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Abstract: In this paper, we give a survey on the three main aspects of the effi-
cient treatment of PDEs, i.e. adaptive discretization, multilevel solution and par-
allelization. We emphasize the abstract approach of subspace correction schemes
and summarize its convergence theory. Then, we give the main features of each of
the three distinct topics and treat the historical background and modern develop-
ments. Furthermore, we demonstrate how all three ingredients can be put together
to give an adaptive and parallel multilevel approach for the solution of elliptic PDEs
and especially of linear elasticity problems. We report on numerical experiments for
the adaptive parallel multilevel solution of some test problems, namely the Poisson
equation and Lamé’s equation. Here, we emphasize the parallel efficiency of the
adaptive code even for simple test problems with little work to distribute, which is
achieved through hash storage techniques and space-filling curves.
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1 Introduction

Subspace correction methods are techniques for the numerical solution of equation
systems which arise in the discretization of partial differential equations. Here, the
function space in which the solution is sought in is decomposed into several smaller
spaces. The framework of subspace correction schemes contains both classes of op-
timal and almost optimal order iterative solvers, multilevel and domain decom-
position methods. Furthermore, the efficient solution of boundary value problem
requires adaptive grid refinement in order to reduce the number of unknowns of a
discretization for a prescribed tolerance. In addition, it requires the use of parallel
computers. However, the efficient parallelization of a code with adaptive grid refine-
ment, where workload is created locally during the computation, is difficult. This is



especially true in the presence of optimal and almost optimal subspace correction
solvers, because the load-balancing and administration overhead must not exceed
the ordinary computation time.

In section 2 we present the abstract framework of subspace correction algorithms
with its theory, and we describe multigrid methods and overlapping and non-
overlapping domain decomposition methods. We briefly review adaptive grid refine-
ment techniques in section 3 and, in section 4, we survey parallel multigrid methods
and parallel adaptive methods and discuss the difficulties of their parallel imple-
mentations. In section 5 we present some of our own ongoing research. We combine
the different approaches and propose a technique based on space-filling curves and
hash storage for the implementation of a parallel adaptive multigrid method. We
conclude with some numerical experiments for two model problems, i.e. the Poisson
equation and the Lamé equation. Note that the efficient parallelization of such a
simple and fast problem code is much harder than for more complicated problems
where a lot of work is spent with each degree of freedom and the solution of the
equation system and where more work can be distributed to the parallel processors.

2 Subspace correction schemes

Let V be some fixed (already finite-dimensional) Hilbert space. The scalar product in
V is denoted by (-,-). We consider a linear, elliptic, self-adjoint partial differential
equation, which can be written after discretization wrt. V' in operator notation
as Au = f with A : V — V denoting the corresponding symmetric, positive,
definite (s.p.d.) operator acting on V. The associated standard weak formulation is:
Find u € V suchthat

a(u,v) = ®(v) YveV (1)

with positive definite, symmetric bilinear form a(u,v) = (Au,v), u,v € V and
linear functionals ®(v) = (f,v).

2.1 Subspace splitting and abstract algorithms

Now, consider an arbitrary additive representation of V' by the sum of a finite
number of subspaces V; C V, which are not necessarily disjoint:

J
V= Z V;. (2)
7=0

More precisely, this means that any u € V possesses at least one representation
U= E;]:o uj; where u; € V; for all j = 0,...,.J. Suppose that the V; are equipped



with auxiliary continuous s.p.d. forms b;(u;,v;) = (Bju;,v;) given by the s.p.d.
operators B; : V; — V. These forms might model approximative solvers used on
the subspaces, i.e. Bj_1 is an approximative inverse for A;, the restriction of A to

V.

We can rewrite problem (1) as: Find u € V suchthat

J
Pu=¢ (P=) T;:V—=V) (3)

with the operators T; : V' — V; given by the variational problems

bj(Tju,vj) = a(u,v;)  Vou; €V (4)

and ¢ = 23]:0 ¢; with ¢; € V; defined via the projection

bj(0j,v;) = ®(v;)  Vv; €Vj, (5)

which is analogous to (4).

In operator notation T; = Bj_leA where @Q; : V — V; denotes the orthoprojection
onto V; with respect to the scalar product (-,-). Since

J J
P=>"T;=|) Bj'Q;|A=C-A, (6)
7=0

=0

the switching to formulation (3) can be viewed as preconditioning strategy with
the preconditioner C for the original problem (1). Note that the formulation (3) is
nothing but the additive Schwarz formulation of (1), which has already been treated
by many authors, see [64-66,167,171,173] for further references.

Now we turn to the additive and multiplicative variants of the Schwarz iteration
associated with the splitting. The additive subspace correction algorithm [167] as-
sociated with the splitting (2) and its associated auxiliary forms b; is defined as the
Richardson method applied to (3):

J
) = 4 — o (Pu — ) =) — . Z(Tju(l) —¢;), 1=0,1,....(7)

=0

Here u(®) € V is any given initial approximation to the solution u of (1) and (3),
respectively, and w is a relaxation parameter. It is easy to see that the associated
error propagation operator is I — wzj T;. In practice, the additive method serves



as a preconditioner and the Richardson method is often replaced by a conjugate
gradient iteration.

In contrast to the parallel incorporation of the subspace corrections rgl) = Tju(l) —@;

into the iteration (7), the multiplicative algorithm uses them in a sequential way:

pUHGHD/UHD) — 05/ TH0) _ Gy L (7,45 T4D) _ gy (8)

with 7 =0,...,J,1=0,1,.... Here the corresponding error propagation operator
looks like H]‘(I — wT;). This explains why the algorithm is called ‘multiplicative’.

Following [74,75], it is interesting to rewrite the iterations (7) and (8) as follows:
We introduce the Hilbert space

V ={i={u;}: ij(uj7 u;) < oo}, (i, )y = ij(“ﬁ v;)

J

which is just the usual Cartesian product of the Hilbert spaces Vj, i.e.

V=VoxVix...xVjy.

We introduce the operator P (here in matrix representation) with respect to the
‘coordinate’ spaces V; and decompose it into lower triangular, diagonal and upper
triangular parts

P:{Ti7]‘};{j:0:j—|—D—}—i*, T,'J‘Elevj V}—}V; (9)

where L;; = T;; for j < i and D;; = T;; while all other entries are zero operators
between the respective subspaces. We further introduce the summation operator
S:ueV su=8Su= Ej u; which is a linear operator from V onto V. Finally,

to any linear continuous functional ® on V, we associate the elements ¢ € V by

defining ¢ = {¢;} with ¢, from (5).

Now, we consider the problem: Find u = Si € V where @ € V is such that

Pi=¢. (10)

Here, the solution = is unique, while @ is not, since different decompositions are
allowed. It can be shown that (10) has the same solution » as (1) and (3), see [79]
for further details.

If we now define the Richardson (or Jacobi-type) iteration with respect to (10)

ath =50 — . (PaD - ¢) 1=0,1,...



and the SOR-like iteration
(I4+w- D" =T -w- (D+L)aD+w-¢, 1=0,1,...

then they recover the iterative procedures (7) and (8) in the sense that they satisfy
u) = Sa(V), whenever this relation was fulfilled for the starting iterate, i.e. [ = 0. A
consequence of this observation, which was made in [74,75, 78], is that the analysis
of the methods (7), (8) can be carried out in almost the same spirit as in the
traditional block-matrix situation if one uses the formulation (10). The sometimes
tricky proofs, including the original one in [36,39,40,167], (see also the comments
on this point in [171]) for the multiplicative case can be made clearer, or, at least,
more classical.

2.2  Theory

Now, we define a norm |||.||| on V' by

J
[ull]* = inf Y bjlug,ug) (11)
wj€Vjtu=) 5 ouj j—g

and introduce the positive and finite values

a(u, u)

Amin = inf ,  Amax = sup . (12)
ueVuzo |[|[uf||2 weVuzo |[ull|?
The quantity
Amax
= 13
" Amin ( )

will be called condition number of the splitting. It can be seen easily that it is
equivalent to the condition number of C'- A of (6). The spectrum of the operator
P= 23120 T; is given by the constants from (12) compare for example [25,111, 164,
173] and see also the fictitious space lemma in [119,120]. Note that the condition
number does not change if we change the order of the subspaces.

The following results, which also explain the central role of the above splitting
concept, are derived from [78,80]; see [91] for statements of this type in the matrix
case.

Theorem 1 (Additive and multiplicative Schwarz iteration). Suppose that V
is finite-dimensional, and that the splitting is finite. Let the characteristic numbers
Amax; Amin, and K of the splitting be given by (12), (13). Furthermore, let ||E||‘~,_>‘~,
be the norm of the lower triangular matriz operator L (cf. 9) as an operator in v,

let wy = Ama.x(-l)) = maX;—oq,...,.J {maXuJ‘EVJ‘ ;,(uj7uj) } and let VNV = %f—l— _Z/
J

(uju5)




(a) The additive method (7) converges for 0 < w < 2/Amax, with the convergence
rate

Pas = max{|l — w - Aminl, |1 — @ Amax|} - (14)

The bound in (14) takes the minimum

2 2
pra=1-—— for w =

. 1
1+& Amax + Amin ( 5)

(b) The multiplicative method (8) converges for 0 < w < 2/wy, with a bound for the
asymptotic convergence rate given by

Amin'(%_wl) Amin'(%_wl)

Pms < 1_~—_\/_ . . (16)
W% s (5 +ILlyoe)?

