Domain Decomposition and Multilevel Methods in

Diffpack

Are Magnus Bruaset? Hans Petter Langtangenfand Gerhard W. Zumbusch?
October 14, 1996

1 Introduction

Looking back a decade or two, the computing power commonly available to scien-
tists and engineers has grown at an amazing rate. Following this race for megaflops,
the scientific community has developed a taste for solving mathematical problems of
increasing levels of complexity. Naturally, this trend calls for sophisticated numeri-
cal methods that are capable of solving the problems in question in an efficient, yet
reliable, way.

Since the bottleneck of many scientific applications turns out to be the numerical
solution of linear or nonlinear systems of equations, this field has been subject to in-
tensive research over the years. In particular, much attention has been paid to domain
decomposition and multigrid methods, which have proven to be highly efficient strate-
gies for many types of applications. Although the performance of such methods has
been theoretically analyzed, extensive numerical experimentation is usually required
in more complicated applications in order to obtain the best possible results. From
this point of view, there is a need for software environments with genuine support
for this type of numerical experiments, giving the user access to different algorithmic
scenarios at the press of a button.

Domain decomposition and multilevel methods contain a variety of more standard
numerical building blocks (linear solvers, matrix assembly, interpolation of fields etc.).
Successful software for complicated applications must offer the user a flexible run-time
combination of all these different components. The purpose of the present paper is
to describe how one can achieve such flexible software. In particular, we present a
unified framework for domain decomposition and multilevel methods, and show how
this framework can be efficiently implemented in existing software packages for PDEs!.

The unified framework about to be presented is in part well known from the anal-
ysis of overlapping and non-overlapping methods [DW90], as well as from theory for
overlapping and multilevel schemes [Xu92]. In this context, the goal of this paper is to
extend the known framework to cover even more methods in common use, especially
some Schur complement and nonlinear schemes. We will formulate the framework in

*SINTEF Applied Mathematics.

tSINTEF Applied Mathematics and Dept. of Mathematics, University of Oslo.

{SINTEF Applied Mathematics. Email: Gerhard.Zumbusch@math.sintef.no.

I The software design discussed in this paper has been implemented and verified using the object-

oriented PDE library Diffpack [Dif, BL96a].

a novel way that encourages systematic implementation of a wide class of domain de-
composition and multilevel methods. Finally, we report on the experiences gathered
from a particular implementation in the Diffpack software.

2 The unified framework

2.1 Abstract Schwarz method

We consider linear systems, Az = f, where A arises from the discretization of a partial
differential operator. The prototype solution algorithm, the additive Schwarz method,
can be written as

B = Y R;B;R; (1)

J

with approximate solvers B; operating on a subspace V; and projections R; and an
adjoint interpolations R}. In particular we consider the following methods and its
variants (see also [SBG96]), which all can be written in the framework:

multilevel iteration additive, multiplicative, nonlinear

overlapping Schwarz additive, multiplicative, nonlinear
with, without coarse grid

Schur complement iteration exact, inexact

Schur complement preconditioner | Neumann-Neumann, wire basket
with, without coarse grid

The interface basically consists of
e transfer or projection operators such as B; and R,
¢ (approximate) subspace solvers B;
e evaluation of residuals (f — A;z) on a sub-domain (optional).

Here, A; is the discrete operator on V;. The appropriate solver B; is normally chosen
as a traditional linear or nonlinear method, whereas the “transfer” R; is usually im-
plemented via sparse matrices or difference stencils. However, also algorithmic imple-
mentations of ; and message passing in a parallel environment are possible. Software
components for Bj, B;, R} and f — Ajz are normally found in a package for PDEs.

2.2 Multilevel methods

Standard multigrid algorithms fit into the frame outlined in 2.1. In the linear multigrid
context the abstraction of the (not necessarily adjoint) grid transfer R;, R} and the
local pre- and post-smoothers B;, B} is sometimes referred to as abstract multigrid.
The implementation follows equation (4.1.1) in Hackbusch [Hac85]. Using multigrid
as a preconditioner implies the initial guess z = 0.

However, it is also possible to include nonlinear multigrid with nonlinear smoothers
Bj, B} [Zum96b|. Using equation (9.3.3) in [Hac85], we can implement the nonlinear
FAS scheme and the nested nonlinear multigrid version by Hackbusch. The pre- and
post-smoothers are now nonlinear iterative solvers.

