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Summary. This paper is concerned with the treatment of essential boundary con-
ditions in meshfree methods. In particular we focus on the particle–partition of unity
method (PPUM). However, the proposed technique is applicable to any partition of
unnity based approach.

We present an efficient scheme for the automatic construction of a direct splitting
of a PPUM function space into the degrees of freedom suitable for the approximation
of the Dirichlet data and the degrees of freedom that remain for the approximation
of the PDE by simple linear algebra. Notably, our approach requires no restric-
tions on the distribution of the discretization points nor on the employed (local)
approximation spaces.

We attain the splitting of the global function space from the respective direct
splittings of the employed local approximation spaces. Hence, the global splitting
can be computed with (sub-)linear complexity. Due to this direct splitting of the
meshfree PPUM function space we can implement a conforming local treatment
of essential boundary data so that the realization of Dirichlet boundary values in
the meshfree PPUM is straightforward. The presented approach yields an optimally
convergent scheme which is demonstrated by the presented numerical results.

Key words: meshfree method, partition of unity method, essential boundary
conditions, Nitsche’s method

1 Introduction

The implementation of essential boundary conditions in meshfree methods
(MM) is in general not trivial which is one of the drawbacks of MM. This is
due to the fact that the meshfree shape functions in general do not satisfy
essential boundary conditions explicitly; i.e., the shape functions do not satisfy
the Kronecker condition. Many different techniques have been suggested to
overcome this issue, see e.g. [1,12,14,15,17,19–23,26] and the references within.
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A very general and probably the most promising approach (up to now) is the
application of Nitsche’s method [25] in the meshfree context [1, 17, 21]. Even
though this non-conforming approach yields an optimally convergent meshfree
scheme it suffers from some drawbacks.

Nitsche’s method is based on a specific analytical modification of the weak
formulation of the considered partial differential equation (PDE). This modi-
fication employs all available boundary information to construct a symmetric
positive definite bilinear form for a particular discretization space V . Hence,
the bilinear form in Nitsche’s method changes if we change the configuration
of the boundary values or the discretization space V . This however might re-
quire the analytical derivation of a new appropriate bilinear form by hand.
Furthermore, the bilinear form arising from Nitsche’s method employs a reg-
ularization parameter which must be estimated every time we change the
configuration of the boundary values or the discretization space. These issues
render the user-driven interactive changing of boundary conditions unfeasible
with Nitsche’s method.

In this paper we present a very efficient and fully automatic scheme which
allows for the conforming treatment of essential boundary conditions in mesh-
free methods based on simple linear algebra only. The presented algebraic ap-
proach overcomes the aforementioned drawbacks of Nitsche’s approach com-
pletely and allows for an interactive changing of boundary conditions in mesh-
free methods. The proposed approach is applicable to all partition of unity
(PU) based meshfree (or mesh-based) methods. In essence, we construct a
direct splitting

V = VK ⊕ VI

of the discretization space V (which does not satisfy the boundary conditions)
separating the degrees of freedom for the approximation of the boundary
conditions from the degrees of freedom used to approximate the PDE and
collect them in the sub-spaces VI ⊂ Hk

0 (Ω) and VK ⊂ Hk
D(Ω) respectively.

That is the (classical) bilinear form is definite on VI and the trace operator
on the Dirichlet boundary is definite on VK . In principle such a splitting
can be constructed for any arbitrary function space and hence any numerical
method. However, such a construction can in general not be computed with
linear complexity and is therefore prohibitively expensive. In a partition of
unity method (PUM) though we can construct an appropriate splitting of the
global approximation space V PU by local operations only, i.e., in (sub-)linear
complexity. This is due to the specific structure of the function space

V PU :=
N∑

i=1

ϕiVi

where {ϕi} denotes a PU with respect to the computational domain Ω and Vi

are local approximation spaces defined on supp(ϕi) respectively. Thus, a valid
global splitting of V PU can be obtained from appropriate local splittings of
the spaces Vi, i.e.
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N∑
i=1

ϕiVi = V PU = V PU
K ⊕ V PU

I :=
N∑

i=1

ϕiVi,K ⊕
N∑

i=1

ϕiVi,I .

Note however that we ensure the global definiteness of the bilinear form on
V PU

K only by the use of a flat-top partition of unity [18]. The global trace
operator must not be definite with respect to the global basis of V PU

I . It is
sufficient to obtain the definiteness of the local trace operators with respect to
Vi,I for all i = 1, . . . , N . Note further that we impose no a priori constraints
on the distribution of the discretization points nor on the employed local
approximation spaces Vi.

The remainder of this paper is organized as follows. In Section 2 we shortly
review the particle–partition of unity method [14,27] (PPUM) and introduce
the notion of a flat-top PU. The implementation of essential boundary condi-
tions in the PPUM is subject of Section 3. Here, we shortly review Nitsche’s
method and derive our conforming algebraic treatment of essential boundary
conditions which yields optimal convergence properties. The results of our
numerical experiments are presented in Section 4. Here, we consider the ap-
proximation of regular and singular solutions and compare the quality of our
new scheme with that of Nitsche’s method. This comparison clearly shows
that we obtain an optimally convergent conforming scheme and its overall ac-
curacy is comparable to that of Nitsche’s method. Finally, we conclude with
some remarks in Section 5.

2 Particle–Partition of Unity Method

In this section let us shortly review the core ingredients of the PPUM, see
[15, 16, 27] for details. In a first step, we need to construct a PPUM space
V PU, i.e., we need to specify the PPUM functions uPU ∈ V PU. An arbitrary
function uPU ∈ V PU is defined as the linear combination

uPU(x) =
N∑

i=1

ϕi(x)ui(x) with ui(x) =
di∑

m=1

um
i ϑ

m
i (x) (2.1)

and the respective PPUM space V PU is defined as

V PU :=
N∑

i=1

ϕiVi with Vi := span〈ϑm
i 〉. (2.2)

Here, we assume that the functions ϕi form a partition of unity (PU) on the
domain Ω and refer to the spaces Vi with dim(Vi) = di as local approximation
spaces. Hence, the shape functions employed in the PPUM are the products
ϕiϑ

n
i of a PU function ϕi and a local basis function ϑn

i . With these shape
functions, we then set up a sparse linear system of equations Aũ = f̂ via the
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Fig. 1. Subdivision corresponding to a cover on level J = 4 with initial point
cloud (left), derived coarser subdivisions on level 3 (center), and level 2 (right) with
respective coarser point cloud.

classical Galerkin method. The linear system is then solved by our multilevel
iterative solver [16,18].

