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Abstract. This paper is concerned with the discretization and compression of integral operators.
It continues the work of [19]. Based on the framework of tensor-product biorthogonal wavelet bases
we construct compression schemes for operator adapted sparse grid type discretizations. These
discretization and compression schemes preserve the approximation order of the standard full-grid
spaces. We give detailed information on the cases in which the curse of dimension can be broken.
We show that our compression schemes are optimal up to logarithmic factors.
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1. Introduction. Consider a variational problem: Given f ∈ Hs, s ∈ IR, find
u ∈ H−s such that

a(u, v) = (f, v) ∀v ∈ H−s.(1.1)

The Galerkin method for solving problem (1.1) numerically is to select a finite-
dimensional subspace VJ from H−s ∩L2 and to solve the variational problem therein.
Fixing a basis of VJ finally leads to a linear system of equations

AJxJ = bJ(1.2)

of dimension dim(VJ). The work count to solve (1.2) to a prescribed accuracy can
often be made proportional to the number of non-zero entries in AJ , see e.g. [5, 21].
For conventional spaces that belong to uniform full grids with subdivision rate two,
this number is at least of the order dim(VJ) = O(2nJ), i.e. it grows exponentially
with the dimension n. This is particularly problematic in the case of integral operators
with global kernel K,

Au(x) :=
∫

K(x,y)u(y)dy,(1.3)

where a naive Galerkin discretization on a uniform full grid with O(2nJ ) unknowns
leads to a discrete operator with O(22nJ) entries. This makes matrix vector multipli-
cations, as they are needed in iterative methods, prohibitively expensive for large n
or large J .
Approaches to reduce the work count for approximating the solution of (1.1) are either
based on the smoothness properties of the solution u (and eventually the kernel K),
i.e. on decay properties in Fourier-space, or on the decay properties of the kernel K
in physical space.
The original idea of the first approach applied to (1.1) was to exploit smoothness prop-
erties of the solution u. This leads to the replacement of the full grid approximation
space by a so-called sparse grid space (that also appeared under the names hyperbolic
cross approximation or boolean blending schemes) [1, 8, 10, 13, 14, 15, 24, 25, 26, 27].
It has been shown that under some assumptions on the approximation and smoothness
properties of the underlying anisotropic tensor-product basis functions and provided
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that certain additional regularity assumptions on the solution u of (1.1) are fulfilled,
the resulting approximation spaces exhibit the same order of approximation as the full
grid space, while having significantly less dimension. This approach has been applied
successfully to differential [4, 15, 27] as well as integral operators [15, 16].
The full potential of the sparse grid approach for integral operators is revealed when
it is applied to the kernel K, exploiting K’s smoothness properties. This leads to a
significant further reduction of the work count, see [12, 18, 19, 22], and hence, reduces
the need for additional compression schemes on top of these discretizations, compare
section 3.
Another well known strategy to reduce the cost of matrix vector multiplications is to
exploit eventual decay properties of the kernel in physical space. Such decay prop-
erties do hold for pseudo-differential operators and hence for example for the single
and double layer potential operator as well as for classical differential operators [20].
For isotropic biorthogonal wavelets it has been shown that, with a sufficient number
of vanishing moments, most entries in the corresponding stiffness matrices can be
replaced by zero without destroying the order of approximation [3, 6, 7, 9, 23]. Then
for isotropic tensor-product wavelets on a full grid the number of entries in the stiff-
ness matrix after compression is only O(Jk2nJ ) with some k ∈ IR+ or even O(2nJ)
[23]. Corresponding investigations concerning anisotropic tensor-product discretiza-
tions seem still to be missing, especially together with sparse grid type discretizations.
In this paper we continue the work of [19] and develop compression schemes for
anisotropic tensor-product type discretisations of (1.3). We show that in many cases
a suitable discretization scheme renders additional compression unnecessary. We iden-
tify the cases, where additional compression is worthwhile. For the relevant cases we
we develop a suitable compression scheme along the lines of [23] and show how optimal
compression (up to logarithmic factors) can be obtained.
The remainder of the paper is as follows. Section 2 introduces the necessary nota-
tion and summarizes the basic facts about biorthogonal wavelet bases, tensor-product
spaces, norm equivalences and the smoothness classes we consider (they are certain
intersections of classes of functions with dominating mixed derivatives, see (2.1) be-
low). In Section 3 we discuss anisotropic tensor-product discretizations for integral
operators including full and sparse grid type discretizations. In Section 4 we introduce
and discuss our compression scheme.

