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In [2] Mallet-Paret introduces a Fredholm Alternative theorem for asymptotically hy-
perbolic linear functional differential equations of mixed type and first order. We provide
a generalisation to equations of arbitrary order by retracing Mallet-Paret’s approach and
extending definitions and concepts in a natural way. Moreover we reproduce some results
from [3] to highlight one application of presented theory on nonlinear equations.
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Nomenclature

〈
·, ·
〉

dot product in Cd 14

∆c,L0(ξ) −c∆−c−1L0
47

∆L see (1.9) 12

I Identity operator 9

i imaginary unit 9

indA index of a Fredholm operator A 10

kerA A−1({0}), kernel of a linear operator A 8

λs unique negative eigenvalue at ∞ for a linearization about 1 65

λu unique positive eigenvalue at −∞ for a linearization about −1 65

λ+ unique real positive eigenvalue 50

λ− unique real negative eigenvalue 50

Λc,L −cΛ−c−1L 47

ΛL Solution Operator 12

Kc,L ker Λc,L 47

KL kernel of ΛL in all W k,p 34

K
p
L kernel of ΛL in W k,p 34

Rc,L Λc,L(W 1,∞) 47

S Schwartz space, rapidly decreasing functions 13

S′ dual of S, space of tempered distributions 13

‖·‖X , ‖·‖ norm in normed space (X, ‖·‖X), canonical norms in Cd or Cd×d ∼=
B(Cd) 9

‖f‖CkB(J) sup1≤i≤k supξ∈J‖f (i)(ξ)‖ 10

A norm topology closure of a set A 40
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A
w∗ weak-∗ closure of a set A 40

x complex conjugate of x ∈ Cd for some d ∈ N 14

τξ translation operator 11

ϕ ∈ S, a rapidly decreasing function 13

f̂ , T̂ Fourier transform of a function f , of a tempered distribution T 14

f̃ , T̃ inverse Fourier transform of a function f , of a tempered distribution
T 14

AT dual of a linear operator A 9

Ai Ai,0 47

AΣ
∑N

i=1Ai 48

Ai,j , Bi,j ∈ (Cd×d)R, measurable and uniformly bounded 8

B(X) B(X,X), bounded linear operators X → X 8

B(X,Y ) bounded linear operators X → Y 8

Ck(J) Ck(J,Cd) 10

CkB(J)
(
{f ∈ Ck(J)|‖f‖CkB(J) <∞}, ‖f‖CkB(J)

)
10

d, k,N ∈ N, some integers 8

Dk differential operator 9

E⊥ {f ∈ X∗|∀e ∈ E : f(e) = 0}, annihilator of E ⊆ X 9

f ∗ g convolution of f and g 13

f (k) k-th weak derivative of f 9

F⊥X {x ∈ X|∀f ∈ F : f(x) = 0}, annihilator of F ⊆ X∗ 9

F⊥ {x ∈ X|∀f ∈ F : f(x) = 0}, annihilator of F ⊆ X∗ 9

i, j, l ∈ N0, some other integers 8

L′ ∈ B(W k−1,p, Lp) 11

L(ξ) ∈ Rk−1, ξ ∈ R 11

Lp Lp
(
R,Cd

)
, Lebesgue space 10

L+ constant coefficient limiting operator at ∞ 48
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L− constant coefficient limiting operator at −∞ 48

M ′ ∈ B(W k−1,p, Lp) 13

M(ξ) ∈ Rk−1, ξ ∈ R 13

Rk B(CkB([r−, r+]),Cd) 11

r−, r+ ∈ R, minimal and maximal shift 8

ri ∈ R, where 1 ≤ i ≤ N , some shifts 8

T, Tf ∈ S′, tempered distributions, the latter induced by a function f 13

T (k) k-th derivative of the tempered distribution T 14

W 1,∞
0 {x ∈W 1,∞|x(0) = 0} 67

W k,p {f ∈ Lp|∀0 ≤ j ≤ k : f (k) ∈ Lp}, Sobolev space 10

W k W k,2 10

X∗ dual space of a normed linear space X 9

Y N set of all Y valued sequences 8

Y X {f : X → Y } set of of all Y valued functions over X 8
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1 Introduction

In this thesis we shall discuss certain aspects of the linear functional differential equations
of mixed type

x(k)(ξ) =
N∑
i=1

k−1∑
j=0

Ai,j(ξ)x(j)(ξ + ri) + h(ξ) (1.1)

where x : R→ Cd.
In [2] a Fredholm Alternative theorem for an asymptotically hyperbolic class of these

equations for k = 1 is presented. One way of directly extending this work to higher order
equations is the standard method of rewriting them to systems of first order equations.
This approach has the drawback of having to infer properties from a much more complex
system of equations with characteristics not directly apparent from study of (1.1).

Therefore we shall recapitulate some of the results presented in [2] and attempt to
extend them to arbitrary k ∈ N using the approach of directly retracing the steps made
in the original paper and properly extending presented results and definitions to fit the
the case k ∈ N.

The first parts of this thesis are dedicated to unifying notation and recalling some well
known results for later use.

Then we construct a Green’s function for hyperbolic constant coefficient operators
without and with a sufficiently small perturbation by using characteristics of tempered
distributions and the Fourier transform.

The last steps towards our Fredholm Alternative theorem are directed towards showing
that, assuming asymptotic hyperbolicity, we are always dealing with Fredholm operators
and therefore a Fredholm Alternative holds. Moreover we show that we need not examine
the dual operators but can instead use a kind of generalized dual operator defined on
nicer spaces.

The very last part is dedicated to a faithful reproduction of some results from [3] to
highlight one possible application of presented theory of linear equations to nontrivial
nonlinear equations.

Most of this thesis is but a technical extension of [2] and a reproduction of certain
parts from [3] using most of the proofs and methods presented therein. This thesis
basically contains all steps necessary for the author to arrive at the given results. Hence
some parts may vary greatly from [2] or [3] while others show much greater resemblance.

1.1 (Preliminaries and) Notation

This section covers some of the notational aspects of this thesis and some standing
assumptions and definitions. Basically we follow notation set forth in [4], [5], [2] and [2]
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with some alterations due to notational collisions and personal taste of the author.

Definition 1.1.1
Let

d, k,N ∈ N i, j, l ∈ N0 p, q ∈ [0,∞] ξ, ν, µ ∈ C

. p, q are usually conjugated, that is p−1 + q−1 = 1 and sometimes ξ, ν, µ ∈ R. ∀1 ≤ i ≤
N, ∀0 ≤ j ≤ k − 1 let the matrix coefficient functions

Ai,j ∈ (Cd×d)R Bi,j ∈ (Cd×d)R

be measurable and uniformly bounded, that is

∃C > 0 : ∀1 ≤ i ≤ N : ∀0 ≤ j ≤ k − 1 : ∀ξ ∈ R : ‖Ai,j(ξ)‖ ≤ C ∧ ‖Bi,j(ξ)‖ ≤ C

. For 1 ≤ i ≤ N we call the quantities ri ∈ R shifts. We introduce the notational
restriction that the ri are distinct and r1 = 0. We write our maximal and minimal shifts
as

r− := min
1≤i≤N

ri r+ := max
1≤i≤N

ri

.
For any two sets X,Y we write Y X for the set of all functions f : X → Y . In

particular XN is the set of all X valued sequences and Cd the “complex euclidean space”
of dimension d.

We assume all used linear spaces to be over the complex field C. For any two normed
linear spaces X,Y by B(X,Y ) ⊆ Y X we denote the space of bounded linear operators
from X → Y and by B(X) = B(X,X) those mapping back to X. The kernel of a linear
operator A : X → Y is designated by

kerA := A−1({0}) = {x ∈ X|Ax = 0}

.
We write X∗ for the dual of X, that is B(X,C). For E ⊆ X, F ⊆ X∗ we define their

(topological) annihilators to be

E⊥ := {f ∈ X∗|∀e ∈ E : f(e) = 0}
F⊥ := {x ∈ X|∀f ∈ F : f(x) = 0}

. If it is not clear in which spaces we are operating, e.g. if F ⊆ X∗1 , F ⊆ X∗2 we shall
add a subscript

F⊥X := {x ∈ X|∀f ∈ F : f(x) = 0} (1.2)

. If A ∈ B(X,Y ) then AT ∈ B(Y ∗, X∗) defined by

(AT f)(x) = f(Ax)
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is called its dual/conjugate operator. By the very definition of the dual operator AT we
have a series of nice properties related to A, e.g.

kerAT = A(X)⊥ kerA = AT (Y ∗)⊥

For a matrix A ∈ Cd×d, AT is the transposed operator/matrix which coincides with
the dual operator.

We stick to the standard convention of writing normed spaces (X, ‖·‖X) as only X
unless this notation is ambiguous. For the canonical euclidean norm in Cd and the
associated operator norm in Cd×d we write ‖·‖.

For suitable f by f (k) we denote its k-th (weak) derivative. In some cases it might be
more practical to write differentiation as an operator

Dk : W k,p → Lp f 7→ f (k)

. sometimes using other spaces as domain and range.
All “=” involving Lp functions of some sorts are generally to be read in Lp sense, i.e.,

equality only holds almost everywhere. Additionally instead of normal (non equivalence
class) functions we shall always consider the associated Lebesgue class. Conversely we
always take preferably smooth representatives for Lp functions.

By “I” we shall denote the identity operator in the space it is used and by “i” the
imaginary unit.

We recall Landau Notation and write

O(f, Y ) for ξ → ±∞ := {h ∈ Y R : ∃τ ∈ R : ∃C > 0 : ∀±ξ ≥ ±τ : ‖h(ξ)‖Y ≤ C‖f(ξ)‖X}
(1.3)

where f ∈ XR and X,Y are some normed spaces. Additionally we shall use the short-
hands O(f) whenever Y should be clear from context and f = g+O(h) for some functions
f, g ∈ Y R, h ∈ XR to represent

∃h̃ ∈ O(h) = 0(h, Y ) : f = g + h̃ (1.4)

.
We may sometimes use an expression as an abbreviated notation for the function it

represents, e.g.: we may use iξ to denote the function ξ 7→ iξ, O(f(ξ)) as a shorthand
for O(ξ 7→ f(ξ)) = O(f) or (xn) for the sequence n 7→ xn.

Definition 1.1.2
Let J ⊆ R be an open interval. The Lebesgue and Sobolev spaces will be written as

Lp := Lp
(
R,Cd

)
W k,p := {f ∈ Lp|∀0 ≤ j ≤ k : f (k) ∈ Lp}
W k := W k,2

Ck(J) := Ck(J,Cd)

CkB(J) :=
(
{f ∈ Ck(J)|‖f‖CkB(J) <∞}, ‖·‖CkB(J)

)
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where
‖f‖CkB(J) = sup

0≤j≤k
sup
ξ∈J
‖f (i)(ξ)‖

.
Additionally, if J is used for the closure of a compact interval J , we write

Ck(J) := {f ∈ (Cd)J |f |J ∈ Ck(J) ∧ ∀0 ≤ i ≤ k : f (i) continuously extendable to J}
CkB(J) := {f ∈ Ck(J)|‖f‖CkB(J) <∞}

with respectively extended norms and evaluations at the border by continuous extension.
Some more care is actually needed here if said spaces are used for closures of more general
sets but as we are only using those spaces for the compact interval [r−, r+] we will not
and need not dwelve any further here.

We recall that the notion of weak differentiability is stronger for smaller dimension. In
particular, as we are considering functions on R1, every f ∈W 1,p is absolutely continuous
(i.e. in the same equivalence class as an absolutely continuous function) with an (in a
classical sense) almost everywhere defined derivative in Lp and furthermore the following
continuous embeddings hold.

∀0 ≤ j < k : W k,p → CjB

∀0 ≤ j < k : ∀p ≤ q ≤ ∞ : W k,p →W j,q

Most of those results can be found in fairly any book on partial differential equations.
One nice account of Sobolev space theory can be found in [1].

Definition 1.1.3
We shall recall the notion of Fredholm operators and Fredholm Alternatives.

Let X,Y be two Banach spaces. A ∈ B(X,Y ) is called a Fredholm Operator or simply
Fredholm iff

dim kerA <∞ codimA(X) <∞

. Then the index or Fredholm index of A is defined as the integer

indA := dim kerA− codimA(X)

For such a Fredholm operator the following properties are met.

1. A is surjective iff indA = dim kerA

2. A is injective iff dim kerA = 0

3. A is bijective iff indA = dim kerA = 0

4. A(X) is closed

5. A(X) = (kerAT )⊥ and AT (Y ∗) = (kerA)⊥
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6. codimAT (Y ∗) = dim kerA

7. codimA(X) = dim kerAT = dim kerA− indA

8. AT : Y ∗ → X∗ is Fredholm and indAT = − indA

5, 6, 7 represent a Fredholm Alternative.
The interested reader is referred to [5].

Definition 1.1.4
Let f : R→ Cd, ξ 7→ f(ξ). For ξ ∈ R we introduce a translation operator

τξ : (Cd)R → (Cd
)R(

τξf
)
(ν) := f(ν − ξ)

Related to (1.1) are the family of bounded operators

L(ξ) : Ck−1
B ([r−, r+])→ Cd

ϕ 7→
N∑
i=1

k−1∑
j=0

Ai,j(ξ)(τ−ξϕ(j))(ri)

,where ξ ∈ R, and the operator

L′ : W k−1,p → Lp

(L′f)(ξ) =
N∑
i=1

k−1∑
j=0

Ai,j(ξ)f(ξ + ri) = “L(ξ)(τ−ξf)”
(1.5)

.
Since the matrix coefficients are assumed to be uniformly bounded those are all

bounded operators. To facilitate notation we define

Rk := B(CkB([r−, r+]),Cd)

. .
With these operators (1.1) can be written as

x(k)(ξ) = L(ξ)
(
τ−ξx

)
x(k) = L′x

(1.6)

. In written words this means that the k-th derivative of the funcion x at any point
depends on a shifted version of the whole function.

We define a solution to (1.1) to be a function x ∈ W k,p satisfying (1.1) in Lp sense.
In this context we might add that if x ∈ W k,p then x ∈ Ck−1

B (R) so ∀ξ ∈ J : τ−ξx ∈
Ck−1
B ([r−, r+]). Hence the first expression in (1.6) is indeed applicable.
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Associated with equations (1.1), (1.6) is another linear bounded operator defined by

ΛL : W k,p → Lp

x 7→ x(k) − L′x
(ΛLx)(ξ) = x(k)(ξ)− L(ξ)τ−ξx

(1.7)

. Using this notation (1.1) for h ∈ Lp can be rewritten to

ΛLx = h (1.8)

.

Definition 1.1.5
Assume L in Equation (1.6) is constant (as a family in ξ), i.e. the system is a con-
stant coefficient system and ξ 7→ L(ξ) is a constant function. Then Ai,j(ξ) = Ai,j are
independent from ξ as well.

Associated with such a constant coefficient system is the characteristic equation

0 = det ∆L(ξ) := det
(
ξkI −

N∑
i=1

k−1∑
j=0

Ai,jξ
jeξri

)
(1.9)

.
A constant coefficient system or more simply L is called hyperbolic iff

∀ν ∈ R : det ∆L(iν) 6= 0 (1.10)

.
Assume a function of the form ν 7→ eξνf(0) solves the equation with f 6= 0. Then
∀ξ ∈ R : ∆L(ξ) = 0. Hence there are no such solutions for imaginary ξ.

Definition 1.1.6
Often we shall write the operators L(ξ) and L′ in Definition 1.1.4 as sums of a constant
coefficient operator and a linear perturbation term and study our system for suitably
small perturbations. We write ∀ξ ∈ R

L(ξ) = L0 +M(ξ) (1.11)

M(ξ) : Ck−1
B ([r−, r+])→ Cd

ϕ 7→
N∑
i=1

k∑
j=0

Bi,j(ξ)ϕ(j)(ri) (1.12)

M ′ : W k−1,p → Lp(J)(
M ′x

)
(ξ) =

N∑
i=1

k∑
j=0

Bi,j(ξ)ϕ(j)(ri) = “M(ξ)
(
τ−ξx

)
” (1.13)

ΛL = ΛL0 −M ′ (1.14)
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.
If there exists an L0 as in (1.11) such that

lim
ξ→∞
‖M(ξ)‖Rk−1 = 0 (1.15)

, then the system (1.6) or simply L is called asymptotically autonomous at +∞. Then
of course, if Ai,j denote the matrix coefficients of L0

∀1 ≤ i ≤ N : ∀0 ≤ j ≤ k − 1 : lim
ξ→∞

Ai,j(ξ) = Ai,j (1.16)

.
If additionally L0 is hyperbolic then L is called asymptotically hyperbolic at +∞.

Analogous definitions apply to −∞.
L will be called asymptotically autonomous if it is asymptotically autonomous at both

+∞ and −∞ and analogously we call L asymptotically hyperbolic if it is asymptotically
hyperbolic at both +∞ and −∞.

We point out that the limiting equations for +∞ and −∞ need not be the same.

Definition 1.1.7
If f ∈ Lp and g ∈ Lq such that 1 ≤ p, q, r ≤ ∞ and 1

p + 1
q = 1 + 1

r then

(f ∗ g)(ξ) :=
∫

R
f(ξ − ν)g(ν)dν

defines an Lr function. In particular the convolution of two integrable functions is again
integrable.

Furthermore the convolution in some sense commutes with differentiation. If f ∈W k,p,
g ∈W l,q with p, q, r conjugated as above and k, l ∈ N0 then f ∗ g ∈W k+l,r and

(f ∗ g)(k+l) = f (k) ∗ g(l)

Definition 1.1.8
Let S = S(R,Cd) be the (Schwartz ) space of rapidly decreasing functions, that is
functions ϕ ∈ C∞(R,Cd) satisfying

∀k ∈ N0 : ∀l ∈ N0 : sup
ξ∈R
‖ξlϕ(k)(ξ)‖ <∞

. Then T from its dual S′ is called a tempered distribution. Let T ∈ S′, ϕ ∈ S.
For ϕ ∈ S the Fourier transform F and its inverse F−1 are well defined by their

integral expressions

f̂(ν) = Fϕ(ν) =
1√
2π

∫
R
e−iνξϕ(ξ)dξ

f̃(ξ) = F−1ϕ(ν) =
1√
2π

∫
R
eiνξϕ(ν)dν

(1.17)
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in the same way these expressions define Fourier transforms for f ∈ L1 with all of their
usual properties.

We recall that

T (1)(ϕ) := −T (ϕ(1))

T̂ (ϕ) := T (ϕ̂)

T̃ (ϕ) := T (ϕ̃)

τaT (ϕ) := T (τ−aϕ)

. define tempered distributions: T ’s derivative, Fourier transform, inverse Fourier
transform and translate.

The definition of a tempered distribution’s translate may seem to have the wrong sign
but if we consider a distribution defined by a function f ∈ (Cd)R of some special suitable
sorts, that is

Tf (ϕ) =
∫

R

〈
f(ξ), ϕ(ξ)

〉
dξ (1.18)

, where the brackets denote the dot product in Cd and x the complex conjugate of x,
then τaTf = Tτaf . We recall that any Lp function for arbitrary p defines a tempered
distribution via the integral expression (1.18).

If f is a C∞(R,Cd×d) function satisfying ∀ϕ ∈ S : fϕ ∈ S, then S(ϕ) = T (fϕ)
defines another tempered distribution. One class of such functions is the class of slowly
increasing functions f ∈ DM , that is functions f ∈ C∞ satisfying

∀k ∈ N : ∃N ∈ N : lim
ξ→±∞

|ξ|−N‖f (k)(ξ)‖ = 0

. For any slowly increasing function f the product of f and T ∈ S′ defined by

(fT )(ϕ) := T (fϕ)

is another tempered distribution. A somehow noteworthy subset of DM is the set of
polynomial functions.

Using fT as notation for this product can be ambiguous, e.g. if f ∈ Cd×d is a matrix
then it can be applied to the tempered distribution T both as linear operator on S′

and as product of A as slowly increasing function with T which would be the same as
applying the dual operator AT on T . Therefore this notation is used exclusively for
terms of the form (iξ)k and eaξ and both together, as resulting from differentiation rules
as stated below. Hence (iξT )(ϕ) = T (iξϕ) while (AT )(ϕ) = A(T (ϕ)). Especially for
distributions defined by functions this means that ATf (ϕ) = TAf (ϕ) 6= Tf (Aϕ) in the
Cd case below.
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Some notable tempered distributions are “normal” distributions (over C∞0 , the space
of infinitely differentiable functions with compact support) with compact support and
those defined by Lp functions and the integral expression (1.18).

