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Dimension-adaptive sparse grid quadrature for
integrals with boundary singularities

Michael Griebel and Jens Oettershagen

Abstract Classical Gaussian quadrature rules achieve exponential convergence for
univariate functions that are infinitly smooth and where all derivatives are uniformly
bounded. The aim of this paper is to construct generalized Gaussian quadrature rules
based on non-polynomial basis functions, which yield exponential convergence even
for integrands with (integrable) boundary singularities whose exact type is not a-priori
known. Moreover, we use sparse tensor-products of these new formulae to compute
d-dimensional integrands with boundary singularities by means of a dimension-
adaptive approach. As application, we consider, besides standard model problems,
the approximation of multivariate normal probabilities using the Genz-algorithm.

1 Introduction

The approximation of an integral of a function f : Ω (d)→ R,Ω (d) ⊆ Rd using point-
evaluations is an important task in numerical analysis. It is part of numerous methods
and algorithms in almost every scientific area where computers are employed. Such
a quadrature rule takes the general form∫

Ω (d)
f (x)ω(x)dx≈

n

∑
i=1

wi f (xi), (1)

where ω : Ω (d)→ R+ is a positive weight-function, the xi ∈Ω (d) are the quadrature
nodes and the wi ∈ R are the quadrature weights. The quality of such an approxima-
tion depends on the regularity of f and the specific choice of the nodes and weights
of the quadrature formula. Most quadrature rules are constructed in such a way that
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they are exact on a certain finite-dimensional subspace of L1(Ω (d),ω), e.g., on the
polynomials up to a certain degree.

In this paper we will consider integration over the open unit cube Ω (d) = (0,1)d

with respect to the uniform Lebesgue measure ω ≡ 1. We treat integrands that might
possess integrable boundary singularities, whose exact type is not a-priori known1.

A common approach to deal with boundary singularities in the univariate setting
are variable transformations τ : R⊇ Ω̂ → (0,1), such that∫ 1

0
f (x) dx =

∫
Ω̂

f ◦ τ(y) · τ ′(y) dy.

If τ is properly chosen, the transformed integrand f̂ (y) = f ◦ τ(y) · τ ′(y) is no longer
singular, but decays to zero as y approaches the boundary of Ω̂ . Popular examples
are the tanh [44] and double exponential [32, 45] transforms, where a truncated
trapezoidal rule is applied to f̂ on Ω̂ = R. Other examples are the so-called peri-
odization transforms [27, 37, 39, 40], which use a mapping to Ω̂ = (0,1) that makes
the resulting integrand periodic. Eventhough these approaches work very well in the
univariate setting, their multivariate versions suffer from an exponential blowup of
the norm of the transformed integrand f̂ , as it was pointed out in [27] for the case of
periodizing transformations in the context of lattice rules. Thus it takes exponentially
long (in d), until the good asymptotic convergence rate kicks in, which makes these
approaches very costly for practial problems in higher dimensions.

For this reason we are not going to apply a trapezoidal rule to the transformed
integrand f̂ , but rather use a suitable Gaussian rule tailored to the weight function
τ ′(y) on Ω̂ and then map back the associated Gaussian quadrature nodes to the unit
interval (0,1). This approach results in a so-called generalized Gaussian quadrature
rule on (0,1) that is exact not on a space of polynomials as are conventional Gaussian
rules, but on a 2n-dimensional subspace of univariate singular functions from L1(0,1).
Its basis functions are given by powers of certain monotonous singular functions. We
will prove exponential convergence for integrands with arbitrary algebraic boundary
singularities. Moreover, we explicitly compute error constants for quadrature on
(0,1) in the Hardy space of functions that are analytic in the unit disc. In contrast to
Gauss-Legendre quadrature, which only achieves an algebraic rate of convergence,
our approach shows an exponential decay of the error. For the higher dimensional
case we then employ these univariate quadrature rules within a sparse tensor product
construction which also exhibits a certain degree of exactness on tensor products
of the univariate singular functions. We give numerical evidence that, for singular
problems in the unit cube, our approach significantly outperforms the conventional
sparse grid quadrature methods which are based on the Gauss-Legendre or Clenshaw-
Curtis rules, respectivley. Furthermore, we use our new method in combination with
dimension-adaptive sparse grids for various standard model problems and for the
computation of multivariate normal probabilities by the Genz-algorithm [12].

1 Otherwise one could reformulate the problem to integration with respect to a weight function ω
that resembles the singularity.
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The remainder of this article is organized as follows: In Section 2 we will
shortly revise the classical (univariate) Gaussian quadrature and its generalization to
Tschebyscheff-systems. Then we introduce certain classes of Tschebyscheff-systems,
whose associated Gaussian quadrature formulae can be described in terms of classical
Gaussian formulae on an unbounded domain Ω̂ and a mapping back to (0,1). This
allows for an easy construction of the new generalized Gaussian quadrature. We give
a few examples for this approach and prove error bounds for a special case which
is related to the classical Gauss-Laguerre formula. In Section 3 we will introduce
sparse tensor products of the new univariate quadrature to deal with multivariate
problems. Here, we specifically employ the dimension-adaptive approach from [17].
In Section 4 we give the results of our numerical experiments. First, we demonstrate
the quality of our generalized Gaussian quadrature formula in the univariate case
for singular problems and quadrature in the Hardy space. Then we apply it within
the dimension-adaptive sparse grid algorithm to several model problems and to the
computation of multivariate normal probabilities using the algorithm of Genz. We
close with some remarks in Section 5.

2 A generalized Gaussian quadrature approach

In this section we will introduce a class of generalized Gaussian quadrature rules
that are exact on a certain 2n-dimensional subspace of singular functions on (0,1).
First, we shortly recall the basic properties of classical Gaussian quadrature in
the univariate case. Then we generalize it to Tschebyscheff-systems on (0,1) and
introduce a framework for which the generalized Gaussian quadrature formula can be
described by a classical Gaussian formula with respect to a certain weight function
on (0,∞) together with a map to (0,1). We give examples and an error estimate for a
class of integrands with algebraic singularities at the boundary.

