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a b s t r a c t

We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution
of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media.
A velocity–strain formulation is used, which allows for the solution of the acoustic and
elastic wave equations within the same unified framework. Careful attention is directed
at the derivation of a numerical flux that preserves high-order accuracy in the presence
of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for
the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann prob-
lem, are provided. The method supports h-non-conforming meshes, which are particularly
effective at allowing local adaptation of the mesh size to resolve strong contrasts in the
local wavelength, as well as dynamic adaptivity to track solution features. The use of
high-order elements controls numerical dispersion, enabling propagation over many wave
periods. We prove consistency and stability of the proposed dG scheme. To study the
numerical accuracy and convergence of the proposed method, we compare against analyt-
ical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb,
Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic inter-
face. Spectral rates of convergence are demonstrated for these problems, which include a
non-conforming mesh case. Finally, we present scalability results for a parallel implemen-
tation of the proposed high-order dG scheme for large-scale seismic wave propagation in a
simplified earth model, demonstrating high parallel efficiency for strong scaling to the full
size of the Jaguar Cray XT5 supercomputer.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Here we introduce a high-order discontinuous Galerkin (dG) method for wave propagation in coupled elastic–acoustic
media. Coupled elastic–acoustic wave propagation phenomena arise in a wide range of scientific and engineering problems.
Of particular interest to us are geophysical problems, including seismic exploration and regional and global earthquake-in-
duced wave propagation. Another field in which such problems arise is structural acoustics, in which elastic structures inter-
act with an acoustic fluid within which they are embedded. A common feature of such problems is that they require accurate
treatment of waves propagating through elastic–acoustic interfaces. For example, in marine seismology, acoustic waves scat-
ter from the ocean floor and from layers in earth’s crust beneath, which is modeled as an elastic medium. When modeling
. All rights reserved.
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global seismic wave propagation, earth’s outer core is represented as an acoustic fluid, which results in models with several
elastic–acoustic interfaces. In regional earthquake wave propagation models, many seismically active regions border oceans,
and thus elastic–acoustic interfaces are encountered.

Accurate numerical solution of coupled elastic–acoustic seismic wave propagation problems presents four fundamental
difficulties. First, waves are typically propagated over many periods. For example, to propagate seismic waves through the
earth at frequencies of interest (up to 1 Hz), waves must be propagated over Oð103Þ wavelengths. This implies a need for
high-order methods to control numerical dispersion and dissipation errors [1,2]. Second, maintaining high-order accuracy
in the numerical treatment of interfaces requires care. Third, in many problems of interest, the size of bodies excited by
acoustic or elastic waves is large relative to the wavelengths of interest, leading to a large number of unknowns necessary
to resolve the wavelengths. For example, to propagate a 0.5 Hz wave through the earth using 6 points per wavelength re-
quires more than 1011 degrees of freedom, and approximately 105 time steps. Clearly, such problems require efficient and
scalable implementations on large parallel supercomputers. Fourth, many geophysical problems feature complex geometries
and strong contrasts in wave speeds, for example at ocean-crust boundaries. These features present difficulty for contempo-
rary mesh generation algorithms, both in the requirement to conform to interfaces, as well as the need for rapid change in
mesh size. The availability of a discretization method that accommodates h-adaptive non-conforming meshes (i.e., those
containing adjacent elements of differing size) greatly simplifies mesh generation for such geophysical problems [3]. More-
over, it greatly facilitates dynamic solution adaptivity, for example to track propagating wavefronts or earthquake rupture
dynamics.

The four challenges listed above have lead us to consider a high-order dG discretization for the first-order form of the
elastic–acoustic wave equations. The dG method is based on discontinuous basis functions, permitting h-non-conforming
meshes and greatly simplifying parallel data structures and parallel implementation. Furthermore, the first-order form of
the elastic wave equation permits solution of coupled elastic–acoustic wave propagation within a single, unified framework;
the acoustic fluid results simply by setting the shear modulus to zero. Discontinuous Galerkin is a natural discretization for
hyperbolic conservation laws, which result from the first-order form. In combination with an appropriate numerical flux for
the material interfaces, one obtains a stable and arbitrarily high-order accurate method for wave propagation through elas-
tic–acoustic interfaces.

A large body of work exists on numerical methods for elastic and acoustic wave propagation involving elastic–acoustic
interfaces. Since our focus is on high-order methods for such problems, here we will review the pertinent literature on this
subject. Numerical methods for the elastic wave equation may be based on the formulation of the problem as a system of
first-order partial differential equations (in terms of displacement–stress, velocity–stress, or velocity–strain) or as a sec-
ond-order system (in displacements).

The accurate solution of wave propagation problems with interfaces is a challenging problem for finite difference meth-
ods, e.g., [4–6]. Recent work on the stable imposition of free-surface boundary conditions for a second-order formulation can
be found in [4]. Another approach, belonging to a broader family of interface methods, handles both free surfaces [5] and
elastic–acoustic interfaces [6] in a way, conjectured by the authors, that allows high-order accuracy. Despite the promise
of such methods, we prefer methods that do not suffer a growth in stencil size as the order of the approximation increases.
This is important for limiting the volume of communication associated with unknowns shared across processors in parallel
implementations. Compact finite difference methods do not suffer such a growth; however they have yet to be developed for
the coupled elastic–acoustic wave propagation problems we target.

The finite volume method applied to a first-order system has been extended to elastic–acoustic interfaces for control vol-
umes aligned to material interfaces, e.g., [7,8]. However, high-order accurate versions of these methods have yet to be
developed.

Finite element and spectral element methods are based typically on the second-order form of wave equations. In this
case, the elastic–acoustic interaction is effected by coupling the respective wave equations through appropriate interface
conditions. To resolve the coupling, a predictor–multicorrector iteration at each time step has been used [9,10], which in-
creases the computational cost for each time step. A computationally more efficient time-stepping method for global seismic
wave propagation is proposed in [11] and extended in [12]. The approach uses a second-order accurate Newmark time inte-
gration, in which a time step is first performed in the acoustic fluid and then in the elastic medium using interface values
based on the fluid solution.

In contrast to continuous finite element discretizations, dG methods impose continuity between elements only weakly
through a numerical flux. Discontinuous Galerkin methods have been employed for second-order wave equations, in both
the acoustic and elastodynamic settings. We refer to [13–16] for a review of these methods. For the first-order form, at least
two approaches have been proposed. In [17], a velocity–stress formulation in conservative form is employed for the elastic
wave equation. Combining a central numerical flux with a leap-frog time discretization results in an energy-conserving
method. Alternatively, in [18,19], a non-conservative velocity–stress formulation with an upwind numerical flux using mate-
rial properties from one side of an (acoustic–acoustic, elastic–elastic, or elastic–acoustic) interface is used.

The discontinuous Galerkin method we develop here is based on a velocity–strain formulation of the coupled elastic–
acoustic wave equations. As mentioned above, this allows the acoustic and elastic wave equations to be expressed in
conservative form within the same framework (an acoustic medium is a special case of an elastic medium with zero shear
modulus). Based on the conservative form, we derive an upwind numerical flux by solving the exact Riemann problem with
material discontinuities [20,21]. This is in contrast with the upwind numerical flux employed in [19], which solves the
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Riemann problem taking material properties from one side of the interface only. To prove consistency, we show that it is
critical to take into account material discontinuities in the numerical flux at elastic–acoustic interfaces. We prove stability
of the proposed dG method in the presence of material discontinuities (including elastic–acoustic interfaces) and stress-free
boundary conditions. While our derivation is based on a velocity–strain formulation, we show that the resulting method is
closely related to a velocity–stress method.

Our implementation of the proposed dG method features hexahedral elements with a basis composed of tensor products
of one-dimensional Lagrange polynomials. Furthermore, the numerical integration points coincide with the basis function
nodes; here, we use the Legendre–Gauss–Lobatto points. We use curvilinear h-adapted non-conforming hexahedral element
meshes, where care is taken to ensure constant-state preservation [22]. This set of choices is often referred to as a discon-
tinuous Galerkin spectral element method [23].

We present comparisons between numerical and analytical solutions for a series of classical interface problems and show
that our dG method exhibits spectral rates of convergence in each case. We provide the exact solution for each problem and
sufficient information to reproduce the test problems. In particular, Rayleigh and Lamb wave problems are presented to ver-
ify the implementation of stress-free boundary conditions. Using solutions to Scholte and Stoneley wave problems, we study
the behavior of the method for elastic–acoustic and elastic–elastic interfaces. Convergence rates for elastic–acoustic inter-
faces are further verified in a Snell’s Law problem, in which a plane wave is reflected and transmitted at the interface. Finally,
in addition to the problems that demonstrate the accuracy of our dG method, we include a preliminary study of scalability of
the parallel implementation for large-scale seismic wave propagation in a simplified earth model, demonstrating high par-
allel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

2. Wave propagation in coupled elastic–acoustic media

To formulate the coupled elastic–acoustic wave propagation problem, we assume a deformation u(x, t) that maps a point
x from a reference body B to a point x0 in the deformed body B0 at a given instant in time t. The displacement field u of a
material point is a vector pointing from the original location in B to its location in B0 given by
uðx; tÞ ¼ uðx; tÞ � x:
Under the assumption of small deformations, the strain tensor E is defined by
E ¼ symðruÞ ¼ 1
2
ðruþruTÞ;
where sym(�) is the mapping from second-order tensors to their symmetric part. In linear elasticity the deformation is as-
sumed to be small such that a linear constitutive relation can be assumed between the strain tensor E and the Cauchy stress
tensor S described by the fourth-order constitutive tensor C,
S ¼ CE:
The linear elastic wave equation in the body B can be written as the first-order system
@E
@t
¼ 1

2
ðrv þrvTÞ; ð1aÞ

q
@v
@t
¼ r � ðCEÞ þ f ; ð1bÞ
where q, v, and f are mass density, velocity, and body force per unit volume, respectively. For an isotropic medium the con-
stitutive relation can be formulated in terms of the two Lamé parameters k and l, and the elastodynamic equations read
@E
@t
¼ 1