Let us now specify the particular choices for the PU functions ϕi and
local approximation space Vi employed in our PPUM. The fundamental con-
struction principle employed in [15] for the construction of the PU {ϕi} is
a d-binary tree. Based on the given point data P = {xi | i = 1, . . . , N̂}, we
sub-divide a bounding-box CΩ ⊃ Ω of the domain Ω until each cell

Ci =
d∏

l=1

(cli − hl
i, c

l
i + hl

i)

associated with a leaf of the tree contains at most a single point xi ∈ P ,
see Figure 1. We obtain an overlapping cover CΩ := {ωi} from this tree by
defining the cover patches ωi by simple uniform and isotropic scaling

ωi :=
d∏

l=1

(cli − αhl
i, c

l
i + αhl

i), with α > 1. (2.3)

Note that we define a cover patch ωi for leaf-cells Ci that contain a point
xi ∈ P as well as for empty cells that do not contain any point from P . The
coarser covers Ck

Ω are defined considering coarser versions of the constructed
tree, i.e., by removing a complete set of leaves of the tree, see Figure 1. For
details of this construction see [15,16,27].

To obtain a PU on a cover Ck
Ω with Nk := card(Ck

Ω) we define a weight
function Wi,k : Ω → R with supp(Wi,k) = ωi,k for each cover patch ωi,k by

Wi,k(x) =
{
W ◦ Ti,k(x) x ∈ ωi,k

0 else (2.4)

with the affine transforms Ti,k : ωi,k → [−1, 1]d and W : [−1, 1]d → R the
reference d-linear B-spline. By simple averaging of these weight functions we
obtain the functions
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ϕi,k(x) :=
Wi,k(x)
Si,k(x)

, with Si,k(x) :=
Nk∑
l=1

Wl,k(x). (2.5)

We refer to the collection {ϕi,k} with i = 1, . . . , Nk as a partition of unity
since there hold the relations

0 ≤ ϕi,k(x) ≤ 1,
Nk∑
i=1

ϕi,k ≡ 1 on Ω,

‖ϕi,k‖L∞(Rd) ≤ C∞,k, ‖∇ϕi,k‖L∞(Rd) ≤
C∇,k

diam(ωi,k)

(2.6)

with constants 0 < C∞,k < 1 and C∇,k > 0 so that the assumptions of the
error analysis given in [3] are satisfied by our PPUM construction. Further-
more, the PU (2.5) based on the cover Ck

Ω = {ωi,k} obtained from the scaling
of a tree decomposition (2.3) satisfies the flat-top property (for a particular
choice of α > 1), see [18,28] (and compare Figure 2).

Definition 1 (Flat-top property). Let {ϕi} be a partition of unity satis-
fying (2.6). Let us define the sub-patches ωFT,i ⊂ ωi such that ϕi|ωFT,i ≡ 1.
Then, the PU is said to have the flat top property, if there exists a constant
CFT such that for all patches ωi

µ(ωi) ≤ CFT µ(ωFT,i) (2.7)

where µ(A) denotes the Lebesgue measure of A ⊂ Rd. We have C∞ = 1 for a
PU with the flat top property.

This property is essential to ensure that the product functions ϕi,kϑ
n
i,k are lin-

early independent, provided that the employed local approximation functions
ϑn

i,k are linearly independent with respect to ωFT,i = {x ∈ ωi,k |ϕi,k(x) = 1}.
Hence, we obtain global stability of the product functions ϕi,kϑ

n
i,k from the

local stability of the approximation functions ϑn
i,k.

In general the local approximation space Vi,k := span〈ϑn
i,k〉 associated

with a particular patch ωi,k of a PPUM space V PU
k consists of two parts: A

smooth approximation space, e.g. polynomials Ppi,k(ωi,k) := span〈ψs
i 〉, and

an enrichment part Ei,k(ωi,k) := span〈ηt
i〉, i.e.

Vi,k(ωi,k) = Ppi,k(ωi,k)⊕ Ei,k(ωi,k) = span〈ψs
i , η

t
i〉.

Note that we assume that the collection of functions 〈ψs
i , η

t
i,k〉 provide a stable

basis for the space Vi,k(ωi,k) i.e. that Vi,k = Ppi,k ⊕ Ei,k can be written as a
direct sum. For most enrichment approaches [5, 6, 9–11, 24] this is in general
not the case. However for the PPUM we can always provide such a direct
splitting independent of the employed enrichment spaces Ei,k [29, 30].

With the help of the shape functions ϕi,kϑ
n
i,k we then discretize a PDE in

weak form
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a(u, v) = 〈f, v〉

via the classical Galerkin method to obtain a discrete linear system of equa-
tions Aũ = f̂ . Note that the PU functions (2.5) in the PPUM are in general
piecewise rational functions only. Therefore, the use of an appropriate numer-
ical integration scheme [16] is indispensable in the PPUM as in most meshfree
approaches [2, 4, 7, 8]. Moreover, the functions ϕi,kϑ

n
i,k in general do not sat-

isfy the Kronecker property. Thus, the coefficients ũk := (un
i,k) of a discrete

function

uPU
k =

Nk∑
i=1

ϕi,k

di,k∑
n=1

un
i,kϑ

n
i,k =

Nk∑
i=1

ϕi,k

( dPi,k∑
s=1

us
i,kψ

s
i,k +

dEi,k∑
t=1

u
t+dPi,k

i,k ηt
i,k

)
(2.8)

with dPi,k := dimPi,k, dEi,k := dim Ei,k, and di,k := dimVi,k = dPi,k + dEi,k on
level k do not directly correspond to function values and a trivial interpolation
of essential boundary data is not available.

3 Essential Boundary Conditions

The treatment of essential boundary conditions in meshfree methods is not
straightforward and a number of different approaches have been suggested
[1,12,14,15,17,19–23,26]. In [17] we have presented how Nitsche’s method [25]
can be applied successfully in the meshfree context. Here, we give a short
summary of this approach. To this end, let us consider the model problem

L(u) := −div σ(u) = f in Ω ⊂ Rd,
BN (u) := σ(u) · n = gN on ΓN ⊂ ∂Ω,
BD,t(u) := (σ(u) · n) · t = 0 on ΓD = ∂Ω \ ΓN ,
BD,n(u) := u · n = gD,n on ΓD = ∂Ω \ ΓN .

(3.1)

In the following we drop the level subscript k = 0, . . . , J for the ease of
notation and define the functional

Jβ(w) :=
∫

Ω

σ(w) : ε(w) dx− 2
∫

ΓD

((n · σ(w)n)n · w + β(w · n)2) ds (3.2)

with some regularization parameter β > 0. Minimizing Jβ with respect to the
error u− uPU yields the weak formulation

aβ(w, v) = lβ(v) for all v ∈ V PU (3.3)

with the bilinear form

aβ(u, v) :=
∫

Ω

σ(u) : ε(v) dx−
∫

ΓD

(n · σ(u)n)n · v ds

−
∫

ΓD

(n · σ(v)n)n · u ds+ β

∫
ΓD

(u · n)(v · n) ds
(3.4)
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and the corresponding linear form

〈lβ , v〉 :=
∫

Ω

fv dx+
∫

ΓN

gNv ds−
∫

ΓD

gD,n(n · σ(v)n) ds+ β

∫
ΓD

gD,nv · n ds.

