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Simulation of Large Systems 

Particle Methods 

Pros 

 Very accurate 

 Well studied 

 Physically meaningful 

 Expert knowledge included 

 … 

 

Cons 

 Everything only for small samples 

 

What to do? 

 Particles only where needed 

 Coupling? 
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Simulation of Large Systems 

Idea 

Smooth, coarse scale Method 

 e.g. Finite Elements 

 

 

Discontinuous, fine scale Method 

 e.g. Molecular Dynamics 

 

 

Together 

1. Detect areas where fine scale important 

2. Fine scale simulations to obtain local solutions 

3. Build additional basis function from local solutions 

4. Compute global solution including function from Step 3 

5. Use global solution for Steps 1, constraints of Step 2 
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Simulation of Large Systems 

Peridynamics 

Classical Elasticity 

 Partial Differential Equation of Motion 

𝜌𝑢 𝑥, 𝑡 = 𝑓 𝑥, 𝑢 𝑥, 𝑡 , 𝛻𝑢 𝑥, 𝑡 , 𝛻2𝑢(𝑥, 𝑡) + 𝑏(𝑥, 𝑡) 

 Spatial derivatives 

𝛻𝑢 𝑥, 𝑡 , 𝛻2𝑢(𝑥, 𝑡) 

Peridynamic Model 

 Nonlocal Equation of Motion (Ω(𝑥) finite size) 

𝜌𝑢 𝑥, 𝑡 =  𝑓(𝑦 − 𝑥
𝜉

, 𝑢 𝑦, 𝑡 − 𝑢(𝑥, 𝑡)
𝜂

)
 

Ω(𝑥)

ⅆ𝑦 + 𝑏(𝑥, 𝑡) 

 No gradients, but differences in finite distance Ω(𝑥) 
𝜉 = 𝑦 − 𝑥, 𝜂 = 𝑢 𝑦, 𝑡 − 𝑢 𝑥, 𝑡  

 Particle discretization 

𝜌𝑢 𝑥𝑖 , 𝑡𝑛 =  𝑓(𝑥𝑗 − 𝑥𝑖 , 𝑢(𝑥𝑗 , 𝑡𝑛
𝑥𝑗∈Ω(𝑥𝑖)

) − 𝑢(𝑥𝑖 , 𝑡𝑛))𝑉𝑖,𝑗 + 𝑏(𝑥𝑖 , 𝑡𝑛) 

[Silling, Parks, Weckner et al.] 
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Simulation of Large Systems 

Peridynamic material description 

Integration domain 

 Ω 𝑥 , 𝑁 𝑥𝑖  

Pairwise force function 

 𝑓 𝜉, 𝜂  

 Preservation of linear and angular momenta 

𝑓 −𝜉, −𝜂 = −𝑓 𝜉, 𝜂 , 𝑓 𝜉, 𝜂 × 𝜉 + 𝜂 = 0 

 Example 

 Isotropic 

𝑓 𝜉, 𝜂 = 𝑔(𝜉, 𝜂)

scalar

𝜉 + 𝜂

𝜉 + 𝜂
 

 Prototype Microelastic 

𝑔 𝜉, 𝜂 = 𝑔(
𝜉 + 𝜂 − 𝜉

𝜉
𝑠

)  =  
𝑐𝑠,  ∀𝑡 ≤ 𝑡: 𝑠 ≤ 𝑠0

0,  otherwise
 

 Breakable linear springs 

 Many more 

 

 



w
w

w
.s

fb
7
1
6
.u

n
i-

s
tu

tt
g

a
rt

.d
e
 

Subproject D.7 –  

Meshfree Multiscale Methods for Solids 

Marc Alexander Schweitzer 

Sa Wu 

25.09.2012 6 / 25 Institute for Parallel and Distributed Systems 

Simulation of Large Systems 

Peridynamics 

Theoretical Results 

 Linear Elasticity: 

Linear kernel with certain properties, for 𝛿= max
𝑥

diam(supp Ω 𝑥 → 0: 

Convergence Navier equation of linear elasticity 

[Emmrich & Weckner, Silling & Lehoucq] 

 

 Molecular Dynamics: 

 Peridynamics and MD result in “same” HOG model 

 Can build PD kernel from MD potential 

[Seleson & Parks & Gunzburger & Lehoucq] 
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Simulation of Large Systems 

Examples 

Peridynamics simulation of the Kalthoff-Winkler experiment for varying material parameters 

10000 time steps à 10−8s with 178000 particles à 1mm3 
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Simulation of Large Systems 

Examples 

Peridynamics simulation of impact scenario 

3000 time steps à 10−4s with 200000 particles à 1mm3 
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Simulation of Large Systems 