The bound in (16) takes its minimum

Amin 1
prms\/l _Awin g e L )

2| L]y + w1 I Lllg—v + w1

For a proof of this Theorem, see [79]. Note that using the representation (10), the
proofs are exactly the same as for the traditional Richardson iteration and the SOR
iteration, compare e.g. [91, pp. 82—-96]. Note also that, even in the case of divergence,
the additive subspace correction serves as an optimal preconditioner as long as & is
independent of .J.

Now, we see a difference between the additive and multiplicative method. For the
additive method, basically the terms Anin and Apax enter the convergence rate
estimates whereas for the multiplicative method the terms A, and ||l~}||‘7_>‘~/ are
involved. Note that ||E||‘~,_>‘~, depends on the ordering of the successive subspace
corrections.

Without any additional assumption, there exists an estimate of ||L||;_y in terms
of Amax:

[10g2(2])] : /\max . (18)

DN =

IZllyv <

This links the estimates of the convergence rate of the multiplicative method to that
of the additive method. This estimate is sharp in the general case, for the proof and
further details see [79,128].

However, for certain splittings, ||L||;;_,; can be estimated from above by a constant
independent of .J. In [167,173], for example, additional assumptions, where basically



strengthened Cauchy-Schwarz inequalities have to be fulfilled, allow to estimate both
Amax and ||L[|;_ ¢ from above by the common upper bound || |P|||y_y where ||
denotes element-wise absolute values, i.e.

Lll- - -
|| ||V—>V < || |p| ||V—>V < comnst.

max

Note that || |P| ||y, is an upper bound for all possible ||L||y_, that arise for all
possible traversal orderings of the multiplicative scheme. Now, the convergence rate
of the multiplicative method as well as the additive method is independent of .J, if,
in addition, the splitting has the property that Ani, can be estimated from below
by a positive constant which is independent of .J.

Now the general aim is to find splittings ijo V; with associated bilinear forms

b;(.,.) such that

® Amin, Amax, || L||y7_y or, alternatively, || |P| ||y, can be estimated independently
of J,

e the additive or multiplicative method can be implemented using O(dim(V')) op-
erations per iteration step only,

e and hopefully the terms above are independent of the ellipticity constants of the

operator, i.e. robustness with respect to the variations of the coefficients of the
PDE is gained.
Note that the first two conditions can be fulfilled by e.g. multigrid or multilevel
methods whereas the robustness question is still not satisfactorily settled.

2.8  Multigrid methods

The article [69] by Fedorenko is usually considered as the begin of the history
of multigrid methods*. A two-grid method and later a multi-grid method [70]
was proposed and analyzed, namely a W-cycle with pre- and post-smoothing using
damped Jacobi iterations for the Poisson problem on the unit square. A variable
coefficient problem was analyzed by [7], structured triangle grids were considered in
[2] and the multigrid method was further developed to general grids in [121]. The
interest in multigrid methods was mainly theoretical at that time and was focused
on the optimal complexity of the algorithms. Real applications were first considered
by Brandt [42], who observed the computational efficiency of multigrid methods.
He optimized the components of the algorithms [45] and applied them to adaptively
patch-wise refined grids [42] and to non-linear problems (FAS scheme, see [43]).
Independently, Hackbusch developed the multigrid method in [86,87] and applied
it to variable coefficient, general, second order, nine-point stencil discretizations on
arbitrary domains. The analysis of the multigrid method was continued for finite
difference stencils in [162] and for more general error norms in [8] leading to what is

* For the solution of integral equations Brackhage [30] proposed a two-grid method
even earlier.



now called the classical multigrid theory: An abstract convergence proof based on an
approximation and a smoothing property was established in [88]. The first V-cycle
convergence result for the Poisson equation was proved in [31]. Furthermore, the
development was summarized in the book [90], see also the conference proceedings
series [53,118] and the monographs [114,163].

As an example, we consider the two-level algorithm. Here, we have two spaces, the
fine grid space Vj of piecewise linear functions on the uniform grid Q7 over Q =
[0, 1]% with mesh size 277 and the coarse grid space V;_; of piecewise linear functions
on the uniform grid Q;_; with mesh size 2=(/=1_ A mapping between these spaces
is given by the so-called prolongation operator Pj]_l : Vj_1 — Vj which resembles
linear interpolation, and the so-called restriction operator R§_1 Vi = Vi (fe
the adjoint of PJJ_I). Discretization on level J results in the system Ajuy; = f7 and
discretization on level J — 1 gives the stiffness matrix Ay_;. Now an iteration step
of the two-level method consists of the following two parts: First, apply v steps of
a so-called smoother, i.e. a classical (convergent) iteration on level .J

uthH/(%) = uf}f"'(i_l)/(%) — C'J(Ajuf;"_(i_l)/(%) — f7), fori=1,...,v (19)

like f.e. a Jacobi iteration, where C'; = diag(A;)~!. Alternatively, also Gauss-Seidel,
SOR or many other iterative schemes can be used here. Second, apply a coarse grid
correction step where first the residual is formed and transported to the coarser
level by the restriction operator, then the associated coarse level problem is solved
exactly and third, using the prolongation operator, this coarse grid solution is used
to update the fine grid iterate, i.e.

it+1 it+1/2 J -1 J—1 it+1/2
uftt =y P AL R (A ). (20)
Of course the two level method can be used recursively instead of A;il in the coarse

grid correction step (20). This results in a general multigrid method. Here a variety
of cycling strategies has been developed (V-cycle, W-cycle, compare [90]).

Now, subtracting the exact solution wy of level J from (19) and (20), using the
relation Ajuy = f; and plugging (19) into (20) results in the error equation

et = (I; - P{_ A7L RTTYA ) - (I — C1Ag)Y - € . (21)
Note that (Iy — Py_ AL RI7VA;) - (I; —CyA7)” = (A7' = PJ_ AL RTY) - A
(I; — CjAj)” holds. Then, using the so called smoothing property

[|[As- (I7 = CrADY|| < n()||Asl| for all v € Ny (22)

with lim, o 7(v) = 0 and the so called approzimation property

|A7! = P{_y AL R < C/

Ajll (23)



we get an upper estimate for the convergence rate of the two level method (21) by
C/|As|l - n(@)||As]| = C - n(v), where C' and n(v) are independent of J. Now, for a
given 0 < £ < 1 there exists a lower bound v such that C' - n(v) < £ for all v > v.
Of course, the validity of the smoothing property and the approximation property
has to be shown. This basic approach can be generalized to various settings using
different components in the multigrid procedure, for details we refer to [90]. Note
that for the approximation property (23) to hold, often an additional assumption
on the regularity of the continuous problem under consideration, i.e. H2-regularity,
is needed.

Regularity free proofs, proofs for non-uniform grids and for the additive variant of
the multigrid method were obtained differently. A proof for the hierarchical basis
preconditioner and for the hierarchical basis multigrid method were given in [170]
and [9]. However, the hierarchical basis does not lead to optimal methods for di-
mension d > 2. Almost regularity free proofs for the additive and the multiplicative
multilevel methods were given in [41,166]. However, there, only sub-optimal con-
vergence rates dependent on J could be shown. Then, for the additive methods,
the first proof of an optimal O(1) condition number was given in [124] without
any additional regularity assumptions. Proofs for non-uniform grids [57] and for
multiplicative multigrid [40,173] followed soon. Further details can be found in
[35,75,127,167,171].

With respect to the convergence theory of section 2.2, these multilevel and multigrid
methods are based on a nested sequence of subspaces Vy C Vi C ... C Vy, where the
spaces V; are chosen as piecewise linear functions on the corresponding sequence of
nested grids ¢ C ... C Q7. In other words, we have a level-wise splitting

J
vV=>V;
j=0
where the associated auxiliary forms b; are given by the smoothers on level j. This
splitting can be further decomposed into a splitting of one dimensional subspaces

J J
V= Z V= Z Z Vi (24)
j=0 0

j:

where V;; = span(¢;;) and ¢;; denote the usual linear basis functions on grid
;. Here the auxiliary forms can even be chosen as b;; = a;;. Now, the additive
subspace correction method (7) results in the BPX-preconditioner [41] whereas the
multiplicative subspace correction method (8) is basically equivalent to a multigrid
method with Gauss-Seidel pre- or post-smoothing, if a level-wise traversal is chosen.
With respect to the convergence theory of section 2.2 it can be shown that our
multilevel splitting (24) results in values for Amin, Amax, ||L||¢_, ¢ or, alternatively,
Il P| ||y 7> which can be estimated independently of .J, see also [28,74, 75,127,167,
171,173].



