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Notation and Abbreviations

Notation

R Set of real numbers
xt Position of the particle at time t
Xt Random position of the stochastic Process X = (Xt)t at time t
ut vector field or drift term
g(t) diffusion term in a SDE
µ Initial distribution
ν Target distribution

Ex∼q[f(x)] Expected value with respect to the probability density function q. Suppose X ∼ q is a
random variable distributed according to q, then Ex∼q[f(x)] = E[f(X)]

N (µ, σ2) Univariate normal distribution with mean µ and variance σ2

N (x | µ, σ2) Probability density function of the univariate normal distribution
U([0, 1]) Uniform distribution over the interval [0, 1]
ϕ#f(x) Pushforward of f defined by ϕ#f(x) = f(ϕ−1(x)) det

[
∂ϕ−1

∂x (x)
]

ϕ#π(A) Pushforward of the probability measure π by ϕ : Ω → X , defined by ϕ#π(A) =
π(ϕ−1(A)) for all measurable sets A ⊆ X

∆f Laplacian of the function f defined by ∆f = ▽ · (▽f)
O(f) Big O notation

Wp(µ, ν) p-Wasserstein distance between µ and ν as defined in (2.2.2)
(Wt)t Brownian motion
δx(A) Dirac measure, which is 1 if x ∈ A and 0 otherwise for all measurable sets A
In or I n× n identity matrix. If the dimension is clear we sometimes write I instead of In
M(X ) The set of all Radon measures on the space (X ,F), where F is a σ-algebra on X
M+(X ) The set of positive Radon measures on the space X
P(X ) The set of probability measures on the space X
P2(X ) The set of probability measures on the space X which have finite second moment
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2 CONTENTS

Abbreviations

scRNA-seq single-cell RNA sequencing
CNF Continuous Normalizing Flow
OT Optimal Transport

UOT Unbalanced Optimal Transport
ODE Ordinary Differential Equation
SDE Stochastic Differential Equation
CFM Conditional Flow Matching

I-CFM Independent Conditional Flow Matching as introduced in Section 3.2.1
OT-CFM Optimal Transport Conditional Flow Matching as introduced in Section 3.2.2
SB-CFM Schrödinger Bridge Conditional Flow Matching as introduced in Section 3.2.3

UOT-CFM Unbalanced OT Conditional Flow Matching as introduced in Section 3.3
[SF ]2M Simulation free Score and Flow Matching as introduced in Section 5.3.2

AM Action Matching as introduced in Chapter 4
EAM Entropic Action Matching as introduced in Section 5.2

I-AM/I-EAM Variant of (entropic) Action Matching in which we interpolate between data points in
a very simple way the method is introduced in Section 6.1



Chapter 1

Introduction

Understanding the complex dynamics that control the evolution of particles or individuals is fun-
damental in various disciplines, from natural science to Machine Learning. Learning underlying
dynamics from static temporal snapshots of data is a difficult task. An example of temporal
snapshots of a dynamic is given in Figure 1.1. This data structure arises naturally in areas as
diverse as single-cell biology, quantum mechanics and generative modeling.

Single cell biology allows us to understand the behavior of individual cells. One powerful tech-
nique here is single-cell RNA sequencing (scRNA-seq) which helps us to analyze gene expressions
at the single-cell level. It can identify which genes are expressed in each cell and quantify their
expression levels. We are especially interested in understanding the cell dynamics which helps us
to understand processes such as cell differentiation, development and disease progression. Unfor-
tunately the cells are destroyed when measuring them. Thus, we cannot follow an individual cell
over time. Instead, we only have static snapshots of cells and their gene expressions at different
time points. At each time point we can assume that the cells are independently sampled. The
data is thus cross-sectional, i.e. we have several independent samples at each point in time.

0.2 0.0 0.2

0.3

0.2

0.1

0.0

0.1

0.2

0.3 data (t=0.00)

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
data (t=0.20)

0.5 0.0 0.5

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8 data (t=0.40)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0 data (t=0.60)

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
data (t=0.80)

1 0 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5 data (t=1.00)

Figure 1.1: Temporal snapshots of an evolution of diamonds. We start with one diamond which
then splits into four diamonds over time. We want to learn the underlying dynamics by only
having access to the temporal snapshots.
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In quantum mechanics measuring the wave function collapses the function. Thus, we only have
temporal snapshots of data to describe the quantum state of a system.

Generative modeling aims at learning the patterns and distribution of the data in order to gen-
erate new data samples. A lot of research has been done over the last years. Many modern
methods rely on interpolating between a simple prior distribution, often a Gaussian, and the
data distribution. By this, we can sample from the simple prior distribution and then push
the sample through some process to obtain a sample from the data distribution. Two common
approaches here are Normalizing Flows and Diffusion Models. Normalizing flows transform the
prior through a series of invertible mappings to obtain the data distribution [RM15]. Continu-
ous Normalizing Flows (CNFs) use a continuous transformation which is described by a Neural
Ordinary Differential Equation [Che+18]. As this approach simulates the ODE during training
it is complex to scale it to large datasets. Diffusion models on the other hand start with the
data points and gradually corrupt them with noise until they arrive at a simple prior distri-
bution. They then need to learn to reverse the diffusion process. For this they use a simple
regression training objective and do not need to simulate the diffusion process in training. This
made Diffusion Models very popular. Examples for such models are Score Matching with SDEs
[Son+21] or Denoising Diffusion Probabilistic Models [HJA20]. The methods discussed in this
thesis are capable of learning probability paths that interpolate between empirical distributions
that change over time. This allows us to use these methods to learn an interpolation path
between a prior distribution and the data distribution, enabling us to generate samples from the
data distribution.

In this work we mainly want to investigate the methods Action Matching [Nek+23b] and Flow
Matching [Lip+22], [Ton+24]. Both try to train CNFs in a simulation-free way. This means we
do not want to simulate the process during training by for example solving an ODE. We also
look at extensions of these methods, for example for stochastic dynamics. Figure 1.2 shows how
the methods we introduce in this thesis are interconnected.

To make our objective mathematically more rigorous we suppose that the dynamics, we want
to learn, follows an Ordinary Differential Equation (ODE) or a Stochastic Differential Equation
(SDE). The particles evolve in the time interval [t0, tn]. In the deterministic case let (xt)t∈[t0,tn]
be the process of particles, where xt is the location of the particle at time t. We suppose that
the particles evolve according to the ODE:

dxt = ut(xt) dt,

where xt0 ∼ µ and xtn ∼ ν. We further assume that we have access to samples xjt0 from µ for
j = 1, . . . nt0 and xktn from ν for k = 1, . . . , ntn . If n > 1 we further have access to samples
xjti for j = 1, . . . , nti and i = 1, . . . n − 1. In the stochastic case the particles are described by
the stochastic process X = (Xt)t∈[t0,tn], where the (random) location of a particle at time t is
described by the random variable Xt. The stochastic process evolves according to the SDE

dXt = ut(Xt) dt+ g(t) dWt, (1.0.1)
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Continuous Normalizing Flows
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Figure 1.2: Connections between the methods we investigate in this Thesis.

where g(t) is known. Assuming g(t) is known imposes a limitation on the model, but given
the cross-sectional nature of the data, this assumption is necessary. Despite this constraint,
incorporating stochastic dynamics offers certain advantages. For instance, SDEs are known to
explore the state space more thoroughly in generative modeling. Additionally, many processes
are naturally modeled as SDEs, such as trajectory inference in single-cell analysis, which we
discuss later.

Why Do Standard Time Series Methods Fail?

On the first glimpse the data has a time series structure. Time series have been studied for
hundreds of years and many effective methods have been developed for forecasting. Standard
methods include ARIMA models or time series regression [Hyn18]. More advanced models include
Recurrent Networks, LSTMs [SH+97] or even Transformer [Wen+23]. All of those methods,
however, require us to have knowledge of trajectories of the data. We, on the other hand, want
to deal with static snapshots of data. One possibility would be to view the empirical distributions
p̂ti as data points in Wasserstein space. This, however is an infinite dimensional space and poses
a very complex problem. Thus, we will not use time series methods in the following.

Objective of This Work

In this work we investigate the methods of Action Matching and Flow Matching. While they
solve the same problem, the two methods use different training objectives to tackle the tasks.
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We want to investigate the assumptions that they have on the data and experimentially test
how these methods perform in different data regimes, for example in high dimensional settings.
We further want to look at stochastic extensions and their predictive performances compared to
their deterministic counterparts. To gain a deeper understanding we developed several artificial
datasets. In the end we will test the methods on a real single-cell dataset. We will further
propose some adaptions to make the methods more robust in different settings.

Related Work

Both methods Flow Matching and Action Matching were inspired by CNFs [Che+18]. We intro-
duce CNFs in Section 2.1. They have applications in generative modeling [Gra+19] and single-cell
biology [Ton+20]. A big computational bottleneck of CNFs is, however, that to propagate data
through the model, we need to solve an ODE numerically. Because of that CNFs scale poorly
to large datasets. Many attempts were made to speed them up and make them more robust
[Qua+20], [Yan+20], yet they still remain computationally expensive. Another approach is to
regularize CNFs with the help of Optimal Transport. This yields straighter paths and thus the
trajectories are easier to numerically integrate [Onk+21].

Dynamical Optimal Transport provides us with a way to transport one measure to another by
geodesics. This gives us a very good idea how we might want to transport one measure to the
next. Schrödinger bridges [Lé13] introduce an entropic regularized version of this problem. We
discuss both concepts in Section 2.2.

We discuss related methods to infer trajectories in single-cell biology in Chapter 7.

Structure of the Thesis

In Chapter 2 we introduce Continuous Normalizing Flows and Optimal Transport to build a
mathematical foundation. Here, we will learn about mathematical ways to transport one measure
to another. In Chapter 3 and Chapter 4 we explain the two main methods of this thesis: Flow
Matching and Action Matching. Afterwards in Chapter 5 we explore Stochastic extensions of
the methods. Finally in Chapter 6 we test our models on different artificial data settings while
in Chapter 7 we apply them to real single-cell data.
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Contributions

• We introduce UOT-CFM which is an adaptation of Optimal Transport Conditional Flow
Matching (OT-CFM). This adaption is more robust to outliers and cluster structures.

• We introduce independent Action Matching (I-AM) and independent entropic Action Match-
ing (I-EAM). Those are variations of AM/EAM which interpolate the data artificially
between two discrete time points for which samples are available.

• We use the Hutchinson trace estimator to make entropic Action Matching more robust and
scalable.

• By thorough testing on different artificial datasets we develop guidelines when it is best to
use each method.
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Chapter 2

Preliminaries

2.1 Continuous Normalizing Flows

CNFs are a type of flow-based generative model. Originally, they were proposed for image gener-
ation. They transform a known distribution µ (usually a simple one like the standard Gaussian
distribution) to another distribution ν (usually a more complex distribution) by applying a trans-
formation to it. This transformation needs to be learned. CNFs assume that this transformation
is continuous, more precisely that it can be defined by an ODE. That means we can describe the
change in the input variable xt by a smooth, time-dependent vector field u : [0, 1] × Rd → Rd

such that
dxt = ut(xt) dt. (2.1.1)

This transformation is invertible. In order to learn the transformation we parametrize u by
a neural network uθ(t, x) with learnable parameter θ. In contrast to Generative Adversarial
Networks or Variational Autoencoders CNFs allow us to compute the exact likelihood of samples.
The likelihood is calculated by the Instantaneous Change of Variables formula:

Theorem 2.1.1 (Theorem 1 in [Che+18]). Let xt be a finite continuous random variable with
probability density function pt(xt). Let dx

dt = u(t, xt) describe the continuous-in-time transform-
ation of xt. We assume that u is uniformly Lipschitz continuous in x and continuous in t, then
the change in log probability also follows a differential equation,

∂ log pt(xt)

∂t
= −tr

(
du

dxt

)
.

CNFs are trained by Maximum Likelihood Estimation, i.e. we solve the ODE to transform the
simple distribution to the more complex one and then calculate the log likelihood. More details
can be found in [Che+18]. Solving an ODE in every training step is computational expensive

9
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and scales poorly to high dimensions. In Chapter 3 and Chapter 4 we introduce simulation free
objectives to this problem.

Let ϕ(t, x) be the solution of the ODE (2.1.1) with initial condition ϕ(0, x) = x. The map ϕ is
also called flow. In the following we use ϕt(x) and ϕ(t, x) interchangeably. The flow induces a
marginal probability path via a pushforward pt := [ϕt]#p0, which is the density at time t when
we transported p0 along u. We define the pushforward by the Change of Variables formula:

[ϕt]#p0(x) = p0(ϕ
−1
t (x)) det

[
∂ϕ−1

t

∂x
(x)

]
. (2.1.2)

We can view the density as a function p : [0, 1]× Rd → R. This function is characterized by the
continuity equation:

∂p

∂t
= −∇ · (ptut) (2.1.3)

with initial condition p0. Here ∇· denotes the divergence operator, i.e. for v : Ω → Rd the
divergence is given by

∇ · v(x) = ∂v1
∂x1

(x) + · · ·+ ∂vd
∂xd

(x).

The continuity equation describes the conservation of mass principle in physics. If the continuity
equation is fulfilled, we say that u generates p. Further we understand (2.1.3) in the distributional
sense, i.e. ∀φ ∈ C∞

c ((0, T )× Rd) it holds∫ T

0

∫
Rd

(∂tφ(t, x) + ⟨ut(x),∇xφ(t, x)⟩) dpt(x) dt = 0. (2.1.4)

The case of Gaussian flows. Let pt(x) = N (x | µt, σ2t ). While there can be more than one
flow that produces pt, a simple one is given by

ϕt(x0) = µt + σt

(
x0 − µ0
σ0

)
. (2.1.5)

This is the unique integration map to the vector field

ut(x) =
σ′t
σt

(x− µt) + µ′t. (2.1.6)

Here σ′t and µ′t are the time derivatives of σt and µt. This vector field generates the Gaussian
path with initial condition N (µ0, σ

2
0). For a proof of this result see [Lip+22].

2.1.1 Sampling from CNFs

In order to sample from the CNF we need to solve the ODE (2.1.1). Various numerical techniques
exist for solving ODEs, and one of the simplest is the Euler method, which we briefly introduce
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here. In this method, we initialize y0 according to µ, and for each step i = 0, . . . , n − 1 with a
step width h = 1

n , we iteratively compute yi+1 as follows:

yi+1 = yi + huih(yi). (2.1.7)

Denoting yx0
1 as the true solution at time t = 1 when starting at x0, and ŷ1 as the solution

estimated by the Euler scheme with step width h, we find:

|yx0
1 − ŷ1| ∈ O(h).

In cases where paths are perfectly straight, the Euler scheme recovers the exact solution. Later,
we explore methods designed to learn a vector field that generates very straight paths, making
the Euler scheme particularly efficient for such approaches.

2.2 Optimal Transport

Optimal Transport has emerged in the 1980s and 1990s by the works of Brenier [Bre91] and
others. Since then several books have been written about this topic, most famously by Vil-
lani [Vil03], [Vil09]. It is a powerful tool for quantifying the dissimiliarity between probability
measures. The central problem it adresses is finding the most efficient way to transport mass
from one distribution to another, taking into account the underlying geometry of the space. In
recent years Optimal Transport has become increasingly important in Data Science and Machine
Learning. It is an important tool to compare measures and datasets, which is fundamental in
tasks ranging from generative modeling to domain adaption. Domain adaption aims at applying
a Machine Learning algorithm which is trained on a source domain to a different but related
domain. However, a big challenge with Optimal Transport is that it can be computationally
complex, especially when dealing with large amounts of data. Additionally, it suffers from a
curse of dimensionality. There is a lot of ongoing research to find faster ways to calculate Op-
timal Transport distances, like the Wasserstein distance. A coherent review about this topic is
[PC+19]. Further, many dynamics in natural science are guided by the principle of least energy.
We want to move particles by the shortest possible path between two points. While this is simple
for a single particle which we can just move in a straight line, the task becomes more complex
when we want to move many particles from one cloud of positions to the next in the optimal
way. To go even further, we might have an abstract distribution of particles at some point in
time and want to move this to another distribution of the particles. Thus learning a dynamic
which moves the particles optimally is very useful in our problem setting.

We start by motivating how we can get from samples to measures. Following this we want to
introduce the definition of Optimal Transport and give an overview of computational challenges
of Optimal Transport. Afterwards we introduce the entropic-regularized Optimal Transport and
discuss its computational advantages but also challenges. Finally we will define Unbalanced
Optimal Transport which relaxes the mass conservation constraint on Optimal Transport.
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2.2.1 From Samples to Measures

In the previous section about Continuous Normalizing Flows we discussed how we can learn an
ODE to transport one continuous measure µ to a second one ν. While this is useful in theory,
in practice we will never observe a whole distribution but only samples thereof. Thus we do not
have access of µ and ν. Suppose we observe x00, . . . , xn0 ∼ µ. We then can define an empirical
measure

µ̂n =
1

n

n∑
i=1

δxi
0
.

Here δx(A) is 1 if x ∈ A and 0 if x /∈ A for all measurable sets A. For simplification let us assume
that µ is a measure over R and let X̂(n) ∼ µ̂n and X ∼ µ. We denote by F̂n(t) = P(X̂(n) ≤ t) and
F (t) = P(X ≤ t) the empirical and the true distribution functions of µ. By the Glivenko-Cantelli
theorem we have as n → ∞ that F̂n(t) → F (t) almost surely for every value of t. This allows
us to approximate the true underlying distribution with samples. For multivariate measures the
convergence of the empirical process is more complicated and will be skipped here. More details
can be found in [SW09].

2.2.2 Optimal Transport Cost and Wasserstein Distance

Optimal Transport aims at measuring the distance between two measures taking into account
the underlying geometry of the space. This is done by measuring the cost of transporting one
measure to the other. For this part we follow [Vil09] and [PC+19]. We will not review the dual
formulation of Optimal Transport as we will not need it.

We denote the set of all Radon measures on the space (X ,F), where F is a σ-algebra on X , by
M(X ). A Radon measure is a Borel measure that is finite on all compact sets, outer regular
on all Borel sets and inner regular on open sets. With M+(X ) we denote the positive Radon
measures, while P(X ) denote the Radon probability measures.

Let µ ∈ P(X ), ν ∈ P(Y) be probability measures defined over the spaces X and Y. To define
Optimal Transport we will need to consider a ground cost c : X × Y → R+, which is the cost of
transporting one unit of mass from x ∈ X to y ∈ Y. We then look for the best coupling of µ
and ν with respect to this cost to transport one measure to the other. Formally, a coupling is
defined in the following way:

Definition 2.2.1. Let µ ∈ P(X ), ν ∈ P(Y) be two probability measures. A coupling is a
probability measure π ∈ P(X × Y) that has µ and ν as its marginals. That means it is an
element of the following set

Π(µ, ν) = {π ∈ P(X × Y) s.t. PX#π = µ and PY#π = ν}

where PX and PY are the projections from the space X × Y on X and Y respectively and #
denotes the pushforward operation for measures.
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The set Π(µ, ν) always contains the independent coupling π = µ ⊗ ν, such that for A ⊂ X and
B ⊂ Y we have π(A×B) = µ(A)ν(B).

The Optimal Transport Cost between µ and ν is given by

C(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y). (2.2.1)

However, this is not necessarily a metric. If we instead choose the function c(x, y) to be a metric
then C(µ, ν) also becomes a metric on the space of probability measures.

Definition 2.2.2 (Definition 6.1 in [Vil09]). Let (X , d) be a Polish metric space and let p ∈
[1,∞). For any two probability measures µ, ν on X , the Wasserstein distance of order p between
µ and ν is defined by the formula

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X
d(x, y)p dπ(x, y)

)1/p

. (2.2.2)

Remark 2.2.3. Wp is a metric on P(X ).

Remark 2.2.4. This definition can be generalized to finite measures µ and ν having the same
mass.

Under weak conditions on the spaces X and Y and the cost function c one can show that a
minimizing coupling exists (see Theorem 4.1. in [Vil09]).

Discrete Formulation. In the case, where µ =
∑n

i=1w
µ
i δxi and ν =

∑m
j=1w

ν
j δyj are discrete

measures with
∑n

i=1w
µ
i = 1 and

∑m
j=1w

ν
j = 1, the cost function can be thought as a matrix

C ∈ Rn×m
+ with Cij = c(xi, yj). Then the Optimal Transport cost is defined by

CC(µ, ν) := min
π∈Π(µ,ν)

⟨C, π⟩ = min
π∈Π(µ,ν)

∑
i,j

Ci,jπi,j .

We interpret π as a stochastic matrix π ∈ Rn×m
+ , such that πi,j = π(xi, yj). A stochastic matrix

is a matrix with non-negative entries and whose rows sum to one.