2
ðrv þrvTÞ; ð2aÞ

q
@v
@t
¼ r � ðktrðEÞI þ 2lEÞ þ f ; ð2bÞ
where I is the second-order identity tensor and tr(T) is the trace of a tensor T. In addition to wave propagation in elastic sol-
ids, we are also interested in waves propagating in acoustic fluids, and in particular in coupled heterogeneous elastic–acous-
tic media. In acoustic fluids, wave propagation is described by the acoustic wave equation, which can be written in velocity–
strain form by setting l to zero,
@E
@t
¼ 1

2
rv þrvT
� �

; ð3aÞ

q
@v
@t
¼ r � ktrðEÞIð Þ þ f ; ð3bÞ
which implies that the stress tensor reduces to a scalar pressure.
For well-posedness of the system, velocity and strain initial conditions in B and boundary conditions on @B need to be

specified. Throughout this article we assume the initial conditions
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vðx;0Þ ¼ v0ðxÞ; Eðx; 0Þ ¼ E0ðxÞ;
and boundary conditions on the traction such that
Sn ¼ tbc on @B; ð4Þ
where n is the outward unit normal at the boundary @B of the body B and the traction tbc is prescribed. Rewritten in terms of
strain this boundary condition becomes
CEð Þn ¼ tbc on @B:
At an interface C between two elastic media, the velocity, v, and the traction, Sn, are continuous, i.e.,
vþ ¼ v� x 2 C; ð5aÞ
Sþn ¼ S�n x 2 C: ð5bÞ
For an elastic–acoustic or acoustic–acoustic interface, the normal component of the velocity, n�v, and the traction, Sn (which
reduces to the pressure in the fluid) are continuous, i.e.,
n � vþ ¼ n � v� x 2 C; ð6aÞ
Sþn ¼ S�n x 2 C: ð6bÞ
For a vector w and a second-order tensor T, the outward (denoted with superscript ‘‘+”) and inward (denoted with super-
script ‘‘-”) limits in direction n are given by
wþðx; tÞ :¼ lim
s!0þ

wðxþ sn; tÞ; w�ðx; tÞ :¼ lim
s!0�

wðxþ sn; tÞ;

Tþðx; tÞ :¼ lim
s!0þ

Tðxþ sn; tÞ; T�ðx; tÞ :¼ lim
s!0�

Tðxþ sn; tÞ:
We use numerical subscripts to denote components of vectors and tensors, e.g., u = (u1,u2,u3)T, given in the basis
{e1,e2,e3}. To formulate the discontinuous Galerkin method, we first rewrite the elastic wave equation (1) in conservative
form. This is accomplished using the definitions
r � S ¼
X3

j¼1

X3

i¼1

@Sij

@xj
ei ¼

X3

j¼1

@

@xj

X3

i¼1

Sijei ¼
X3

j¼1

@

@xj
Sej;

rv ¼
X3

j¼1

X3

i¼1

@v i

@xj
ei � ej ¼

X3

j¼1

@

@xj

X3

i¼1

v iei

 !
� ej ¼

X3

j¼1

@

@xj
v � ej;

rvT ¼
X3

j¼1

X3

i¼1

@v j

@xi
ei � ej ¼

X3

i¼1

@

@xi
ei �

X3

j¼1

v jej

 !
¼
X3

i¼1

@

@xi
ei � v ;
where the tensor a � b is the dyadic product of vectors a and b. This allows us to state the conservative form in the space
V :¼ Vsym

3�3 � V3, where V denotes a space of sufficiently smooth functions defined on B, as follows,
Q
@q
@t
þr � ðFqÞ ¼ g; ð7Þ
where
q ¼
E
v

� �
2 V ; Q ¼

I 0
0 qI

� �
; g ¼

0
f

� �
2 V
and the action of the flux operator F on the strain–velocity unknowns q is defined by
ðFqÞi ¼
� 1

2 ðv � ei þ ei � vÞ
� CEð Þei

 !
2 V for i ¼ 1;2;3;
with I denoting the fourth-order identity tensor and 0 denoting zero tensors of appropriate sizes.
To solve (7) with a discontinuous Galerkin method, the domain B is partitioned into Nel elements aligned with material

discontinuities such that B � BNel ¼
SNel

e¼1D
e. Then (7) is multiplied by a test function p 2 V using the following inner product

for the direct sum space V:
q � p ¼ E : ðCHÞ þ v �w; with p ¼
H
w

� �
: ð8Þ
The use of C in this inner product eliminates redundant variables when acoustic waves are treated as a special case of elastic
waves in a unified elastic–acoustic formulation. The dG formulation on an element De is obtained by integration by parts in
space on each element De,
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Z
De

Q
@q
@t
� pdxþ

Z
De
r � Fqð Þ � pdxþ

Z
@De
ðn � ððFqÞ� � F�q�ÞÞ � pdx ¼

Z
De

g � pdx for all p 2 V ; ð9Þ
where ðFqÞ� is the numerical flux across element interfaces. Note that at this point we have not assumed a particular spatial
discretization for q and p; a specific choice will be discussed in Section 5. In the next section, we choose an upwind numerical
flux, defined as the flux of the solution of the Riemann problem at the interface. The solution of this Riemann problem is
detailed next.

3. Upwind numerical flux

In this section we compute the upwind numerical flux for the three-dimensional isotropic coupled elastic and acoustic
wave equations (2). Existing work on the upwind numerical flux for the two-dimensional elastic wave equation includes
[7,21] using a velocity–stress formulation and [7] using a velocity–strain formulation. Note that the numerical flux used
in [24,19] takes into account material parameters from one side of the interface only; see Section 4.1 for a discussion of this
simplification. The subsequent exact solution of the Riemann problem combines material parameters from both sides of the
interface following standard techniques; see for example [20,21]. As can be seen below, the computation in three dimensions
is technical and additional steps are needed to rigorously derive the flux for elastic–elastic, acoustic–acoustic, and elastic–
acoustic interfaces within a unified formulation. We conclude this section with a method to impose stress-free boundary
conditions weakly through the numerical flux. This allows a unified numerical treatment of both intra-element and bound-
ary faces.

3.1. Flux across elastic–elastic interfaces

We first focus on the elastic–elastic Riemann problem for (7). To simplify notation, we use the isomorphism between the
direct sum space V = Vsym

3 � 3 � V3 and V9 in the following derivation. Under this isomorphism, the tensors n � F and Q are
represented by the matrices A and Q (as defined below) and q, p and g are denoted by q, p, g 2 V9. Then, the elastic wave
equation can be written as
Q
@q
@t
þ @A1q

@x1
þ @A2q

@x2
þ @A3q

@x3
¼ g; ð10Þ
where
q ¼ E11 E22 E33 E12 E23 E13 v1 v2 v3ð ÞT ;

g ¼ 0 0 0 0 0 0 f1 f2 f3ð ÞT ;

Q ¼ diagð1;1;1;1;1;1;q;q;qÞ;

A ¼ n1A1 þ n2A2 þ n3A3 ¼
0 A12

A21 0

� �

and
A12 ¼ �

n1 0 0
0 n2 0
0 0 n3
n2
2

n1
2 0

0 n3
2

n2
2

n3
2 0 n1

2

0BBBBBBBB@

1CCCCCCCCA
;

A21 ¼ �
ðkþ 2lÞn1 kn1 kn1 2ln2 0 2ln3

kn2 ðkþ 2lÞn2 kn2 2ln1 2ln3 0
kn3 kn3 ðkþ 2lÞn3 0 2ln2 2ln1

0B@
1CA:
Above and in the remainder of this section, n :¼ n� denotes the outward interface unit normal vector. The flux in the normal
direction is then Aq. We augment n with tangential vectors s and t such that {n,s,t} is an orthonormal basis. Note that s and t
are only used to facilitate the derivation and do not appear in the final form of the numerical flux. We simplify the following
calculations by introducing the matrix T, which is the coordinate representation of the transformation from the interface ba-
sis {n,s,t} to the physical basis {e1,e2,e3} for E and v; we refer to [25] for details about general transformations of vectors and
tensors. From the definition of T it follows that
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T�1AT ¼ A1 and T�1Q�1AT ¼ Q�1A1: ð11Þ
Denoting the coordinates in the interface basis with a prime we have
q0 ¼ T�1q ¼ n � En s � Es t � Et s � En t � Es t � En n � v s � v t � vð ÞT :
For the solution of the Riemann problem at the interface, we consider an interface between two homogeneous media with
properties {k�,l�,q�} in the inward direction of n and {k+,l+,q+} in the outward direction of n. Then, the Riemann problem is
to solve (10) for the given piecewise constant medium with the initial condition
q0ðxÞ ¼
q� if n � x < 0;
qþ if n � x > 0:

�

To determine the characteristics of this hyperbolic system we need the decomposition
Q�1A ¼ RKR�1; ð12Þ
where the columns of R, denoted as rj for the jth column, are the eigenvectors of Q�1A and K is the diagonal matrix
K ¼ diagð�cp;�cs;�cs;0; 0;0; cs; cs; cpÞ;
with
cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q

s
and cs ¼

ffiffiffiffi
l
q

r

denoting the principal wave speeds in the system. Transforming (12) into the interface basis and using (11) results in
Q�1A1 ¼ T�1Q�1AT ¼ T�1RKR�1T ¼ R0KðR0Þ�1
;

where
R0 ¼ T�1R:
Thus we obtain rj ¼ Tr0j, where r0j is the jth column of
R0 ¼

1 0 0 �k 0 �k 0 0 1
0 0 0 kþ 2l 0 0 0 0 0
0 0 0 0 0 kþ 2l 0 0 0
0 1

2 0 0 0 0 0 1
2 0

0 0 0 0 1 0 0 0 0
0 0 1

2 0 0 0 1
2 0 0

cp 0 0 0 0 0 0 0 �cp

0 cs 0 0 0 0 0 �cs 0
0 0 cs 0 0 0 �cs 0 0

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
:

For each wave speed ci in our system, the Rankine–Hugoniot jump condition is
�ciQðqm � qpÞ þ Aðqm � qpÞ ¼ 0: ð13Þ
Here, qm is the state in the negative normal direction across the discontinuity traveling at speed ci and qp is the state in the
positive normal direction. The matrices Q and A are evaluated in the region where the ci-wave travels, which is emphasized
Fig. 1. Sketch illustrating the Ranking–Hugoniot jump conditions in the Riemann problem.