Thus, in this respect, optimality is achieved. However the constants do depend on
the coefficient functions of the underlying operator, i.e. they depend on the elliptic-
ity constants. Therefore, in practice, the convergence rate is still dependent on the
coeflicient functions of the underlying operator. Now, the question arises, whether
there is a multilevel method with a convergence rate independent of the coefficients,
which is robust in this respect. To achieve robustness various modifications of the
conventional multigrid scheme have been introduced: First of all, modifications of
the smoother have been proposed, i.e line- or zebra-smoothers [155] or ILU type
smoothing procedures [154,165]. Furthermore, instead of modifying the smoother,
also the coarse grid spaces can be modified by using semi-coarsening, matrix de-
pendent prolongations and restrictions [71,137,172] or even specific algebraic coars-
ening techniques, i.e. so called algebraic multigrid methods, see [3,46,73,143] and
[32,158] for the case of elasticity. Further modifications have been proposed to deal
with complex geometries, where nested hierarchies of grids are not available, see
[12,92,100] in addition to the algebraic multigrid methods. These approaches work
fine and apparently robust in practical experiments. However, a proof of robust-
ness for algebraic multigrid and similar variants do not exist. For simple separable
self-adjoint operators, however, a robust additive multilevel method based on pre-
wavelets has been presented and proved rigorously in [80]. Note however that for
the general case in three dimensions it is still a question how a robust multigrid
method could be constructed.

Note that multigrid methods have been applied for problems in elasticity using
conforming, non-conforming and mixed discretizations [95] of different plate bending
models [125,132,174], shell models [130] and for plane elasticity [15,34,48,104,
176]. However, in the case of elasticity applications, the robustness of a multigrid
method is also subject to actual research. Here the convergence rates are of course
independent of the number of unknowns, however, they depend on anisotropies of
the material constants, on the aspect ratio of the domain €2, on the Poisson number,
on locking phenomena of a discretization, etc.

Note that non-linear equations can be treated using the multigrid approach as
well: Either a Newton iteration can be used as an outer iteration with a linear
multigrid method or alternatively nonlinear multigrid versions (Brandt’s FAS [43]
and Hackbusch’s nonlinear multigrid [90]) with Picard or Newton type smoothers
can be used, for a comparison see [93]. Further non-linear subspace corrections
methods including theory can be found in [156,168].

2.4  Domain decomposition techniques

The application of the well known ‘divide et impera’ principle leads in a natural
way to domain decomposition techniques. Here the domain is partitioned into sub-
domains, on which the arising small problems can be solved easily. Then the local
solutions have to be combined and processed furthermore to obtain the solution
of the overall problem. The partitioning can be given in a natural way, f.e. by the
geometry or the material coefficients of the problem. It can also be heuristically

10



constructed by grid partitioning techniques. In addition a domain decomposition is
advantageous for later parallelization. Based on this principle a series of algorithms
has been developed, i.e. overlapping Schwarz methods, non-overlapping Schur com-
plement methods, etc. The development of these methods up to now can be found
in the conference proceedings [59], see also the surveys [51,148,169].

2.4.1 OQuerlapping Schwarz methods

The first domain decomposition methods for the solution of PDEs were the overlap-
ping Schwarz methods, named after H. A. Schwarz [145]. They were used for the ex-
istence proof of a continuous solution of the Poisson equation in a domain, which was
composed of the union of two overlapping standard domains, see [4,107,117,150] for
further early references. In the general case, the basic idea is to construct the domain
Q as the union of several sub-domains Q = (J;€; with overlap Q; N Ui# Q#0
of positive diameter along inner boundaries 0€); \ 99. Discretizations on the over-
lapping domains usually are based on matching grids: The elements or grid cells of
two sub-domains €2; and Q; coincide within the overlap ©; N €2;. Thus the overlap
has to be at least one element wide. The corresponding spaces Vj are constructed
by a discretization on the sub-domain €2; with Dirichlet boundary conditions on the
inner boundary 09; \ 992 along with the bilinear form af(.,.) restricted to ;. The
splitting looks like

where the associated auxiliary forms b; are given by exact or inexact sub-domain
solvers on €2;. The associated iterative methods (7) and (8) lead to the additive and
multiplicative Schwarz method, which can be analyzed with the convergence theory
of section 2.2. The convergence rate depends on the size of the overlap and on the
number of sub-domains, see Table 1.

Furthermore, the introduction of a coarse grid removes the latter dependence and
facilitates immediate information transport between pairs of non-overlapping sub-
domains, in analogy to the two-level multigrid method. For example for a Poisson
problem, a coarse grid with one degree of freedom per sub-domain is sufficient
for this purpose. The coarse space Vioarse Can be chosen as the span of piecewise
constant or piecewise linear functions on the sub-domain scale, where each function
is associated to one sub-domain. We denote the mesh size of the coarse grid by H
and denote the size of the overlap by - H to indicate that the overlap should be
chosen independently of the fine mesh size h. Now, the splitting is

J
V= choarse + 2‘7]7
7=0

11



where the new associated form is usually chosen as beoarse(-,
striction of the bilinear form a(.,

.) = Geoarse, 1.€. the re-

.) t0 Vioarse- This approach results in a convergence

rate which is independent of h. However, overlapping methods in general are not
robust with respect to discontinuous coefficients.

Algorithm

Convergence rate

Subspace splitting

Overlapping Schwarz iteration

additive Schwarz

— with coarse grid

CH™*(1+1/p?%)
C(1+1/p)

V=3,V
V= choarse + Z] ‘A/J

Schur complement iteration

nodal basis
d=2
d=3

hierarchical basis

multilevel basis

CH'h!

C(1+ log? (H/1))
CH/h(1 + log?(H/h))
C

V=vr+3,V;
V=V 43V
V=V v
V=W S

Preconditioner for the Sch

ur complement iteration

BPS d=2

C(1+log?(H/h))

VI = Vioarse + 2 Vedge &
wirebasket d=3 | C(1+log?(H/R)) VI = Vioarse + g Vedge &k + 2 Viace 1
vertex space d=2| C(1+1log?p) VI = Veoarse + 2 Vedge k + D Vvertex m
d=3|C(1+1log?p) VI = Vioarse + g Vedge & + 2 Viace 1

+ Em Vvertex m

Neumann-Neumann

— with coarse grid

CH™%(1+log?(H/h))
C(1+ log®(H/h))

. 1/ Neumann
Vr=2,;V,

‘/F - ‘/coarse + 2] ‘/]Neumann

Table 1

Convergence rates of domain decomposition methods for constant coefficient prob-
lems with a coarse grid of mesh size H and a fine grid mesh size h. The value §H
denotes the grid overlap for the overlapping Schwarz method and the diameter of
the vertex spaces for the vertex space method, respectively.

2.4.2 Non-overlapping Schur complement methods

The history of non-overlapping domain decomposition methods begins with direct
substructuring methods. The domain 2 is partitioned into two disjoint sub-domains
Qy and Q9. Then, the separator I' = 99 \ 01 is removed and the two local sub-
problems are solved before we solve for the unknowns on the separator. This scheme
can be applied recursively to the sub-problems and is then equivalent to a Gaus-
sian elimination with nested dissection ordering. Early references for this method,
which is popular in structural mechanics, can be found in [136]. In case of the
simple partitioning into two sub-domains the stiffness matrix is block partitioned

12




correspondingly, i.e.

Arr Ari Arg
A= Ar A 0
Aor 0 Ay

Now, iterative substructuring methods are based on the iterative solution of the
Schur complement system S = Arr — 2?:1 AI‘,'Az-_ilA,'F for the unknowns on the
separator I'. In some algorithms also the sub-domain problems Ai_il are solved iter-
atively.

The two domain case can easily be generalized to the many domain case. Here
Q) is partitioned into a union of disjoint sub-domains 2 = U]‘ 2; without overlap
Q;NQ; =0 for i # j. We use grids for the ©;, which match at the interface

r=[Joo;\o0.

J

The discretizations in the sub-domains €2; also have to match. Otherwise, we have
to use more sophisticated methods. In addition to the degrees of freedom in the
sub-domains, there exist degrees of freedom on the interface I'. Now, the space V;
consists of functions which vanish outside the open domain €2;. The interface space
Vr is defined as the span of shape functions of the interface grid Qr, which are
extended to the adjacent sub-domains €27 in some way and vanish on the boundary
09). Then, the subspace splitting according to the convergence theory of section 2.2
looks like

J
vzvp+Zvj.

