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Abstract—A set of adaptive algorithms for quadrature on multi-dimensional poly-
hedral domains is presented. Several kinds of refinement are discussed, covering
local improvement of quadrature order and splitting the domain into sub-domains,
resulting in isotropic, graded or anisotropic grids. The algorithms are pure local
heuristics using no a priori knowledge or tuning parameters. This approach was
motivated by results from finite element theory for optimal approximation results.
Numerical experiments show the optimality of pure local greedy-like algorithms for
singularity-type functions typically occurring in finite element computations.
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1 Introduction

The purpose of this paper is twofold: First we want to construct algorithms for
numerical quadrature, which employ very low number of function evaluations on the
final approximation level. This is of main importance for applications like [1], where
each quadrature point is connected to a great amount of computation. However, the
whole quadrature algorithm need not be the fastest itself.

Second we treat the problem of numerical quadrature as a model for adaptive
finite element algorithms, discarding the linear algebra involved and simplifying
the topic of a posteriori error estimation. We want to study the performance of
different refinement techniques and the issue of heuristic refinement control. Hence
we sometimes use terms from finite elements and we consider those algorithms only,
which could be implemented in a boundary value problem context.

The paper is guided by some considerations on h-p finite elements compiled in
[2]. Since it is known for piecewise polynomial interpolation, that only the mixture
of sub-domain splitting and order elevation is able to break the complexity barrier
of algebraic convergence known for a single refinement procedure for functions with
singularities, we focus on this class of approximation. We will call them h-p methods.

For example, even for the finite element solution of Poisson’s equation —Au = f
with u € H'7*(Q C R?) and piecewise polynomials, a polyhedral domain and errors
measured in energy norm or L2 norm, errors vs. the number of degrees of freedom
n, the following estimates hold:

e h-uniform, h-adaptive and asymtotic p-version ||[er||| < ¢ n?



e h—p-adaptive and pre-asymptotic p-version |||er||| < ¢ A

The values 8 and v depend on the dimension d and demand anisotropic grids for
higher dimensions d. We clearly see that we have to use a combination of h- and
p-refinement to get optimal approximations, since we do not want to rely on the well
suitedness of an initial grid.

The first question that arises is control. We will discuss some strategies for
mixing h-refinement (sub-domains) and p-refinement (order elevation). There still
seems to be no satisfying h-p control strategy, maybe except for the one dimensional
case, where some heuristics perform quite well.

In search of optimality, following the approximation results known, we have to
consider more complicated h-refinements than just isotropic bisection of domains or
more general a fixed partition scheme. Hence we will have a look at mesh grading,
which is able to generate optimal grids in one dimension. Additionally we will employ
anisotropic refinement for higher dimensions and we will combine this with locally
varying orders (h-p).

2 Numerical Quadrature

Given a polyhedral, open, bounded domain Q C R? and a scalar integrable function
f defined on the domain, we want to compute numerically the integral

/ﬂ F(a) dx.

We approximate the solution using a quadrature rule {(z;, w;)|i = 1,...,n} with n
quadrature points z; or function evaluations f(z;) (computational work).

MQU) = D flw) w
We define the (absolute) error of the quadrature formula by

er:= |Q(f) — /ﬂf(l’) dx|

and we will measure the quality of a formula by the values of error er and work n.
We use for instance Gauss-Legendre quadrature rules for one dimensional quadrature
and tensor products of one dimensional formulae for quadrature on quadrangles and
hexahedra (see e.g. [3, 4]). On Simplices we use either special Gauss formulae or
warped formulae of quadrangles and hexahedra.

The first idea to improve a quadrature result for a given Gauss formula is to
elevate the order of the formula analogously to the spectral method or finite element
p-version. A higher order results in a larger number of quadrature points n and
(hopefully) in a smaller error. For a regular function f with bounded higher deriva-
tives we know of course the exponential decay of the error. For polynomial functions
f, the formulae will even be exact for orders higher or equal the polynomial degree.
To illustrate the converse, we have a look at example 1.