L.C. Wilcox et al. / Journal of Computational Physics 229 (2010) 9373–9396 9379
by the superscripts ‘‘-” and ‘‘+”. The Riemann problem has four unknown states {qa,qb,qc,qd}; see Fig. 1. The following Ran-
kine–Hugoniot jump conditions hold for our system:
c�p Q�ðq� � qaÞ þ A�ðq� � qaÞ ¼ 0; ð14aÞ
c�s Q�ðqa � qbÞ þ A�ðqa � qbÞ ¼ 0; ð14bÞ
A�qb � Aþqc ¼ 0; ð14cÞ
� cþs Qþðqc � qdÞ þ Aþ qc � qd

� �
¼ 0; ð14dÞ

� cþp Qþðqd � qþÞ þ Aþðqd � qþÞ ¼ 0: ð14eÞ
Due to the definition of the eigenvalues and eigenvectors of (Q�)�1A� and (Q+)�1A+, we obtain
q� � qa ¼ a1r�1 ;

qa � qb ¼ a2r�2 þ a3r�3 ;

qc � qd ¼ a7rþ7 þ a8rþ8 ;

qd � qþ ¼ a9rþ9 ;
which combined with (14c) yields the system of equations
q� � qb ¼ a1r�1 þ a2r�2 þ a3r�3 ;

A�qb � Aþqc ¼ 0;
qc � qþ ¼ a9rþ9 ;þa8rþ8 þ a7rþ7 ;
which we solve for the characteristic coefficients a. There is no need to determine a4, a5, or a6 since they correspond to
waves with zero speed, which do not contribute to the upwind numerical flux. Transforming the system into the interface
coordinates using (11), we obtain
T�1q� � T�1qb ¼ a1ðr01Þ
� þ a2ðr02Þ

� þ a3ðr03Þ
�
; ð15aÞ

A�1 T�1qb � Aþ1 T�1qc ¼ 0; ð15bÞ
T�1qc � T�1qþ ¼ a9ðr09Þ

þ þ a8ðr08Þ
þ þ a7ðr07Þ

þ
: ð15cÞ
Eq. (15b) implies that the flux is continuous across interfaces, namely
vb ¼ vc; ð16aÞ
Sbn ¼ Scn; ð16bÞ
where
Sb ¼ k�trðEbÞI þ 2l�Eb; Sc ¼ kþtrðEcÞI þ 2lþEc:
Rewriting the traction interface condition (14c) in terms of strain yields
k�trðEbÞ þ 2l�n � Ebn ¼ kþtrðEcÞ þ 2lþn � Ecn:
Since the trace is invariant under orthogonal transformations (e.g., [25]), we infer
k�ðn � Ebnþ s � Ebsþ t � EbtÞ þ 2l�n � Ebn ¼ kþ n � Ecnþ s � Ecsþ t � Ectð Þ þ 2lþn � Ecn: ð17Þ
From the first three rows of (15a) and (15c) and substituting the relations
n � Ebn ¼ n � E�n� a1; s � Ebs ¼ s � E�s; t � Ebt ¼ t � E�t;
n � Ecn ¼ n � Eþnþ a9; s � Ecs ¼ s � Eþs; t � Ect ¼ t � Eþt;
into (17), we conclude that
ðk� þ 2l�Þa1 þ ðkþ þ 2lþÞa9 ¼ n � ðS�n� SþnÞ: ð18Þ
Likewise it follows from (16a) that n�vb = n�vc, which, along with the seventh row of (15a), allows us to obtain a second equa-
tion for a1 and a9:
c�p a1 � cþp a9 ¼ n � ðv� � vþÞ: ð19Þ
Solving Eq. (18) and (19) we find
a1 ¼
cþp n� � sStþ ðkþ þ 2lþÞsvt

cþp ðk
� þ 2l�Þ þ c�p ðk

þ þ 2lþÞ
;

a9 ¼
c�p n� � sSt� ðk� þ 2l�Þsvt

cþp ðk
� þ 2l�Þ þ c�p ðk

þ þ 2lþÞ
;
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where we have introduced svt = n��v� + n+�v+ and sSt = S�n� + S+n+. Rows 4 and 8 in (15a) and (15c) result in the equations
l�a2 þ lþa8 ¼ s � ðS�n� SþnÞ;
c�s a2 � cþs a8 ¼ s � ðv� � vþÞ:
Similarly, rows 6 and 9 in (15a) and (15c) yield
l�a3 þ lþa7 ¼ t � S�n� Sþn
� �

;

c�s a3 � cþs a7 ¼ t � ðv� � vþÞ:
The solution of these equations is
a2 ¼
1

lþc�s þ l�cþs
cþs s � ðS�n� SþnÞ þ lþs � ðv� � vþÞ
� �

;

a3 ¼
1

lþc�s þ l�cþs
ðcþs t � ðS�n� SþnÞ þ lþt � ðv� � vþÞÞ;

a7 ¼
1

lþc�s þ l�cþs
ðc�s t � ðS�n� SþnÞ � l�t � ðv� � vþÞÞ;

a8 ¼
1

lþc�s þ l�cþs
ðc�s s � ðS�n� SþnÞ � l�s � ðv� � vþÞÞ:
Thus, we define the upwind numerical flux in the normal direction (Aq)* as
ðAqÞ� ¼ A�q� þ a1c�p Q�r�1 þ a2c�s Q�r�2 þ a3c�s Q�r�3 ¼ Aþqþ þ a9cþp Qþrþ9 þ a8cþs Qþrþ8 þ a7cþs Qþrþ7 : ð20Þ
Using the fact that r1, r2, r3 correspond to
r�1 ¼
n� n
c�p n

 !
; r�2 ¼

sym s� nð Þ
c�s s

� �
; r�3 ¼

symðt � nÞ
c�s t

� �
;

and using, for a vector a, the vector–tensor identities
ðs � aÞsþ ðt � aÞt ¼ �n� n� að Þ;
ðs � aÞsymðs� nÞ þ ðt � aÞsymðt � nÞ ¼ �symðn� ðn� ðn� aÞÞÞ;
we obtain the upwind numerical flux for an elastic–elastic interface, where we use (20) and state the flux in the product
space V:
ðFqÞ� ¼F�q� þ
c�p cþp n �sStþc�p ðk

þ þ2lþÞsvt

cþp ðk
� þ2l�Þþc�p ðk

þ þ2lþÞ
n�n

q�c�p n

 !
þ c�s cþs

lþc�s þl�cþs
s � sStþ c�s lþ

lþc�s þl�cþs
s � ½v	

� � symðs�nÞ

q�c�s s

 !

þ c�s cþs
lþc�s þl�cþs

t �sStþ c�s lþ

lþc�s þl�cþs
t � ½v 	

� � symðt�nÞ

q�c�s t

 !
¼F�q� þ

c�p cþp n �sStþc�p ðk
þ þ2lþÞsvt

cþp k� þ2l�ð Þþc�p kþ þ2lþ
� � n�n

q�c�p n

 !

� c�s cþs
lþc�s þl�cþs

sym n�ðn�ðn� sStÞÞð Þ

q�c�s n� n� sStð Þ

 !
� c�s lþ

lþc�s þl�cþs

symðn�ðn�ðn�½v	ÞÞÞ

q�c�s n� n�½v 	ð Þ

 !
;

¼F�q� þ
n � sStþqþcþp svt

qþcþp þq�c�p

n�n

q�c�p n

 !
� 1

q�c�s þqþcþs

sym n�ðn�ðn� sStÞÞð Þ

q�c�s n�ðn� sStÞ

 !

� qþcþs
q�c�s þqþcþs

symðn�ðn�ðn�½v 	ÞÞÞ

q�c�s n�ðn�½v 	Þ

 !
;

with the definition [v] = v� � v+.

3.2. Flux across acoustic–acoustic interfaces

Acoustic–acoustic interfaces are characterized by l� = l+ = 0, which implies that (10) is a weakly hyperbolic system for
which we cannot directly apply the method used in the elastic–elastic case discussed above; see [21, Chapter 16.3.1]. Instead,
we reduce the Riemann problem to solving for
q̂ ¼ E11 E22 E33 v1 v2 v3ð ÞT : ð21Þ
From the solution of this restricted but strongly hyperbolic system, E12, E23, and E13 can be inferred by exploiting the
relations
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@E12

@t
¼ 1

2
@v1

@x2
þ @v2

@x1

� �
;

@E23

@t
¼ 1

2
@v2

@x3
þ @v3

@x2

� �
;

@E13

@t
¼ 1

2
@v1

@x3
þ @v3

@x1

� �
:

This procedure yields the upwind numerical flux in the normal direction for acoustic–acoustic interfaces
ðFqÞ� ¼ F�q� þ
n � sStþ qþcþp svt

qþcþp þ q�c�p

n� n
q�c�p n

 !
:

3.3. Flux across elastic–acoustic and acoustic–elastic interfaces

Let us first concentrate on finding the flux for an elastic–acoustic interface (i.e., l�– 0 and l+ = 0). In this situation the
solution of the Riemann problem satisfies the following Rankine–Hugoniot jump conditions
c�p Q�ðq� � qaÞ þ A�ðq� � qaÞ ¼ 0;

c�s Q�ðqa � qbÞ þ A�ðqa � qbÞ ¼ 0;

A�qb � Aþqc ¼ 0;

� cþp bQ þðq̂c � q̂þÞ þ bAþ q̂c � q̂þð Þ ¼ 0;
where the hat-superscript indicates that we have restricted the operators and vectors to the variables E11, E22, E33, v1, v2, and
v3 per (21). In fact, since the flux A+qc involves only the shear stress which we know to be zero in an acoustic region, we may
solve this system first and then use the separate set of equations
@Eþ12

@t
¼ 1

2
@vþ1
@x2
þ @v

þ
2

@x1

� �
;

@Eþ23

@t
¼ 1

2
@vþ2
@x3
þ @vþ3
@x2

� �
;

@Eþ13

@t
¼ 1

2
@vþ1
@x3
þ @v

þ
3

@x1

� �

for the acoustic side of the interface. The resulting numerical flux involves an upwind term for the incoming cp characteristic
and boundary conditions for the incoming cs characteristics such that
s � v� � 2c�s s � En ¼ s � vþ; t � v� � 2c�s t � En ¼ t � vþ:
These boundary conditions are enforced weakly through the numerical flux for the cs characteristics, which results in
Fqð Þ� ¼ F�q� þ
n � sStþ qþcþp svt

qþcþp þ q�c�p

n� n
q�c�p n

 !
� 1

q�c�s

sym n� n� n� sStð Þð Þð Þ
q�c�s n� n� sStð Þ

� �
:

Note that this is the same as the numerical flux for the elastic–elastic region when l+ = 0. Following a similar argument for
the acoustic–elastic interface we find that the numerical flux coincides with the one for the acoustic–acoustic interface with
l+ – 0.