Some handy aids for calculations are

T̂ (k) = (iξ)kT̂

T̂ (k) = ̂(−iξ)kT

τ̂aT = e−iaξT̂

τaT̂ = êiaξT

.
Additionally the following formulas hold for tempered distributions defined by func-

tions

f ∈W k,p ⇒ T
(k)
f = Tf (k)

f ∈ L2 ⇒ T̂f = T bf ∧ T̃f = T ef
Naturally some of these equalities also hold under weaker assumptions.

We can extend the notion of tempered distributions to Cd valued “functionals” by
taking d functionals. Naturally such generalized tempered distribution can be defined
by functions (but do not have to be), which are then written as being matrix valued
with the usual matrix vector product replacing the semiconjugated dot product. Thus,
if G ∈ (Cd×d)R of some suitable sorts, e.g Lp then

TG(ϕ) =
∫

R
G(ξ)ϕ(ξ)dξ (1.19)

defines a “generalized” tempered distribution with all of the usual properties of tempered
distributions (component-wise whenever applicable).

We point out that by using these definitions our normal calculus of tempered distri-
butions can be applied to Cd valued tempered distributions without creating semantical
problems.

For more on tempered distributions the interested readers are referred to [4].

Definition 1.1.9
Let f ∈ L2. Then it has a Fourier transform f̂ ∈ L2 and inverse Fourier transform
f̃ ∈ L2 satisfying

T̂f = T bf T̃f = T ef ‖f̂‖L2 = ‖f‖L2 = ‖f̃‖L2

. For functions, whose Fourier transforms defined through their integral expressions
exist, e.g. for f ∈ L1 ∩ L2 this L2 Fourier transform coincides with the “classical”
Fourier transform defined through the integral expressions (1.17). Additionaly it also
coincides with the L2 Fourier transform obtained by some sorts of “improper” approach
to the integral expression.

15



We recall that the Fourier transform transforms differentiation into multiplication with
a polynomial function under certain conditions. If f ∈ (Cd)R is measurable and if

∀0 ≤ j ≤ k : ξ 7→ (iξ)jf(ξ) ∈ L2 (1.20)

then f̃ ∈W k and
∀0 ≤ j ≤ k : f̃ (k) = ˜(iξ)kf(ξ) (1.21)

.
The interested readers are again referred to [4].
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2 Green’s function(s)

In this chapter we follow Mallet-Paret’s method of constructing a Green’s function for a
hyperbolic constant coefficient system as in [2] by taking the inverse Fourier transform of
ξ 7→ ∆−1

L (iξ). Then we shall use the von Neumann series to obtain a Green’s function for
hyperbolic constant coefficient systems with small perturbations and retrieve a sufficient
condition for such perturbations to be small enough.

2.1 Hyperbolic constant coefficient operators

Our course of action to obtaining a Green’s function G0 first takes us to shifting the
path of integration in the inverse Fourier transform’s integral expression to some a0 +i R.
This allows us to conclude exponential decay of all derivates of order < k and thus yields
G0 ∈ W k−1,p. By taking the convolution x = G0 ∗ h it follows from commutation of
convolution and differentiation under the right conditions that x ∈ W k−1,p. Finally we
infer that x ∈ W k,p and that x is a solution to ΛLx = h form analyzing the tempered
distributions induced by the G0 and x.

Proposition 2.1.1
Consider the characteristic equation for a hyperbolic constant coefficient operator L0 as
defined in 1.1.5.

0 = ∆L0(ν) = νk −
N∑
i=1

(k−1∑
j=0

Ai,jν
j
)
eνri

Let

G0 : R→ Cd×d

ξ 7→ 1√
2π

(
∆̃−1
L0 (iν)

)
(ξ) =

1
2π

∫
R
eiξν∆−1

L0
(iν)dν

(2.1)

. Then G0 ∈W k−1,p and ∃K0, a0 > 0 such that

∀0 ≤ j ≤ k − 1 : ‖G0(ξ)(j)‖ ≤ K0e
−a0|ξ| (2.2)

. We point out that this holds for any 1 ≤ p ≤ ∞.

Proof. Our agenda in this proof is to show existance of weak derivatives in L2 and prove
the exponetially decaying bounds. Since existance of weak derivatives is independent of p
and the exponential growth boundaries establish Lp boundedness this suffices. To show
the existance of weak derivatives we use the fact that the Fourier transform converts
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differentiation into multiplication with a polynomial. As the functions that are to be
inversely Fourier transformed are holomorphic in some neighbourhood of the imaginary
line we use Cauchy’s integral theorem to shift the path of integration giving some e±aξ

while the remaining terms stay bounded.
Since ξ 7→ ∆L0(ξ) is holomorphic and L0 is hyperbolic we have some open neighbour-

hood of i R where ∆L0 stays invertible. If

a1 := 1 +
N∑
i=1

k−1∑
j=0

‖Ai,j‖e|ri|

and ξ ∈ V := {ν ∈ C ||Reν| < 1 ∧ |Imν| > a1} then

∆L0(ξ) = ξk
(
I − 1

ξk

N∑
i=1

k−1∑
j=0

Ai,jξ
jeξri

)
where

‖ 1
ξk

N∑
i=1

k−1∑
j=0

Ai,jξ
jeξri‖ ≤ 1

|ξ|k
N∑
i=1

k−1∑
j=0

‖Ai,j‖|ξ|je|Reξ||ri|

≤ |ξ|
k−1

|ξ|k
N∑
i=1

k−1∑
j=0

‖Ai,j‖e|ri|

<
|ξ|k

|ξ|k
= 1

. Hence ∆L0(ξ) invertible in V . As detA is simply a polynomial in the coefficients of A,
we have that ξ 7→ det ∆L0(ξ) is holomorphic and hence on the compact set W := {ν ∈
C |Reν ≤ 1 ∧ Imν ≤ a1} this function is uniformly continuous.
ξ 7→ f(ξ) := |det ∆L0(ξ)| too is a uniformly continuous function on W and therefore on

the compact set i[−a1, a1] ⊂W it takes a minimum ε > 0. Because of uniform continuity

∃1 > δ > 0 : ∀ξ, ν ∈W : |ξ − ν| < δ ⇒ |f(ξ)− f(ν)| < ε

In particular, if ξ ∈W and |Reξ| < δ, then

f(ξ) ≥ f(iImξ)− |f(ξ)− f(iImξ)| > ε− ε > 0

and hence ∆L0(ξ) is invertible. By setting 0 < a0 < δ and

U := {ν ∈ C ||Reν| ≤ a0} (2.3)

we conclude that ξ 7→ ∆L0(ξ)−1 ∈ (Cd×d)U is a well defined holomorphic function. Now
assume ξ ∈ U .

Note that ∆L0(iν) ∈ O(|νk|) for |ν| → ∞. Hence ∀0 ≤ j < k we derive (iν)j∆−1
L0

(iν) ∈
O(|ν|j−k). So ∀0 ≤ j < k : ν 7→ (iν)j∆−1

L0
(iν) ∈ L2 and thus G0 ∈ W k−1. Therefore the
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weak derivatives of G0 up to order k − 1 exist and as they are (i.e. their existance as
functions is) independent of p it suffices to establish Lp bounds for arbitrary 1 ≤ p ≤ ∞
to show G0 ∈W k−1,p for any p.

First consider the case j ≤ k − 2. If C := 1 + max{
∑N

i=1‖Ai,j‖|0 ≤ j ≤ k − 1}, which
is well defined as Ai,js are assumed to be uniformly bounded, and |Imξ| > 2k−1kC then

‖(ξ)j∆−1
L0 (ξ)‖ = |ξ|j‖ξk −

k−1∑
l=0

N∑
i=1

Ai,jξ
leξri‖−1

≤ |ξ|j
(
|ξ|k −

k−1∑
l=0

C|ξ|l
)−1

≤ |ξ|j
(
|ξ|k − kC|ξ|k−1

)−1

= (|ξ|k−j − kC|ξ|k−1−j)−1

≤ (|Imξ|k−j − kC|1 + Imξ|k−j−1)−1

≤
(
|Imξ|(|Imξ| − 2k−1kC)|Imξ|k−2−j

)−1
<∞

. Thus ξ 7→ (iξ)∆L0(iξ)−1 ∈ O(|Imξ|−2) uniformly for ξ ∈ U, |Imξ| → ∞.
Therefore ∀a ∈ [−a0, a0] : ξ 7→ (a+iξ)∆L0(a+iξ) is a holomorphic integrable function.

Using Cauchy’s integral theorem and the fact that ξ 7→ (iξ)∆L0(iξ)−1 ∈ O(|Imξ|−2)
uniformly for ξ ∈ U, |Imξ| → ∞ we get ∀ξ ∈ R :∫ ∞

−∞
eiξν(iν)j∆−1

L0
(iν)dν =

∫ ∞
−∞

eξ(a0+iν)(a0 + iν)j∆−1
L0

(a0 + iν)dν

, again for arbitrary a ∈ [−a0, a0].
By changing the path of integration for ξ ≥ 0 we obtain

‖G(j)
0 (ξ)‖ = ‖ 1

2π

∫ ∞
−∞

eiξν(iν)j∆−1
L0

(iν)dν‖

= ‖ 1
2π

∫ ∞
−∞

eξ(−a0+iν)(−a0 + iν)j∆−1
L0

(−a0 + iν)dν‖

≤ e−a0ξ

2π

∫ ∞
−∞
‖(−a0 + iν)j∆−1

L0 (−a0 + iν)‖dν

≤ e−a0ξ

2π
‖ν 7→ (−a0 + iν)j∆−1

L0 (−a0 + iν)‖L1

. Likewise for ξ < 0

‖G(j)
0 (ξ)‖ ≤ ea0ξ

2π
‖ν 7→ (a0 + iν)j∆−1

L0 (a0 + iν)‖L1

. Hence ∀0 ≤ j ≤ k − 2 : ∀1 ≤ p ≤ ∞ : G(j)
0 ∈ Lp and the bound for G(k−1)

0 remains to
be shown.

19



Let ξ > 0 and consider the map:

E+ : R→ Cd×d

ξ 7→

{
0 ξ < 0√

2πe−ξ I ξ ≥ 0

Then E+ ∈ L1 ∩ L2 and we can get its Fourier transform by evaluation of the (in this
case “classicaly” well defined) integral expression for the Fourier transform. So for ν ∈ R

Ê+(ν) =
∫ ∞

0
e−iνξe−ξ I dξ =

1
iν + 1

I

. We see that Ê+ is a holomorphic L2 function in U . We now use a similar approach as
above but not for ν 7→ νk∆−1

L0
(ν) (which is in general ∈ L2 but /∈ L1 along the imaginary

line) but
R+(ν) := ν 7→ νk∆−1

L0
(ν)− (ν + 1)−1 I

. Again we start with an uniform quadratic decay in U for |Imξ| → ∞. Let ξ ∈ U

C := 2 + max
0≤j≤k−1

N∑
i=1

‖Ai,j‖

and |Imξ| > kC + 1. Then

‖R+(ξ)‖ = ‖ξk−1∆−1
L0

(ξ)− (ξ + 1)−1 I‖

= ‖ξk−1
(
ξk I −

N∑
i=1

k−1∑
j=0

Ai,jξ
jeξri

)−1 − (ξ + 1)−1 I‖

= ‖ξk−1(ξ + 1) I −ξk I +
N∑
i=1

k−1∑
j=0

Ai,jξ
jeξri‖‖ξk+1 I +ξk I −

N∑
i=1

k−1∑
j=0

Ai,jξ
jeξri‖−1

≤
(
|ξ|k−1 +

k−1∑
j=1

( N∑
i=1

‖Ai,j‖
)
|ξ|j
)(
|ξ|k+1 − |ξ|k −

k−1∑
j=0

( N∑
i=1

‖Ai,j‖
)
|ξ|j
)−1

≤
(
kC|ξ|k−1

)(
|ξ|k+1 − |ξ|k − kC|ξ|k−1

)−1

≤ kC
(
|ξ|2 − |ξ| − kC

)−1

≤ kC
(
|Imξ|(|Imξ| − 2)

)−1
<∞

. Thus R+(ξ) ∈ O(|Imξ|−2) uniformly in U for |Imξ| → ∞ and ∀a ∈ [−a0, a0] : ν 7→
R+(a+ iν) ∈ L1. As above we may shift the path of integration using Cauchy’s integral
theorem. This finally yields

‖G(k−1)
0 (ξ)‖ = E+(ξ)+

e−a0ξ

2π
‖ν 7→ R+(−a0+iν)‖L1 ≤

(
1+

1
2π
‖ν 7→ R+(−a0+iν)‖L1

)
e−a0ξ
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.
Likewise using

E− : R→ Cd×d

ξ 7→

{√
2πeξ I ξ ≤ 0

0 ξ > 0

the same line of argument gives

‖G(k−1)
0 (ξ)‖ ≤ E−(ξ) +

ea0ξ

2π
‖ν 7→ R−(a0 + iν)‖L1 ≤

(
1 +

1
2π
‖ν 7→ R−(a0 + iν)‖L1

)
ea0ξ

for ξ < 0.
Now it is evident that some K > 0 can be found satisfying

∀0 ≤ j ≤ k − 1 : ∀ξ ∈ R : ‖G(j)
0 (ξ)‖ ≤ Ke−a0|ξ|

. So (2.2) is proven. It immediatly follows that G0 ∈ W k−1,p for any 1 ≤ p ≤ ∞ and
the proof is finished.

Theorem 2.1.2
Consider the operators from (1.6) and (1.8) for a hyperbolic constant coefficient system
and conjugated p, q ∈ [1,∞] and let G0 be as in Proposition 2.1.1. Then

1. ΛL0 is one-to-one

2. ΛL0 is an isomorphism and ∀h ∈ Lp

(
Λ−1
L0
h
)
(ξ) = (G0 ∗ h)(ξ) =

∫
R
G0(ξ − ν)h(ν)dν (2.4)

Proof. In this proof we show that the equation holds tempered distributionally for the
tempered distribution induced by the function resulting from (2.4). Since C∞0 ⊆ S as a
set it follows that the equation also holds for the weak derivatives.

Let ξ ∈ R, ϕ ∈ S.
1: First we prove injectivity. Suppose that x ∈ W 1,p and ΛL0x = 0. We recall
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properties and calculus of distributional Fourier transforms and get

x(k) =
N∑
i=1

k−1∑
j=0

Ai,jτ−rix
(j)

⇒ T (k)
x =

N∑
i=1

k=1∑
j=0

Ai,jτ−riT
(j)
x

⇒ T̂
(k)
x =

N∑
i=1

k−1∑
j=0

Ai,j
̂
τ−riT

(j)
x

⇒ (iξ)kT̂x =
N∑
i=1

k−1∑
j=0

Ai,j(iξ)jeiri T̂x

⇒
(
iξ −

N∑
i=1

k−1∑
j=0

Ai,j(iξ)jeiξri
)
T̂x = 0

. By our hyperbolicity condition ∀ν ∈ R : ∆L0(iν) 6= 0 and so T̂x is the zero distribution
and thus x = 0 and 1 is proven.

2: Now to surjectivity:
As G0 ∈ L2 it induces a tempered distribution TG0 . Consider the tempered distribu-

tion

Γ := T
(k)
G0
−

N∑
i=1

k−1∑
j=0

Ai,jτ−riT
(j)
G0

. Again using the calculus of distributions yields

Γ̂ = T̂
(k)
G0
−

N∑
i=1

k−1∑
j=0

Ai,j
̂
τ−riT

(j)
G0

= (iξ)kT̂G0 −
N∑
i=1

k−1∑
j=0

Ai,j(iξ)jeiξri T̂G0

= ∆(iξ)TcG0

=
1√
2π

∆(iξ)T∆(iξ)−1

=
1√
2π
TI

. Thus Γ̂ = δ̂ where δ denotes the delta tempered distribution. Therefore

T
(k)
G0

=
N∑
i=1

k−1∑
j=0

Ai,jτ−riT
(j)
G0

+ δ (2.5)
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and by a simple calculation

T
(k)

GT0
=

N∑
i=1

k−1∑
j=0

τ−riT
(j)

GT0
◦ATi,j + δ

.
Now we are “feature complete” for proving surjectivity as all necessary parts have

been gathered. Let x := G0 ∗ h. As G0 ∈W k−1,1 it follows that x ∈W k−1,p. Because x
is already ∈W k−1,p it suffices to show that our equation holds tempered distributionally
to prove that x is a solution. For any 1 ≤ i ≤ N, 0 ≤ j ≤ k − 1 by Tonelli’s theorem,
Young’s inequality and Hölder’s inequality∫

R

∫
R
|
〈
G

(j)
0 (ξ + ri − ν)h(ν), ϕ(ξ)

〉
|dνdξ ≤

∫
R

∫
R
‖G(j)

0 (ξ + ri − ν)h(ν)‖‖ϕ(ξ)‖dνdξ

≤
∫

R

(∫
R
‖G(j)

0 (ξ + ri − ν)‖‖h(ν)‖dν
)
‖ϕ(ξ)‖dξ

=
∫

R
(‖G(j)

0 ‖ ∗ ‖h‖)(ξ + ri)‖ϕ(ξ)‖dξ

≤ ‖‖G(j)
0 ‖ ∗ ‖h‖‖Lp‖ϕ‖Lq

≤ ‖G(j)
0 ‖L1‖h‖Lp‖ϕ‖Lq <∞

.
Thus we may use Fubini’s theorem on the integrals in (2.5) and get
N∑
i=1

k−1∑
j=0

Ai,jτ−riT
(j)
x (ϕ) =

N∑
i=1

k−1∑
j=0

∫
R

〈
Ai,jx

(j)(ξ + ri), ϕ(ξ)
〉
dξ

=
N∑
i=1

k−1∑
j=0

∫
R

〈
Ai,j

∫
R
G

(j)
0 (ξ + ri − ν)h(ν)dν, ϕ(ξ)

〉
dξ

=
∫

R

〈
h(ν),

N∑
i=1

k−1∑
j=0

∫
R

(G(j)
0 (ξ + ri))TATi,jϕ(ξ + ν)dξ

〉
dν

=
∫

R

〈
h(ν),

N∑
i=1

k−1∑
j=0

τ−riT
(j)

GT0

(
ATi,jτ−νϕ

)〉
dν

=
∫

R

〈
h(ν), T (k)

GT0

(
τ−νϕ

)
− δ
(
τ−νϕ

)〉
dν

=
∫

R

〈
h(ν), (−1)k

∫
R

(G0(ξ))Tϕ(k)(ξ + ν)dξ − ϕ(ν)
〉
dν

= (−1)k
∫

R

〈∫
R
G0(ξ − ν)h(ν)dν, ϕ(k)(ξ)

〉
dξ −

∫
R

〈
h(ν), ϕ(ν)

〉
dν

= (−1)k
∫

R

〈
x(ξ), ϕ(k)(ξ)

〉
dξ −

∫
R

〈
h(ξ), ϕ(ξ)

〉
dξ

= T (k)
x (ϕ)− Th(ϕ)
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. Hence

T (k)
x =

N∑
i=1

k−1∑
j=0

Ai,jτ−riT
j
x + Th (2.6)

from which it immediately follows that x is a solution and ΛL0 is onto.

2.2 Perturbed hyperbolic constant coefficient operators

The next step is the the construction of a Green’s function for small perturbations L0+M
of a hyperbolic constant coefficient operator L0. We remark that by small we naturally
mean sufficiently small since our matrix coefficients are already uniformly bounded by
assumption.

Hence we assume L(ξ) = L0 +M(ξ), where L0 is hyperbolic. Then by Theorem 2.1.2
ΛL0 is invertible and by (1.14) we have

ΛL = ΛL0 −M ′ =
(
I −M ′Λ−1

L0

)
ΛL0

. Assuming ‖M ′Λ−1
L0
‖B(Lp) < 1 we can use the von Neumann series and obtain

Λ−1
L = Λ−1

L0

∞∑
i=0

(
M ′Λ−1

L0

)i (2.7)

.
Our next steps are to prove technical lemma to facilitate deduction of conditions for
‖M ′Λ−1

L0
‖B(Lp) < 1 and then to use (2.7) to construct a Green’s function for a lightly

perturbed hyperbolical constant coefficient operator. We remark that, ΛL is an isomor-
phism whenever the perturbation M fullfills such conditions.