=0

We choose the associated auxiliary forms as b;(.,.) = ¢;(.,.) and use a multiplicative
Schwarz method. The choice of the Poincaré-Steklov operator br(z,y) = 27 Sy with
exact solvers would lead to the direct substructuring method again. However, the
Schur complement is expensive to compute and is not directly accessible in an
iterative procedure. Hence we choose the auxiliary form on the separator as the Lg
scalar product br(.,.) = (., .) along with one Richardson iteration step. A conjugate
gradient method in V' with this preconditioner is equivalent to a conjugate gradient
method applied to the smaller Schur complement system on V. The condition
number of this preconditioner is CH~'A~! with a mesh size & of Q and a sub-
domain diameter of H, if as a basis for V1 just the nodal basis is chosen, see also
Table 1.

In general there are two way to improve the condition number further: We can ex-
tend the functions of Vr in a more clever way by the hierarchical basis [83,149] or
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a multilevel technique [76,85,157]. This results more or less in a harmonic exten-
sion operator, which couples the interior of the sub-domains and the separator, see
also Table 1. Alternatively we can construct preconditioners for the interface Schur
complement, which results in improved forms br(.,.), which we will consider in the
next section. Further modifications include the use of approximative solvers b;(.,.)
on the sub-domains, see [84].

2.4.8 Preconditioners for the Schur complement

We are interested in finding a preconditioner for the interface problem in the space
Vr. Such a preconditioner can be used in an iteration on the Schur complement S
or in the construction of a global preconditioner for the operator A. Historically,
the first domain decomposition preconditioners for the Schur complement were de-
signed for the two domain case only. Here, implementations of the analytic precon-
ditioner for H'/%(T') of Dryja [63] or the improved version [72] were based on the
sine transform. The next step was to construct preconditioners for the case of many
sub-domains. Then, crosspoints are contained in the separator. Bramble, Pasciak
and Schatz were able to treat this case with crosspoints [37]. This algorithm and its
three dimensional generalization, the wirebasket preconditioner [38,147] are based
on a splitting of the space

‘/F = V-Coarse + Ek ‘/:edge k for d = 27 and
‘/F = V-Coarse + Ek ‘/:edge kTt 2[ ‘/face I for d = 37 resp.,

(25)

into one global coarse grid space of cross points and into local spaces for each edge
or face C 992;\ 02 C T', which connects crosspoints or crosspoints with the boundary
0). The associated bilinear form of the coarse grid is beoarse(-; -) = @coarse(-, -) and
the coarse system is solved directly. However, the bilinear forms of the edges begge &
(and the faces bgace ;) are not available, similar to the Schur complement itself.
Hence other Schur complement preconditioners have to be employed for the spaces
Vedge k¥ and Vface 1, such as the mentioned preconditioner of Dryja. The resulting
convergence rates can be found in Table 1.

An extension of this construction principle leads to the vertex space method [146].
It is related to the fictitious domain methods in [111,119,120] and [1]. In addition
to the splitting in equation (25), for each vertex, a space is constructed with consists
of functions on the separator I' in the vicinity of the vertex z,,, i.e.

Qvertex m — BBH (xm) nr ;

where Bgp (2,,) denotes the ball around z, with radius SH.
A different class of Schur complement preconditioners is based on the solution of

auxiliary problems on the sub-domains. The Neumann-Dirichlet preconditioner [26]
is based on the solution of a Neumann problem on half of the sub-domains, and
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in a second step, on Dirichlet problems on the remaining sub-domains. A popular
variant of it is the Neumann-Neumann preconditioner [29,103]. There, on each sub-
domain a local Neumann problem is solved. Then, the actual right hand side in Vp
is transformed into a Neumann boundary condition. Finally, the values on 0€2; N T’
are transformed back and summed up. This approach can be interpreted in our
additive Schwarz framework. We end up with a splitting of the type

VF — E ;VjNeumann

J

with associated bilinear forms b;(.,.) = a;(.,.) with appropriate boundary conditions
incorporated. There exist variants with a coarse grid to improve the performance
in the many sub-domain case [67,102,110]:

N
‘/F - ‘/coarse + Z ‘/J cumann

J

More recent developments are concerned with the development of analogous precon-
ditioners for discretizations, where the continuity between sub-domains €2; is main-
tained through Lagrange multipliers, called the FETI [68] and the Mortar [19,109]
methods. The basic advantage of non-overlapping domain decomposition is their
robustness with respect to discontinuous coefficients aligned to sub-domain bound-
aries. In many large scale problems it is possible to partition the domain €2 into
sub-domains of constant or slowly varying coefficients such that each sub-domain
consists of exactly one material. Based on this decomposition, the resulting precon-
ditioner is often competitive to other methods with better theoretical properties.

3 Adaptivity

Let us assume that the discretization is of order O(h) in the energy norm. This
means that the discretization error € for H?() regular solutions converges linearly
with h — 0. However, in the case of singularities, the observed convergence can be
much slower, i.e. O(h®) with 0 < @ < 1. Then, instead of n = tol~™? unknowns we
have to use at least n = tol~%“ unknowns on a uniform grid for a given error toler-
ance tol. A remedy to this explosion of the number of unknowns is to introduce grids
with locally varying mesh size h(z), which is adapted to the solution. Sometimes a
priori error estimates can be used to construct such a grid. Before a computation
is performed, a priori information is fed into the grid generation process. However,
often such information is not available or sufficient.
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3.1  Error control and adaptive refinement

Alternatively, a feedback approach can be used: The PDE is solved several times on a
sequence of grids. Here, the most recent solution is used to guide the construction of
the next grid, where an a posteriori error estimator 7(z) estimates the discretization
error €(z) of the most recent solution. The discrete version of the error estimator
7; is related to either elements, nodes, edges, or faces of the grid. It should be
connected to the local errors ¢; by

c-6<n <C-¢. (26)

An analysis of the local amount of work and the local discretization error reveals
that the optimal grid has equi-distributed local errors ¢;. Furthermore, the optimal
grid consists of n = Cy - tol™® unknowns, which is equivalent to a convergence rate
independent of «, see [6]. Hence, the grid is refined at locations with large esti-
mated error 7;. This can be interpreted as an optimization process to achieve an
equi-distribution of the ;. Equation (26) guarantees the efficiency of the process.
Neither regions with large errors are missed, nor unnecessary refinement is per-
formed. Although equation (26) can only be proved under restrictive assumptions
(sufficient regularity, saturation, etc.), asymptotically for a grid size h — 0 small
enough, such bounds can be showed for many popular error estimators, see [159].

Construction of early error indicators and error estimators was purely heuristic. Here
usually simple local gradients were employed. In [5,6,11] local problems were set
up and solved. This approach led to residual based, Dirichlet based and Neumann
based local error indicators. Alternatively also local subproblems with higher order
discretization were used to construct error indicators [54]. A modern, rigorous theory
for the construction of local and global error estimators, which is based on the
dual problem approach can be found in [16,17]. Note furthermore that the norm
equivalence (11) can also be used to derive error estimators, for details see [127,
chap. 5], [126]. Note finally that for simple elliptic operators it is possible to get
rid of the so called saturation assumption, which is usually a prerequisite in the
construction and analysis of error estimators, see e.g. [55,56, 60].

The error estimator 7); gives an estimate for the global discretization error €

€~ 5 7; =! €.
:

This value € can be used as a termination criterion of the adaptive refinement cycle,
see Figure 1 and [16]. In the absence of error estimators, error indicators can take
the role of an error estimator. The termination criterion can also be based on other
data, e.g. computer resources such as memory or computing time available.
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solve equation system Au = f

estimate local errors n;

flag regions for refinement

create refined grid

until termination

Fig. 1. The adaptive algorithm.
3.2 Grid refinement

The grid can be refined by a complete new re-meshing of the domain €2 guided by the
error density 7;, by overlaying patches of finer mesh size h over regions of refinement,
or by local element-wise grid refinement, where some elements are substituted by
other, smaller elements.

Re-meshing is expensive and details of the most recent solution can be lost due to
the refinement. Furthermore, it is difficult to apply multigrid methods. Patch-wise
refinement gives a nested sequence of grids. It can be used for multigrid in a natural
way, see Figure 2 left. Specialized multigrid methods have been developed for this
type of composite grids, see [42,89,113]. Furthermore, on the patches, which are
structured uniform grids, all operations can be implemented very efficiently.

+,,
%,,

Fig. 2. Adaptively refined grids. Patch-wise refinement (left) and element-wise re-
finement (right).

Element-wise refinement can be performed for several element types and in several
ways: First we consider quadrilateral and hexahedral elements. A quadrilateral can
be bisected and substituted by two quadrilaterals of half the area or it can be sub-
stituted by four similar quadrilaterals of one fourth the area, see [138] and Figure 3.
Analogously hexahedra can be bisected or cut into eighth parts. A bisection strategy
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should take care that the elements decrease in size along all coordinate directions.
We need to control the maximal diameter of the elements Ay, for convergence
by alternating the direction of the bisection. A subdivision of an element into 2¢
elements does not affect the aspect ratio of the elements and gives local hApax — 0
anyway. In case of local refinement, the resulting grids contain hanging nodes where
elements of different size are joined. Hanging nodes represent a constraint for a
conforming discretization, which can be eliminated from the equation system. They
are not degrees of freedom.