3.4. Unified flux for the coupled elastic–acoustic wave equations

Combining the results obtained in this section we arrive at the following unified formulation of the upwind numerical flux:
n � ðFqÞ� �F�q�ð Þ¼k0ðn �sStþqþcþp svtÞ
n�n
q�c�p n

 !
�k1

sym n� n� n�sStð Þð Þð Þ
q�c�s n� n�sStð Þ

� �
�k1qþcþs

symðn�ðn�ðn�½v	ÞÞÞ
q�c�s n�ðn�½v	Þ

� �
;

ð22aÞ
where [v] :¼ v� � v+, svt :¼ n��v� + n+�v+, and sSt :¼ S�n� + S+n+. The coefficients k0 and k1 are given by
k0 ¼
1

q�c�p þ qþcþp
; k1 ¼

1
q�c�s þ qþcþs

: ð22bÞ
For elastic–elastic and elastic–acoustic interfaces (i.e., with an elastic medium on the inward side, l�– 0), both coefficients
k0, k1 are well defined. For acoustic–elastic and acoustic–acoustic interfaces (i.e., with an acoustic medium on the inward
side, l� = 0), we simply use
k1 ¼ 0: ð22cÞ
3.5. Imposing boundary conditions through the flux

We use the upwind numerical flux developed above not only to model interaction across element interfaces, but also to
impose the traction boundary conditions (4) in a weak sense. This is accomplished by introducing extended material param-
eters (q+,l+,k+) :¼ (q�,l�,k�) to be used in the computation of the numerical flux (22). We define q+ as the extension of the
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solution to the exterior, choosing its values so that the characteristics entering the element realize the desired traction tbc.
This approach leads to the following modification in the strain variables:
qþ ¼ Eþ

vþ

 !
¼

E�

v�

� �
þ Emod

0

 !
;

with
Emod ¼ 2
k� þ 2l�

� 2
l�

� �
ðn � ðtbc � S�nÞÞðn� nÞ þ 2

l�
sym n� ðtbc � S�nÞð Þ
in the elastic regime and
Emod ¼ 2
k�
ðn � ðtbc � S�nÞÞðn� nÞ
in the acoustic regime. We refer to [26] for a more detailed study of imposing different types of physical boundary conditions
in two dimensions by means of characteristics.

It follows from a short computation that at domain boundaries
Sþn ¼ ðCEþÞn ¼
2tbc � S�n in the elastic regime;
2ðn � tbcÞn� n� ðn� ðS�nÞÞ � ðn � S�nÞn in the acoustic regime:

�

This implies for the jumps and differences across the boundary that
svt ¼ 0; ð23aÞ
½v 	 ¼ 0; ð23bÞ

sSt ¼
�2ðtbc � S�nÞ in the elastic regime;
�2n � ðtbc � S�nÞn in the acoustic regime:

�
ð23cÞ
Substituted into the numerical flux (22), this form of the jump terms illustrates the fact that the boundary condition enforces
the traction on elastic boundaries while enforcing only the normal component of the traction on acoustic boundaries.

3.6. Corresponding velocity–stress dG method

We now show the close relation between the velocity–strain dG formulation (9) with numerical flux (22) and a first-order
velocity–stress dG discretization. Using the definition of the inner product (8) and q = (E,v)T and p = (H,w)T in (9), we obtain
Z

De

@E
@t

: CHdxþ
Z

De
q
@v
@t
�wdx�

Z
De

1
2
ðrv þrvTÞ : CHdx

�
Z

De
ðr � ðCEÞÞ �wdxþ

Z
@De

n � F
E
v

� �� ��
� F�

E�

v�

� �� �� �
�

CH�

w�

� �
dx ¼

Z
De

f �wdx: ð24Þ
Using that the constitutive tensor C is symmetric and that S = CE, (24) is equivalent to
Z
De

@S
@t

: Hdxþ
Z

De
q
@v
@t
�wdx�

Z
De

1
2

C rv þrvT
� �

: Hdx

�
Z

De
r � Sð Þ �wdxþ

Z
@De

n � eF S
v

� �� ��
� eF� S�

v�

� �� �� �
�

H�

w�

� �
dx ¼

Z
De

f �wdx; ð25aÞ
where the numerical flux for this velocity–stress formulation is found by moving C to the left hand side in the boundary
integral, which results in
n � eF S
v

� �� ��
� eF� S�

v�

� �� �
¼ k0ðn � sStþ qþcþp svtÞ

k�I þ 2l�n� n
q�c�p n

 !

� k1
2l�sym n� n� n� sStð Þð Þð Þ

q�c�s n� n� sStð Þ

� �
� k1qþcþs

2l�sym n� n� n� ½v	ð Þð Þð Þ
q�c�s n� n� ½v 	ð Þ

� �
: ð25bÞ
Consequently, the only difference between the dG methods based on the velocity–strain and the velocity–stress formulation
is the choice of the unknowns for the computation. If the constitutive tensor C acts on the test function H for the strain com-
ponent, the primary unknowns are velocity and strain; if C acts on E, only the stress S = CE appears in the formulation, which
allows one to choose stress and velocity as primary unknowns.
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4. Consistency of flux and stability

At this point we have developed the discontinuous Galerkin formulation (9), including the specification of a numerical
flux and boundary conditions, in an infinite- or finite-dimensional function space. Furthermore, the integrals have not yet
been subjected to any numerical approximation, i.e., we assume exact integration. Under these conditions, we next show
consistency of the numerical flux and stability of the dG method.

4.1. Consistency of the numerical flux

The numerical flux (22), which has been computed as the exact solution of a Riemann problem, uses material properties
from both elements neighboring a face. Here we show that this choice leads to a consistent scheme.

Theorem 1. The dG scheme (9) with the numerical flux (22) is a consistent numerical scheme.
Proof. Substitution of the exact strain–velocity solution of the elastic–acoustic wave equations, denoted qex, into (9), and
making use of the interface conditions (5) and (6) in (22), results in
n � ðFqexÞ
� � F�q�ex

� �
¼ 0:
Thus consistency for all possible combinations of elastic and acoustic media holds. h

In contrast, the numerical flux used in [19,24] (which is based on a velocity–stress formulation of the wave equation) uses
only material parameters from the interior of the element for the numerical flux computation. This simplification can be
problematic for the consistency of the scheme, in particular at acoustic–elastic interfaces.

If one takes in (22) material properties from one side of the interface only, say the negative side, then the resulting ‘‘one-
sided” numerical flux, ðFqÞy, satisfies
n � ðFqÞy �F�q�
� 	

¼
n � sStþq�c�p svt

2q�c�p

n�n
q�c�p n

 !
� 1

2q�c�s

sym n� n� n� sStð Þð Þð Þ
q�c�s n� n� sStð Þ

� �
�1

2
sym n� n� n�½v 	ð Þð Þð Þ

q�c�s n� n�½v	ð Þ

� �
:

Using condition (6) for an elastic–acoustic interface we obtain
n � ðFqexÞ
y � F�q�ex

� 	
¼ �1

2
sym n� n� n� ½v	ð Þð Þð Þ

q�c�s n� n� ½v 	ð Þ

� �
:

This expression is generally nonzero since the tangential component of the velocity is not necessarily continuous at such an
interface. Thus, this one-sided numerical flux is not consistent at interfaces involving an acoustic medium.

A similar inconsistency for elastic–acoustic interfaces exists in the numerical flux used for solving the coupled elastic–
acoustic wave equations presented in [19]. To study this issue, we implemented the dG scheme (25), which is based on
the velocity–stress formulation of the wave equation. We verified that the numerical results for the velocity are identical
to those obtained from the velocity–strain formulation for constant material properties and element-wise constant Jacobian
determinant (see the discussion in Section 3.6). In particular, when we tested this method on the elastic–acoustic interaction
problem defined in Section 6.2, we observed convergence identical to Fig. 3(b) if parameters of the medium from both sides
of the interface were used. Taking the material parameters from the negative side only, the flux (25b) reduces to the one used
in [19]. For this one-sided form of the numerical flux, in which only the negative-side material parameters are used, the
numerical solution did not converge to the exact solution in the L2-norm as the mesh was refined or the polynomial order
increased. Thus, we conclude that it is critical that the numerical flux take into account the neighboring material values at
elastic–acoustic interfaces.

4.2. Stability

In this section we prove stability of the discontinuous Galerkin scheme (9) by studying the time evolution of an energy
functional. While in the proof below we assume exact integration, we sketch the extension of the stability result to a com-
mon numerical quadrature scheme for conforming meshes in Section 5.5.

Theorem 2. Let us consider an energy functional EðtÞ defined as follows,
EðtÞ :¼
XNel

e¼1

EeðtÞ where EeðtÞ :¼ 1
2

Z
De
ðE : ðCEÞ þ qv � vÞdx:
Let us also assume periodic or traction-free boundary conditions (i.e., tbc = 0). Then the dG discretization is stable in the sense that
there exists a constant C such that
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d
dt

E 6 C E þ kf kL2ðXÞ

� 	
: ð26Þ
Moreover, if f = 0, then d
dt E 6 0 and thus E is non-increasing.

