the average shape, based on
paradigms from nonlinear elasticity. Displacements or stresses are interpreted
as the proper linearization of shapes. In abstract terms, either the space of
displacements or stresses can be considered as the tangent space of shape space
at the average shape, where the identification of displacements and stresses via
(13) provides a suitable physical interpretation of stresses as shape variations.

The impact of the chosen metric. Naturally, the modes of variation depend
on the chosen inner product. We have already mentioned that in order to be
physically meaningful, the inner product should act on displacements uk of the
compound object (which is composed of all deformed input shapes). If instead
the uk were obtained by applying the boundary stresses σkν to an object which
just looks like the average shape but does not contain the information how
strongly the input shapes had to be deformed to arrive at the average, we obtain
a different result (Fig. 13, left): If the prestressed state of some object regions
is neglected, it becomes easier to deform them which causes the prediction of
stronger variations. Fig. 13 also hints at the differences between the employed
metrics: The L2-metric pronounces shape variations with large displacements
even though they are energetically cheap (e. g. a rotation of some structure
around a joint), while the Hessian of the elastic energy measures distances be-
tween displacements solely based on the associated change of elastic energy.
Thus, displacements are weighted strongly in regions and directions which are
significantly loaded.



Fig. 13. First three dominant modes of variation for six input shapes (left), based
on different metrics. Left: L2-metric on displacements of a non-prestressed object
(modes wk with ratios λk

λ1
of 1, 0.23, 0.07). Middle: L2-metric on displacements of

the compound object (λk

λ1
= 1, 0.28, 0.03). Right: Energy Hessian-based metric

on displacements of the compound object (λk

λ1
= 1, 0.61, 0.24).

The impact of the nonlinear elasticity model. Likewise, the particular choice
of the nonlinear elastic energy density has a considerable effect on the average
shape and its modes of variation. Fig. 14 has been obtained using W (Dφ) =
µ
2 ‖Dφ‖

2+ λ
4 detDφ2−(µ+ λ

2 ) log detDφ−µ− λ
4 , where µ and λ are the coefficients

of length and volume change penalization, respectively. A low penalization of
volume changes apparently leads to independent compression and inflation at
the dumbbell ends (left), while for deformations with a strong volume change
penalization (right), material is squeezed from one end to the other. Here, the
underlying metric is the based on the Hessian of the energy.

Figs. 15 to 17 show the dominant modes of variation for the examples from
the previous section. A statistical analysis of the hand shapes in Fig. 15 has also
been performed in [1] and [25], where the shapes are represented as vectors of
landmark positions. The average and the modes of variation are quite similar,
representing different kinds of spreading the fingers. The dominant modes of vari-
ation for a set of 48 three-dimensional kidney shapes is depicted in Fig. 16, where
for all modes wk we show the average (middle) and its variation according to δwk
for varying δ. Local structures seem to be quite well represented and preserved
during the averaging process and the subsequent covariance analysis compared
to e. g. the PCA on kidney shapes in [24] where a medial representation is used.
The PCA of the 24 foot-shapes from Fig. 12 is shown in Fig. 17 and is much more
intuitive than the color-coding in Fig. 12. The first mode apparently represents
changing foot lengths, the second and third mode belong to different variants of
combined width and length variation, and the fourth to sixth mode correspond
to variations in relative heel position, ankle thickness, and instep height. Finally,
Fig. 18 shows that the approach also works for image morphologies instead of
shapes, using thorax CT scans as input. Here, the image edge set is considered
as the corresponding shape, which is typically quite complex and characterized



Fig. 14. First three modes of variation for eight dumbbell shapes, left for a 100
times stronger penalization of length than of volume changes (with ratios λi

λ1
of

1, 0.22, 0.05), right for the reverse ( λi

λ1
= 1, 0.41, 0.07). Each row represents the

variation of the average (middle shape) by δwk for the mode wk and varying δ.

Fig. 15. First four modes of variation with ratios λi

λ1
of 1, 0.88, 0.42 and 0.25

for the 18 hand silhouettes from Fig. 10.

by nested contours. The first mode of variation represents a variation in chest
size, the next mode corresponds to a change of heart and scapula shape, while
the third mode mostly concerns the rib position.