IR “H
LTLT AT

Fig. 3. Element-wise grid refinement with quadrilateral and triangular elements.
Bisection (left) and subdivision into four elements (right).

Next we consider triangular and tetrahedral elements. There are algorithms, which
provide element-wise refinement without hanging nodes. Grids based on triangular
and tetrahedral elements can be constructed for arbitrary polygonal shaped domains
and allow for easier representations of complicated geometries 2. The idea for grid
refinement is to bisect elements or to subdivide them into 2¢ elements as above,
see Figure 3. In addition to this refinement which is triggered by an error estimate,
further refinement is used to eliminate hanging nodes and to smooth the refined
grid. This can be done along some geometric rules. A major concern here is to
maintain angle conditions of the grid for reasons of the discretization error. Here, a
bounded minimal interior angle ¢

0<e<op<C<r

or at least a bounded maximal interior angle independent of the mesh size h is
desired. For the interpolation properties of the FEM however, the maximum angle
condition is sufficient. The minimum angle condition is necessary for the perfor-
mance of iterative solvers. If one bisects edges opposite to one node too often, the
minimum angle condition would be violated. Several bisection strategies such as
‘longest edge’ and ‘newest node’ have been developed so far which choose the edge
for bisection in a way to guarantee such bounds [115,140]. The subdivision of an
element into 2¢ elements, ‘red refinement’, also requires some bisection, ‘green refine-
ment’, although the subdivision of a triangle itself does not introduce any dangerous
angles. This is due to the removal of hanging nodes, which triggers a sequence of
element bisections, see [10]. The subdivision of tetrahedral elements into 2¢ elements
requires a more complicated, stable subdivision scheme, because at least four of the
resulting tetrahedra cannot be similar to the original tetrahedron, see [21] and [22]
in the general case.

Finally, there exist many more variations of grid refinement algorithms and rules.
There are rules for the refinement of mixed grids consisting of several element
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types such as triangles and quadrangles in two dimensions and tetrahedra, hexahe-
dra, prisms and pyramids in three dimensions. Furthermore isoparametric distorted
quadrangles can be used to eliminate hanging nodes and create a closure of a grid
containing refined quadrangles.

3.8 Grid storage and management

The storage and the management of structured grids usually does not require very
sophisticated data structures. Ordinary vectors and arrays are sufficient to access
an element, a node or its neighbors. Ordinary loops can cycle through all nodes.
A multigrid method can be based on a sequence of grids, with a straightforward
implementation of inter-grid transfers.

Unstructured grids in contrast require a more flexible representation of the geometric
entities and their connectivity. For conforming linear finite elements the degrees of
freedom are located at the nodes. The entries of the stiffness matrix are related to
edges (and nodes) and the quadrature for the assembly of the stiffness matrix has
to be performed on every element. Hence commonly data structures are based on
several vectors or linked lists of nodes and edges and elements and their connectivity.

The efficient solution of equation systems by multigrid methods on hierarchies of
adaptively refined unstructured grids has been considered e.g. in [13,101, 105,108,
115,140, 142,152]. A multigrid method for the solution of the equation system re-
quires a hierarchy of grids. Data structures of linked lists of elements do not provide
a hierarchy but contain the elements of the finest grid in an arbitrary order. One
way to include grid hierarchies is to switch to tree data structures. All elements of
all grids are stored in one tree as well as edges and nodes [138,142]. A subset of
the elements, nodes and edges forms one grid. All nodes together with some of the
elements form the finest grid, where a solution is sought. Coarser level grids of level
[ can be constructed as the union of the elements of tree level I. Alternatively they
can be chosen as the grid which was created at refinement step /. The multigrid
method and grid refinement algorithms can be formulated to operate completely on
trees with optimal complexity [105,140].

However, the storage requirements are quite high compared to structured grids and
to unstructured grids. This is due to the additional pointers needed. Furthermore
the number of edges and faces in three dimensions is higher than the original num-
ber of nodes due to Euler’s formula. This means that compared to the storage of
the unknowns, which is proportional to the number of nodes for linear elements,
the storage of purely geometric entities cannot be neglected. In addition the coarser
grid hierarchies contain edges and elements which have to be stored. Hence several
authors [13,15,20] avoid the storage of faces inside the domain € in three dimen-
sions. Related to the storage overhead is the question of performance of a code,
which has to manipulate a large amount of data.

Instead of linked lists or trees, we propose to use hash storage techniques. First we
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describe a key based addressing scheme. An implementation of a key based scheme
with hash tables is described later. Each entity of the grid is assigned to a unique
key, which is an integer number. The entity is stored in an abstract vector, where
it can be retrieved by its key. Furthermore it is possible to decide, whether a given
key is stored in the table or not, and it is possible to loop over all keys stored in the
vector. In order to reduce the amount of storage of the grid, we omit any pointers
and use keys instead. For a (hyper-) cube shaped domain ©Q = [0, 1]%, we can use
the coordinates of a node for addressing purposes. The coordinates of hierarchical
son nodes and father nodes can be computed from the node’s coordinates easily.
Hence, the keys of the nodes are available and the nodes can be looked up in the
vector, if they exist. Nodes on the finest refinement level can be determined by
the fact, that they do not have son nodes. The computation of neighbor nodes
requires special care, because it is not immediately clear, where to look for the
node. Given a one-irregular grid with hanging nodes, for example, a neighbor node
can be located in the distance of h or 2h from the node with a local step-size h.
In the worst case this results in two vector lookup operations, one in distance h
along a coordinate direction and, if it was unsuccessful, one lookup in distance
2h, see [81]. Similar key based addressing schemes can be obtained for other grid
refinement procedures and for different domains, see [141,152]. For example the
element of a general triangulation or tetrahedrization 7y of a polygonal domain €
can be enumerated. Along with a numbering scheme based on local coordinates in
each element, a general key addressing scheme can be established. Also quad- or
octree-tree techniques can be used, see [161].
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Fig. 4. Hash table, collision resolution with chaining.

An efficient implementation of a key based addressing scheme has to deal with
the problem, that the space of possible keys is huge and only a few of the keys
are in use. In comparison to sorted lists and trees, which can also be used here,
hash storage techniques are more efficient [98]. A given key is mapped to an index
of a table by a hash function f, see Figure 4. An item with key k is stored in
location f(k) of the hash table. Several items with different keys k1 # ko might be
mapped to the same location f(k1) = f(k2) which is called a collision and which
has to be resolved. Collisions may happen because the hash function cannot be
injective. Popular techniques to resolve these collisions are chaining (see Figure 4),
linear probing and double hashing. There are many different choices for a good
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hash functions which is responsible to scatter the keys in use to the limited number
of entries in the table. The performance of a hash table is usually estimated in a
statistical setting, which depends on the quality of the hash function f. Random
access is a constant time O(1) operation in the statistical mean, as long as there
are enough empty slots in the table. Nevertheless, f may map several keys in use to
the same index. For further details see [98]. In comparison to linked lists and tree,
key based addressing with hash storage is simple, efficient and requires very little
memory.

4 Parallel computing

For the efficient solution of the equation system arising from a discretization of
the PDE we choose the most efficient class of solvers, the multigrid methods. The
data is partitioned and mapped to the processors and the multigrid method oper-
ating on the data runs in parallel. Here, we assume a distributed memory computer
model with message passing for generality. The results also apply to smaller parallel
computers with shared memory where some stage of the parallelization are simpler.

In the sequel, we focus on parallel implementations of multigrid methods. The par-
allelization of the competing domain decomposition methods on the contrary is
straightforward, because the methods are constructed for this purpose. Hence we
do not have to discuss ‘parallel” domain decomposition methods.

Our goal is to solve the equation system as fast as possible. This means, that we
have to consider an efficient parallelization and consequently, we have to develop
a parallel multigrid code that is almost identical to the sequential implementation.
The computational workload has to be distributed into similar sized partitions and,
at the same time, the communication between the processors has to be small. The
underlying computer model takes into account the local processor execution time
and the communication time. The first term is proportional to the number of oper-
ations and the second one depends on the amount of data to be transferred between
processors. A refined execution model may also take into account the number of
messages sent, i.e. the message overhead, which can be compensated for by overlap-
ping computation and communication to some extend.

4.1 Parallel multigrid

A parallel version of multiplicative multigrid usually is based on a partition of all
nested grids. The domain © is decomposed into several sub-domains €2;, which
induces partitions of all grids. Each processor holds a fraction of each grid in such a
way that these fractions of each grid form a nested sequence. Hence each operation
on a specific level is partitioned and mapped to all processors. Furthermore the
communication during grid transfer operations is small because of nested sequences
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on a processor. This means that one has to treat global problems on each level,
which are partitioned to all processors. The intra-grid communication has to be
small, that is the number of nodes on the boundary of the partition should be
small. Furthermore the amount of work on coarse grid levels usually is small and
each processor does not compute much. There are several strategies to deal with the
coarse grid problem in general, such as to centralize the computation on a master
processor, to perform identical computations on all processors or to modify the
coarse grid correction step.