2. Preliminaries. Multi-indices (vectors) are written boldface, for example j =
(j1, . . . , jn). Inequalities like l ≤ t or l ≤ 0 are to be understood componentwise. We
write x ' y if there exist C1, C2 independent of any parameters x or y may depend on
such that C1 · y ≤ x ≤ C2 · y. In the rest of the paper C denotes a generic constant
which may depend on the smoothness assumptions and on the dimension n of the
problem. Moreover, for j,k ∈ INn we write |j|∞ := max1≤i≤n(|ji|), |j|1 :=

∑n
i=1 |ji|,

|(j,k)|∞ := max(|j|∞, |k|∞) and |(j,k)|1 := |j|1 + |k|1. With dist(x,y) we denote the
Euclidian distance between x and y.

2.1. Sobolev spaces. Let us denote by Ht(In), t ∈ IR, a scale of standard
Sobolev spaces on In := [0, 1]n and by L2(In) the space of L2-integrable functions
on In. When t < 0,Ht(In) is defined as the dual of H−t(In), i.e., Ht := (H−t)′

(incorporating eventual boundary conditions).
Now we fix the smoothness assumptions we consider. Let t ∈ IR, l ∈ IR+

0 , 1 :=
(1, . . . , 1) and ei := (0, . . . , 0, 1, 0, . . . , 0) the i-th unit-vector in IRn. Then we define

Ht,l
mix(In) := Ht1+le1

mix (In) ∩ · · · ∩ Ht1+len
mix (In),(2.1)
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where Hk
mix(In) := Hk1(I)⊗ . . .⊗Hkn(I) for k ∈ IRn.

This definition includes the class of functions with dominating mixed derivativeHt,0
mix(In)

as well as the standard isotropic Sobolev spaces Ht(In) = H0,t
mix(In). Note that Ht,l

mix

is a mixture of classes of functions with dominating mixed derivative Ht
mix(Tn) =

Ht,0
mix(Tn) and standard Sobolev spaces Ht(Tn) = H0,t

mix(Tn). For additional in-
formation on these spaces, specifically on the definition via Fourier transform, the
treatment of boundary conditions and the connections between spaces of bounded
mixed derivative and these anisotropic tensor-product spaces see [15, 17, 18]. In the
rest of the paper we will drop In in Ht,l

mix(In) and write Ht,l
mix.

2.2. Biorthogonal wavelet bases. The approximation spaces considered here
are anisotropic tensor-products of univariate function spaces. We start from a one-
dimensional multi-resolution analysis L2 =

⋃
j≥0 Vj and we assume that the comple-

ment spaces Wj = Vj ª Vj−1 of Vj−1 in Vj are spanned by some multiscale basis
functions such that we have Wj = span{ψjk, k ∈ τj}, where τj is some index set
defined from the subdivision rate of successive refinement levels. We will consider
dyadic refinement throughout the paper. Moreover, we assume that {ψjk, k ∈ τj}
forms a Riesz-basis of Wj and that there exists a dual system {ψ̃jk, k ∈ τj , j ∈ IN0},
such that 〈ψjk, ψ̃j′k′〉L2 = δjj′δkk′ , j, j′ ∈ IN0, k ∈ τj , k

′ ∈ τj′ holds. We assume
‖ψjk‖L2 = 1 and diam(supp(ψjk)) . 2−j . In the following let ψjk and ψ̃jk have N

and Ñ vanishing moments, respectively. Moreover we write W̃j = span{ψ̃jk, k ∈ τj}
for the complement spaces spanned by the dual wavelets.

