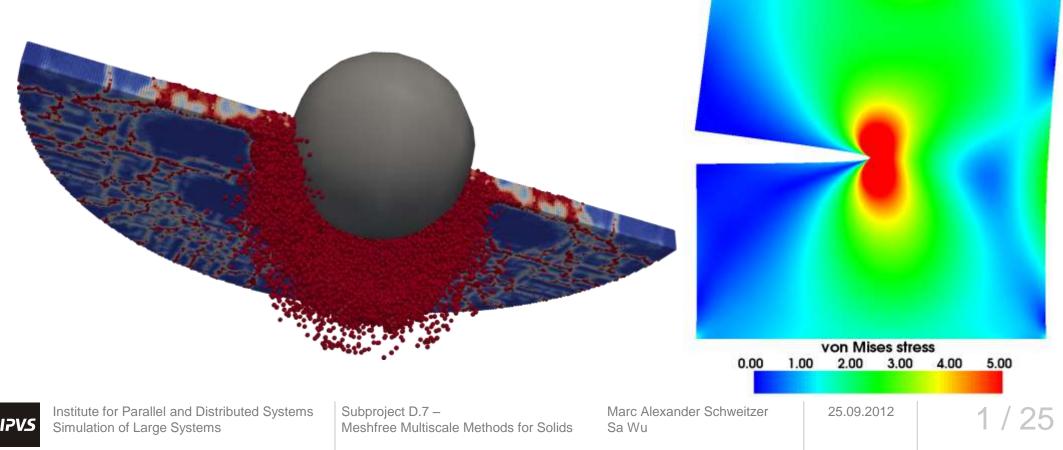
Dynamic Simulation of Systems with Large Particle Numbers

D.7 Meshfree Multiscale Methods for Solids

Marc Alexander Schweitzer Sa Wu

SFB 716



Particle Methods

Pros

- Very accurate
- Well studied

SFB 716

- Physically meaningful
 - Expert knowledge included

Cons

. . .

Everything only for small samples

What to do?

- Particles only where needed
 - Coupling?

Idea

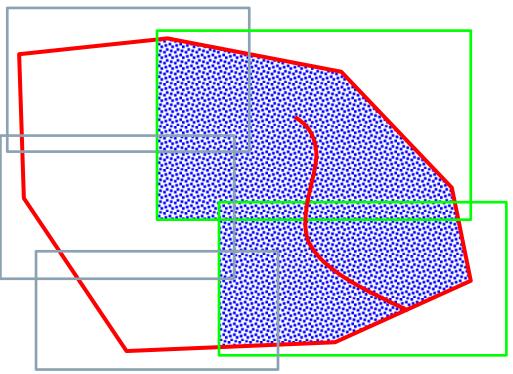
SFB 716

Smooth, coarse scale Method

e.g. Finite Elements

Discontinuous, fine scale Method

e.g. Molecular Dynamics



Together

- 1. Detect areas where fine scale important
- 2. Fine scale simulations to obtain local solutions
- 3. Build additional basis function from local solutions
- 4. Compute global solution including function from Step 3
- 5. Use global solution for Steps 1, constraints of Step 2

University of Stuttgart

Germany

Peridynamics

Classical Elasticity

SFB 716

- Partial Differential Equation of Motion $\rho \ddot{u}(x,t) = f(x,u(x,t),\nabla u(x,t),\nabla^2 u(x,t)) + b(x,t)$
 - Spatial derivatives

 $\nabla u(x,t), \qquad \nabla^2 u(x,t)$

Peridynamic Model

Nonlocal Equation of Motion ($\Omega(x)$ finite size)

$$\rho\ddot{u}(x,t) = \int_{\Omega(x)} f(\underbrace{y-x}_{\xi}, \underbrace{u(y,t) - u(x,t)}_{\eta}) \, dy + b(x,t)$$

No gradients, but differences in finite distance $\Omega(x)$

$$\xi = y - x, \qquad \eta = u(y,t) - u(x,t)$$

Particle discretization

$$\rho \ddot{u}(x_i, t_n) = \sum_{x_j \in \Omega(x_i)} f(x_j - x_i, u(x_j, t_n) - u(x_i, t_n)) V_{i,j} + b(x_i, t_n)$$

[Silling, Parks, Weckner et al.]

www.sfb716.uni-stuttgart.de

Institute for Parallel and Distributed Systems Simulation of Large Systems Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu

25.09.2012

Peridynamic material description

Integration domain

SFB 716

 $\Omega(x), N(x_i)$

Pairwise force function

- $f(\xi,\eta)$
 - Preservation of linear and angular momenta $f(-\xi, -\eta) = -f(\xi, \eta), \quad f(\xi, \eta) \times (\xi + \eta) = 0$
 - Example
 - Isotropic

$$f(\xi,\eta) = \underbrace{g(\xi,\eta)}_{\text{scalar}} \frac{\xi + \eta}{\|\xi + \eta\|}$$

Prototype Microelastic

$$g(\xi,\eta) = g(\underbrace{\frac{\|\xi + \eta\| - \|\xi\|}{\|\xi\|}}_{s}) = \begin{cases} cs, & \forall \tilde{t} \le t : s \le s_0 \\ 0, & \text{otherwise} \end{cases}$$

- Breakable linear springs
- Many more

Peridynamics

Theoretical Results

SFB 716

- Linear Elasticity:
 - Linear kernel with certain properties, for $\delta = \max_{x} \operatorname{diam}(\operatorname{supp}(\Omega(x)) \to 0)$:

Convergence Navier equation of linear elasticity

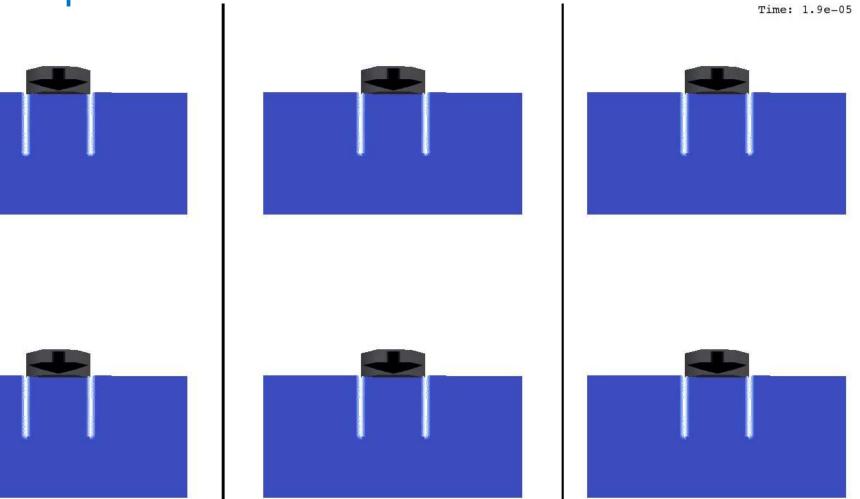
[Emmrich & Weckner, Silling & Lehoucq]

Molecular Dynamics:

- Peridynamics and MD result in "same" HOG model
- Can build PD kernel from MD potential

[Seleson & Parks & Gunzburger & Lehoucq]

SFB 716



Peridynamics simulation of the Kalthoff-Winkler experiment for varying material parameters 10000 time steps à 10^{-8} s with 178000 particles à 1mm³

Institute for Parallel and Distributed Systems Simulation of Large Systems Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu 25.09.2012

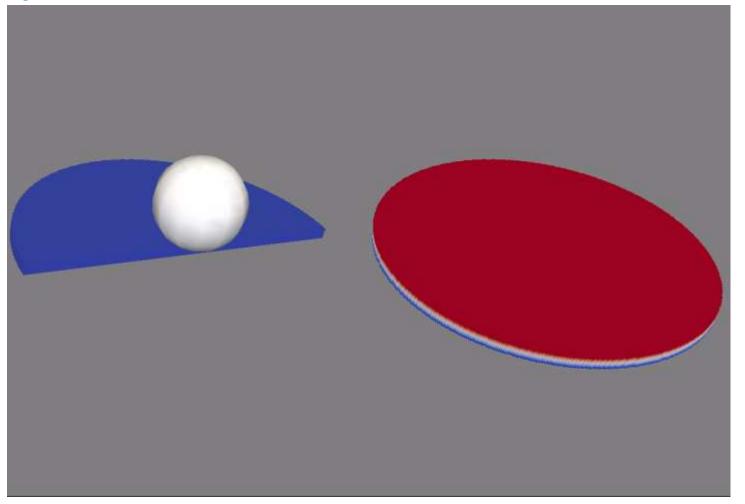
Examples

Peridynamics simulation of impact scenario 3000 time steps à 10^{-4} s with 200000 particles à 1mm³