2.1 Classical Gaussian quadrature

Given an interval Ω ⊆ R and a positive weight function ω : Ω → R+ the classical
n-point Gaussian rule is the standard approach to approximate∫

Ω
f (x)ω(x) dx≈

n

∑
i=1

wi f (xi)

for smooth functions f ∈C2n(Ω). Classical Gaussian quadrature rules are defined by
the property that polynomials up to degree 2n−1 are integrated exactly (with respect
to the weight function ω) with only n quadrature points, i.e.
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Ω

p(x)ω(x) dx =
n

∑
i=1

wi p(xi) (2)

for all p ∈ span{xk, k = 0, . . . ,2n− 1}. It is well known that there can not exist a
quadrature rule that yields a higher degree of polynomial exactness, thus Gaussian
quadrature is optimal in this sense.

Note that (2) is a nonlinear system of 2n equations which defines the nodes xi
and weights wi of the Gaussian quadrature rule. In general, the direct solution of a
nonlinear system is a difficult task. But here one can resort to orthogonal polynomials
and then use their recurrence relation to compute the nodes and weights of Gaussian
quadrature formulae. To this end, we consider the set of polynomials which are
orthogonal with respect to the weighted L2 inner product

〈p,q〉Ω ,ω =
∫

Ω
p(x)q(x)ω(x)dx.

It is known that for any domain Ω and weight function ω there exists a polynomial
pn of degree n that fulfills∫

Ω
xk pn(x)ω(x) dx = 0 for all k = 0,1, . . . ,n−1.

We call pn the n-th degree orthogonal polynomial (with respect to Ω and ω). Note that
the set of all p0, p1, . . . is a complete orthogonal system of L2(Ω ,ω). Moreover, pn
has exactly n distinct simple roots x1, . . . ,xn ∈Ω , which turn out to be the quadrature
nodes of the Gaussian formula. This is important because, for any given weight-
function ω on a domain Ω ⊆ R, there exists a sequence of orthogonal polynomials
and thus there exists a uniquely determined corresponding Gaussian quadrature rule.
If one knows the coefficients of pn(x) := anxn + an−1xn−1 + . . .+ a0 and its zeros
x1, . . . ,xn it is easy to compute the corresponding weights by the formula

wi =
an

an−1

〈pn−1, pn−1〉Ω ,ω

p′n(xi)pn−1(xi)
≥ 0. (3)

In order to obtain the coefficients and roots of such orthogonal polynomials one
usually employs their recurrence formula to assemble a so-called compagnion matrix,
whose eigenvalues are the roots of pn. For details see [7, 11].

Now we consider error bounds for classical Gaussian quadrature. First we define
the n-th error functional as

Rn( f ) :=
∫

Ω
f (x)ω(x)dx−

n

∑
i=1

wi f (xi). (4)

Because of the Weierstrass approximation theorem and the positivity of the quadrature
weights wi, Gaussian quadrature rules converge for any continuous function, i.e.

f ∈C0(Ω)⇒ lim
n→∞

Rn( f ) = 0. (5)
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For integrands which possess at least 2n continuous derivatives there is the well-
known error-bound

|Rn( f )| ≤ f (2n)(ξ )
a2

n(2n)!
for some ξ ∈Ω . (6)

Thus, if for all n ∈ N it holds | f (2n)(x)| ≤Mn( f )∀x ∈Ω where Mn( f )
a2

n
is bounded by

a polynomial, the quantity |Rn( f )| converges even exponentially to zero.
On the other hand, if the derivatives of f are unbounded on Ω the bound (6) is

useless. For example, for Ω = (−1,1) and ω(x) = 1 one obtains the well-known
Gauss-Legendre rule, for which the bound (6) takes the form [7]

|Rn( f )| ≤ f (2n)(ξ ) · (n!)4

(2n+1)((2n)!)3 , ξ ∈ (−1,1).

Now consider f (x) = (1− x)−α ,α > 0, which is unbounded on Ω as are all of
its derivatives. In [9, 28] it was shown that the rate of convergence substantialy
deteriorates with α , i.e.

|Rn( f )|=O(n−1+α)

and we only obtain an algebraic convergence rate of (1−α) for α < 1, while for
α ≥ 1 the integral does not exist anyway. This simple example shows that classical
Gaussian rules lose their nice convergence properties when it comes to singular
integrands. To deal with such integration problems efficiently, the Gaussian approach
must be properly generalized.

2.2 Generalized Gaussian quadrature

The aim of this section is to find quadrature rules that achieve a maximum degree of
exactness for systems of functions that are not polynomials, but inherently possess
integrable singularities. To this end, we will use the notion of so-called Tschebyscheff
systems (T-systems) [25].

For n+1 functions ϕ0, . . . ,ϕn and n+1 pairwise distinct points t0, . . . , tn ∈ [a,b]
we define the generalized Vandermonde determinant as

D(ϕ0, . . . ,ϕn; t0, . . . , tn) := det


ϕ0(t0) ϕ0(t1) . . . ϕ0(tn)
ϕ1(t0) ϕ1(t1) . . . ϕ1(tn)

...
...

. . .
...

ϕn(t0) ϕn(t1) . . . ϕn(tn)

 (7)

Definition 1. A set of continuous functions ϕ0,ϕ1, . . . ,ϕn is called T-system over a
compact interval [a,b] iff

D(ϕ0,ϕ1, . . . ,ϕn; t0, t1, . . . , tn)> 0
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for all pairwise distinct t0 < t1 < .. . < tn ∈ [a,b].