Lemma 2.2.1
Let K > 0, a > 0,K < a/2,Ψ : R → [0,∞), ξ 7→ Ke−a|ξ|. We define the i-fold convolu-
tions of Ψ with itself by

i = 1 : Ψ∗1 := Ψ i > 1 : Ψ∗i := Ψ ∗Ψ∗i−1

and set

a1 = (a2 − 2Ka)
1
2 K1 =

Ka

a1

. Then ∀ξ ∈ R
∞∑
i=1

Ψ∗i(ξ) = K1e
−a1|ξ| (2.8)

.
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Proof. Let ν ∈ R. For arbitrary K > 0, a > 0 the Fourier transform of Ψ is given by

Ψ̂(ν) =
K√
2π

∫
R
e−iνξe−a|ξ|dξ

=
K√
2π

(∫ 0

−∞
eξ(−iν+a)dξ +

∫ ∞
0

eξ(−iν−a)dξ
)

=
K√
2π

( 1
−iν + a

− 1
−iν − a

)
=

1√
2π

2aK
a2 + ν2

. Since K < a/2 we have ∀ν ∈ R : Ψ̂(ν) < 1√
2π

a2

a2+ν2 <
1√
2π

and thus using convergence
of the geometric series we conclude

∞∑
i=1

(
√

2π)i−1Ψ̂i(ν) =
1√
2π

( 1

1− Ψ̂(ν)
− 1
)

=
1√
2π

Ψ̂(ν)

1− Ψ̂(ν)

=
1√
2π

2Ka
a2 − 2Ka+ ν2

=
1√
2π

2K1a1

a2
1 + ν2

, where the factor
√

2π comes from the chosen normalization in the integral expressions
for the Forier transform. As F : L2 → L2 and F−1 : L2 → L2 are continuous maps we
end up with

∞∑
i=1

Ψ∗i(ξ) = F−1
( ∞∑
i=1

(
√

2π)i−1Ψ̂∗i
)
(ξ)

= F−1
(
ν 7→ 1√

2π
2K1a1

a2
1 + ν2

)
(ξ)

= K1e
−a1|ξ|

Theorem 2.2.2
Assume that L0 is hyperbolic. Then ∃ε > 0,K > 0, a > 0 such that if

M,M ′ as in 1.1.6 ∀ξ ∈ R : ‖M(ξ)‖Rk−1 ≤ ε
L(ξ) = L0 +M(ξ) ΛL = ΛL0 −M ′

then

1. ΛL is an isomorphism
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2. For 0 ≤ i ≤ k − 1 there ∃Gi : R2 → Cd×d such that

∀ξ ∈ R : ∀ν ∈ R : ‖Gi(ξ, ν)‖ ≤ Ke−a|ξ−ν| (2.9)

and moreover ∀h ∈ Lp, ∀ξ ∈ R(
Λ−1
L h

)(i)(ξ) =
∫

R
Gi(ξ, ν)h(ν)dν (2.10)

.

Proof. The agenda in this proof is to first construct viable kernels for all weak derivatives
and then prove that the functions obtained from the convolution integrals (2.10) are
indeed derivatives of a solution. We show the latter by proving convergence of the
differentiated partial sums of the von Neumann series to the integral expressions.

Let h ∈ Lp, ξ ∈ R. We assume that {ξ ∈ R |‖M(ξ)‖Rk−1 6= 0} has positive measure.
If this is not the case then there is nothing to show.

As L0 is hyperbolic by Theorem 2.1.2 we have a Green’s function G00 for L0 satisfying
∀1 ≤ j ≤ k − 1 : ∀ξ ∈ R : ‖G(j)

00 (ξ)‖ ≤ K0e
−a0|ξ|. Inductively define kernels

i = 1 : Γ1(ξ, ν) :=
N∑
i=1

k−1∑
j=0

Bi,j(ξ)G
(j)
00 (ξ + ri − ν)

i > 1 : Γi(ξ, ν) :=
∫

R
Γ1(ξ, µ)Γi−1(µ, ν)dµ

. Then

‖Γ1(ξ, ν)‖ = ‖
N∑
i=1

k−1∑
j=0

Bi,j(ξ)G
(j)
00 (ξ + ri − ν)‖

= ‖
(
M(ξ)

)
(τν−ξG00)‖

≤ ‖M(ξ)‖Rk−1‖τν−ξG00‖Ck−1
B ([r−,r+])

≤ sup
ξ∈R
‖M(ξ)‖Rk−1 sup

µ∈[r−,r+]
K0e

−a0|ξ−ν+µ|

≤
(
K0 sup

ξ∈R
‖M(ξ)‖Rk−1 max

1≤i≤N
ea0|ri|

)
e−a0|ξ−ν|

(2.11)

. As the matrix coefficients are uniformly bounded we can set

K00 := K0 sup
ξ∈R
‖M(ξ)‖Rk−1 max

1≤i≤N
ea0|ri| <∞

Ψ(ξ) := K00e
−a0|ξ|

and get ∀i ∈ N
‖Γi(ξ, ν)‖ ≤ Ψ∗i(ξ − ν) (2.12)

26



. This is obtained by induction

i = 1 : by (2.11)

i→ i+ 1 :

‖Γi(ξ, ν)‖ ≤
∫

R
‖Γ1(ξ, µ)Γi−1(µ, ν)‖dµ

≤
∫

R
Ψ∗1(ξ − µ)Ψ∗i−1(µ− ν)dµ

=
∫

R
Ψ∗1((ξ − ν)− (µ− ν))Ψ∗i−1(µ− ν)dµ

=
∫

R
Ψ∗1((ξ − ν)− µ)Ψ∗i−1(µ)dµ

= Ψ∗i(ξ − ν)

.
Consideration of M ′Λ−1

L0
gives

(
M ′Λ−1

L0
h
)
(ξ) = M ′

∫
R
G00(ξ − ν)h(ν)dν

=
N∑
i=1

k−1∑
j=0

Bi,j(ξ)
∫

R
G

(j)
00 (ξ + ri − ν)h(ν)dν

=
∫

R

( N∑
i=1

k−1∑
j=0

Bi,j(ξ)G
(j)
00 (ξ + ri − ν)

)
h(ν)dν

=
∫

R
Γ1(ξ, ν)h(ν)dν

(2.13)

.
Now assume K00 < a0/2, that is

K0 sup
ξ∈R
‖M(ξ)‖Rk−1 max

1≤i≤N
ea0|ri| < a0/2

⇔ sup
ξ∈R
‖M(ξ)‖Rk−1 <

a0

2K0 max1≤i≤N ea0|ri|
(2.14)

.
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Then by using Young’s inequality on the very last integral in (2.13) we obtain

‖
(
M ′Λ−1

L0

)
h‖Lp = ‖ξ 7→

∫
R

Γ1(ξ, ν)h(ν)dν‖Lp

≤ ‖ξ 7→
∫

R
‖Γ1(ξ, ν)h(ν)‖dν‖Lp

≤ ‖ξ 7→
∫

R
Ψ∗1(ξ − ν)‖h(ν)‖dν‖Lp

= ‖Ψ∗1 ∗ ‖h‖‖Lp
≤ ‖Ψ∗1‖L1‖h‖Lp

=
(
K002

∫ ∞
0

e−a0ξdξ
)
‖h‖Lp

=
2K00

a0
‖h‖Lp

< ‖h‖Lp

(2.15)

. Thus we conclude ‖M ′Λ−1
L0
‖B(Lp) < 1 whenever the assumption K00 < a0/2 hold. We

recall (2.14) and take
0 < ε <

a0

2K0 max1≤i≤N ea0|ri|
(2.16)

. Hence by using the von Neumann series (2.7) the first part of our Theorem 1 is proven.
In order to prove the second part of the theorem we will examine the kernels defined

for the Green’s functions in more detail. We take 1 < i ∈ N, still assume K00 < a0/2
and use Hölder’s inequality and Tonelli’s theorem and obtain∫

R

∫
R
‖Γ1(ξ, µ)Γi−1(µ, ν)h(ν)‖dµdν ≤

∫
R

∫
R

Ψ∗1(ξ − µ)Ψ∗i−1(µ− ν)dµ‖h(ν)‖dν

≤
∫

R
Ψ∗i(ξ − ν)‖h(ν)‖dν

≤ ‖Ψ∗i‖Lq‖h‖Lp <∞

. Therefore Fubini’s theorem is applicable and yields((
M ′Λ−1

L0

)i
h
)

(ξ) =
(

(M ′Λ−1
L0

)(M ′Λ−1
L0

)i−1h
)

(ξ)

=
∫

R
Γ1(ξ, µ)

(∫
R

Γi−1(µ, ν)h(ν)dν
)

dµ

=
∫

R

(∫
R

Γ1(ξ, µ)Γi−1(µ, ν)dµ
)
h(ν)dν

=
∫

R
Γi(ξ, ν)h(ν)dν

(2.17)

.
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Let 0 ≤ j ≤ k − 1, i ∈ N and consider (µ, ν) 7→ G
(j)
00 (ξ − µ)Γi(µ, ν)h(ν) where∫

R

∫
R
‖G(j)

00 (ξ − µ)Γi(µ, ν)h(ν)‖dµdν ≤
∫

R

∫
R
K0e

−a0|ξ−µ|
(

Ψ∗i(µ− ν)‖h(ν)‖dν
)

dµ

≤ K0‖µ 7→ e−a0|ξ−µ|‖Lq‖Ψ∗i ∗ h‖Lp

≤ K0‖µ 7→ e−a0|ξ−µ|‖Lq‖Ψ∗i‖L1‖h‖Lp <∞

. Hence using Tonelli’s and Fubini’s theorems again yields(
DjΛ−1

L0

(
M ′Λ−1

L0

)i
h
)

(ξ) =
((
DjΛ−1

L0

)(
M ′Λ−1

L0

)i
h
)

(ξ)

=
∫

R
G

(j)
00 (ξ − µ)

(∫
R

Γi(µ, ν)h(ν)dν
)

dµ

=
∫

R

(∫
R
G

(j)
00 (ξ − µ)Γi(µ, ν)dµ

)
h(ν)dν

(2.18)

.
Hence Lemma 2.2.1 gives

∞∑
i=1

‖Γi(ξ, ν)‖ ≤
∞∑
i=1

Ψ∗i(ξ − ν) ≤ K1e
−a1|ξ−ν| (2.19)

where

a1 := (a2
0 − 2K00a0)

1
2 K1 =

K00a0

a1

.
Thus we can set

Gi(ξ, µ) := G
(i)
00 (ξ − ν) +

∫
R
G

(i)
00 (ξ − µ)

( ∞∑
j=1

Γj(µ, ν)
)

dµ (2.20)

for 0 ≤ i ≤ k − 1. These are well defined W k−1−i,p functions by Proposition 2.1.1 and
Equation (2.19). Furthermore these functions already formally satisfy (2.10). Using
a1 < a0 we get

‖Gi(ξ, ν)‖ ≤ K0e
−a0|ξ−ν| +

∫
R
K0e

−a0|ξ−µ|K1e
−a1|µ−ν|dµ

≤ K0e
−a1|ξ−ν| +K0K1

( 2
a0 + a1

+
1

|a0 − a1|
+

1
|a1 − a0|

)
e−a1|ξ−ν|

, the second inequality following from explicit calculation of the integral. Specifically if

29



ξ ≤ ν then∫ ∞
−∞

e−a0|ξ−µ|−a1|µ−ν|dµ

=
∫ ξ

−∞
e−a0(ξ−µ)−a1(ν−µ)dµ+

∫ ν

ξ
ea0(ξ−µ)−a1(ν−µ)dµ+

∫ ∞
ν

ea0(ξ−µ)+a1(ν−µ)dµ

= e−a0ξ−a1ν

∫ ξ

−∞
e(a0+a1)µdµ+ ea0ξ−a1ν

∫ ν

ξ
e(−a0+a1)µdµ+ ea0ξ+a1ν

∫ ∞
ν

e−(a0+a1)µdµ

=
1

a0 + a1
e−a1(ν−ξ) +

1
a1 − a0

e−a0(ν−ξ) +
1

a0 − a1
e−a1(ν−ξ) +

1
a0 + a1

e−a0(ν−ξ)

≤
( 2
a0 + a1

+
1

|a0 − a1|
+

1
|a1 − a0|

)
e−a1|ξ−ν|

. The (almost) same calculation gives the same inequality for ξ > ν, namely

∃K > 0 : ∀0 ≤ i ≤ k : ‖Gi(ξ, ν)‖ ≤ Ke−a1|ξ−µ| (2.21)

.
To complete the proof it remains to be shown that if x = Λ−1

L h then indeed
∀0 ≤ i ≤ k − 1 : x(i)(ξ) =

∫
RGi(ξ, ν)h(ν)dν. To this end let 0 ≤ i ≤ k − 1 and set

xi,j = DiΛ−1
L0

( j∑
l=0

(M ′Λ−1
L0

)l
)
h

. We recall that K00 < a0/2 implies ‖M ′Λ−1
L0
‖B(Lp) < 1 and conclude that ∀0 ≤ i ≤ k−1 :

‖xi,j − x(i)‖Lp ≤ ‖DiΛ−1
L0
‖B(Lp)

( ∞∑
l=j+1

‖(M ′Λ−1
L0

)‖lB(Lp)

)
‖h‖Lp → 0 (j →∞)

. Let yi denote the functions resulting from the right hand side of (2.10), that is the
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integral expressions of a solution’s derivatives. By Young’s inequality ∀0 ≤ i ≤ k − 1

‖xi,j − yi‖Lp = ‖ξ 7→
∫

R

(∫
R
G

(i)
00 (ξ − µ)

∞∑
l=j+1

Γl(µ, ν)dµ
)
h(ν)dν‖Lp

≤ ‖ξ 7→
∫

R

(∫
R
K0e

−a0|ξ−µ|
∞∑

l=j+1

Ψ∗l(µ− ν)dµ
)
h(ν)dν‖Lp

≤ ‖ξ 7→
∫

R

(∫
R
K0e

−a0|ξ−ν−µ|
∞∑

l=j+1

Ψ∗l(µ)dµ
)
h(ν)dν‖Lp

= K0‖ξ 7→
∫

R

(
e−a0|ξ| ∗

∞∑
l=j+1

Ψ∗l(ξ)
)

(ξ − ν)h(ν)dν‖Lp

≤ K0‖ξ 7→ e−a0|ξ| ∗
∞∑

l=j+1

Ψ∗l(ξ)‖L1‖h‖Lp

≤ K0‖ξ 7→ e−a0|ξ|‖L1‖
∞∑

l=j+1

Ψ∗l‖L1‖h‖Lp

≤ K0‖ξ 7→ e−a0|ξ|‖L1‖h‖Lp
∞∑

l=j+1

‖Ψ‖lL1

→ 0 (j →∞)

so ∀0 ≤ i ≤ k − 1 : ‖x(i) − yi‖Lp = 0 and the proof is finished.

Intuitively one might assume that solving Equation (1.1) is more of a hassle when
stepping from k = 1 to k ∈ N but simulateously the hyperbolicity conditions is not the
same for equations of different order.
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3 Towards a Fredholm Alternative

In this chapter we gradually develop some technical aids to prove finite dimensionality
of the kernel of ΛL and end up with Fredholmness of ΛL and a formulated Fredholm
Alternative theorem.

3.1 Finite dimensionality of the kernel(s)

Proposition 3.1.1
Assume that L as in (1.6) is asymptotically hyperbolic at∞. Then there exist K,K ′, a >
0 such that ∀x ∈W k,p : ∀h ∈ Lp : ΛLx = h⇒ ∀ξ ≥ 0 : ∀0 ≤ j ≤ k − 1 :

‖x(j)(ξ)‖ ≤ Ke−a|ξ|‖x‖Wk−1,∞ +K

∫
R
e−a|ξ−ν|‖h(ν)‖dν

≤ Ke−a|ξ|‖x‖Wk−1,∞ +K ′‖h‖Lp
(3.1)

. If the equation is asymptotically hyperbolic at −∞ the same holds ∀ξ ≤ 0. If it
is asymptotically hyperbolic (at both ∞ and −∞) this inequality holds ∀ξ ∈ R and
additionally there ∃K ′′ > 0 such that

‖x‖Wk,p ≤ K ′′(‖x‖Wk−1,∞ + ‖h‖Lp) (3.2)

. Note that all constants K,K ′,K ′′, a only depend on L.

Proof. Unlike in the last Theorem 2.2.2 we do not have uniformly small bounds for M .
By by asymptotic hyperbolicity we know that they will be samll enough for some large
ξ. So we cut off the “large” parts of M , put them into the inhomogeneity and apply the
exponential bounds of the last theorem.

We first note that the continuous embedding W k,p →W k−1,∞ implies that the factor
‖x‖Wk−1,∞ is finite and note further that the second inequality(ies) directly follow(s)
from the first by applying Hölder’s inequality.

Assume asymptotic hyperbolicity of L at ∞. Hence ∃L0 : ∀ξ ∈ R : ∃M(ξ) ∈ Rk−1

such that L(ξ) = L0 +M(ξ), ‖M(ξ)‖Rk−1 → 0 (ξ →∞) and L0 is hyperbolic.
Let ε, a,K1 be the constants from Theorem 2.2.2 for L0. Assume ξ ≥ 0 and fix some

τ > 0 such that ∀ξ ≥ τ : ‖M(ξ)‖Rk−1 ≤ ε. Set

α+ : R→ R

ξ 7→

{
0 ξ < τ

1 ξ ≥ τ
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and

L1(ξ) := L0 + α(ξ)M(ξ) M1(ξ) := (1− α(ξ))M(ξ)

. Obviously ∀x ∈ W k,p : ξ 7→ M1τξx + h(ξ) ∈ Lp so our functional differential equation
can be rewritten to

x(k)(ξ) = L1τ−ξx+
(
M1τ−ξx+ h(ξ)

)
. By definition ∀ξ ∈ R : ‖α+(ξ)M(ξ)‖Rk−1 ≤ ε so using (2.10) and the notation intro-
duced therein we conclude

x(i)(ξ) =
∫

R
Gi(ξ, ν)

(
M1(ν)τ−νx+ h(ν)

)
dν

=
∫ τ

−∞
Gi(ξ, ν)

(
M1(ν)τ−νx

)
dν +

∫
R
Gi(ξ, ν)h(ν)dν

for ∀ξ ∈ R : ∀0 ≤ i ≤ k − 1.
Hence

‖x(i)(ξ)‖ ≤
∫ τ

−∞
‖Gi(ξ, ν)‖‖M1(ξ)τ−νx‖dν +

∫
R
‖Gi(ξ, ν)h(ν)‖dν

≤
∫ τ

−∞
K1e

−a|ξ−ν|‖M1(ν)‖Rk−1‖τ−νx‖Ck−1
B ([r−,r+])dν +

∫
R
K1e

−a|ξ−ν|‖h(ν)‖dν

≤ K1 sup
ξ∈R
‖M(ξ)‖Rk−1‖x‖Wk−1,∞

∫ τ

∞
e−a|ξ−ν|dν +

∫
R
K1e

−a|ξ−ν|‖h(ν)‖dν

. We note existance of the sup by assumption of uniform boundedness of Ai. We
explicitly calculate the first integral to finish our proof of (3.1). First consider ξ < τ
and recall τ > 0 hence e±aτ 6= 0∫ τ

−∞
e−a|ξ−ν|dν =

∫ ξ

−∞
e−a(ξ−ν)dν +

∫ ν

ξ
ea(ξ−ν)dν

= e−aξ
1
a
eaξ + eaξ

1
a

(e−aξ − e−aτ )

=
2
a
− 1
a
e−a(τ−ξ) ≤ 3

a
≤ 3e−aτ

a
e−a|ξ|

and for ξ ≥ τ ∫ τ

−∞
e−a|ξ−ν|dν =

1
a
e−a(ξ−τ) =

eaτ

a
e−a|ξ|

. Hence ∃K > 0, such that (3.1) holds.
A similar line of argument using the limiting equation at −∞, τ < 0 such that
∀ξ ≤ τ : ‖M(ξ)‖Rk−1 ≤ ε and

α−(ξ) =

{
1 ξ ≤ τ
0 ξ > τ
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proves the inequality for asymptotic hyperbolicity at −∞ and ξ ≤ 0.
Thus if L is asymptotically hyperbolic at both ±∞ then (3.1) holds ∀ξ ∈ R.
To prove the W k,p bound, we apply Young’s inequality to the convolution integrals in

(3.1).