Institute for Parallel and Distributed Systems Simulation of Large Systems

Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu 25.09.2012

Examples



Peridynamics simulation of impact scenario 10000 time steps à 10^{-8} s with 13144032 particles à 0.25mm³

www.sfb716.uni-stuttgart.de

Institute for Parallel and Distributed Systems Simulation of Large Systems Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu 25.09.2012

Idea

SFB 716

Smooth, coarse scale Method

e.g. Finite Elements

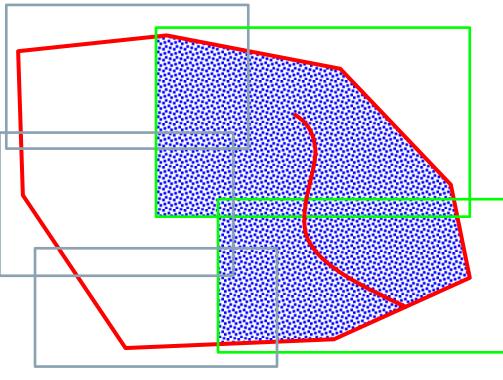
Discontinuous, fine scale Method

Particle discretization of Peridynamics

Together

- 1. Detect areas where to use particles x_i
- 2. Peridynamics simulation with x_i obtain $(x_i, u_i = u(x_i, t))$
- 3. Build additional basis function \tilde{u} from (x_i, u_i)
- 4. Compute global solution u with \tilde{u} as additional basis function
- 5. Use global solution u for Steps 1, constraints of Step 2

10/25



www.sfb716.uni-stuttgart.de

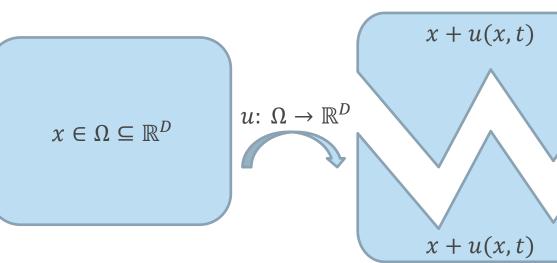
Decomposition of

Smooth displacements

- Partial Differential Equations
 - e.g. Finite Elements
 - Cheap

SFB 716

Large Samples



Discontinuous displacements

- Material failure
- Crack nucleation and growth
- Equations where spatial regularity not needed
 - e.g. Molecular Dynamics, Peridynamics
 - Expensive
 - Small Samples

25.09.2012

Decomposition of Solution

Behavioural Decomposition:

 $u = u_{smooth} + u_{jump} + u_{singular}$

Partition of Unity:

SFB 716

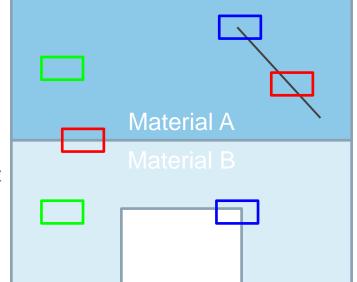
$$\varphi_i, \omega_i = \operatorname{supp}(\varphi_i)$$

Localized Decomposition:

$$u = \sum_{i} \varphi_{i} \left(u_{\text{smooth}} + u_{\text{jump}} + u_{\text{singular}} \right) \Big|_{\omega_{i}}$$

Localization of Approximation:

$$u\Big|_{\omega_i} \approx u^i \in V^i(\omega_i)$$



Smooth Splicing of Local Spaces

$$V = \sum_{i} \varphi_{i} V^{i}(\omega_{i}) = \sum_{i} \varphi_{i} (P^{i} + \mathcal{E}^{i})$$

$$u = \sum_{i} \varphi_{i} u \Big|_{\omega_{i}} = \sum_{i} \varphi_{i} (\overline{u_{smooth}}\Big|_{\omega_{i}} + \overline{u_{jump}}\Big|_{\omega_{i}} + u_{singular}\Big|_{\omega_{i}})$$

Institute for Parallel and Distributed Systems Simulation of Large Systems

Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu

25.09.2012

Scenario

Exact

SFB 716

- Known Singularity
- Known Discontinuity
- Approximate, Asymptotic
 - Singularity
 - Discontinuity
 - Boundary layers
 - Radial component
- Numerical
 - Eigenfunctions of local problems
 - Reconstruction of experimental data
 - Local fine scale solution