4.1.1  Uniform and block-structured grids

A static partition of the domain into strips or squares can be used for uniform grids
and has been used for the first parallel multigrid implementations [44,82,151], see
also the survey [112]. In contrast to the geometry oriented parallelization of mul-
tiplicative multigrid methods, the additive multigrid version or additive multilevel
preconditioners can be parallelized in a more flexible way. The overall workload has
to be partitioned, but we do not have to consider individual levels. Here, also the
communication takes place in a single step for all nodes, which are located on the
boundary of at least one grid of the nested sequence. The multilevel BPX precon-
ditioner for a uniform grid has been parallelized in [20,175]. These approaches can
easily be generalized to block-structured grids.

There are many suggestions to modify components of the multigrid algorithm for
parallel computing. Multiple coarse grids can keep all processor busy during opera-
tions on coarse grids, where often some processors are idle. Parallel versions of the
smoothers, which take the partition into account, enhance the parallel performance.
The usual communication steps during the execution of the smoother on one level
can be reduced, if one uses block Jacobi type smoothers. Some other variants such as
a parallel point- and domain-block re-formulation can be found in [75-77]. An anal-
ogous parallelization method can be found in [47]. For a more popular introduction
to parallel multigrid versions see [61]. More recent modifications of multigrid algo-
rithms are concerned with the performance on computers with memory hierarchies,
such as RISC processors with memory cashes. The execution order of inter- and
intra-grid transfer operations has to be reordered in order to minimize the required
memory bandwidth, see [62,153].

4.1.2  Patch-wise adaptive grids

Multigrid methods on adaptive grids are harder to parallelize. The workload is
created at runtime during refinement and has to be partitioned and mapped to the
processors immediately. This means that the partitioning strategy has to be cheap,
or at least computationally as expensive as the multigrid solver itself.

Hence the first implementations of adaptive multigrid methods are based on the

simple uniform grid case: The adaptive grid is composed of the union of uniform,
rectangular grids of different area and mesh sizes h. During adaptive refinement,
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new patches are created and overlayed on the existing union of patches where grid
refinement is needed. A multigrid method on such a composite grid can be paral-
lelized in two ways: Either each patch is assigned to a single processor or each patch
is partitioned and mapped to all processors in the same way as in the uniform grid
case. This has been implemented on distributed shared memory architectures by
[14]). On distributed memory computers, several packages have been developed so
far, such as a multigrid implementation for LPARX [99], AMR [106] based on a
parallel array package and the block-structured Navier-Stokes solver LiSS [139].

4.1.8  Element-wise adaptive grids

Parallel multigrid methods on a sequence of unstructured grids require some grid
partitioning algorithms. These can be based on graph partitioning heuristics or on
geometric heuristics and can be expensive. However, in the framework of adaptive,
element-wise refinement, partitions and mappings have to be computed quickly and
during runtime. On a shared memory parallel computer, the serial representation
of the grid hierarchy in memory and coloring of the elements along with dynamic
scheduling of lists of elements can be used. This has been proposed for a code based
on triangles and the additive hierarchical bases preconditioner [23,105].

On a distributed memory computer, the grid hierarchy has to be partitioned and
maintained, which requires a substantial amount of bookkeeping. In [58] a multi-
plicative multigrid method or a finite volume discretization on a grid with quadrilat-
erals and hanging nodes is proposed. The elements are partitioned by a hierarchical
recursive coordinate bisection. Test indicated that the repartitioning of coarser lev-
els, when new elements were created, did not pay off. Adaptive conforming grids
consisting of triangles, which are refined by a bisection strategy, were employed in
the parallel multigrid codes of [13,116, 152]. Here, different repartitioning strategies
for refined grids were used.

4.2 Grid partitioning methods

The grid partition problem can be equivalently formulated as a graph partition-
ing problem. However, the general graph partitioning problem is NP-hard. Even
the problem to find asymptotically optimal partitions for unstructured grids is NP-
hard [50]. Several heuristic algorithms have been developed in the area of parallel
computing: There are bisection algorithms based on the coordinates of nodes and
elements and there are many algorithms based on the graph of the stiffness ma-
trix. For instance, [135] propose a recursive spectral bisection based on the discrete
Laplacian of the graph. In the package Chaco [94] a multilevel heuristic of spectral
bisection is used. The package Metis [97] uses a multilevel version of the Kernighan-
Lin algorithm, which improves a graph partition by moving nodes from one partition
to the other. Its multilevel version does this also on coarser representations of the
graph. Other data diffusion heuristics are employed in Jostle [160], in the PDE
codes UG [15] and [152], and in [18,27]. For a survey on grid partitioning methods
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we refer to [134].

Fig. 5. Partition of a FEM graph to four parallel processors.

The key point of any dynamic data partition method is efficiency. We look for a
cheap, linear time heuristic for the solution of the partition problem. Furthermore
the heuristic should parallelize well. Here, parallel graph coarsening is popular. It
results in a coarser graph on which then a more expensive heuristic on a single
processor can be employed. However, graph coarsening is at least a linear time
algorithm itself and lowers the quality of the heuristic further. This is why we look
for even cheaper partition methods. They are provided by the idea of space-filling
curves.

0L 2 3
T

Fig. 6. Mapping a 1D adapted grid to a parallel processor.

4.2.1 An approach by space-filling curves

Space-filling curves originally had been constructed for a continuous mapping of a
line segment [0,1] C R to a polygonal area [0,1]? C R?, see for an overview [144].
Such curves can also be used for the inverse mapping f from a domain Q C R4
to an interval [0,1] C R. This means that we can map geometric entities in R?
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to the one dimensional interval. Entities, which are neighbors on the interval, are
also neighbors in the volume R? Unfortunately the reverse cannot be true and
neighbors in the volume may be separated through the mapping. However, we know
how to solve a one-dimensional partition problem: We cut the interval into equal
sized pieces, which gives perfect load-balance and small separators of size one, see
6. The partition of the volume R? induced by the space-filling curve, see Figures
7 and 8, still gives perfect load-balance. However, the separators usually are larger
than the optimal separators. As a technical detail, we consider the partition and
mapping of nodes of the grid and we choose a space-filling curve which is aligned
to the grids. Hence a sufficiently fine, finite representation of the space-filling curve
contains all nodes and covers a larger domain than the domain of interest €.
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Fig. 7. Mapping a 2D adapted grid to a space-filling curve (left) and mapping points
on a space filling curve to a parallel processor (right).

Partitioning by space-filling curves has been employed for finite element computa-
tions in [123,129] and has been compared to other heuristics in [133]. The main
advantage of space-filling curves in this context is their simplicity: If we want to
bisect a set S of points z; € €2 on a space-filling curve, we can do this by a single
number s and the inverse space-filling curve mapping f

S =A{zilf(z:) < sy U{ai|f(2:) > s}

Each point is either left or right of the reference s on the space-filling curve. We
we take s as the median of f(S), both subsets are of the same size. In the same
way we can partition the set of points S into p different subsets, if we partition
f(S) € [0,1] by p — 1 separators s; like {z;]|s; < f(z;) < s;j41}. There is almost no
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bookkeeping necessary, because the partition is deterministic and can be computed
on the fly from the separators. Each sub-set is assigned to one processor. Only the
p — 1 separators have to be stored on each processor, see Figure 7.
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Fig. 8. A decomposition of the domain induced by the space filling curve mapping.
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Fig. 9. A sequence of adaptively refined grids mapped to four processors.

We have to compute the separators such that the partitions contains the same
number of nodes. This can be accomplished on a list of nodes sorted by their position
on the space-filling curve f(z;). The list is cut into equal-sized pieces and each piece
is mapped to one processor. Hence the partition of nodes can be done with an
ordinary sorting algorithm. Given a set of nodes z; with their keys f(z;), we first
create a sorted list of keys. However, we need to perform the partition algorithm
on a parallel computer. Given a set of nodes with their keys, which are distributed
over the processors, we look for a parallel sort algorithm, which results in a partition
where each partition resides on the appropriate processor. There is no need to gather
all keys on a master processor, but a pure scalable parallel algorithm performs better
with respect to communication volume, memory usage and scalability. Currently
we employ single step radix sort, where the previous separators serve as an initial
guess for the sorting. For uniform grid refinement f.e., two steps of local neighbor
communication are required only.

The remaining question is about the quality of this simple heuristic because it is
cheap and scalable. The workload is partitioned evenly. Hence the communication
volume cannot be optimal for d > 1. However, we can formulate

Theorem 2 (Separator sizes for Hilbert curve partitionings). Suppose that
we partition a uniform grid which covers the cube [0,1] by a Hilbert curve, then for
any sub-domain €; with n nodes obtained this way

d—1

(a) the number of boundary edges s is s & n 4 with constants dependent only on d
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and the discretization stencil,

(b) and for the two dimensional case, the number s is bounded tightly by s < 6y/n + 1
for 5-point stencils and s < 18y/n + 1 for 9-point stencils.