5 Viscous fluid-based shape space

As explained in Sec. 3.1, the viscous fluid shape space is by construction a
(infinite-dimensional) Riemannian manifold and as such is based on the com-
putation of shape paths as opposed to state-based approaches like the elastic
shape space from the previous section. In the elastic, state-based approach, we
have to find for each two shapes SA = ∂OA and SB = ∂OB one single optimal
matching deformation φ : OA → R

d via which the similarity between SA and SB
is determined. In contrast, here we require more information to measure the dis-
tance between the two shapes, namely an optimal velocity field v(t) : O(t)→ R

d

at each time t within the given time interval [0, 1]. In effect, this implies an in-
crease of the dimension of the variational problem by the time component.

The two qualitatively different types of coordinates, the space coordinates
(that span the space in which the shapes lie) and the time coordinate, are in-
tuitively treated in different ways. One possibility is to regard the variational



Fig. 16. 48 input kidneys (courtesy of Werner Bautz, radiology department at
the University Hospital Erlangen, Germany) and their first four modes of vari-
ation with ratios λi

λ1
of 1, 0.72, 0.37, and 0.31.

λ1/λ1 = 1 λ2/λ1 = 0.010 λ3/λ1 = 0.010

λ4/λ1 = 0.003 λ5/λ1 = 0.001 λ6/λ1 = 0.0008

Fig. 17. The first six dominant modes of variation for the feet from Fig. 12.

problem of computing a geodesic as a classical elliptic boundary value prob-
lem in time, in which each shape on a path seeks to be in equilibrium with
its local neighborhood on the path. The equilibrizing force can be interpreted
as an acceleration acting on the velocity field v. In this setting, it seems most
natural to discretize first the time variable and approximate geodesics in shape
space as discrete sequences S0, . . . ,SK of shapes, where each shape is connected
to and equilibrates with its neighbors and the path length along the discrete
path S0, . . . ,SK is approximated as a sum

∑K
k=1 d̃(Sk−1,Sk) of approximations

d̃(Sk−1,Sk) of the geodesic distance between neighboring shapes. The distance
d̃ can be based on a matching deformation energy which will be elaborated on
further down.

An alternative view starts from the underlying velocity field which generates
the geodesic. Dupuis et al. [54] and Beg et al. [56] consider shapes (or rather
images) embedded in a domain Ω ⊂ R

d. These shapes deform according to
smooth, compactly supported velocity fields v ∈ L2([0, 1];Wn,2

0 (Ω;Rd)) with
n > 2 + 2

d . The regularity of the velocity fields is ensured by defining the path

dissipation as
∫ 1

0

∫
Ω
Lv · v dxdt and the path length as

∫ 1

0

√∫
Ω
Lv · v dxdt for

a differential operator L of sufficiently high order (cf. Section 3.1). The corre-
sponding shape deformation φ which is induced by the velocity field is obtained



Fig. 18. 8 thorax CT scans from different patients (courtesy of Bruno Wirth,
urology department at the Hospital zum hl. Geist, Kempen, Germany) and their
first three modes of variation with ratios λi

λ1
of 1, 0.12, and 0.07. Note that the

thin lines which can be seen left of the heart correspond to contours of the liver,
which are only visible in the first and last input image.

as the solution φ = φ1 of the pointwise, Lagrangian ordinary differential equation
d
dtφt(x) = v(φt(x), t).

In the first approach, the computation of a geodesic was seen as the con-
catenation of a number of local subproblems each of which represents the ap-
proximation of a geodesic segment between two intermediate shapes and each of
which thus inherits the constraint that one shape is transferred exactly into the
other. In contrast, in the second approach we have one single constraint, acting
at the end of the geodesic and expressing that the accumulated flow φ deforms
the starting shape SA into the final shape SB , φ(SA) = SB .

Let us now focus on the first approach in which a geodesic path will be
approximated via a finite sequence of shapes S0, . . . ,SK , connected by deforma-
tions φk : Ok−1 → R

d which are optimal in a variational sense and fulfill the
constraint φk(Sk−1) = Sk.