∀0 ≤ i ≤ k − 1 : ‖x(i)‖Lp ≤ K‖ξ 7→ e−a|ξ|‖Lp‖x‖Wk−1,∞ +K‖ξ 7→ e−a|ξ|‖L1‖h‖Lp

Setting K ′′′ := K(‖ξ 7→ e−a|ξ|‖Lp + ‖ξ 7→ e−a|ξ|‖L1) we obtain

∀0 ≤ i ≤ k − 1 : ‖x(i)‖Lp ≤ K ′′′(‖x‖Wk−1,∞ + ‖h‖Lp) (3.3)

. Additionaly, as L′ is bounded, we conclude

‖x(k)‖Lp = ‖L′x+ h‖Lp
≤ ‖L′‖B(Wk−1,p,Lp)‖x‖Wk−1,p + ‖h‖Lp

≤ ‖L′‖B(Wk−1,p,Lp)kK
′′′
(
‖x‖Wk−1,∞ + ‖h‖Lp

)
+ ‖h‖Lp

≤
(

1 + ‖L′‖B(Wk−1,p,Lp)kK
′′′
)(
‖x‖Wk−1,∞ + ‖h‖Lp

) (3.4)

and the proof is finished.

Remark 3.1.2
Suppose L is asymptotically hyperbolic 1 ≤ p ≤ ∞ and take x ∈ W k,p with ΛLx = 0,
that is x ∈ kerΛL with ΛL : W k,p → Lp. Setting h = 0 and using Proposition 3.1.1
yields x(ξ) ∈ O(e−a|ξ|) as |ξ| → ∞. Hence ∀1 ≤ p ≤ ∞ : x ∈W k,p so we setting

K
p
L := {x ∈W k,p|ΛLx = 0} (3.5)

gives (an) indentical and well defined space(s), which we will denote by KL.

Lemma 3.1.3
Assume L is asymptotically hyperbolic, (xn) ∈ (W k,p)N bounded, (hn) ∈ (Lp)N with
∀n ∈ N : ΛLxn = hn, and hn → h∗ ∈ Lp in Lp. Then there exists a subsequence xnm
converging to some x∗ ∈W k,p in W k,p with ΛLx∗ = h∗.

Proof. Our goal is to use the Arzelà-Ascoli theorem yielding a limit in W k−1,p and to
prove it to be actually in W k,p and satisfying Equation (1.6).

Thus we first check the conditions for using the Arzelà-Ascoli theorem. This will yield
a convergence of a subsequence xnk to some limiting function in x∗ ∈ W k−1,p, but with
uniform convergence only on compact sets. We then show this convergence to be in
W k−1,∞. Using Proposition 3.1.1 it will follow, that xnk is in fact a Cauchy sequence in
W k,p and hence that it converges to a limit x′∗. By continuity such x′∗ has to satisfy the
differential equation and incidentally x∗ and x′∗ will coincide. As we are concurrently
examining convergence in different spaces in this proof, we shall try to always explicitly
state the space of convergence.
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We start by proving sufficient conditions for use of the Arzelà-Ascoli theorem. Since
the sequence is bounded in W k,p, it is also bounded in W k−1,∞, that is ∃C > 0 : ∀n ∈
N : ‖xn‖Wk−1,∞ < C

If p = ∞ it immediatly follows from boundedness in W k,∞ that ∀0 ≤ i ≤ k − 1 : the
sequence (x(i)

n ) is equicontinuous.
If p <∞ by Sobolev embedding x ∈W k−1,∞ so ∀ : 0 ≤ i ≤ k− 2 : the sequence (x(i)

n )
is equicontinuous. For i = k we need some more work: Let sgn(ξ) denote the sign of ξ
and define

Hn(ξ) =
∫ |ξ|

0
hn(sgn(ξ)ν)dν H∗(ξ) =

∫ |ξ|
0

h∗(sgn(ξ)ν)dν

. Then ∀ξ ∈ R:

‖Hn(ξ)−H∗(ξ)‖ = ‖
∫ |ξ|

0
hn(sgn(ξ)ν)− h∗(sgn(ξ)ν)dν‖

≤

(∫ |ξ|
0

(
‖ξ‖‖hn(sgn(ξ)ν)− h∗(sgn(ξ)ν)‖

)( 1
|ξ|

dν
)) p

p

≤ |ξ|
(∫ |ξ|

0
‖hn(sgn(ξ)ν)− h∗(sgn(ξ)ν)‖p

( 1
|ξ|

dν
)) 1

p

≤ |ξ|1−
1
p ‖hn − h∗‖Lp

by Jensen’s inequality. Hence Hn → H∗ uniformly on compacts interval and as such is
equicontinuous on compact intervals.

To show this we take a compact interval K ⊂ R and ξ ∈ K, ε > 0. As Hn → H∗
uniformly in K we obtain

∃N ∈ N : ∀n ≥ N : ∀ν ∈ K : ‖Hn(ν)−H∗(ν)‖ < ε

3

in K. Forall k < N : Hn is continuous, so

∀n < N : ∃δn > 0 : ∀ν ∈ K : |ξ − ν| < δ ⇒ ‖Hn(ξ)−Hn(ν)‖ < ε

3
< ε

. Additionally, asH∗ is continuous, such a δ∗ exists forH∗. Setting δ := min{δ1, · · · , δN−1, δ∗}
we get ∀ν ∈ K with |ξ − ν| < δ and ∀n ≥ N

‖Hn(ξ)−Hn(ν)‖ ≤ ‖Hn(ξ)−H∗(ξ)‖+ ‖H∗(ξ)−H∗(ν)‖+ ‖H∗(ν)−Hn(ν)‖ < ε

. Hence
∀ν ∈ K : ∀n ∈ N : ‖Hn(ξ)−Hn(ν)‖ < ε

. Moreover

‖(x(k−1)
n −Hn)(1)‖L∞ = ‖L′xn‖L∞ ≤ ‖L′‖Rk−1‖xn‖Wk−1,∞ ≤ ‖L′‖Rk−1C
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so the sequence (x(k−1)
n ) is equicontinuous on each compact interval.

To sum up ∀0 ≤ i ≤ k−1 the sequence (x(i)
n ) is uniformly bounded and equicontinuous

on each compact interval (regardless of p) and thus satisfies the conditions of the Arzelà-
Ascoli theorem on each compact interval.

Fix one such compact inteval K and consider all functions restricted to K. Applying
the Arzelà-Ascoli theorem to (xn|K) yields a subsequence (xnk |K) converging to some
x∗ ∈ C0

B(K) uniformly. This subsequence naturally has all the properties of (xn|K) with
additionally xnk |K → x∗. For convenience we now denote this subsequence by (xn).
Applying the Arzelà-Ascoli theorem to (x(1)

n |K) yields a subsequence (x(1)
nk |K) converging

to some g ∈ C0
B(K) uniformly. As the convergence is uniform we have necessarily that

g = x
(1)
∗ . Again denoting this subsequence by (xn|K) for convenience and thus proceeding

till k − 1 we end up with (xn|K) converging to x∗,K ∈ Ck−1
B (K) with convergence in

Ck−1
B (K).
As R is σ-compact we can find a subsequence converging on R by a classical di-

agonalization argument. Consider a decompostion R =
⋃∞
i=1Ki of R into compact

intervals Ki. The argument in the last paragraph yields a subsequence (xn1,k
)k∈N

converging to some y1 ∈ Ck−1
B (K1) uniformly in K1. (xn1,k

) has all the properties
of xn. We now can find a subsequence (xn2,k

)k∈N of (xn1,k
)k∈N converging to some

y2 ∈ Ck−1
B (K1). After inductively proceeding in this manner and setting nk := nk,k we

have ∀i ∈ N : xnk |Ki → yi ∈ Ck−1
B (Ki) with convergence in those Ck−1

B (Ki). As each
of those xnk is already in Ck−1

B (R) it follows that the pointwise limit x∗ = limk→∞ xnk
exists, that x∗ ∈ Ck−1

B (R) and that the convergence xnk → x∗ is actually in Ck−1
B (K)

for any a compact interval K. Recalling (xn) being bounded in W k,p we additionally
conclude x∗ ∈W k−1,p∩W k−1,∞. We now abuse notation and write (xn) for the obtained
converging subsequence.

Next we show this convergence to be in W k−1,∞. Proposition 3.1.1 is applicable to
xn, hn for any n ∈ N. We again stress the fact, that the constants in 3.1.1 do only depend
on L. Hence ∀n ∈ N,∀0 ≤ i ≤ k − 1,∀ξ ∈ R :

‖x(i)
n (ξ)− x(i)

∗ (ξ)‖ ≤ Ke−a|ξ|‖x(i)
n − x

(i)
∗ ‖Wk−1,∞ +K ′‖hn − h∗‖Lp

so for any τ > 0

sup
|ξ|≥τ
‖x(i)

n (ξ)− x(i)
∗ (ξ)‖ ≤ Ke−aτ‖x(i)

n − x
(i)
∗ ‖Wk−1,∞ +K ′‖hn − h∗‖Lp

≤ Ke−aτ (C + ‖x∗‖Wk−1,∞) +K ′‖hn − h∗‖Lp
(3.6)

. As we already know that on the compact interval [−τ, τ ] : ∀0 ≤ i ≤ k − 1 : x(i)
n → x

(i)
∗

uniformly we conclude

lim sup
n→∞

‖xn − x∗‖Wk−1,∞ ≤ Ke−aτ (C + ‖x∗‖Wk−1,∞) (3.7)

. As τ > 0 is arbitrary we have convergence in W k−1,∞.
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Hence (xn) is a Cauchy sequence in W k−1,∞ and naturally (hn) is one as well in Lp.
Fix ε > 0. Then taking K ′′ > 0 from Proposition 3.1.1 we have that

∃Nx ∈ N : ∀n,m ≥ Nx : ‖xn − xm‖Wk−1,∞ <
ε

2K ′′

∃Nh ∈ N : ∀n,m ≥ Nh : ‖hn − hm‖Lp <
ε

2K ′′

Hence applying (3.2) to xn − xm and setting N = max{Nx, Nh} we have

∀n,m ≥ N : ‖xn − xm‖Wk,p ≤ K ′′(‖xn − xm‖Wk−1,∞ + ‖hn − hm‖Lp) < ε (3.8)

. so (xn) is a Cauchy sequence. As W k,p is a Banach space the sequence is convergent
to some x′∗ ∈W k,p in W k,p and necessarily x∗ and x′∗ conincide. By continuity of ΛL we
finally obtain

ΛLx∗ = ΛL lim
n→∞

xn = lim
n→∞

ΛLxn = lim
n→∞

hn = h (3.9)

, which finishes the proof.

Corollary 3.1.4
Assume L is asymptotically hyperbolic. Then the kernel KL of the operator ΛL is finite
dimensional, i.e. ∀1 ≤ p ≤ ∞ : KL is a finite dimensional subspace of W k,p. As already
mentioned in remark 3.1.2 the kernel is independent from p by Proposition 3.1.1 so this
formulation is permitted.

Proof. We proceed by proving compactness of the unit ball in the kernel. Since this only
holds in finite dimensional spaces it would finish the proof. Let 1 ≤ p ≤ ∞.

Take any sequence (xn) ∈ (KL)N with ∀n ∈ N : ‖xn‖Lp ≤ 1. Set hn ≡ 0 as the zero
sequence in Lp. By Lemma 3.1.3 there exists a subsequence xnk converging to x∗ in
W k,p, with ΛLx∗ = 0. Hence x∗ ∈ KL. Thus the unit ball in KL ⊂W k,p is compact and
the proof is finished.

Before we start with formulating a Fredholm Alternative we list a small technical aid,
which can be and is directly taken from the original work [2] and is included for sake of
completeness. Note that directly copying the proof is only possible as we were able to
prove sufficiently strong extenstions to the original theorems in the preceding sections.

Corollary 3.1.5
Assume L is asymptotically hyperbolic. Then ∀1 ≤ p ≤ ∞ : ΛL(W k,p) ⊆ Lp is closed.

Proof. Let (hn) ∈ ΛL(W k,p)N, h∗ ∈ Lp with hn → h∗ in Lp. We need to show h∗ ∈
ΛL(W k,p).

By Corollary 3.1.4 KL is finite dimensional. Thus it is complemented in W k,p, that
is ∃E ⊂ W k,p closed linear subspace such that W k,p = KL ⊕ E. Certainly ΛL(E) =
ΛL(W k,p) so ∃(xn) ∈ EN : ∀n ∈ N : ΛLxn = hn.

Assume (xn) is bounded in W k,p. By Lemma 3.1.3 we obtain some x∗ ∈ W k,p such
that ΛLx∗ = h∗. Hence h∗ ∈ ΛL(W k,p).
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Figure 3.1: “Classical” dual correspondencies

If (xn) is unbounded, we take some subsequence (xnk) with ‖xn‖Wk,p →∞ (n→∞).
For convenience we now write (xn) for this subsequence. ∀n ∈ N set

yn := xn‖xn‖−1
Wk,p in := hn‖xn‖−1

Wk,p

. Then ∀n ∈ N : ΛLyn = in ∧ ‖yn‖Wk,p = 1 and in → 0 in Lp if n → ∞. With Lemma
3.1.3 we obtain, after passing to some subquence, that yn → y∗ in W k,p with ΛLy∗ = 0.
Hence y∗ ∈ KL and y∗ ∈ E. Thus y∗ ∈ ker ΛL∩E = {0}. However ∀n ∈ N : ‖yn‖Wk,p = 1,
so ‖y∗‖Wk,p = 1 which is a contradiction. Therefore (xn) is bounded and by the first
part of the proof x∗ ∈ ΛL(W k,p). Hence ΛL(W k,p) is closed.

3.2 The Fredholm Alternative

Assume L were asymptotically hyperbolic, the associated operator ΛL were Fredholm
and 1 ≤ p ≤ ∞. Then the “classical” Fredholm Alternative would yield dual correspon-
dencies as in Figure 3.2 and Definition 1.1.3. Unfortunately the duals of the Sobolev
spaces are generally not very nice to handle so we would prefer some special asymptot-
ically hyperbolic linear operator L∗(L) superseding any need to directly consider those
duals. We will show that this can indeed be done, yielding a duality structure as illus-
trated in 3.2 with some appropriately defined L∗ such that

ΛL(W k,p) = (KL∗)⊥Lp (3.10)

.

Definition/Lemma 3.2.1
Let L ∈ (Rk−1)R with matrix coefficients Ai,j : R → Cd×d uniformly bounded and
measurable as in 1.1.4. Then the family of operators L∗ ∈ (Rk−1)R defined by

L∗(ξ) : Ck−1
B ([−r+,−r−])→ Cd

ϕ 7→ (−1)k
N∑
i=1

k−1∑
j=0

(−1)j(Ai,j(ξ − ri))Tϕ(j)(−ri)
(3.11)

where ξ ∈ R, is called the adjoint ([2]) or quasidual (family) of L.
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Formulating our differential equation (1.1) for L∗ yields the adjoint equation or quasid-
ual equation

y(k)(ξ) = L∗(ξ)τ−ξy = (−1)k
N∑
i=1

k−1∑
j=0

(−1)j(Ai,j(ξ − ri))T y(j)(ξ − ri) (3.12)

Then the following hold for 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1.

1. (L∗)∗ = L

2. L has constant coefficients iff L∗ has constant coefficients

3. L is asymptotically autonomous iff L∗ is asymptotically autonomous

4. L is hyperbolic iff L∗ is hyperbolic

5. L is asymptotically hyperbolic iff L∗ is asymptotically hyperbolic

6. if L is asymptotically hyperbolic then KL∗ ⊆ ker ΛTL

Proof. 1, 2, 3 follow directly from definition.
Ad 4: Let ξ ∈ C, L be constant. Then

∆L∗(ξ) = ξk I −(−1)k
N∑
i=1

k−1∑
j=0

(−1)jATi,jξ
je−ξri

= (−1)k
(

(−ξ)k IT −
N∑
i=1

k−1∑
j=0

(−ξ)jATi,je−ξri
)

= (−1)k(∆L(−ξ))T

. Hence ∀ν ∈ R
det ∆L∗(iν) = (−1)kd det ∆L(−iν) (3.13)

so L is hyperbolic iff L∗ is hyperbolic.
5 follows directly from 3 and 4.
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Ad 6: Using integration by parts for Sobolev functions we obtain ∀x ∈ W k,p, y ∈
KL∗ ⊂W k,q ⊂ (Lp)∗

(ΛTLy)(x) =
∫

R

〈
y(ν), (ΛLx)(ν)

〉
dν

=
∫

R

〈
y(ν), x(k)(ν)−

N∑
i=1

k−1∑
j=0

Ai,j(ξ)x(j)(ν + ri)
〉
dν

=
∫

R

〈
(−1)ky(k)(ν)−

N∑
i=1

k−1∑
j=0

(−1)jATi,j(ν − ri)y(j)(ν − ri), x(ν)
〉
dν

= (−1)k
∫

R

〈
y(k)(ν)− (−1)k

N∑
i=1

k−1∑
j=0

(−1)jATi,j(ν − ri)y(j)(ν − ri), x(ν)
〉
dν

= (−1)k
∫

R

〈
(ΛL∗y)(ν), x(ν)

〉
dν

= (−1)k
∫

R

〈
0, x(ν)

〉
dν = 0

.

Lemma 3.2.2
Let 1 ≤ p, q ≤ ∞, p, q conjugated, L asymptotically hyperbolic. Then

ΛL(W k,p) = (KL∗)⊥Lp (3.14)

Proof. As our previous results are rather strong we can again use almost the exact
wording as in the original work [2]. By Corollary 3.1.5 ΛL(W k,p) is a closed linear
subspace. We recall some properties of annihilators and dual operators:

ΛL(W k,p) = (ΛL(W k,p)⊥)⊥ = (ker ΛTL)⊥ (3.15)

As always with Lp spaces the case 1 ≤ p <∞ is rather simple:
It is well known that C∞0 is dense in all Lp spaces. Hence W k,q lies dense in Lq so it

suffices to show that (ker ΛTL ∩W k,q) ⊆ KL∗ . Then

ker ΛTL = ker ΛTL ∩W k,q ⊆ KL∗ ⊆ ker ΛTL = ker ΛTL

by 3.2.1,6 would yield

(KL∗)⊥Lp = (KL∗
w∗)⊥Lp ⊆ (KL∗)⊥Lp = (ker ΛTL)⊥ ⊆ (KL∗)⊥Lp

where w∗ denotes closure in the weak-∗ topology on (Lp)∗.
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Assume y ∈ ker ΛTL ∩W k,q, ϕ ∈ S. Thus clearly ϕ ∈W k,p. Applying ΛTL to y yields

0 = (ΛTLy)(ϕ)

=
∫

R

〈
y(ν), (ΛLϕ)(ν)

〉
dν

=
∫

R

〈
y(ν), ϕ(k)(ν)−

N∑
i=1

k−1∑
j=0

Ai,j(ν)ϕ(j)(ν + ri)
〉
dν

=
∫

R

〈
y(ν), ϕ(k)(ν)

〉
dν −

N∑
i=1

k−1∑
j=0

∫
R

〈
ATi,j(ν − ri)y(ν − ri), ϕ(j)(ν)

〉
= (−1)k

((
(−1)k

∫
R

〈
y(ν), ϕ(k)(ν)

〉
dν
)

− (−1)k
N∑
i=1

k−1∑
j=0

(−1)j
(

(−1)j
∫

R

〈
ATi,j(ν − ri)y(ν − ri), ϕ(j)(ν)

〉
dν
))

. Therefore y satisfies the quasidual equation tempered distributionally. As y ∈ W k,q

it follows that y ∈ KL∗ and the proof is finished for finite p.
Now assume p = ∞. We use a more direct approach as for the finite case. We claim

that any h ∈ L∞ can be written as h = h1 + h2 such that h1 ∈ ΛL(W k,p) and h2 has
compact support.