This generalizes the concept of polynomials in the sense that it allows unique inter-
polation by cardinal functions and thus every linear combination ∑

n
i=0 ciϕi(x) has at

most n zeros.
Examples for sets of functions that form a T-system on their respective do-

mains are of course polynomials {1,x,x2,x3, . . . ,xn}, fractional polynomials like
{1,√x,x,x

√
x,x2,x2√x, . . . ,xn/2} or certain radial basis functions like, e.g.,

{exp(− (c0−x)2

σ2 ), . . . ,exp(− (cn−x)2

σ2 )} for pairwise distinct ci ∈ R.
We are now in the position to define the concept of generalized Gaussian quadra-

ture.

Definition 2. (Generalized Gaussian quadrature rule)
Let Φ = {ϕ0, . . . ,ϕ2n−1} be a set of integrable functions on a compact interval

[a,b], i.e.
∫ b

a ϕi ω(x)dx < ∞. A generalized Gaussian quadrature rule on [a,b] is a
n-point rule that is exact on Φ , i.e.

n

∑
i=1

wiϕ j(xi) =
∫ b

a
ϕ j(x) dx, for all j = 0, . . . ,2n−1. (8)

We have the following result from [25].

Theorem 1. Let Φ = {ϕ0, . . . ,ϕ2n−1} be a T-system of integrable functions on the
bounded interval [a,b] ( R. Then there exists a generalized Gaussian quadrature
rule with n nodes x1, . . . ,xn ∈ (a,b) and non-negative weights w1, . . . ,wn.

This result was generalized in [29] to the case of (semi-)open intervals.

Theorem 2. If Φ constitutes a T-system on any closed interval [â, b̂] ⊂ (a,b) ⊆ R,
then we call Φ a T-system on (a,b) and there exist n nodes x1, . . . ,xn ∈ (a,b) and
non-negative weights w1, . . . ,wn, such that (8) holds.

Moreover, it is also known [19] that generalized Gaussian quadrature formulae are
unique. The determination of a specific generalized Gaussian quadrature formula
involves the problem of finding n nodes (x1, . . . ,xn) and weights (w1, . . . ,wn) such
that (8) holds. This is a system of 2n equations in both w ∈Rn and x ∈ (a,b)n, which
is highly non-linear in x1, . . . ,xn. Once more, its solution is in general a difficult
task which is adressed in [29]. To avoid this issue, we will restrict ourselves in the
following to a certain class of T-systems which involves powers of singular functions.
This will allow us to resort to orthogonal polynomials again.

2.3 A certain class of singular Tschebyscheff-systems

In the following we will restrict ourselves to Ω = (a,b) = (0,1) for the sake of
simplicity. But all results easily translate to arbitrary finite intervals (a,b) by affine
linear dilation and translation.
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We propose the follwing T-system on Ω = (0,1), which (as we will see) possesses
a structure that reduces the solution of (8) to a certain classical Gaussian quadrature
rule on Ω̂ = (0,∞).

To this end, let ψ be a C1(0,1) function that fulfills the following conditions:

1. ψ(0) = 0 and limx→1 ψ(x) = ∞.
2.
∫ 1

0 ψ(x) j dx < ∞, for all j ∈ N0.
3. ψ is strictly monotonous increasing, i.e. ψ ′ > 0.

Remark 1. From the conditions 1.–3. the following results can be derived:

• ψ : [0,1)↔ [0,∞) is a C1-bijection.
• limy→∞ ψ−1(y) = 1.
• ∫

∞

0 ψ ′(ψ−1(y))−1 dy = 1.
• ψ is the inverse of a cumulative distribution function whose underlying distribution

has finite moments on [0,∞).

Since polynomials form a T-system over any subset of R, the following lemma
proves, that

ϕ j(x) := ψ(x) j, j = 0,1,2, . . . (9)

is a complete T-system over (0,1), if ψ fulfills the conditions 1.–3.

Lemma 1. If ϕ̂0, . . . , ϕ̂n is a T-system on some domain Ω̂ ⊆ R and ψ : Ω ↔ Ω̂ is a
bijection between Ω ⊆ R and Ω̂ , then the set

ϕ j := ϕ̂ j ◦ψ : Ω → R, j = 0,1, . . . ,n

is a T-system on Ω .

Proof. Suppose that there exist pairwise distinct points t0, . . . , tn ∈ Ω , such that
D(ϕ0, . . . ,ϕn; t0, . . . , tn) ≤ 0 holds. Because of the bijectivity of ψ there are points
t̂ j := ψ(t j) ∈ Ω̂ , such that D(ϕ̂0, . . . , ϕ̂n; t̂0, . . . , t̂n)≤ 0, which is a contradiction
to the assumption that ϕ̂0, . . . , ϕ̂n is a T-system on Ω̂ . ut
Next we will describe the relationship between the generalized Gaussian quadrature
with respect to the system Φ = {ψ(·) j}∞

j=0 on Ω = (0,1) and classical Gaussian

quadrature on the unbounded domain Ω̂ = (0,∞). To this end, we set

ω(y) :=
d
dy

ψ−1(y) =
1

ψ ′ (ψ−1(y))
,

which is non-negative on Ω̂ . We know that there exists a sequence of polynomials
p0, p1, p2, . . . on Ω̂ which are orthogonal with respect to ω , i.e. 〈pi, p j〉Ω̂ ,ω = δi, j.

Remark 2. The orthogonality of the pi translates to the set of functions q j : (0,1)→R

q j(x) := p j ◦ψ(x), j = 0,1,2, . . . ,
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i.e. ∫ 1

0
qi(x)q j(x) dx =

∫
∞

0
pi(y)p j(y)ω(y)dy = δi, j.

Analogously, the n distinct zeros y j ∈ Ω̂ of pn carry over to the zeros x j ∈ (0,1) of
qn as

x j := ψ−1(y j), (10)

since qn(x j) = pn(y j) = 0.