Example 1
flz)=1]z|7Y?, Q=(0,1)CR

The results are depicted in figure 1. Here we do not obtain exponential conver-
gence, but pure algebraic one.
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Figure 1: Left: convergence for order elevation (p). Right: convergence for uniform
subdivision (h). 1D example.

3 H-Refinement
3.1 Global H-Refinement

Another method to improve the approximation is the decomposition of the domain
into several smaller sub-domains. For each sub-domain we apply the usual (affine
transformed) quadrature formula.

a=J9, disjoint Q;
i

This method is also used to decompose a general polyhedral domain into standard
shaped elements via a tessellation. The final result is the sum of the results of the

sub-domains.
/ﬂf(a:) dx :zj:/ﬂjf(a:) dx

For each bisection of all sub-domains the number of quadrature points n can dou-
ble, the order of approximation is maintained and the error decreases by a factor
depending on the regularity of f.

Applying this strategy to example 1, we see in figure 1 an algebraic convergence
of the solution, which needs about n-times more quadrature points and 1s clearly
slower.



3.2 H-Adaptive Refinement

Hence we want to improve the h-refinement procedure. We introduce adaptivity.
There are several sub-domains, which we can treat differently. We refine (bisect)
only those, which have a large error contribution. This will reduce the number of
quadrature points n. The main goal is that of error equilibration, which can be
proved to have the lowest n for a given error tolerance.

Algorithmically, we have to add some sort of a posteriori error estimation. We
estimate local errors on €; comparing two different quality quadrature rules like

() ~ |@1(f) = Q)]

Now we have to select those sub-domains to refine. A large number will result in
nearly uniform refined grids which is not efficient and a small number results in a
large number of “calculate—and-refine” cycles being not efficient either.

We use a threshold criterion:

Algorithm 1 h-adaptive:
for all Q;:
if €(Q) > K then subdivide Q;
with threshold k

One good choice for threshold  is

k= —maxe(Q;)
2 g
1 1
o o o o
09 © © ° ° 09 ° °
o
o
08 08 © o o °
o
0.7 07 o o o o
o o o
© o o
06 ° ° 06
° ° o o o o
05 05—
NC° o o o . . . o ol o °
F Fo o
04 B . 0.4 o o o o
o [ o o ° ©°
L F o o o )
03r% 7 > ° ° . 03rg o
o ofJo ¢ O Olg of o o
0212y CINNE o 0219 o o olo o
o098 o S o ° © o oo oo o
0120 00 © o o 0.18 ggo olo of o o o o
> o o o|o o
Do N : o b o °. 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2: H-adaptive refined grids, 2D example, left: triangles, right: quadrangles.
dots mark the quadrature points

Example 2
fl@) = |l=|7°, @ =(0,1)* C R®
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Figure 3: H-Adaptive refined grids, 2D example, convergence.

We use an h-refinement strategy, which bisects each sub-domain marked for
refinement along on of the longest edges, to almost maintain aspect ratios of the
domains. We consider this refinement as isotropic.

Figures 2 and 3 show the results for example 2. We obtain an exponentially
decaying initial convergence phase followed by a slower (asymptotic) algebraic one,
when the singularity is resolved (saturation). The grids are highly refined to the
singularity until saturation takes place. The quadrangles perform slightly better
than the triangles, but are geometrically less flexible.

We want to mention some alternative threshold criteria: we could have forced
a certain number of domains being refined, which leads to geometrically increasing
n even before saturation. We could enforce a certain part of the total error to be
refined, which is essential for a proof of termination of the total algorithm. There is
an additional modification proposed by [5]: Define

N o= €(9;)°
Q) = e(father of ;)
&t = min(max; et (Q;), 1 max; €(Q;))

The ¢t are rather estimates for the local errors after refinement than before refine-
ment.

Algorithm 2 h-adaptive (with extrapolation criterion):
for all Q;
if () > kT then subdivide €

For an overview over standard and commercially available adaptive quadrature
algorithms we generally refer to [3, 4, 6] and [7]. A more advanced algorithm was

proposed by [8, 9].