For the higher-dimensional case n > 1, let j ∈ INn
0 be given. Consider the tensor-

product partition with uniform step size 2−ji into the i-th coordinate direction. By
Wj and W̃j we denote the corresponding tensor-product function spaces Wj := Wj1 ⊗
. . .⊗Wjn and W̃j := W̃j1 ⊗ . . .⊗ W̃jn . A basis of Wj is then given by ∪k∈τj{ψjk(x) =
ψj1k1(x1) · . . . · ψjnkn(xn)}, with τj = τj1 × . . .× τjn .
To simplify things we assume in the following the validity of the norm equivalences

‖u‖2Ht,l
mix

'
∑

j

22t|j|1+2l|j|∞‖wj‖2L2 , for u =
∑

j

wj ∈ Ht,l
mix, wj ∈ Wj,(2.2)

t, t + l ∈ (−r̃, r) and

‖u‖2Ht,l
mix

'
∑

j

22t|j|1+2l|j|∞‖w̃j‖2L2 , for u =
∑

j

w̃j ∈ Ht,l
mix, w̃j ∈ W̃j,(2.3)

t, t + l ∈ (−r, r̃), see [15]. Such two-sided estimates can be inferred from the validity
of norm equivalences in one dimension which in turn can be inferred from direct
estimates (estimates of Jackson type) and inverse estimates (Bernstein inequalities)
for the primal and the dual wavelets as a consequence of approximation theory in
Sobolev spaces together with interpolation and duality arguments, see [5, 15, 21].
Note that for t = 0 or l = 0 we regain the (standard) norm equivalences for the
isotropic Sobolev space Hl and the Sobolev space with dominating mixed derivative
Ht,0

mix. The different factors 22t|j|1 and 22l|j|∞ in these equivalences reflect the different
smoothness requirements.

3. Anisotropic tensor-product discretization. Given an index set I ⊂ IN2n
0

we consider the approximation space

VI :=
⊕

(j,k)∈I
W̃j ⊗ W̃k
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and the corresponding Galerkin stiffness matrix

(AI)jklm :=
{

ajklm for (j,k) ∈ I and (l,m) ∈ τjk,
0 else,

with ajklm := 〈Aψjl, ψkm〉L2 and τjk := τj×τk. Here we assume that eventual bound-
ary conditions are implemented into the definition of the primal and dual wavelets.
The corresponding integral operator is given by

AIu(x) :=
∫

KI(x,y)u(y)dy

with

KI(x,y) :=
∑

(j,k)∈I

∑

(l,m)∈τjk

ajklmψ̃jl(x)ψ̃km(y).

Typical approximation spaces are defined via the index sets

IJ = {(j,k) ∈ IN2n
0 : |j,k|∞ ≤ J},(3.1)

IJ = {(j,k) ∈ IN2n
0 : |j|1 ≤ J and |k|1 ≤ J} or

IJ = {(j,k) ∈ IN2n
0 : |j,k|1 ≤ J},

J ∈ IN, leading to the full grid space with dimension O(22nJ ), the tensor product of
two sparse grid spaces in n dimensions with dimension O(22JJ2n−2) and the sparse
grid space in 2n dimensions with dimension O(2JJ2n−1), respectively. Note that the
dimension of the sparse grid spaces compares favorably with the dimension of the full
grid space.
In the rest of the paper we assume l, t, p, q ≥ 0 and l + t ≥ s ≥ −(p + q).
Then the approximation error when using the full grid approximation space induced
by the index set (3.1) is

‖(A−AIJ )u‖Hs ≤ C · 2(s−l−t)J · ‖K‖Ht,l
mix
‖u‖Hp,q

mix
for u ∈ Hp,q

mix,K ∈ Ht,l
mix,(3.2)

compare [19]. From the results in [19] we also obtain the following Theorem.

Theorem 1. We assume that the norm equivalences (2.2) and (2.3) hold. Let the
parameters r̃, r from (2.2) and (2.3) fulfill −r̃ < s < r and p ∈ [0, r), p + q ∈ [0, r),
t ∈ [0, r̃), t + l ∈ [0, r̃) Let the index set IJ(s, t, l, p, q) be defined by

IJ(s,t,l,p,q) := {(j,k) ∈ IN2n
0 :

−s|j|∞ + l|j,k|∞ + t|j,k|1 + q|k|∞ + p|k|1 ≤ (l + t− s)J}.(3.3)

We denote the corresponding integral operator by AIJ (s,t,l,p,q). Moreover, let (A −
AIJ (s,t,l,p,q))u ∈ Hs, u ∈ Hp,q

mix, K ∈ Ht,l
mix. Then

‖(A−AIJ (s,t,l,p,q))u‖Hs ≤ C · 2(s−l−t)J · ‖K‖Ht,l
mix
‖u‖Hp,q

mix
.(3.4)

That is, the order of approximation of the full grid approximation space is preserved
when using the approximation space VJ (s, t, l, p, q) induced by the index set (3.3).
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The number of elements in the approximation VIJ (s,t,l,p,q) space is given by

dim(VIJ (s,t,l,p,q)) =





O(2J) for l − s < 0,

O(2nJ s−l−t
s−l−nt ) for 0 < l − s < q + np,

O(22nJ s−l−t
s−l−2nt−q−np ) for 0 ≤ q + np < l − s.