Proof of Theorem 2: The bounds of part (b) can be easily proved by induction over
groups (n < 16,162, 16%...) of increasing n using the recursive definition of the
Hilbert space-filling curve, see also the ‘worst’ case scenario in Figure 10, where for
a given number of nodes a maximum diameter is reached. The upper bound of the
general estimate (a) can be proved analogously by induction. The lower bound is
a general geometric property of any partition. Note that this result is related to
estimates for distances of Hilbert indexings in [122].

Fig. 10. Worst case for a Hilbert curve partitioning.

Hence the separator sizes for uniform grids obtained by space-filling curve parti-
tionings are optimal up to a constant, if we neglect effects of the boundary 9€2. This
indicates, that the partitioning algorithm performs well in this case. In more gen-
eral cases of adaptive refined grids, numerical experiments indicate that the graph
separators of space-filling curve partitions are of sufficient quality, see [133].

4.2.2  Hash storage and space-filling curves

The parallelization of an adaptive code usually is non-trivial and requires a sub-
stantial amount of code for the parallelization only. Hierarchies of refined grids,
where neighbor elements may reside on different processors, have to be managed
[24]. That is appropriate ghost nodes and elements have to be created and updated,
when the parallel algorithm performs a communication operation. This happens
both in the numerical part, where an equation system is set up and solved, and in
the non-numerical part, where grids are refined and partitioned, see also [13,96].

In section 3.3 we have considered hash storage techniques to simplify the imple-
mentation of a sequential, adaptive code. Now, we generalize the concept of key
addressing and hash tables to the parallel case. The idea is to store the data in a
hash table located on the local processor. However, we use global keys, so a ghost
copy of the node may also reside in the hash table of a neighbor processor. Fur-
thermore we base the code on space-filling curve partitions of the previous section.
The position of a node on the space-filling curve, along with the known partition,
defines the home processor of a node. Given a node on a processor, it is easy to
determine to which processor the node belongs to. If the node does not belong to
the processor, it must be a ghost copy, and it is known where to find its original.
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The next idea is to combine the position on the space-filling curve with the hash
key [131,161]. The efficiency of the hash storage scheme is based on the choice of
an appropriate hash function, which maps a node to an index in the hash table.
This can be any mapping [0, 1] — [0, m] with a large integer number m, preferably
a prime. Many cheap functions related to pseudo-random numbers will do here. A
function that scatters the nodes very broad across the entries of the table in general
avoids collisions in the hash table, while a narrow distribution of the hash functions
can improve memory-cache performance. The space-filling curve mapping can be
considered as a hash function with a narrow distribution, because they introduce
locality in the key addressing scheme, which is also exploited for the parallelization
of the code. Using the data locality once again on the local processor, one can op-
timize the usage of secondary disk storage and of the memory hierarchy of cashes,
which is difficult otherwise [62]. In order to increase the statistical variation of the
hash function, we are using some simple scrambling of the binary representation of
the hash key. However, some numerical experiments indicate that the overall per-
formance of the hash table in fact does not really depend on the precise scrambling
procedure. The space-filling curve mapping, i.e. the position on the curve can be
computed for any given coordinate tuple. It is a unique mapping [0, 1]¢ — [0, 1] sim-
ilar to mapping required for hash keys. A scrambled representation of the position
can be also used as a hash key.

This framework for the parallelization of adaptive codes originally has been invented
for particle methods [161] and has been generalized to programming environments
for some grand challenge PDE projects [131]. Multigrid methods have been consid-
ered in [81].

5 Numerical experiments

We will present some numerical experiments to demonstrate the suitability and
efficiency of the proposed parallel multigrid method based on space-filling curve
decomposition and hash storage. The applications, a Poisson problem and the Lamé
equation of linear elasticity serve as simple test cases only. However, due to the few
operations per node, it is rather hard to achieve good parallel efficiencies and with
this respect, these are even hard test problems. We have to mention that in the area
of elasticity, domain decomposition methods are also very popular and a number
of industrial parallel application are based on these algorithms. We will not cover
this aspect and refer instead to the literature [68,102, 146] and other articles of this
issue.

The following numerical experiments are based on an adaptive parallel multigrid
solver which uses a Hilbert space-filling curve for decomposition and a hash table
for addressing, see [81]. A finite difference discretization is used, where the degrees
of freedom are located at the nodes of the grids. The hanging nodes of the 1-
irregular grid of the unit square or unit cube are defined by interpolation. The linear
equation systems are solved by a Krylov method, preconditioned by an additive
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multigrid or BPX-type cycle. All numbers reported are CPU times measured on
our parallel computing cluster ‘Parnass2’. It consists of dual processor Pentium
IT 400MHz boards with at least 256 Mbytes of main memory, interconnected by
a Myrinet network in a fat-tree configuration. The MPI message passing protocol
implementation Mpich-PM showed a bandwidth between each two boards of 850
Mbit/s, see also [177]. We list execution times of the linear equation solver for
different problem sizes and numbers of processors. Furthermore we compare the
execution time of the load-balancing step with the execution time of the linear
solver and compute their ratio & := tpalancing/tsolving-

5.1 Poisson problem

We consider the Poisson equation

—Au=f onQ=[-1,1]¢, d=2,3

with the Dirichlet boundary conditions = 0 on part of the boundary I'p C 092 and
homogeneous Neumann boundary conditions %u = 0 on the remaining boundary
'y = 02\ TI'p. In the following, we consider two types of boundary conditions
I'p. First, we consider a pure Dirichlet problem I'y = (), which result in a smooth
solution. Here, a uniformly refined grid is sufficient for discretization and adaptivity
is not needed. Second, we consider the case where the solution possesses almost a
corner singularity due to the source term f. We run our adaptive multilevel finite

difference code to solve it.

5.1.1  Uniform Ezxample

In the first test we consider regular grids (uniform refinement). Tables 2 and 3 show
wall clock times for the solution of the equation system on a regular grid of different
levels using different numbers of processors.

For a fixed number of processors, we observe a scaling of a factor of 27 from one level
to the next finer level which corresponds to the factor of 24 increase in the amount
of unknowns on that level. Furthermore, for a fixed level the measured times scale
roughly with 1/p of the number of processors. However, the 32 and 64 processors
perform efficiently only for sufficiently large problems, i.e. for problems with more
than some thousand degrees of freedom. For larger problems we even obtain some
super-linear speed-ups, probably due to caching effects. If we fix the amount of
work, that is the number of nodes per processor, we obtain the scale-up. Comparing
a time at one level | and a number of processors p with the time of one level finer
I+ 1 and 29 . p processors, we obtain nearly a perfect scaling of the method. The
2d example shows slightly higher parallel efficiencies than the 3D example, because
the data to be exchanged for n degrees of freedom increases from O(n'/?) (2D) to
O(n?/3) (3D), which makes three dimensional problems harder to parallelize.
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time processors
level nodes 1 2 4 8 16 32 64
5 1089 | 3.30 2.18 1.32 0.94 0.69 0.52 0.43
6 4225 | 16.0 8.52 4.70 2.88 1.74 1.16 0.79
7 16641 | 66.9 33.6 17.6 9.87 540 3.17 1.88
8
9

66049 | 283 141 70.4 36.2 19.0 10.4 5.64
263169 | 1160 583 291 147 73.8 37.5 19.4
10 | 1050625 1162 584 294 147 74.0
11 | 4198401 1162 585 292

Table 2
Uniform refinement example 2D, timing, levels 5 to 11, 1 to 64 processors.

time processors
level nodes 1 2 4 8 16 32 64
3 729 | 3.06 2.07 1.51 1.15 1.14 1.01
4 4913 | 30.2 17.6 10.6 6.87 5.11 3.64 2.73
5 35937 | 277 150 814 46.4 29.0 179 114
6 | 274625 | 2455 1297 674 356 198 109 61.8
7| 2146689 2782 1482 774 410

Table 3

Uniform refinement example 3D, timing, levels 3 to 7, 1 to 64 processors.

Note that in this case of uniform grid refinement, an a priori partition of the uniform
grids into stripes would be superior to any dynamic partitioning scheme. However,
our dynamic load balancing scheme performs well and introduces only little over-
head, which can also bee seen in section 5.1.3.

5.1.2 Adaptive Example

In the next test we consider adaptive refined grids for a problem with singularities,
where the grids are refined towards a singularity located in the lower left corner, see
also Figure 11. Tables 4 and 5 depict times in the adaptive case. These numbers give
the wall clock times for the solution of the equation system again, now on different
levels of adaptive grids and on different numbers of processors.