We finally arrive at the following result:

Theorem 3. With Ω = (0,1) and Ω̂ = (0,∞) let ψ : Ω → Ω̂ fulfill the conditions
1.–3., and let y j ∈ Ω̂ , w j ∈R+ ( j = 1, . . . ,n) be the nodes and weights of the classical
Gaussian quadrature rule on Ω̂ with respect to the weight function ω(y) = d

dy ψ−1(y).
Then the quadrature rule

Qn( f ) :=
n

∑
j=1

w j f (x j), where x j = ψ−1(y j) ∈ (0,1), (11)

is exact on the span of Φ = {ϕ0, . . . ,ϕ2n−1} defined in (9), i.e.

Qn(ϕ j) =
∫ 1

0
ϕ j(x) dx, for j = 0, . . . ,2n−1.

Proof. Because of ϕk(x j) = yk
j and

n

∑
j=1

w jyk
j =

∫
∞

0
ykω(y)dy =

∫ 1

0
ϕk(x) dx

it holds for k = 0, . . . ,2n−1 that

Qn(ϕk) =
n

∑
j=1

w jϕk(x j) =
∫ 1

0
ϕk(x) dx.

ut
By now we have shown that the generalized n-point Gaussian quadrature with respect
to the set of singular functions ϕ0,ϕ1, . . . ,ϕ2n−1 from (9) can simply be computed by
mapping the nodes of a certain classical Gaussian quadrature in (0,∞) back to (0,1).
Moreover, because of (5) the quadrature rule (11) converges for any continuous
function on (0,1). This kind of quadrature rule is especially suited for integrands
on (0,1) with a boundary singularity located at x = 1. It is possible to extend this
approach to integrands with singularities at both endpoints of the domain (−1,1).

Remark 3. If we change the first and second condition to

1′. limx→±1 ψ(x) =±∞.
2′.
∫ 1
−1 ψ(x) j dx < ∞, for all j ∈ N0.
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we obtain a T-system of functions which have singularities at both x = −1 and
x =+1. Moreover, it follows that

• ψ : (−1,1)↔ (−∞,∞) is a C1 bijection.
• limx→±∞ ψ−1(x) =±1.
• ∫

∞

−∞
ψ ′(ψ−1(y))−1 dy = 2.

• ψ is the inverse of a cumulative distribution function whose underlying distribution
has finite moments on (−∞,∞).

All previous statements also hold true for this case, with obvious modifications in
their proofs.

2.4 Examples

We now give three examples for the choice of the function ψ , where the first one
relates to the classical Gauss-Laguerre quadrature on (0,∞) with respect to the
weight-function ω(y) = e−y and the second one to a non-classical rule with respect
to ω(y) = cosh(y) · cosh(sinh(y))−2 on (0,∞) as well. The third example refers to
Remark 3 and is related to the classical Gauss-Hermite quadrature on the double-
infinite interval (−∞,∞) with respect to the weight function ω(y) = exp(−y2).

2.4.1 Powers of logarithms

Our first example involves the classical Gauss-Laguerre quadrature rule, which is
well-known and its nodes and weights are available from numerous libraries.

We choose ψ : (0,1)→ (0,∞) as

ψlog(x) :=− log(1− x).

With (9), this results in the T-system defined by

ϕk(x) := (− log(1− x))k , k = 0,1,2, . . . . (12)

The inverse is given as ψ−1(y) = 1− exp(−y) and its derivative is

ω(y) :=
d
dy

ψ−1(y) = exp(−y). (13)

Because of
∫ 1

0 (− log(1− x))k = k! all ϕk are integrable. Thus the conditions 1.–3.
are fulfilled and Theorem 3 relates to the well-known Laguerre polynomials which
define the Gauss-Laguerre quadrature rules on (0,∞) with respect to the weight-
function ω(y) = e−y. Let wi and yi denote the n quadrature weigths and nodes of the
Gauss-Laguerre formula on (0,∞). Then, by mapping the Gaussian nodes yi back to
(0,1), we obtain the quadrature rule
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0
f (x) dx≈

n

∑
i=1

wi f (xi) , with xi = 1− exp(−yi) (14)

which is exact for ϕ0,ϕ1, . . . ,ϕ2n−1 defined in (12) on the interval (0,1). Moreover,
one can prove that the generalized Gaussian quadrature (11) on (0,1) with ϕi given by
(12) achieves basically exponential convergence for certain integrands with algebraic
singularities.

Theorem 4. Let f (x) = (1− x)−α with α < 1. Then, the generalized Gaussian for-
mula with respect to the T-system (12) converges faster than any polynomial, i.e.∣∣∣∣∣

∫ 1

0
f (x) dx−

n

∑
i=1

wi f (xi)

∣∣∣∣∣≤ cα,kn−k,

where cα,k is a constant depending on both α and k, but not on n.

Proof. By Theorem 1 from [30] the quadrature error of the Gauss-Laguerre formula
for a k-times continuous differentiable function g is bounded by∣∣∣∣∣

∫
∞

0
g(y)e−y dy−

n

∑
i=1

wig(yi)

∣∣∣∣∣≤ cn−k ·
∫

∞

0
|y k

2 g(k)(y)|e−y dy. (15)

Mapping this result to the unit interval yields∣∣∣∣∣
∫ 1

0
f (x) dx−

n

∑
i=1

wi f (xi)

∣∣∣∣∣=
∣∣∣∣∣
∫

∞

0
f (1− e−y)e−y dy−

n

∑
i=1

wi f (1− e−yi)

∣∣∣∣∣
=

∣∣∣∣∣
∫

∞

0
eαy e−y dy−

n

∑
i=1

wieαyi

∣∣∣∣∣
(15)
≤ cn−k ·αk

∫
∞

0
|y k

2 eαy|e−y dy

= cn−k · αk

(1−α)
k
2+1

Γ
(

k
2
+1
)

which holds for any k = 1,2, . . . . ut

Recall that for this class of integrands the Gauss-Legendre quadrature only achieves
an algebraic rate of convergence of n−1+α .