Examples

$$\eta(x) = \|x - x_0\|^{\alpha}$$
$$\eta(x) = \cos\left(\frac{\theta}{2}\right)$$

$$\eta(x) = \|x - x_c\|^{\beta}$$

$$\eta(x) = H_{\pm}(x - c)$$

$$\eta(x) = \exp(1 - \operatorname{dist}(x, c))$$

25.09.2012

Error Magnitude 2e-06 4e-06 6e-06 8e-06

Partition of Unity Method

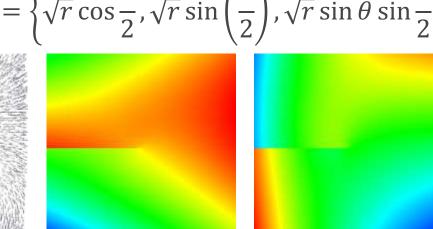
- Finite Elements to solve local $u|_{\omega_i} \approx u^i \in V^i(\omega_i)$
- Example

SFB 716

- **Linear Fracture Mechanics**
- Exact solution:
- across crack
- Crack tip

$$\mathcal{E} = \left\{ \sqrt{r} \cos\frac{\theta}{2}, \sqrt{r} \sin\left(\frac{\theta}{2}\right), \sqrt{r} \sin\theta \sin\frac{\theta}{2}, \sqrt{r} \sin\theta \cos\frac{\theta}{2} \right\}$$

 $\mathcal{E} = P^i \cdot H^C$



Subproject D.7 -

Meshfree Multiscale Methods for Solids

x –component Institute for Parallel and Distributed Systems Simulation of Large Systems

y - component

Marc Alexander Schweitzer Sa Wu

enrichment

25.09.2012

[Babuška, Melenk, Belytschko et. al]

14 / 25

1e-05

SFB 716 Dynamic Simulation of Systems with Large Particle Numbers

convergence history K_{II} convergence history K, 10⁰ 10⁰ 10⁻¹ 10 10⁻² 10⁻² relative error relative error 10^{-3} 10⁻⁴ 10⁻⁴ 10⁻⁵ 10⁻⁵ 10^{-6} 10³ 10⁵ 10⁶ 10² 10³ 10⁶ 10² 10⁴ 10⁴ 10⁵ degrees of freedom degrees of freedom

Convergence of stress intensity factors for $[-0.5, 0.5]^2$, $[-0.25, 0.25]^2$, $[-0.125, -0.125]^2$

IPVS

Institute for Parallel and Distributed Systems Simulation of Large Systems Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu 25.09.2012

Idea

SFB 716

Smooth, coarse scale Method

Partition of Unity Method

Discontinuous, fine scale Method

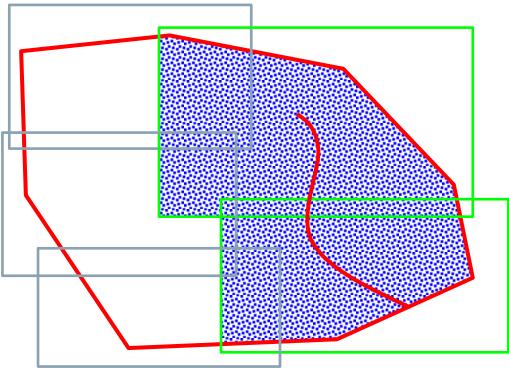
Particle discretization of Peridynamics

Together

- 1. Detect areas where to use particles x_i
- 2. Peridynamics simulation with x_i obtain $(x_i, u_i = u(x_i, t))$
- 3. Build additional basis function \tilde{u} from (x_i, u_i)
- 4. Compute global PUM solution u with \tilde{u} as additional basis function
- 5. Use global solution u for Steps 1, constraints of Step 2

University of Stuttgart

Germany



Construction of Enrichment

- Have, Assume to get
 - Data points $x_i \in \Omega \subseteq \mathbb{R}^3$
 - Displacements $u_i = u(x_i, t) \in \mathbb{R}^3$
 - Adjacency $A_{i,j} = \begin{cases} 1, x_i, x_j \text{ connected} \\ 0, \text{ otherwise} \end{cases}$

Want

- Piecewise smooth
- Possibly discontinuous
- Easy to integrate.
- Easy to get derivatives
- . . .