Proof. Inserting p :¼ S
v

� �
¼ CE

v

� �
into (9) yieldsZ � � Z � � Z Z
De

dE
dt

: S þ q
dv
dt
� v dx�

De

1
2
rv þrvT
� �

: S þ ðr � SÞ � v dxþ
@De

n � ðFqÞ� � F�q�ð Þð Þ � pdx ¼
De

f � vdx:
With the definition of Ee this implies
d
dt

Ee ¼
Z

De

1
2
rv þrvT
� �

: S þ ðr � SÞ � v
� �

dx�
Z
@De

n � ðFqÞ� � F�q�ð Þð Þ � pdxþ
Z

De
f � vdx; ð27Þ
and after integration by parts in space,
d
dt

Ee ¼ �
Z

De
ðr � SÞ � v þ 1

2
rv þrvT
� �

: S
� �

dx�
Z
@De

n � Fqð Þ�ð Þ � pdxþ
Z

De
f � vdx: ð28Þ
Summing (27) and (28) and dividing by 2 yields
d
dt

Ee ¼ �
Z
@De

n � ðFqÞ� � F�q�ð Þð Þ � pþ 1
2

n � F�q�ð Þð Þ � pdxþ
Z

De
f � vdx: ð29Þ
For the energy E, it holds that
d
dt

E ¼
X
De

d
dt

Ee ¼
X

facesh
h¼@De\@De0 ;e–e0

Ee0
e þ

X
facesh

h¼@De\@B

Ee
bc þ

Z
B

f � vdx: ð30Þ
Here, Ee0
e denotes the contribution from the elements De and De0 to their shared face @De \ @De0 , and Ee

bc the contribution of
stress-free element faces at the boundary. To compute Ee0

e we need to combine the element energy contribution from the
elements De and De0 along their shared face. For this combination we choose a negative sign superscript to denote quantities,
such as material properties and state variables, from element De, and a positive sign superscript to denote quantities from
De0 . The normal is selected such that n = n� = �n+. A short computation shows that
Ee0
e ¼

Z
@De
�k0 ðn � sStÞ2 þ q�c�p qþcþp svt

2
� 	

� n � v�ðS�nÞ � n� n � vþðSþnÞ � n
� �

� k1 �ðn� ðn� sStÞÞ � sSt� q�c�s qþcþs ðn� ðn� ½v	ÞÞ � ½v 	
� �

þ n� ðn� v�Þ � ðS�nÞ � n� ðn� vþÞ � ðSþnÞ
� �

þ ðS�nÞ � v� � ðSþnÞ � vþ
� �

dx:
Note that for (S�,v�),
�n � v�ðS�nÞ � nþ n� ðn� v�Þð Þ � ðS�nÞ ¼ �ðS�nÞ � v�;
and analogously for (S+,v+). Moreover, since for any vector a we have �(n � (n � a)) � a = kn � (n � a)k2, it follows that
Ee0
e ¼

Z
@De
�k0 n � sStð Þ2 þ q�c�p qþcþp svt

2
� 	

� k1 n� n� sStð Þk k2 þ q�c�s qþcþs n� n� ½v 	ð Þk k2
� 	

dx 6 0: ð31Þ
Next, we consider the contributions Ee
bc of the boundary faces to d

dt E. Recall from Section 3.5 that for an element on the do-
main boundary, q� ¼ qþ ¼: q; c�p ¼ cþp ¼: cp, and c�s ¼ cþs ¼: cs. For a boundary face of an elastic element it follows from (23)
and (29) that
Ee
bc ¼ �

1
qcp

ðS�nÞ � nð Þ ðS�nÞ � nþ qcpv� � n
� �

þ v� � ðS�nÞ þ 1
qcs
ðn� ðn� ðS�nÞÞÞ � S�nþ ðn� ðn� ðS�nÞÞÞ � v�

¼ � 1
qcp

ðS�nÞ � nð Þ2 � 1
qcs
kn� ðn� ðS�nÞÞk2

6 0: ð32Þ
Similarly, for an acoustic medium we derive
Ee
bc ¼ �

1
qcp

ðS�nÞ � nð Þ2 6 0:
Now, for f = 0 we obtain from (30) with (31) and (32) that the overall energy is non-increasing, i.e.,
d
dt

E 6 0:
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For f – 0 the stability estimate follows from
d
dt

E 6

Z
B

f � v 6 C1 kvk2
L2ðXÞ þ kf k

2
L2ðXÞ

� 	
6 C E þ kf k2

L2ðXÞ

� 	
;

with constants C1, C, where we used that q P q0 > 0 for a constant q0. This completes the proof. h

Note that the estimates (31) and (32) in the above stability proof yield the amount of dissipation occurring at element
faces. This dissipation is caused by the upwind numerical flux in our dG scheme. It is proportional to the jumps in tractions
and velocities, which tend to zero as the dG approximation converges to the exact solution. Using a test problem on a peri-
odic domain we show implicitly in Section 6.1 that, in particular for orders N P 3, the dissipation is small, allowing accurate
time integration for over 50 wave lengths.

5. Spectral discontinuous Galerkin discretization

In this section we complete the description of the numerical discontinuous Galerkin scheme by introducing local discrete
tensor-product approximation spaces over curvilinear elements that cover the domain. We also comment on constant-state
preservation and on time integration.

5.1. Local approximation spaces

To introduce the discontinuous Galerkin spatial discretization, we recall that B is partitioned into Nel curvilinear elements
such that B � BNel ¼

SNel
e¼1D

e. For each element De we assume that there is a diffeomorphic mapping Xe such that Xe(r) 2 De for
all r 2 bD, where bD is the reference element. The vertices, edges, and faces of De are then the images under Xe of the vertices,
edges, and faces of bD, respectively. Let us now introduce the discontinuous Galerkin space
VN :¼ qN 2 L2ðBNel Þ : qNjDe 
 Xe 2 RNðbDÞn o
;

where RNðbDÞ is a local approximation space of order N on the reference element. Classical examples for approximation spaces
on the reference element are PN, the set of polynomials of order at most N, and QN, the tensor product of one-dimensional
polynomials of at most order N. We define the semi-discrete solution qN of the coupled elastic and acoustic wave equations
as an element in VN :¼ V3�3

N;sym � V3
N as follows: find qN 2 VN such that for all De 2 BNel we have
Z

De
Q
@qN

@t
� pNdxþ

Z
De
r � FqNð Þ � pNdxþ

Z
@De

n � FqNð Þ� � F�q�N
� �� �

� pNdx ¼
Z

De
g � pNdx for all pN 2 VN; ð33Þ
where n is the outward normal at the boundary of element De, and n � ðFqNÞ
� is the numerical flux developed in Section 3

applied to qN.

5.2. Discontinuous spectral element discretization

The discontinuous spectral element method is a specialization of the dG method to nodal hexahedral elements, endowed
with tensor-product polynomial approximation spaces, where numerical integration is based on the same nodes as the poly-
nomial interpolation. An important property of this approach is that the discrete mass matrix is diagonal, which avoids the
solution of linear systems of equations in explicit time integration. Additionally, the tensor-product structure of the approx-
imation space allows for an efficient implementation of derivatives on the element level, see e.g., [27]. However, this ap-
proach results in under-integration (i.e., committing quadrature errors), which requires careful treatment of the
numerical flux through non-conforming element faces to ensure discrete stability of the scheme.

We consider a hexahedral reference element bD ¼ ½�1;1	3. On each element De the numerical solution qN is specified as
qNjDe 
 Xe 2 Q 3�3
N;sym � Q3

N ; Xe : bD ! De;
where QNðbDÞ is the space of polynomials of degree N in each variable ri, i = 1, 2, 3, on the reference element.
We use a nodal basis for the numerical representation of these polynomials. Let {nl} and {xl} be the sets of Nth-degree

Legendre–Gauss–Lobatto points and weights on [�1,1], respectively, for l 2 {0,1, . . . ,N}. Furthermore, let {‘l(n)} be the La-
grange polynomials associated with the points {nl},
‘lðnÞ ¼
Y

k¼0;1;...;N
k–l

n� nk

nl � nk
:

The Lagrange interpolant of a function h(r) on the reference element bD is defined as
INhðrÞ ¼
XN

l;m;n¼0

hlmn‘lmnðrÞ; r 2 bD;

where
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hlmn ¼ hðnlmnÞ; nlmn ¼
nl

nm

nn

0B@
1CA 2 bD
and
‘lmnðrÞ ¼ ‘lðr1Þ‘mðr2Þ‘nðr3Þ; l;m;n 2 f0;1; . . . ;Ng:
Integrals are approximated by Legendre–Gauss–Lobatto quadrature as follows,
Z
D̂

hðrÞdr �
X

l;m;n¼0;1;...;N

xlxmxnhlmn: ð34Þ
This approximation is exact if the integrand is in the space Q 2N�1ðbDÞ.
The interpolation of prescribed element-wise functions in physical space, such as the material parameters or the source

term g(x), may be written with a slight abuse of notation as
INgðxÞjDe ¼
X

l;m;n¼0;1;...;N

g 
 Xeð ÞðnlmnÞ‘lmn ðXeÞ�1ðxÞ
� 	

:

The time-dependent numerical solution qN(x, t) on an element De is fully specified by the (N + 1)3 time-dependent coeffi-
cients qe

lmnðtÞ,
qNðx; tÞjDe ¼
X

l;m;n¼0;1;...;N

qe
lmnðtÞ‘lmn ðXeÞ�1ðxÞ

� 	
:

5.3. Discrete constant-state preservation

A discontinuous Galerkin method is called constant-state preserving if a stationary solution, i.e., one where the flux is
constant in space and no sources are present, does not change over time. While this property is easily proven in the contin-
uous setting, the finite-dimensional spatial discretization can give rise to spurious source terms. We resolve this issue by
choosing the invariant curl form of the metric identities in our numerical scheme. Let us thus begin by introducing some
notation on geometric transformations. Following [23, Chapter 6], we identify the covariant basis vectors ae

i of the mapping
Xe as columns of the Jacobian matrix,
ae
i ¼

@Xe

@ri
; i ¼ 1;2;3:
The Jacobian determinant Je may be written as
Je ¼ @Xe

@r





 



 ¼ ae
i � ae

j � ae
k

� 	
; i; j; k cyclic:
Defining the contravariant vectors as be
i ¼ rri leads to the identities
Jebe
i ¼ ae

j � ae
k; i; j; k cyclic ð35Þ
and
 X3

i¼1

@ Jebe
i

� �
@ri

¼ 0: ð36Þ
The connection to constant-state preservation is made by transforming the discontinuous Galerkin Eq. (9) to the reference
element and inserting a spatially constant flux with zero source, which produces (36) as a necessary condition [22]. Further-
more, Eq. (36) is fundamental to the consistent discretization of adjoint equations, see, e.g., [28] for a related discussion.