(3.5)

In the extremal cases l − s = 0 and 0 < l − s = q + np there appear additional
logarithmic terms. These estimates follow directly from general estimates in [11].
Combining (3.4) with (3.5) we see that the number of non-zero elements N in the
stiffness matrix AIJ (s,t,l,p,q) needed to obtain ‖(A−AIJ (s,t,l,p,q))u‖Hs ≤ ε, ε ∈ IR+, is
bounded by

N ≤





O(ε
1

s−l−t ) for l − s < 0,

O(ε
1

s−l
n
−t ) for 0 < l − s < q + np,

O(ε
2

s−l−q
n

−p−2t ) for 0 ≤ q + np < l − s.

(3.6)

Again, in the extremal cases l− s = 0 and 0 < l− s = q + np there appear additional
logarithmic terms. These estimates need to be compared with

N = O(ε
2n

s−l−t )(3.7)

for the full grid approximation space.
Hence, for a kernel with dominating mixed smoothness, i.e. t > 0, we have the
following results: In the case l − s < 0 the number of non-zero elements in the
resulting stiffness matrix does not depend on the dimension n. In the case 0 ≤ l−s <
q + np there appears a slight n-dependence, which is further increasing in the case
0 ≤ q + np < l − s.
In the case t = 0, i.e. for a kernel with isotropic smoothness, the above approximation
scheme in most cases still significantly reduces the number of non-zero entries in the
stiffness matrix compared to the full grid scheme. Consider for example the case
t = p = 0, 0 < l − s < q, i.e., the case of fully isotropic smoothness. Then the
dependence on the dimension n of the number of non-zero elements is reduced from
2n in the full grid case to n. Therefore, in many cases the discretization scheme
induced by the index set (3.3) renders additional compression schemes unnecessary.
Only in the case 0 ≤ q + np < l − s there can be a relatively strong dependence
on the dimension n reflected by the exponent 2n in the third estimates of (3.5) and
(3.6). Here additional compression may be worthwhile. The rest of the paper is
concerned with the question whether the dependence on n in this case can be reduced
significantly via additional compression.

4. Compression. An additional reduction of the cost of evaluating (1.3) ap-
proximately may be obtained by exploiting the decay properties of the kernel K in
physical space. The idea is again to drop small entries in the stiffness matrix without
destroying the order of approximation.
Here one usually assumes specific decay properties of the Schwarz-kernel of the pseu-
dodifferential operator under consideration. For singular kernels these are typically
of the form

∃ C = Cαβ < ∞ :
∣∣∂α

x ∂β
y K(x,y)

∣∣ ≤ C · ∣∣x− y
∣∣−f(α,β)

, f(α, β) > 0, x 6= y.(4.1)
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Here f is typically of the form f(α,β) = |α + β + m1|1 with some m ∈ IR+. Then
estimates of the size of the entries ajklm of the Galerkin stiffness matrix are obtained by
expansions of the Schwarz-kernel in a polynomial basis together with the cancellation
properties of the primal wavelets. A Taylor expansion of the kernel together with the
cancellation properties of the primal wavelets together with (4.1) shows

〈Aψjl, ψkm〉L2 ≤ C · 2−|l,k|1(N+ 3
2 )

dist(supp(ψjl), supp(ψkm))f(N+1,N+1)
,(4.2)

for dist(supp(ψjl), supp(ψkm)) > 0.
Given an additional index set τ comp

jk ⊂ τjk we can replace the stiffness matrix AI by
Acomp
I with

(Acomp
I )jklm =

{
(AI)jklm for (j,k) ∈ I and (l,m) ∈ τ comp

jk ,

0 for (j,k) ∈ I and (l,m) 6∈ τ comp
jk .