Scattered Data Approximation

Find approximation p to arbitrary data points (x_i, u_i)

Least Squares

Find

$$p = \underset{q \in V}{\operatorname{argmin}} J(q) = \sum_{i} (u_i - q(x_i))^2$$

Get approximation
$$p \in V$$

Moving Least Squares

Find for each x

$$p(x) = \underset{q \in V}{\operatorname{argmin}} J_x(q) = \sum_i W_i(x)(u_i - q(x_i))^2$$

Get approximation $p \notin V$

[Shepard, Farwig, Belytschko, Wendland et al.]

Institute for Parallel and Distributed Systems Simulation of Large Systems Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu

25.09.2012

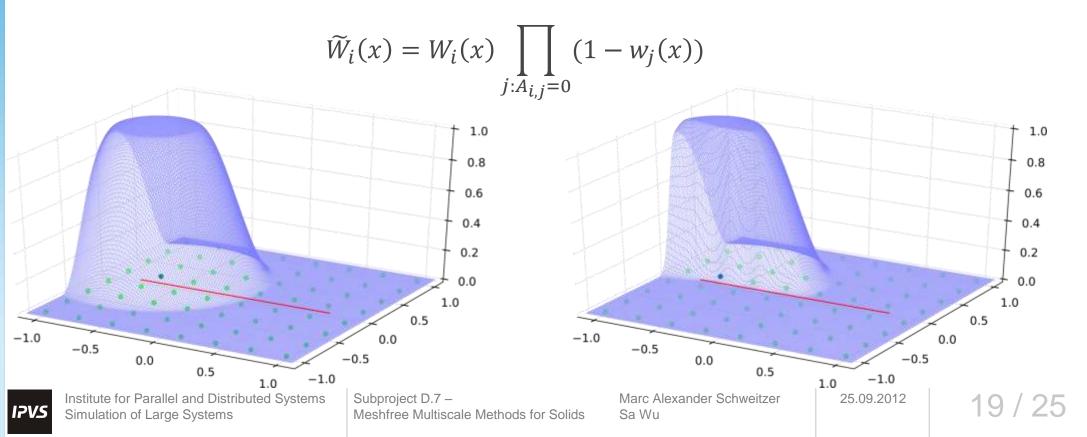
18 / 25

IPVS

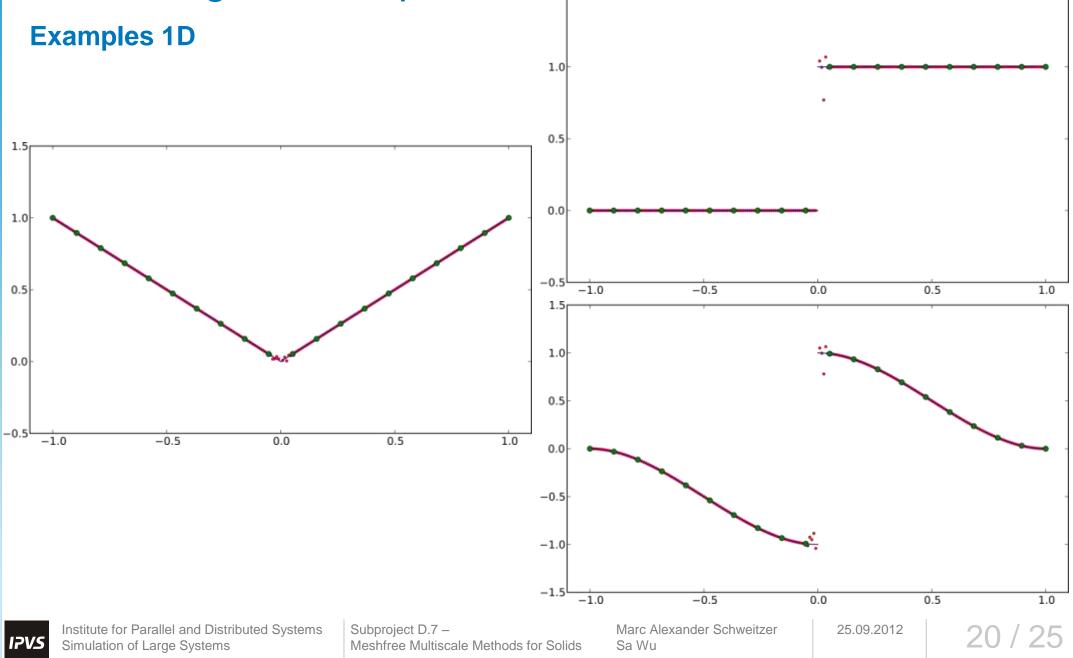
- $0 \le W_i(x)$: how important error at x_i for evaluation in x
 - Gaussians, Splines in Radial or Tensor structure