Given two shapes SA, SB in some given space of shapes S, we define a
discrete path of shapes as a sequence of shapes S0, . . . ,SK ∈ S with S0 = SA
and SK = SB . For the time step τ = 1

K the shape Sk is supposed to be an
approximation of S(tk) with tk = kτ , where (S(t))t∈[0,1] is a continuous path
connecting SA = S(0) and SB = S(1). For each pair of consecutive shapes Sk−1

and Sk we now consider a matching deformation φk : Ok−1 → R
d which satisfies

φk(Sk−1) = Sk. With each deformation φk we associate a deformation energy
Wdeform[φk,Ok−1] =

∫
Ok−1

W (Dφk) dx of the same type as described in Sec. 3.2.
If appropriately chosen, this energy will ensure sufficient regularity and a 1-1
matching property for deformations φk with finite energy. As in elasticity, the
energy is assumed to depend only on the local deformation, reflected by the
Jacobian Dφ. Yet, different from elasticity, we suppose the material to relax



instantaneously so that object Ok is again in a stress-free configuration when
applying φk+1 at the next time step. Let us also emphasize that the stored
energy does not depend on the deformation history as in most plasticity models
in engineering. This energy is now employed to define time-discrete counterparts
to the dissipation and length of continuous paths from Sec. 3.1.

Definition 3 (Discrete dissipation and discrete path length) Given a dis-
crete path S0, . . . ,SK ∈ S, its dissipation is defined as

Dissτ (S0, . . . ,SK) :=
K∑
k=1

1
τ
Wdeform[φk,Ok−1] ,

where φk : Ok−1 → R
d is a minimizer of the deformation energy Wdeform[φk, ·]

under the constraint φk(Sk−1) = Sk. Furthermore, the discrete path length is
defined as

Lτ (S0, . . . ,SK) :=
K∑
k=1

√
Wdeform[φk,Ok−1] .

Let us make a brief remark on the proper scaling factors. The deformation energy
Wdeform[φk,Ok−1] is expected to scale like τ2 (cf. (7)). Hence, the factor 1

τ ensures
the discrete dissipation measure to be conceptually independent of the time step
size. The same holds for the discrete length measure Lτ (S0, . . . ,SK).

To ensure that the above-defined dissipation and length of discrete paths in
shape space are well-defined, a minimizing deformation φk of the elastic energy
Wdeform[·,Ok−1] with φk(Sk−1) = Sk has to exist. In fact, this holds for objects
Ok−1 and Ok with Lipschitz boundaries Sk−1 and Sk for which there exists at
least one bi-Lipschitz deformation φ̂k of Ok−1 into Ok for k = 1, . . . ,K [19].

With the notion of dissipation at hand we can define a discrete geodesic path
following the standard paradigms in differential geometry.

Definition 4 (Discrete geodesic path) A discrete path S0,S1 . . . ,SK in a
set of admissible shapes S connecting two shapes SA = S0 and SB = SK is a
discrete geodesic if there exists an associated family of deformations (φk)k=1,...,K

such that (φk,Sk)k=1,...,K minimize the total energy
∑K
k=1

1
τWdeform[φ̃k, Õk−1]

over all intermediate shapes S̃1 = ∂Õ1, . . . , S̃K−1 = ∂ÕK−1 ∈ S and all pos-
sible matching deformations φ̃1, . . . , φ̃K with φ̃k(S̃k−1) = S̃k for k = 1, . . . ,K.

Examples of discrete geodesics are provided in Figs. 19 to 20. Apparently, the
frame indifference and the (local) injectivity property of the matching defor-
mations, which are ensured by the nonlinear deformation energy Wdeform, allow
the computation of reasonable discrete geodesics with only few intermediate
shapes. Under sufficient growth conditions on the integrand of the deformation
energy Wdeform, the existence of discrete geodesics is guaranteed at least for cer-
tain compact sets S of admissible shapes, e. g. shapes S which can be described
by spline curves with a finite set of control points from some compact domain
and which satisfy a uniform cone condition in the sense that each x ∈ S is



Fig. 19. Discrete geodesics between a straight and a rolled up bar, from first
row to fourth row based on 1, 2, 4, and 8 time steps. The light gray shapes in
the first, second, and third row show a linear interpolation of the deformations
connecting the dark gray shapes. The shapes from the finest time discretization
are overlayed over the others as thin black lines. In the last row the rate of viscous
dissipation is rendered on the shape domains O1, . . . ,O7 from the previous row,
color-coded as .

the tip of two cones with fixed height and opening angle which lie completely
on either side of S [19]. Such requirements on S are necessary since the known
regularity theory for deformation energies of the employed type does not allow
to prove Lipschitz-regularity of optimal deformations so that the intermediate
shapes might degenerate.