The corresponding integral operator is given by

Acomp
I u(x) :=

∫
Kcomp
I (x,y)u(y)dy

with

Kcomp
I (x,y) :=

∑

(j,k)∈I

∑

(l,m)∈τcomp
jk

ajklmψ̃jl(x)ψ̃km(y).

The remaining task is to define the τ comp
jk in such a way that the order of approximation

does not deteriorate because of this compression.
The following result tells us how to define the index sets τ comp

jk in order to balance
the overall complexity and the error after compression.

Theorem 2. Let the assumptions of Theorem 1 hold. Moreover, let the decay property
(4.2) hold. Let (AIJ (s,t,l,p,q)−Acomp

IJ (s,t,l,p,q))u ∈ Hs. Here IJ(s, t, l, p, q) is again given
by (3.3). For (j,k) ∈ IJ (s, t, l, p, q) let

Bjk := J
n

f(N+1,N+1) · 2
(t+l−s)J+s|j|∞−q|k|∞−p|k|1−(N+1)|j,k|1

f(N+1,N+1) .

We define

τ comp
jk := {(l,m) ∈ τjk : dist(supp(ψjl), supp(ψkm)) ≤ Bjk}.(4.3)

Then

‖(A−Acomp
IJ (s,t,l,p,q))u‖Hs ≤ C · 2(s−l−t)J · ‖u‖Hp,q

mix
.

Proof: For shortness we use the abbreviations I for IJ(s, t, l, p, q), AI for AIJ (s,t,l,p,q)

and analogously Acomp
I for Acomp

IJ (s,t,l,p,q). Let ujk := 〈u, ψ̃jk〉L2 be the unique wavelet
coefficients of u ∈ L2, i.e., u =

∑∞
j=0

∑
k∈τj

ujkψjk. We use the biorthogonality
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between the dual and the primal wavelets and the stability of the dual wavelets in Hs

and the primal wavelets in Hp,q
mix, i.e. the validity of (2.2) and (2.3). It holds

‖(AI −Acomp
I )u‖2Hs = ‖

∑

(j,k)∈I

∑

(l,m)∈τjk\τcomp
jk

ajklmukmψ̃jl(x)‖2Hs

= ‖
∑

j

∑

l∈τj


 ∑

k:(j,k)∈I

∑

m:(l,m)∈τjk\τcomp
jk

ajklmukm


 ψ̃jl(x)‖2Hs

(2.3)'
∑

j

∑

l∈τj

22s|j|∞


 ∑

k:(j,k)∈I

∑

k:(l,m)∈τjk\τcomp
jk

ajklmukm




2

=
∑

j

∑

l∈τj

22s|j|∞


 ∑

k:(j,k)∈I

∑

m:(l,m)∈τjk\τcomp
jk

2−q|k|∞−p|k|1ajklm2q|k|∞+p|k|1ukm




2

≤
∑

j

∑

l∈τj

22s|j|∞


 ∑

k:(j,k)∈I

∑

m:(l,m)∈τjk\τcomp
jk

2−2q|k|∞−2p|k|1a2
jklm




·
( ∑

k∈INn

∑
m∈τk

22q|k|∞+2p|k|1u2
km

)

(2.2)

≤ C ·

 ∑

(j,k)∈I

∑

(l,m)∈τjk\τcomp
jk

22s|j|∞−2q|k|∞−2p|k|1a2
jklm


 · ‖u‖2Hp,q

mix
.

With the definition of τ comp
jk together with (4.2) we then obtain (for shortness we use

the abbreviation f = f(N + 1,N + 1))

‖(AI −Acomp
I )u‖2Hs ≤ C ·

( ∑

(j,k)∈I
22s|j|∞−2q|k|∞−2p|k|12−2|j,k|1(N+ 3

2 )

·
∑

(l,m)∈τjk,

dist(supp(ψjl),supp(ψkm))>Bjk

dist(supp(ψjl), supp(ψkm))−2f

)
· ‖u‖2Hp,q

mix

≤ C ·
( ∑

(j,k)∈I
22s|j|∞−2q|k|∞−2p|k|12−2|j,k|1(N+ 3

2 )

·B−2f
jk

∑
(l,m)∈τjk,

dist(supp(ψjl),supp(ψkm))>Bjk

1
)
· ‖u‖2Hp,q

mix
.