There is a unique solution uPU of (3.3) if the regularization parameter β is
chosen large enough; i.e., the regularization parameter β = βV PU is dependent
on the discretization space V PU. This solution uPU satisfies optimal error
bounds if the space V PU admits the inverse estimate

‖(n · σ(v)n)‖2L2(ΓD) ≤ C2
V PU‖v‖2E = C2

V PU

∫
Ω

σ(v) : ε(v) dx (3.5)

for all v ∈ V PU with a constant CV PU depending on the cover CΩ and the em-
ployed local bases 〈ϑm

i 〉 only. If CV PU is known, the regularization parameter
βV PU can be chosen as βV PU > 2C2

V PU to obtain a symmetric positive definite
linear system [25]. Hence, the main task associated with the use of Nitsche’s
approach in the PPUM context is the efficient and automatic computation of
the constant CV PU . To this end, we consider the inverse assumption (3.5) as a
generalized eigenvalue problem and solve for the largest eigenvalue to obtain
an approximation of C2

V PU , see [17,18,27].
In summary, the PPUM discretization of our model problem (3.1) via

Nitsche’s approach using the space V PU on the cover CΩ is carried out in
two steps: First, we estimate the regularization parameter βV PU from (3.5).
Then, we define the weak form (3.3) and use Galerkin’s method to set up
the respective symmetric positive definite linear system Aũ = f̂ . This linear
system is then solved by our multilevel iterative solver [16,18].

Even though Nitsche’s approach is of optimal complexity and provides
an optimally convergent numerical scheme there are some drawbacks. First
and foremost, there is the need to construct the appropriate functional (3.2)
and the respective weak formulation (3.3) analytically. Since the functional de-
pends strongly on the configuration of the boundary conditions it is not trivial
to change boundary conditions in an interactive user-driven manner. Often a
change in the boundary conditions requires some amount of implementation
work and a re-assembly of the stiffness matrix on the boundary. Secondly, the
essential boundary data is only weakly approximated and the error on the
boundary is balanced with the error in the interior by Nitsche’s approach.
This can be inappropriate in situations where the boundary conditions need
to be enforced strictly.

Let us focus on the latter issue first. The essential boundary conditions can
of course be enforced (more) strictly in Nitsche’s approach by increasing the
regularization parameter β. In the limit β → ∞ the essential boundary data
are strictly enforced in L2(ΓD) and the convergence of the scheme is still of
optimal order. However the constant, i.e. the absolute value of the error, can
increase. Moreover a large regularization parameter β has an severely adverse
effect on the condition number of the resulting stiffness matrix rendering the
solution of the linear system rather challenging.
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Nevertheless let us consider the limit case β → ∞ in some more detail.
For the ease of notation let us introduce the following short-hand notation

VΩ := {v ∈ V PU | supp(v) ∩ ΓD = ∅},
VD,n,K := {v ∈ V PU | supp(v) ∩ ΓD 6= ∅ and BD,n(v) = (v · n)|Γd

= 0},
VD,n,I := {v ∈ V PU | supp(v) ∩ ΓD 6= ∅ and BD,n(v) = (v · n)|Γd

6= 0}.

With β →∞ the bilinear form (3.4) becomes

a∞(u, v) =



∫
Ω

σ(u) : ε(v) dx v ∈ VΩ ,∫
Ω

σ(u) : ε(v) dx−
∫

ΓD

(n · σ(u)n)n · v ds v ∈ VD,n,K ,∫
ΓD

(u · n)(v · n) ds v ∈ VD,n,I ,

(3.6)

and we attain the respective linear form

〈l∞, v〉 =



∫
Ω

fv dx+
∫

ΓN

gNv ds v ∈ VΩ ,∫
Ω

fv dx+
∫

ΓN

gNv ds−
∫

ΓD

gD,n(n · σ(v)n) ds v ∈ VD,n,K ,∫
ΓD

gD,n(v · n) ds v ∈ VD,n,I .

(3.7)
Obviously, in the case v ∈ VD,n,K we can simplify the weak form back to the
classical weak formulation since BD,n(u) = gD,n and we obtain∫

Ω

σ(u) : ε(v) dx =
∫

Ω

fv dx+
∫

ΓN

gNv ds (3.8)

for all v ∈ VΩ + VD,n,K which involves no information about the Dirichlet
boundary ΓD. On the other hand, for v ∈ VD,n,I we need to consider the
weak formulation ∫

ΓD

(u · n)v · n) ds =
∫

ΓD

gD,n(v · n) ds (3.9)

which involves no information about the interiorΩ◦ or the Neumann boundary
ΓN . Note that the above consideration involves only a splitting of the test
functions v only, not the trial functions u. Hence, we obtain the non-symmetric
stiffness matrix A and the respective load vector f̂ in block-form

A =
(
AK,K AK,I

0 BI,I

)
, f̂ =

(
f̂K

ĝI

)
. (3.10)
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where A·,· denotes the use of (3.8) and B·,· denotes the use of (3.9). Hence,
the associated linear system Aũ = f̂ can be solved by block-elimination

ũI = B−1
I,I ĝI , ũK = A−1

K,K(f̂K −AK,I ũI). (3.11)

This is a standard technique in FEM since the kernel of the trace operator
BD,n (applied to the FEM space) is known a priori so that the above parti-
tioning can be obtained easily. In meshfree methods as the PPUM however the
kernel (applied to the meshfree function space) is not known a priori. Further-
more, the computation of the kernel of BD,n is in general a global operation
and hence prohibitively expensive. Yet, for the PPUM we can compute the
(essential) kernel of the global operator BD,n by local operations only. To be
more precise we can compute a sub-space V PU

I ⊂ V PU and a localized approx-
imation B̂I,I to the trace operator BD,n that is invertible on V PU

I ⊂ V PU.

Fig. 2. Schematic of the tree decomposition of an L-shaped domain Ω on level
k = 1 (left) and level k = 2 (right). The shaded areas indicate the flat-top areas
ωFT,i of the respective PU functions arising from the scaling (2.3) with α = 1.25. On
level k = 2 we find one patch ωi which overlaps the re-entrant corner and satisfies
ωi ∩ ∂Ω 6= ∅ and ωFT,i ∩ ∂Ω = ∅. Thus, the respective PU function ϕi does not
satisfy the flat-top condition on the boundary ∂Ω.

The trace BD,n(uPU) of an arbitrary PPUM function

uPU =
N∑

i=1

ϕi

di∑
m=1

um
i ϑ

m
i

obviously vanishes if the traces BD,n(ϑm
i ) of all local approximation functions

vanish, i.e.,

BD,n(uPU) = 0 ⇐= BD,n(ϑm
i ) = 0 for all (i,m) (3.12)

with i = 1, . . . , N , m = 1, . . . , di and di = dim(Vi). We obtain the equivalence

BD,n(uPU) = 0 ⇐⇒ BD,n(ϑm
i ) = 0 for all (i,m) (3.13)
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if we assume that the employed PU satisfies a flat-top condition also for the
Dirichlet boundary. For convex domains Ω this is automatically satisfied by
our construction. However at re-entrant corners this boundary flat-top prop-
erty is not ensured by the uniform isotropic scaling of (2.3), see Figure 2.
Here, the introduction of a more general anisotropic scaling is necessary. The
equivalence (3.13) yet is needed only to compute the (global) inverse of BI,I

in (3.11). Fortunately, we can avoid the computation of the inverse of BI,I

with respect to the global basis 〈ϕiϑ
m
i 〉 in our PPUM. Thus our construc-

tion requires the implication (3.12) only and we can stick with the uniform
isotropic scaling (2.3) in our cover construction also for non-convex domains
Ω.