Peridynamics simulation of impact scenario 

10000 time steps à 10−8s with 13144032 particles à 0.25mm3 

Examples 
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Simulation of Large Systems 

Idea 

Smooth, coarse scale Method 

 e.g. Finite Elements 

 

 

Discontinuous, fine scale Method 

 Particle discretization of Peridynamics 

 

 

Together 

1. Detect areas where to use particles 𝑥𝑖 

2. Peridynamics simulation with 𝑥𝑖 obtain (𝑥𝑖 , 𝑢𝑖 = 𝑢 𝑥𝑖 , 𝑡 ) 

3. Build additional basis function 𝑢  from 𝑥𝑖 , 𝑢𝑖  

4. Compute global solution 𝑢 with 𝑢  as additional basis function 

5. Use global solution 𝑢 for Steps 1, constraints of Step 2 
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Simulation of Large Systems 

Decomposition of 

Smooth displacements 

 Partial Differential Equations 

 e.g. Finite Elements 

 Cheap 

 Large Samples 

 

 

 

Discontinuous displacements 

 Material failure 

 Crack nucleation and growth 

 Equations where spatial regularity not needed 

 e.g. Molecular Dynamics, Peridynamics 

 Expensive 

 Small Samples 

𝑥 ∈ Ω ⊆ ℝ𝐷 

𝑥 + 𝑢(𝑥, 𝑡) 

𝑥 + 𝑢(𝑥, 𝑡) 

𝑢:  Ω → ℝ𝐷 



w
w

w
.s

fb
7
1
6
.u

n
i-

s
tu

tt
g

a
rt

.d
e
 

Subproject D.7 –  

Meshfree Multiscale Methods for Solids 

Marc Alexander Schweitzer 

Sa Wu 

25.09.2012 12 / 25 Institute for Parallel and Distributed Systems 

Simulation of Large Systems 

Decomposition of Solution 

 Behavioural Decomposition: 

𝑢 = 𝑢smooth + 𝑢jump + 𝑢singular 

 Partition of Unity: 
𝜑𝑖 , 𝜔𝑖 = supp 𝜑𝑖  

 Localized Decomposition: 

𝑢 =  𝜑𝑖 𝑢smooth + 𝑢jump + 𝑢singular  
𝜔𝑖

𝑖

 

 Localization of Approximation: 

𝑢 
𝜔𝑖

≈ 𝑢𝑖 ∈ 𝑉𝑖(𝜔𝑖) 

 Smooth Splicing of Local Spaces 

𝑉 =  𝜑𝑖𝑉
𝑖 𝜔𝑖

𝑖

=  𝜑𝑖

𝑖

( 𝑃𝑖 + ℰ𝑖  )

𝑢 =  𝜑𝑖 𝑢 
𝜔𝑖

𝑖

=  𝜑𝑖

𝑖

( 𝑢smooth 
𝜔𝑖

≀≀

+ 𝑢jump 
𝜔𝑖

+ 𝑢singular 
𝜔𝑖

≀≀

 )

 

Material B 

Material A 
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Simulation of Large Systems 

Enrichments 

Scenario Examples 

 Exact 

 Known Singularity 𝜂 𝑥 = 𝑥 − 𝑥0
𝛼 

 Known Discontinuity 𝜂 𝑥 = cos
𝜃

2
  

 Approximate, Asymptotic 

 Singularity 𝜂 𝑥 = 𝑥 − 𝑥𝑐
𝛽 

 Discontinuity 𝜂 𝑥 = 𝐻±(𝑥 − 𝑐) 
 Boundary layers 𝜂 𝑥 = exp (1 − dist 𝑥, 𝑐 ) 
 Radial component 

 Numerical 

 Eigenfunctions of local problems 

 Reconstruction of experimental data 

 Local fine scale solution 
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Simulation of Large Systems 

Partition of Unity Method 

 Finite Elements  to solve local 𝑢 𝜔𝑖
≈ 𝑢𝑖 ∈ 𝑉𝑖 𝜔𝑖  

 Example 

 Linear Fracture Mechanics 

 

 Exact solution: 

 

 across crack 

ℰ = 𝑃𝑖 ⋅ 𝐻𝐶 

 Crack tip 

ℰ = 𝑟 cos
𝜃

2
, 𝑟 sin

𝜃

2
, 𝑟 sin 𝜃 sin

𝜃

2
, 𝑟 sin 𝜃 cos

𝜃

2
 

𝑥 −component 𝑦 − component 

enrichment 

[Babuška, Melenk, Belytschko et. al] 
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Simulation of Large Systems 

  

Convergence of stress intensity factors for −0.5, 0.5 2, −0.25, 0.25 2, −0.125, −0.125 2 
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Simulation of Large Systems 

Idea 

Smooth, coarse scale Method 

 Partition of Unity Method 

 