The discrete dissipation as the sum of matching deformation energies indeed
represents an approximation to the time-continuous dissipation of a velocity field
from Sec. 3.1. If a smooth path in shape space is considered which is interpolated
at discrete times tk = kτ , k = 0, . . . ,K, and if for t ∈ [tk−1, tk), vτ (t) = (φk−1)

τ ◦(
tk−t
τ 1+ t−tk−1

τ φk

)−1

denotes the velocity field which generates the associated

matching deformations φk, then as the time step size τ = 1
K decreases and vτ

converges against a smooth velocity field v, the discrete dissipation converges
against the time-continuous dissipation (2) induced by v (cf. [19] for details).

Within this framework of geodesics in shape space, the strict constraints
that one shape is deformed exactly into another one are often inadequate in
applications as has already been discussed in Sec. 3.2 for the state-based, elas-
tic setup. For the computation of an elastic distance, the single matching con-
straint could be relaxed as a mismatch penalty. In the Riemannian, viscous
setting we pursue the same concept, however, the particular form of the em-
ployed constraints depends on the chosen view on shape geodesics. In the frame-



Fig. 20. Discrete geodesic between a cat and a lion and between the hand shapes
m336 and m324 from the Princeton Shape Benchmark [77]. For both examples,
the local dissipation is color-coded on slices through the shapes as .

work of geodesics as paths of diffeomorphisms, which we introduced at the be-
ginning of this section, there is the single constraint φ(SA) = SB , meaning
that the induced diffeomorphism φ maps the initial shape SA onto the final
shape SB . This constraint can be relaxed in the same manner as in Sec. 3.2
via a penalty measuring the mismatch of the shapes or of the corresponding
objects. For the time-discrete geodesic setting we have a sequence of matching
constraints φk(Sk−1) = Sk, k = 1, . . . ,K, each of which can again be relaxed by
the same means. In fact, we add to the discrete dissipation of a set (φk)k=1,...,K

of deformations a sum of mismatch penalties
∑K
k=1 vol(Ok−14φ−1

k (Ok)). In the
limit for vanishing time step size τ = 1

K and under the same conditions as
above, this sum can be shown to converge against the optical flow type func-
tional

∫
T |(1, v(t)) · n[t,S(t)]|da for the unit outward normal n[t,S(t)] to the

space time shape tube T =
⋃
t∈[0,1]{t} × S(t). Furthermore,

∑K
k=1 τL[Sk] with

L[Sk] = Hd−1(Sk) has been employed as regularization, which in the limit for
τ → 0 converges against the integral

∫ 1

0
Hd−1(S(t)) dt.

Real world objects are most often not only characterized by their outer con-
tour, but contain also internal structures that have to be matched properly
when computing the similarity between two objects. As an example, consider
the straight and the folded rod in Fig. 21. The rods consist of three distinct
components, which imposes a constraint on reasonable connecting paths: Each



component is to be mapped onto its correct counterpart. A shortest path un-
der this constraint obviously differs significantly from the geodesic which just
matches the outer contours (cf. Fig. 19).

Fig. 21. Discrete geodesic between the straight and the folded bar from Fig. 19,
where the black region of the initial shape is constrained to be matched to the
black region of the final shape. The bottom row shows a color-coding of the
corresponding viscous dissipation. Due to the strong change in relative position
of the black region, the intermediate shapes exhibit a strong asymmetry and
high dissipation near the bar ends.

This observation calls for a generalization of shapes, an example of which we
have already seen in the context of an elastic shape space in Fig. 18, where the
edge set of an image was considered as a shape. Here, let us adopt a slightly
different approach and regard shapes as being composed of a number of sub-
components. In detail, instead of a geodesic between just two shapes SA = ∂OA
and SB = ∂OB , we now seek a geodesic path (Si(t))i=1,...,m with Si(t) = ∂Oi(t)
for t ∈ [0, 1], between two collections of m separate shapes, (SiA)i=1,...,m with
SiA(t) = ∂OiA(t) and (SiB)i=1,...,m with SiB(t) = ∂OiB(t). The geodesic path is
supposed to be generated by a joint motion field v(t) :

⋃m
i=1Oi(t) → R

d. The
single objects Oi(t) can then be regarded as the subcomponents of an overall
object

⋃m
i=1Oi(t). The total dissipation along the path is measured exactly as

before by

Diss
[(
v(t), (Oi(t))i=1,...,m

)
t∈[0,1]

]
=
∫ 1

0

∫
Sm

i=1Oi(t)

λ

2
(trε[v])2+µ tr(ε[v]2) dxdt .