2.4.2 Powers of inverse hyperbolic functions

Next, we consider a choice for ψ that consists of certain hyperbolic functions. It is
given by

ψhyp(x) := arc sinh
(

2
π

arc tanh(x)
)
, x ∈ (0,1), (16)
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which is inspired by the so-called double exponential (DE) quadrature [32, 45]
that has gained substantial interest within the last years. It leads to the problem of
constructing a Gaussian quadrature rule for the weight function

ω(y) =
cosh(y)

cosh(π
2 sinh(y))2

on the infinite interval (0,∞). For this purpose we use the algorithm proposed in [11]
and map the resulting Gaussian nodes y1, . . . ,yn back to (0,1). This results in the
quadrature formula∫ 1

0
f (x) dx≈

n

∑
i=1

wi f (xi), with xi = tanh
(π

2
sinh(yi)

)
(17)

which is exact on the T-system

ϕk(x) = arc sinh
(

2
π

arc tanh(x)
)k

, k = 0,1, . . .2n−1.

Note that the predecessor of the DE-rule was the Tanh-quadrature which was intro-
duced in [44]. In our setting it relates to

ψ(x) = arc tanh(x)

which also fulfills the conditions 1.–3. and leads to orthogonal polynomials with
respect to

ω(y) = cosh(y)−2.

Remark 4. Both the double exponential and the tanh approach rely on the quick
decay of f ◦ψ−1(y) ·Dψ−1(y) as y→±∞, which allows for an exponential rate
of convergence for the trapezoidal rule. This approach does not work well in a
multivariate setting, because the factor ∏

d
j=1 Dψ−1(y j) exponentially blows up the

norm of the transformed integrand [27]. Our approach is different in the sense that we
do not apply a trapezoidal rule directly to f ◦ψ−1(y) ·Dψ−1(y) but use a Gaussian
rule tailored to Dψ−1, which is applied to f ◦ψ−1 only.

2.4.3 Powers of the inverse error function

Our third example illustrates Remark 3 and relates to Gauss-Hermite quadrature on
the whole R. We choose ψ : (−1,1)→ (−∞,∞) as

ψerf(x) := erf−1(x),

where erf(x) denotes the error-function2. This leads to the T-system of functions

2 The error-function erf : R→ (−1,1) is defined as erf(x) = 2√
π
∫ x

0 e−t2
dt .
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ϕk(x) :=
(
erf−1(x)

)k
, k = 0,1,2, . . . (18)

which have singularities at both x = −1 and x = 1. Since ψ(x)k is integrable on
(−1,1) for all k = 0,1, . . ., the conditions 1′.–3′. are fulfilled and Theorem 3 relates
to the well-known Hermite polynomials which define the Gauss-Hermite quadrature
rules on (−∞,∞) with respect to ω(y) = 2√

π e−y2
. Then, if wi and yi denote the

weights and nodes of the n-point Gauss-Hermite quadrature on R, the resulting
quadrature rule on (−1,1) with respect to the T-system (18) is given by∫ 1

−1
f (x) dx≈

n

∑
i=1

wi f (xi), with xi = erf(yi).

Note that it is possible to derive an analogous error bound as in Theorem 4 by an
estimate for Gauss-Hermite quadrature which is given in [30].

3 Dimension-adaptive sparse grids

In this section we recall the sparse grid method for the integration of multi-
variate functions. Sparse grid quadrature formulae are constructed using certain
combinations of tensor products of one-dimensional quadrature rules, see, e.g.,
[6, 15, 16, 20, 21, 36, 43, 46]. This way, sparse grid methods can exploit the mixed
smoothness of f , if present, and may overcome the curse of dimension to a certain
extent. Moreover, they can be employed in a dimension-adaptive fashion.

3.1 Classical construction

For a continuous univariate function g : (0,1)→ R let

Qnk g :=
nk

∑
i=1

wi,k g(xi,k)

denote a sequence of univariate quadrature rules with nk+1 > nk, Q0 f = 0 and
Qnk g→ ∫ 1

0 g(x) dx for k→ ∞. Using the difference quadrature formulae

∆k = Qnk −Qnk−1

one has
∞

∑
k=1

∆kg =
∫ 1

0
g(x) dx.

Then, for a d-variate function f : (0,1)d → R, its integral can be represented by the
infinite telescoping series
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(0,1)d

g(x)dx = ∑
k∈Nd

∆k f (19)

which collects the products of each possible combination of the univariate difference
formula. Here, k ∈ Nd denotes a multi-index with k j > 0 and

∆k f :=
(
∆k1 ⊗ . . .⊗∆kd

)
f .

For a given level l ∈ N and the choice nk = 2k−1 the classical sparse grid method3,
see, e.g., [16, 36, 43], is then defined by

SGl f := ∑
|k|1≤l+d−1

∆k f (20)

where |k|1 := ∑
d
j=1 k j. Here, from the set of all possible indices k ∈ Nd , only those

are considered whose | · |1-norm is smaller than a certain value. Note that the product
integration rule is recovered if the norm | · |∞ := max{k j : j = 1, . . . ,d} is used for
the selection of indices instead of the | · |1-norm in (20).

3.2 Generalized sparse grids

The sparse grid construction can be tailored to certain classes of integrands if some
information on the importance of the dimensions or the importance of the interactions
between the dimensions is a priori known. This is achieved by choosing appropriate
finite index sets I ⊂ Nd in the representation (19) such that a given accuracy is
attained with as few as possible function evaluations.

To ensure the validity of the hierarchical expansion the index set I has to satisfy
the admissibility condition

k ∈ I and l≤ k⇒ l ∈ I.

In this way, the generalized sparse grid method

SGI f := ∑
k∈I

∆k f (21)

is defined, see, e.g., [16]. Note that the product rule, the classical sparse grid con-
struction (20), sparse grids with delayed basis sequences [38] or nonisotropic sparse
grids based on the weighted norms |k|1,a := ∑

d
j=1 a jk j with weight factor a ∈ Rd

+

for the different coordinate directions [16, 21] are just special cases of this general
approach.