Let us consider a patch ωi ∩ ΓD,n 6= ∅ and its associated local approxi-
mation space Vi(ωi) = span〈ϑm

i 〉 with di = dim(Vi). First, we discretize the
trace operator BD,n using the basis 〈ϑm

i 〉, i.e., we compute the (normal part
of the) mass matrix MD,n

i on the Dirichlet boundary with the entries

(MD,n
i )k,l =

∫
ΓD,n

(ϑk
i · n)(ϑl

i · n) ds. (3.14)

Then we compute the eigenvalue decomposition

OT
i M

D,n
i Oi = Di with Oi, Di ∈ Rdi×di (3.15)

of the matrix MD,n
i where

OT
i Oi = Idi , (Di)k,l = 0 for all k, l = 1, . . . , di and k 6= l,

the transformation OT
i is normal and Di is diagonal. Let us assume that the

eigenvalues (Di)k,k are given in decreasing order, i.e. (Di)k,k ≥ (Di)k+1,k+1.
Then the matrices OT

i and Di are block-partitioned as

OT
i =

(
ÕT

i

KT
i

)
, Di =

(
D̃i 0
0 κi

)
where the rows of the rectangular matrix KT

i denote those eigenvectors of
the discrete local trace operator MD,n

i that span the (numerical) kernel of
MD,n

i , i.e. the near-null space. The diagonal matrix κ collects the respective
dK

i vanishing (or small) eigenvalues of MD,n, i.e. (κi)k,k < ε (Di)0,0. Hence
the product operators

ΠD,n
i,I := ÕiÕ

T
i =

(
IdI

i
0

0 0

)
, and ΠD,n

i,K := KiK
T
i =

(
0 0
0 IdK

i

)
with dI

i = di − dK
i are the projections on the image of the discrete local trace

operator MD,n
i and the kernel respectively. These projections operate on the

new basis 〈ϑ̃m
i 〉 given by the normal transformation
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OT
i : Vi = span〈ϑm

i 〉 → Vi = span〈ϑ̃m
i 〉.

Furthermore, we obtain the local sub-spaces

Vi,I := ÕT
i (Vi), and Vi,K := Ki(Vi).

Thus, the new basis 〈ϑ̃m
i 〉 (i.e. the respective eigenfunctions of BD,n) provides

a direct splitting
Vi = Vi,K ⊕ Vi,I

of the local space Vi into a sub-space Vi,I which is suitable for the approx-
imation of the Dirichlet boundary conditions locally and a sub-space Vi,K

appropriate for the approximation of the PDE. Considering these local split-
tings for all ωi ∩ ΓD 6= ∅ (for the patches ωi ∩ ΓD = ∅ we set Vi,K := Vi) we
obtain the corresponding direct splitting of the global PPUM space V PU, i.e.

N∑
i=1

ϕiVi = V PU = V PU
K ⊕ V PU

I :=
N∑

i=1

ϕiVi,K ⊕
N∑

i=1

ϕiVi,I (3.16)

and we obtain a partitioned global stiffness matrix A in the form (3.10) as
the discretization of (3.1). Yet, the global discrete trace operator BI,I (which
may not be invertible) of (3.10) was replaced by the block-diagonal operator
B̂I,I = (MD,n

i ) that is by construction always invertible on the local sub-
spaces Vi,I .

Note however that we do not need to assemble the stiffness matrix A = Aϑ̃

associated with the classical bilinear form (3.8) directly with respect to the
computed basis 〈ϑ̃m

i 〉 (which might require a fair amount of implementation).
We can carry out the assembly of the stiffness matrix using the original basis
〈ϑm

i 〉 and apply the normal block-diagonal transformation TT with the entries

(TT )i,j :=

 Idi j = i and ωi ∩ ΓD = ∅,
OT

i j = i and ωi ∩ ΓD 6= ∅,
0 j 6= i.

(3.17)

That is we attain the stiffness matrix Aϑ̃ in block-form (3.10) with respect to
the new basis 〈ϑ̃m

i 〉 as the triple-product1

Aϑ̃ := TTAϑT

via a simple post-processing operation. Furthermore, the blocks AK,K and
AK,I given in (3.10) of Aϑ̃ can directly be computed with the help of the
projections TT

K and TT
I where we just replace OT

i in the definition (3.17) of
TT by KT

i and ÕT
i respectively, i.e. we have

AK,K := TT
KAϑTK , and AK,I := TT

KAϑTI . (3.18)

1Note however since T T is block-diagonal this operation is easily parallelizable.
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The matrix BI,I of (3.10) is replaced by the block-diagonal matrix B̂I,I . This
matrix however is never explicitly formed and inverted. We rather implement
the action of the inverse of B̂I,I directly by local operations on the respective
patches, see Step 7 in Algorithm 1.

Note that this purely algebraic approach which yields a conforming local
treatment of essential boundary conditions also eliminates the first drawback
of Nitsche’s approach. The user may now interactively change the boundary
conditions of (3.1). A change of the boundary configuration only affects the
transformation TT and thereby requires only local operations. There is no
need to change the employed bilinear form; i.e., we do not need to derive a
new weak form analytically nor do we need to compute a new regularization
parameter β. There is also no need for a direct re-assembly of the stiffness
matrix. We only need to update the respective block-entries of TT in (3.17).
The entries of TT are computed from the local matrices MD,n which involve
only the local approximation functions ϑm

i not the PU functions ϕi. Moreover,
MD,n is an operator of order zero and defined on the Dirichlet boundary only.
Hence, the computation of the respective integrals is much less involved than
the direct assembly of the stiffness matrix for the product functions ϕiϑ

m
i for

patches ωi overlapping the Dirichlet boundary.
Thus, a PPUM discretization of our model problem (3.1) using this con-

forming formulation of essential boundary conditions is summarized by the
following algorithm.

Algorithm 1 (PPUM with automatic conforming boundary treatment).

1. Discretize the classical bilinear form (3.8) using the global basis 〈ϕiϑ
m
i 〉

of the global space V PU ignoring all boundary conditions. Denote the
obtained global matrix Aϑ.