This naturally translates to the discrete dissipation of a path with K + 1 inter-
mediate shape collections (Sik)i=1,...,m, k = 0, . . . ,K,

K∑
k=1

Wdeform[φk, (Oik−1)i=1,...,m] :=
K∑
k=1

∫
Sm

i=1Oi
k−1

W (Dφk) dx ,

where the deformations φk satisfy the constraints φk(Sik−1) = Sik for k =
1, . . . ,K, i = 1, . . . ,m, and Si0 = SiA, SiK = SiB , i = 1, . . . ,m.

The different object components can of course be assigned different material
properties. Fig. 22 shows frames from a real video sequence of moving white
and red blood cells (top) as well as a discrete geodesic between the first and



last frame (middle) for which the material parameters of the white blood cell
were chosen twenty times weaker than for the red blood cells. The result is
a nonlinear interpolation between distant frames which is in good agreement
with the actually observed motion. Once geodesic distances between shapes are

Fig. 22. Top: Frames from a real video sequence of a white blood cell among a
number of red ones (courtesy Robert A. Freitas, Institute for Molecular Man-
ufacturing, California, USA). Middle: Computed discrete geodesic between the
segmented shapes in the first and the last frame. Bottom: Pushforward of the ini-
tial (first four shapes) and pullback of the final frame (last five shapes) according
to the geodesic flow.

defined, one can statistically analyze ensembles of shapes and cluster them in
groups based on the geodesic distance as a reliable measure for the similarity
of shapes. Two exemplary examples are provided by the evaluation of geodesic
distances between different 2D letters (Fig. 23, left) and between six different 3D
foot shapes (Fig. 23, right). In the 2D example, we clearly identify three distinct
clusters (Bs, Xs, and M).

6 A comparison of path- and state-based shape space

Already in Sec. 3.3 we have studied the difference between the state-based dissim-
ilarity measure delast and the path-based distance dviscous. Based on the applica-
tions considered in the previous sections let us compare the underlying concepts
now more on a conceptual level of the geometry of shape space:

– Non-uniqueness of shape averages. Due to the nonlinearity of the elastic vari-
ational problem, local minimizers of the elastic energy might be non-unique.
There might even exist different minimizing deformations with the same elas-
tic energy. Mechanically, this non-uniqueness is frequently associated with
different buckling modes, which occur in case of large, geometrically nonlin-
ear deformations. Hence, the shape average need not be uniquely defined,
except in the small displacement case, where a linear elastic model (8) ap-
plies. In case of the path-based approach, (shortest) geodesics do not have



Fig. 23. Left: Pairwise geodesic distances between (also topologically) differ-
ent letter shapes. Right: Pairwise geodesic distances between different scanned
3D feet. The feet have volumes 499.5 cm3, 500.6 cm3, 497.6 cm3, 434.7 cm3,
432.0 cm3, and 381.0 cm3, respectively.

to be unique either. Indeed, a geodesic is the unique shortest path only until
the first conjugate point. Hence, the shape average is in a strict sense not
well-defined if the distances are sufficiently large.

– Different physical interpretation of the PCA. In the Riemannian setup with
the metric being the rate of viscous dissipation, the logS Sk corresponds
to the initial velocity vk : S → R

d in the (optimal transport) flow of O
associated with shape S into Ok associated with the kth input shape Sk.
In the elastic model, the boundary stress σkν : ∂O → R

d results from
the deformation φk of Ok onto the average object O and effectively is the
restoring force acting on the average shape S. Via the linearized elasticity
problem in the pre-stressed compound configuration of the average object
O, these restoring forces are identified with displacements uk. Depending on
the model, either the flow velocities vk or the linear elastic displacements uk
form the basis of a covariance analysis in the linear vector space of mappings
O → R

d. The outcome are principal shape variations of the average shape,
either generated by motion fields or displacements, respectively.

– Quantitative shape analysis. The Riemannian metric given by the rate of vis-
cous dissipation in the path-based viscous fluid approach allows direct com-
parison of multiple ensembles of shapes via pairwise distance computations.
Due to the lack of a triangle inequality this is possible only in a restricted
sense in the state-based elastic approach, where dissimilarity measures for
one fixed shape and a set of varying shapes can be computed.