Put adjacency $A_{i,j}$ into weights:

$$0 \le w_i \le 1$$
, $w_i \Big|_{B_{\epsilon}(x_i)} \equiv 1$, $\min_{j:A_{i,j}=1} \|x_i - x_j\| \le \operatorname{diam}(\operatorname{supp}(w_i))$



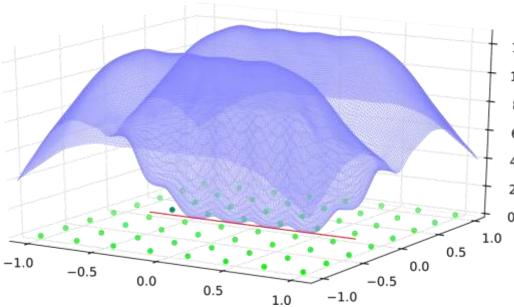
www.sfb716.uni-stuttgart.de

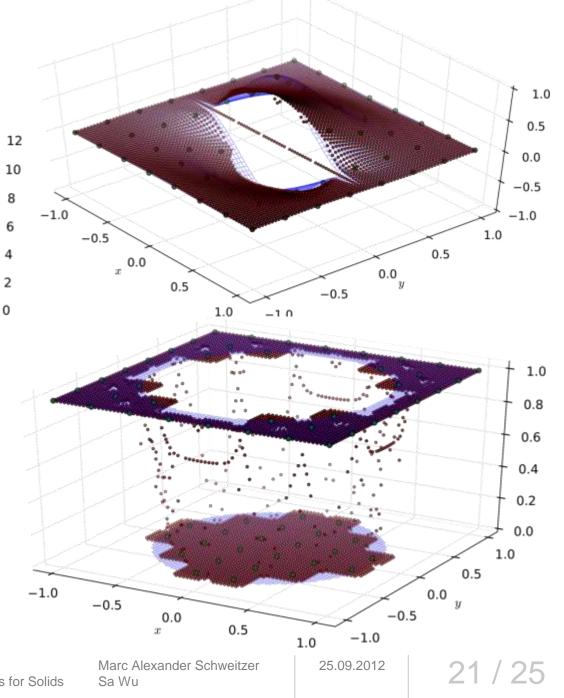


1.5

Examples 2D

SFB 716

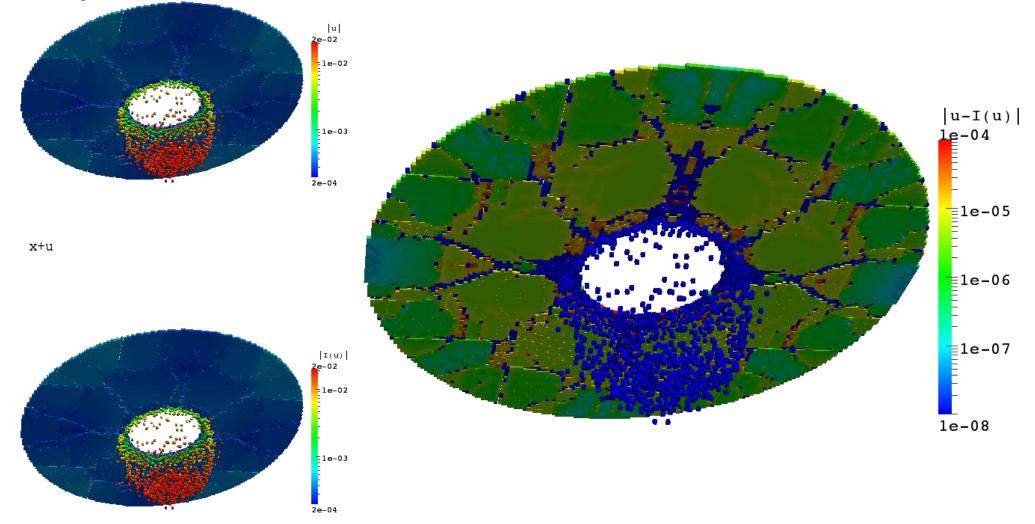




Institute for Parallel and Distributed Systems Simulation of Large Systems

Subproject D.7 – Meshfree Multiscale Methods for Solids

Example 3D



approximation error

x+I (u) Institute for Parallel and Distributed Systems Simulation of Large Systems