This abstract multilevel approach can be used for different variants of multigrid.
The particular algorithm depends on the initialization and implementation of the

smoothers B;, the transfer operators R;, and the operators A;. There may be non-
nested, non-matching, or adaptively refined grids, operators defined by Galerkin prod-
ucts or operator dependent transfers, or algebraic multigrid transfers and operators.

2.3 Schur complement methods

We decompose the stiffness matrix into one part related to the coupling interface ¢ and

several independent parts related to the interior nodes of the sub-domains 7 = 1,..., m.
A11 Alc
A22 AQC
A =
Aa Ae .| A

The Schur complement is defined by S = A.. — Zj chAj_lejc.

In the case we solve sub-domain problems exactly or accurate enough, or we are
able to compute S itself rather than the action of S, the equation system reduces to a
system S z. = f. for the unknowns on the interface z..

Neumann-Neumann preconditioner for the Schur complement. Preconditioning the
interface system with a Neumann-Neumann algorithm [BGLV89] looks like equation
1 in the frame of additive Schwarz methods. The solvers B; now solve homogeneous
Neumann problems obtained by sub-assembly on a sub-domain. The transfer operators
R; and R} copy (scaled) nodal data from the interface z. to the nodes on the boundary
of the sub-domain and vice versa. Hence the ordinary additive Schwarz implementation
can be used.

A coarse grid can be added to the Neumann-Neumann preconditioner without
changes of the algorithm [DW95] just like in the overlapping Schwarz case adding
one sub-space j = 0. Coupling a coarse grid equation in a multiplicative symmetric
way instead, called balancing [Man93], requires some extensions resulting in a mixture
of the additive and the multiplicative Schwarz algorithm. One can use the standard
global to local communication pattern and additional residual evaluations to create
the multiplicative coupling.

Wire basket preconditioner for the Schur complement. A preconditioner of wire
basket type [Smi91] for the Schur complement may also be written as an additive
Schwarz method now for sub-spaces of the interface consisting of vertices v, single
faces f, and single edges e,

Bo= ROBR + RSB R + YR B]
J k

The transfer operators Rj and R£ perform a hierarchical basis transform. The vertex
solver BY can be implemented by a standard coarse grid solver and the edge solvers
Bj can be substituted by diagonal scaling. However, the face solvers Bg have to
be implemented as preconditioners for an interface problem covering both adjacent
sub-domains.

The two-dimensional analog BPS reads structurally similar. It can be implemented
by leaving out the faces and choosing some local interface preconditioner for the edge
solvers Bs [BPS86].

Inezact Schur complement. Introducing approximate local Dirichlet solvers B; in
the computation of the Schur complement S &~ A.. —Ej A BjAj., one cannot restrict
the computations to Sz, = f;, but the full system Az = f must be considered. We

seek a preconditioner for the matrix A, which is constructed using a preconditioner
B, for § and preconditioners Bj for the local Dirichlet type problems A4;; that may
differ from B; used for the Schur complement. However, the inexact solvers B; in the
Schur complement method are still not fully understood theoretically [HLM91].

We write the Schur decomposition in the additive Schwarz framework

B = R;B.R. + » R;BjR;
J

with restrictions R;z = z; and the transformation to the Schur system R.z = z. —

Zj ch Bj Zj.

One can use multilevel and domain decomposition methods or standard iterative
solvers for the implementation of the local solvers B;, B;, Bj, and the local solvers
used in B.. This approach to the Schur complement can also be used for nonlinear
problems in a Picard iteration manner (see [Zum96a]) since the residual for the full
system has to be evaluated every outer iteration step anyway. An exact Dirichlet
solver B; leads to zero residuals at interior nodes and is more efficiently implemented

computing on the interface directly as in the previous section.

3 Realizing the framework

As mentioned initially, the abstract view of the different domain decomposition and
multilevel methods taken in the description above has been realized in terms of soft-
ware. More precisely, the described framework is the basis for the implementation
of domain decomposition and multilevel algorithms in the Diffpack simulation envi-
ronment. Diffpack [Dif] consists of a set of object-oriented libraries written in C++,
intended to simplify the implementation of PDE solvers [BL96a]. The involved li-
braries contain many useful abstractions that comes quite natural to developers of
PDE software. For instance, the application programmer has immediate access to
high-level abstractions for linear systems, various matrix formats, different solvers and
preconditioners, as well as building blocks for finite element and finite difference dis-
cretizations.