Computational Challenges of Optimal Transport. In Data Science and Machine Learning
one often does not have access to the true measures µ and ν but only to n samples from µ and
ν. Let the empirical distributions based on those samples be denoted as µ̂ and ν̂. Unfortunately,
estimating the p-Wasserstein distance with the empirical distributions scales poorly in high
dimensions. The number of samples needed for a certain accuracy decreases exponentially in the
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dimension of the space d, which means in the high-dimensional setting the empircial distribution
becomes less and less representative of the real distribution. In mathematical terms we have

E [|Wp(µ, ν)−Wp(µ̂, ν̂)|] = O
(
n−1/d

)
.

This result was shown by [Dud68] and [FG15]. Luckily more recent work [WB19] showed that
we can find better convergence rates, namely that the convergence rate depends on an intrinsic
dimension of the measures rather than the dimension of the space. If the data lies in a low
dimensional manifold and we have enough samples, then we can reasonably approximate the
Wasserstein distance with empirical distributions.

Besides the curse of dimensionality for approximating Optimal Transport, calculating a discrete
Optimal Transport solution is very time intensive. It is solved using a linear problem. The cost
of calculating the Wasserstein distance comes with a complexity of O(n3 log(n)) [PC+19]. This
is very slow for many applications in Machine Learning.

Finally to calculate the discrete Optimal Transport plan we are required to store the cost matrix
C and the Optimal Transport plan. Thus the memory complexity is of order O(n2).

Dynamical Optimal Transport. We can also formulate a dynamic or time-dependent version
of Optimal Transport. This leads to a continuous displacement of measures. It describes the
Optimal Transport of µ to ν as a curve in measure space which minimizes a total length. We
will restrict ourselves here to the case of quadratic cost in Euclidean space which was introduced
by McCann [BB00]. The more general case of dynamic Optimal Transport is covered in [Vil09].

In the case of quadratic cost the dynamic form of the Optimal Transport problem is given as an
optimization problem:

W2(µ, ν)
2 = inf

p,u
(t1 − t0)

∫ t1

t0

∫
Rd

∥ut(x)∥2 dpt(x) dt, (2.2.3)

such that p : [t0, t1] × Rd → R is a curve in the space of measures, u : [t0, t1] × Rd → R is a
time-dependent vector field, u and p fullfill the continuity equation, i.e.

∂pt
∂t

= −∇ · (ptut)

and pt0 = µ, pt1 = ν. Solving the discrete dynamic Optimal Transport problem is very hard as
one needs to minimize a nonsmooth optimization problem under affine constraints.
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2.2.3 Entropy-Regularization of Optimal Transport.

Because of the computational challenges of Optimal Transport, an entropic regularization was
introduced, which is easier to solve and scales better to high dimensions. This is done by adding
an entropic regularization penalty to the original cost, i.e.

Cε
c (µ, ν) := min

π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) + εKL(π | µ⊗ ν), (2.2.4)

where ε ≥ 0 is the regularization coefficient and KL is the Kullback-Leibler divergence given by

KL(π | ξ) :=
∫
X×Y

log

(
dπ

dξ
(x, y)

)
dπ(x, y)−

∫
X×Y

dπ(x, y) +

∫
X×Y

dξ. (2.2.5)

The term dπ
dξ denotes the Radon-Nikodym derivative. If π does not have a density dπ

dξ with
respect to ξ then KL(π | ξ) =∞.

The penalty term is 0 if π is the independent coupling. Thus we regularize by moving the optimal
coupling a bit into the direction of the independent coupling.

Discrete version. The discrete version of the entropy regularized Optimal Transport is given
by

Cε
C = min

π∈Π(µ,ν)
⟨C, π⟩+ εKL(π | µ⊗ ν), (2.2.6)

with

KL(π | ξ) =
∑
i,j

(
πi,j log

(
πi,j
ξi,j

)
− πi,j + ξi,j

)
.

The objective (2.2.6) is an ε−strongly convex function. Thus the entropic Optimal Transport
problem has a unique optimal solution. We also have that the discrete entropic Optimal Trans-
port problem converges to the unregularized Optimal Transport problem, as ε → 0. More
precisely we have Cε

C(µ, ν)→ CC(µ, ν). In the continuous case one can also show Γ-convergence
of the cost functionals. However, the statement is more restrictive and complicated [Cla+21].

Calculating entropic Optimal Transport. Calculating the discrete regularized Optimal
Transport problem has computational advantages to the unregularized formulation. It can be
solved by the Sinkhorn scheme which utilizes iterative matrix-vector products. Further, the
resulting approximate distance is smooth and thus can be differentiated using automatic differ-
entiation. The Sinkhorn algorithm utilizes the following fact:
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Proposition 2.2.5 (Proposition 4.3. in [PC+19]). Let C be the cost matrix and Ki,j := e−
Ci,j
ε .

Then the solution of (2.2.6) is unique and has the solution

πi,j = uiKi,jvj

for two (unknown) scaling variables u ∈ Rn
+ and v ∈ Rm

+ .

Together with the marginal constraints on the unique solution π one gets a matrix scaling
problem which can be solved with the Sinkhorn algorithm, which is an iterative algorithm [Cut13].
Entropic Optimal Transport has a computational cost of O(n2) for fixed ε > 0 [ANWR17].

Dyanmic version of entropic Optimal Transport: The Schrödinger bridge problem.
In this subsection we follow [Str23]. Similiar to unregularized Optimal Transport we also can
formulate a dynamic version of regularized Optimal Transport. The Schrödinger Bridge problem
searches for the most likely measure D ∈ P(C([0, 1];X )), such that its time marginals D0 and
D1 agree with µ and ν, and with the condition that D should be as close as possible to the law
of a Brownian motion. In general one can also consider other reference processes than Brownian
motion.

Before we can define the Schrödinger bridge problem we need to formalize the notion of time
marginals Dt for a measure D ∈ P(C([0, 1];X )). First let us define the time projections Xt :
C([0, 1];X ) → X by Xt(ω) := ωt for ω = (ωt)t∈[0,1] ∈ C([0, 1];X ). We then provide X with the
σ-algebra F = σ(Xt; t ∈ [0, 1]). Finally, we can define the time marginals Dt ∈ P(X ) by

Dt(A) := (Xt)#D = D(X−1
t (A)) for all A ∈ F .

The Schrödinger bridge problem is given by

min
D:D0=µ,D1=ν

KL(D | R), (2.2.7)

where we minimize over probability measures on the Wiener space D ∈ P(C([0, 1];X )) and
R ∈ P(C([0, 1];X )) is the reference measure.

We restrict ourselves to the case, where R = (Rt)t∈[0,1] is the law of a Brownian motion with
diffusion σ. Choosing Brownian motion as a reference process is a natural choice in many
applications. It is a mathematical model that describes the random movement of particles in a
fluid. Nowadays it is used in a diverse range of applications such as describing the movement of
assets in finance.

Let D∗ be the measure which minimizes the Schrödinger bridge problem. Now let us suppose that
X is an Euclidean space. Then the Schrödinger bridge problem can be restored from the entropy-
regularized Optimal Transport problem with ε = 2σ2 and quadratic cost c(x, y) = |x− y|2: We
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denote by π∗2σ2 ∈ P(X × X ) the minimizing coupling of the static entropy-regularized Optimal
Transport problem and let (x, y) ∼ π∗2σ2 . Next we draw a Brownian bridge W xy with diffusion
σ joining x to y, i.e. σW xy. The Brownian bridge with diffusion one can be defined by W xy

t =
Wt − tW1. Then the law of σW xy is D∗.

That means we can write the solution D∗ as mixture of Brownian bridges weighted by the
entropic Optimal Transport plan. This was shown by [Föl88]. More precisely we can write

D∗ =

∫
W xy

σ dπ∗2σ2(x, y), (2.2.8)

where W xy
σ is the law of σW xy. For a detailed analysis of the Schrödinger bridge problem see

[Lé13].

2.2.4 Unbalanced Optimal Transport

In this section we follow [Fat+21b] and [PC+19]. Optimal Transport has a mass constraint and
thus can only compare measures with the same mass. This has the drawback that all mass of
µ has to be transported to mass of ν. In the Machine Learning setting this causes problems
if we have outliers or missing values in the data. Unbalanced Optimal Transport, on the other
hand softens this constraint and allows for mass creation and destruction. It is thus more robust
to local variations in mass such as outliers. One example where this might be important, is
single-cell biology. Here the data is dependent on the experimental setup, often contains a lot of
noise and missing values and is subject to mass variations due to birth and death of cells.

Let µ and ν denote the measures we want to transport between. Balanced Optimal Transport
restricts the transport measure π to be a coupling between µ and ν. We soften this restriction
by only penalizing marginal deviation from µ and ν using Csiszàr divergence Dφ. The Csiszàr
divergence is a functional which measures how close two measures are by investigating the point-
wise ratio between the two measures. Before we can introduce the Csiszàr divergence we need
to define entropy functions:

Definition 2.2.6 (Definition 8.1 in [PC+19]). A function φ : R → R ∪ {∞} is an entropy
function if it is lower semicontinuous, convex, dom(φ) ⊂ [0,∞) and dom(φ) ∩ (0,∞) ̸= ∅. The
speed of growth of φ at ∞ is described by

φ′
∞ = lim

x→∞
φ(x)/x ∈ R ∪ {∞}.

Definition 2.2.7 (Definition 8.2 in [PC+19], Csizàr divergence). Let φ be an entorpy fuction.
For µ, ν ∈ M(X ), let dµ

dν ν + µ⊥ be the Lebesgue decomposition of µ with respect to ν. The
Lebesgue decomposition is the unique decomposition µ = µs + µ⊥ such that µs is absolutely
continuous with respect to ν and µ⊥ and ν are singular. The divergence Dφ is defined by

Dφ(µ | ν) :=
∫
X
φ

(
dµ

dν

)
dν + φ′

∞µ
⊥(X ) (2.2.9)
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if µ and ν are nonnegative and ∞ otherwise.

Kullback-Leibler and Total Variation divergence are special cases of Csizàr divergences.

With this notion we can define the unbalanced Optimal Transport problem:

OTτ
φ,c(µ, ν) = min

π∈M+(X 2)

∫
X×X

c(x, y) dπ(x, y) + τ (Dφ(π0 | µ) +Dφ(π1 | ν)) , (2.2.10)

where π1 and π2 are the marginals of π and τ is the marginal penalization. The marginals do
not have to be equal to µ and ν anymore. We can see that the unbalanced Optimal Transport
problem does not require to match the marginals exactly. Instead, τ determines how strongly
mass variations are penalized.

An algorithm to solve this problem was proposed in [Cha+21]. The authors determined the
computational complexity only computationally, which averaged to O(n3.27). However, they
only tested it on 2 datasets in 10 dimensions. In our experiments the algorithm performed
significantly slower than balanced Optimal Transport even if we used a small sample size.

As with the balanced Optimal Transport problem we can define an entropic regularization of the
unbalanced Optimal Transport problem. The objective is then defined as

OTτ,ε
φ,c(µ, ν) = min

π∈M+(X 2)

∫
X×X

c(x, y) dπ(x, y) + εKL(π | µ⊗ ν) (2.2.11)

+ τ (Dφ(π0 | µ) +Dφ(π1 | ν)) . (2.2.12)

This can be computed via a generalized Sinkhorn algorithm [Chi+18], [Séj+19]. For Dφ = KL
the scheme converges with a rate of O(n2/ε).

The role of τ . When using Unbalanced Optimal Transport the parameter τ plays a crucial
role. If we want to use unbalanced Optimal Transport in Machine Learning tasks we need to
fine-tune and adapt τ to the dataset and the cost function c. In general it can be interpreted as
the radius of transportation, meaning it determines how far we transport mass or whether or not
we let mass to be constructed and destructed. Too large values of τ enforce mass conservation,
while too small values can lead to very small marginal masses of the optimal map. Thus, we
do not transport a lot of mass, which is also undesirable. In practice we need to tune the
hyperparameter τ .



Chapter 3

Flow Matching

We introduced Continuous Normalizing Flows in Section 2.1. Flow Matching is a simulation-
free approach for training CNFs, which means that we do not need to simulate an ODE during
training. As an alternative, we want to learn the vector field ut(x) from (2.1.1) by regression.
However, we do not have access to the true ut(x). Instead we will only learn a conditional
version of ut, which we will specify soon. Flow Matching allows us to train CNFs on a much
faster scale. It was introduced in 2023 by [Lip+22] for transporting Gaussian noise to a data
distribution. This approach was later generalized by [Ton+24] to handle transport between any
two arbitrary distributions. Around the same time, other works proposed similar objectives for
simulation-free training of CNFs [LGL23], [ABVE23]. In the next chapter, we will discuss Action
Matching [Nek+23b], which also provides simulation-free training for CNFs. However, it derives
an implicit objective when ut is assumed to be a gradient field. To learn ut directly, Action
Matching requires additional assumptions.

We follow [Lip+22] and [Ton+24], while focusing directly on arbitrary measures. Let us consider
a pair of probability distributions over Rd with densities µ and ν. Our goal is to find a function
which transports µ to ν. More precisely, if X is a random variable which is distributed with
density µ then we want to learn a function f : Rd → Rd such that f(X) is distributed according
to the density ν.

3.1 Conditional Flow Matching: General Approach

We use the same framework as in Section 2.1. That means we suppose the dynamics that
generates the data is deterministic and follows (2.1.1), i.e.

dxt = ut(xt) dt, (3.1.1)

19



20 CHAPTER 3. FLOW MATCHING

with x0 ∼ µ and x1 ∼ ν. Let p = (pt)t∈[0,1] denote the probability path, which describes the
density of (xt)t∈[0,1] and which is generated by u, i.e. p and u satisfy the continuity equation
(2.1.3). Our goal is to learn u. Afterwards we are able to transport samples from µ to samples
from ν by solving an ODE. However, we do not want to solve the ODE during training. A very
simple way to learn u would be to use regression. Using this idea we define the Flow Matching
objective as

LFM (θ) := Et∼U([0,1]),x∼pt∥vθ(t, x)− ut(x)∥
2, (3.1.2)

where vθ is learned via a neural network and θ denotes the learnable parameter. U([0, 1]) denotes
the uniform distribution over the interval [0, 1]. However, this loss is intractable as we do not
have access to the time marginals pt and ut. There are many choices for p which transports
µ to ν and we normally do not have access to a closed form representation of u. To simplify
the problem we condition u and p on samples and solve a conditional objective. Specifically, we
take a sample x0 ∼ µ and a sample x1 ∼ ν and then interpolate between those two data points.
By appropriately mixing the conditional marginals ut and pt, we can recover the unconditional
marginals pt and ut. Furthermore, we demonstrate that matching the conditional ut is equivalent
to the Flow Matching objective (3.1.2).

Our aim is to generate samples from the target distribution ν given samples from the source
distribution ν. Since there are several valid choices for p and u given the information, it is im-
possible to match the ‘true’ functions. Nevertheless, our choices are guided by physical principles
such as the principle of least action, and we will present various options. The specific choice will
depend on the application context.

Using Conditional Probability Paths

We assume that we can write write p as a mixture of simpler probability paths. Let x0 ∼ µ
and x1 ∼ ν. Then we define (pt(x | x0, x1))t∈[0,1] as a conditional probability path which is
concentrated around x0 at time 0 and around x1 at time 1. To make this more rigorous we
assume p0(x | x0, x1) = N (x | x0, σ2I) and p1(x | x0, x1) = N (x | x1, σ2I) for some small σ > 0.
We then recover the unconditional p = (pt)t∈[0,1] by mixing the conditional probability paths
with the density q(x0, x1), which we choose later. We get

pt(x) =

∫
pt(x | x0, x1)q(x0, x1) d(x0, x1). (3.1.3)

At the endpoints t = 0 and t = 1 the conditional path is concentrated around x0 or x1. So p0
and p1 closely approximate the marginals of q:

p0(x) =

∫
p0(x | x0, x1)q(x0, x1) d(x0, x1) ≈

∫
q(x, x1) dx1

p1(x) =

∫
p1(x | x0, x1)q(x0, x1) d(x0, x1) ≈

∫
q(x0, x) dx0.
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Since we want p to interpolate between µ and ν, we need p0(x) ≈ µ and p1(x) ≈ ν. Therefore, it
is natural to choose q(x0, x1) as a coupling of µ and ν. Additionally, we choose (pt(x | x0, x1))t
such that we have access to a closed form conditional vector field (ut(x | x0, x1))t∈[0,1] which
generates (pt(x | x0, x1))t∈[0,1] according to the continuity equation (2.1.3). By proberly mixing
the conditional vector fields, we can reconstruct an unconditional vector field u that generates p:

Theorem 3.1.1 (Theorem 3.1 in [Ton+24]). The vector field

ut(x) =

∫
ut(x | x0, x1)pt(x | x0, x1)

pt(x)
q(x0, x1) d(x0, x1) (3.1.4)

generates the probability path (pt)t∈[0,1] defined by (3.1.3) from the initial condition p0(x).

Even though, we have a method to calculate u, it might not be practical to use u directly. This
is particularly true in higher dimensions, where the integrals involved in defining the probability
path (3.1.3) and the vector field (3.1.4) may still be intractable. To address this, we focus on
working directly with the conditional objectives and regress the conditional vector fields We
define the conditional learning objective Conditional Flow Matching (CFM) as follows:

LCFM (θ) := Et∼U([0,1]),z∼q,x∼pt(·|z)∥vθ(t, x)− ut(x | z)∥
2, (3.1.5)

where z = (x0, x1) and the subscript of the expected value denotes that we take the expectation
over t sampled uniformly from [0, 1], z sampled from q and finally x sampled from pt(· | z). Here
vθ : [0, 1]×Rd → Rd is parameterized by a neural network with weights θ. For the CFM objective
it is only necessary that we can efficiently sample from the marginals pt(x | x0, x1) and compute
ut(x | x0, x1). The algorithmic description can be found in Algorithm 1. The CFM objective is
equivalent to the unconditional Flow Matching objective (3.1.2) as the following theorem shows:

Theorem 3.1.2 (Theorem 3.2 in [Ton+24]). Let q, pt(· | z) ∈ L2(Rd) and ut, vθ(t, ·), ▽θvθ(t, ·)
be bounded. If pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then

▽θLFM (θ) = ▽θLCFM (θ). (3.1.6)

Proof. We have

▽θEt∼U([0,1]),x∼pt∥vθ(t, x)− ut(x)∥
2

= ▽θEt∼U([0,1]),x∼pt

[
∥vθ(t, x)∥2 − 2⟨vθ(t, x), ut(x)⟩+ ∥ut(x)∥2

]
= ▽θEt∼U([0,1]),x∼pt

[
∥vθ(t, x)∥2 − 2⟨vθ(t, x), ut(x)⟩

]
.

The first term we can be rewritten as

Et∼U([0,1]),x∼pt∥vθ(t, x)∥
2 =

∫ 1

0

∫
Rd

∥vθ(t, x)∥2pt(x) dx dt

=

∫ 1

0

∫
Rd

∫
Rd×Rd

∥vθ(t, x)∥2pt(x | z)q(z) dz dx dt
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= Et∼U([0,1]),z∼q,x∼pt(·|z)∥vθ(t, x)∥
2.

The second term can be rewritten as

Et∼U([0,1]),x∼pt⟨vθ(t, x), ut(x)⟩

=

∫ 1

0

∫
Rd

〈
vθ(t, x),

∫
Rd×Rd ut(x | z)pt(x | z)q(z) dz

pt(x)

〉
pt(x) dx dt

=

∫ 1

0

∫
Rd

〈
vθ(t, x),

∫
Rd×Rd

ut(x | z)pt(x | z)q(z) dz
〉
dx dt

=

∫ 1

0

∫
Rd

∫
Rd×Rd

⟨vθ(t, x), ut(x | z)⟩pt(x | z)q(z) dz dx dt

= Et∼U([0,1]),z∼q,x∼pt(·|z)⟨vθ(t, x), ut(x | z)⟩

Further, we get

▽θEt∼U([0,1]),z∼q,x∼pt(·|z)∥vθ(t, x)− ut(x | z)∥
2

= ▽θEt∼U([0,1]),z∼q,x∼pt(·|z)
[
∥vθ(t, x)∥2 − 2⟨vθ(t, x), ut(x | z)⟩+ ∥ut(x | z)∥2

]
= ▽θEt∼U([0,1]),z∼q,x∼pt(·|z)

[
∥vθ(t, x)∥2 − 2⟨vθ(t, x), ut(x | z)⟩

]
.

This shows that (3.1.6) is fulfilled.