2. Discretize the linear form

〈lΩ , v〉 :=
∫

Ω

fv dx

using the global basis 〈ϕiϑ
m
i 〉 of the global space V PU ignoring all bound-

ary conditions. Denote the obtained global vector f̂V .
3. Discretize the linear form

〈lN , v〉 :=
∫

ΓN

gNv ds

associated with the Neumann boundary conditions using the global basis
〈ϕiϑ

m
i 〉 of the global space V PU for all patches ωi ∩ ΓN 6= ∅. Denote the

obtained global vector ĝN .
4. Discretize the linear forms

〈liD,n, v〉 :=
∫

ωi∩ΓD

gD(v · n) ds
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associated with the Dirichlet boundary conditions locally on each patch
ωi ∩ ΓD 6= ∅ using the respective basis 〈ϑm

i 〉. Denote the obtained local
vectors ĝi

D.
5. Discretize the bilinear forms

bi(u, v) :=
∫

ωi∩ΓD

(u · n)(v · n) ds

associated with the (restricted) trace operator locally on each patch ωi ∩
ΓD 6= ∅ using the respective basis 〈ϑm

i 〉. Denote the obtained local matrices
MD,n

i .
6. Compute the eigenvalue decompositions

OT
i M

D,n
i Oi = Di with Oi, Di ∈ Rdi×di

of the local matrices MD,n
i on the respective patches ωi ∩ ΓD 6= ∅. Define

the sub-matrices corresponding to the block-partitioning

OT
i =

(
ÕT

i

KT
i

)
, Di =

(
D̃i 0
0 κi

)
by ordering the eigenvalues (Di)k,k decreasingly such that D̃i is invertible.

7. Solve locally on each patch ωi ∩ ΓD 6= ∅ for the essential boundary condi-
tions in Vi,I via

ũi,D := ÕiD̃
−1
i ÕT

i ĝ
i
D.

Define the vector ũI := (ũi,D) which corresponds to a function uD ∈ V PU
I

with BD,n(uD) = gD on ΓD.
8. Define the transformation TT according to (3.17) and the respective pro-

jections TT
K : V PU → V PU

K and TT
I : V PU → V PU

I . Define the blocks AK,K

and AK,I according to (3.18).
9. Solve globally for the remaining degrees of freedom, i.e. solve in V PU

K , via

ũK := A−1
K,K(TT

k (f̂V + ĝN )−AK,I ũI). (3.19)

10. Apply the transformation TT to obtain the solution ũPU with respect to
the original global basis 〈ϕiϑ

m
i 〉 of the global space V PU, i.e. set

ũPU = T

(
ũK

ũI

)
.

Note that the final representation of the solution ũPU is given with respect to
the original basis 〈ϕiϑ

m
i 〉 of the global PPUM space V PU so that all imple-

mented post-processing routines can be employed directly. There is no need
for a change of the implementation.

Step 7 of Algorithm 1 corresponds to the solution of BI,I ũI = ĝD of
(3.11). However the discrete global trace operator BI,I is replaced by the
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block-diagonal matrix B̂I,I of the discrete local trace operators MD,n
i . The

boundary value gD is approximated with respect to the local bases 〈ϑ̃M
i 〉 not

the global basis 〈ϕiϑ̃
M
i 〉.

Recall that the matrix AK,K is always invertible on V PU
K due to the use of

a flat-top PU. For the solution of (3.19) in Step 9 of Algorithm 1 we employ
our multilevel solver [13,16,27] which employs specific local prolongation and
restrictions operators. These transfer operators must also be transformed to
the new basis, i.e., projected to V PU

K .

3.1 Properties

Let us summarize some notable properties of the presented algebraic approach
with allows for a conforming meshfree discretization scheme.

1. The only prerequisite of our approach is the use of a flat-top PU.
2. There is no assumption on the distribution of the particles xi ∈ P e.g.
P ∩ ΓD = ∅ is acceptable.

3. There is no additional assumption on the local approximation space Vi

employed in our PPUM construction due to our algebraic construction.
The spaces Vi do not have to satisfy boundary conditions a priori. We
automatically compute an appropriate splitting of the local approximation
spaces Vi. Hence, the presented approach is directly applicable also to
enriched PPUM approximations [28, 30]. Furthermore, we may even use
enrichment functions to encode a complicated inhomogeneous boundary
value easily with this approach.

4. The error bounds of [3] hold for the proposed PPUM scheme; i.e., we
obtain an optimally convergent numerical method.

5. The proposed discretization scheme employs the classical weak formula-
tion of the considered PDE only. Thus, there is no need for the analytical
derivation of an appropriate weak form for the particular PDE. Hence, the
incorporation of new PDE, i.e. new applications, in a PPUM implemen-
tation is substantially simplified. Furthermore, there is no need for the
automatic computation of an appropriate regularization parameter as in
Nitsche’s method. The PPUM with conforming boundary treatment can
be employed easily also in an explicit time-stepping scheme.

6. The configuration of boundary conditions can be changed efficiently by
local operations only. There is no feedback into the weak formulation of
the problem.

7. The global linear system that needs to be solved is of smaller dimension
than with Nitsche’s method.

8. The Dirichlet boundary data is approximated locally only, i.e. BI,I is
replaced by the block-diagonal matrix B̂I,I of the discrete local trace op-
erators MD,n

i . The blocks MD,n can be computed very efficiently since
they involve only the local basis functions ϑm

i not the partition of unity
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functions ϕi; i.e., we ignore the overlap of the patches in the approxima-
tion of the Dirichlet data. This corresponds to the construction of the
localized L2-projection employed in our multilevel solver [16, 27]. Due to
this localization we can compute the splitting of the global space with
(sub-)linear complexity O(N

d−1
d ).

9. With respect to the new local basis 〈ϑ̃m
i 〉 the blocks MD,n are diagonal,

i.e., the operator B̂I,I is diagonal with respect to the collection of the local
bases 〈ϑ̃m

i 〉.
10. If the geometry of a particular boundary segment ωi ∩ ΓD is rather com-

plicated or the employed local approximation space Vi on the respective
patch ωi is not rich enough to resolve the geometry of ωi ∩ ΓD, then the
kernel of the discrete local trace operator will be empty. Thus all degrees of
freedom of Vi are used for the approximation of the Dirichlet data and the
PDE is considered on the patch ωi only as a correction of the right-hand
side via AK,I .

4 Numerical Results

In this section we present some results of our numerical experiments using
the proposed conforming PPUM discretization scheme discussed above. To
this end, we introduce some shorthand notation for various norms of the error
u− uPU, i.e., we define

eL∞ :=
‖u− uPU‖L∞

‖u‖L∞
, eL2 :=

‖u− uPU‖L2

‖u‖L2
, eH1 :=

‖u− uPU‖H1

‖u‖H1
. (4.1)

For each of these error norms we compute the respective algebraic convergence
rate ρ by considering the error norms of two consecutive levels l − 1 and l

ρ := −
log

(
‖u−uPU

l ‖
‖u−uPU

l−1‖

)
log( dofl

dofl−1
)

, where dofq :=
Nq∑
i=1

dim(Vi,q). (4.2)

Hence the optimal rate ρH1 of an uniformly h-refined sequence of spaces with
pi,k = p for all i = 1, . . . , Nk and k = 0, . . . , J for a sufficiently regular
solution u is ρH1 = p

d where d denotes the spatial dimension of Ω ⊂ Rd. This
corresponds to the classical hγH1 notation with γH1 = ρH1d = p.