Originally, Diffpack was designed without attention to domain decomposition or
multilevel algorithms. Nevertheless, by adopting a unified approach to such methods,
one can in principle implement this functionality as an add-on module to existing
PDE packages. However, it is then crucial that the framework organizing the different
methods can take advantage of tools already present in the available software plat-
form. In course of the multilevel extension of Diffpack, we have experienced that a
clean design of such an add-on module depends heavily on a clean design and mod-
ular structure of the underlying libraries. We believe that abstract data types and
object-oriented programming are important mechanisms for achieving the necessary
degree of modularity. In fact, the Diffpack code for the described framework was
realized as a high-level, compact combination of existing C++ classes. We refer to
[ABL96, BL96a, ABC*T96, BL96b] and the references therein for information about
object-oriented numerics, the efficiency of C++ for scientific computing, the design of
Diffpack and examples on Diffpack applications. It should be mentioned that object-
oriented implementations of domain decomposition and multilevel strategies have been
addressed also by other authors, e.g. as part of the PETSc system [GS94, PET].

Equation solvers in Diffpack utilize abstractions for linear systems, as well as linear
and nonlinear solvers. In this context, a linear system consists of a coefficient matrix,

a solution vector, a right-hand side and possibly a preconditioner. The preconditioner
can either be a matrix or an action. In case of an action, the preconditioner can, e.g.,
call a linear solver for the same or a related PDE problem. Linear solvers can utilize
convergence monitors in order to control the degree of solution accuracy [BL96b]. At
its present stage of development, Diffpack offers relatively simple nonlinear solvers,
like Newton’s method or the Picard iteration. This type of algorithms requires the
programmer to define and solve a linear (sub-)system. Operators can be defined in
terms of coefficient matrices arising from finite element assembly. Since a finite element
grid is just a C++ object in Diffpack, it is easy to create a hierarchy of grids, and apply
toolboxes for finite element schemes and the PDE’s definition to create the associated
operators and right-hand sides.

The layered, modular design of Diffpack building blocks can be immediately ap-
plied to create linear and nonlinear operators, smoothers, transfer operators, residuals
and other basic components needed in domain decomposition and multilevel methods.
For instance, the subspace solver B; in a domain decomposition method may be im-
plemented as a linear solver call or a nonlinear solution procedure. To allow maximum
flexibility, the programmer of the PDE application is responsible for defining B;, and
contrary to the PETSc approach [GS94, PET], we do not require a reference to a linear
solver object.

The technical details of taking an existing Diffpack application and equipping it
with domain decomposition and multilevel methods are described elsewhere [Zum96a,
Zum96b]. However, due to the flexibility of the original software components, it turns
out to be trivial to run a multigrid solver and experiment with various pre- and post-
smoothers (choice of algorithm, number of sweeps, order of unknowns), coarse grid
solvers (iterative and direct, grid size), cycle-types, nested iterations, non-matching
grids, semi-coarsening, multigrid used as a preconditioner or as a stand-alone solver,
different nonlinear versions, grid types and special procedures to initialize operators.
For domain decomposition, the type, precision and termination of sub-domain solvers,
the decomposition of the domain, the type of a coarse grid and coarse-grid solver, and
the scaling of transfer operators are of main interest. Consequently, the resulting soft-
ware environment satisfies the most important requirement stated in the introduction
of this paper; to offer the user genuine support for systematic numerical experiments
with sophisticated multilevel strategies.

As previously mentioned, Schur complement methods do not immediately fit into
a unified framework. This is also reflected in the pilot implementation. We use an
implicit representation of the Schur complement, implemented as an algorithmically
defined matrix. This is basically a new type of matrix in Diffpack, realized as a
subclass in the existing matrix hierarchy [BL96b]. New and old application software
can of course work with this matrix type through an abstract (base class) interface.
The action Sz is implemented by calling sub-domain Dirichlet solvers for Aj_j1 and
several matrix multiplications. Direct access to S is then not available.