Algorithm 1 Conditional Flow Matching
Input: Coupling q of the initial distribution µ and the target distribution ν, initial network
vθ(t, x), number of training iterations, batch size B

Output: trained model vθ(t, x)
for training iterations do

(x0,x1)← {(xi0, xi1)}Bi=0 with (xi0, x
i
1) ∼ q

t← {ti}Bi=0 with ti ∼ U [0, 1]
xt ← {xiti}

B
i=1 with xiti ∼ pti(· | x

i
0, x

i
1)

LCFM (θ)← 1
B

∑B
i=1∥vθ(ti, xiti)− uti(x

i
ti | x

i
0, x

i
1)∥2

θ ← Update(θ,▽θLCFM (θ))
end for

3.2 Different Forms of Conditional Flow Matching

Although we established the theoretical framework for Conditional Flow Matching, we did not
yet discuss how to select (pt(x | x0, x1))t∈[0,1] in practice. While numerous options exist, we opt
for the family of Gaussian distributions. The main reason for this is that we have a closed form
for (ut(x | x0, x1))t∈[0,1] which generates (pt(x | x0, x1))t∈[0,1]. The closed form of the marginal
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ut(· | x0, x1) is given in (2.1.6). A second reason is that the solution of the Dynamic Optimal
Transport problem from N (x | x0, σ2I) to N (x | x1, σ2I) is a Gaussian probability path.

We choose
pt(x | x0, x1) = N (x | µt, σ2t I). (3.2.1)

where µ : [0, 1] × Rd → Rd is the time-dependent mean while σ : [0, 1] × Rd → Rd
>0 is the

time dependent standard variation of the Gaussian distribution. While we will explore different
choices for µt and σt, both should be differentiable with respect to t.

As previously mentioned we want p0(x | x0, x1) = N (x | x0, σ2I) and p0(x | x1, x1) = N (x |
x1, σ

2I). Therefore, µt should interpolate between x0 and x1, while σ0 and σ1 should have small
values.

Remark 3.2.1. By appropriately selecting µt and σt, we can recover the conditional probability
paths used in Score Matching with SDEs [Son+21]. The conditional vector fields of CFM are the
same as those used in the deterministic probability flow in [Son+21].

3.2.1 Independent Conditional Flow Matching

A natural choice for µt is to just linearly interpolate between x0 and x1

pt(x | x0, x1) = N (x | tx1 + (1− t)x0, σ2), (3.2.2)

with σ chosen sufficiently small. By (2.1.6) (pt(x | x0, x1))t∈[0,1] is generated by

ut(x | x0, x1) = x1 − x0. (3.2.3)

In fact one can show that the pair given by (3.2.2) and (3.2.3) transports N (x0, σ
2) to N (x1, σ

2)
optimally in the sense of dynamical Optimal Transport [CGP16]. The name Independent Condi-
tional Flow Matching (I-CFM) is due to the fact that we choose q(x0, x1) to be the independent
coupling of µ and ν, i.e. q(A,B) = µ(A)ν(B) for all measurable sets A,B ⊆ X . As it is easy
to sample from q(x0, x1), pt(x | x0, x1) and to compute ut(x | x0, x1), we can calculate the
gradient descent on LCFM efficiently. We further achieve that the unconditional probability path
interpolates between µ and ν up to noise of the scale σ:

Proposition 3.2.2 (Proposition 3.3. in [Ton+24]). The unconditional probability path p cor-
responding to q, pt(x | x0, x1) and ut(x | x0, x1) in the sense of (3.1.3) has boundary conditions
p0 = µ ∗ N (x | 0, σ2) and p1 = ν ∗ N (x | 0, σ2), where ∗ is the convolution operator.

As we let σ → 0 we recover the boundary conditions µ and ν.
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Figure 3.1: This image is taken from [Ton+24]. On the left we see the conditional flows from
I-CFM and on the right from OT-CFM.

3.2.2 Optimal Transport Conditional Flow Matching

While I-CFM recovers dynamical Optimal Transport from p0(x | x0, x1) to p1(x | x0, x1), it does
not recover dynamical Optimal Transport between µ and ν. Optimal Transport Conditional Flow
Matching (OT-CFM), on the other hand, approximately recovers dynamical Optimal Transport
(see Proposition 3.2.3).

We choose pt(x | x0, x1) and ut(x | x0, x1) to be the same as in I-CFM:

pt(x | x0, x1) = N (x | tx1 + (1− t)x0, σ2)
ut(x | x0, x1) = x1 − x0.

However, instead of the independent coupling we now choose q(x0, x1) = π(x0, x1) to be the
coupling which minimizes the 2-Wasserstein distance (2.2.2) between µ and ν.

The following Proposition shows that this restores approximate dynamical Optimal Transport:

Proposition 3.2.3 (Proposition 3.4. in [Ton+24]). The results of Proposition 3.2.2 hold for
q being the coupling which minimizes 2-Wasserstein distance. Furthermore, assuming µ and ν
to be bounded densities and µ(x) dx, ν(x) dx be compactly supported measures, we get that for
σ2 → 0 the probability path p and the vector field u minimizes the dynamic Optimal Transport
problem (2.2.3) between µ and ν.

Thus, OT-CFM provides a fairly simple objective for solving the dynamic Optimal Transport
problem given the static Optimal Transport coupling of (2.2.2) between µ and ν.

As OT-CFM learns the Optimal Transport path it gives us very straight paths. This is beneficial
if we want to simulate the particles (xt)t∈[0,1] by solving the ODE (2.1.1). For perfectly straight
paths we would only need one step of the numerical Euler scheme to solve the ODE exactly.

Comparison of I-CFM and OT-CFM OT-CFM approximates dynamical Optimal Trans-
port between µ and ν while I-CFM only achieves Optimal Transport of the conditional distribu-
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Figure 3.2: This image is taken from [Ton+24]. We see the learned sample paths (green) from
moons (blue) to 8gaussians (black) using I-CFM (left) and OT-CFM (right)

.

tion path. This results in very straight transportation paths of samples for OT-CFM as we can
see in Figure 3.1 and Figure 3.2 while the sample paths of I-CFM are more curved.

In Chapter 6, we demonstrate that OT-CFM performs exceptionally well in scenarios with nu-
merous time points. This is because errors caused by suboptimal matching of data points tend to
accumulate over time. To illustrate this, imagine a point cloud that splits into two distinct point
clouds which then move independently in space. Ideally, after the split, a point should remain
within its respective point cloud. However, I-CFM may couple points from different point clouds,
causing the model to learn trajectories where points switch between clouds. Nevertheless, as we
discuss in Section 3.3, even OT-CFM may not be optimal for this task in practice.

I-CFM requires less computational effort since it only calculates the independent coupling. In
contrast, OT-CFM demands more computational effort, as it needs to approximate the Optimal
Transport coupling for the 2-Wasserstein distance between µ and ν.

3.2.3 Schrödinger Bridge Conditional Flow Matching

Schrödinger Bridge Conditional Flow Matching (SB-CFM) is an entropic variant of OT-CFM.
It can be used to learn a Schrödinger bridge between the source and target distributions using a
Brownian motion as the reference process. We introduced the concept of the Schrödinger bridge
in Section 2.2.3. For SB-CFM we define the conditional probability path as a Brownian bridge
with diffusion scale σ between x0 and x1. That is

pt(x | x0, x1) = N (x | (1− t)x0 + tx1, t(1− t)σ2). (3.2.4)

By (2.1.6) this is generated by the conditional vector field

ut(x | x0, x1) =
1− 2t

2t(1− t)
(x− (tx1 + (1− t)x0)) + (x1 − x0). (3.2.5)
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Further, we choose the coupling q = π2σ2 to be the solution of entropic Optimal Transport
problem with regularization parameter ε = 2σ2 > 0 and cost c(x, y) = ∥x − y∥2. We saw in
equation (2.2.8) that our choices generate the same marginal probabilities pt(x) dx as the solution
of the Schrödinger bridge problem (2.2.7) where the reference process is a Brownian motion with
diffusion σ. This statement is also proved in Proposition 3.5 of [Ton+24].

3.2.4 Using General Time Intervals

To generalize Flow Matching to intervals [t0, t1] we have to do small adaptions to the probability
path. For I-CFM and OT-CFM we choose

pt(x | xt0 , xt1) = N
(
x

∣∣∣∣ t− t0t1 − t0
xt1 +

t1 − t
t1 − t0

xt0 , σ
2

)
,

which results in the conditional vector field

ut(x | xt0 , xt1) =
xt1 − xt0
t1 − t0

.

For SB-CFM we get the conditional probability path

pt(x | xt0 , xt1) = N
(
x

∣∣∣∣ t− t0t1 − t0
xt1 +

t1 − t
t1 − t0

xt0 , σ
2(t− t0)(t1 − t)

)
.

This is generated by the conditional vector field

ut(x | xt0 , xt1) =
t0 + t1 − 2t

2(t− t0)(t1 − t)
(x− µt) +

xt1 − xt0
t1 − t0

with µt = t−t0
t1−t0

xt1 +
t1−t
t1−t0

xt0 .

3.3 Calculating Optimal Transport Couplings Using Minibatch
Optimal Transport

In Section 2.2 we saw that calculating the Optimal Transport coupling between large datasets
can become computationally very complex and infeasible. Suppose we have samples from µ and
ν and let µ̂ and ν̂ denote the empirical distributions induced by these samples. Then if we have
many samples it may be hard to calculate the true Optimal Transport coupling between µ̂ and ν̂
directly. Even entropic Optimal Transport still has a complexity of O(n2), where n is the number
of samples. This is too costly for large datasets. To speed up the computations we compute
Optimal Transport on minibatches: Instead of computing the Optimal Transport coupling for the
entire dataset, we calculate it on smaller batches of samples. This process is repeated multiple
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times, and the results are averaged to approximate the overall Optimal Transport coupling.
This strategy follows the method introduced in [GPC18] and further formalized in [Fat+21a].
Minibatch Optimal Transport gives us a good estimator and allows us to calculate gradients.
However, minibatch Optimal Transport is not a metric. Let X = {x0, . . . , xn} be the n samples
at time t0 such that xi ∼ µ and Y = {y0, . . . , ym} the m samples at time t1 such that xi ∼ ν.
Let Pl(X) (resp. Pl(Y )) be the set of all subsets of X (resp. Y ) with cardinality l. For each
pair of A = {a1, . . . , al} ∈ Pl(X) and B = {b1, . . . , bl} ∈ Pl(Y ) we denote by πA,B the optimal
coupling between the empirical distributions induced by A and B. As an example the empirical
distribution for A is given by p̂A = 1

l

∑l
i=1 δai . Then we can define the averaged minibatch

transport matrix for batch size l:

π̃l(X,Y ) =

(
n

l

)−1(m
l

)−1 ∑
A∈Pl(X)

∑
B∈Pl(Y )

πA,B. (3.3.1)

In practice it is too expensive to calculate the average of all batches of size l. Thus, we use a
subsampled version

π̃
(k)
l (X,Y ) :=

1

k

∑
(A,B)∈Dk

πA,B, (3.3.2)

where Dk is a set of cardinality k whose elements are drawn uniformly from Γ := Pl(X)×Pl(Y ).
Depending on which Optimal Transport problem we want to approximate we can take πA,B to
be either the exact Optimal Transport coupling from the p-Wasserstein distance (2.2.2) or the
entropy regularized distance:

W ε(µ, ν) = min
π∈Π(µ,ν)

∫
X×Y
∥x− y∥p2 dπ(x, y) + εKL(π | µ⊗ ν).

In [Fat+20] it was shown for both Optimal Transport variants that the subsampled coupling
π̃
(k)
l converges in probability exponentionally fast to π̃l as k → ∞. We set k = 1 which showed

good experimental performance in training Machine Learning algorithms [GPC18], [Fat+21a],
[Ton+24]. This is because Machine Learning algorithms train over many iterations. Therefore,
the error of a single minibatch coupling does not matter much. Still, minibatch Optimal Trans-
port tends to connect suboptimal samples. Thus, can be thought of a kind of regularization of
the exact Optimal Transport. As the resulting coupling matrix π̃(k)l is notably less sparse, this
can lead to undesirable couplings and plans that can be close to a uniform distribution. Figure
3.3 shows that this problem might occur with clustered data. In [Fat+21b] it was proposed to
use minibatch unbalanced Optimal Transport couplings to make the averaged transport coup-
ling more robust. We introduced unbalanced Optimal Transport in Section 2.2.4. Unbalanced
Optimal Transport is more robust to outliers and does not need to find a match for all samples.
We want to pick up this idea here and test if this can bring advantages to Flow Matching. The
definitions of the optimal minibatch plan π̃l (3.3.1) and the sampled optimal minibatch plan π̃(k)l

(3.3.2) stay the same. However, we choose the measure πA,B to be the optimal measure of the
unbalanced Optimal Transport problem (2.2.10) or the regularized unbalanced Optimal Trans-
port problem (2.2.11). In Figure 3.4 we see how balanced and unbalanced minibatch Optimal



28 CHAPTER 3. FLOW MATCHING

Figure 3.3: This image is taken from [Fat+21b]. We see Optimal Transport matrices, normalized
by maximum value, between two dimensional distributions with n = 10 samples. The first row
shows the minibatch Optimal Transport plans π for different minibatch sizes m. The second
row shows the mass transport between samples. The rightmost picture shows the full Optimal
Transport coupling.

Figure 3.4: This image is taken from [Fat+21b]. We see Optimal Transport matrices, normalized
by maximum value, between two dimensional distributions with n = 10 samples. The first
row compares the unbalanced and balanced minibatch Optimal Transport plans π for different
minibatch sizes m. The second row shows the mass transport between samples.

Transport with different parameters learn to transport clustered data. We want that samples
are not likely to be transported in between clusters, i.e. diagonally. Unbalanced minibatch Op-
timal Transport (UMB in the Figure) shows superior results to the balanced minibatch version
(MBOT). The learned coupling by MBOT is close to a uniform distribution, which means a lot
of information is lost by the minibatch approximation.

Influence of the Minibatch Strategy on OT-CFM.

The first step of OT-CFM (Algorithm 1) requires us to sample a batch from the Optimal Trans-
port coupling. In order to approximate this by minibatch Optimal Transport we use Algorithm 2.
The function CalculateOTCoupling calculates either the Optimal Transport, regularized Optimal
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Figure 3.5: We compare the probability paths learned by OT-CFM using either minibatch
Optimal Transport couplings (MBOT) or unbalanced minibatch Optimal Transport coupling
(UMOT). For MBOT we use a batch size of 256 while for UMOT we use a batch size of only 10.

Transport or (regularized) unbalanced Optimal Transport map.

Algorithm 2 Calculate the Optimal Transport coupling q
Input: Initial distribution µ, target distribution ν, batch size B
Output: training batch {(xi0, xi1)}Bi=1

X ← {xi0}Bi=1 with xi0 ∼ µ
Y ← {xi1}Bi=1 with xi1 ∼ ν
πX,Y ← CalculateOTCoupling(X,Y )
x← {(xi0, xi1)}Bi=1 with (xi0, x

i
1) ∼ πX,Y

return x

Interpolation between clustered data. We aim to investigate the influence of the approx-
imation of the Optimal Transport coupling on the performance of Flow Matching. For this we
interpolate between similiar distributions as used in Figure 3.3 and Figure 3.4. The objective is
to compare the learned probability paths of OT-CFM for different methods to approximate the
measure q(x0, x1) d(x0, x1). Figure 3.5 showcases the resulting learned probability paths p using
minibatch Optimal Transport (MBOT), unbalanced minibatch Optimal Transport (UMOT) and
regularized unbalanced minibatch Optimal Transport (reg. UMOT). Ideally, OT-CFM would
learn perfectly straight paths connecting the samples drawn from p0 and p1.

Despite using a relatively large batch size (m = 256) for MBOT, it still generates suboptimal
paths with significant curvature. This can be attributed to the minibatch approximation during
training. All samples within a batch need to be matched, and it is possible that at time step 0,
there are more samples from the upper cluster, while at time step 1, there are more from the



30 CHAPTER 3. FLOW MATCHING

Figure 3.6: The data consists of 5000 initial and target samples, sampled from gaussian distri-
butions. The black scatters represent the initial distribution while the blue ones represent the
target distribution. The target data contains 5 outliers

lower cluster. This forces diagonal matching, leading to suboptimal paths.

In contrast, UMOT utilizes a considerably smaller batch size of only 10. Remarkably, it learns
very straight paths. The regularized version’s paths exhibit a slight inward bend but remain
largely straight. When the data exhibits a clustered structure that persists over time, MBOT
might result in suboptimal paths. In this scenario, UMOT offers a clear advantage.

Robustness to Outliers. One of the main reasons why unbalanced Optimal Transport is used
in Machine Learning, is its promise of robustness to outliers and missing data [SPV23]. Here we
want to test if we can also make Flow Matching more robust to outliers. For this we interpolate
between two Gaussian distributions, where the target distribution contains some outliers, as
can be seen in Figure 3.6. The performance of OT-CFM with MBOT, UMOT or reg. UMOT
approximation is compared in Figure 3.7. We trained the methods for 10000 iterations. The
figure shows where samples from the black distribution are transported to by the trained models.
The probability path p is drawn in green. Ideally, the blue predictions should resemble the blue
point cloud in Figure 3.6. We see that OT-CFM is impacted by the outliers and learns some of
them. In contrast, using either the regularized or unregularized version of unbalanced minibatch
Optimal Transport improves Flow Matching’s robustness to outliers. It remains a modeling
choice whether to include the outliers in the learned distribution or to focus on a distribution
that disregards them.

In Chapter 7 we compare the different minibatch approximations on real single cell data.
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Figure 3.7: We compare the probability paths learned by OT-CFM using either minibatch Op-
timal Transport couplings or unbalanced minibatch Optimal Transport coupling. For MBOT
and regularized UMB we use a batch size of 256 while for unregularized UMOT we use a batch
size of only 10.

Computational Considerations. While calculating unbalanced Optimal Transport measures
is computationally more expensive, the significant decrease in batch size with UMOT makes its
overall complexity roughly equivalent to MBOT. Interestingly, the regularized UMOT variant
is even five times faster than MBOT. However, UMOT introduces an additional parameter, τ
(and ε for the regularized version), that requires careful tuning. This adds an extra step to
the training process. Nevertheless, depending on the specific data, the benefits of UMOT can
outweigh this additional overhead. In later chapters, we will refer to the OT-CFM method that
uses UMOT to approximate the optimal coupling as UOT-CFM.
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Chapter 4

Action Matching

Action Matching follows a similar idea to Flow Matching. As before we try to learn a CNF in a
simulation-free manner, i.e. without simulating the ODE (2.1.1) during training. This method
was proposed by Neklyudov et. al. [Nek+23b] and we follow their paper in this chapter. The
main difference to Flow Matching is that we assume that the vector field u driving the ODE
(2.1.1) is a gradient field in x, which means u = ▽xs for a function s : [0, 1]× Rd → R. We will
derive an implicit objective to match the vector field u. In general Action Matching assumes
that we can sample at all time points along the trajectory.

In this chapter we identify the density pt with its measure pt(dx) =̂ pt(x) dx. It will be clear
from the context whether we refer to the density or the measure.

4.1 The Action Matching Objective

We now assume the particles follow the ODE

dxt = ▽xst(xt) dt, (4.1.1)

where s : [0, 1] × Rd → R and x0 ∼ µ, x1 ∼ ν. We call s the ‘action’. The explanation for this
name is given in Section 4.2. As before let pt describe the density at time t of the particle xt
and let us assume that the continuity equation is satisfied, i.e.

∂pt
∂t

= −▽ · (pt▽xst).

Remark 4.1.1. If instead of X = Rd we choose a open bounded set X = Ω such that ∂X is
C1, then we interpret the continuity equation (2.1.3) with a homogenous Neumann condition

33
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⟨v, ηΩ⟩ = 0 at the boundary ∂Ω, where ηΩ is the outer normal.1

Our aim is to match or rather learn the vector field u = ▽xs, such that the ODE (4.1.1) transports
the source density µ to the target density ν.

Therefore, we parametrize the action by a neural network sθ(t, x) with learnable parameter θ.
In order to learn the true action we would like to minimize

ACTION-GAP(s, sθ) =
1

2

∫ 1

0
Ex∼pt∥▽st(x)− ▽sθ(t, x)∥2 dt. (4.1.2)

However, we do not have access to the true action so this objective is intractable. Because of
that we will decompose the loss into an intractable constant, i.e. a part that does not depend on
θ, and a part that only depends on sθ, but not on the true action s. Later we will only optimize
over the latter part.