Assume this were proven and h ∈ (ker ΛL∗)⊥. Since h = h1 + h2 and by 3.2.1,6
h1 ∈ (ker ΛTL)⊥ ⊆ (KL∗)⊥Lp we get h2 ∈ (KL∗)⊥Lp as this is clearly a closed linear space.
As h2 ∈ L∞ and h2 has compact support it follows that ∀1 ≤ p′ <∞ : h2 ∈ Lp

′
as well

and moreover h2 ∈ (KL∗)⊥Lp′ . Fix any such p′.
By the first (finite p) part of the Lemma we thus have h2 ∈ ΛL(W k,p′) so ∃x ∈W k,p′ :

ΛLx = h2. Using the Sobolev embedding we get x ∈ W k−1,∞ and hence by L∞ bound-
edness of h2 and using boundedness of the differential operator L′ ∈ B(W k−1,∞, L∞) we
obtain that x ∈ W k,∞. Hence h2 ∈ ΛL(W k,∞) so h = h1 + h2 ∈ ΛL(W k,∞). Together
with 3.2.1, 6 finally

(KL∗)⊥Lp ⊆ ΛL(W k,∞) = (ker ΛTL)⊥ ⊆ (KL∗)⊥Lp

.
To obtain such a decomposition h = h1 +h2 as above, it is sufficient to find x ∈W k,∞

such that Equation (1.1) holds for large |ξ|, say for |ξ| ≥ τ . Then setting h1 = ΛLx and
h2 = h− h1 we have h1 ∈ ΛL(W k,∞) and h2 ∈ L∞ with supp(h2) ⊆ [−τ, τ ]. We employ
a construction used in the proof of Proposition 3.1.1.
L is asymptotically hyperbolic. Therefore ∃L+, L− ∈ Rk−1,M+,M− ∈ (Rk−1)R such
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that

∀ξ ∈ R : L(ξ) = L+ +M+(ξ) = L− +M−(ξ)
‖M+(ξ)‖Rk−1 → 0 (ξ →∞)
‖M−(ξ)‖Rk−1 → 0 (ξ → −∞)

. Let τ0 > 0 and set

α+(ξ) =

{
0 ξ < τ0

1 ξ ≥ τ0

α−(ξ) =

{
1 ξ ≤ −τ0

0 ξ > −τ0

L1(ξ) = L+ + α+(ξ)M+(ξ) L2(ξ) = L− + α−(ξ)M−(ξ)

. By Theorem 2.2.2 we can choose τ0 sufficiently large such that ΛL1 ∈ B(W k,∞, L∞)
and ΛL2 ∈ B(W k,∞, L∞) are isomorphisms. Then with x+ = Λ−1

L1
h and x− = Λ−1

L2
h we

have

∀ξ ≥ τ0 : x
(k)
+ = L(ξ)τ−ξx+ ∀ξ ≤ −τ0 : x

(k)
− = L(ξ)τ−ξx−

. Now if β ∈ Ck(R,R) : β|(∞,0] = 0, β|[1,∞) = 1 the function defined by

x(ξ) := β(ξ)x+(ξ) + β(−ξ)x−(ξ) (3.16)

satisfies Equation (1.1) for |ξ| ≥ (2 + τ0 + max1≤i≤N |ri|) and the proof is finished.

Summarizing some of our results we get

Theorem 3.2.3 (A Fredholm Alternative)
Assume all our assumptions hold and that L is asymptotically hyperbolic, 1 ≤ p, q ≤ ∞
and that p, q are conjugated. Then

1. ΛL is Fredholm

2. ker ΛL is independent of p

3. ΛL(W k,p) = (KL∗)⊥Lp and ΛL∗(W k,q) = (KL)⊥Lq

4. dim ker ΛL∗ = codim ΛL(W k,p), dim ker ΛL = codim ΛL∗(W k,q), ind ΛL = − ind ΛL∗

5. If L is a hyperbolic constant coefficient operator then ΛL is an isomorphism

Proof. Ad 1: By Corollary 3.1.4 : dim ker ΛL < ∞ and dim ker ΛL∗ < ∞. By Lemma
3.2.2 : codim ΛL(W k,p) = codim(ker ΛL∗)⊥ = dim ker ΛL∗ <∞. Thus ΛL is Fredholm

Ad 2: see remark 3.1.2 and Proposition 3.1.1
Ad 3: by Definition/Lemma 3.2.1 and 3.2.2,1
Ad 4: by 3.2.2 and 3.2.1,1:

ind ΛL = dim KL − codim ΛL(W k,p) = codim ΛL∗(W k,q)− dim KL∗ = − ind ΛL∗

Ad 5: see Theorem 2.1.2
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4 An Application

In the orignal work [2], Mallet-Paret not only introduces the beforementioned but also
several results on calculating the Fredholm index. To make up for this obivous lack of
content we dwelve into [3].

Obtaining (formal) solutions to linear equations is fairly easy along the lines of 2.1.2.
Hence one might consider applications to nonlinear equations.

We faithfully reproduce parts of [3] which i.a. showcases such an application to first
order equations and d = 1 by using [2] to ascertain conditions for use of the implicit
function theorem. Of course the original work contains more and more interesting find-
ings so again we refer the interested reader to the orginal papers for further reading and
references.

4.1 Preliminaries

Consider the following nonlinear autonomous equation with shifts ri as in 1.1.1 and let
p = ∞. Unless stated otherwise we are now examining real functions only, but still as
part of complex function spaces. Consider

− cx(1)(ξ) = F (x(ξ + r1), x(ξ + r2), x(ξ + rN ), ρ) (4.1)

for ξ ∈ R, x ∈ W 1,∞(R,R) ⊆ W 1,∞(R,C), c ∈ R \{0}, ρ ∈ V , where overlineV is
the closure of an open subset V of some Banach space, and additionally the following
properties hold.

(i) F : RN ×V → R, (u, ρ) 7→ F (u, ρ) is C1. DuF : RN ×V → RN is locally lipschitz
in u.

(ii) ∀ρ ∈ V : ∃U(ρ) ⊆ {2, · · · , N} : U(ρ) 6= ∅ such that

a) ∀j ∈ U(ρ) : ∀u ∈ RN : ( ∂
∂uj

F )(u, ρ) > 0

b) ∀j ∈ {2, · · · , N} \ U(ρ) : F (u, ρ) independent of uj
.

(iii) Setting

Φ : R×V → R
(x, ρ) 7→ F (x, · · · , x, ρ)
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this function satisfies ∀ρ ∈ V : ∃q(ρ) ∈ [−1, 1] :

∀x ∈ (−∞,−1) ∪ (q(ρ), 1) : Φ(x, ρ) > 0
∀x ∈ (−1, q(ρ)) ∪ (1,∞) : Φ(x, ρ) < 0

Φ(−1, ρ) = Φ(q(ρ), ρ) = Φ(1, ρ) = 0

and ∀ρ ∈ V : q(ρ) ∈ (−1, 1).

(iv) For this q(ρ) additionally

D1Φ(−1, ρ) < 0 if q(ρ) > −1
D1Φ(1, ρ) < 0 if q(ρ) < 1

D1Φ(q(ρ), ρ) > 0 if q(ρ) ∈ (−1, 1)

.

We specifically seek real solutions joining the equilibria ±1, that is solutions x ∈ RR

satisfying the boundary conditions

lim
ξ→−∞

x(ξ) = −1 lim
ξ→∞

x(ξ) = 1 (4.2)

As c 6= 0 the equation implies that solutions to (4.1) are at least C2 smooth and that x
and x(1) are uniformly continuous.

Using (iv) and assuming q(ρ) ∈ (−1, 1) we can apply the implicit function theorem
and obtain that ρ 7→ q(ρ) is C1. For convenience we additionally introduce

W := {ρ ∈ V | − 1 < q(ρ) < 1} (4.3)

.
First we present some technical aids. Let G : R×RN → R satisfy

G : R×RN → R, (ξ, u) 7→ G(ξ, u) is continuous and locally lipschitz in u (4.4a)

∀ξ ∈ R : ∀u ∈ RN : ∀j ∈ {2, · · · , N} : (
∂

∂uj
G)(ξ, u) ≥ 0 (4.4b)

as appear in (4.1) at specific values of ρ ∈ V . Note that local lipschitz continuity implies
existance of ∂

∂ui
in a weak sense.

Let c ∈ R \{0}, J ⊆ R an interval, J# := J+{ri|1 ≤ i ≤ N} and x : R→ R, satisfying

x|J# ∈ C(J#,R) (4.5a)

x|J ∈ C1(J,R) (4.5b)

∀ξ ∈ J : −cx(1)(ξ) = G(ξ, x(ξ + r1), · · · , x(ξ + rN )) (4.5c)
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be called a solution to (4.1) on J , as might appear from (4.1) for specific values of ρ or
linearizatins about particular solutions. If c = 0 by a solution we only mean a function
x : R→ R (possibly discontinuous) satisfying

∀ξ ∈ J : G(ξ, x(ξ + r1), · · · , x(ξ + rN )) = 0 (4.6)

and no further regularity properties.

Lemma 4.1.1
Assume G as in (4.4), c ∈ R \{0}, x1, x2 as in (4.5) and assume further that

∀ξ ∈ R : x1(ξ) ≥ x2(ξ) (4.7a)
∃τ ∈ R : x1(τ) = x2(τ) (4.7b)

. If c > 0 then ∀ξ ≥ τ : x1(ξ) = x2(ξ). If c < 0 then ∀ξ ≤ τ : x1(ξ) = x2(ξ).

Proof. Set y := x1 − x2. Then by (4.7) y ≥ 0 and y(τ) = 0. We recall r1 = 0 and by
(4.4b) obtain

−cy(1)(ξ) = G(ξ, x1(ξ + r1), x1(ξ + r2), · · · , x1(ξ + rN ))−G(ξ, x2(ξ + r1), · · · , x2(ξ + rN ))
= G(ξ, x2(ξ) + y(ξ), x1(ξ + r2), · · · , x1(ξ + rN ))−G(ξ, x2(ξ), · · · , x2(ξ + rN ))

Setting

H(ξ, y) := −1
c
G(ξ, x2(ξ) + y, x1(ξ + r2), · · ·

it follows that ∀ξ ∈ R : H(ξ, 0) ≤ 0 and that y is a solutions to the initial value problem
y(1)(ξ) = H(ξ, y(ξ)), ξ ≥ τ, y(τ) = 0. Hence it follows that y ≤ 0. Assume this were not
true. Then τ0 := sup{τ1 ≥ τ |∀ξ ≤ τ1 : y(ξ) ≤ 0} would exist. As H is continuous and
locally Lipschitz in the second argument, the Picard-Lindelöf theorem implies that for
some ε > 0 this initial value problem possesses a unique solution on [τ0, τ0 + ε]. This
solution must coincide with y on [τ0, τ0 + ε] and can be obtained by the limit of the
Picard iteration.

Hence ∀ξ ∈ [τ0, τ0 + ε] : y(ξ) = limn→∞ yn(ξ) where

y0(ξ) := y(τ0) = 0

By induction we have ∀ξ ∈ [τ0, τ0 + ε] : ∀n ∈ N : yn(ξ) = 0 as y ≥ 0 and for n ∈ N and
ξ ∈ [τ0, τ0 + ε]

yn(ξ) = yn−1(ξ)︸ ︷︷ ︸
=0

+
∫ ξ

τ0

H(ξ, yn−1(ξ)︸ ︷︷ ︸
=0

dξ

︸ ︷︷ ︸
≤0

≤ 0

. Thus y|[τ0,τ0+ε] = 0 which is a contradiction to the definition of τ0 so ∀ξ ≥ τ : y(ξ) = 0.
Likewise if c < 0 then ∀ξ ≤ τ : y(ξ) = 0.
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Lemma 4.1.2
Assume G as in (4.4), c ∈ R, x1, x2 as in (4.5) for some interval J ⊆ R and additionally
that (4.4b) is strict, that is

∀ξ ∈ R : ∀u ∈ RN : ∀j ∈ {2, · · · , N} : (
∂

∂uj
G)(ξ, u) > 0 (4.8)

. If ∃τ ∈ J :

[τ + r−, τ + r+] ⊆ J (4.9a)
∀ξ ∈ [τ + r−, τ + r+] : x1(ξ) = x2(ξ) (4.9b)

then one of the two following holds.

∀ξ ∈ J# ∩ (−∞, τ + r+] : x1(ξ) = x2(ξ) (4.10a)
r− = 0 ∧ c = 0 (4.10b)

The analogous result holds for [τ + r−,∞) and r+.

Proof. As J contains a closed interval of length r+ − r−, J# is a closed interval too.
Now assume (4.10a) does not hold. Hence by continuity ∃τ0 ∈ J# ∩ (∞, τ + r−]

∀ξ ∈ [τ0, τ + r+] : x1(ξ) = x2(ξ)

∀ε > 0 : ∃ξ ∈ J# ∩ (τ0 − ε, τ0) : x1(ξ) 6= x2(ξ)

. The second property implies that there exists some open (in R) neighbourhood U ⊆ J#

of τ0 and the same applies to τ0 − r− ∈ (τ0, τ) ⊆ J#.
Assume further that r− < 0. Without loss of generality let r− = r2. Let ε > 0 :

τ0−r−−ε ∈ J# and ∀j 6= 2 : τ0−r−−ε+rj > τ0. Consider (ξ ∈ τ0−r2−ε, τ0−r2) ⊆ J .
By assumption ∀j 6= 2 : x1(ξ + rj) = x2(ξ + rj). As τ > τ + r2 − r2 > τ0 − r2 >
ξ > ξ + r2 > τ0 − r2 − ε > τ0 there exists some open neighbourhood U ⊆ (τ0, τ) ⊆ J ,
of ξ. Hence if c 6= 0 if follows that x(1)

1 (ξ) = x
(1)
2 (ξ). Recall that if c = 0 then for

j ∈ 1, 2 : G(ξ, xj(ξ + r1), · · · , xj(ξ + rN )) = 0. Thus ∀c ∈ R :

G(ξ, x1(ξ + r1), · · · , x1(ξ + rN )) = G(ξ, x2(ξ + r1), · · · , x2(ξ + rN ))
= G(ξ, x1(ξ + r1), x2(ξ + r2), x1(ξ + r3), · · · , x1(ξ + rN ))

. Using the strict inequality (4.8) it follows that x1(ξ+ r−) = x2(ξ+ r−) where ξ+ r− <
τ0 − r− + r− = τ0, which contradicts the definition of τ0. Hence r− = 0.

It remains to be shown that r− = 0 ⇒ c = 0. Assume r− = 0, c 6= 0. As G is locally
lipschitz, solutions to (4.5) and (4.9b) are uniquely determined in backwards direction,
i.e. J# ∩ (−∞, τ + r+]. So (4.10a).

The proof for ξ ≥ τ + r− follows similar lines.
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4.2 Linear Equations

In the next part we reproduce some results on linear equations.
We consider linear equations, which may arise from linearizations about particular

solutions (compare to (1.1), 1.1.4) in spaces of functions mapping to C as in the prelimi-
naries of this thesis, even though the better part of the remaining thesis deals exclusively
with real solutions.

Consider

− cx(1)(ξ) = L(ξ)
(
τ−ξx

)
+ h(ξ) =

N∑
i=1

Ai(ξ)x(ri + ξ) + h(ξ) (4.11)

where all the asumptions made in the preliminary section hold and additionallyAi = Ai,0
are continuous. For sake of convenience introduce

Λc,L : W 1,∞ → L∞

(Λc,Lx)(ξ) := (−cΛ− 1
c
Lx)(ξ) = −cx(1)(ξ)−

N∑
i=1

Ai(ξ)x(ξ + ri) (4.12)

Kc,L := ker Λc,L (4.13)

Rc,L := Λc,L(W 1,∞) (4.14)

We recall that by Proposition 3.1.2 the kernel is independent of the W k,p space Λc,L =
−cΛ− 1

c
L is defined on and our Fredholm Alternative theorem 3.2.3 gives

Rc,L =
(
Kc,L∗

)
⊥L∞ = {h ∈ L∞|∀y ∈ Kc,L∗ :

∫
R
h(ξ)y(ξ)dξ = 0} (4.15)

.
As a special case also consider the homogeneous constant coefficient equation

− cx(1)(ξ) = L0

(
τ−ξx

)
=

N∑
i=1

Aix(ri + ξ) (4.16)

for which in accordance to (1.9) and (1.7) we introduce

∆c,L0(ξ) := −c∆− 1
c
L0

(ξ) = −cξ −
N∑
i=1

Aie
ξri (4.17)

. We remark that using this definition ∆c,L0 and ∆− 1
c
L0

both can be used to determine
hyperbolicity of the system (4.16).

For such a constant coefficient system we define its eigenvalues to be the point spec-
trum of −1

cL
′
0 (see (1.5)) that is

σc,L0
:= σp(−

1
c
L′0) =

(
∆− 1

c
L′0

)−1({0}) =
(
∆−1
c,L0

)({0}) = {ξ ∈ C | − cξ −
N∑
i=1

Aie
ξri = 0}

(4.18)
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To any such λ ∈ σc,L0 corresponds a finite dimensional set of eigensolutions x of the
form eλξp(ξ) with some polynomial function p, that is functions satisfying

− cλx(ξ) = −c
(
−1
c

N∑
i=1

Aix(ξ + ri)
)

=
N∑
i=1

Aix(ξ + ri) = −cx(1)(ξ) (4.19)

Later we will impose additional restrictions on Ai stemming from the original problem
(4.1). To avoid writing them down several times we will list them here.

From (ii) we will later obtain

∃α1 ∈ R,∃α2, · · · , αN ∈ (0,∞),∃β1, · · · , βN ∈ R : ∀ξ ∈ R : αi ≤ Ai(ξ) ≤ βi (4.20)

and
A1 ∈ R, A2, · · · , AN ∈ (0,∞) (4.21)

for constant coefficient systems. In some instances we will impose these restrictions only
for some interval [τ,∞) or (−∞, τ ], e.g. when studying asymptotic behaviour in only
one direction.

Set

AΣ,L0
:=

N∑
i=1

Ai = −∆c,L0(0) (4.22)

. Then the linear constant coefficient equivalent to (iv) is

AΣ,L0 < 0 (4.23)

.
For further use with asymptotically hyperbolic systems We write L+, L− for the lim-

iting constant coefficient operators at ∞,−∞. We recall and (re)define

L(ξ)ϕ =
N∑
i=1

Ai(ξ)ϕ(ri)

L+ϕ =
N∑
i=1

Ai,+ϕ(ri)

L−ϕ =
N∑
i=1

Ai,−ϕ(ri)

AΣ,+ := AΣ,L+

AΣ,− := AΣ,L−

lim
ξ→∞

Ai(ξ) = Ai,+

lim
ξ→−∞

Ai(ξ) = Ai,−

(4.24)

as in 1.1.4 and 1.1.6.
First we show some results on solutions and eigenvalues of constant coefficient systems,

as obtaind from the limiting equations in asymptotically hyperbolic linear systems.
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Lemma 4.2.1
Let Ai ∈ R, b ∈ R, c ∈ R \{0}, ε > 0, F ⊂ σc,L0 a finite set of eigenvalues, W 1,∞(R,R) 3
y 6= 0 a nontrivial solution to the linear Equation (4.11) given by a finite sum of eigen-
solutions to eigenvalues λ ∈ F . Let ∀λ ∈ F : Reλ = −b and x ∈ RR satisfy

x− y ∈ O(ξ 7→ e−(b+ε)ξ) (ξ →∞) (4.25)

. If ∀λ ∈ F : Imλ 6= 0, then there are arbitrarily large ξ such that x(ξ) > 0 and x(ξ) < 0,
i.e. ∀τ > 0 : ∃ξ1, ξ2 ≥ τ : x(ξ1) > 0, x(ξ2) < 0. If F = {−b} then ∃τ > 0 : ∀ξ ≥ τ :
x(ξ) 6= 0. The analogous results holds for ξ → −∞.

Proof. First assume ∀λ ∈ F : Imλ 6= 0. Recalling x ∈ RR we can, without loss of
generality, assume that all functions are R valued . Hence

y(ξ) = Rey(ξ) = Re
M∑
j=1

eλjξpj(ξ)

=
M∑
j=1

e−bξcos(Imλjξ)pj(ξ)

= e−bξξL
( M∑
j=1

cjcos(Imλjξ) + ξ−L
M∑
j=1

Rj(ξ)cos(Imλjξ)
)

for λj ∈ F ;M ∈ N, L = max deg pj the maximal degree of the real nontrivial polynomial
functions pj where ξ 7→ eλjξpj(ξ) are eigensolutions to eigenvalues λj ∈ F and Rj
are residual functions in the decomposition pj(ξ) = cjξ

L + Rj(ξ)) with degRj < L.
By assumption of y being nontrivial q(ξ) =

∑M
j=1 cjcos(Imλjξ) defines a quasiperiodic

function of mean value 0. In particular

lim inf
ξ→∞

q(ξ) < 0 < lim sup
ξ→∞

q(ξ)

. For ξ →∞ we now have that

ξ−Lebξx(ξ)− q(ξ) ∈ O(ξ 7→ ξ−1)

As q takes both signs for large ξ so does ξ 7→ ξ−Mebξx(ξ) and thus x.
If F = {−b} then y(ξ) = e−bξp(ξ) for some real polynomial function p. Hence taking

the leading coefficient of p to be cL with L = deg p we have

lim
ξ→∞

ξ−Jebξx(ξ) = cL 6= 0

So x(ξ) 6= 0 for large ξ.