Subproject D.7 – Meshfree Multiscale Methods for Solids Marc Alexander Schweitzer Sa Wu 25.09.2012

Idea

SFB 716

Smooth, coarse scale Method

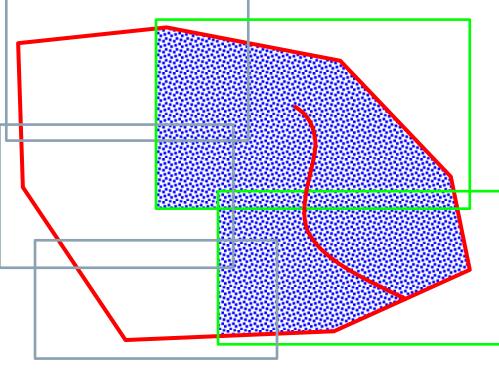
Partition of Unity Method

Discontinuous, fine scale Method

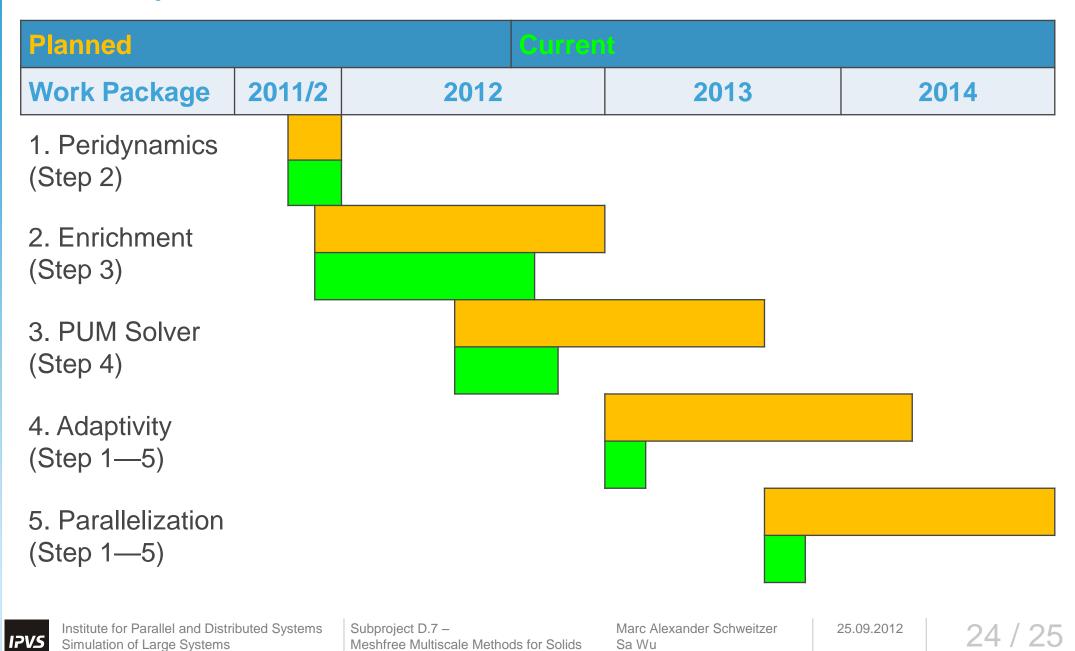
Particle discretization of Peridynamics

Together

- 1. Detect areas where to use particles x_i
- 2. Peridynamics simulation with x_i obtain $(x_i, u_i = u(x_i, t))$
- 3. Build additional MLS based basis function \tilde{u} from (x_i, u_i)
- 4. Compute global PUM solution u with \tilde{u} as additional basis function
- 5. Use global solution u for Steps 1, constraints of Step 2



Project Status



Projections

SFB 716

2012

- Integration of MLS based enrichment
- Interpolation part of coupling

2013

- Full algorithmic cycle
- Early stages of Adaptivity
 - Still looking for optimal components, parameters