Theorem 4.1.2 (Theorem 2.2 in [Nek+23b]). Let the sample space X ⊂ Rd be an open and
bounded set such that ∂X is C1. Let s : [0, 1]×X → R be the true action and sθ : [0, 1]×X → R
a neural network with learnable parameter θ. The ACTION-GAP(s, sθ) can be decomposed as a
sum of an intractable constant K, and a tractable term LAM (θ):

ACTION-GAP(s, sθ) = K + LAM (θ). (4.1.3)

The Action Matching objective LAM (sθ) is given by

LAM (θ) = Ex∼p0 [sθ(0, x)]− Ex∼p1 [sθ(1, x)]

+

∫ 1

0
Ex∼pt

[
1

2
∥▽sθ(t, x)∥2 +

∂sθ
∂t

(t, x)

]
dt.

(4.1.4)

Remark. In practice it is no restriction to assume X open and bounded as we will only have
finitely many samples.

Proof. We will decompose the ACTION-GAP to see that LAM (θ) is an equivalent learning
objective.

ACTION-GAP(s, sθ)

=
1

2

∫ 1

0

∫
X
pt(x)∥▽st(x)− ▽sθ(t, x)∥2 dx dt

1Definition from [Eva22]: Let X ⊂ Rd be open and bounded. We say that ∂X is C1 if for each point x0 ∈ ∂X
there exists r > 0 and a C1 function γ : Rn−1 → R such that - upon relabeling and reorenting the coordinate
axes if necessary - we have

X ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, . . . xn−1)}.
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=
1

2

∫ 1

0

∫
X
pt(x)∥▽sθ(t, x)∥2 dx dt−

∫ 1

0

∫
X
pt(x)⟨▽st(x),▽sθ(t, x)⟩ dx dt

+
1

2

∫ 1

0

∫
X
pt(x)∥▽st(x)∥2 dx dt

=
1

2

∫ 1

0

∫
X
pt(x)∥▽sθ(t, x)∥2 dx dt−

∫ 1

0

∫
X
⟨pt(x)▽st(x),▽sθ(t, x)⟩dx dt+K

(1)
=

1

2

∫ 1

0

∫
X
pt(x)∥▽sθ(t, x)∥2 dx dt+

∫ 1

0

∫
X
sθ(t, x) [▽ · (pt(x)▽st(x))] dx dt

−
∫ 1

0

∫
∂X

sθ(t, x)pt(x)(▽st(x) · ηX ) dSn−1(x) +K

(2)
=

1

2

∫ 1

0

∫
X
pt(x)∥▽sθ(t, x)∥2 dx dt+

∫ 1

0

∫
X
sθ(t, x) [▽ · (pt(x)▽st(x))] dx dt+K

(3)
=

∫ 1

0

∫
X
pt(x)∥▽sθ(t, x)∥2 dx dt−

∫ 1

0

∫
X
sθ(t, x)

∂pt
∂t

(x) dx dt+K

(4)
=

∫ 1

0

∫
X
pt(x)∥▽sθ(t, x)∥2 dx dt−

∫
X
sθ(1, x)p1(x) dx+

∫
X
sθ(0, x)p0(x) dx

+

∫ 1

0

∫
X

∂sθ(t, x)

∂t
pt(x) dx dt+K

= LAM (θ) +K

In (1) we used the divergence theorem. Sn−1 denotes the n− 1-dimensional Hausdorff measure.
In (2) we used the fact that due to the Neumann boundary conditions from Remark 4.1.1 we
have ▽st(x) ·ηX = 0 on ∂X . Here ηX is the outer normal. In (3) we used the continuity equation
(2.1.3). In (4) we used integration by parts.

As K does not depend on θ the learning objectives ACTION-GAP(s, sθ) and LAM (θ) are equi-
valent.

This leads to an implicit objective to optimize. In order to approximate the expected values
algorithmically, we will use Monte Carlo simulation. The algorithm for Action Matching is
specified in Algoritm 3.

Remark. The neural network sθ parametrizes s. So we need to differentiate the network to
access the vector field u = ▽xs.

Remark. One can show that we can interpret ▽xs as learning the optimal transport map between
two infinitesimally close distributions on the given curve (pt)t∈[0,1]. While we will not go further
into this topic in this thesis, more information can be found in Appendix B in [Nek+23b].
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Algorithm 3 Action Matching
Input: Probability density path (pt)t∈[0,1], initial model sθ, number of training iterations, batch

size B
Output: Trained model sθ(t, x)

for training iterations do
x0 ← {xi0}Bi=0 with xi0 ∼ p0
x1 ← {xi1}Bi=0 with xi1 ∼ p1
t← {ti}Bi=0 with ti ∼ U [0, 1]
xt ← {xti}Bi=1 with xti ∼ pti
LAM (θ)← 1

B

∑B
i=1

[
sθ(x

i
0, 0)− sθ(xi1, 1) + 1

2∥▽sθ(xti , ti)∥
2 +

∂sθ(xti ,ti)

∂t

]
θ ← Update(θ,▽θLAM (θ))

end for

Applying Action Matching in Discrete Time. Initially, the learning objective LAM(θ)
requires access to the complete trajectory of the dynamics. However, in practice, this is rarely
feasible. Moreover, it complicates comparisons with Flow Matching, which only requires know-
ledge of the initial and target distributions.

Although the authors do not address this issue in their paper, they suggest in a talk2 that the loss
can be discretized. This suggestion can be supported by the law of large numbers. However, we
encounter two practical challenges: Firstly, the time points at which we approximate the expected
value of LAM(θ) are not independently drawn but are determined by the data. Secondly, we need
to ensure that we have sufficient time points to achieve a good approximation.

In Section 6.3, we tested how Action Matching performs with different numbers of available time
points. The results were disappointing, as we faced significant issues with exploding gradients.
In the single-cell experiment in Chapter 7, we partially learned the paths, but the results were
still unsatisfactory.

To determine whether the problem is produced by the discretization or the loss, we will also
test a version called Independent Action Matching, based on I-CFM, which interpolates the data
between discrete time points. This version is introduced in Chapter 6.

Why Gradient Fields Are Not Restrictive?

While assuming the vector field to be a gradient fields seems restrictive, we actually get a gradient
field naturally:

Theorem 4.1.3 (Adapted from Theorem 13.8. and Remark 13.9. in [Vil09]). Let M be a smooth
complete Riemannian manifold, I an open interval and p : I → P2(M) be an absolutely continu-

2for the talk see https://www.youtube.com/watch?v=AdesAB80oRM (last visited 22.08.2024)
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ous curve, where P2(M) denotes the set of probability measures with finite second moment. Let
Ht be the Hilbert space generated by gradients of continuously differentiable, compactly supported
ψ:

Ht := Vect({▽ψ;ψ ∈ C1
c (M)})L

2(pt;TM)
.

Then there exist a measurable vector field v ∈ L2(dpt dt), which is pt(dx) dt almost everywhere
unique. Further, vt ∈ Ht for all t, meaning the vector field really is tangent along the path, and
p and v satistfy the continuity equation (2.1.3) in the weak sense.

4.2 Why Action Matching is Called Action Matching?

We follow [Nek+23a] in this part.

Let X be the sample space endowed with a scalar product ⟨·, ·⟩ and let γt : [0, 1] → X be
a continuous curve, which has a metric derivative. An action functional measures the cost of
displacement along this curve. Actions can be defined for general Langrangians, i.e. functions
which summarize the dynamics of the entire system. We, however, restrict ourselves to systems
without a potential. Namely, the action is simply given as the time integral over the kinetic
energy of the curve γ:

A(γ) =
∫ 1

0

⟨γ̇t, γ̇t⟩
2

dt.

In Action Matching we want to match the action of the curve t 7→ pt which maps from [0, 1] to
P2(X ). This argument relies on Otto Calculus which we do not want to formally introduce here
(see for example [ABS21]). Still we try to outline the ideas informally. The tangent space to p
is defined by TW2

p P2(X ) = {ṗ |
∫
ṗ dxt = 0}, where ṗ is the time derivative of p. An element ṗ

from the tangent space is ‘coupled’ to a vector v = ▽xsṗ if they satisfy

ṗ = −▽ · (p▽xsṗ).

This condition resembles the continuity equation in Optimal Transport. Next we define Otto’s
scalar product for two elements f, g ∈ TW2

p P2(X ) by

⟨f, g⟩ :=
∫
(▽xsf ) · (▽xsg)p dx.

Then p has the action

A[p] =
∫ 1

0

⟨ṗt, ṗt⟩
2

dt =

∫ 1

0

∫
1

2
∥▽xst∥2pt(x) dx dt.

Action Matching aims at minimizing the displacement cost between the true curve and the
learned curve.
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4.3 Comparison to Flow Matching

At last we compare Action Matching to Flow Matching. The first difference is that a priori Flow
Matching aims to interpolate between two distributions so just assumes access to samples at the
start and end points of the path, while Action Matching requires access to samples at all points
in time. However, one can also apply Flow Matching to several time steps and approximate
Action Matching by a finite number of fixed time steps. If we let the number of time steps we
can sample from go to infinity, then OT-CFM and AM learn the same probability path (pt)t∈[0,1]
which is optimal in the sense of infinitesimal Optimal Transport.

In Flow Matching we needed to know or at least choose the marginal conditional probability
path pt(x | x0, x1) and conditional vector field ut(x | x0, x1). Action Matching requires us to
know the whole probability path but we learn the unconditional vector field directly.

Additionally, the vector fields learned by each method differ. While choosing the vector field u
as a gradient field is not restrictive (and is almost everywhere unique when chosen this way),
in Flow Matching, we may learn a different vector field where this restriction does not apply.
Without the gradient field restriction, we can always add a divergence-free component wt with
∇· (ptwt) = 0 to ut, and the continuity equation is still satisfied. The specific vector field learned
also depends on the particular Flow Matching method used.

Let u∗t denote the vector field learned by Flow Matching and ▽s∗t the one learned by Action
Matching. The divergence-free component of u∗t is identical to ▽s∗t . As a result, ▽s∗t has lower
kinetic energy than u∗t

1

2

∫ 1

0
Ex∼pt∥▽s∗t (x)∥ dt ≤

1

2

∫ 1

0
Ex∼pt∥u∗t (x)∥dt.

Thus, the particles moved by ▽s∗t have less kinetic energy and move less. Consequently, Action
Matching may be more robust to noisy data, as it is less prone to learning the noise in the data.
In Section 6.4 and Chapter 7 we will see that this is indeed the case.

Moreover, the Flow Matching loss is a simple mean-squared error loss, which allows for fast
regression. In contrast, backpropagating the Action Matching loss is more computationally
complex because the loss includes the gradient of the neural network.

While the computational complexity of Action Matching remains stable regardless of the number
of time points N included, Flow Matching’s complexity scales linearly with the number of time
points, as we need to compute N − 1 couplings. This does not hold for I-CFM as it just uses
the independent coupling. We further compare these two methods in the experiments detailed
in Chapter 6 and Chapter 7.



Chapter 5

Stochastic Variants

In the previous chapters, we assumed the particles (xt)t∈[0,1] follow a deterministic ODE. We
focused on transporting particles in an energy-efficient manner, for example by methods related
to Optimal Transport, which results in straight-line trajectories of the particles. However, natural
processes often include stochastic elements that cannot be described by an ODE. The stochastic
process known as Brownian motion, (Wt)t≥0, characterizes the random motion of particles in a
liquid. To incorporate randomness in the trajectories, we add noise induced by Brownian motion
to the driving process. This can be described by the following Stochastic Differential Equation
(SDE), which we will explain in more detail shortly:

dXt = ut(Xt) dt+ g(t) dWt. (5.0.1)

While the ODE transports every particle starting at X0 = x0 to the same target X1 = x1, the
SDE allows a particle starting at X0 = x0 to reach various different locations.

Stochastic dynamics are essential for describing many natural processes, such as the behavior of
single cells, which we will encounter later. The gene expression dynamics of single cells involve
inherent randomness and branching behaviors that deterministic dynamics cannot capture.

Additionally, Stochastic Differential Equations can enhance learning by enabling a more compre-
hensive exploration of the state space. Cutting-edge generative models, such as diffusion models
[Son+21], utilize SDEs to introduce noise into training data. These models often outperform
deterministic processes, particularly in high-dimensional settings. We aim to achieve similar
results with our stochastic variants. This hypothesis is tested experimentally in Section 6.4,
where we compare deterministic and stochastic models on artificial high-dimensional data, and
in Chapter 7, where we evaluate the models on real single-cell data across various dimensions.

In this chapter we will introduce the methods entropic Action Matching and [SF ]2M , which
is the stochastic variant of Flow Matching. Both methods aim at learning the drift term ut

39



40 CHAPTER 5. STOCHASTIC VARIANTS

of the SDE. However, g(t) needs to be chosen or fine-tuned manually. To learn g(t) we would
need access to trajectories of particles, i.e. we would need a time series structure of the data
where we can follow specific particles over time. After we have learned ut we can solve the SDE
numerically to simulate trajectories of particles. Both methods avoid having to solve the SDE
during training.

5.1 Preliminaries

5.1.1 SDEs and Diffusion Processes

We assume that the stochastic process (Xt)t∈[0,1] takes values in Rd and can be represented by
the Itô-SDE:

dXt = ut(Xt) dt+ g(t) dWt, (5.1.1)

where u : [0, 1]×Rd → Rd and g : [0, 1]→ R+. It would also be possible to choose g(t) such that
it takes values in the space of positive definite diagonal d× d-matrices. This can be useful if we
want to describe processes whose noise scales vary over different dimensions. For ease of notation
we restrict ourselves to g : [0, 1] → R+. The time marginal Xt ∈ Rd of the stochastic process
(Xt)t∈[0,1] defined above describes the state of the particle at time t. dWt is the increment of a
d-dimensional Wiener process. We informally can think of this increment as Wt+dt −Wt. g(t)
is the diffusion coefficient at time t and ut is a smooth vector field, which is also called the drift
of the SDE. The term dXt describes the change in the particle’s state at time t; for example,
in single-cell mRNA data, it represents changes in gene expression over time. The drift term
ut(Xt) depends on the temporal and spatial information of the particle, indicating the direction
of movement at time t. The term g(t) scales Brownian motion, accounting for the inherent
randomness in the particle’s movement at time t. More formally, the SDE (5.1.1) is defined as

Xt2 −Xt1 =

∫ t2

t1

ut dt +

∫ t2

t1

g(t) dWt.

The stochastic integral ∫ t2

t1

g(t) dWt

can be defined as the limit of Riemannian sums. Assume that g(t) is a càdlag function, meaning
it is right continuous and has left limits, and is locally bounded. If g were stochastic, it would
also need to be adapted to the filtration. Let P be a partition of [0, T ] defined by 0 = t0 < t1 <
· · · < tn = T and let

|P | = max
i=0,...n−1

(ti+1 − ti)
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For any sequence of partitions {Pn}n∈N of the time interval [0, T ], such that the maximal mesh
width |Pn| → 0 as n→∞, the Itô-Integral is defined as:∫ t

0
g(t) dWt = lim

n→∞

∑
[ti,ti+1]∈Pn

g(ti)(Wti+1 −Wti). (5.1.2)

Remark 5.1.1. The definition of the Itô stochastic integral is unique. It is crucial to use the
value of g(t) at the left border of the interval. Using another value within the interval [ti, ti+1]
would change the value of the integral.

Next let X0 ∼ µ. Moving this density by the SDE produces a path of probability distributions
p : [0, 1] × Rd → R+. This probability path is characterized by its initial condition p0 = µ and
the Fokker-Planck equation:

∂pt
∂t

= −▽ · (ptut) +
g(t)2

2
∆pt. (5.1.3)

In the degenerate case g(t) = 0 the SDE (5.1.1) becomes just an ODE and the Fokker-Planck
equation (5.1.3) recovers the continuity equation (2.1.3).

5.1.2 Probability Flow ODE

Song et. al. [Son+21] showed that we can restore the marginal distributions (pt)t∈[0,1] of a SDE
by solving an ODE which we call the Probability Flow ODE. In order to sample from pt it is
thus sufficient to solve this ODE. It is given by

dxt =

[
ut(xt)−

1

2
g(t)2▽x log pt(xt)

]
dt. (5.1.4)

Transporting an initial distribution µ along (5.1.4) yields the same probability path (pt)t∈[0,T ] as
transporting it along our initial SDE (5.1.1).

Let ft(x) = ut(x) − 1
2g(t)

2▽x log pt(x). We can parametrize ft(x) by a neural network fθ(t, x)
with learnable weights θ. We then can learn the vector field f by the previous methods as it
is just the drift of the Probability Flow ODE . If we have access to ft(x), g(t) and the score
function ▽x log pt(x) we can restore the original SDE:

dXt =

[
ft(Xt) +

1

2
g(t)2▽ log pt(Xt)

]
dt+ g(t) dWt. (5.1.5)

5.1.3 Numerically Solving the SDE

Given the SDE (5.1.1) we want to simulate particles (Xt)t∈[0,1] which evolve according to this
SDE. For this we need a numerical solution to the SDE. We use the Euler-Maruyama method,
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which is an extension of the Euler method for ODEs. Let Y0 ∼ µ. Let 0 = t0 < t1 < · · · < tn = 1
be a partition of the interval [0, 1] of mesh width ∆t = 1

n . We can define recursively for 0 ≤ i ≤
n− 1

Yi+1 = Yi + uti(Yi)∆t+ g(ti)∆Wi (5.1.6)

with ∆Wi = Wti+1 −Wti . By the properties of the Wiener process the random variables ∆Wi

are independent and identical distributed Gaussian random variables with expectation 0 and
variance ∆t. The Euler-Maruyama method has a strong convergence rate of 1

2 . To define this
thoroughly let Y h

T be the numerically solution of an SDE on the interval [0, T ] with step length
h and let yT be the real solution at time T . Then there exist constants C and h0 > 0 such that
for all h ∈ (0, h0) we have

E
[∣∣∣yT − Y h

T

∣∣∣] ≤ Ch 1
2 .

The proof for this can be found in [Klo+92].

5.2 Entropic Action Matching

Entropic Action Matching is the extension of Action Matching to learn SDEs given by (5.1.1).
Again we follow [Nek+23b]. As before we assume that the vector field u is a gradient field. That
is ut(x) = ▽xst(x) with s : [0, 1]× Rd → R. We call s ‘entropic action’. Further we have access
to the whole probability path (pt)t∈[0,1]. Entropic Action Matching parametrizes the action s by
a neural network sθ with learnable weight θ. We will derive a learning objective to match the
true and the paramterized action functions. Even though the diffusion coefficient g(t) is fixed
and not learned, it has an influence on the dynamics. While we derived the unentropic Action
Matching loss LAM by using the continuity equation, we now will use its stochastic counterpart
- the Fokker-Planck equation (5.1.3).

As before it can be shown that it is no restriction to choose the vector field as a gradient
field, which moves particles in time in such a way that the marginal probabilities are pt. In
Theorem 4.1.3 we saw this for the deterministic case. Together with the Probability Flow ODE
(5.1.4) we get the following Proposition:

Theorem 5.2.1 (Proposition 3.1. in [Nek+23b]). Consider an absolutely continuous density
evolution p : I → P2(Rd) with I an open interval, and suppose g(t) is given. Then, there exists
an unique (up to a constant) function st(x), such that the vector field ut = ▽xst(x) and p satisfy
the Fokker-Planck equation (5.1.3).

We now parametrize the entropic action by a neural network sθ(t, x) : [0, 1] × Rd → R with
learnable parameter θ. The desired learning objective is the same as in the deterministic case:

E-ACTION-GAP(s, sθ) =
1

2

∫ 1

0
Ex∼pt∥▽st(x)− ▽sθ(t, x)∥2 dt. (5.2.1)
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As this is intractable we again decompose this objective into a intractable constant and a tractable
learning objective:

Theorem 5.2.2 (Theorem 3.2 in [Nek+23b]). Let the sample space X ⊂ Rd be an open and
bounded set such that ∂X is C1. Let s : [0, 1] × X → R be the true entropic action and sθ :
[0, 1]× X → R the neural network with learnable parameter θ. The E-ACTION-GAP(s, sθ) can
be decomposed as a sum of an intractable constant K, and a tractable term LeAM (sθ):

E-ACTION-GAP(s, sθ) = K + LeAM (sθ). (5.2.2)

The entorpic Action Matching objective LAM (sθ) is given by

LeAM (sθ) = Ex∼p0 [sθ(0, x)]− Ex∼p1 [sθ(1, x)]

+

∫ 1

0
Ex∼pt

[
1

2
∥▽sθ(t, x)∥2 +

∂sθ
∂t

(t, x) +
g(t)2

2
∆sθ(t, x)

]
dt.

(5.2.3)

The proof of this theorem is similiar to Theorem 4.1.2 and will be skipped. The main difference
is that we use the Fokker-Planck equation instead of the continuity equation.