Next we reproduce some lemmata on the existance of certain eigenvalues which will
later enable us to give exponential bounds for solutions to the linear Equation (4.11).
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Lemma 4.2.2
Assume that Ai as in (4.21), a ∈ R, c ∈ R \{0}.

If ∆c,L0(a) > 0 then ∀µ ∈ R : ∆c,L0(a+ iµ) 6= 0
If ∆c,L0(a) = 0 then ∀µ ∈ R \{0} : ∆c,L0(a+ iµ) 6= 0

Proof. Suppose ∆c,L0(a) ≥ 0 and µ ∈ R : ∆c,L0(a + iµ) = 0. Then recalling r1 = 0 we
have both

c(a+ iµ) +A1 = −
N∑
i=2

Aie
ri(a+iµ)

ca+A1 ≤ −
N∑
i=2

Aie
ria

. Hence as ∀λ ∈ C : |Reλ| ≤ |λ| we get

− (ca+A1) ≤ |ca+A1| ≤ |c(a+ iµ) +A1| = |
N∑
i=2

Aie
riaeiriµ| ≤

N∑
i=2

Aie
ria1 ≤ −(ca+A1)

(4.26)
. Thus all the inequalities are actually equalities so it follows that ∆c,L0(a) = 0.

Suppose ∆c,L0(a) = 0. Then ∆c,L0(a) ≥ 0 still holds and (4.26) gives

|ca+A1|2 = |c(a+ iµ) +A1|2 = |ca+A1|2 + |ciµ|2

. So cµ = 0. As c 6= 0 it follows that µ = 0.

Proposition 4.2.3
Assume again that c 6= 0, Ai as in (4.21) and additonally that (4.23) holds, that is

AΣ :=
N∑
i=1

Ai < 0 (4.27)

and consider the corresponding operator L0.
Then Λc,L0 is hyperbolic and there exist at most one real positive eigenvalue λ+ ∈

(0,∞) and one real negative eigenvalue λ− ∈ (−∞, 0). As a convention we write λ− =
−∞, respectively λ+ =∞, whenever one of those real eigenvalues does not exist.

These eigenvalues, whenever they actually exist, are simple, that is ∆(1)
c,L0

(λ±) 6= 0,
and depend C1 smoothly on both c and the coefficients Ai.

Furthermore whenever λ− exists, resp. λ+ exists

∂

∂c
λ± < 0 (4.28)

Additionally
∀ξ ∈ (λ−, λ+) : ∆c,L0(ξ) > 0 (4.29)

and
∀λ ∈ σc,L0 \ {λ−, λ+} : Reλ ∈ (−∞, λ−) ∪ (λ+,∞) (4.30)

with the conventions (−∞,−∞) = (∞,∞) = ∅.
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Proof. (4.22) implies that ∆c,L0(0) = −AΣ > 0. Hence by Lemma 4.2.2 ∀ξ ∈ R :
∆c,L0(iξ) 6= 0 so L0 is hyperbolic.

Consider f : R→ R, ξ 7→ ∆c,L0(ξ). Then f ∈ C2(R,R), f(0) > 0 and ∀ξ ∈ R

f (2)(ξ) = −
N∑
i=2

Ai︸︷︷︸
>0

r2
i e
riξ < 0

. The mean value theorem implies f and thus ∆c,L0 possessing at most one zero in each
(−∞, 0) and (0,∞).

By continuity ∀ξ ∈ (λ−, λ+) : ∆c,L0(ξ) > 0.
By Lemma 4.2.2 we know

∀a, ν ∈ R : ∆c,L0(a+ iν) = 0⇒ ∆c,L0(a) ≤ 0

. Hence

Re(σc,L0 \ {λ−, λ+}) ⊆ ∆−1
c,L0

((−∞, 0))

= (−∞, λ−) ∪ (λ+,∞)

with ∆c,L0 being interpreted as ∈ RR.
Writing L0 = L0(A1, · · · , AN ) and setting

H(ξ, c, A1, · · · , AN ) := ∆c,L0(A1,··· ,AN )(ξ)

we get ( ∂
∂ξ
H
)

(λ±, c, A1, · · · , AN ) = ∆(1)
c,L0(A1,··· ,AN )(λ

±) ≶ 0 (4.31)

whenever those eigenvalues exist, for example by applying the mean value theorem again.
This implies that these real eigenvalues are simple.
H : RN+2 → R being C1, H(λ±, c, A1, · · · , AN ) = 0 and

(
∂
∂ξH

)
(λ±, c, A1, · · · , AN ) ≶

0 enable us to use the implicit function theorem yielding λ± : RN+1 → R, (γ, α1, · · · , αN ) 7→
λ±(γ, α1, · · · , αN ) is C1 in some neighbourhood of (c, A1, · · · , AN ).

Furthermore by implicit differentiation, fixingA1, · · · , AN and setting λ±(c) = λ±(c, A1, · · · , AN )
we have( ∂

∂c
λ±
)

(c) = −
( ∂
∂ξ
H
)

(λ±(c), c, A1, · · · , AN )

)−1( ∂
∂c
H
)

(λ±(c), c, A1, · · · , AN )

= ∆(1)
c,L0(A1,··· ,AN )(λ

±(c))−1λ±(c)

< 0

by definitions of λ± and (4.31)

The next lemma gives some insight into conditions for existance of these eigenvalues.
We will occasionally speak of finite and infinite real eigenvalues instead of existing and
nonexisting real eigenvalues as already set forth in preceding conventions.
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Lemma 4.2.4
Assume that (4.20) hold for some Ai ∈ R. Let c ∈ R \{0}. Then

λ+ =∞⇔ r+ = 0 ∧ c < 0
λ− = −∞⇔ r− = 0 ∧ c > 0

(4.32)

.

Proof. ⇒: As existance of eigenvalues boils down to zeroes of ∆c,L we study conditions
for ∆c,L(ξ) 6= 0, that is ∆c,L(ξ) > 0 by continuity and ∆c,L(0) > 0.

0 < ∆c,L0(ξ) = −cξ −
N∑
i=1

Aie
riξ = −cξ −A1 −

N∑
i=2

Aie
riξ

︸ ︷︷ ︸
>0

(4.33)

If λ+ does not exist, then ∀ξ > 0 : ∆c,L0(ξ) > 0. Then the last summand in (4.33) is
bounded for ξ → ∞. Hence r+ = 0. Additionally ∃τ > 0 : ∀ξ ≥ τ : −cξ > 0 must
necessarily hold, so c < 0. If λ− does not exist, then ∀ξ < 0 : ∆c,L0(ξ) > 0. Then
the last summand in (4.33) is bounded for ξ → −∞. Hence r− = 0. Additionally
∃τ < 0 : ∀ξ ≤ τ : −cξ > 0 must necessarily hold, so c > 0. ⇐: Consider ∆c,L0 as
∈ C1(R,R). Calculating its derivative we obtain

∆(1)
c,L0

(ξ) = −c−
N∑
i=2

Airie
riξ (4.34)

So if c < 0, r+ = 0 then ∀ξ > 0 : ∆c,L0(ξ) ≥ 0. If c > 0, r− = 0 then ∀ξ < 0 :
∆(1)
c,L0

(ξ) ≤ 0. By using continuity and an application of the mean value theorem the
proof is finished.

Now we obtain our first results on asymptotics of solutions to (4.11).

Proposition 4.2.5
Consider (4.11) on [τ,∞) for some τ ∈ R. Assume that c 6= 0, Ai, αi, βi satisfy (4.20) on
[τ,∞). Assume x : J# → [0,∞) is a solution to (4.11) on J := [τ,∞) as in (4.5).

Then ∃a, b ∈ R, R ∈ [0,∞) such that

∀ξ ≥ τ +R : ax(ξ) ≤ x(1)(ξ) ≤ bx(ξ) (4.35)

. The analogous result holds for (−∞, τ ].

Proof. The case (−∞, τ ] can be handled by a change of variable ξ → −ξ and considering
the linear equation for −c and Ãi(ξ) = Ai(−ξ), r̃i = −ri, which fulfills all requirements
of this Proposition.

Hence consider the case [τ,∞). Assume c > 0.
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We have ∀ξ ≥ τ :

x(1)(ξ) = −1
c︸︷︷︸

<0

N∑
i=1

Aj(ξ)x(ξ + ri)

= −1
c
A1(ξ)x(ξ)− 1

c

N∑
i=2

Ai(ξ)x(ξ + ri)︸ ︷︷ ︸
≥0

≤ −1
c
A1(ξ)x(ξ) ≤

(
−1
c
α1

)
x(ξ)

(4.36)

. Setting b := −1
cα1 establishes the right hand inequality in (4.35)

For the left hand inequality first consider the case r− < 0. Let y(ξ) = e−bξx(ξ).
Then ∀ξ ≥ τ : y(1)(ξ) ≤ 0. Set ε = 1

2 |max{ri|ri < 0}|. Fix ξ1 > τ − r− + ε. For any
ξ ∈ [τ − r−, ξ1] we get ∀i ∈ 1, · · · , N : ξ + ri ≥ τ . By applying the bounds (4.20) and
(4.36) we obtain

y(1)(ξ) = −be−bξx(ξ)− 1
c
e−bξ

N∑
i=1

Ai(ξ)x(ξ + ri)

= (−1
c
A1(ξ)− b)︸ ︷︷ ︸

≤−c−1α1−b=b−b=0

y(ξ)− 1
c

N∑
i=2

Ai(ξ)ebriy(ξ + ri)

≤ −1
c

N∑
i=1

αie
briy(ξ + ri)︸ ︷︷ ︸
≥0 for all i

≤ −1
c

∑
ri<0

αie
bri y(ξ + ri)︸ ︷︷ ︸
≥y(ξ1+ri)≥y(max{ξ1+ri|ri<0})=y(ξ1−2ε)

≤ −1
c

(∑
ri<0

αie
bri
)
y(ξ1 − 2ε)

(4.37)

. Integrating (4.37) over [ξ1 − ε, ξ1] ⊆ [τ − r−, ξ1] yields

−y(ξ1 − ε) ≤ y(ξ1)− y(ξ1 − ε) =
∫ ξ1

ξ1−ε
y(1)(ξ) ≤ −1

c

(∑
ri<0

αie
bri
)∫ ξ1

ξ1−ε
y(ξ1 − 2ε)

= −1
c
ε
(∑
ri<0

αie
bri
)

︸ ︷︷ ︸
>0

y(ξ1 − 2ε)

. Thus setting C := cε−1
(∑

ri<0 αie
bri
)−1

we obtain

y(ξ1 − 2ε) ≤ Cy(ξ1 − ε)
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. So if δ ∈ [0, ε] and ξ ≥ τ − r− then ξ + ε satisfies the conditions imposed on ξ1

making the last inequality applicable to ξ + ε. Hence by using the last inequality and
y’s monotonicity

∀ξ ≥ τ − r− : ∀δ ∈ [0, ε] : y(ξ− δ) ≤ y(ξ− ε) = y
(
(ξ+ ε)−2ε

)
≤ Cy

(
(ξ+ ε)− ε

)
= y(ε)
(4.38)

. Assume ξ ≥ τ − r− and r < 0 such that ξ + r ≥ τ − r−. Then using b·c : R→ Z, ξ 7→
max{z ∈ Z |z ≤ ξ} we observe ξ ≥ ξ −

(
1 + b |r|ε c

)
ε ≥ ξ − ε so repeated application of

(4.38) yields

∀ξ ≥ τ − r− : ∀r ≥ τ − r− − ξ : y(ξ + r) ≤ y(ξ −
(
1 + b |r|

ε
c
)
ε) ≤ C1+b |r|

ε
cy(ξ) (4.39)

. If ξ ≥ τ − 2r− then ∀i ∈ {1, · · · , N} : ξ + ri ≥ τ − r−. Using the second line of (4.37)
and (4.39) we get

y(1)(ξ) =
(
−1
c
A1(ξ)− b)y(ξ)− 1

c

∑
ri>0

Ai(ξ) y(ξ + ri)︸ ︷︷ ︸
≤y(ξ)

−1
c

∑
ri<0

Ai(ξ) y(ξ + ri)︸ ︷︷ ︸
≤C1+b |ri|ε cy(ξ)

≥
(
−1
c

(∑
ri≥0

βi −
∑
ri<0

βiC
1+b |ri|

ε
c)− b)y(ξ)

(4.40)

for such ξ and hence setting a := −1
c

(∑
ri≥0 βi −

∑
ri<0 βiC

1+b |ri|
ε
c) yields

∀ξ ≥ τ − 2r− : x(1)(ξ) ≥ bx(ξ) + (a− b)x(ξ) = ax(ξ) (4.41)

.
If r− = 0 then, with y(ξ) = e−bξx(ξ) as before, we again have ∀ξ ≥ τ : y(1)(ξ) ≤ 0 and
∀ : i ∈ 1, · · · , N : y(ξ + ri) ≤ y(ξ). So ∀ξ ≥ τ

y(1)(ξ) = −by(ξ)− 1
c

N∑
i=1

Ai(ξ)ekriy(ξ + ri)

≥
(
−b− 1

c

N∑
i=1

αie
kri
)
y(ξ)

(4.42)

. Therefore
∀ξ ≥ τ : x(1)(ξ) ≥ ax(ξ) (4.43)

.
The proof for c < 0 is very similar but with inequalities the other way round and βis

instead of αis.

Proposition 4.2.6
Assume c 6= 0, Ai as in (4.11) satisfying (4.20) and the associated operator family L
being asymptotically autonomous. Let A±, AΣ,± as in (4.24), which we assume to satisfy
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AΣ,± < 0 as in (4.23). Further assume the limiting operators being approached at an
exponential rate, that is ∃k > 0 :

‖M±(ξ)‖ = ‖A(ξ)−A±‖ ∈ O(e−kξ) (4.44)

for ξ → ±∞.
Then for these Ai, c Equation (4.11) is asymptotically hyperbolic. Additionally there

exist four (by previous convention possibly infinite) quantities λ±± satisfying

−∞ ≤ λ−± < 0 < λ+
± ≤ ∞

such that, if finite, λ±+ are real eigenvalues of L+ and λ±− are real eigenvalues of L−,
defined as in (4.18). They are uniquely determined by the property of being real posi-
tive/negative eigenvalues of the limiting equations. Whenever finite, they, i.e. every one
that is finite is, are simple.

If, similar to the last Proposition, the assumptions only hold for [τ,∞), τ ∈ R and
moreover a bounded function x satisfies Equation (4.11) in this interval [τ,∞)) exists
then the following holds.

If λ−+ > −∞ then ∃ε > 0 : ∃C+ ∈ R

x(ξ)− C+e
λ−+ξ ∈ O(e(λ−+−ε)ξ) (4.45)

for ξ → ∞. Additionally the asymptotic bound obtained by formally differentiating
(4.45) holds, with different in the residal terms constants though. If ∃τ ∈ R : ∀ξ ≥ τ :
x(ξ) ≥ 0 and x|[τ,∞) 6= 0 then C+ > 0.

If λ−+ = −∞, that is ∀ξ < 0 : ∆c,L+ 6= 0, then ∀ξ ≥ τ : x(ξ) = 0.
The analogous results holds for (−∞, τ ]). In particular if λ+

− < ∞ then ∃C− ∈ R :
∃ε > 0 :

x(ξ)− C−eλ
+
−ξ ∈ O(e(λ+

−+ε)ξ) (4.46)

for ξ → −∞.

Proof. If all the assumptions hold for some [τ,∞), τ ∈ R, then L+ = limξ→∞ L(ξ)
satisfies

∀i ∈ 2, · · · , N : lim
ξ→∞

Ai(ξ) ≥ αi > 0

by assumed continuity of the coefficient functions Ai. As AΣ,+ =
∑N

i=1Ai,+ < 0 by (4.23)
we may use Proposition 4.2.3 and obtain existance of λ±+ with described properties.

The same conclusions hold for (−∞, τ ], τ ∈ R, if conditions (4.20) and (4.23) hold for
L−. This proves the first few conclusions of the Proposition.

For further use we recall Re(σc,L+ \ {λ±+}) ⊂ (−∞, λ−−) ∪ (λ+
−,∞) from Proposition

4.2.3.
For the exponential bounds we again only present the proof for assumptions holding

in [τ,∞), τ ∈ R, the proof for (−∞, τ ] being very similar. Hence suppose x solves (4.11)
on [τ,∞) for some τ ∈ R as defined in (4.5).
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Assume λ−+ <∞. As x is a bounded solution to (4.11) it is a O(e0ξ) solution to

x(1)(ξ) = −1
c

N∑
i=1

Ai(ξ)x(ξ + ri) = −1
c
L(ξ)τ−ξx (4.47)

on [τ,∞). This equation is asymptotically hyperbolic and hence asymptotically au-
tonomous at∞ and additionally features exponential apporach of the limiting equations.
By Proposition 7.2 of [2] either ∃λ ∈ σc,L+ = σp(−1

cL+) : Reλ ∈ (−∞, 0],∃ε > 0 and
some nontrivial eigensolution y to λ such that x(ξ)− y(ξ) ∈ O(e(Reλ−ε)ξ) for ξ →∞ or
∀b ∈ R : limξ→∞ e

bξx(ξ) = 0. If ∀b ∈ R : limξ→∞ e
bξx(ξ) = 0 then (4.45) holds trivially.

In the other case we have aldready obtained (4.45) from Proposition 7.2 as Reλ ≤ λ−+.
Suppose further that ∀ξ ≥ τ : x(ξ) ≥ 0 and x does not vanish identically. As x ≥ 0

in [τ,∞) we obviously have C+ ≥ 0. Assume C+ = 0. As x does not vanish identically,
Proposition 4.2.5 implies that ∃λ ∈ σc,L+ \ {λ−+} : Reλ < λ−+ such that x(ξ) − y(ξ) ∈
O(e(Reλ−ε)ξ) for ξ → ∞, ε > 0 and some eigensolution y to λ. All eigenvalues of Λc,L0

except λ±+ have nonzero imaginary part. Hence by Lemma 4.2.1 ∀τ ∈ R : ∃ξ ≥ τ : x(ξ) <
0 which is a contradiction.

For the bound obtained by formal differentiation we only have to plug (4.45) into
(4.11). As it is a bit cumbersome to write this down while using formally correct Landau
notation we only outline the steps. We recall f(ξ) = eλ

−
+ξ being an eigensolution and

obtain

“ − cx(1)(ξ) =
N∑
i=1

Ai(ξ)x(ξ + ri)

=
N∑
i=1

Ai(ξ)
(
C+e

λ−+(ξ+ri) +O(e(λ−+−ε)(ξ+ri))
)

= C+

N∑
i=1

Ai(ξ) eλ
−
+(ξ+ri)︸ ︷︷ ︸
f(ξ+ri)

+O
(( N∑

i=1

Ai(ξ)e(λ−+−ε)ri
)

︸ ︷︷ ︸
bounded

e(λ−+−ε)ξ
)

= λ−+C+e
λ−+ξ +O(e(λ−+−ε)ξ) ”

.
If λ−+ = ∞ then by Lemma 4.2.4 r− = 0, c > 0. We gain use propostion 7.2 from [2].

The first of the two alternatives is not possible as Reσc,L+ ∩ (−∞, 0) ⊂ (−∞, λ−+) = ∅.
Hence the second option holds. By Proposition 4.2.5 this is only possible if

∃R > 0 : ∀ξ ≥ τ +R : x(ξ) = 0 (4.48)

. Hence ∃R > 0 : ∀τ +R = τ +R+ r− ≤ ξ ≤ τ +R+ r+ : x(ξ) = 0. Obviously x ≡ 0 is
a solution to (4.11), c 6= 0 and [τ,∞)# = [τ,∞) as r− = 0. We apply Lemma 4.1.2 and
finally obtain

∀ξ ∈ [τ, τ +R+ r+] ∪ [τ +R,∞) = [τ,∞) : x(ξ) = 0 (4.49)

.
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At this point it might be usefull to remind the reader that, as claimed in remark 3.1.2
the kernel of Λc,L : W 1,p → Lp is independent of p, allowing notation such as both
Kc,L = ker(Λc,L : W 1,∞ → L∞) and Kc,L∗ = ker(Λc,L : W 1,1 → L1) with p implied by
context (here p =∞ and Fredholm Alternative (1,∞ conjugated).