4 Advanced Refinement

4.1 H-P-Refinement

First we look at the combination of h-refinement (subdivision) and p-refinement
(order elevation). This theoretically leads to (sub-) exponential convergence. The
question is, how to implement such algorithms in a robust way. We will extend
algorithm 1 by h-p features.

4.1.1 Global h-p
Algorithm 3 global h-p:

e perform adaptive h-refinement steps by algorithm 1 until a tolerance tols 1s
reached.

e then perform adaptive p-refinements by algorithm 1 until the final precision tol
15 reached.

Uniform p-refinement could be employed in the second step, too. We call this
“global” h-p, because we use a global switching to decide, whether to refine in h- or p-
manner. There is a tuning parameter tol,, which has to chosen. We use tol, 5 \/tol,
where [10] proposes tols &~ 1/20...1/10 - tol.
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Figure 4: H-P-adaptive refined grids, global strategy, 2D example, left: triangles,
right: quadrangles. color indicates different quadrature formulae.

Figure 4 and 5 show grids and convergence for example 2. The switching point
is marked extra. We obtain exponential convergence, as desired. There is one point
to mention: The elements next to the singularity use an ridiculously high order
quadrature formula. This is due to the element size. The element sizes do not
decrease fast enough down to the singularity. The error remains relatively high
and further refinements have to performed as p-refinements, where h-refinements



were more appropriate. Nevertheless it is a very robust strategy with exponential
convergence.

4.1.2 Local h-p

We now turn to an algorithm, called local. We make local decisions whether to
refine in h- or p-manner. We want to use that kind of refinement, which leads to
the smaller error. Hence we employ two different error estimators, estimating both
errors:

€n(Q;) = > e(sons of Q)

GP(QJ') =  Corder+1 (QJ)

They are implement by special quadrature formulae. We now construct the following

Algorithm 4 local h-p:
if €(Q) > & then if ¢, (Q;) < €,(Q;)
then refine by subdiwvision (h)
else refine by order elevation (p)
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Figure 5: H-P-adaptive refined grids, convergence. left: global strategy with switch-
ing form p to h refinement, right: local strategy.

These kinds of local greedy algorithms were proposed for finite elements by [11]
and are called ‘best basis’ for wavelets [12].

We modify algorithm 4 by taking computational work into account. We use a
criterion

Algorithm 5 local h-p (considering work)
if €(Q) > & then if €, () g(worky) < €,(2;)g(work,)
then refine by subdivision (h)
else refine by order elevation (p)

with a positive increasing function g. We choose g(2) = e® which stabilizes the
convergence history and can be interpreted in the sense of information per work, see

e.g. [13].



Figure 6: H-P-adaptive refined grids, local strategy, 2D example, left: triangles,
right: quadrangles. color indicates different quadrature formulae.

Figures 5 and 6 show the performance of algorithm 5 for example 2. We see the
exponential convergence, the grids refined towards the singularity and the distribu-
tion of higher order away from the singularity. The local h-p strategy seems to be
remarkably more efficient than the global one in this case.

4.2 Graded Refinement

As we have seen in chapter 4.1.1, grid refinement by bisection of domains sometimes
does not deliver final grids, which are sharply refined enough. Such grids can be
considered to be inefficient due to bisection. For one dimensional h-p finite elements,
asymptotically optimal grading factors of (1 — 1/1/2)/2 ~ .15 are known. We now
introduce graded refinement by

Algorithm 6 local mesh grading
refine an edge (x(1), ,13(2)) by subdivision (h) defining a new node as

= (1-¢ @) 4+ ¢ 2
with ¢ € (0,1) such that eC(Qj) is minimal

The error €.(£2;) is estimated as usual and the minimization is done by a derivative-
free continuous minimization algorithm, up to a certain precision.
There 1s a more heuristic variant, maximizing the change of the solution:

Algorithm 7 local mesh grading (solution criterion)
refine an edge (1), 2(2)) by subdivision (h) defining a new node as

= (l-¢ M 4 oz

with ¢ € (0,1) such that |Q(f, Q2 — Qc(f, ;)| s mazimal



We apply this algorithm 7 to example 1 in combination with a local h-p-strategy.
Figure 7 shows the strongly refined grid and the convergence history. The result
seems to be nearly the optimal one known for the one dimensional case.
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Figure 7: Local h-p refinement on graded grids, 1D example, left: convergence with
and without grading, right: graded h-p grid.