When nonlinear geometric transformations are interpolated by polynomials, the derivative of the interpolant is generally
different from the true derivative. In particular, the cross product form (35) exhibits this drawback and the discrete constant-
state preservation
X3

i¼1

@IN Jebe
i

� �
@ri

¼ 0 ð37Þ
does not hold in general. The solution proposed in [22] is to use the invariant curl form
Jebe
i

� �
l ¼

1
2

ei � rr � IN Xe
mrrXe

n � Xe
nrrXe

m

� �� �
;

i ¼ 1;2;3; l;m;n ¼ 1;2;3; ðl;m;nÞ cyclic;
ð38Þ
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which satisfies (37). In particular, the use of the curl operator after the interpolation IN yields a polynomial of at most degree
N � 1, which is represented exactly by the basis functions ‘lmn(r).

Integrals across element faces require a normal vector and the area of the surface element. In the dG context we evaluate
only the product of these two, which permits us to reuse Jebe

i as defined in (38) for the scaled normal pointing along the im-
age under Xe of the reference coordinate direction ri. We refer to the appropriate choice of direction for a given boundary face
as Jebe. Using identical polynomial representations for the geometry on both sides of each face, we ensure that points on ele-
ment faces see identical normals for elements on either side (modulo sign).

We use non-conforming meshes as created by adaptive h-refinement, which leads to element interfaces with one parent
face on one side and four child faces on the other. At these non-conforming interfaces we need to satisfy two requirements.
First, we must ensure that the surface element Jebe is represented by identical polynomials on both sides of the possibly
curved interface, which we do by aligning the geometry of the child face exactly with its parent face. Second, we use an
L2-projection when transferring information from child to parent faces [29], which renders numerical errors orthogonal to
the approximation space. This step is essential for discrete stability since the fluxes on the faces are under-integrated by
the tensor-product Legendre–Gauss–Lobatto quadrature (34).
5.4. Spectral discontinuous Galerkin scheme

Based on the definitions introduced previously, the discrete spectral discontinuous Galerkin method on the element De is
transformed to the reference element as follows:
Z
D̂

IN INðJeÞINðQÞ
@qN

@t

� �
‘lmndr þ

Z
D̂

X3

i¼1

@

@ri
IN Jebe

i � INðFqNÞ
� �� �

‘lmndr

þ
Z
@D̂

pIN Jebe � IN FqNð Þ�ð Þ � IN F�q�N
� �� �� �

‘lmndr

¼
Z

D̂

IN INðJeÞINðgÞð Þ‘lmndr; l;m;n ¼ 0;1; . . . ;N:
Here p is the L2-projection operator onto non-conforming parent faces and the integrals are approximated by tensor-product
Legendre–Gauss–Lobatto quadrature (34). Note that the inner product in (33) involves the C tensor in the product of the
strains. In elastic media, C is invertible and can be removed in the above spectral dG scheme. In acoustic media, C eliminates
the equations for off-diagonal elements in the strain tensor. Diagonal components are treated individually although only
their sum is unique. To optimize the computation in acoustic media, the tensor C may be moved from the test to the ansatz
functions, resulting in a single equation for the trace of the strain tensor.
5.5. Stability for the spatially fully discrete case

The stability proof in Section 4.2 assumes exact quadrature and does not specify a spatial discretization scheme. Provided
the mesh is conforming, this stability result can be extended to the spatially fully discrete case following a result on the
equivalence of the strong and the weak dG form for Legendre–Gauss–Lobatto quadrature on hexahedral elements [30].
Due to this result, equivalence between (27) and (28) also holds for the non-exact Legendre–Gauss–Lobatto quadrature.
The remaining parts of the proof for Theorem 2 can be adjusted in a straightforward way to the spatially fully discrete con-
forming mesh case, such that (26) also holds for a spatially fully discrete version of the energy functional E.
5.6. Discretization in time

We use a method-of-lines approach to discretize the coupled elastic–acoustic wave equations. In space we use the dis-
continuous spectral element method previously discussed to generate a continuous-in-time system of ordinary differential
equations. We choose to discretize in time with a five-stage fourth-order low-storage Runge–Kutta method [31]. In principle,
a variety of time-stepping methods may be used, although the choice of (explicit) method affects the Courant–Friedrichs–
Lewy (CFL) constant, and thus the largest possible stable time step.

To select a time step Dt, we use the CFL condition
Dt < CCFL
Dx

cp maxð1;N2Þ
;

where cp is the maximum longitudinal wave speed over an element, Dx is the minimum size of the elements in the mesh, and
CCFL is the CFL number. Since we use meshes that are adapted to the local wavelength, the right-hand side in the CFL con-
dition varies at most by 2 times a factor depending on the element aspect ratio and distortion. Thus, using a global time step
size Dt does not lead to overly small time steps.
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6. Numerical results

In this section we demonstrate the high-order convergence rate of our method using several classical interface problems
for which a reference solution is known. For each problem we present a brief description, which should be sufficient to repro-
duce the numerical solution. We conclude with a scalability study of our implementation, assessing parallel efficiency of the
solution of a simplified global seismic wave propagation problem on up to 224,220 cores. Unless stated otherwise, we use a
CFL number of 0.4.

6.1. Plane wave problem

In this first problem we investigate the numerical error in the velocity as time increases. The geometry for this problem is
the periodic cube [0,1] � [0,1] � [0,1], discretized into 8 � 8 � 8 elements. Longitudinal and transverse plane waves are
propagated through an elastic medium with k = 2.2, l = 1.3, and q = 1.2. The direction of propagation for both waves is
p = (0,0,1)T. The direction of motion for the longitudinal transverse waves is, respectively, dp = p and ds = (0,1,0)T. The same
wavenumber k = 2p is used for both waves. For a given position x and time t, the exact displacement solution is given by
F

u ¼ dp cos k x � p� cpt
� �� �

þ ds cos k x � p� cstð Þ½ 	:
Differentiating in time yields the velocity solution
v ¼ kcpdp sin k x � p� cpt
� �� �

þ kcsds sin k x � p� cstð Þ½ 	:
The L2-error between the exact and dG velocity is shown in Fig. 2. The CFL number used is 0.4 for N = 1. . .4, 0.1 for N = 5. . .6,
and 0.01 for N = 7. . .8. It is selected to be small enough so that the error shown in Fig. 2 is dominated by the spatial error and
not the temporal error.

6.2. Snell’s law for an elastic–acoustic interface

In this problem we study convergence rates of the proposed discontinuous Galerkin scheme for a pressure plane wave
incident on an acoustic–elastic interface. The incident wave in the acoustic fluid is reflected as a pressure wave and trans-
mitted as longitudinal and transverse waves in the elastic solid. The geometry is shown in Fig. 3(a). The displacement of the
generated transverse wave lies in the (x1x3)-plane (a so-called vertically-polarized transverse wave). Motion in the x2-direc-
tion is not excited (this would correspond to a horizontally polarized transverse wave).

The derivation of the solution for this geometry may be found in [32, Section 4.6]. Given the form of the incident displace-
ment wave,
wipðx; tÞ ¼ Cipdip cos kp1 x1 sinðaipÞ þ x3 cosðaipÞ �xt
� �� �

;

the reflected displacement wave is
wrpðx; tÞ ¼ Crpdrp cos kp1 x1 sinðarpÞ � x3 cosðarpÞ �xt
� �� �

:

The transmitted longitudinal displacement wave is
wtpðx; tÞ ¼ Ctpdtp cos kp2 x1 sinðatpÞ þ x3 cosðatpÞ �xt
� �� �

;

and the transmitted transverse displacement wave
wtsðx; tÞ ¼ Ctsdts cos ks2 x1 sinðatsÞ þ x3 cosðatsÞ �xt½ 	ð Þ:
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ig. 2. Plane wave problem described in Section 6.1. Time evolution of the L2-error in the velocity v for different orders of approximation N.
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Fig. 3. Numerical solutions for Snell’s Law problem described in Section 6.2. (a) Sketch of geometry featuring an incident pressure wave which reflects in
the acoustic fluid as a pressure wave and transmits in the elastic solid as longitudinal and transverse waves. In this figure, Cip is the magnitude of the
pressure wave incident at angle aip, Crp is the magnitude of the reflected pressure wave with emergent angle arp, Ctp is the magnitude of the transmitted
longitudinal wave at angle arp, and Cts the magnitude of the transmitted transverse wave at angle ars. Lamé parameters and density for the acoustic half-
space are k1, l1, and q1. For the elastic half-space the material parameters are k2, l2, and q2. (b) Plot of the L2-error in v at final time t = 10. The errors for
specific mesh resolutions and approximation orders N are represented by squares. Least-squares fits of the errors for different approximation orders are
plotted as lines whose slopes are reported in the key as the observed rates of convergence. Circles and dashed lines correspond to cases with a CFL constant
reduced from 0.4 to 0.1.