Proposition 4.2.7
Assume all of the prerequisites of the last Proposition hold and additionally that some
nontrivial solution p ∈W 1,∞, p ≥ 0 to (4.11) on R exists.

Then (4.11) is asymptotically hyperbolic

λ−+ ∈ (−∞, 0) λ+
− ∈ (0,∞) (4.50)

exist and Λc,L : W 1,∞ → L∞ is Fredholm with

dim Kc,L = dim Kc,L∗ = codim Rc,L = 1 (4.51a)
ind(Λc,L) = 0 (4.51b)

. p ∈ Kc,L is strictly positive, i.e. ∀ξ ∈ R : p(ξ) > 0.

Proof. Proposition 4.2.6 yields asymptotic hyperbolicity and existance of λ±± ∈ R∪{−∞,∞}.
As x does not vanish identically λ−+ and λ+

− are finite, otherwise x would vanish on at
least one of the intervals [τ,∞) or (−∞, τ ] for some τ ∈ R by Proposition 4.2.6.

If p(τ) = 0 for some τ ∈ R then by Lemma 4.1.1 ∀ξ ≥ τ : p(ξ) = 0 or ∀ξ ≤ τ : p(ξ) =
0. Then 4.1.2 would force p to vanish on the remaining domain, i.e. make p vanish
identically on R, which is a contradiction.

Theorem 3.2.3 asserts Fredholmness of Λc,L and also of Λc,L∗ and additonally that the
correspondencies between those two hold. In particular, as ind(Λc,L) = dim Kc,L −
codim Rc,L and dim Kc,L∗ = codim Rc,L hold, it suffices to show dim Kc,L = 1 and
ind(Λc,L) = 0.

First we will establish dim Kc,L = 1. 0 6= p ∈ Kc,L implies dim Kc,L ≥ 1. Assume
dim Kc,L > 1. Then ∃y ∈ Kc,L linearly independent from p. By Proposition 4.2.6 there
are C+(p), C−(p) ∈ (0,∞), C+(y), C−(y) ∈ R, ε > 0 such that

p(ξ) =

{
C−(p)eλ

+
−ξ +O(e(λ+

−+ε)ξ) ξ → −∞
C+(p)eλ

−
+ξ +O(e(λ−+−ε)ξ) ξ →∞

y(ξ) =

{
C−(y)eλ

+
−ξ +O(e(λ+

−+ε)ξ) ξ → −∞
C+(y)eλ

−
+ξ +O(e(λ−+−ε)ξ) ξ →∞

with the usual conventions for calcuations with Landau notation. Set x = y − C+(y)
C+(p)p.

This x satisfies

x(ξ) =

{
C−(x)eλ

+
−ξ +O(e(λ+

−+ε)ξ) ξ → −∞
O(e(λ−+−ε)ξ) ξ →∞

(4.52)

. Without loss of generality let C−(x) ≤ 0, otherwise consider −x.
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Because of linear independence x is not the zero function. Hence there are arbitrarily
large ξ ∈ R for which x(ξ) 6= 0. We claim further that there exist arbitrarily large ξ ∈ R
for which x(ξ) > 0. Assume the contrary were the case. Then ∀ξ ∈ R : x(ξ) ≤ 0.
Applying Proposition 4.2.6 to −x ≥ 0 yields ∃C > 0 such that for ξ →∞

x(ξ) = −Ceλ
−
+ξ +O(e(λ−+−ε)ξ)

which is a contradiction to our construction of x. Assume ξ0 > 0 : x(ξ0) > 0.
Let µ ≥ 0 and consider p − µx. As p is bounded ∃µ0 > 0 : (p − µ0x)(ξ0) < 0. Our

asymptotic bounds imply

(p− µx)(ξ) =



(
C−(p)− µC−(x)

)
︸ ︷︷ ︸

>0

eλ
+
−ξ +O(e(λ+

−+ε)ξ) ξ → −∞

C+(p)︸ ︷︷ ︸
>0

eλ
−
+ξ +O(e(λ−+−ε)ξ) ξ →∞

. We know that the residual terms in this formulas become arbitrarily smaller than the
leading terms, so ∃τ > ξ0 > 0 : ∀|ξ| > τ : ∀µ ≥ 0 : (p − µx)(ξ) > 0. x is continuous
and hence x+ = max{x(ξ)|ξ ∈ [−τ, τ ]} exists. As the set S := {µ ∈ [0, µ0]|∀ξ ∈ R :
p(ξ)−µx(ξ) ≥ 0} 3 0 is nonempty and bounded above by µ0, µ∗ := supS is well defined.

By definition ∀ξ ∈ R : p(ξ) − µ∗x(ξ) ≥ 0 and ∃ξ1 ∈ R : (p − µ∗x)(ξ1) = 0. The
first is obvious from definition of µ∗. Assuming the second to be wrong would imply
(p−µ∗x)|[−τ,τ ] > 0. This continuous function would take a minimum p− in the compact
set [−τ, τ ]. Now if x+ ≤ 0 then ∀δ > 0 : (p− (µ∗+ δ)x)|[−τ,τ ] > 0. If x+ > 0 then taking
0 < δ < p−

x+
we would obtain ∀ξ ∈ [−τ, τ ] :

(p− (µ∗ + δ)x)(ξ) = (p− µ∗x)(ξ)− δx(ξ) > p− − δx+ > 0

As (p − µx)|(−∞,−τ ]∪[τ,∞) > 0 anyway this would give µ∗ < µ∗ + δ ∈ S and hence lead
to a contradiction. Thus ∃ξ1 ∈ R : (p− µ ∗ x)(ξ1) = 0.

However then Lemma 4.1.1 would imply p − µ∗x = 0 on (−∞, ξ1] or [ξ1,∞) contra-
dicting existance of τ . Hence y cannot exist and the proof, that Kc,L is one dimensional,
is thus complete.

To show ind(Λc,L) = 0 we note that by setting Lρ = ((1 − ρ)L− + (1 + ρ)L+)/2 the
corresponding constant coefficient system is hyperbolic for all ρ ∈ [−1, 1]. An Application
of Theorem B of [2] thus finishes the proof.

We finish our section on linear equations by gathering all introduced parts and formu-
lating Theorem 4.1 from [2], which will later be the basis for application of the implicit
function theorem.

Theorem 4.2.8
We follow notation and assumptions already set forth in 1.1.1, 1.1.4, 1.1.6, (4.11), (4.13),
(4.14), (4.12), (4.20) and (4.23) i.a. . Let all of these assumptions hold, that is, the
assumptions of the last proposition.
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Then our linear equation is asymptotically hyperbolic, and Λc,L ∈ B(W 1,∞, L∞) is
Fredholm with

dim Kc,L = dim Kc,L∗ = codim Rc,L = 1 ind(Λc,L) = 0

p ∈ Kc,L satisfies p > 0 and there exists some p∗ ∈ Kc,L∗ satisfying p∗ > 0 as well.

Proof. Asymptotic hyperbolicity has been established in Proposition 4.2.6. By 3.2.3 it
followed that Λc,L is Fredholm. In 4.2.7 we have proven the results on kernel dimension,
Fredholm index, positivity of p and finitness of the eigenvalues λ−+,λ+

−.
All that remains to be shown are the existance and positivity of some p∗ in Kc,L∗ .

As with p in Proposition 4.2.7) it suffices to show p∗ ≥ 0 and p 6= 0 for one nontrivial
p∗ ∈ Kc,L∗ as strict positivity follows through Lemmata 4.1.1 and 4.1.2 exactly as for p.
We already know that Kc,L∗ is one dimensional. Hence nontrivial elements exist in the
kernel. If one of them satisfied p∗ ≥ 0, then all real functions q ∈ Kc,L∗ would satisy
q ≥ 0 or q ≤ 0. Thus assume existance of some p∗ ∈ Kc,L∗ , ξ1, ξ2 ∈ R such that

p∗(ξ1) > 0 p∗(ξ2) < 0 (4.53)

We seek a contradiction.
Lemma 4.1.1 implies that p∗ cannot vanish on any interval of length r+ − r−, if p∗ is

truly nontrivial. Hence assume |ξ1 − ξ2| < r+ − r−. It follows next, that there exists a
nontrivial continuous function h : R→ R such that∫

R
p∗(ξ)h(ξ)dξ = 0 (4.54)

.
We briefly discuss one possible way ob obtaining such h. p∗ is continuous so
∃ε > 0 : p∗|[ξ1−ε,ξ1+ε] > 0 ∧ p∗|[ξ2−ε,ξ2+ε] < 0. Now set

h(ξ) =


1− |ξ−ξ1|ε ξ ∈ [ξ1 − ε, ξ1 + ε]
h(ξ1−ξ2+ξ)p∗(ξ1−ξ2+ξ)

|p∗(ξ)| ξ ∈ [ξ2 − ε, ξ2 + ε]

0 ξ ∈ R \([ξ1 − ε, ξ1 + ε] ∪ [ξ2 − ε, ξ2 + ε]

Then h is continuous, nonnegative and compactly supported and∫
R
p∗(ξ)h(ξ)dξ =

∫ ξ1+ε

ξ1−ε
p∗(ξ)h(ξ)dξ +

∫ ξ2+ε

ξ2−ε
h(ξ1 − ξ2 + ξ)p∗(ξ1 − ξ2 + ξ)

p∗(ξ)
|p∗(ξ)|︸ ︷︷ ︸

=−1

dξ

=
∫ ξ1+ε

ξ1−ε
p∗(ξ)h(ξ)dξ −

∫ ξ1+ε

ξ1−ε
p∗(ξ)h(ξ)dξ = 0

.
By choosing ε small enough we can assume ∃τ1 < τ2 ∈ R such that h is supported in

[τ1, τ2] and τ2 − τ1 < r+ − r−. As dim Kc,L∗ = 1, (4.54) and Theorem 3.2.3 imply that
h ∈ Rc,L =

(
Kc,L∗

)
⊥L∞ . Hence ∃x ∈W 1,∞ : Λc,Lx = h.
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As h is compactly supported x satisfies the homogeneous equation for large |ξ|. Propo-
sition 4.2.6 assures that x and p enjoy estimates (4.45) and (4.45) for some ε > 0 and
quantities C+(x), C−(x) ∈ R, C+(p), C−(p) > 0. Hence ∃τ0 > 0 : ∃µ0 > 0 : ∀|ξ| ≥ τ0 :
∀µ ≥ µ0 : (x+ µp)(ξ) > 0. On the compact set [−τ0, τ0] the continuous function p takes
a minimum. This fact and x’s boundedness imply that ∃µ1 > 0 : ∀|ξ| ≤ τ0 : ∀µ ≥ µ1 :
(x+ µp)(ξ) > 0 as well (compare to proof of Proposition 4.2.7). Similarily we conclude
that ∃µ < 0 : (x+ µp)(ξ) < 0. Thus

µ∗ := min{µ ∈ R |x+ µp ≥ 0} (4.55)

is a well defined element of R.
Consider the function y = x+ µ∗p ∈ Λ−1

c,L({h}). Of course y ≥ 0, y solves Λc,Ly = h,
y solves the homogeneous equation for ξ /∈ [τ1, τ2] and by Proposition 4.2.6 enjoys the
estimates

y(ξ) =

{
C+(y)eλ

+
−ξ +O(e(λ+

−+ε)ξ) ξ → −∞
C−(y)eλ

−
+ξ +O(e(λ−+−ε)ξ) ξ →∞

(4.56)

with C+(y) ≥ 0,C−(y) ≥ 0 and some ε > 0. As y ≥ 0, Proposition 4.2.6 further implies
either that C+(y) > 0 or that y vanishes for large ξ, i.e. ∃τ3 ∈ R : ∀ξ ≥ τ3 : y(ξ) = 0,
and similarily either that C−(y) > 0 or that y vanishes for small ξ, i.e. ∃τ4 ∈ R : ∀ξ ≤
τ4 : y(ξ) = 0.

We claim that y cannot vanish for both small and large ξ. Assuming otherwise would
yield ∃τ+ > τ2 : ∀ξ ∈ [τ+ + r−,∞) ⊇ [τ+ + r−, τ+ + r+] : y(ξ) = 0. Then by setting
J = [τ2 + r−,∞) Lemma 4.1.2 would imply that ∀ξ ∈ (−∞, τ+ + r+] ∩ J# = [τ2 +
r−, τ+ + r+] : x(ξ) = 0. Hence ∀ξ ∈ [τ2 + r−,∞) : x(ξ) = 0. Additionally ∃τ− < τ1 :
∀ξ ∈ (−∞, τ−+ r+] ⊇ [τ−+ r−, τ−+ r+] : y(ξ) = 0. Setting J = (−∞, τ1 + r+] we could
use Lemma 4.1.2 again, yielding ∀ξ ∈ (−∞, τ1 + r+] : x(ξ) = 0. But τ2 − τ1 < r+ − r−
so τ1 + r+ > τ2 + r−. Hence (−∞, τ1 + r+] ∪ [τ2 + r−,∞) = R and y = 0. Thus
0 6= h = Λc,Ly = Λc,L0 = 0, which would be a contradiction.

We again have ∃ξ0 : y(ξ0) = 0. If not then y > 0 and hence Proposition 4.2.6 would
imply that C+(y) > 0 and C−(y) > 0. The rest of the argument is similar to the last
proof’s but a little bit more cumbersome to write down. The following formulas are but
conclusions obtained directly from the definition of Landau notation. As

y(ξ) =

{
C−(y)eλ

+
−ξ + a−(ξ) ξ ≤ −τ5

C+(y)eλ
−
+ξ + a+(ξ) ξ ≥ τ5

p(ξ) =

{
C−(p)eλ

+
−ξ + b−(ξ) ξ ≤ −τ5

C+(p)eλ
−
+ξ + b+(ξ) ξ ≥ τ5

with

∀ξ ≤ −τ5 :|a−(ξ)| ≤ D1e
(λ+
−+ε)ξ ∀ξ ≥ τ5 :|a+(ξ)| ≤ D2e

(λ−+−ε)ξ

∀ξ ≤ −τ5 :|b−(ξ)| ≤ D3e
(λ+
−+ε)ξ ∀ξ ≥ τ5 :|b+(ξ)| ≤ D4e

(λ−+−ε)ξ
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for some ε > 0,τ5 > 0 and various constants D1, · · · , D4 ≥ 0 by our asymptotic bounds,
we could then conclude that if τ6 ≥ τ5 such that

∀|ξ| ≥ τ6 : max{Di|i ∈ {1, · · · , 4}}e−ε|ξ| <
1
2

min{C−(y), C+(y), C−(p), C+(p)}

, which really does exist, then ∀|ξ| ≥ τ6 : ∀0 ≤ δ < δ0 := min{ C−(y)
3C−(p) ,

C+(y)
3C+(p)} :

(x+ (µ∗ − δ)p)(ξ) = (y − δp)(ξ)

=

{
C−(y)eλ

+
−ξ + a−(ξ)− δ

(
C−(p)eλ

+
−ξ + b−(ξ)

)
ξ ≤ −τ6

C+(y)eλ
−
+ξ + a+(ξ)− δ

(
C+(p)eλ

−
+ξ + b+(ξ)

)
ξ ≥ τ6

≥

{(
C−(y)−D1e

εξ
)
eλ

+
−ξ − δ

(
C−(p) +D3e

εξ
)
eλ

+
−ξ ξ ≤ −τ6(

C+(y)−D2e
−εξ)eλ−+ξ − δ(C+(p) +D4e

−εξ)eλ−+ξ ξ ≥ τ6

>


(

1
2C−(y)− C−(y)

3C−(p)
3
2C−(p)

)
eλ

+
−ξ ξ ≤ −τ6(

1
2C+(y)− C+(y)

3C+(p)
3
2C+(p)

)
eλ
−
+ξ ξ ≥ τ6

> 0
(4.57)

. Furthermore the continuous functions y and p would take a minimum y− > 0 and a
maximum p+ > 0 in the compact set [−τ6, τ6]. Finally by setting δ1 := y−

p+
> 0 we would

obtain ∀0 ≤ δ < min{δ0, δ1} :

∀ξ ∈ R : (x+ (µ∗ − δ)p)(ξ) = (y − δp)(ξ) > 0 (4.58)

which would be a contradiction to the definition of µ∗.
Without loss of generality we now assume that C+(y) > 0 as the proof when C−(y) > 0

runs along the same lines. C+(y) > 0 implies y(ξ) > 0 for large ξ. As y(ξ0) = 0,
y−1({0}) ⊆ R is not empty. Moreover this set is bounded, as y(ξ) > 0 for large ξ, and
closed, as y is continuous, so

ξ0 := sup{ξ ∈ R |y(ξ) = 0} ∈ y−1({0}) (4.59)

is well defined.
Certainly y(ξ0) = 0 and ∀ξ > ξ0 : y(ξ) > 0. We recall that h, y and Ais are continuous

and conclude that y is C1. Hence ξ0 is a minimum of a C1 function and it necessarily
follows that y(1)(ξ0) = 0.

On the other hand, if, without loss of generality, r2 = r+ > 0 and hence ξ0 + r+ > ξ0,
we obtain

−cy(1)(ξ0) =
N∑
i=1

Ai(ξ0)y(ξ0 + ri) + h(ξ0)

= A1(ξ0) y(ξ0)︸ ︷︷ ︸
=0

+
N∑
i=2

Ai(ξ0)︸ ︷︷ ︸
>0

y(ξ0 + ri)︸ ︷︷ ︸
≥0

≥ A2(ξ0)y(ξ0 + r2) > 0
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, which is false.
If r+ = 0 then λ+

− < ∞ implies c > 0 by Lemma 4.2.4 and necessarily r− < 0. If
C−(y) > 0 then y(ξ) > 0 for sufficiently small ξ and an argument at inf{ξ ∈ R |y(ξ) = 0}
analogous to the last one yields a contradiction. If C−(y) ≤ 0 then y vanishes identically
for sufficiently small ξ, that is ∃τ7 ∈ R : ∀ξ ≤ τ7 : y(ξ) = 0. Set

ξ1 = sup{τ ∈ R |∀ξ ≤ τ : y(ξ) = 0} (4.60)

which is well defined as the set in question is bounded above by ξ0. Now take 0 <
ε1 < min{|ri||1 ≤ i ≤ N} and consider Equation (4.11) on the interval [ξ1, ξ1 + ε1].
By definition of ξ1 it holds that ∀ξ ∈ [ξ1, ξ1 + ε1] : ∀2 ≤ i ≤ N : ξ + ri < ξ1 so
∀ξ ∈ [ξ1, ξ1 + ε1] : ∀2 ≤ i ≤ N : y(ξ + ri) = 0. Thus (4.11) dissolves into

−cy(1)(ξ) = A1(ξ)y(ξ) + h(ξ) =: H(ξ, y(ξ))

on [ξ1, ξ1 + ε1]. As A1 is bounded we have H continuous and Lipschitz continuous in y.
Hence by the Picard-Lindelöf existance theorem y|[ξ1,ξ1+ε1] is the pointwise limit of the
Picard iteration, that is ∀ξ ∈ [ξ1, ξ1 + ε1] : y(ξ) = limn→∞ yn(ξ) where

y0(ξ) = y(ξ1) = 0

yn(ξ) = yn−1(ξ)− 1
c

∫ ξ

ξ1

A1(ξ)yn−1(ξ) + h(ξ)dξ

. A simple induction using y ≥ 0 yields ∀n ∈ N : ∀ξ ∈ [ξ1, ξ1 + ε1] : yn(ξ) = 0. Hence
y|[ξ1,ξ1+ε1] = 0. This is a contradiction and completes the proof.

4.3 Nonlinear Equations

We finish our chapter on applications by paving the way for and proving Proposition 6.4
from [3].

Lemma 4.3.1
Let c 6= 0, ρ ∈ V , and x ∈W 1,∞(R,R) be a solution to (4.1). Let

µ− := inf{x(ξ)|ξ ∈ R} µ+ := sup{x(ξ)|ξ ∈ R} (4.61)

Then

µ− ∈ [−1, q(ρ)] ∪ {1} µ+ ∈ {−1} ∪ [q(ρ), 1] (4.62)

The same conclusion holds for

µ−,∞ := lim inf
ξ→∞

x(ξ) µ+,∞ := lim sup
ξ→∞

x(ξ)

µ−,−∞ := lim inf
ξ→−∞

x(ξ) µ+,−∞ := lim sup
ξ→−∞

x(ξ)
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Proof. We first remark that µ± and µ±,±∞ really exist as x ∈W 1,∞(R,R).
By (i) we have

µ− ∈ [−1, q(ρ)] ∪ [1,∞)⇔ Φ(µ−, ρ) ≤ 0
µ+ ∈ (−∞,−1] ∪ [q(ρ), 1]⇔ Φ(µ+, ρ) ≥ 0

As µ− ≤ µ+ it follows that if

Φ(µ−, ρ) ≤ 0 ≤ Φ(µ+, ρ) (4.63)

then

µ− ∈ [−1, q(ρ)] ∪ {1} µ+ ∈ {−1} ∪ [q(ρ), 1]

which is what we need to show for the first third of the theorem. Hence we attempt to
prove (4.63).