4.3 Anisotropic Refinement

We now consider another refinement technique, which is supposed to make sub-
stantial savings in computational work for higher dimensions. We implement the
anisotropic refinement as a sequence of directed bisection refinements of domains.

Let us suppose, the solution is smooth along an edge and has singular behavior
in all directions perpendicular on the edge. We would like to refine the grid mainly
in the directions of singularity, which is perpendicular on the edge. Tn R? this leads
to a quasi 2 dimensional refinement and a reduction of work from h=2 down to h~2.

We neglect any minimum angle conditions and irregularities of the grids and
perform refinements just guided by refinement criteria. A maximum angle condition
is maintained, supposing all angles of the initial grid are bounded from below. We
implement

Algorithm 8 anisotropic refinement
refine a domain Q; by bisecting an edge k
such that ¢, (Q;) is minimal

The error €;(€;) is estimated by formulae k.
The more heuristic variant like in chapter 4.2 is maximization of the change of
the solution.

Algorithm 9 anisotropic refinement (solution criterion)
refine a domain Q; by bisecting an edge k
such that |Q(f,Q; — Qr(f, ;)| is marimal



Figure 8: Anisotropic grids, 3D example, left: tetrahedra, right: hexahedra.

We test the algorithm with a model

Example 3

flz) = (=} + 2374 Q=(0,1)"CR?

where f is independent from z3. We expect a quasi 2 dimensional refinement in
z1-wo-direction. We apply algorithm 9 with h-refinement to example 3. The results
are depicted in figures 8 and 9. The quadrangles perform perfectly, because they are
oriented axis-parallel. Tt is not a difficult task to detect the directions of refinement.
The tetrahedron case is more interesting here. Although the grid looks not as good,
the convergence clearly benefits form anisotropy. The refinement strategy seems to
perform good. Hence there is a chance to apply the algorithm to more complicated
anisotropic scenarios.

We now want to combine anisotropic refinement with a local h-p strategy. We
apply again algorithm 9 to example 3. Figure 9 shows the convergence history. We
see that pure h-p refinement with isotropic refinement does not enter the exponential
convergence phase. Tt is slower than anisotropic h-refinement. The combination of
h-p and anisotropic refinement performs best for this example, speeding up the
anisotropic h-refinement a little bit.

5 Conclusion

We have presented a set of algorithms for adaptive numerical quadrature which are
structurally equivalent to some finite element strategies. We have used h-adaptive
and different h-p adaptive strategies and extensions for (a posteriori) mesh grading
and anisotropic refinement. They were all pure local greedy-like procedures without
any a priori knowledge. We have compared these algorithms and combinations of
them using some singularity-type model problems in 1, 2 and 3 dimensions with
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Figure 9: Anisotropic grids, 3D example, convergence, left: subdivision (h), right:
local h-p strategy.

hexahedra, tetrahedra quadrangle and triangle grids. The h-p approximations per-
formed nearly optimal for all tests.

We want to give an outlook to generalization to finite elements. The main gap
missing is the step from pure local procedures to globally coupled ones. We have
to enforce continuity of our approximation as described in [14] for linear elements
and in [15] for higher order elements. We also could enforce continuity in a weak
sense using e.g. Mortar elements [16]. We have to introduce global linear algebra
and we have to extend the a posteriori error estimation like in for anisotropic grids
[17, 18]. Anisotropic convergence is treated in [17, 19]. Hence it should be possible
to extend the highly efficient h-p procedures presented for more general boundary
value problems.
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