 

Discontinuous, fine scale Method 

 Particle discretization of Peridynamics 

 

 

Together 

1. Detect areas where to use particles 𝑥𝑖 

2. Peridynamics simulation with 𝑥𝑖 obtain (𝑥𝑖 , 𝑢𝑖 = 𝑢 𝑥𝑖 , 𝑡 ) 

3. Build additional basis function 𝑢  from 𝑥𝑖 , 𝑢𝑖  

4. Compute global PUM solution 𝑢 with 𝑢  as additional basis function 

5. Use global solution 𝑢 for Steps 1, constraints of Step 2 
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Simulation of Large Systems 

Construction of Enrichment 

 Have, Assume to get 

 Data points 𝑥𝑖 ∈ Ω ⊆ ℝ3 

 Displacements 𝑢𝑖 = 𝑢 𝑥𝑖 , 𝑡 ∈ ℝ3 

 Adjacency  𝐴𝑖,𝑗 =  
1,  𝑥𝑖 , 𝑥𝑗 connected

0,  otherwise
 

 

 Want 

 Piecewise smooth 

 Possibly discontinuous 

 Easy to integrate. 

 Easy to get derivatives 

 … 
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Simulation of Large Systems 

Moving Least Squares 

Scattered Data Approximation 

 Find approximation 𝑝 to arbitrary data points (𝑥𝑖 , 𝑢𝑖) 

 

Least Squares 

 Find 

𝑝 = argmin
𝑞∈𝑉

𝐽(𝑞) =  𝑢𝑖 − 𝑞 𝑥𝑖
2

𝑖

 

 Get approximation p ∈ 𝑉 

 

Moving Least Squares 

 Find for each 𝑥 

𝑝 𝑥 = argmin
𝑞∈𝑉

𝐽𝑥 𝑞 =  𝑊𝑖 𝑥 𝑢𝑖 − 𝑞 𝑥𝑖
2

𝑖

 

 Get approximation 𝑝 ∉ 𝑉 

[Shepard, Farwig, Belytschko, Wendland et al.] 



w
w

w
.s

fb
7
1
6
.u

n
i-

s
tu

tt
g

a
rt

.d
e
 

Subproject D.7 –  

Meshfree Multiscale Methods for Solids 

Marc Alexander Schweitzer 

Sa Wu 

25.09.2012 19 / 25 Institute for Parallel and Distributed Systems 

Simulation of Large Systems 

Moving Least Squares 

 0 ≤ 𝑊𝑖(𝑥): how important error at 𝑥𝑖 for evaluation in 𝑥 

 Gaussians, Splines in Radial or Tensor structure 

 

  Put adjacency 𝐴𝑖,𝑗 into weights: 

0 ≤ 𝑤𝑖 ≤ 1, 𝑤𝑖 
𝐵𝜖 𝑥𝑖

≡ 1, min
𝑗:𝐴𝑖,𝑗=1

𝑥𝑖 − 𝑥𝑗 ≤ diam(supp 𝑤𝑖 ) 

 

𝑊 𝑖 𝑥 = 𝑊𝑖 𝑥  (1 − 𝑤𝑗 𝑥 )

𝑗:𝐴𝑖,𝑗=0
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Simulation of Large Systems 

Moving Least Squares 

Examples 1D 
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Simulation of Large Systems 

Moving Least Squares 

Examples 2D 
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Simulation of Large Systems 

Moving Least Squares 

Example 3D 
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Simulation of Large Systems 

Idea 

Smooth, coarse scale Method 

 Partition of Unity Method 

 

 

Discontinuous, fine scale Method 

 Particle discretization of Peridynamics 

 

 

Together 

1. Detect areas where to use particles 𝑥𝑖 

2. Peridynamics simulation with 𝑥𝑖 obtain (𝑥𝑖 , 𝑢𝑖 = 𝑢 𝑥𝑖 , 𝑡 ) 

3. Build additional MLS based basis function 𝑢  from 𝑥𝑖 , 𝑢𝑖  

4. Compute global PUM solution 𝑢 with 𝑢  as additional basis function 

5. Use global solution 𝑢 for Steps 1, constraints of Step 2 
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Simulation of Large Systems 

Project Status 

Planned Current 

Work Package 2011/2 2012 2013 2014 

1. Peridynamics 

(Step 2) 

2. Enrichment 

(Step 3) 

3. PUM Solver 

(Step 4) 

4. Adaptivity 

(Step 1—5) 

5. Parallelization 

(Step 1—5) 
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Simulation of Large Systems 

Projections 

2012 

 Integration of MLS based enrichment 

 Interpolation part of coupling 

 

2013 

 Full algorithmic cycle 

 Early stages of Adaptivity 

 Still looking for optimal components, parameters 