– The method of choice depends on the concrete application. If shapes are con-
sidered as boundaries of objects with a viscous fluid inside then the path-
based approach would be more appropriate. The state-based elastic approach
is favorable for objects which behave more like deformable solids.



7 A collection of computational tools

So far, we have investigated some of the many aspects on mathematical models
in shape space without any discussion of the corresponding computational tools
and numerical algorithms. Hence, let us at least briefly mention some funda-
mental computational aspects to effectively deal with general classes of shapes
as boundary contours of volumetric objects.

At first, we replace the strict separation between material inside the object
and void outside by substituting the void with a material which is several or-
ders of magnitude softer than inside the object. This relaxation is important
with respect to the existence analysis and the stabilization of the computational
method. In fact, we replace the deformation energyWdeform[φ,O] =

∫
OW (Dφ) dx

by the energyWη
deform[φ,O] =

∫
Ω

((1− η)χO + η)W (Dφ) dx for a small constant
η. In the implementation which underlies the above applications, for η = 10−4

one observes no significant qualitative impact of this regularization on the solu-
tion. Furthermore, as mentioned above, to ensure regularity of the shape contour
S, we take into account the area functional L[S] =

∫
S da as a prior, weighted

with a small factor.
Compared to a parametric description of shapes, e. g. as a polygonal line or a

triangular surface, an implicit description has several advantages. In particular,
it does not require a remeshing even in case of large deformations, it allows for
topological transitions without any extra handling of the associated singulari-
ties, and it can be combined with multi-scale relaxation schemes for an efficient
minimization of the involved functionals.

In what follows, we consider a level set and a phase field description of shapes
and outline the general framework of a multi-scale method based on finite el-
ement calculus. In fact, the phase field model has been used in the examples
for the elastic shape averaging and the PCA, whereas the level set method has
served as a numerical building block for the computation of time-discrete shape
geodesics.

7.1 Shapes described by level set functions

The level set method first presented by Osher and Sethian [78] has been used for
a wide range of applications [79,80]. Burger and Osher gave an overview in the
context of shape optimization [81]. To numerically solve variational problems
in shape space we assume a shape S to be represented by the zero level set
{x ∈ Ω : u(x) = 0} of a scalar function u : Ω → R on a computational domain
Ω ⊂ Rd. Furthermore, the zero super level set {x ∈ Ω : u(x) > 0} defines the
corresponding object domain O. This shape description can be incorporated in
a variational approach following the approximation proposed by Chan and Vese
[82]. In fact, the partition of the domain Ω into object and background is encoded
via a regularized Heaviside function Hε ◦ u. As in [82] we consider the function
Hε(x) := 1

2 + 1
π arctan

(
x
ε

)
, where ε is a scale parameter representing the width

of the smeared-out shape contour. Then, a deformation energy Wη
deform[φ,O] =



∫
Ω

((1− η)χO + η)W (Dφ) dx is approximated by

Wε,η
deform[φ, u] =

∫
Ω

((1− η)Hε(u) + η)W (Dφ) dx .

Furthermore, the energy F [SA, φ,SB ] = vol(OA4φ−1(OB)) measuring the volu-
metric mismatch between an object OA and the pullback of an object OB under
a deformation φ can be approximated by

Fε[uA, φ, uB ] =
∫
Ω

(Hε(uB ◦ φ)−Hε(uA))2 dx ,

where uA, uB are level set representations of the shapes SA and SB , respectively.
Finally, the surface area of a shape S, which appears as a prior, is replaced by
the total variation of Hε ◦ u, and we obtain

Lε[u] =
∫
Ω

|∇Hε(u)|dx .

Let us emphasize that in the actual energy minimization algorithm, the guidance
of an initial zero level set towards the final shape relies on the nonlocal support
of the derivative of the regularized Heaviside function (cf. [83]).