We consider the simple model problem

−∆u = f in Ω ⊂ Rd,
u = gD on ΓD ⊂ ∂Ω,

∂u

∂n
= gN on ΓN = ∂Ω \ ΓD,

(4.3)

with different boundary configurations and a sequence of uniformly refined
covers Ck

Ω with α = 1.3 in (2.3) and local polynomial spaces Ppi,k = P1 on
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all levels k = 1, . . . , J for the discretization of (4.3). The number of patches
on level k is given by Nk = 2dk and the patch diameter by diam(ωi,k) =:
2hk = 2−kα diam(Ω). Throughout this paper we employ ε = 10−12 in the
construction of the direct local splittings.

To assess the properties of the presented algebraic treatment of essential
boundary conditions in the PPUM we compare the obtained results with those
of a PPUM discretization using Nitsche’s approach. To this end, we consider
two choices for the regularization parameter β in Nitsche’s method: First, the
optimal (smallest) regularization parameter estimated by (3.5) which yields
βopt ≈ 4h−1

k and a very large regularization parameter β∞ = 106h−1
k on level

k. Recall from Section 3 that we anticipate that the absolute values of the
relative errors e obtained with the optimal parameter βopt are smaller than
those attained with the large regularization β∞. Yet, the convergence rates ρ
should not be affected by the variation of the regularization parameter.
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Fig. 3. Convergence history of the measured relative errors e (4.1) in the L∞-norm,
the L2-norm, and the H1-norm for Example 1 (left: Nitsche’s method with βopt,
center: Nitsche’s method with β∞, right: algebraic conforming boundary treatment).

Example 1. In the first example we consider our model problem (4.3) on an
L-shaped domain Ω = (−1, 1)2 \ [0, 1]2. The Dirichlet boundary is given by

ΓD := {(x, y) ∈ ∂Ω |x ≥ 0 and y ≥ 0}

the boundary segments which intersect at the re-entrant corner at (0, 0). We
choose f = 0, gD = 0 and the Neumann boundary value gN on ΓN = ∂Ω \ΓD

such that the analytic solution of (4.3) is given by the singular function

u(x, y) = u(r, θ) = r
2
3 sin

(2θ − π

3

)
(4.4)

where r = r(x, y) and θ = θ(x, y) denote polar coordinates; i.e., we consider
homogeneous Dirichlet boundary data in this example.

In Table 1 we give the measured relative errors (4.1), the respective con-
vergence rates (4.2) obtained with Nitsche’s method using the optimal regu-
larization βopt. Furthermore, we give the number of levels J , the number of
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Table 1. Relative errors e (4.1) and convergence rates ρ (4.2) using Nitsche’s method
with βopt for Example 1.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 9 3 1.056−1 − 1.060−1 − 2.078−1 −
2 36 12 7.051−2 0.29 4.015−2 0.70 1.379−1 0.30
3 144 48 4.482−2 0.33 1.753−2 0.60 9.104−2 0.30
4 576 192 2.833−2 0.33 7.283−3 0.63 5.890−2 0.31
5 2304 768 1.787−2 0.33 2.961−3 0.65 3.764−2 0.32
6 9216 3072 1.126−2 0.33 1.191−3 0.66 2.390−2 0.33
7 36864 12288 7.095−3 0.33 4.766−4 0.66 1.527−2 0.32
8 147456 49152 4.466−3 0.33 1.900−4 0.66 9.771−3 0.32
9 589824 196608 2.809−3 0.33 7.564−5 0.66 5.996−3 0.35
10 2359296 786432 1.764−3 0.34 3.007−5 0.67 3.832−3 0.32

Table 2. Relative errors e (4.1) and convergence rates ρ (4.2) using Nitsche’s method
with β∞ for Example 1.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 9 3 9.523−1 − 9.884−1 − 9.918−1 −
2 36 12 5.273−1 0.43 6.734−1 0.28 7.078−1 0.24
3 144 48 3.292−1 0.34 3.567−1 0.46 4.563−1 0.32
4 576 192 2.060−1 0.34 1.615−1 0.57 2.821−1 0.35
5 2304 768 1.293−1 0.34 6.817−2 0.62 1.746−1 0.35
6 9216 3072 8.130−2 0.33 2.787−2 0.65 1.089−1 0.34
7 36864 12288 5.121−2 0.33 1.122−2 0.66 6.854−2 0.33
8 147456 49152 3.204−2 0.34 4.490−3 0.66 4.329−2 0.33
9 589824 196608 2.014−2 0.34 1.790−3 0.66 2.695−2 0.34
10 2359296 786432 1.276−2 0.33 7.120−4 0.66 1.707−2 0.33

degrees of freedom dof, and the number of patches N . From these numbers we
can clearly observe the anticipated optimal convergence behavior of Nitsche’s
approach with ρL2 = 2

3 and ρH1 = 1
3 for the approximation of a singular solu-

tion such as (4.4). On level k = 10 we attain the relative errors eL2 = 3.007−5

and eH1 = 3.832−3. The respective results using a large regularization β∞
are given in Table 2. As expected the convergence rates ρ are not affected by
the increase in the regularization parameter, again we find the optimal values
ρL2 = 2

3 and ρH1 = 1
3 . The absolute values of the relative errors however have

increased by roughly one order of magnitude due to the larger regularization
parameter, see also Figure 3. On level k = 10 we find eL2 = 7.120−4 and
eH1 = 1.707−2. This growth of the absolute values of the relative error how-
ever can be regarded as the worst case since the error of the approximation
(with βopt and β∞ respectively) attains its maximal value near the singularity
of the solution which happens to be on the Dirichlet boundary.

The measured relative errors e and respective convergence rates ρ attained
by the presented conforming approach are given in Table 3. Here, we give the
number of degrees of freedom dofI used to approximate the boundary con-
ditions and the number of degrees of freedom dofK = dof − dofI used to
approximate the PDE. Recall that our conforming approach corresponds to
the limit case of Nitsche’s method. Hence, we expect to find similar results
as for β∞. From the numbers displayed in 3 we can clearly observe this an-
ticipated behavior. The convergence rates ρL2 = 2

3 and ρH1 = 1
3 are again
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Table 3. Relative errors e (4.1) and convergence rates ρ (4.2) using the algebraic
conforming boundary treatment for Example 1.