L.C. Wilcox et al. / Journal of Computational Physics 229 (2010) 9373–9396 9389
Here, x is the angular frequency; kp1, kp2, and ks2 are wavenumbers of the respective waves and aip, arp, atp, and ats are the
associated propagation angles. The displacement directions are
dip ¼
sinðaipÞ

0
cosðaipÞ

0B@
1CA; drp ¼

sinðarpÞ
0

� cosðarpÞ

0B@
1CA; dtp ¼

sinðatpÞ
0

cosðatpÞ

0B@
1CA; dts ¼

� cosðatsÞ
0

sinðatsÞ

0B@
1CA:
For these waves the displacement may be written as
uðx; tÞ ¼
wipðx; tÞ þwrpðx; tÞ if x3 < 0;
wtpðx; tÞ þwtsðx; tÞ otherwise:

�
ð39Þ
Given the wave speeds in each layer, cp1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ 2l1Þ=q1

p
(with l1 = 0), cp2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ 2l2Þ=q2

p
, and cs2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=q2

p
, the wave-

numbers are found from the angular frequency as follows:
kp1 ¼
x
cp1

; kp2 ¼
x
cp2

; ks2 ¼
x
cs2

:

The propagation angles are related to the given incident angle aip through Snell’s Law:
sinaip

cp1
¼ sinarp

cp1
¼ sin atp

cp2
¼ sin ats

cs2
:

Setting x3 = 0 and substituting (39) into the elastic–acoustic boundary conditions (6) yields a system of equations that is
solved for the amplitudes of the reflected and transmitted waves given the incident wave amplitude. These amplitudes are
Crp ¼ Cip
Zp2ðcosð2atsÞÞ2 þ Zs2ðsinð2atsÞÞ2 � Zp1

Zp2ðcosð2atsÞÞ2 þ Zs2ðsinð2atsÞÞ2 þ Zp1

;

Ctp ¼ Cip
cp1q1

cp2q2

2Zp2 cosð2atsÞ
Zp2ðcosð2atsÞÞ2 þ Zs2ðsinð2atsÞÞ2 þ Zp1

;

Cts ¼ Cip
cp1q1

cs2q2

2Zs2 sinð2atsÞ
Zp2ðcosð2atsÞÞ2 þ Zs2ðsinð2atsÞÞ2 þ Zp1

;

where
Zp1 ¼
q1cp1

cos aip
; Zp2 ¼

q2cp2

cos atp
; Zs2 ¼

q2cs2

cos ats
:



9390 L.C. Wilcox et al. / Journal of Computational Physics 229 (2010) 9373–9396
We compute solutions using the proposed dG method for the specific case of cp1 = 1, q1 = 1, cp2 = 3, cs2 = 2, q2 = 1, x = 2p,
aip = 0.2, and Cip = 1.0. The computational mesh is constructed to match the wavelength of the numerical solution by provid-
ing uniform points-per-wavelength for the smallest wavelength in each region. The acoustic region thus receives one level of
mesh refinement beyond that of the elastic region, which creates a mesh that is non-conforming at the elastic–acoustic inter-
face. The computational domain is [�1,1] � [�1,1] � [�2,2] and the exact solution is prescribed by tractions on the bound-
ary. The velocity error in the L2-norm at the final time t = 10 is given in Fig. 3(b).

Observed convergence rates for this problem are higher than the expected rate N þ 1
2. Also apparent in the figure is the

decrease in order of accuracy for N = 7, 8 for a CFL number of 0.4, caused by a dominating error associated with time discret-
ization by the fourth-order Runge–Kutta method we use. Reducing the CFL constant to 0.1 is sufficient to suppress this error
and re-expose the high-order spatial convergence rate. Alternatively, one could employ a higher-order Runge–Kutta method
with the larger time step.

6.3. Rayleigh wave

Rayleigh waves are surface waves that travel along a free surface of a homogeneous isotropic elastic solid. These waves
decay exponentially away from the surface and travel at a speed cr that is lower than both the transverse wave speed cs and
the longitudinal wave speed cp. We consider the half-space x3 < 0 with a traction-free surface at x3 = 0; the geometry is
sketched in Fig. 4(a). This problem serves to verify our implementation and the accuracy of the traction-free boundary con-
dition. A similar problem was solved numerically in [26].

As found in [33] the displacement of a Rayleigh wave can be expressed as
Fig. 4.
along t
u1ðx; tÞ ¼ A1eb1x3 þ A2eb2x3
� �

cos kðx1 � crtÞð Þ;
u2ðx; tÞ ¼ 0;

u3ðx; tÞ ¼
b1

k
A1eb1x3 þ k

b2
A2eb2x3


 �
sin kðx1 � crtÞð Þ;
where
b1 ¼ k 1� c2
r

c2
p

 !1
2

; b2 ¼ k 1� c2
r

c2
s

� �1
2

:

Note that the positive square root is taken for b1 and b2 since the solution must decay exponentially away from the traction-
free surface. The coefficients A1 and A2 are not uniquely determined but instead satisfy
2� c2
r

c2
s

� �
A1 þ 2A2 ¼ 0:
The speed of the Rayleigh wave cr satisfies the relation
2� c2
r

c2
s

� �2

� 4 1� c2
r

c2
p

 !1
2

1� c2
r

c2
s

� �1
2

¼ 0:
An explicit derivation of the Rayleigh wave speed may be found in [34].
We choose the material parameters k = l = q = 1 and the wavenumber k = 2p. The computational domain is

[�1,1] � [�1,1] � [�20,0] with periodic boundary conditions in the x1- and x2-directions. As in [26] we use a traction-free
boundary condition for x3 = 0 and x3 = �20. The traction-free boundary condition at x3 = �20 is justified since the solution
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Rayleigh wave problem described in Section (a). Sketch of the geometry. (b) Plot of the L2-error of v at the time t = 1 for a Rayleigh wave traveling
he free surface.
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decays exponentially away from x3 = 0 and is of negligible magnitude at x3 = �20. The domain is resolved by a uniform mesh
consisting of 4 � 4 � 40 elements. Fig. 4(b) shows exponential convergence of the numerical solution at time t = 1.

6.4. Lamb wave

Lamb waves propagate in an infinite elastic plate within a vacuum, where the direction of displacement lies in the plane
spanned by the direction of motion, say the x1-axis, and the direction of finite thickness 2d along the x2-axis. There are two
infinite families of solutions classified as symmetric and antisymmetric modes [33]. Here we solve for one of the symmetric
modes and compare against the exact solution.

The displacement for a symmetric mode may be written as
Fig. 5.
elastic
u1 ¼ �kB1 cosðpx2Þ � qB2 cosðqx2Þð Þ sinðkx1 �xtÞ;
u2 ¼ �pB1 sinðpx2Þ þ kB2 sinðqx2Þð Þ cos kx1 �xtð Þ;
where p and q are given by
p2 ¼ x2

c2
p
� k2

; q2 ¼ x2

c2
s
� k2

:

To satisfy the traction-free boundary conditions, x is related to the wavenumber k through
tanðqdÞ
tanðpdÞ ¼ �

4k2pq

ðq2 � k2Þ2
:

The amplitudes B1 and B2 are not unique; their quotient must satisfy
B1

B2
¼ 2lkq cosðqdÞ

kk2 þ ðkþ 2lÞp2
� 	

cosðpdÞ
:

This problem, from [26], constitutes yet another test of the traction-free boundary condition. We use d = 0.5 and a uni-
form computational mesh consisting of 8 � 4 � 4 elements covering the domain [�1,1] � [�0.5,0.5] � [�0.5,0.5], with peri-
odic boundary conditions in the x1- and x3-directions. The elastic material parameters used are k = 2, l = 1, and q = 1. The
particular mode we solve for is characterized by x = 13.13706319723, k = 2p, A = 126.1992721468, and
B = 53.88807700007. For element order 10, the CFL constant is set to 0.1 to lower the time error below the spatial error.
Exponential convergence, for increasing approximation order, of the dG solution to the exact solution at time t = 1 is dem-
onstrated in Fig. 5(b).

6.5. Scholte wave

Scholte waves are boundary waves that propagate along elastic–acoustic interfaces. Like Rayleigh waves, they decay
exponentially away from the interface. This problem is designed to test the numerical flux between an acoustic medium
and an elastic medium. We consider two half-spaces, as shown in Fig. 6(a). The upper half, x3 > 0, is occupied by an acoustic
medium with material parameters k1, l1 = 0, and q1. The lower half, x3 < 0, contains an elastic medium with material param-
eters k2, l2, and q2.

The displacement of a Scholte wave, which may be found in for example [32, Section 5.2], can be written for a given x as
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Lamb wave problem described in Section 6.4. (a) Sketch of the geometry. (b) Plot of the L2-error of v at time t = 1 for a Lamb wave traveling in an
plate.
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Fig. 6. Scholte wave problem described in Section 6.5. (a) Sketch of the geometry. (b) Plot of the L2-error of v at time t = 1 for a Scholte wave traveling along
an elastic–acoustic interface.
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u1 ¼ Re ikB1e�kb1px3 eiðkx1�xtÞ� �
;

u2 ¼ 0;

u3 ¼ Re �kb1pB1e�kb1px3 eiðkx1�xtÞ� �

for the acoustic region x3 > 0 and
u1 ¼ Re ikB2ekb2px3 � kb2sB3ekb2sx3
� �

eiðkx1�xtÞ� �
;

u2 ¼ 0;

u3 ¼ Re kb2pB2ekb2px3 þ ikB3ekb2sx3
� �

eiðkx1�xtÞ� �
;

for the elastic region x3 < 0. The wavenumber is k ¼ x
c , with decay rates
b1p ¼ 1� c2

c2
1p

 !1
2

; b2p ¼ 1� c2

c2
2p

 !1
2

; b2s ¼ 1� c2

c2
2s

� �1
2

;

where c is the Scholte wave speed. The longitudinal and transverse wave speeds in the two regions are
c1p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2l1

q1

s
; c2p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2l2

q2

s
; c2s ¼

ffiffiffiffiffiffi
l2

q2

r
:

Wave amplitudes can be related to each other by satisfying the interface condition (6) such that
2i 1� c2

c2
2p

 !1
2

B2 � 2� c2

c2
2s

� �
B3 ¼ 0; ð40aÞ

c2

c2
2s

B1 þ
q2

q1
2� c2

c2
2s

� �
B2 þ 2i

q2

q1
1� c2

c2
2s

� �1
2

B3 ¼ 0; ð40bÞ

1� c2

c2
1p

 !1
2

B1 þ 1� c2

c2
2p

 !1
2

B2 þ iB3 ¼ 0: ð40cÞ
To ensure a nontrivial solution, the wave speed c is chosen such that the determinant of (40) is zero, which implies that c
satisfies
q1

q2
b2p þ b1p

� �
r4 � 4b1pr2 � 4b1p b2pb2s � 1

� �
¼ 0;
where r ¼ c
c2s

. It can be shown that a Scholte wave speed exists for arbitrary combinations of material parameters.
We use a uniform mesh consisting of 4 � 4 � 80 elements covering the domain [�1,1] � [�1,1] � [�20,20] with periodic

boundary conditions in the x1- and x2-directions. The traction of the exact solution is imposed as a boundary condition at
x3 = �20, 20. The acoustic and elastic material parameters are k1 = 1, q1 = 1, l1 = 0, and k2 = l2 = 1, q2 = 1. For these material
parameters, we obtain c = 0.7110017230197 and choose B1 = �i0.3594499773037, B2 = �i0.8194642725978, and B3 = 1.
Exponential convergence of the solution at time t = 1 can be inferred from Fig. 6(b).
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6.6. Stoneley wave

Stoneley waves are boundary waves that propagate along elastic–elastic interfaces. As with Scholte and Rayleigh waves,
Stoneley waves decay exponentially away from the interface. This problem tests the numerical flux between two elastic
media. We consider two elastic half-spaces, depicted in Fig. 7(a). The upper half of the domain, x3 > 0, is characterized by
material parameters k1, l1 and q1, while the lower half, x3 < 0, is characterized by k2, l2 and q2.

The displacement of the Stoneley wave, which may be found for example in [32, Section 5.2], can be written for a given x
as
Fig. 7.
elastic–
u1 ¼ Re ikB1e�kb2px3 þ kb2sB2e�kb2sx3
� �

eiðkx1�xtÞ� �
;

u2 ¼ 0;

u3 ¼ Re �kb2pB1e�kb2px3 þ ikB2e�kb2sx3
� �

eiðkx1�xtÞ� �

for the upper half-space x3 > 0 and
u1 ¼ Re ikB3ekb2px3 � kb2sB4ekb2sx3
� �

eiðkx1�xtÞ� �
;

u2 ¼ 0;

u3 ¼ Re kb2pB3ekb2px3 þ ikB4ekb2sx3
� �

eiðkx1�xtÞ� �

for the lower half-space x3 < 0. Here the wavenumber is k ¼ x

c , with the decay rates
b1p ¼ 1� c2

c2
1p

 !1
2

; b1s ¼ 1� c2

c2
1s

� �1
2

; b2p ¼ 1� c2

c2
2p

 !1
2

; b2s ¼ 1� c2

c2
2s

� �1
2

;

where c is the Stoneley wave speed and the longitudinal and transverse wave speeds in the different regions are
c1p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2l1

q1

s
; c1s ¼

ffiffiffiffiffiffi
l1

q1

r
; c2p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2l2

q2

s
; c2s ¼

ffiffiffiffiffiffi
l2

q2

r
:

The wave amplitudes can be related to each other through the interface condition (5) such that
b1p b2p �i i

i �i b1s b2s

�i2l1b1p �i2l2b2p �l1ð1þ b2
1sÞ l2ð1þ b2

2sÞ
� k1c2

c2
1p
þ 2l1b2

1p
k2c2

c2
2p
þ 2l2b2

2p �i2l1b1s �i2l2b2s

0BBBBB@

1CCCCCA
B1

B3

B2

B4

0BBB@
1CCCA ¼

0
0
0
0

0BBB@
1CCCA: ð41Þ
A nontrivial solution for the system (41) exists if its determinant vanishes, which amounts to finding a c such that the fol-
lowing equation is satisfied:
r4 q1

q2
� 1

� �2

� q1

q2
b2p þ b1p

� �
q1

q2
b2s þ b1s

� � !
þ 4r2 q1c2

1s

q2c2
2s

� 1
� �

q1

q2
b2pb2s � b1pb1s �

q1

q2
þ 1

� �

þ 4
q1c2

1s

q2c2
2s

� 1
� �2

b1pb1s � 1
� �

b2pb2s � 1
� �

¼ 0;
with r ¼ c
c2s

. A Stoneley wave exists only if the two transverse wave speeds are close to each other.
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Stoneley wave problem described in Section 6.6. (a) Sketch of the geometry. (b) Plot of the L2-error of v for a Stoneley wave traveling along an
elastic interface at time t = 1.
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For our numerical verification we use a uniform mesh of 4 � 4 � 80 elements covering the domain
[�1,1] � [�1,1] � [�20,20] with periodic boundary conditions in the x1- and x2-directions. The traction of the exact solution
is imposed as a boundary condition at x3 = �20, 20. The elastic material parameters are k1 = l1 = 3, q1 = 10, and k2 = l2 = 1,
q2 = 1. For these material parameters, it follows that c = 0.5469813242138, and we choose B1 = �i0.2952173626624,
B2 = �0.6798795208473, B3 = i0.5220044931212, and B4 = �0.9339639688697. Exponential convergence is apparent from
Fig. 7(b).
6.7. Seismic point source in an earth model

We have implemented a parallel version of the dG method presented in the previous sections and tested its scalability to
a number of processor cores representative of the largest contemporary supercomputers. A description of the parallel algo-
rithms and implementations underlying the code is beyond the scope of this article; see [35] for details on the algorithms
underlying parallel mesh adaptation, and [36,37] for implementation and algorithmic issues underlying our framework for
parallel h-adaptive discontinuous Galerkin methods. In this section we provide preliminary results on the scalability of a par-
allel implementation of our elastic–acoustic wave propagation code for a model problem in global seismology (a more de-
tailed study is forthcoming). We consider a spherical domain with radially varying wave speeds taken from a simplified
version of the Preliminary Reference Earth Model (PREM) [38]. The simplified model includes three concentric spherical shell
regions: an elastic inner core, an acoustic outer core, and an elastic mantle. In each region, density and wave speeds are pre-
scribed by third-degree polynomials depending on the radius. A curvilinear mesh is generated in parallel by the p4est li-
brary [35] in such a way that element boundaries conform to the spherical interfaces between these regions, across
which the material properties are discontinuous. To ensure that the aspect ratio of the elements is uniformly close to unity
throughout the mesh, the mesh is graded radially.

We simulate waves that originate from a seismic point source of a given maximal cutoff frequency. This frequency, along
with the local wave velocity, determines the local wavelength. We use h-adaptive refinement of the mesh to tailor the ele-
(a) (b)

(c)

Fig. 8. Simulation of global seismic wave propagation for a simplified PREM model. (a) Section through mesh that is adapted to the local wave speeds (low
frequency source used for illustration purposes). (b) Snapshot from a wave propagation simulation with maximum resolved frequency of 0.1 Hz, degree
N = 4, on 256 cores. (c) Strong scaling of global seismic wave propagation for a medium size problem (upper table, source frequency of 0.14 Hz) and a large
problem (lower table, source frequency of 0.28 Hz) on up to 224 K cores of the (Jaguar) Cray XT5 at Oak Ridge National Laboratory. Degree N = 6 elements
with at least 10 points per wavelength. Mesh for the medium size problem consists of 21.6 million elements, corresponding to 7.43 billion unknowns. Mesh
for large problem consists of 170 million elements, corresponding to 53 billion unknowns. Here, the columns refers to the number of cores, the number of
elements per core, the time taken per time step (based on an average of at least 100 time steps), the parallel efficiency of wave propagation (given by the
ratio of measured to ideal speedup when solving the problem on an increasing number of cores for fixed problem size), and the sustained double precision
floating point rate in teraflops/s (based on performance counters from the PAPI library [41]).
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ment size to the shortest local wavelength (using cs for elastic and cp for acoustic media). Fig. 8(b) depicts a typical resulting
h-non-conforming mesh. The required number of degrees of freedom scales with the third power of the frequency, and the
time step size decreases linearly with increasing frequency, so that simulating high frequency seismic wave propagation in
large regions quickly requires supercomputing resources (e.g., [39]). The earthquake point source is implemented via a mo-
ment tensor (e.g., [40]) and mollified by a Gaussian in space. Fig. 8(b) depicts a snapshot of the velocity magnitude for a max-
imum resolved frequency of 0.1 Hz. Fig. 8(c) presents results of a strong scalability study on a Cray XT5 supercomputer for a
medium size problem (upper table, resolving up to 0.14 Hz) and a large problem (lower table, resolving up 0.28 Hz). In both
cases, the problem size is kept fixed (at 7.43 billion and 53 billion unknowns, respectively) while the number of processor
cores is increased to the full system size. Observed parallel efficiencies for three core doubling are in the 90–100% range.
While these scalability results are preliminary, and the timings may be biased by system artifacts, they do suggest that high
parallel efficiency is achievable for strong scalings out to the full numbers of cores on contemporary supercomputers.

7. Conclusions

The discontinuous Galerkin method presented in this article is based on a velocity–strain formulation, which allows the
solution of the coupled elastic–acoustic wave equations in a unified framework and with high order accuracy. We give an
explicit and simple-to-implement form of the numerical flux, which is computed as the exact solution of the relevant Rie-
mann problem. Consistency of this flux and stability of the method in the presence of material discontinuities, including
elastic–acoustic interfaces and free surfaces, are shown. Using exact solutions for interface problems such as Snell’s Law
and Rayleigh, Lamb, Scholte, and Stoneley wave problems, we show that the proposed method exhibits exponential conver-
gence as the polynomial order of the elements increases. The high accuracy and low dispersion, the ability to accommodate
h-non-conforming meshes resulting from h-adaptivity, and the parallel scalability to large numbers of cores make the meth-
od attractive for many wave propagation problems involving elastic–acoustic interfaces, both in geophysics and beyond.
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