7.2 Shapes described via phase fields

An alternative to a level set description of shapes is a phase field represen-
tation. Physically, the phase field approach is inspired by the observation that
interfaces are usually not sharp but characterized by a diffusive transition. Math-
ematically, there are two basic types of such phase field representations, a single
phase approach as the one presented by Ambrosio and Tortorelli [84] for the
approximation of the Mumford–Shah model [85] and the double phase approach
by Modica and Mortola [86] used to approximate surface integrals. In the shape
context studied here, let us focus on the single phase model. Thus, a shape S is
encoded by a continuous, piecewise smooth phase field function u : Ω → R which
is zero on S, but close to one everywhere else. The specific profile of the phase
field function u for a shape S is determined via the phase field approximation

Lε[u] =
1
2

∫
Ω

ε|∇u|2 +
1
ε

(u− 1)2 dx

of the involved surface area
∫
S da. As in the above level set model the phase field

parameter ε determines the width of the diffusive interface. Different from the
level set model by Chan and Vese, the interface profile is not explicitly prescribed
but implicitly encoded in the variational approach as the profile attained by min-
imizers of the functional. Based on this phase field model the penalty functional
F [SA, φ,SB ] = Hd−1(SA4φ−1(SB)) measuring the area mismatch between a
shape SA and the pullback of a shape SB under a deformation φ can be approx-
imated by

Fε[uA, φ, uB ] =
1
ε

∫
Ω

(uB ◦ φ)2(1− uA)2 + u2
A(1− uB ◦ φ)2 dx ,



where uA, uB are phase fields representing the shapes SA and SB , respectively.
In this type of models the deformation energy Wη

deform[φ,O] cannot be realized
based on a phase field function u due to the fact that a single phase model
allows to identify the shape itself but does not distinguish its inside and outside.
Therefore, in the presented applications of elastic shape averaging and the elastic
PCA the input objects and thus their characteristic functions χO were given a
priori.

7.3 Multi-scale finite element approximation

For the spatial discretization of the functionals in the above variational ap-
proaches the finite element method can be applied. Hence, the level set function
or the phase field u, representing a (unknown) shape S, and the different compo-
nents of the deformations φ are represented by continuous, piecewise multilinear
(trilinear in 3D and bilinear in 2D) finite element functions U and Φ on a regular
grid superimposed on the domain Ω = [0, 1]d. For the ease of implementation
a dyadic grid resolution with 2L + 1 vertices in each direction and a grid size
h = 2−L is chosen.
Descent algorithm. The functionals depend nonlinearly both on the discrete de-
formations Φ (due to the concatenation U ◦Φ and the nonlinear integrand W (·)
of the deformation energy) as well as on the discrete level set or phase field
functions U (e. g. due to the concatenation of the level set function with the
regularized Heaviside function Hε(·)). In our energy relaxation algorithm for
fixed grid size, we employ a gradient descent approach. We constantly alternate
between performing a single gradient descent step for all deformations and the
level set or phase field functions.
Numerical quadrature. Integral evaluations in the descent algorithm are per-
formed by Gaussian quadrature of third order on each grid cell. For various
terms we have to evaluate pullbacks U ◦ Φ of a discretized level set function
U or a test function under a discretized deformation Φ. Let us emphasize that
quadrature based on nodal interpolation of U ◦Φ would lead to artificial displace-
ments near the shape edges accompanied by strong artificial tension. Hence, in
our algorithm, if Φ(x) lies inside Ω for a quadrature point x, then the pullback
is evaluated exactly at x. Otherwise, we project Φ(x) back onto the boundary of
Ω and evaluate U at that projection point.
Cascadic multi-scale algorithm. The variational problem considered here is highly
nonlinear, and for fixed time step size the proposed scheme is expected to have
very slow convergence; also it might end up in some nearby local minimum.
Here, a multi-level approach (initial optimization on a coarse scale and succes-
sive refinement) turns out to be indispensable in order to accelerate convergence
and not to be trapped in undesirable local minima. Due to our assumption of a
dyadic resolution 2L+1 in each grid direction, we are able to build a hierarchy of
grids with 2l+1 nodes in each direction for l = L, . . . , 0. Via a simple restriction
operation we project every finite element function to any of these coarse grid
spaces. Starting the optimization on a coarse grid, the results from coarse scales



are successively prolongated onto the next grid level for a refinement of the solu-
tion [87]. Hence, the construction of a grid hierarchy allows to solve coarse scale
problems in our multi-scale approach on coarse grids. Since the width ε of the
diffusive shape representation should naturally scale with the grid width h, we
choose ε = h.
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66. Klingenberg, W.P.A.: Riemannian Geometry. Walter de Gruyter (1995)
67. Spivak, M.: A comprehensive introduction to differential geometry. Vol. I. Publish

or Perish Inc., Boston, Mass. (1970)
68. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics.

Volume 4 of Texts in Applied Mathematics. Springer (1990)
69. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer,

Berlin (2004)
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