We obtain a scaling of about a factor two to three from one level to the next finer
level, i.e. the times are proportional to the number of unknowns for a fixed number
of processors. This is due to the adaptive grid refinement heuristic. Increasing the
number of processors speeds up the computation accordingly.
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Fig. 11. 2D refined grid, mapped to 8 processors, full domain left, zoomed image on
the right, grid and color coded partition.

time processors
nodes 1 2 4 8 16 32 64
134 | 0.37 0.26 0.24 0.24 0.24 0.27 0.27
224 1 0.69 049 036 0.3¢4 0.31 0.30 0.32
384 | 1.27 0.85 0.69 0.51 042 0.37 0.35
682 | 2.38 148 1.04 0.75 0.57 0.45 0.41
1243 | 4.54 2.81 1.81 1.21 0.83 0.60 0.51
2320 | 8.75 4.92 3.13 1.95 1.25 0.86 0.62
4391 | 17.0 9.30 5.19 3.26 1.89 1.25 0.85
8460 | 33.5 17.8 10.1 5.57 3.27 1.92 1.26
16469 | 66.9 34.4 18.1 10.1 5.50 3.21 1.99
32291 | 133 67.7 354 19.3 10.3 5.50 3.27
63736 | 263 134 68.5 36.6 19.2 10.5 b5.66
126271 | 529 272 139 70.4 36.7 19.1 10.3
250911 560 278 143 71.8 36.8 19.1

Table 4
Adaptive refinement example 2D, timing, 1 to 64 processors.

5.1.8 Load Balancing

Now we compare the time for solving the equation system with the time required for
sorting the nodes and mapping them to processors before the computation starts.
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time pProcessors
nodes 1 2 4 8 16 32 64
1191 | 5.82 3.64 2.53 1.75 1.35 1.21 1.22
2178 | 12.3 7.94 5.07 3.82 3.02 220 1.97
4454 | 28.5 17.0 11.0 7.00 4.74 3.57 3.00
10061 | 71.9 43.9 26.5 16.2 10.2 7.04 5.16
24215 | 190 108 60.8 36.3 21.0 14.0 9.07
61361 | 510 280 157 87.7 49.0 29.5 17.7
160384 | 1418 772 404 217 125 70.5 40.8
429613 602 318 175 95.8

Table 5

Adaptive refinement example 3D, timing, 1 to 64 processors.

The ratio « indicates how expensive the load balancing and mapping task is in
comparison to the linear algebra part of the code. We give the values in Table 6 for
the previous uniform and adaptive refinement examples using different numbers of
Processors.

ratio « processors

nodes | 1 2 4 8 16 32 64

uniform 2D | 66049 9.7e-4 1.1e-3 1.3e-3 1.3e-3 3.2¢-3 4.9¢-3

adaptive 2D | 63736 6.8¢-4 7T7.9e-4 9.1e-4 1.le-3 2.9e-3 3.5e-3

uniform 3D | 35937 3.2e-4 4.1le-4 1.9e-3 1.4e-3 1.6e-3 3.7¢-3

o o o O

adaptive 3D | 61361
Table 6
Ratio « of execution times of partitioning and mapping nodes to solving the equation
system, 1 to 64 processors.

3.4e-4 7T7.2e-4 8.8e-4 9.8e-4 1.le-3 1.5e-3

In the single processor case, no load balancing is needed, so the partitioning and
mapping time and the ratio « is zero. Otherwise, the nodes have to be partitioned
and mapped by a parallel (partial) sort algorithm. In the uniform grid case the
relative cost of partitioning nodes « is of the order le-3. In the case of uniform
refinement, for a refined grid, there are only few nodes located at processor bound-
aries which may have to be moved during the mapping. Hence our load balancing
is also very cheap in this case. In the adaptive grid case, dynamic load balancing
generally is required. Note that in all cases load balancing is much cheaper than solv-
ing the equation system. However, higher number of processors make the mapping
and partitioning slightly slower. Mapping data for adaptive refinement requires the
movement of a large amount of data, even if most of the nodes stay on the proces-
sor. Other load balancing strategies can be quite expensive for adaptive refinement
procedures, see [13,152].
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5.2 Linear elasticity

As a second test case for our approach, we consider the linear elasticity problem.
We consider the Lamé equation [33,52] in the displacement formulation, either as
a linear three dimensional problem or as a two dimensional plain-strain problem

with Lamé’s constants

Ev FE

A Oroaow) b= 5a1)

and linearized strain (%) = %(g;‘; + g—;ﬁ),’j, A>0,p>0and E > 0. The problem is
elliptic due to Korn’s inequality for 0 < v < % We consider two test cases: First, we
take a homogeneous square or cube under internal forces parallel to one coordinate
axis, fixed at two adjacent edges (d = 2) or three faces (d = 3). The remaining edges
or faces are free (homogeneous Neumann conditions). The solution is smooth and

uniform refined grids are sufficient, see Table (7). Second, the body under a different

load fis considered such that singularties occur. Here adaptive refinement is used
to resolve the singularities next to the edges or faces (left, bottom and front), which
separate homogeneous Dirichlet (fixed faces) and homogeneous Neumann conditions
(free faces), see Table (9). All numbers reported are again CPU times measured on
the cluster ‘Parnass2’.

time processors

level nodes dof 1 2 4 8 16 32 64
4 289 578 | 1.27 0.74 0.48 0.34 0.26 0.22 0.22

5 1089 2178 | 5.31 2.83 1.60 0.96 0.61 041 0.34

6 4225 8450 | 21.9 11.2 593 3.24 1.77 1.05 0.69

7 16641 33282 | 91.6 45.3 23.1 12.0 6.19 3.35 1.89

8 66049 | 132098 | 386 192 942 46.7 23.6 12.2 6.34

9| 263169 | 526338 | 1578 789 392 195 95.8 47.3 23.9

10 | 1050625 | 2101250 1559 777 388 192 95.6

Table 7

Uniform refinement example, elasticity 2D, timing, levels 4 to 10, 1 to 64 processors.

Also for Lamé’s equation, principally the same behavior of our approach as for the
Poisson problem can be seen. Tables 7, 8 and 9 show that our method scales well
in the uniform and adaptive cases. Note that the parallel efficiency is even higher
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time processors
level nodes dof 1 2 4 8 16 32 64
3 729 2187 | 3.05 1.99 132 0.91 0.73 0.53
4 4913 14739 | 27.6 15.3 8.81 5.49 3.51 2.07 1.30
5 35937 | 107811 | 249 131 68.2 38.1 214 11.7 6.57
6 | 274625 | 823875 | 2164 1124 573 300 158 80.5 41.7
7 | 2146689 | 6440067 1211 618 311
Table 8
Uniform refinement example, elasticity 3D, timing, levels 3 to 7, 1 to 64 processors.
time processors
nodes dof 1 2 4 8 16 32 64
125 375 0.10 0.12 0.11 1.50 2.91
450 1350 | 1.44 0.99 0.80 1.35 0.50 0.39 1.05
1155 3465 | 4.14 248 1.71 1.32 1.00 0.70 2.74
4412 13236 | 19.0 10.3 6.09 5.23 3.07 1.89 1.21
18890 56670 | 98.6 50.3 28.1 20.6 11.6 6.35 3.70
93021 | 279063 | 582 294 157 102 54.8 28.2 15.1
506620 | 1519860 556 306 155 78.1
3178218 | 9534654 494
Table 9
Adaptive refinement example, elasticity 3D, timing, 1 to 64 processors.
ratio « processors
nodes | 1 2 4 8 16 32 64

uniform 3D | 274625 | 0 3.4e-4 3.2e-4 3.3e-4

adaptive 3D | 93021

Table 10

1.7e-3 6.7e-4 1.4e-3

0 3.6e-4 3.5e-4 4.0e-4 4.9e-4 6.9e-4 1.4e-3

Ratio « of execution times of partitioning and mapping nodes to solving the equation
system, elasticity 3D, 1 to 64 processors.

than for the Poisson problem. This is due to the higher amount of work associated
with each node, while the expenses associated with the grid stay the same. In the

elasticity case, there are d degrees of freedom located at each node.

6 Concluding remarks

In this paper we gave a survey of the basic ingredients of an efficient solver for
self-~adjoint elliptic PDEs, i.e. multilevel and domain decomposition solvers, adap-
tive grid refinement and parallelization. We focused on the interplay between the
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Fig. 12. 3D refined grid, mapped to 8 processors (grid on the left, gray shaded
partitions on the right).

these ingredients and tried to illustrate how the they can be glued together into
an adaptive parallel multilevel method. Here we proposed the application of hash
storage techniques for data management and the use of space-filling curves for load
balancing in the parallel version of the algorithms and presented a first version of a
parallel adaptive multilevel method based on these approaches.

Let us stress in the end, that there are still many open questions and problems with
adaptive parallel multilevel solvers. First of all, when the domain of interest is quite
complicated and cannot be resolved by the coarser levels, multigrid must be modified
accordingly. Then, remember that especially for three dimensional problems the
robustness is still an open question. Furthermore, the interplay between adaptivity
and parallel efficiency is not fully understood and needs further elaboration. Finally,
for the application of nonlinear elasto-plastic materials and contact problems there
remains a lot of work to do.
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