5.2.1 The Hutchinson Trace Estimator

The learning objective (5.2.3) requires the Laplacian of the parameterized action, which is the
trace of the Hessian. In high dimensions, calculating the Hessian and its trace can be computa-
tionally intensive and storage demanding, as the Hessian is a d× d matrix. The neural network
sθ has several hidden layers, each containing even more hidden units. Even in relatively small
dimensions, computing this Hessian can be expensive. Additionally, since the Laplacian appears
in the loss function, backpropagating through it can lead to an unstable training process, even
in lower dimensions.

Instead of calculating the entire Hessian we can use matrix-vector products of the Hessian of ▽xsθ
and vectors vi, i = 1, . . . , n. This product can be calculated efficiently by autodifferentiation
in the popular machine learning frameworks (PyTorch, TensorFlow, JAX). Let A ∈ Rd×d be a
positive semi-definite matrix like the Hessian. The exact trace of A can be computed as

d∑
i=1

eTi (Aei)

where ei is the i-th canonical basis vector of Rd. However, in high dimensions, this requires
significant computation, which is impractical to compute in each training step in a machine
learning algorithm.

Instead, we use the Hutchinson trace estimator [Hut90], as detailed in [Sko21]. The Hutchinson
estimator is given by:

trH(A) = zTAz,
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Figure 5.1: Results of fine-tuning the number of estimators n for I-EAM. Both experiments were
run for three runs. The blue plot shows the average W2 or W1 distance between the predicted
and observed distributions over the three runs. The vertical blue lines are error plots, indicating
the minimum and maximum distance over the three runs. The green line displays the average
computational time.

where z is a Rademacher random variable, i.e. z ∼ U({−1, 1}d). While this is an unbiased
estimator it can be very noisy. Therefore, we usually average over n independent trials in
practice:

trH(n)(A) =
1

n

n∑
i=1

zTi Azi (5.2.4)

and zi for i = 1, . . . , n are independent Rademacher variables. It is easy to see that this estimator
remains unbiased. To measure how good the estimator performs we can look at its variance:

Var(trH(n)(A)) =
4

n

∑
1≤i<j≤d

|Aij |2.

Thus the variance decreases linearly with the number of trials n.

Choosing the number of estimators n. To determine a suitable number of estimators
n, we tuned this hyperparameter for two experiments that we will conduct later. The other
hyperparameters are chosen in the same way as in Chapter 6. The details are outlined in Section
6.1. For computational stability, we use I-EAM, a version of EAM that interpolates the data
between discrete time steps, ensuring a more stable training objective. This method is introduced
in Section 6.1. We fine-tuned n using the two dimensional toy example which we introduce in
Chapter 6 and the single cell data from Chapter 7. We ran both experiments three times. Figure
5.1 shows the results, indicating that the average computational complexity (green line) increases
linearly with the number of estimators n; a result which was also expected. The blue line displays
the average W2 or W1 distance between the predicted and observed distributions over the three
runs. The vertical blue lines are error plots, indicating the minimum and maximum Wasserstein
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distance over the three runs. It is desirable that the average distance is low but also the error
is not too large. The results suggest that n = 2 or n = 3 might be good choices. In this thesis,
we use n = 3 as it provides more stability for the EAM method when dealing with dynamics in
discrete time.

However, we observe two surprising results. Firstly, the error of entropic Action Matching in-
creases when using n = 5 estimators. A possible explanation for this is that a less accurate
Laplacian regularizes entropic Action Matching. This is further supported by the observation
that entropic Action Matching becomes very unstable with n = 5, as indicated by the large
error bars. In Chapter 6, we demonstrate that entropic Action Matching is generally an unstable
method.

Moreover, the significant difference between the estimators with n = 1 and n = 2 is unexpected.
During training, we already average over the data from one batch, so it would be reasonable to
expect that a single estimator would yield fairly good results. In fact, using just one estimator
is a common practice when training CNFs. This suggests that the Laplacian term in the Action
Matching objective might contribute to an unstable loss function, and that using more than one
estimator helps to stabilize it.

5.2.2 Connection to Entropic Optimal Transport

In Section 2.2, we discussed the Schrödinger bridge problem. It searches for the most likely
measure D∗ ∈ P(C([0, 1];X )), such that its time marginals D∗

0 and D∗
1 agree with µ and ν and

with the condition that D∗ should be as close as possible to the law of a Brownian motion with
diffusion g(t). We want to show that entropic Action Matching is connected to entropic Optimal
Transport. We follow [CGP21] in this section.

Chen et. al. [CGP21] show that the Schrödinger bridge problem can be formulated as a stochastic
control problem and that the marginal paths (D∗

t )t can be restored by solving the fluid dynamic
formulation:

Definition 5.2.3. The fluid dynamic formulation of entropic Optimal Transport is given by

inf
p,u

∫
Rn

∫ 1

0

1

2
∥u(t, x)∥2p(t, x) dt dx,

∂p

∂t
+ ▽ · (up)− g(t)

2
∆p = 0,

p(0, x) = µ(x), p(1, y) = ν(y)

with u : [0, 1]× Rd → Rd and p : [0, 1]→ P(Rd).

We get that D∗
t = pt for the optimal solution (pt)t∈[0,1] of the fluid dynamic problem. The

fluid dynamic formulation can be written as a saddle-point problem by introducing a space-time
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dependent Lagrange multiplier s(t, x). After partial integration the Lagrangian is given by:

L(s,u, p) =∫ 1

0

∫
Rn

1

2
∥ut(x)∥2pt(x)−

(
∂st(x)

∂t
+ ⟨ut(x),▽st(x)⟩ −

g(t)2

2
∆st(x)

)
pt(x) dx dt

+

∫
Rn

s1(x)p1(x)− s0(x)p0(x) dx.

Then the fluid dynamic formulation is equivalent to the saddle-point problem

inf
p,u

sup
s
L(s, u, p).

In the Action Matching setting we assume p to be known, so the saddle point simplifies to

inf
u
sup
s
L(s, u, p).

[BB00] show that the optimality condition for the vector field ut is ut(x) = ▽xst(x), where s is
the Langrangian. Thus, it remains to solve

sup
s
L(s,▽s, p).

Maximizing this is equivalent to minimzing the entropic Action Matching loss. Thus entropic
Action Matching solves the fluid dynamic formulation of entropic Optimal Transport, where the
probability path (pt)t∈[0,1] is known.

5.3 Simulation Free Score and Flow Matching

We proceed by examining a generalized form of Flow Matching called [SF ]2M , extending Flow
Matching to stochastic dynamics as described in Tong et al. [Ton+23]. This approach combines
the learning objectives of Score Matching [Son+21] with Flow Matching, thereby extending Score
Matching to arbitrary source distributions and broadening Flow Matching to stochastic dynam-
ics. Before going into the details of this method, we give a brief overview of Score Matching.

5.3.1 Score Matching

Score based models were introduced to facilitate more efficient sampling from distributions with
complicated density functions, denoted by p(x), which are challenging to sample from directly.
The key idea is to learn the gradient of the log-likelihood, also called the score function, denoted
by ▽x log p(x). The score function eliminates the need to compute the normalizing constant. We
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would like to learn a neural network sθ ≈ ▽x log p(x) with learnable weights θ, approximating
the score function, by optimizing the objective

1

2
Ex∼p [∥▽x log p(x)− sθ(x)∥] . (5.3.1)

However, in practice this is infeasable as the true score function is mostly unavailable. Estimating
the score function from the data would be a non-parametric estimation problem. Instead, by
simply using partial integration we get the objective in [HD05]:

Ex∼p

[
tr(▽xsθ(x)) +

1

2
∥sθ(x)∥22

]
. (5.3.2)

This can be learned more easily. As (5.3.2) depends on the computation of tr(▽xsθ(x)) this
approach is still not scalable to deep neural networks and high dimensional data. To overcome
this problem Sliced Score Matching [Son+20] and Denoising Score Matching [Vin11], [SE19] were
introduced. We will give a short summary of Denoising Score Matching.

Denoising Score Matching. Instead of directly estimating the score for the original data
distribution, Denoising Score Matching adds noise to the data and estimates the score function
of the perturbed data. This is especially beneficial in regions of low data density. For better
results we perturb the data with different scales of noise. For a given noise scale σ we define the
perturbed density as

qσ(x̃) =

∫
N (x̃ | x, σ2I)p(x) dx. (5.3.3)

We get qσi(x̃ | x) = N (x̃ | x, σ2i I). We can match the noisy score function by the objective

1

2
Ex∼p [∥▽x log qσ(x)− sθ(x)∥]

This loss can be shown to be equivalent to the conditional loss

1

2
Ex∼p,x̃∼qσi (·|x) [∥▽x log qσ(x̃ | x)− sθ(x)∥] .

Suppose we have the noise scales σ1, . . . , σL. We want to estimate the score functions of all the
perturbed densities qσ1 , . . . , qσL . To train a network sθ(x, σi) for all noise scales we can use a
weighted sum of the conditional objectives. The sum is weighted by λ(σi) ∈ R≥0. Then the
objective is given by

1

L

L∑
i=1

λ(σi)Ex∼pEx̃∼qσi (·|x)
[
∥sθ(x̃, σi)− ▽x log qσi(x̃ | x)∥2

]
. (5.3.4)

If the minimum noise scale σmin is small enough we get sθ(x, σmin) ≈ ▽x log p(x). To recover
samples x̃t approximately drawn from pt using the learned score function sθ, one can apply a
procedure called annealed Langevin dynamics [SE19].
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Figure 5.2: Score Matching with SDEs which was introduced by Song et. al. in 2021. The figure
is taken from their paper [Son+21]

Score Matching with SDEs. Score Matching with SDEs, introduced by Song et al. [Son+21],
extends the principles of Denoising Score Matching by employing a continuum of noise scales,
achieved through an SDE framework. We will follow their framework in this section. Specifically,
a diffusion process (Xt)

T
t=0 is constructed, such that X(0) ∼ µ and X(T ) ∼ pT . Here we have

access to i.i.d. samples from µ and pT is a distribution we can easily sample from, usually we
choose it to be a Gaussian distribution. (Xt)

T
t=0 is modeled by an Itô-SDE:

dXt = f(Xt, t) dt+ g(t) dWt, (5.3.5)

where f : Rd × R → Rd represents the drift and g : R → R represents the diffusion coefficient.
Both f and g are chosen and not learned. The SDE perturbs the data into a form that allows
for easy sampling.

To generate samples we then reverse the diffusion process. We aim to transport samples from
XT ∼ pT to X0 ∼ µ. It was shown in [And82] that under some conditions on the forward
diffusion process, the reverse-time SDE of (5.3.5) is given by

dXt =
[
f(Xt, t)− g(t)2▽x log pt(Xt)

]
dt+ g(t) dW̄t, (5.3.6)

where we now move from T to 0 and W̄ is the standard Brownian motion backwards in time from
T to 0. The proof is based on deriving reverse-time Kolmogorov equations and can be found in
[And82]. The only unknown in (5.3.6) is the score function ▽x log pt(x). We learn this by the
conditional objective

L(θ) = Et∼U([0,T ])EX0∼p0EXt∼p0,t(·|X0)

[
λ(t)∥sθ(Xt, t)− ▽x log p0,t(Xt | X0)∥22

]
, (5.3.7)

where λ : [0, T ] → R+ is a positive weighting function and ps,t(Xt | Xs) denotes the transition
kernel from Xs to Xt. This loss is the continuous version of the one in Denoising Score Matching
(5.3.4).

The commonly utilized SDEs include the Variance Exploding SDE, Variance Preserving SDE, and
sub-Variance Preserving SDE, each serving specific purposes within the framework. The Variance



5.3. SIMULATION FREE SCORE AND FLOW MATCHING 49

Exploding SDE (VE SDE) always yields a process with exploding variance when t → ∞. The
VE SDE can be thought of as the continuous version of the above Denoising Score Matching.
For each of N noise scales the perturbation kernel pσi(x | x0) represents the distribution of xi in
the following Markov chain:

xi = xi−1 +
√
σ2i − σ2i−1zi−1,

for i = 1, . . . , N , zi−1 ∼ N (0, I) and σ0 = 0. The continuous time version of this is given by the
VE SDE:

dXt =

√
dσ2(t)

dt
dWt.

The VP SDE (Variance preserving SDE) yields a process with a fixed variance of one if the initial
distribution has a variance of one. It is given by

dXt = −
1

2
Xt dt+

√
β(t) dWt,

where β : [0, T ] → (0, 1) is a function of positive noise scales. This method is a continuous
version of Denoising Diffusion Probabilistic Models [HJA20], which we did not introduce here.

The sub-VP SDE is inspired by the VP SDE. It has its name by the fact that the variance of
the stochastic process (Xt)t∈[0,1] defined by the sub-VP SDE is bounded by the variance of the
stochastic process defined by the VP SDE at every intermediate time step when using the same
initial distribution and the same β(t). It is given by

dXt = −
1

2
β(t)Xt dt+

√
β(t)(1− e−2

∫ t
0 β(s) ds) dWt.

5.3.2 The [SF ]2M-Method

We consider the evolution of particles according to the SDE (5.1.1), with marginal densities pt.
We saw that the Probability Flow ODE (5.1.4) with the vector field

ft(x) = ut(x)−
1

2
g(t)2▽x log pt(x)

yields identical marginal distributions. Additionally, from (5.1.5) we know that the SDE can be
reconstructed given knowledge of f , g and ▽x log p. Hence, we use Flow Matching to learn the
vector field f and Score Matching to learn the score function ▽x log p, while g is assumed to be
known. We parametrize both using neural networks: vθ : [0, 1] × Rd → Rd for the vector field
and sθ : [0, 1]× Rd → Rd for the score function. The natural objective is the loss function

LU [SF ]2M (θ) = Et∼U([0,1]),x∼pt

[
∥vθ(t, x)− ft(x)∥2 + λ(t)2∥sθ(t, x)− ▽x log pt(x)∥2

]
, (5.3.8)

where λ : [0, 1]→ R+ are positive weights, which need to be chosen manually.
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To learn f and ▽x log p both Flow Matching and Score Matching use conditional objectives. In
Chapter 3 we assume that the probability path (pt)t∈[0,1] can be written as a mixture of the
conditional probability path (pt(· | z))t∈[0,1]. We will generalize the objects from Chapter 3 to
the stochastic setting. We suppose that the stochastic process X = (Xt)t∈[0,1], which we want
to learn, can be written as a mixture of conditional random variables (Y z

t )t∈[0,1] indexed by a
latent variable z ∈ Y, where Y is a latent space. We usually choose Y = Rd×Rd. The marginals
Xt then can be written as

Xt =

∫
Y z
t q(z) dz. (5.3.9)

Suppose that Y z
t is defined by the SDE

dY z
t = ut(Y

z
t | z) dt+ σt dWt (5.3.10)

with initial distribution p0(x | z). Further, let ft(x | z) denote the drift of the corresponding
Probability Flow ODE. We have the following theorem:

Theorem 5.3.1 (Theorem 3.1. in [Ton+23]). Let

ft(x) = Ez∼q

[
ft(x | z)pt(x | z)

pt(x)

]
, (5.3.11)

▽ log pt(x) = Ez∼q

[
pt(x | z)
pt(x)

▽ log pt(x | z)
]
. (5.3.12)

Suppose that ut(x | z),▽ log pt(x | z) and their first derivatives are continuous in x and uniformly
continuous in z. Then the ODE dxt = ft(x) dt generates the marginals pt, where pt is the density
of Xt, from initial condition p0 and its score function is given by (5.3.12). The SDE

dX̃t =

[
ft(X̃t) +

1

2
σ2t▽ log pt(X̃t)

]
dt+ σt dWt (5.3.13)

generates the Markovization of X, i.e. the Markov process with the same infinitesimal transition
kernel.

Processes X = (Xt)t∈[0,1] which have the form (5.3.9), are not necessarily Markovian and may
not be generated by any SDE. Thus, the solution of (5.3.13), X̃, must not be the same process
as X, however, they have the same infinitesimal transition kernel. If X, on the other hand, is
defined by a SDE and thus a Markov process, then X and X̃ are indistinguishable, i.e. Xt = X̃t

almost surely for all t ∈ [0, 1].

Based on Flow and Score Matching we now can define the conditional objective to solve [SF ]2M

L[SF ]2M (θ) = Et,z,x∥vθ(t, x)− ft(x | z)∥2 + Et,z,xλ
2(t)∥sθ(t, x)−∇ log pt(x | z)∥2, (5.3.14)

with t ∼ U([0, 1]), z ∼ q(·) and x ∼ pt(· | z). Further λ : [0, 1]→ R+ is a weight function which
needs to be chosen. This is equivalent to the unconditional loss:
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Theorem 5.3.2 (Theorem 3.2. in [Ton+23]). Let q, pt(· | z) ∈ L2(Rd) and ft, ▽ log pt, vθ(t, ·),
sθ(t, ·), ▽θvθ(t, ·) and ▽θsθ(t, ·) be bounded. If pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then

▽θLU [SF ]2M = ▽θL[SF ]2M . (5.3.15)

Proof. We show this seperately for the Flow Matching and the Score Matching loss. For the
Flow Matching loss we already showed the statement in Theorem 3.1.2. As we have

wt(x) = Ez∼q

[
wt(x | z)pt(x | z)

pt(x)

]
for both wt(x) = ft(x) and wt(x) = ▽ log pt(x) we just can repeat the proof of Theorem 3.1.2
for ▽ log pt.

The algorithm for training is given in Algorithm 4.

Analogue to the Conditional Flow Matching framework we choose z = (x0, x1). Further we
choose pt(x | x0, x1) as in SB-CFM and therefore

ft(x | x0, x1) =
1− 2t

t(1− t)
(x− (tx1 + (1− t)x0)) + (x1 − x0), (5.3.16)

∇ log pt(x | x0, x1) =
tx1 + (1− t)x0 − x

σ2t(1− t)
. (5.3.17)

We take σ = 1. As we want to transport the distribution µ to ν, we choose the mixing density
q from (5.3.9) to be a coupling of µ and ν.

In Section 3.2.3 we chose q = π2σ2 for SB-CFM, where π2σ2 is the solution of entropic Optimal
Transport with regularization parameter 2σ2. We saw that with this choice SB-CFM recovers
the marginals of the Schrödinger bridge. When we now choose q = π2σ2 in the stochastic setting
we recover the Schrödinger bridge to the reference process σW , where W is a Brownian motion.
To make this more precise let v∗θ and s∗θ be the minimizers of L[SF ]2M (θ). Then the Schrödinger
bridge is defined by the SDE

dX̃t =

[
v∗θ +

1

2
σ2t s

∗
θ

]
dt+ σt dWt,

i.e. the Schrödinger bridge D∗ ∈ P(C([0, 1];Rd)) is the law of the stochastic process (X̃t)t∈[0,1].
Therefore we will choose q = π2σ2 . This of course only holds true when we know the exact
distributions µ and ν. Thus, in practice we only recover an empirical Schrödinger bridge. Suppose
we have n samples from each µ and ν, let D∗ be the Schrödinger bridge between µ and ν and
D̂n the Schrödinger bridge recovered from n samples. Then Stromme [Str23] gives the following
bound:

KL(D̂n |D∗) ∈ O
(

1√
n

)
.
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If we have n samples from each µ and ν, then calculating the entropic Optimal Transport has
complexity O(n2). This might be too large in a machine learning application. Thus as for
OT-CFM we can use a minibatch approximation of entropic Optimal Transport.

Algorithm 4 Algorithm for [SF ]2M

Input: Coupling q of the initial distribution µ and the target distribution ν, initial networks
vθ(t, x) and sθ(t, x), number of training iterations, batch size B

Output: trained model vθ(t, x)
for training iterations do

(x0,x1)← {(xi0, xi1)}Bi=0 with (xi0, x
i
1) ∼ q

t← {ti}Bi=0 with ti ∼ U([0, 1])
xt ← {xiti}

B
i=1 with xti ∼ pti(· | xi0, xi1)

L[SF ]2M (θ)← 1

B

B∑
i=1

∥vθ(ti, xiti)− fti(x
i
ti | x

i
0, x

i
1)∥2

+λ2(ti)∥sθ(ti, xiti)− ▽ log pti(x
i
ti | x

i
0, x

i
1)∥2

θ ← Update(θ,▽θL[SF ]2M (θ))
end for



Chapter 6

Experiments

We want to test Action Matching against Conditional Flow Matching and our stochastic methods
against their deterministic counterparts. We want to understand better what kind of trajectories
are learned, how the different methods behave in high dimensions and how well they scale if we
use several time points or in the case of Action Matching how poorly our method behaves if we
only give it acess to a limited number of time steps.

6.1 General Setup

Let d denote the dimensionality of the data, i.e. X ⊆ Rd. As a short recap Table 6.1 shows the
methods and some of their assumptions in comparison. I-AM and I-EAM are introduced in the
next section.