J dofK dofI N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 0 9 3 1.0000 − 1.0000 − 1.0000 −
2 23 13 12 5.653−1 0.41 6.872−1 0.27 7.194−1 0.24
3 123 21 48 3.561−1 0.33 3.651−1 0.46 4.645−1 0.32
4 539 37 192 2.242−1 0.33 1.657−1 0.57 2.873−1 0.35
5 2235 69 768 1.413−1 0.33 7.000−2 0.62 1.779−1 0.35
6 9083 133 3072 8.891−2 0.33 2.862−2 0.65 1.109−1 0.34
7 36603 261 12288 5.604−2 0.33 1.153−2 0.66 6.984−2 0.33
8 146939 517 49152 3.507−2 0.34 4.613−3 0.66 4.412−2 0.33
9 588795 1029 196608 2.204−2 0.34 1.839−3 0.66 2.745−2 0.34
10 2357243 2053 786432 1.395−2 0.33 7.315−4 0.66 1.739−2 0.33

optimal and the values of the relative errors on all levels correspond very well
to those given in Table 2. On k = 10 for instance we find eL2 = 7.315−4 and
eH1 = 1.739−2. The number of degrees of freedom used for the approximation
of the Dirichlet boundary condition dofI grows with 2d−1 = 2. Note that on
level k = 1 we have dofK = 0; i.e., on the coarsest level the PDE is not con-
sidered at all. The complete function space V PU is used for the approximation
of the Dirichlet boundary conditions and we obtain the approximate solution
uPU = 0 due to gD = 0, i.e., all relative errors are exactly 1.0000. This is due
to the fact that we use linear polynomials on each patch only; i.e., there are
just three degrees of freedom associated with each local approximation space
Vi. If a corner of the Dirichlet boundary is overlapped by a particular patch ωi

then all three degrees of freedom of Vi are required for the approximation of
the linear traces on the boundary segment ∂Ω∩ωi, compare Figure 2. Hence,
on all levels k = 1, . . . , J there are no internal degrees of freedom employed
on patches ωi that overlap the re-entrant corner at (0, 0) or any other cor-
ner of Ω; i.e., near the corners of the domain Ω the PDE contributes to the
approximation by a correction of the right-hand side only.
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Fig. 4. Convergence history of the measured relative errors e (4.1) in the L∞-norm,
the L2-norm, and the H1-norm for Example 2 (left: Nitsche’s method with βopt,
center: Nitsche’s method with β∞, right: algebraic conforming boundary treatment).
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Table 4. Relative errors e (4.1) and convergence rates ρ (4.2) using Nitsche’s method
with βopt for Example 2.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 9 3 1.657−1 − 4.995−2 − 1.937−1 −
2 36 12 9.737−2 0.38 1.623−2 0.81 1.312−1 0.28
3 144 48 6.325−2 0.31 5.723−3 0.75 8.733−2 0.29
4 576 192 4.043−2 0.32 1.900−3 0.80 5.682−2 0.31
5 2304 768 2.563−2 0.33 6.157−4 0.81 3.642−2 0.32
6 9216 3072 1.619−2 0.33 1.975−4 0.82 2.316−2 0.33
7 36864 12288 1.021−2 0.33 6.304−5 0.82 1.480−2 0.32
8 147456 49152 6.430−3 0.33 2.006−5 0.83 9.466−3 0.32
9 589824 196608 4.047−3 0.33 6.363−6 0.83 5.823−3 0.35
10 2359296 786432 2.543−3 0.33 2.017−6 0.83 3.717−3 0.32

Example 2. In our second example we consider (4.3) again on the L-shaped
domain Ω. However now we choose the Dirichlet boundary ΓD as

ΓD := {(x, y) ∈ ∂Ω |x = −1 or y = −1}

and employ the data f = 0, and gD = u|ΓD
and gN such that (4.4) is again the

analytic solution of (4.3); i.e., we consider inhomogeneous Dirichlet boundary
data in this example. Observe that the Dirichlet boundary in this example is
well-separated from the singularity of the solution at (0, 0) where the maximal
error occurs. Therefore, we expect to find a smaller increase in the measured
relative errors due to the increase in the regularization parameter. For the
optimal Nitsche method with βopt we expect to find a similar quality of the
approximation as in Example 1. We give the obtained results for βopt in Table
4. Comparing these relative errors eH1 with those of Table 1 clearly shows
this asserted behavior. The numbers agree very well. For the relative errors
eL2 however we find a measurable improvement in this example. Instead of
the expected convergence rate of ρL2 = 2

3 we find ρL2 ≈ 0.8. This is a pre-
asymptotic effect due to the fact that the error is maximal on the Neumann
boundary near the singular point (0, 0).

The results attained with β∞ are presented in Table 5. Since the Dirichlet
boundary is well-separated from the maximal error we expect to find a close
correspondence of these results to those of Table 4. This asserted behavior can
be clearly observed from the given numbers and the plots depicted in Figure
4. The measured relative errors on all levels agree very well. Similarly, the
numerical results obtained with the algebraic approach summarized in Table
6 are almost indistinguishable from those of Tables 4 and 5. This can also be
observed from Figure 4.

These first two examples show that the quality of the approximation obtained
with the proposed conforming boundary treatment corresponds very well with
that of Nitsche’s method for β∞ as expected. In fact we obtain the same
overall accuracy as the Nitsche method with optimal regularization βopt if the
pointwise error is small in the vicinity of the Dirichlet boundary.
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Table 5. Relative errors e (4.1) and convergence rates ρ (4.2) using Nitsche’s method
with β∞ for Example 2.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 9 3 2.553−1 − 1.163−1 − 2.721−1 −
2 36 12 1.094−1 0.61 2.244−2 1.19 1.437−1 0.46
3 144 48 6.437−2 0.38 5.819−3 0.97 8.891−2 0.35
4 576 192 4.055−2 0.33 1.885−3 0.81 5.706−2 0.32
5 2304 768 2.565−2 0.33 6.132−4 0.81 3.646−2 0.32
6 9216 3072 1.619−2 0.33 1.972−4 0.82 2.316−2 0.33
7 36864 12288 1.021−2 0.33 6.300−5 0.82 1.480−2 0.32
8 147456 49152 6.430−3 0.33 2.005−5 0.83 9.467−3 0.32
9 589824 196608 4.047−3 0.33 6.362−6 0.83 5.823−3 0.35
10 2359296 786432 2.543−3 0.33 2.017−6 0.83 3.717−3 0.32

Table 6. Relative errors e (4.1) and convergence rates ρ (4.2) using the algebraic
conforming boundary treatment for Example 2.

J dofK dofI N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 2 7 3 2.573−1 − 1.171−1 − 2.718−1 −
2 21 15 12 1.094−1 0.62 2.241−2 1.19 1.426−1 0.47
3 113 31 48 6.450−2 0.38 5.828−3 0.97 8.878−2 0.34
4 513 63 192 4.059−2 0.33 1.875−3 0.82 5.705−2 0.32
5 2177 127 768 2.566−2 0.33 6.093−4 0.81 3.646−2 0.32
6 8961 255 3072 1.619−2 0.33 1.962−4 0.82 2.316−2 0.33
7 36353 511 12288 1.021−2 0.33 6.276−5 0.82 1.480−2 0.32
8 146433 1023 49152 6.430−3 0.33 2.000−5 0.82 9.467−3 0.32
9 587777 2047 196608 4.047−3 0.33 6.350−6 0.83 5.823−3 0.35
10 2355201 4095 786432 2.543−3 0.33 2.014−6 0.83 3.717−3 0.32
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Fig. 5. Distribution of discretization points on level k = 11 (left), k = 9 (center),
and k = 7 (right) employed in Example 3.
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Fig. 6. Convergence history of the measured relative errors e (4.1) in the L∞-norm,
the L2-norm, and the H1-norm for Example 3 (left: Nitsche’s method with βopt,
right: algebraic conforming boundary treatment).