Now we apply
∑

(l,m)∈τjk
1 = |τjk| . 2|j,k|1 and plug in the definition of Bjk. We

obtain

‖(AI −Acomp
I )u‖2Hs ≤ C ·


 ∑

(j,k)∈I
22s|j|∞−2q|k|∞−2p|k|12−2|j,k|1(N+1)B−2f

jk


 · ‖u‖2Hp,q

mix

≤ C · 22(s−l−t)JJ−2n


 ∑

(j,k)∈I
1


 · ‖u‖2Hp,q

mix
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≤ C · 22(s−l−t)J · ‖u‖2Hp,q
mix

.(4.4)

Now we combine (3.4) from Theorem 1 with (4.4) and obtain

‖(A−Acomp
I )u‖Hs ≤ ‖(A−AI)u‖Hs + ‖(AI −Acomp

I )u‖Hs

≤ C · 2(s−l−t)J · ‖K‖Ht,l
mix
‖u‖Hp,q

mix
+ C · 2(s−l−t)J · ‖u‖Hp,q

mix

≤ C · 2(s−l−t)J · ‖u‖Hp,q
mix

.

2

Theorem 2 shows that the order of approximation of the full grid approximation space
is preserved. Note that the resulting stiffness matrix AIJ (s,t,l,p,q) will in general be
non-symmetric. A symmetric operator may be derived by taking the maximum of
Bjk and Bkj in the definition of τ comp

jk .

The following Lemma gives an upper estimate for the number of remaining non-zero
elements in the compressed stiffness matrix.

Lemma 1. Let 0 ≤ q + np < l − s. Then the number of non-zero elements N in the
stiffness matrix Acomp

IJ (s,t,l,p,q) is bounded by

N ≤ CJn(2+ n
f ) dim

(
VIJ (s,t,l,p,q)

)1−n
f (N+1−t−l)

≤ CJn(2+ n
f )2nJ s−l−t

s−l−2nt−q−np 2(1−n
f (N+1−t−l)).

Specifically for f(N + 1,N + 1) = 2n(N + 1 + m),m ∈ IR+, it holds

N ≤ O(Jn) · 2nJ s−l−t
s−l−2nt−q−np (1+ t+l+m

N+1+m ).

Proof: For shortness we use again the abbreviations f = f(N + 1,N + 1) as well
as IJ := IJ(s, t, l, p, q) and VIJ

:= VIJ (s,t,l,p,q) for the index set (3.3) and the cor-
responding approximation space. The number of non-zero elements in the stiffness
matrix Acomp

IJ
is given by

N =
∑

(j,k)∈IJ

∑

(l,m)∈τcomp
jk

1
(4.3)
=

∑

(j,k)∈IJ

∑

{(l,m)∈τjk:dist(supp(ψjl),supp(ψkm))≤Bjk}
1.(4.5)

Now, for every fixed index pair (j, l) the number of pairs (k,m) with

dist(supp(ψjl), supp(ψkm)) ≤ Bjk

is bounded by

C ·
n∏

i=1

max (1,
2−ji + Bjk

2−ki
) = C ·

n∏

i=1

max (1,
2−ji

2−ki
+

Bjk

2−ki
)

≤ C ·
∑

µ̄,ν̄:µ̄∪ν̄={1,...,n},
µ̄∩ν̄=∅





∏

i∈µ̄

max (1,
2−ji

2−ki
) ·

∏

i∈ν̄

max (1,
Bjk

2−ki
)





8



≤ C · max
µ̄,ν̄:µ̄∪ν̄={1,...,n},

µ̄∩ν̄=∅





∏

i∈µ̄

max (1,
2−ji

2−ki
) ·

∏

i∈ν̄

max (1,
Bjk

2−ki
)



 .(4.6)

Because of

∏

i∈µ̄

max (1,
2−ji

2−ki
) ≤ C · max

{µ:µ⊆µ̄}
2

∑
i∈µ(ki−ji)(4.7)

and similarly

∏

l∈ν̄

max (1,
Bjk

2−kl
) ≤ C · max

{ν:ν⊆ν̄}
2

∑
l∈ν klB

|ν|
jk(4.8)

we obtain

N =
∑

(j,k)∈IJ

∑

{(l,m)∈τjk:dist(supp(ψjl),supp(ψkm))≤Bjk}
1

(4.6)