I-CFM OT-CFM [SF ]2M AM I-AM EAM I-EAM
Requires knowledge of the

entire probability
path (pt)t?

False False False True False True False

Requires us to choose a
suitable conditional

probability path (pt(· | z))t?
True True True False True False True

Can model stochastic
dynamics? False False True False False True True

Restores a form of OT or
the Schrödinger bridge? False True True True False True False

Table 6.1: We compare assumptions and capabilities of the introduced methods.

53
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Figure 6.1: The plot shows the different activation functions we use in the neural networks.

6.1.1 Model Architectures

We start by explaining the model architectures we chose and how to set the hyperparameters.

Action Matching. For Action Matching we parametrize the action s : [t0, t1]× Rd → R by a
neural network sθ. The parametrized vector field from (2.1.1) is then given by uθ = ▽xsθ. As
the action is time dependent we model it with a neural network with d+ 1 input nodes and one
output node. We use 4 hidden layers in the network with 512 hidden nodes per layer. This is the
same choice the authors used for Action Matching.1 In our experiments using less hidden nodes
resulted in worse predictions. The Action Matching model has especially problems to capture
curvature. We tried to use more layers in the neural network to improve this. However, we could
see no significant change in performance. Therefore, we use 4 layers. The activation functions we
use depend on the task at hand. The first architecture (MLP ReLU) uses only ReLU activation
functions, i.e.

f(x) =

{
0 for x ≤ 0

x for x > 0.

The second architecture (MLP SiLU) uses the ReLU activation function after the first layer and
the SiLU activation function after the second and third layer, i.e.

f(x) = x ∗ σ(x),

where σ(x) is the logistic sigmoid:

σ(x) =
1

1 + e−x
.

Figure 6.1 shows both the ReLU and the SiLU activation functions. MLP SiLU is the same
architecture the authors used in [Nek+23b].

The MLP ReLU architecture has difficulties with learning more complex dynamics, however, it
protects us from exploding gradients. The MLP SiLU architecture allows to learn more flexible
dynamics. On the down side it is very prone to exploding gradients, especially when we discretize

1For the code see: https://github.com/necludov/jam/tree/main, last accessed 05.09.2024
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time in Action Matching. As the loss function depends on the gradient of the neural network,
the exploding gradients problem could not be solved by using gradient clipping.

In some experiments we will interpolate between an initial distribution µ and a target distribution
ν without any information on the path which connects those two. We want to introduce I-AM,
which uses the conditional trajectories from I-CFM to learn the Action Matching loss. I-AM
thus assumes conditional Optimal Transport, similar to I-CFM, meaning for known x0 and x1
we transport N (x0, σ) optimally to N (x1, σ) by

pt(x | x0, x1) = N (x | tx1 + (1− t)x0, σ2).

The choice of σ is explained later. The interpolation between data points is simple and linear.
However, it ensures conditional Optimal Transport. While one could use a nonlinear interpola-
tion, this would result in a higher displacement cost at the particle level. Therefore, we choose to
consider only the linear interpolation. However, Neklyudov et al. explore the impact of learning
the interpolation path using a neural network in [Nek+23a]. To mix the conditional sample paths
we use the independent coupling. One could also think about using another measure here.

Entropic Action Matching. For Entropic Action Matching (EAM) we use the same network
setup. In the loss function we use the Hutchinson trace estimator (see Section 5.2.1) to estimate
the Laplacian of the action. Experimentally we could see that using n = 3 trials for this estimator
yields good results without blowing up the computational time too much.

We denote by I-EAM the entropic variant of I-AM for the cases where we only have access to
the initial and target distribution.

If not otherwise indicated we use g(t) = 0.25. This is the same value which is used in [Ton+23]
for [SF ]2M .

Conditional Flow Matching. For Conditional Flow Matching, we base the network archi-
tecture on the one used by the authors [Ton+24]1. We need to parametrize the vector field
u : [t0, t1] × Rd → Rd. Thus, we use a network with d + 1 input nodes and d output nodes.
We again use a network with 4 hidden layers and 512 hidden nodes per layers. While CFM
already shows good performance with less hidden nodes per layer, we wanted the architecture to
be comparable to the Action Matching architecture. Tong et. al. [Ton+24], however, only use
64 hidden nodes. As activation function we use SELU which is also used by [Ton+24]:

f(x) =

{
scale ∗ α ∗ (exp(x)− 1) for x < 0

scale ∗ x for x ≥ 0.

1The code to this paper can be found on github: https://github.com/atong01/conditional-flow-matching, last
accessed 05.09.2024
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Here α and scale are predefined constants. A plot of the SELU activation function can be found
in Figure 6.1.

To calculate the Optimal Transport coupling in OT-CFM and the entropic Optimal Transport
coupling in SB-CFM we use a minibatch approximation as described in Section 3.3. We will also
use the unbalanced Optimal Transport minibatch approximation (UMOT) for OT-CFM which is
described in Section 3.3. We will refer to this method as UOT-CFM. The batch size to calculate
the minibatch approximation will be chosen later.

For SB-CFM we choose σ = 1 in the marginal conditional probability path pt(x | x0, x1), which
is the value used in [Ton+24]. For I-CFM and OT-CFM we choose σ later.

[SF ]2M For [SF ]2M we need to parametrize both the vector field u : [t0, t1]× Rd → Rd and
the score function ▽ log p : [t0, t1] × Rd → Rd by neural networks. We parametrize the vector
field by vθ and the score function by sθ. For both we use the same architecture as for Conditional
Flow Matching.

We use SB-CFM to match the vector field. As before we choose σ = 1 in the conditional
probability path. We use the same diffusion coefficient g(t) = 0.25 as the authors [Ton+23].
Further, in Chapter 7, we fine-tune g(t) only as a constant, rather than as a time-dependent
function, for the single-cell data. We find that g(t) = 0.25 gives optimal results for the embroyoid
body data.

Optimizer

For all methods except [SF ]2M we use the optimizer Adam [KB15]. We experimentially tested
how the methods perform for different learning rates. In Figure 6.2 we plot an example of the
fine-tuning process in which we use the two dimensional toy data from Section 6.2. We see the
W2-distance between the observed and predicted data for I-AM, I-CFM and OT-CFM. Even
though I-AM behaves slightly better for a higher learning rate, we use a learning rate of 10−4.
Only for unrestricted Action Matching, i.e. the original Action Matching which requires access to
the whole probability path (pt)t, we use a learning rate of 0.0002, as this has empirically proven
to be more effective.

For [SF ]2M we use AdamW with a learning rate of 0.0001 as an optimizer. This is the same
optimizer which Tong et. al. use [Ton+23]. Similiar to Adam, AdamW uses adaptive estimates
for the first and second moments of the gradients. However, Adam uses L2 regularization in its
algorithm, while AdamW uses weight decay regularization [LH19].
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Figure 6.2: We fine-tuned the learning rate based on the methods I-AM, OT-CFM and I-CFM
for two dimensional data. The data is the same as we use in Section 6.2. The W2-distance is
averaged over three runs of the methods.

Batch Size and Other Hyperparameters

As the next step, we tune the batch size, which determines the number of training samples
processed simultaneously before the model’s parameters are updated. We will calculate the
minibatch Optimal Transport approximation for OT-CFM, UOT-CFM, SB-CFM, and [SF ]2M
on each batch of training data. Thus, the choice of batch size is particularly critical. A batch
size that is too small can lead to a inaccurate minibatch approximation, while a batch size that
is too large increases computational time

We focus on fine-tuning the parameter for OT-CFM, as it is the most critical method. As
previously discussed, calculating the Optimal Transport coupling has a time complexity of
O(n3 log(n)).

Figure 6.3 (right) illustrates the relationship between the W2 error and computational time (in
seconds) as a function of batch size. The data used in this example is the five dimensional dataset
from Section 6.4. As expected, the W2 error consistently decreases as the batch size increases.
This is because a more accurate minibatch OT coupling better approximates the dynamic OT
solution obtained after solving OT-CFM, thereby minimizing the W2 error. Surprisingly, the
computational time is slightly higher for a batch size of 64 compared to 128 due to the increased
number of iterations required to process the data. Afterwards, computational time increases
consistently as expected.
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Figure 6.3: We fine-tune σ and the batch size for OT-CFM. The plot shows the results on the
5 dimensional data from Section 6.4 (Gaussian to two Gaussians). The blue line plots the W2

error while the green line plots the computational time in seconds. Both metrics are averaged
over three runs of OT-CFM.

In our experiments, we selected a batch size of 256, which balances a relatively low W2 error
with reasonable computational time. This batch size will be used for all methods except UOT-
CFM. As discussed in Section 3.3, UOT-CFM performs well with a significantly smaller batch
size compared to OT-CFM. Yet, its computational time for the same batch size is higher. For
UOT-CFM we use a batch size of 50. This is higher than in Section 3.3 to account for more
complex data.

Finally, we fine-tuned the parameter σ for the conditional probability paths in OT-CFM, I-CFM,
I-AM and I-EAM, specifically pt(x | x0, x1) = N (x | tx1 + (1 − t)x0, σ2). Figure 6.3 shows an
example of fine-tuning OT-CFM using the same data as used for determining the batch size. A
value of σ = 0.1 appears optimal for both the W2 error and computational time. This is the
same parameter value used in [Ton+24]. We will use σ = 0.1 for OT-CFM and I-CFM, as well
as for I-AM and I-EAM.

6.1.2 Solving the ODEs or SDEs

Our methods only learn the drift of an ODE or SDE. In order to access the learned distribution
at a time point t, we have to solve the ODE or SDE. We use the Euler scheme for the ODE (see
Section 2.1.1) and the Euler-Maruyama scheme for the SDE (see Section 5.1.3). For the Euler
scheme we choose a step width of 0.01, while for the Euler-Maruyama scheme we choose a step
width of 0.0001 as this method has only a strong convergence rate of 1

2 .
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6.1.3 Performance Metrics

In our examples we want to measure how well the true distribution at a time point t is predicted
from the intial data at time point t0. That is we want to measure the difference or distance
between the true or observed distribution and the predicted distribution. One quantity to meas-
ure this difference is the Kullback Leibler divergence (see Section 2.2, (2.2.5)), which is, however,
not a distance. Further it requires the distributions to have joint supports, otherwise it always
takes the value∞ and does not allow for any comparisons. Optimal Transport allows us to define
another notion of difference. The p-Wasserstein distance is a metric. In the following we will use
either the 1-Wasserstein or 2-Wasserstein metrics (see Section 2.2). We saw in Section 2.2 that
approximating the Optimal Transport loss of two distributions by samples suffers of a curse of di-
mensionality. This problem can be mitigated by using an entropy regularized version of Optimal
Transport. We tried to use both the Wasserstein and the entropy regularized Wasserstein dis-
tance. In our experiments the entropy regularized Wasserstein distance was consistently slightly
higher than the Wasserstein distance. The qualitative results of the experiments, however, were
the same. Thus, we only display the unregularized Wasserstein distance in the evaluation of our
experiments. As it is computationally too complex to calculate the exact Wasserstein distance
we calculate the Wasserstein distance on many minibatches over which we average. Here we
choose the minibatch size to be 256.

Additionally, we visually examine plots of the learned trajectories in two dimensions. Interest-
ingly, the models that perform best in terms of Wasserstein distance do not always produce the
most visually convincing trajectories. One possible explanation is that Optimal Transport can
be heavily influenced by outliers. Learning the outliers reduces the transport distance required,
but this may lead to suboptimal trajectories. To address this, we considered using unbalanced
Optimal Transport (Section 2.2) as an evaluation metric, which is more robust to outliers. How-
ever, using unbalanced Optimal Transport would require fine-tuning the parameter τ , which
determines how far we are willing to transport mass, involving significant computational ef-
fort. Moreover, identifying outliers is not always straightforward. Therefore, we decided to use
balanced Optimal Transport for the evaluations.

6.2 Toy Examples in 2d

In this section we want to interpolate between an initial and a target distribution in two dimen-
sions and observe what paths are learned. As initial distribution we take the moons distribution
and as target distribution we take the distribution of 8gaussians. In Figure 6.4 we can see samples
of the initial and target distributions. We want to compare the following methods: I-CFM, OT-
CFM, UOT-CFM, SB-CFM, [SF ]2M , I-AM and I-EAM. We let all of the methods run for 1000
iterations, that is we train each model for 1000 epochs on the training set of 10000 samples
of the initial and target distribution. In each epoch we shuffle the data so we have different
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Figure 6.4: We choose the initial distribution µ as moons and the target distribution ν as
8gaussians

pairs of initial and target samples. In Figure 6.5 we can see the learned trajectories and target
distributions of the data. For the stochastic methods we colored a few learned paths in red as
the other paths are not well distingushable. It is desirable that the predicted target distribution
of 8gaussians looks roughly like the true distribution in Figure 6.4. Further, we prefer straight
probability paths as they can be learned more easily with the Euler scheme. As for qualitative
measures, Table 6.2 shows the W2-distance between the real and predicted target distribution
and the computational time of each method is shown in Table 6.3.

Deterministic Flow and Action Matching Examining Figure 6.5, we observe that OT-
CFM, UOT-CFM, and SB-CFM generate very straight paths, while I-CFM produces curved
paths. The paths learned by I-AM are similar to those of I-CFM but appear slightly straighter.
The 8gaussians distribution predicted by OT-CFM, UOT-CFM and SB-CFM shows some in-
consistencies, such as holes in the distribution. For example some points are predicted to be
on the moon distribution instead of being transported to their corresponding Gaussian centers.
Visually, the target distribution produced by I-AM appears more convincing, with fewer holes
and rounder distribution centers that more closely resemble a Gaussian distribution. Although
the prediction of I-CFM reflects the actual data structure, it is too noisy.

Despite this, Table 6.2 shows that OT-CFM and SB-CFM perform best, while I-AM and UOT-
CFM perform significantly worse, with I-CFM performing the worst. Considering the computa-
tional times in Table 6.3, OT-CFM emerges as a good choice for W2 performance, and I-AM for
visual performance. UOT-CFM is the slowest method among the deterministic methods, even
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moons→ 8gaussians

I-CFM 1.8±0.36
OT-CFM 1.65±0.47
UOT-CFM 1.78±0.44
SB-CFM 1.66±0.46
[SF ]2M 1.68±0.45
I-AM 1.77±0.38
I-EAM 1.74±0.48

Table 6.2: W2-distance of predicted target distribution vs the true distribution 8gaussians. Red
indicates the best perormance and blue the second best.

with a batch size of 50 compared to 256 for the other methods. When comparing W2-distances
and computational time, UOT-CFM is less advantageous than OT-CFM.

Stochastic vs. Deterministic We have two methods that model stochastic dynamics: [SF ]2M
and I-EAM. Both stochastic methods visually produce good predictions of the target distribution.
Unlike the deterministic methods, the predicted clusters look very round and close to Gaussian
distributions. However, the Gaussians predicted by [SF ]2M seem to have a lower variance than
the 8gaussians distribution, while the predictions of I-EAM accurately reflect the variance. Due
to their stochastic nature, these methods produce noisy paths, with the noisiness depending on
the diffusion coefficient g(t). However, the sample paths of I-EAM sometimes bend undesir-
ably. While [SF ]2M performs slightly worse than SB-CFM for W2-distance, I-EAM slightly
outperforms its deterministic counterpart. In terms of W2-distance and computational time,
[SF ]2M outperforms I-EAM, which has high computational complexity due to the Hutchinson
trace operator with n = 3 estimators.

Remark 6.2.1. As mentioned in Section 6.1.3, the most visually convincing model is not neces-
sarily the best performing in terms of W2-distance. While I-EAM and [SF ]2M produced visually
appealing predictions, their W2 performance metrics were worse than those of OT-CFM or SB-
CFM.

Conclusion Visually the stochastic methods outperform the deterministic ones. However, they
are more complex to train and as we need to apply the Euler-Maruyama scheme to solve the SDE,
they are also computationally more complex to solve. In terms of W2-distance CFM methods
like OT-CFM and [SF ]2M can outperform the methods using the Action Matching loss.
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Figure 6.5: The learned paths of each of the methods. Here moons is the initial distribution.
The blue dots are the predicted samples of the target distribution using the respective method.
The green line indicates the learned path between the two distributions.
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moons→ 8gaussians

I-CFM 258.24±4.57
OT-CFM 576.11±7.67
UOT-CFM 7820.36±2209.49
SB-CFM 576.31±8.1
[SF ]2M 779.5±29.03
I-AM 684.19±29.81
I-EAM 10572.3±2185.81

Table 6.3: Computational time in seconds needed to train the models

6.3 Learning Dynamics with Multiple Time Points

The concept of Action Matching is based on full knowledge of the trajectories. While the authors
of the method argue that even with a finite number of time steps a satisfactory convergence to the
true action can be achieved, this claim should be verified. We attempt to analyse this assertion
on the basis of the development of a Gaussian distribution with a bend. Let us define the two-
dimensional dynamics over the interval t ∈ [0, 3], by pt(x) = N (x | µt; 0.1 · I2), where I2 ∈ R2×2

is the identity matrix and

µt =

{
(5t, 5t)T for t ≤ 1

(5t, 10− 5t)T for t > 1.

In Figure 6.6 we see how different models predict the dynamics. OT-CFM with 4 time points
is a very good approximation of the true dynamics. We use this dynamics as it is fairly simple
but still has one bend which we want to capture in the predictions. Theoretically, we restore
the exact dynamics if we have access to data at time points 0, 1 and 3 and just connect the
distributions at those time points by straight lines. We will investigate what happens if we add
data at more time points than necessary. Do the predictions stay good or do they get more
noisy?

Unrestricted Action Matching We begin by training with unrestricted Action Matching,
which utilizes the entire trajectory in the training process. Using an MLP SiLU architecture
with ReLU and SiLU activation functions and a learning rate of 0.0002, this method effectively
learns the dynamics. When tested at time t = 2, the model achieves an average W2-distance of
0.44 with a standard deviation of 0.32 across three runs. However, comparing it to OT-CFM
and I-CFM in Table 6.4 models using only three time points can outperform Action Matching.
Notably, unrestricted Action Matching slightly overshoots the target distribution, as illustrated
in Figure A.1 in the Appendix.
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Discretizing Time

In practical scenarios, we typically have access only to a discretized version of the entire traject-
ory. Thus, it is essential to evaluate our methods with varying numbers of time points. To assess
model performance, we exclude a small time interval (1.9, 2.1) from training and then evaluate
the models at time point t = 2. The remaining time points used for training are evenly spaced
across the interval [0, 3].

Unconstrained Action Matching Although it is suggested that Action Matching works well
with time discretization, we encountered significant challenges in practice. Using the same MLP-
SiLU architecture and learning rate of 0.0001, the model experienced instability when discretizing
the loss. This behavior was evident even with a considerable number of time points, stabilizing
only when using 50 to 100 time points. However, even then the predicted dynamics did not really
represent the actual dynamics. A plot of the learned trajectores can be found in Figure A.2 in
the Appendix. Gradient clipping did not mitigate the issue due to the dependence of the loss on
the model’s gradient.

To prevent model instability, we employed the MLP ReLU architecture, which exclusively uses
ReLU activation functions. However, this architecture failed to capture the dynamics, resulting in
poor performance. A plot of the learned trajectores can be found in Figure A.3 in the Appendix.

Consequently, we cannot confirm that Action Matching performs well on discretized data. To
explore whether the loss function offers any advantages, we compared the performance of I-CFM,
OT-CFM, and I-AM.

I-CFM, OT-CFM and I-AM To evaluate these methods, we trained each on datasets con-
taining 2 (initial and target data only), 3, 4, 9, 10, and 15 time points. The time point t = 1,
where the distribution curve bends, is included in the datasets with 4 and 10 time points. The
9-point dataset was chosen specifically because it includes time points at t = 1.875 and t = 2.25,
which are close to the test time at t = 2. Additionally, training with 15 time points allowed us
to observe how the models perform when provided with more data than necessary. Table 6.4
clearly shows that both I-CFM and OT-CFM outperform I-AM. This is also evident from the
learned probability paths in Figure 6.6, where some paths, diverge significantly from the others
for I-AM. In contrast, the paths learned by I-CFM and OT-CFM are quite similar. To accurately
learn the dynamics we need to have access to the time points at which curvature appears. For
instance, using only three time points in training, the model learns the bend at t = 1.5 as we can
see in Figure 6.6. With four and ten time points, the time point t = 1 at which the curvature
occurs is included in the training data, allowing for effective learning of the dynamics.