3 Often denoted as Smolyak’s method, see [43].
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Algorithm 1: Dimension-adaptive construction of the index set I.

Initialize:

1. set of active indices: I = (1, . . . ,1).
2. s = ∆(1,...,1) f .

repeat

1. Determine the set of admissible indices A= {I+ ei : i = 1, . . . ,d}.
2. For all k ∈A compute ∆k f .
3. Determine (some) k̂ = argmaxk∈A ∆k f .
4. Add the index k̂ to I.
5. Update the sum s = s+∆k̂ f .

until |∆k̂ f |< ε;

Output: SGI f = s.

3.3 Dimension-adaptive sparse grids

In practice, usually no a priori information on the dimension structure of the integrand
is available. In this case algorithms are required which can construct appropriate
index sets I automatically during the actual computation. Such algorithms were
presented in [17, 23] where the index sets are found in a dimension-adaptive way
by the use of suitable error indicators. The adaptive methods start with the smallest
index set I = {(1, . . . ,1)}. Then, step-by-step the index k from the set of all admis-
sible indices is added which has the largest value |∆k f | and is therefore expected
to provide the largest error reduction, see [15, 17, 21, 33] for details. Altogether,
the algorithm allows for an adaptive detection of the important dimensions and
heuristically constructs optimal index sets I in the sense of [5, 22] which is closely
related to best N-term approximation [8].

For the sake of completeness, we give a simplified version4 of the dimension-
adaptive algorithm from [17, 21] in Algorithm 1. In our numerical experiments of
Section 4 we will use this approach with the three generalized Gaussian quadrature
rules from Subsection 2.4.

Note finally that, besides the dimension-wise adaption, also a purely local adaptiv-
ity based on the trapezoidal rule or higher order composite Newton-Cotes formulae
is possible [2, 4], which leads to algebraic convergence. However, since our aim
in this paper is to explicitly deal with boundary singularities by means of a special
generalized Gaussian approach that allows for exponential convergence, we will stick
to the dimension-adaptive approach here.

4 The original algorithm from [17] which we employed in our computations in Section 4 uses a
more sophisticated error criterion than the one described in Algorithm 1.
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3.4 Degree of exactness

Now we have a look at the degree of exactness of the sparse grid method. As before,
let Φ = {ϕ j}∞

j=0 be a complete Tschebyscheff-system on (0,1) and let the univariate
quadrature rule, on which a particular sparse grid algorithm is based, have a certain
degree of exactness deg(nk) with respect to Φ , i.e.

Qnk ϕ j =
∫ 1

0
ϕ j(x) dx, for all j = 0, . . . ,deg(nk).

If one defines Pk = span{ϕ0, . . . ,ϕdeg(nk)}, the sparse grid algorithm SGI is exact on
the space

{Pk1 ⊗ . . .⊗Pkd : k ∈ I}.
This is similar to a result from [36]. There it was shown that a regular Clenshaw-
Curtis sparse grid (i.e. I` = {k ∈ Nd

+ : |k|1 ≤ d + `−1}) is exact on

{Pk1 ⊗ . . .⊗Pkd : |k|1 = d + `−1},

where the ϕi are polynomials of degree i and deg(nk) = nk. In our case, we have
deg(nk) = 2n−1 since we are in a (generalized) Gaussian setting.

4 Numerical results

In this section we give results for several numerical experiments. First, we study
the behaviour of our generalized Gaussian quadrature formulae in the univariate
case for both, smooth and singular integrands, as well as the worst-case error in
the Hardy space. Then, we deal with the higher-dimensional case where we employ
the dimension-adaptive sparse grid approach that is based on our new univariate
approach and compare it with dimension-adaptive sparse grids based on classical
univariate rules like Gauss-Legendre or Clenshaw-Curtis quadrature. For the sake of
completeness, we also compare with plain Monte Carlo and the Quasi-Monte Carlo
method that is based on the Sobol sequence. Note that in all experiments the term
ψlog refers to the generalized Gaussian quadrature-formula with (12), while ψhyp
refers to the construction with (16). ψerf refers to the construction from (18) with the
additional linear transformation to the unit-interval (0,1).

Note that, because of
∫ 1

0 f (x) dx =
∫ 1

0 f (1− x) dx, it is advantageous to transform
integrands f (x) with a singularity located at x = +1 to f (1− x), which has the
same singularity at x = 0. Since double floating point arithmetic is more precise in
a neighbourhood of 0 than in a neighbourhood of ±1 it is possible to resolve the
singularity up to a higher precision, after this transformation is employed. Of course
the quadrature nodes have to undergo the same transformation, i.e. xi 7→ 1− xi.



16 Michael Griebel and Jens Oettershagen

20 22 24 26
10−16

10−11

10−6

10−1

function evaluations

re
la

tiv
e

er
ro

r

Trapezoidal

Gauss-Legendre

Clenshaw-Curtis

ψlog
ψhyp
ψerf

(a) f (x) = (1− x)−1/2
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(b) f (x) = exp(x)

Fig. 1 Convergence behaviour for the singular integrand f (x) = (1− x)−1/2 (left) and smooth
integrand f (x) = exp(x) (right).

4.1 Univariate results

As our first univariate test case we consider functions with algebraic singularity of
the order 0 < α < 1 at x = 1, i.e. we consider the problem∫ 1

0

1
(1− x)α dx, (22)

for various values of 0 < α < 1. As can be seen in Figure 1, the generalized Gaussian
approaches achieve exponential convergence not only for the smooth example with
f (x) = exp(x) but also for the singular integrand (22) with α = 1/2. Furthermore it
can be observed that the rate of convergence for the trapezoidal, the Clenshaw-Curtis
and the classical Gauss-Legendre quadrature are only algebraic. We clearly see that
the Gauss-Legendre rule loses its exponential convergence when it comes to the
treatment of singular functions. This is however not the case for our new generalized
Gaussian approach which exhibits exponential convergence for both, the smooth and
the singular test function.