Table 7. Relative errors e (4.1) and convergence rates ρ (4.2) using Nitsche’s method
with βopt for Example 3.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
4 81 27 3.217−2 − 1.087−2 − 9.949−2 −
5 108 36 2.018−2 1.62 8.610−3 0.81 8.482−2 0.55
6 171 57 1.289−2 0.98 6.231−3 0.70 6.948−2 0.43
7 396 132 7.956−3 0.57 2.611−3 1.04 4.550−2 0.50
8 1071 357 5.013−3 0.46 1.048−3 0.92 2.912−2 0.45
9 2817 939 3.153−3 0.48 4.770−4 0.81 1.976−2 0.40
10 6678 2226 1.991−3 0.53 2.209−4 0.89 1.328−2 0.46
11 14904 4968 1.247−3 0.58 1.139−4 0.82 9.364−3 0.44

Table 8. Relative errors e (4.1) and convergence rates ρ (4.2) using the algebraic
conforming boundary treatment for Example 3 using a graded particle set.

J dofK dofI N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
4 41 40 27 3.560−1 − 1.394−1 − 4.842−1 −
5 64 44 36 2.242−1 1.61 6.404−2 2.70 3.028−1 1.63
6 113 58 57 1.411−1 1.01 3.103−2 1.58 1.979−1 0.93
7 306 90 132 8.897−2 0.55 1.393−2 0.95 1.160−1 0.64
8 913 158 357 5.599−2 0.47 5.711−3 0.90 7.135−2 0.49
9 2573 244 939 3.507−2 0.48 2.406−3 0.89 4.564−2 0.46
10 6308 370 2226 2.223−2 0.53 9.703−4 1.05 2.877−2 0.53
11 14358 546 4968 1.388−2 0.59 4.092−4 1.08 1.860−2 0.54

Example 3. In our third example we focus on the robustness of our algebraic
approach with respect to the distribution of the discretization points. Recall
that our construction makes no assumption on this distribution. Thus the
quality of the resulting conforming approach should correspond to that of
Nitsche’s approach independent of the positions of the employed discretization
points. To confirm this assertion we discretize our model problem (4.3) on
the L-shaped domain Ω with Dirichlet boundary ΓD = ∂Ω using a graded
Halton-point set, see Figure 5, for the construction of our cover sequence Ck

Ω .
Again, we choose f = 0 and gD = u|ΓD

to obtain the analytic solution (4.4).
Due to the grading of the discretization points we should almost recover the
convergence rates ρL2 ≈ 1 and ρH1 ≈ 1

2 attainable for a regular solution.
In this example we only consider the optimal choice of βopt in Nitsche’s

method and our algebraic approach. The attained relative errors and conver-
gence rates are summarized in Tables 7 and 8 respectively. Both approaches
yield the asserted approximation rates ρL2 ≈ 1 and ρH1 ≈ 1

2 . For the relative
errors we find an increase by a factor of 4 (see also Figure 6). Hence, the
constant in this example is slightly better than in Example 3.

and the achieved relative errors on all levels agree rather well, compare
Figure 6.

Example 4. In our last example we consider the smooth solution
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Fig. 7. Convergence history of the measured relative errors e (4.1) in the L∞-norm,
the L2-norm, and the H1-norm for Example 4 (left: Nitsche’s method with βopt,
right: algebraic conforming boundary treatment).

Table 9. Relative errors e (4.1) and convergence rates ρ (4.2) using Nitsche’s method
with βopt for Example 4.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 40 4 1.311−1 − 1.777−1 − 3.207−1 −
2 160 16 2.536−2 1.18 2.403−2 1.44 8.312−2 0.97
3 640 64 3.123−3 1.51 1.944−3 1.81 1.357−2 1.31
4 2560 256 2.813−4 1.74 1.283−4 1.96 1.846−3 1.44
5 10240 1024 2.114−5 1.87 7.946−6 2.01 2.382−4 1.48
6 40960 4096 1.476−6 1.92 4.851−7 2.02 2.751−5 1.56
7 163840 16384 1.020−7 1.93 2.978−8 2.01 3.555−6 1.48

u(x, y) = exp(4(x+ y)) (4.5)

of our model problem (4.3) for the sake of completeness on the domain
Ω = (−1, 1)2 with inhomogeneous Dirichlet boundary data gD = u|ΓD

. Here
we employ a higher order PPUM approach with p = 3; i.e., we use cubic
polynomials as local approximation spaces Vi = P3. Hence, the optimal rates
attainable are ρL2 = 2 and ρH1 = 3

2 . The Dirichlet boundary in this example
is given by

ΓD := {(x, y) ∈ [−1, 1]2 |x ∈ {−1, 1}}.

The results obtained with Nitsche’s approach using the optimal regularization
parameter βopt are given in Table 9. From these numbers we can clearly ob-
served the anticipated convergence behavior with ρL2 = 2 and ρH1 = 3

2 . On
level k = 7 our PPUM approximation yields the relative errors eL2 = 2.978−8

and eH1 = 3.555−6. With our conforming algebraic boundary treatment we
obtain the results given in Table 10. Again, we can observe an optimal con-
vergence with the rates ρL2 = 2 and ρH1 = 3

2 . On level k = 7 our PPUM
approximation yields the relative errors eL2 = 3.110−8 and eH1 = 3.672−6

which are of the same quality as those attained by Nitsche’s method using an
optimal regularization, compare Figure 7.
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Table 10. Relative errors e (4.1) and convergence rates ρ (4.2) using the algebraic
conforming boundary treatment for Example 4.

J dofK dofI N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 24 16 4 1.060−1 − 2.838−1 − 4.438−1 −
2 128 32 16 2.470−2 1.05 3.446−2 1.52 1.093−1 1.01
3 576 64 64 3.344−3 1.44 2.561−3 1.88 1.686−2 1.35
4 2432 128 256 3.196−4 1.69 1.559−4 2.02 2.155−3 1.48
5 9984 256 1024 2.501−5 1.84 9.021−6 2.06 2.632−4 1.52
6 40448 512 4096 1.754−6 1.92 5.237−7 2.05 2.921−5 1.59
7 162816 1024 16384 1.160−7 1.96 3.110−8 2.04 3.672−6 1.50

5 Concluding Remarks

We presented an algebraic approach for the automatic construction of a di-
rect splitting of a PPUM discretization space which allows for the conforming
treatment of essential boundary conditions. The presented scheme is fully au-
tomatic and applicable to all PU-based methods provided that the employed
PU satisfies the flat-top condition. There are no restrictions on the employed
particle distribution nor on the employed local approximation spaces due to
our construction. With the presented approach the implementation of essen-
tial boundary conditions in the meshfree PPUM is very simple and rather
easy on the user: Every necessary operation is determined and completed
automatically.

To our knowledge the PPUM with the proposed algebraic construction is
the only meshfree or mesh-based method that allows for a conforming bound-
ary treatment without any assumptions on the distribution of the discretiza-
tion points or the employed basis functions.
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