However, Table 6.4 indicates that increasing the number of time points does not necessarily
yield better results. Only three time points are needed to effectively predict the test data, while
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four are sufficient to capture the dynamics. Adding more time points can introduce extra noise,
potentially degrading performance. Therefore, it is optimal to use the minimum number of time
points necessary to capture the dynamics. Interestingly, using nine time points yields very good
results, despite the relatively high number. This may be because the dataset includes two time
points close to t = 2.

While OT-CFM performs best overall, Figure 6.7 shows that its computational complexity in-
creases significantly with more time points, unlike I-CFM and I-AM, which exhibit only slight
increases. With too many time points it could become infeasabile to calculate the OT-CFM
model. This slow computational time results from the fact that OT-CFM has to calculate the
minibatch Optimal Transport couplinng for each pair of consecutive time points during training.

Remark about I-AM I-AM appears to be very sensitive to data irregularities. It is applied
in a discrete setting, where we interpolate the distributions between time steps to stabilize the
models. However, time steps are often unevenly spaced. If the number of interpolated data points
is not proportional to the distance between consecutive time points, the I-AM model produces
poor results and tends to become unstable. To address this, we ensured that the interpolated
samples are proportional to the time distances.

Despite this adjustment, practical data may be more densely available in some time regions
than in others, making the Action Matching loss unsuitable in such cases. Conversely, the Flow
Matching models did not exhibit this problem and appear to be more robust.

Conclusion In conclusion, Action Matching demonstrates limited scalability in learning dy-
namics with multiple time points. Curvature in particular is a major problem, as it cannot be
learnt well with ReLU activation functions alone. However, the use of other activation functions
makes the model very vulnerable to exploding gradients. Also the simpler Flow Matching loss
outperforms the Action Matching loss, as evidenced by the performance difference between I-
CFM and I-AM. Although OT-CFM is computationally intensive, it is better suited to the task.
For scenarios with many time points, I-CFM might be preferable in terms of computational ef-
ficiency. While both OT-CFM and I-CFM are sensitive to noise of excessive time points, which
are not needed to describe the dynamics, the effect is stronger for I-CFM. If it is computationally
feasabile OT-CFM should be preferred.

6.4 Higher-Dimensional Experiments

This subsection investigates how our proposed methods behave in settings with increasing di-
mensionality. We are particularly interested in the following:
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Figure 6.6: We evaluate the models’ trajectories based on varying numbers of training time
points. The four colored scatter clusters correspond to the actual data distribution at time
points 1, 2, 3, and 4. The brownish path represents the trajectory learned by the model.
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I-CFM OT-CFM I-AM
Number of time points

2 3.3±0.02 3.35±0.07 3.35±0.01
3 0.21±0.1 0.21±0.09 0.74±0.13
4 0.24±0.02 0.2±0.07 0.54±0.1
9 0.24±0.09 0.17±0.01 0.37±0.03
10 0.27±0.07 0.28±0.09 0.43±0.15
15 0.35±0.12 0.2±0.1 0.38±0.11

Table 6.4: W2-distance of OT-CFM and I-AM tested on left out time point t = 2 using an
increasing number of time points during training.
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Figure 6.7: Computational time in seconds needed to train the models for 10000 iterations. In
each iteration we trained on a batch size of 256.
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• Impact of Dimensionality on Performance: Does the implicit loss of Action Matching
(AM) differ from the mean squared loss of CFM? Do stochastic methods lead to better
performance in high dimensions?

• Computational Complexity: How does the computational complexity of the methods
scales in high dimensions?

• Behavior on Different Data Types: How do the methods perform on truly high-
dimensional data versus data lying on a low-dimensional manifold?

We interpolate between an initial distribution µ and a target distribution ν. Since we thus
lack pre-defined trajectories for Action Matching, we use I-AM and I-EAM (see Section 6.1).
We compare those methods to OT-CFM and [SF ]2M . As OT-CFM consistently showed better
results than I-CFM, we only show the results for OT-CFM here.

6.4.1 Truly Higher Dimensional Data

In our first example we want to explore the performance on truly high dimensional data, i.e. data
which cannot be projected on a lower dimensional manifold without significant information loss.
For this we choose µ as a standard Gaussian distribution. As target distribution ν we use a Gaus-
sian mixture consisting of ν1 = N (µ1, 0.25I) and ν2 = N (µ2, 0.25I) with µ1 = (−1, . . . ,−1)T
and µ2 = (1, . . . , 1)T . This creates a high-dimensional dataset with simple features. Figure 6.8
shows µ and ν in two dimensions. We evaluate the methods in dimensions 2, 5, 10, 50, 100, 500
and 1000.

Benefits of Stochasticity: One motivation for introducing stochastic variants (EAM and
[SF ]2M) was the potential for better performance in higher dimensions due to enhanced ex-
ploration. Table 6.5 confirms this hypothesis for [SF ]2M only. In high dimensions [SF ]2M
can consistently outperform the deterministic Flow Matching method OT-CFM, even without
fine-tuning the hyperparameter g(t) specifically for this task. I-EAM on the other hand cannot
outperform I-AM but rather performs similar in high dimensions.

Flow Matching vs. Action Matching: Another observation is that Flow Matching outper-
forms Action Matching in this example across all dimensions.

Computational Time: Table 6.6 compares the computational time of each method. Entropic
Action Matching is the most expensive due to the use of the Hutchinson trace estimator with
n = 3 trials for estimating the model’s Laplacian. However, its time remains relatively stable



6.4. HIGHER-DIMENSIONAL EXPERIMENTS 69

gaussian

2gaussians

Figure 6.8: We choose the initial distribution µ as a Gaussian and the target distribution ν as
the mixture of two Gaussians.

across dimensions. Action Matching also exhibits stable complexity. Both OT-CFM and [SF ]2M
show increasing complexity with dimensionality. This is especially true for [SF ]2M , which
becomes significantly slower in dimensions 500 and 1000 due to fitting two models simultaneously.

6.4.2 Data on a Low-Dimensional Manifold

This section explores how our methods perform when data resides in a high-dimensional space
but has a much lower intrinsic dimensionality. That means the data lies on a low-dimensional
manifold with some noise. This scenario is common in practice and the single cell data we explore
in Chapter 7 is an example thereof.

Experimental Setup: We assume the intrinsic dimension of the data is two. For this we
consider the initial distribution 8gaussians and the target distribution moons. We used those
two distributions already in Section 6.2 and their distribution is displayed in Figure 6.4. The
first two dimensions of the data represent these distributions, while additional dimensions are
filled either with Gaussian noise with variance 0.1 or are simply dummy dimensions which are set
to zero. This essentially embeds the original 2 dimensional data in a higher-dimensional space
(5, 10, 50, 100, and 500 dimensions). We repeat each experiment three times.
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OT-CFM [SF ]2M I-AM I-EAM
Dimension

2 0.36±0.02 0.47±0.03 0.37±0.01 0.64±0.25
5 0.7±0.02 0.83±0.07 0.75±0.04 1.04±0.35
10 1.25±0.08 1.24±0.04 1.24±0.06 1.41±0.15
50 3.25±0.08 2.96±0.09 3.19±0.12 3.57±0.91
100 4.72±0.15 4.16±0.1 4.99±0.28 4.77±0.15
500 13.78±0.32 10.7±0.15 14.88±0.57 14.88±0.34
1000 27.63±0.26 21.61±0.29 28.46±0.27 28.52±0.26

Table 6.5: We compare the approximated W2-distance between the predicted target distribution
and the true target distribution over different dimensions. Here we used a standard Gaussian as
initial and a mixed Gaussian as target distribution. The results for each method were averaged
over three runs, with the standard deviation also shown. The best result for each dimension is
highlighted in red while the second best is highlighted in blue.

OT-CFM [SF ]2M I-AM I-EAM
Dimension

2 322.41±2.71 360.61±4.64 170.24±4.42 813.28±21.02
5 344.01±1.1 383.87±0.33 170.66±0.38 825.24±0.59
10 351.72±2.44 391.85±1.81 170.54±0.78 824.28±2.33
50 357.49±1.19 398.15±1.57 171.36±0.14 830.39±0.76
100 358.19±0.89 398.46±0.61 171.91±0.48 830.8±2.87
500 360.16±2.91 435.06±1.19 171.25±0.18 831.49±4.36
1000 363.66±1.28 495.18±1.17 172.48±0.11 832.4±1.37

Table 6.6: We compare the time in seconds the methods needed to train over different dimensions.
Here we used a standard Gaussian as initial and a mixed Gaussian as target distribution.
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Performance Evaluation: We measure performance by approximating theW2-distance between
the predicted target distribution and the true target distribution. We use a validation set of
10,000 samples. To isolate the performance on the underlying manifold, we calculate the W2-
distance between the true and predicted two dimensional distributions. Specifically, we project
the data onto its first two dimensions and calculate the error based only on this projection.

Impact of Noise and Dummy Dimensions: Tables 6.8 and 6.7 compare performance across
dimensions. We can observe the following:

• Regardless of noise or dummy dimensions, deterministic methods seem as good as or better
than their stochastic counterparts.

• Action Matching is robust to noise dimensions and its performance is not becoming signi-
ficantly worse in high dimensions. However, it performs poorly with dummy dimensions.

• Action Matching displays a higher variance in its performance across multiple runs.

• OT-CFM can outperform all other methods with dummy dimensions. However, it is more
sensitive if we use noise instead of dummy dimensions.

Higher-Dimensional Embedding of 50 Dimensional Data: In practice the intrinsic di-
mension of the data is usually higher than two. Thus we also embed 50 dimensional data into 100
and 500 dimensional spaces. The intrinsic data is the same we used in the truly high-dimensional
experiments. The other dimensions are filled with gaussian noise with variance 0.1. To evaluate
we calculate the minibatch W2 approximation between the true and predicted 50 dimensional
distributions. Table 6.9 compares the performance of the methods. We observe that [SF ]2M
performs better in 100 dimensional space, while OT-CFM performs better in 500 dimensional
space. This aligns with our observations in Table 6.5, where [SF ]2M outperformed OT-CFM
in 50 dimensions. However, as the number of noise dimensions increases, [SF ]2M becomes less
robust. Stochastic methods inherently explore all dimensions, including those containing noise.
This focus on irrelevant information leads to increased error in higher-dimensional settings.

Further, entropic Action Matching performs surprisingly well in this setting, while I-AM performs
worst in 500 dimensions.

Conclusion: Deterministic versus Stochastic Methods

To conclude this chapter we can summarize our observations:

• In truly high-dimensional data, [SF ]2M outperforms all other methods.
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OT-CFM [SF ]2M I-AM I-EAM
Dimension

2 0.6±0.02 0.66±0.03 0.67±0.08 0.72±0.07
5 0.59±0.02 0.66±0.01 0.62±0.01 0.67±0.02
10 0.62±0.0 0.68±0.03 0.68±0.06 0.61±0.0
50 0.66±0.02 0.74±0.0 0.67±0.12 0.68±0.05
100 0.72±0.01 0.77±0.02 0.66±0.04 0.75±0.11
500 0.76±0.03 0.77±0.04 0.68±0.05 0.84±0.03

Table 6.7: We compare the approximated W2-distance between the predicted target distribution
and the true target distribution over different dimensions. In this example the data lies on a
2-dimensional manifold where all other dimensions consist of gaussian noise. The results for each
method were averaged over three runs, with the standard deviation also shown. The best result
for each dimension is highlighted in red while the second best is highlighted in blue.

OT-CFM [SF ]2M I-AM I-EAM
Dimension

2 0.59±0.04 0.64±0.01 0.65±0.06 0.69±0.07
5 0.59±0.02 0.66±0.01 0.67±0.07 0.75±0.13
10 0.58±0.01 0.74±0.07 1.24±0.63 0.72±0.09
50 0.65±0.03 0.74±0.02 5.97±2.23 75.18±42.01
100 0.63±0.02 0.84±0.01 10.35±0.68 21.05±3.33
500 0.64±0.03 0.89±0.03 15.63±5.16 2.46±0.01

Table 6.8: We compare the approximated W2-distance between the predicted target distribution
and the true target distribution over different dimensions. In this example the data lies on a
2-dimensional manifold where all other dimensions are set to 0. The results for each method
were averaged over three runs, with the standard deviation also shown. The best result for each
dimension is highlighted in red while the second best is highlighted in blue.

OT-CFM [SF ]2M I-AM I-EAM
Dimension

100 3.39±0.12 2.94±0.07 3.29±0.05 3.19±0.11
500 3.2±0.09 3.3±0.08 3.37±0.13 3.19±0.16

Table 6.9: We compare the approximated W2-distance between the predicted target distribution
and the true target distribution over different dimensions. In this example the data lies on a
50-dimensional manifold where all other dimensions consist of Gaussian noise. The results for
each method were averaged over three runs, with the standard deviation also shown. The best
result for each dimension is highlighted in red while the second best is highlighted in blue.
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• When learning a lower-dimensional data manifold in a high dimensional space, stochastic
methods are not beneficial and may even decrease performance. Action Matching here
performs well with noisy dimensions but also displays unstable behaviors (e.g., with dummy
dimensions). In general the performance of all methods decreases for additional noise
dimensions.

Because of these observations it is desirable to bring the data down or at least closer to its intrinsic
dimension. Thus, we recommend using dimensionality reduction techniques such as Principal
Component Analysis (PCA) or Diffusion Maps before applying the methods in practice.

We will apply the methods to more complex single-cell data. Here, [SF ]2M is expected to
continue performing well while offering the ability to predict different trajectories from the same
initial data.
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Chapter 7

Single-Cell Data

In modern biology single cell analysis is a crucial technology. Historically, biological experi-
ments relied on ensemble measurements, averaging responses across large populations of cells
and thereby masking the heteoregeinity within individual cells. This made it impossible to un-
derstand unique behaviors of cells. Single-cell RNA sequencing (scRNA-seq) allows the random
sampling of the entire transcriptome - comprising 20 to 30 thousand different mRNA molecules
- revealing the complex molecular landscape of individual cells. This wealth of information
provides a gateway to understanding fundamental biological processes such as cell differentiation
and state transitions. This might help us to understand and combat diseases.

Nevertheless, despite the profound insights that scRNA-seq offers, the technique remains limited
by its static nature: Each measurement represents a snapshot in time and excludes the observa-
tion of individual trajectories of cells. Instead, cells are destroyed when measured and transribed.
Consequently, inferring the trajectories of individual cells from such high-dimensional, static data
poses a very complex computational challenge.

To make this more mathematically rigorous let n be the number of cells and d the number of
genes. Then the single cell data is given by

X = {xti | i = 1, . . . , n; t ∈ I} ⊂ Rd,

where I = {t1, · · · , tT } denotes the different time points at which single-cell measurements were
made.

Single-cell data often requires preprocessing. We typically begin by filtering cells based on
their library size, which indicates the number of unique mRNA molecules detected in each cell.
Extremely small or large library sizes often indicate data errors. Capturing RNA from single
cells is inherently noisy, so lowly expressed genes might not be detected. Since these genes are
observed in only a few cells, we lack sufficient information about them and, therefore, remove

75
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them.

We can also filter for highly-variable genes (HVGs), which are genes whose expression levels vary
significantly across individual cells. These genes may play important roles in cell differentiation,
development, disease progression, or response to stimuli.

7.1 A Short History of Trajectory Inference

Trajectory Inference tries to capture the dynamics of cells from their static snapshots. The field
is very active and numerous methods have been proposed in recent years. Since static snapshots
capture gene expressions at a single point in time, they lack information about the dynamic
processes that led to those patterns - often many dynamics could have led to the observed data.
This necessitates making assumptions to infer a unique trajectory. By 2019, over 70 methods
had been developed to address this challenge [Sae+19].

Most methods begin by reducing data dimensionality using techniques like Principal Component
Analysis (PCA) or t-SNE. This aims to capture the variations of gene expressions in a lower-
dimensional space. However, methods differ in the assumptions they make about the underlying
dynamics and how they represent those dynamics to infer trajectories.

One approach utilizes pseudotime ordering, which assigns a relative time value to each cell based
on its gene expression profile. Cells with similar gene expressions are assumed to be at similar
stages in the process and are assigned similar pseudotimes. This method requires only one static
snapshot. A popular method, Monocle, constructs a minimum spanning tree and identifies the
longest path, assigning pseudotime based on this path [Tra+14].

Another set of methods leverages RNA velocity analysis [LM+18], [Ber+20]. RNA velocity
estimates the rate of change in gene expression by comparing the abundance of unspliced pre-
mRNA and spliced mature mRNA molecules within a single snapshot. Unspliced pre-mRNA
cannot yet be translated into a protein, as it contains parts that need to be removed through a
process called splicing. The goal is to infer the direction of change in gene expression. It is hoped
to infer the direction of change. While appealing due to its single-snapshot requirement, RNA
velocity methods have shown limitations in reliability, particularly with noisy data [Zhe+23].

Methods utilizing multiple time points also exist. Waddington-OT [Sch+19] interpolates between
empirical distributions at different time points, viewing these distributions as points in Wasser-
stein space. This primarly focuses on the probability density path and does not offer detailed
insights into how individual cells move in space.

Another multi-timepoint method by Hashimoto et al. [HGJ16] assumes a linearly separable
potential function and uses a Recurrent Neural Network to sample trajectories.
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Figure 7.1: The embryoid body dataset projected into two dimensions with the method PHATE
[Moo+19].

TrajectoryNet [Ton+20] uses dynamical Optimal Transport to learn the vector field of the ODE
which drives the movement of cells in gene space. Yet, the method relaxes the dynamical OT
constraint. Instead of requiring the dynamics to perfectly fit the target distribution, it only
penalizes deviations from this target, offering more flexibility. However, TrajectoryNet relies
on simulating an ODE during training, limiting its ability to handle high-dimensional datasets
effectively.

In contrast both Conditional Flow Matching and Action Matching learn this driving vector field
in a simulation-free way. Thereby, they describe the movement of individual cells, while being
scalable to high-dimensional data.

7.2 Embroyoid Body Data.

We evaluate the methods on a differentiating embroyoid body (EB) scRNA-seq time course.
Figure 7.1 shows this data projected into two dimensions using the dimensionality reduction
method PHATE [Moo+19]. The data is collected from a developing human embryo system and
consists of five time points (Day 0 - Day 24). We took the preprocessed data as in [Ton+20].

For our experiments we first apply a dimensionality reduction method (see below) and then
normalize the data. To evaluate the performance we train the methods on all but one intermediate
time points and then calculate the 1-Wasserstein distance between the validation data and the
model’s predictions. We take the W1-distance here as it is the standard in the literature. An
overview over the Wasserstein distance and Optimal Transport can be found in Section 2.2. We
also run the methods on all data points and then predict the last data point. We test the methods
I-CFM, OT-CFM, UOT-CFM, [SF ]2M , AM, EAM and I-AM. The results for I-EAM can be



78 CHAPTER 7. SINGLE-CELL DATA

Figure 7.2: The EB dataset projected into two dimensions using either PCA on all genes, PCA
on highly variable genes or Diffusion Maps on all genes.

found in Appendix B.

7.3 Dimensionality Reduction Method

While there is a variety of dimensionality reduction methods, we wanted to use one which is it-
erative in the sense that adding an additional dimension leaves the other dimensions unchanged.
Two methods which fulfill this requirement are Prinicipal Component Analysis (PCA) and Dif-
fusion Maps. In Figure 7.2 we can see the two dimensional projections of those two methods.
We use the PCA decomposition because it is a common approach in scRNA-seq data analysis.
scRNA-seq data is sparse and very noisy. Especially the technical noise cannot be explained in
a low dimensional space. If we apply PCA on the whole gene space it is hard to explain a lot of
variance. In our case the most important principal component only explains around 2.8% vari-
ance, while the second component only explains 1.3%. Even the first 500 principal components
together only explain around 33% of variance. Thus it is desirable to include a feature selection
step before applying PCA. For this we want to filter for highly variable genes (hvg). Those
genes tend to capture the majority of variability in the system, e.g. differences between different
cell types. On the other hand we reduce the noise in the data massively. Figure 7.3 shows the
variance captured when applying PCA onto the 2000 or 4000 highest variable genes. We also
compare it with the case where we did not use feature selection.

For the experiments we will use PCA on the 4000 highest variable genes.

7.4 Experimental Results

We test the methods on 2, 5, 10, 50, 100 and 500 PCA dimensions. For AM we use the MLP
ReLU model architecture, whereas for I-AM we use the MLP SiLU model architecture. The
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Figure 7.3: We applied PCA to either all genes or only the 2000 or 4000 highest variable genes.
The plot shows the number of principal components vs the variance they explain cumulatively.

models are trained by excluding one intermediate time point from the dataset and then testing
on that excluded time point. Additionally, we tested the methods by training them on all time
points and then predicting the final time point. We refer to the distribution of the observed data
in the embroyoid body dataset as the empirical distribution. Before we start we fine-tune τ for
UOT-CFM and g(t) for [SF ]2M . For entropic Action Matching we will use the same value for
g(t) as for [SF ]2M . All other hyperparameters are chosen as explained in Section 6.1.