≤ C
∑

(j,k)∈IJ
2|j|1 max

µ̄,ν̄:µ̄∪ν̄={1,...,n},
µ̄∩ν̄=∅





∏

i∈µ̄

max (1,
2−ji

2−ki
) ·

∏

l∈ν̄

max (1,
Bjk

2−kl
)





(4.7),(4.8)

≤ C
∑

(j,k)∈IJ
2|j|1 max

µ,ν:µ∪ν⊆{1,...,n},
µ∩ν=∅

{
2

∑
i∈µ(ki−ji))2

∑
i∈ν kiB

|ν|
jk

}

≤ C
∑

(j,k)∈IJ
max

µ,ν:µ∪ν⊆{1,...,n},
µ∩ν=∅

{
2(

∑
i∈µ∪ν ki)+(

∑
i 6∈µ ji)B

|ν|
jk

}

≤ CJ2n max
(j,k)∈IJ

max
µ,ν:µ∪ν⊆{1,...,n},

µ∩ν=∅

{
2(

∑
i∈µ∪ν ki)+(

∑
i6∈µ ji)B

|ν|
jk

}
.

Now we plug in the definition of Bjk and obtain

N ≤ CJn(2+ n
f )2K

with

K := max
(j,k)∈IJ

max
µ,ν:µ∪ν⊆{1,...,n},

µ∩ν=∅





∑

i∈µ∪ν

ki +
∑

i 6∈µ

ji

+
|ν|
f

[(t + l − s)J + s|j|∞ − q|k|∞ − p|k|1 − (N + 1)|j,k|1]
}

.

The maximum in µ, ν is obtained for µ = ∅, ν = {1, . . . , n}. Hence

K ≤ max
(j,k)∈IJ

{
|j,k|1 +

n

f
[(t + l − s)J + s|j|∞ − q|k|∞ − p|k|1 − (N + 1)|j,k|1]

}
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≤ max
(j,k)∈IJ

{(
1− n

f
(N + 1− t− l)

)
|j,k|1

+
n

f
[(−t− l)|j,k|1 + s|j|∞ − q|k|∞ − p|k|1 + (t + l − s)J ]

}

≤ max
(j,k)∈IJ

{(
1− n

f
(N + 1− t− l)

)
|j,k|1

+
n

f
[s|j|∞ − q|k|∞ − p|k|1 − t|j,k|1 − l|j,k|∞ + (t + l − s)J ]

}
.

Using the definition of IJ in (3.3) we obtain

K ≤ max
(j,k)∈IJ

(
1− n

f
(N + 1− t− l)

)
|j,k|1

and hence together with the third inequality in (3.5)

N ≤ CJn(2+ n
f ) dim(VIJ

)1−
n
f (N+1−t−l)

≤ CJn(2+ n
f )2nJ s−l−t

s−l−2nt−q−np 2(1−n
f (N+1−t−l)).

2

Lemma 1 shows that for N + 1 ≈ t + l there will be no compression effect. However,
for N +1 > t+ l there will be a significant reduction of the number of non-zero entries
in the stiffness matrix. Combining Theorem 2 with the estimate for the number of
non-zero elements in the stiffness matrix in Lemma 1 we obtain the following result.

Theorem 3. Under the assumptions of Theorem 2 and 0 ≤ q + np < l − s the
number of non-zero elements in the stiffness matrix Acomp

IJ (s,t,l,p,q) needed to obtain
‖(A−Acomp

IJ (s,t,l,p,q))u‖Hs ≤ ε, ε ∈ IR+, is bounded by

N ≤ O

(
ε

2
s−l−q

n
−p−2t

(1−n
f (N+1−t−l))

ln(ε−1)n2
)

.(4.9)

Specifically for f(N + 1,N + 1) = 2n(N + 1 + m) with m ∈ IR+ it holds

N ≤ O

(
ε

1
s−l−q

n
−p−2t

(1+ t+l+m
N+1+m )

ln(ε−1)n

)
.(4.10)

A comparison of (4.9) with the last estimate in (3.6) shows that compression reduces
the quadratic exponential factor in the right hand side of (3.6) to 2−2n

f (N +1−t−l)).
Additionally, (4.10) shows that for t + l + m/N + 1 + m → 0 we obtain optimal
compression up to a logarithmic factor.
Note however, that generalizations to more general geometries are not as easy as in
the isotropic case.
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