We only show Φ(µ+, ρ) ≥ 0, the proof for the other inequality being similar. Let
(ξn) ∈ RN be a sequence such that limn→∞ x(ξn) = µ+. Without loss of generality we
may assume that this sequence satisfies ∀n ∈ N : |(|x(ξn)− µ+) < 1. For any 2 ≤ i ≤ N
the sets {x(ξn + ri)|n ∈ N} are bounded as ∀1 ≤ i ≤ N : ∀n ∈ N :

|x(ξn + ri)| ≤ |x(ξn)|+ |ri|‖x(1)‖L∞ ≤ |µ+|+ 1 + max{|ri||1 ≤ i ≤ N}‖x(1)‖L∞ <∞
(4.64)

Hence, after passing to a subsequence, we may assume that ∃µ2, · · · , µN ∈ (−∞, µ+],
such that ∀1 ≤ i ≤ N : limn→∞ x(ξn+ri) = µi. Hence limn→∞ x

(1)(ξn) = limn→∞ F (x(ξn), x(ξn+
r2), · · · , x(ξn + rN ), ρ) exists.

We claim that limn→∞ x
(1)(ξn) = 0. If (ξn) is a bounded function then there ex-

ists a convergent subsequence (ξnk)k∈N with limk→∞ ξnk = ξ0 ∈ R and necessarily
x(ξ0) = µ+. Hence x(1)(ξ0) = 0 and limk→∞ x

(1)(ξnk) = 0. Thus limn→∞ x
(1)(ξn) =

limk→∞ x
(1)(ξnk) = 0. Now assume (ξn) is unbounded. Hence after passing to a subse-

quence we may assume |ξn| → ∞. Assume limn→∞ x
(1)(ξn) = c 6= 0. We consider the

case c > 0, the proof for c < 0 being very similar. Then setting ε = c
3 we may pass to a

subsequence of xn such that ∀n ∈ N : x(1)(ξn) ≥ 2ε. By uniform continuity of x(1) there
exists δ0 > 0 : ∀ξ1, ξ2 ∈ R : |ξ1 − ξ2| < δ0 ⇒ |x(1)(ξ1)− x(1)(ξ2)| < ε. In particular

∀0 ≤ δ < δ0 : ∀n ∈ N : x(1)(ξn + δ) > x(1)(ξn)− ε ≥ ε (4.65)

Fixing δ1 ∈ (0, δ0) we obtain ∀n ∈ N

x(ξn + δ)− x(ξn)
δ

≥ min{x(1)(ξ)|ξ ∈ [ξn + δ, ξn]} ⇒ x(ξn + δ) ≥ x(ξn) + δε

using the mean value theorem. But this leads to a contradicition as

lim
n→∞

x(ξn + δ) ≥ lim
n→∞

x(ξn) + δε = µ+ + δε > µ+ (4.66)

.
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Thus, having already passed to appropriate subsequences, limn→∞ x
(1)(ξn) = 0. There-

fore, by using (ii), µi ≤ µ+ and continuity of F , we obtain

0 = lim
n→∞

x(1)(ξn)

= lim
n→∞

F (x(ξn), x(ξn + r2), · · · , x(ξn + rN ), ρ)

= F ( lim
n→∞

x(ξn), lim
n→∞

x(ξn + r2), · · · , lim
n→∞

x(ξn + rN ), ρ)

= F (µ+, µ2, · · · , µN , ρ)
≤ F (µ+, µ+, · · · , µ+, ρ)
= Φ(µ+, ρ)

(4.67)

.
We now proceed to prove (4.62) for µ+,∞, the proof for µ−,∞ and µ±,−∞ being similar.

Let (ξn) ∈ RN be a sequence such that ξn → ∞ and x(ξn) → µ+,∞ for n → ∞. Set
yn = τ−ξny, i.e. ∀ξ ∈ R : yn(ξ) = y(ξ + ξn). Each of those yn is a solution to (4.1) and
hence uniformly continuous. Thus yn are uniformly bounded and equicontinuous, so by
using the Arzelà-Ascoli theorem we may pass to an uniformly convergent subsequence
on each compact interval. As in the proof of 3.1.3 we conclude that, after passing to
a subsequence, yn converges pointwise to some y ∈ W 1,∞, with this convergence being
uniform on each compact interval. Of course this argument also applies to y(1) so we
have no problems with smoothness. Thus y is also a solution to (4.1) by continuity of
F and y satisfies µ− ≤ y ≤ µ+,∞ and in fact µ+,∞ = limξ→∞ x(ξ) = sup{x(ξ)|ξ ∈ R}.
Therefore, from the first part of this proof, we have hat µ+,∞ ∈ {−1} ∪ [q(ρ), 1] as
claimed.

Corollary 4.3.2
Let c 6= 0, ρ ∈ V , and P ∈ W 1,∞(R,R) be a solution to (4.1) satisfying the boundary
conditions (4.2).

Then
∀ξ ∈ R : −1 < P (ξ) < 1 (4.68)

Proof. Lemma 4.3.1 implies that ∀ξ ∈ R : −1 ≤ P (ξ) ≤ 1. Assume ∃τ ∈ R : P (ξ) =
1. The constant 1 function is a solution to (4.1) so by Lemma 4.1.1 P |[τ,∞) = 1 or
P |(−∞,τ ] = 1. In either case Lemma 4.1.2 would imply ∀ξ ∈ R : P (ξ) = 1. Then P
cannot satisfy limξ→−∞ P (ξ) = −1 and we have a contradiction.

The same arguments can be applied for −1.

Theorem 4.3.3
Let c 6= 0, ρ ∈ W , and P ∈ W 1,∞(R,R) be a solution to (4.1) satisfying the boundary
conditions (4.2).

Then ∃C± > 0, ∃ε > 0, such that

P (ξ) =

{
−1 + C−e

λuξ +O(e(λu+ε)ξ) ξ → −∞
1− C+e

λsξ +O(e(λs−ε)ξ) ξ →∞
(4.69)
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where λu ∈ (0,∞) is the unique positive eigenvalue of the linearization about x = −1,
i.e. λ+

− obtained from a linearization about x = −1, and λs is the unique negative
eigenvalue of the linearization about x = 1, i.e. λ−+ obtained from a linearization about
x = 1.

The formulas obtained by formally differentiating (4.69) also hold.

Proof. Again we only consider the case ξ →∞, as the proof(s) of the results for ξ → −∞
are similar.

Consider y = 1− P . Let ξ ∈ R. For any two v, w ∈ RN we have

F (v, ρ)− F (w, ρ) =
∫ 1

0

d
dt
F (tv + (1− t)w, ρ)dt

=
N∑
i=1

(∫ 1

0

( ∂
∂ui

F
)
(tv + (1− t)w, ρ)dt

)
(vi − wi)

(4.70)

Hence setting

Ai(ξ) :=
∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ + r1), · · · , t+ (1− t)P (ξ + rN ))dt (4.71)

we conclude that y solves the linear equation

− cy(1) =
N∑
i=1

Ai(ξ)y(ξ + ri) (4.72)

Without loss of generality we may assume U(ρ) = {2, · · · , N}. As P satisfies the bound-
ary conditions (4.2) we have ∀1 ≤ i ≤ N :

Ai,+ = lim
ξ→∞

Ai(ξ)

= lim
ξ→∞

∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ + r1), · · · , t+ (1− t)P (ξ + rN ), ρ)dt

=
∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t) lim

ξ→∞
P (ξ + r1), · · · , t+ (1− t) lim

ξ→∞
P (ξ + rN ), ρ)dt

=
∫ 1

0

( ∂
∂ui

F
)
(1, · · · , 1, ρ)dt

=
( ∂
∂ui

F
)
(1, · · · , 1, ρ)

using dominated convergence and continuity. Hence for ξ → ∞ the matrix coefficients
are exactly those obtained from a linearization around the solution x = 1. Moreover (iv)
implies that

AΣ,+ =
N∑
i=1

Ai,+ =
( N∑
i=1

( ∂
∂ui

F
))

(1, · · · , 1, ρ) = D1Φ(1, ρ) < 0 (4.73)
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. An application of Proposition 4.2.3 yields hyperbolicity of the linear equation (4.72)
at ∞. Hence this equation is asymptotically hyperbolic at ∞. We now obtain ∃a > 0 :
y ∈ O(e−aξ) for ξ →∞ from Proposition 3.1.1 with h = 0.
D1F is locally Lipschitz by (i) so this function is Lipschitz continuous on compact sets.

By Corollary 4.3.2 we already know that −1 < P (ξ) < 1. Hence {t + (1 − t)P (ξ)|ξ ∈
R, t ∈ [0, 1]} ⊆ R is bounded and hence relatively compact. Thus, if L is the Lipschitz
constant of D1F on this set’s closure, then ∀ξ ∈ R :

|Ai(ξ)−Ai,+| = |
∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ), ρ)dt−

( ∂
∂ui

F
)
(1, ρ)|

= |
∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ), ρ)−

( ∂
∂ui

F
)
(1, ρ)dt|

≤
∫ 1

0
|
( ∂
∂ui

F
)
(t+ (1− t)P (ξ), ρ)−

( ∂
∂ui

F
)
(1, ρ)|dt

≤
∫ 1

0
C|t+ (1− t)P (ξ)− 1|dt

= C

∫ 1

0
|1− t||1− P (ξ)|dt

= C|y(ξ)|
∫ 1

0
1− tdt

=
C

2
|y(ξ)| ∈ O(e−aξ)

(4.74)

. Boundedness of the functions Ai follows from continuity of F and boundedness of
arguments for F in (4.71). All that remains to be shown for Proposition 4.2.6 to be
applicable are the lower bounds for A2, · · · , AN . Fix i ∈ {2, · · · , N}. We already know
that Ai(ξ)→ Ai,+ > 0 for ξ →∞. Hence ∃τ > 0 : ∀ξ ≥ τ : Ai(ξ) ≥ Ai,+

2 . Moreover the
continuous function Ai takes a minimum αi,0 > 0 on the compact set [0, τ ]. Thus we
have ∀ξ ≥ 0 : Ai(ξ) ≥ min{Ai,+2 , αi,0} > 0.

Proposition 4.2.6 is now applicable for the case ξ → ∞. As P (ξ) < 1 implies y =
1−P > 0 and hence y does not vanish identically on any [τ,∞) with τ ∈ R, Proposition
4.2.6 implies that λs = λ−+ > −∞ and ∃C+ > 0,∃ε > 0 such that

1− P (ξ) = y(ξ) = C+e
λsξ +O(e(λs−ε)ξ) (4.75)

for ξ → ∞. Moreover the formula obtained by formally differentiating 4.75 holds.
Subtraction of 1 and multiplication with −1 in 4.75 finishes the proof.

We know prove strict monotonicity of solutions joining the equilibria ±1.

Proposition 4.3.4
Let c 6= 0, ρ ∈ W , and P ∈ W 1,∞(R,R) be a solution to (4.1) satisfying the boundary
conditions (4.2).

Then ∀ξ ∈ R : P (1)(ξ) > 0.
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Proof. By Theorem 4.3.3, i.e. from formally differentiating (4.69), we have τ0 ∈ R :
∀|ξ| ≥ τ0 : P (1)(ξ) > 0. P takes a minimum 1 > P− > −1 and a maximum 1 > P+ < 1
in the compact interval [−τ0, τ0]. As P satisfies the boundary conditions there exists
some τ1 > τ0, τ2 > τ0 such that ∀ξ ≥ τ1 : P (ξ) > P+ and ∀ξ ≤ −τ2 : P (ξ) < P−. Taking
τ = max{τ0, τ1, τ2} we obtain

∀|ξ| ≥ τ : P (1)(ξ) > 0
∀|ξ| < τ : P (−τ) < P (ξ) < P (τ)

(4.76)

. Hence we have ∀k ≥ 2τ : ∀ξ ∈ R : P (ξ + k) > P (ξ). Suppose now that P (1)(ξ) < 0 for
some ξ ∈ R and set

k0 := inf{k > 0|∀ξ ∈ R : P (ξ + k) > P (ξ)} (4.77)

. As P (1)(ξ) < 0 for some ξ we certainly have k0 > 0. Also, k0 ≤ 2τ and ∀ξ ∈ R :
P (ξ + k0) ≥ P (ξ). By definition, if 0 < k < k0 then P (ξ0 + k) ≤ P (ξ0) for some
ξ, where necessarily |ξ0| ≤ τ and |ξ0 + k| ≤ τ . We consider the continuous function
k 7→ P (ξ0 + k)− P (ξ0) and hence P (ξ0 + k0)− P (ξ0) = limk↗k0 P (ξ0 + k)− P (ξ0) ≤ 0.
Therefore P (ξ0 + k0) = P (ξ0). Both P and τ−k0P are solutions of (4.1) so Lemma 4.1.1
implies that P (ξ + k0) = P (ξ) either ∀ξ ≤ ξ0 or ∀ξ ≥ ξ0 which are both impossible. We
conclude that P (1)(ξ) < 0 is impossible.

The strict inequality follows from yet another application of Lemma 4.1.1, this time
to the linearization about P , where we take the two solutions x1 = P (1) and x2 = 0,
knowing that P (1)(ξ) > 0 for large |ξ|.

We know see that if P ∈ W 1,∞(R,R) satisfies Equation (4.1) for some ρ ∈ W and
c 6= 0, then P is strictly increasing and the operator Λc,L associated to the linearization
about P satisfies all the conditions of Theorem 4.2.8, exponential approach of the limiting
equations following from exponential approach of the equilibria (see 4.3.3 and its proof),
boundedness of the matrix coefficients Ai following directly from the properties of F and
the exponential approach of the limiting coefficients, AΣ± < 0 also directly following from
properties of F and taking p = P (1) for some solutions P as the nontrivial, nonnegative,
bounded solution.

The strict monotonicity of solutions joining the equlibria ±1 and their smoothness
allows us to seek a uniquely determined (for each particular solution) translate satisfying
x(0) = 0. We shall therefore seek solutions in the subspace

W 1,∞
0 := {x ∈W 1,∞|x(0) = 0} (4.78)

.
At last we arrive at our final theorem/proposition, Proposition 6.4 from [3], and again

refer the interested readers to the original papers for more results and references.

Proposition 4.3.5
Let

M := {(c, P, ρ) ∈ R \{0} ×W 1,∞
0 ×W |P solves (4.1) with (4.2)} (4.79)
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,

G : R×W 1,∞
0 ×W → L∞(

G(c, P, ρ)
)
(ξ) = −cP (1)(ξ)− F (P (ξ + r1), · · · , P (ξ + rN ), ρ)

(4.80)

and (c0, P0, ρ0) ∈M.
Then the derivative of G at this point with respect to the first to arguments, is an

isomorphism from R×W 1,∞
0 onto L∞, i.e.

D1,2G : R×W 1,∞
0 ×W → (L∞)R×W 1,∞

0(((
D1,2G

)
(c, P, ρ)

)
(w, y)

)
(ξ) = −wP (1)(ξ) + (Λc,Ly)(ξ)

(4.81)

where (w, y) ∈ R×W 1,∞
0 and

Ai(ξ) =
( ∂
∂ui

F
)
(P (ξ + r1), · · · , P (ξ + rN ), ρ) (4.82)

is the linear operator associated with the linearization at P and(
D1,2G

)
(c0, P0, ρ0) : R×W 1,∞

0 → L∞ (4.83)

is an isomorphism.
Thus by the implicit function theorem, there exist for each ρ near ρ0 a unique point

(c(ρ), P (ρ)) ∈ (R \{0})×W 1,∞
0 near (c0, ρ0), depending C1 smoothly on ρ for which

G(c(ρ), P (ρ), ρ) = 0 (4.84)

For each such ρ the solution P (ρ) to (4.1) satisfies the boundary conditions (4.2), hence
(c(ρ), P (ρ), ρ) ∈M.

Proof. We first take note that G really is Fréchet C1 with((
DG(c, P, ρ)

)
(d,Q, σ)

)
(ξ) = −dP (1)(ξ) + (Λc,LQ)(ξ) + (

∂

∂ρ
F )(κ(P, ξ), σ)

for (c, P, ρ), (d,Q, σ) ∈ R×W 1,∞
0 ×W . To prove this we first note that

‖
(
G(c+ d, P +Q, ρ+ σ)−G(c, P, ρ)−

(
DG(c, P, ρ)

)
(d,Q, σ)

)
(ξ)‖

= ‖F (κ(P, ξ) + κ(Q, ξ), ρ+ σ)− F (κ(P, ξ), ρ)−
N∑
i=1

( ∂
∂ui

F
)
(κ(P, ξ), ρ)h(ξ + ri)−

( ∂
∂ρ
F
)
(κ(P, ξ), σ)‖

≤ ‖F (κ(P, ξ) + κ(Q, ξ), ρ+ σ)− F (κ(P, ξ), ρ+ σ)−
(
(D1F )(κ(P, ξ), ρ+ σ)

)
(κ(Q, ξ))‖

+ ‖F (κ(P, ξ), ρ+ σ)− F (κ(P, ξ), ρ)−
( ∂
∂ρ
F
)
(κ(P, ξ), σ)‖
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where
κ(P, ξ) := (P (ξ1 + r1), · · · , P (ξ + rN ))

. Hence, by C1ness of F , we have that

lim
(d,Q,σ)→0

‖G(c+ d, P +Q, ρ+ σ)−G(c, P, ρ)−
(
DG(c, P, ρ)

)
(d,Q, σ)‖L∞

‖(d,Q, σ)‖R×W 1,∞
0 ×W

= 0

so G is C1 as DG is clearly continuous in (c, P, ρ). Therefore we can apply the implicit
function theorem as soon as we know that D1,2G is an isomorphism.

Consider the linearization of (4.1) about P0, i.e. the linear equation (4.11) with Ai
as in (4.82). Let Λc0,L denote the associated linear operator from W 1,∞ → L∞. We see
that this operator satisfies all the conditions of Theorem 4.2.8 as already mentioned in
the paragraph before this theorem. In particular, P (1)

0 solves 4.11 so Proposition 4.3.4
gives the nonnegative element p = P

(1)
0 . Thus by theorem 4.2.8 the kernel Kc0,L of Λc0,L

is precisely the one dimensional span of P (1)
0 .

The strict positivity P (1)
0 > 0 and particularily P (1)

0 (0) > 0 implies P /∈W 1,∞
0 . Hence

the restriction of Λc0,L to W 1,∞ is injective. Hence it is naturally an isomorphism from
W 1,∞

0 to its range Rc0,L ⊆ L∞, which has codimension one by 4.2.8. 4.2.8 further
provides existance of 0 < p∗ ∈ Kc0,L∗ , so∫

R
p∗(ξ)P (1)

0 (ξ)dξ > 0 (4.85)

Theorem 4.2.8 now implies P (1)
0 /∈ Rc0,L by a Fredholm Alternative. We conclude from

this, the formula of D1,2G and the fact that Rc0,L is complemented by the one dimen-
sional span of P (1)

0 that D1,2G : R×W 1,∞
0 → L∞ is an isomorphism. With this the

implicit function theorem yields c(ρ) and P (ρ) satisfying (4.84).
It remains to be shown that this P (ρ) satisfies the boundary conditions (4.2). As P (ρ)

varies continuously with ρ, so do µ±(ρ) := µ±(P (ρ)) and µ±,±∞(ρ) := µ±,±∞(P (ρ)). P0

satisfying the boundary conditions (4.2) implies that µ±,∞(ρ0) = 1 and µ±,−∞(ρ0) = −1.
By continuity and Lemma 4.3.1, i.e. Equation (4.62), we conclude that µ±,∞(ρ) = 1 and
µ±,−∞(ρ) = −1 for any ρ near ρ0 and hence have finished the proof.
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Arzelà-Ascoli, 34, 36, 64
Cauchy integral, 19
Fubini, 23, 28, 29
implicit function, 44, 51, 69
mean value, 51, 52, 63
Picard-Lindelöf, 45, 62
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