Next, we consider how the type of singularity of the integrand (22) affects the
convergence. In Figure 2 one can see the performance of the univariate generalized
Gaussian approach based on ψlog = − log(1− x) for several values of α ∈ (0,1).
The convergence is always exponential, even though it takes longer to reach the
asymptotic exponential regime for big values of α . Note that the integrands are not
in L2(0,1) anymore for α ≥ 1/2. For the actual computation of the results displayed
in Figure 2 we used long double5 floating point arithmetic for the evaluation of

5 64 bit significant precision and 14 bit exponent precision.
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Fig. 2 Convergence behaviour of the generalized Gaussian quadrature w.r.t. ψlog(x) for the inte-
grand f (x) = (1− x)α with algebraic singularities for different value of α .

the integrand. We stress that the quadrature nodes and weights were only stored in
standard double6 precision.

Another example concerns the quadrature error in a Hardy space. It consists of
functions that are analytic in the unit-circle D= {z ∈ C : |z|< 1} and is given by

H2 = { f : D→ C : ‖ f‖2
H2 < ∞}, where ‖ f‖2

H2 =
∫
D
| f (z)|2 |dz|.

Since H2 is a reproducing kernel Hilbert space with kernel K(x,y) = 1
1−xy , see e.g.

[47], the quadrature error in this space can be estimated by standard functional
analysis as ∣∣∣∣∣

∫ 1

0
f (x) dx−

n

∑
i=1

wi f (xi)

∣∣∣∣∣≤ Rn(x,w) · ‖ f‖H2 ,

where Rn(x,w) is the so-called worst-case error which depends on the nodes x and
weights w. It is explicitly given by

Rn(x,w)2 =
∫ 1

0

∫ 1

0
K(s, t) dsdt−2

n

∑
i=1

wi

∫ 1

0
K(t,xi) dt +

n

∑
i=1

n

∑
j=1

wiw jK(xi,x j)

=
π2

6
+2

n

∑
i=1

wi
log(1− xi)

xi
+

n

∑
i=1

n

∑
j=1

wiw j
1

1− xix j
.

In Figure 3 one can see that all three new methods, i.e. the generalized Gaussian
quadrature with respect to ψlog, ψhyp and ψerf, significantly outperform polynomial-

6 53 bit significant precision and 10 bit exponent precision.
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Fig. 3 Comparison of several methods for the worst-case error in the Hardy space H2.

based methods like Gauss-Legendre as well as Clenshaw-Curtis and the trapezoidal
rule in the Hardy space.

4.2 Multivariate results for standard test cases

Now we consider simple higher-dimensional model problems with a certain multi-
plicative and additive structure. To this end, let

f (x) = ∑
u⊆{1,...,d}

γu∏
i∈u

1
3
√

1− xi
, (23)

where the so-called product-weights γu [42, 46] are defined by

γu := ∏
i∈u

γi.

Here, the sequence γ1 ≥ γ2 ≥ . . .≥ γd > 0 moderates the contribution of the different
coordinate directions to the value of the integral.

For the special case γi = 2−i, the resulting convergence behaviour can be seen in
Figure 4 for conventional integration methods like MC and QMC and the dimension-
adaptive sparse grid approach based on both, the classical Clenshaw-Curtis and
Gauss-Legendre formulae and our new quadrature formula with ψlog chosen as (12)
and ψhyp chosen as (16), respectively. We clearly see again that the conventional
methods only possess an algebraic rate of convergence, whereas our new approach
with ψlog and ψhyp indeed shows exponential convergence. We furthermore see that,
for this particular model problem, we obtain somewhat better results for ψlog than
for ψhyp. For higher dimensions this exponential behaviour gets less prominent. This
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Fig. 4 Convergence behaviour for the test function with product-weights (23) with γi = 2−i for
dimensions d = 2,4,8,16.

stems from a delay in the onset of the asymptotic regime due to the dimension-
dependent constants involved here [34]. But the superiority over the conventional
methods still can be seen clearly.

As another example we will now deal with multivariate functions that can be
represented as a superposition of q-dimensional functions. They are just a special
case of the above framework where all γu = 0 for sets u with cardinality bigger than
q, i.e. |u|> q. This type of weights is often referred to as finite-order weights, see
e.g. [41]. Here, we consider the test-function
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Fig. 5 Convergence behaviour of the finite-order test function (24) with q = 2 and d = 2,4,8,16.

fd,q(x) := ∑
u⊂D
|u|≤q

1√
∑ j∈u(1− x j)

. (24)

The results are displayed in Figure 5. We basically observe a similar convergence
behaviour as in the previous example. Now, however, ψhyp is slightly superior to ψlog.
Moreover, the offset of the asymptotic convergence behaviour with respect to the
dimension is more specific. The number of function evaluations, needed until the
convergence rate for the dimension-adaptive sparse grid methods kicks in, depends
quadratically on d. This is due to the fact that for q = 2 the sum in (24) consists of(d

2

)
parts.
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4.3 Computing multivariate normal probabilities by the Genz-
algorithm

As a final example we consider the evaluation of multivariate normal probabilities
which is an important part of many numerical methods in statistics [14], financial
engineering [15], physics [31] and econometrics [1, 24]. It is defined by the integral

F(b) :=
1√

det(Σ)(2π)d

∫ b1

−∞

. . .
∫ bd

−∞

exp
(
−1

2
xtΣ−1x

)
dx (25)

where Σ ∈Rd×d is a covariance matrix which depends on the specific problem under
consideration.

For (25) it is common to use a sequence of variable transformations to obtain
an integration problem that is defined on the open unit cube. This approach was
independently developed by Genz [12], Geweke and Hajivassiliou [3, 18] and Keane
[26]. In statistics, this method is often referred to as Genz-algorithm, while in
econometrics it is called GHK-simulator. Regular sparse grids based on the Gauss-
Legendre quadrature were utilized in [24] for the first time in this setting. In the
following we will demonstrate that the sparse grid approach can benefit from our new
univariate quadrature formulae. We remark that this appraoch can also be applied to
the computation of other probabilities, e.g. the t-distribution [14].