Fine-tuning UOT-CFM. UOT-CFM is introduced in Section 3.3. It approximates the Op-
timal Transport coupling in OT-CFM by an unbalanced minibatch Optimal Transport coupling.
The hyperparameter τ in unbalanced Optimal Transport penalizes deviation at the marginals
from the initial and target distribution. As discussed in Section 2.2, adjusting the penalization
parameter τ is challenging. Since the batch size can be kept small, effective training is possible
even without regularization. Thus, we focus on the unregularized version here, where we only
finetune τ and set ε = 0.

Ideally, we would tune τ for each dimension. However, for demonstration purposes we will only
tune it for one dimensionality. Figure 7.3 shows that the variance ratio curve flattens after
100 dimensions. Thus, we fine-tune τ in 100 dimensions. Therefore, we train UOT-CFM with
different τ values on the entire single cell dataset and compare its predictions to the observed
samples at the last time point. Figure 7.4 presents the results. The dashed line shows the error of
OT-CFM. UOT-CFM outperforms OT-CFM, and τ = 10 appears to be the optimal parameter.

We will use this τ value across all dimensions and time points. Because this is a simplifica-
tion, UOT-CFM performs mainly well on the data it was fine-tuned on. In 500 dimensions,
we encountered numerical difficulties when calculating the approximated unbalanced Optimal
Transport map with τ = 10 and chose τ = 20 instead.
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Figure 7.4: The solid blue line shows the W1 distance between the empirical distribution and
the distribution predicted by the UOT-CFM model with different values of τ . The dashed line
indicates the corresponding error for the OT-CFM method.

Finetuning [SF ]2M . We use the same experimental setup as in the previous paragraph to
determine the optimal value of g(t) for [SF ]2M . We only tune g(t) on the space of constant
functions, which means g(t) = g ∈ R+. Figure 7.5 shows that [SF ]2M outperforms OT-CFM
for all tested values, with g(t) ≈ 0.25 being optimal. Thus, we use the same value for g(t) as in
[Ton+23]. While we fine-tuned g(t) with respect to the last time point, in the following we will
predict the data also at timesteps 1, 2 and 3. For these earlier time steps, a slightly smaller g(t)
might be beneficial as the variance increases over time. Additionally, in smaller dimensions, a
thorough exploration of the space is less critical. We will see that [SF ]2M primarily performs
well in large dimensions.

Experimental Results. The results of the experiments can be found in Tables 7.1 - 7.4.
While we display I-AM in the results, to test the Action Matching loss with more dense in
time samples, we excluded I-EAM in the results for clarity. I-EAM performed poorer than I-
AM in low dimensions and comparably in high dimensions, while having a significantly higher
computational time. The results for I-EAM can be found in Appendix B.

Action Matching vs. Flow Matching. Flow Matching consistently outperforms Action
Matching. Both Action Matching and entropic Action Matching exhibit instability, with occa-
sional large errors and high variance over three runs. Neklyudov et al. used entropic Action
Matching and interpolated between time steps using mixtures of data to increase the number of
available data points in [Nek+23b], but they did not specify their exact procedure. We attemp-
ted a similar approach with I-AM. Although we could not replicate the authors’ results and used
the deterministic variant, we found that I-AM often performs quite well. In higher dimensions,
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Figure 7.5: The solid blue line shows the W1-distance between the empirical distribution and the
distribution predicted by the [SF ]2M model. The x-axis depicts varying values of g(t) for the
[SF ]2M model. The dashed line indicates the corresponding error for the OT-CFM method.

it consistently outperforms OT-CFM and is only surpassed by the stochastic method [SF ]2M ,
which has significantly higher computational costs.

As observed in Section 6.4, I-AM excels in settings with many noise dimensions. The single cell
data also contains a substantial amount of noise, likely not fully removed by PCA, especially for
the higher dimensions. In Section 6.3, we noted that in two dimensions, I-CFM and OT-CFM
consistently outperformed I-AM. While OT-CFM still outperforms I-AM in low-dimensional
settings, I-AM surprisingly outperforms I-CFM consistently.

Stochastic vs. Deterministic. As entropic Action Matching shows a very volatile behavior,
we focus on [SF ]2M . We see that it consistently outperforms the other methods in dimensions
50, 100 and 500. This confirms the results from the higher dimensional experiments in Section
6.4.

UOT-CFM vs. OT-CFM. We fine-tuned UOT-CFM in dimension 100. In 50 and 100
dimensions we can see that UOT-CFM slightly outperforms OT-CFM. Especially the further
we move in time. For the other dimensions OT-CFM mostly performs a bit better. However,
the hyperparameter τ depends heavily on the dimension as it can be interpreted as a transport
radius. For smaller dimensions we would prefer a smaller value of τ while for higher dimensions
we would prefer a larger τ .
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I-CFM OT-CFM UOT-CFM [SF ]2M AM EAM I-AM
Dimension

2 0.43±0.09 0.33±0.01 0.35±0.06 0.43±0.06 7.48±9.08 10.48±7.3 0.41±0.04
5 1.07±0.08 0.95±0.04 0.94±0.05 1.02±0.01 1.28±0.28 1.17±0.16 1.05±0.01
10 2.24±0.05 2.22±0.06 2.23±0.02 2.14±0.03 3.08±0.55 3.77±1.22 2.21±0.01
50 6.48±0.03 6.55±0.02 6.48±0.01 6.03±0.01 7.56±0.2 7.8±1.11 6.33±0.0
100 9.99±0.02 10.12±0.02 10.1±0.01 8.85±0.01 10.52±0.28 10.85±0.22 9.69±0.08
500 24.37±0.05 24.52±0.01 24.95±0.01 21.24±0.0 25.45±0.23 27.11±1.79 23.99±0.08

Table 7.1: We compare the W1-distance of the empirical and predicted distributions at time
point 1. We trained the model on all but this time points. The best model is highlighted in red,
while the second best is highlighted in blue.

I-CFM OT-CFM UOT-CFM [SF ]2M AM EAM I-AM
Dimension

2 0.51±0.09 0.42±0.04 0.61±0.07 0.81±0.01 1.22±0.5 0.66±0.05 0.5±0.04
5 1.28±0.14 1.04±0.02 1.08±0.09 1.26±0.02 1.76±0.13 1.55±0.34 1.13±0.03
10 2.09±0.09 2.0±0.04 2.09±0.06 2.2±0.06 3.15±0.21 2.93±0.5 2.02±0.03
50 7.62±0.13 7.5±0.02 7.35±0.03 6.49±0.02 7.36±0.13 7.83±0.37 6.99±0.02
100 12.25±0.03 12.0±0.04 11.66±0.05 9.67±0.01 11.41±0.94 12.34±1.38 10.76±0.07
500 30.0±0.07 29.55±0.08 30.8±0.05 23.2±0.03 35.79±3.0 37.49±11.54 26.2±0.25

Table 7.2: We compare the W1-distance of the empirical and predicted distributions at time
point 2. We trained the model on all but this time points. The best model is highlighted in red,
while the second best is highlighted in blue.

Computational Complexity. The time in seconds needed to train the models can be seen
in Table 7.5. While I-AM showed a good performance, it is also extremly fast to train. Further,
its computational time stays stable over the dimensions.

Comparing High and Low Dimensional Predictions.

We aim to visually compare our models. Specifically, we examine the paths the models learned
in the first two dimensions. For this analysis, we use models trained on all time points. We
also want to compare the final points predicted by the models, starting from the observed initial
samples. Figure 7.6 shows the initial and target distributions we aim to interpolate between.
The data we use is the normalized PCA data.

Figure 7.7 presents the results of the models trained with 2, 5, or 100 dimensional data. The
plots display the projections of the first two dimensions of the models’ predictions. Specifically,
the black scatters show the first two dimensions of the empirical initial distribution given to the
models, while the blue scatters show the first two dimensions of the learned target disributions.
The red lines illustrate examples of the first two dimensions of learned sample paths between
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I-CFM OT-CFM UOT-CFM [SF ]2M AM EAM I-AM
Dimension

2 0.69±0.16 0.47±0.03 0.63±0.04 1.0±0.11 11.52±9.94 20.77±33.93 0.52±0.04
5 1.21±0.11 1.15±0.04 1.13±0.09 1.75±0.13 1.89±0.22 3.88±3.23 1.14±0.07
10 2.13±0.11 2.19±0.02 2.21±0.03 2.43±0.05 3.75±0.81 4.0±0.88 2.04±0.01
50 8.78±0.1 8.77±0.22 8.26±0.09 6.97±0.02 8.04±0.53 9.88±2.37 7.49±0.1
100 14.12±0.2 13.58±0.04 12.62±0.13 10.14±0.01 24.03±19.87 13.62±2.82 11.47±0.15
500 33.07±0.03 32.3±0.04 35.76±0.37 24.26±0.01 75.78±42.13 40.31±3.24 29.65±0.88

Table 7.3: We compare the W1-distance of the empirical and predicted distributions at time
point 3. We trained the model on all but this time points. The best model is highlighted in red,
while the second best is highlighted in blue.

I-CFM OT-CFM UOT-CFM [SF ]2M AM EAM I-AM
Dimension

2 0.57±0.14 0.35±0.06 0.51±0.13 0.8±0.07 1.43±0.79 0.75±0.34 0.46±0.18
5 1.21±0.12 1.02±0.1 1.0±0.02 1.18±0.06 1.06±0.03 1.07±0.01 0.98±0.16
10 2.87±0.51 2.06±0.04 2.2±0.05 2.15±0.05 2.4±0.18 2.41±0.19 2.4±0.06
50 15.25±0.63 11.55±1.04 9.15±0.55 7.41±0.06 7.9±0.52 8.2±0.1 9.97±0.8
100 19.71±1.51 16.74±0.99 14.38±0.1 11.35±0.04 16.81±6.55 15.16±1.88 14.22±0.53
500 42.98±0.89 40.59±0.29 43.13±0.19 27.53±0.03 49.87±10.83 43.86±6.71 40.09±8.5

Table 7.4: We compare the W1-distance of the empirical and predicted distributions at the last
time point. We trained the model on all including this time points. The best model is highlighted
in red, while the second best is highlighted in blue.

I-CFM OT-CFM UOT-CFM [SF ]2M AM EAM I-AM
Dimension

2 31.57±18.29 265.25±3.52 1004.03±24.25 282.73±8.88 70.57±0.82 263.93±3.01 44.75±0.11
5 20.93±0.03 267.73±6.96 1031.34±10.38 301.5±44.25 70.0±0.01 259.9±0.09 44.24±0.16
10 20.93±0.06 265.81±2.2 1031.87±13.2 280.91±4.43 69.91±0.09 259.42±0.69 44.11±0.03
50 20.95±0.03 263.54±3.03 1049.12±17.06 296.72±0.42 70.25±0.47 261.36±2.26 44.18±0.03
100 20.96±0.06 264.92±0.95 1047.3±3.06 323.03±1.26 69.99±0.01 260.15±0.07 44.85±0.72
500 20.99±0.04 289.49±0.99 694.15±5.79 516.9±1.18 70.04±0.18 268.83±1.3 45.05±1.36

Table 7.5: Time in seconds to train each of the models on all available data points.
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the initial and target distribution. Background scatters show the two dimensional empirical
distributions of the single-cell data over time, as seen in Figure 7.2. Each row presents the
results of one specific model trained in 2, 5 and 100 dimensions. Each column presents the
results of all methods for this dimension.

What do we want to compare? In our comparison, we want to answer the following ques-
tions:

• Which models predict target distributions (blue scatters) similar to the empirical target
distribution in Figure 7.6? Does the accuracy of the two-dimensional predictions degrade
when the model is trained on higher-dimensional data? Specifically, do the predictions get
noisier?

• How does the dimension of the model influence the sample paths? Do they remain con-
sistent across different dimensions, or do they exhibit significant variation?

First we want that the two dimensional model predicts the two dimensional target distribution
visually. Secondly, we evaluate the consistency of the models for higher dimensions, namely
whether a higher-dimensional model still predicts the first two dimensions satisfactorily. For the
sample paths we primarily check for consistency. Specifically, whether the first two dimensions
of the sample paths, depicted in red in Figure 7.7, appear similar across models of different
dimensions based on the same method.

Results. Generally, we observe that the projections of the models in two dimensions become
noisier as the number of training dimensions increases, which is intuitively expected. For example,
the OT-CFM model predicts a distribution in two dimensions that closely resembles the empirical
target distribution. In five dimensions, it still learns similar paths and a comparable target
distribution, albeit slightly noisier. However, in 100 dimensions, the OT-CFM model predicts
a very noisy target distribution, with many data points far from the empirical distribution’s
support.

I-AM shows a similiar behavior to OT-CFM, wheras I-CFM’s predictions are already very noisy
for the five dimensional model.

In contrast, the AM and EAM models predict distributions that already deviate more from the
empirical distribution in two dimensions, and they also predict many samples far from the actual
support in the 100-dimensional models.

The [SF ]2M and UOT-CFM models perform somewhat better; [SF ]2M mainly predicts the
densest region of the empirical target distribution. Although these predictions also become
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Figure 7.6: Initial and target distribution of the single cell data in two dimensions.

noisier in higher dimensions, they remain on the empirical distribution’s support, and the dense
region is mostly preserved.

Since we only fine-tuned UOT-CFM in 100 dimensions, the hyperparameter τ may not be optimal
for the lower-dimensional cases. Nevertheless, the predictions from the two-dimensional UOT-
CFM model are still convincing. Moreover, the predictions from the 100-dimensional model are
significantly less noisy than those from OT-CFM and lie mostly on the support of the empirical
target distribution.

The learned sample paths appear consistent across different dimensions. However, as the predic-
tions become noisier, the sample paths also become noisier for higher-dimensional models. For
example, they may move into directions in which they do not move in lower dimensions.

Conclusion

Our observations on the single-cell data confirm many of our previous findings. Notably, [SF ]2M
performs exceptionally well in high dimensions and shows the most consistency in its predictions
across different data dimensions. I-AM performs well on noisy data, as predicted in Section 4.3,
and is very fast to train. Visually, its predictions are not consistent. The advantages of UOT-
CFM over OT-CFM in terms of Wasserstein distance were evident only with the specific data,
on which UOT-CFM was fine-tuned. This highlights the importance of thorough fine-tuning.
Further, UOT-CFM required significantly more computational time. However, as discussed in
the previous section, UOT-CFM’s predictions demonstrated greater consistency across different
data dimensions compared to those of the OT-CFM model. This underscores the advantages of
UOT-CFM in certain contexts.
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Figure 7.7: We plot the first two dimensions of the sample paths of the different models trained
in dimensions 2, 5 or 100. The black scatters indicate the empirical initial distribution given to
the models, while the blue scatters represent the learned target disributions. The red lines illus-
trate examples of learned sample paths between the initial and target distribution. Background
scatters show the empirical distributions of the single-cell data over time, as seen in Figure 7.2.



Chapter 8

Conclusion and Outlook

Conclusion

In this thesis, we investigated Flow and Action Matching methods for learning deterministic and
stochastic dynamics from snapshot data. Initially, we found that Action Matching in its original
form is highly unstable. Discretizing the loss function in time often leads to exploding gradients.
The only workaround we found was to use ReLU activation functions exclusively in the neural
network architecture. However, this approach has limitations as it struggles to capture curvature
in the dynamics. On the other hand, the adapted method, I-AM, demonstrated improved results
when applied carefully. It appears particularly effective for data residing on a low-dimensional
manifold embedded in a higher-dimensional space with substantial noise. This is what we also
expected in Section 4.3. Additionally, I-AM has low computational time, making it advantageous
in scenarios where quick computation is necessary and the data is noisy.

Furthermore, we observed that [SF ]2M outperformed other methods in high-dimensional set-
tings. In lower dimensions, [SF ]2M performed worse than OT-CFM based on the Wasserstein
metric. However, as demonstrated in Section 6.2 and Chapter 7, [SF ]2M visually performes well
in low dimensions, producing a convincing target distribution. This can be attributed to the
diffusion term which acts as a regularizer and enhances model stability by exploring more of the
space. Nonetheless, in low dimensions, deterministic methods excel in terms of the Wasserstein
distance, while [SF ]2M inherently has some error from the diffusion coefficient. Additionally,
as discussed in Section 6.4, [SF ]2M benefits from projecting the data onto a lower-dimensional
manifold that aligns with the data’s intrinsic dimension. Conversely, entropic Action Match-
ing did not prove beneficial, likely due to the instability of the discretized loss and the overly
simplistic data inference in I-EAM.

Finally, we introduced UOT-CFM, which replaces the minibatch Optimal Transport approx-
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imation of OT-CFM with a minibatch unbalanced Optimal Transport approximation. Initial
experiments in Chapter 3 showed visually convincing results. However, subsequent experi-
ments revealed its high computational complexity and the necessity for careful fine-tuning of
the hyperparameter τ . It only outperformed OT-CFM for the single-cell data case it was fine-
tuned on, based on the Wasserstein distance. However, learning outliers might be rewarded in
terms of the Wasserstein distance. Visually, as seen in Figure 7.7, UOT-CFM appeared more
consistent than OT-CFM as the model dimension increased. It is important to consider whether
the data structure justifies the use of UOT-CFM, which might be the case in scenarios with
several data clusters evolving differently or when there are many outliers that should not be
learned.

Outlook

Our adaptation of Action Matching involved interpolating data in a simple linear manner. Future
work could explore alternative interpolation processes to improve the performance of Action
Matching and entropic Action Matching. A similar concept was examined in [Nek+23a], where
an additional neural network is used to learn the best interpolation process. Additionally, actions
with different potentials can be matched using this method. Further research could thoroughly
explore and compare these approaches with the methods introduced in this thesis.

In this thesis, we selected g(t) as a known constant. Although the snapshot data does not
provide sufficient information to learn g(t), future work could consider varying g(t) over time.
Another potential improvement is to set g(t) larger at the beginning of the training to promote
bifurcations and then let g(t)→ 0 later in the training, as suggested in [Hug+22].

Finally, UOT-CFM did not fully approximate dynamic unbalanced Optimal Transport. Future
research could extend Flow Matching to approximate the dynamic unbalanced Optimal Transport
Problem more accurately.
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Appendix A

Learning Dynamics with Multiple Time
Points

Figure A.1: Learned trajectory of the unrestricted Action Matching model. We see that it
slightly overshoots the target distribution.
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96 APPENDIX A. LEARNING DYNAMICS WITH MULTIPLE TIME POINTS

Figure A.2: Learned trajectory of Action Matching model using the MLP SiLU architecture. We
discretized time and gave Action Matching only access to a varying amount of time points. We
used 10000 samples at each point in time. Even with 50 or 100 time points Action Matching did
not learn the dynamics well.

Figure A.3: Learned trajectory of Action Matching model using the MLP ReLU architecture.
We discretized time and gave Action Matching only access to a varying amount of time points.
We used 10000 samples at each point in time. Even with 50 or 100 time points Action Matching
did not learn the dynamics well.



Appendix B

Single Cell Data

Here we state the results for the I-EAM model on the embroyoid body data from Chapter 7.

Figure B.1: We plot the first two dimensions of the sample paths of the I-EAM model trained
in dimensions 2, 5 or 100. The black scatters indicate the empirical initial distribution given to
the models, while the blue scatters represent the learned target disributions. The red lines illus-
trate examples of learned sample paths between the initial and target distribution. Background
scatters show the empirical distributions of the single-cell data over time, as seen in Figure 7.2.

97



98 APPENDIX B. SINGLE CELL DATA

time point 1 time point 2 time point 3
Dimension

2 0.43±0.03 0.58±0.06 0.68±0.05
5 1.06±0.03 1.24±0.03 1.37±0.07
10 2.3±0.02 2.62±0.08 3.52±0.15
50 6.43±0.02 7.23±0.1 7.81±0.18
100 9.82±0.03 11.02±0.16 11.45±0.02
500 24.12±0.04 26.54±0.1 29.26±0.19

Table B.1: We compare the W1−distance of the empirical and predicted distributions of I-EAM
at time points 1, 2 and 3. We trained the model on all but this time points.

W1-distance training time in seconds
Dimension

2 0.51±0.09 206.0±11.51
5 1.15±0.15 196.6±0.11
10 3.59±0.15 201.37±8.26
50 9.57±0.39 198.95±2.98
100 14.08±0.86 198.08±0.49
500 37.34±0.6 208.68±14.85

Table B.2: We compare the W1-distance of the empirical and predicted distributions at the last
time point for I-EAM. We trained the model on all including this time points. The second column
shows the training time of the model in seconds.
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