The Genz-algorithm [12] consists of several transformations and finally leads to
the integral

F(b) = b̂1

∫
(0,1)d−1

d

∏
i=2

b̂i(w1, . . . ,wi−1) dw (26)

where the b̂i are recursivly given by

b̂i(w1, . . . ,wi−1) = Φ

(
C−1

i,i ·
(

bi−
i−1

∑
j=1

Ci, j ·Φ−1(w j · b̂ j(w1, . . . ,w j−1)

))
.

Here, the matrix C ∈ Rd×d denotes a Cholesky factor7 of the covariance-matrix, i.e.
CCT = Σ , and Φ : R→ (0,1) is the cumulative Gaussian distribution function.

The main advantage of the Genz-algorithm in a dimension-adaptive sparse grid
setting stems from the fact that it enforces a priority ordering onto the variables
w1, . . . ,wd−1, where w1 contributes the most and wd−1 contributes the fewest to the
value of F(b). Furthermore, the dimensionality of the original integration problem is
reduced by one. A disadvantge is of course the increased cost for the evaluation of
the transformed integrand in formula (26). Moreover, while the original integrand
was analytic in the whole complex plane, the new integrand is only analytic within
the open disc {z ∈C : |z− 1

2 |< 1
2}. This is due to the inverse cumulative distribution

function Φ−1 that introduces a singularity at the origin and in some dimensions a

7 Cholesky factorization is here only unique modulo row and column permutation.
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Fig. 6 Convergence behaviour for the Genz-integrand with ρ0 = 0.1 and bi =
1
2 .

fast growth of the integrand for arguments close to one. This is the reason why we
now also included the ψerf method in our experiments for the Genz-integrand.

In our numerical experiments we will consider a special covariance structure for
which the integral in (25) has a closed form solution [10, 12]. Namely we assume that
the covariance matrix Σ has constant variance Σi,i = 1 and covariance Σi, j = vi · v j
for i 6= j, where vi ∈ (−1,1), i = 1, . . . ,d. We remark that the normalization of the
variance to one is not a restriction because it is always possible to shift the variance
via a diagonal transformation to the boundaries of integration b1, . . . ,bd .

In our first example we choose constant correlation Σi, j = ρ0 = 0.1 and all bi =
1
2 .

In Figure 6 it can be observed that the dimension-adaptive sparse grid approach
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Fig. 7 Convergence behaviour of the Genz-integrand with ρ0 = 0.25 and bi =−1+ i
10 .

is superior to (Q)MC for small values of d. Especially if it is based on the new
generalized Gaussian formulae (11) with ψlog, ψhyp and ψerf , it performs very well
and even achieves exponential convergence for small d. For higher dimensions the
convergence should still be exponential, but it takes quite long until this asymptotic
rate sets in. Thus exponential convergence is not visible in the case d = 16. This
situation is common for sparse grids, as pointed out in [34, 35].

In our second example we use different values for the boundaries, namely
bi = −1 + i

10 and a bigger, but still constant correlation Σi, j = ρ0 = 0.25. The
convergence behaviour is similar to the first example, as can be seen from Figure 7.
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Fig. 8 Convergence behaviour of the Genz-integrand with Σi, j = 2−(i+ j) and bi =−1/2+ i
10 .

This demonstrates that our new approach indeed allows to deal with varying boundary
values as it is needed in most pratical applications.

In the third example we look at a truely high-dimensional example with d up to
256. Here we set Σi, j = 2−(i+ j) and bi =−1+ i

10 . This enforces an exponential decay
of the correlation coefficients which weakens the interaction between the coordinates
of the underlying integrand. Albeit involving a somewhat strong restriction, such
situations appear often in practical problems with high nominal but low intrinsic
dimensions, where measured data are involved, like for example in the panel probit
models in econometrics [24], in density estimation in statistics [13] or in the pricing
of various instruments in financial engineering [15].
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It can be observed in Figure 8 that the dimension-adaptive sparse grid algorithm
has now no trouble with nominally high dimensions and is able to correctly detect
the important intrinsic coordinate directions. Moreover our new approach with ψlog,
ψhyp and ψerf clearly outperforms all other methods in the case d = 256, even though
exponential convergence, as in Figure 6, is not apparent yet. Still, to achieve a relative
accuracy of 10−7 it needs less than 105 function evaluations whereas QMC and
the Clenshaw-Curtis or Gauss-Legendre based sparse grids would need about 108

function evaluations and plain Monte Carlo would even involve about 1013 function
values.

Acknowledgments This research was supported by the Collaborative Research
Center 1060 of the DFG.

5 Conclusion

In the present paper we constructed a new univariate generalized Gaussian quadrature
rule for bounded domains, which is related to classical Gaussian quadrature on un-
bounded domains with respect to a certain weight function. Special cases involve the
Gauss-Laguerre and Gauss-Hermite rules and thus allow for an easy construction of
the new generalized Gaussian quadrature by building onto existing implementations.
Another example, which is related to the double exponential quadrature approach,
was also presented.

Moreover, we used sparse tensor-products of this new univariate approach to
cover multivariate problems. As application we considered a variant of the Genz-
algorithm in which the multivariate integrals are evaluated by a dimension-adaptive
sparse grid approach that was based on the new generalized Gaussian quadrature
formulae. We demonstrated that our new method is able to significantly outperform
dimension-adaptive sparse grid methods based on Gauss-Legendre or Clenshaw-
Curtis quadrature as well as Monte Carlo and Quasi-Monte Carlo methods in mod-
erate dimensions up to 16 and for special cases also in a truely high-dimensional
setting with dimensions of d = 256.
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