The domain decomposition and multilevel methods introduced in Diffpack are or-
ganized in a class hierarchy with DDSolver as base class, see Figure 1. Various specific
solution strategies are organized as subclasses of either (multiplicative) Multigrid or
(alternating) Schwarz domain decomposition (SchwarzDD). These subclasses make use
of existing solvers and preconditioners in Diffpack, while still offering the duality of
being accessible as new solvers and preconditioners in the original libraries. For the
authors, this experience of playing around with abstractions and extending libraries
in ways that were not initially planned for, has been a strong indication that mod-
ern programming techniques, such as object-oriented programming, are vital for an

%
\ .
{AddMuItigri(ﬂ[Nest.ed. [Nonl'lne.ar Sym Add
Multigrid Multigrid SchwarzDD SchwarzDD

~

FASMultigridf | Nested CoarseAddCoarse
FASMultigri SchwarzDD

Figure 1: Multilevel and Domain Decomposition algorithms. Abstract DDSolver, the mul-

tiplicative and additive multigrid algorithms including nonlinear versions and additive, multiplicative,

symmetric multiplicative and mixed additive/ multiplicative Schwarz algorithms

accelerated development of scientific computing.

4 Efficiency

We have outlined a flexible software framework for domain decomposition and multi-
level methods, where the particular Diffpack implementation is in C++. Many will ex-
pect the computational efficiency of such flexible implementations and the use of C++
to be significantly worse than special-purpose Fortran codes tailored at a specific PDE
and solution algorithm. To shed some light on this problem we have performed some
simple numerical experiments with multigrid methods for a Poisson equation, with
smooth variable coefficients, on the unit square. A general Diffpack implementation,
also applicable to unstructured grids, was compared to (a) the adaptive PLTMG code
[Ban94], (b) a finite difference based example Fortran code with MPI [Dou95a], and (c)
a constant 5-point stencil sparse matrix Fortran Poisson solver Madpack5 [Dou95b].
The tables below show CPU times for various problem sizes.

level j 4) 6 7 8 9
size n 289 | 1089 | 4225 | 16641 | 66049 | 263169
PLTMG 43 1.7 5.7 30 140 -
MPI example | .15 A7 .23 49 1.8 7.6
madpackb .01 .04 12 .50 2.8 13
Diffpack .07 .16 .39 1.5 7.1 24

As we see, there is no indication that the object-oriented implementation style
in C++ implies a significant loss of computational efficiency. The reasons for this
are simple; object-orientation is only used for high-level administration in Diffpack,
whereas CPU-time consuming operations usually take place in low level C/Fortran-
style routines that can be highly optimized by today’s compiler technology. Moreover,

the general finite element software in Diffpack makes use of simplified, optimized al-
gorithms when it is known that the grid is a uniform lattice.

5 Conclusion

We have outlined a unified framework for the whole set of domain decomposition and
multilevel methods. The framework has been realized in Diffpack using object-oriented
programming techniques. We have indicated that the implementation has the same
level of efficiency as tailored, traditional implementations in Fortran or C, but with
much more flexibility and extensibility.

References

[ABCt96] Arge E., Bruaset A. M., Calvin P. B., Kanney J. F., Langtangen H. P., and

[ABLY6]

[Ban94]

[BGLV8Y]

[BLY6a]

[BLY6b]

[BPS36]

[Dif]

[Dou95al

[Dou95b]

Miller C. T. (1996) On the efficiency of C++ for scientific computing. In
Dahlen M. and Tveito A. (eds) Mathematical Models and Software Tools
in Industrial Mathematics. Birkhduser.

Arge E., Bruaset A. M., and Langtangen H. P. (1996) Object-oriented
numerics. In Dazhlen M. and Tveito A. (eds) Mathematical Models and
Software Tools in Industrial Mathematics. Birkhduser.

Bank R. E. (1994) PLTMG: A Software Package for Solving Elliptic Partial
Differential Fquations — Users’ Guide 7.0. SIAM Books, Philadelphia.

Bourgat J. F., Glowinski R., LeTallec P., and Vidrascu M. (1989) Varia-
tional formulation and algorithm for trace operator in domain decomposi-
tion calculations. In Chan T. F., Glowinski R., Périaux J., and Widlund
O. B. (eds) Proc. Second Int. Conf. on Domain Decomposition Meths.,
pages 3-16. SIAM, Philadelphia.

Bruaset A. M. and Langtangen H. P. (1996) A comprehensive set of tools
for solving partial differential equations; Diffpack. In Daehlen M. and Tveito
A. (eds) Numerical Methods and Software Tools in Industrial Mathematics.
Birkh&user.

Bruaset A. M. and Langtangen H. P. (1996) Object-oriented design of pre-
conditioned iterative methods. To appear in ACM Trans. Math. Software.

Bramble J. H., Pasciak J. E., and Schatz A. H. (1986) The construction
of preconditioners for elliptic problems by substructuring, I. Math. Comp.
47: 103-134.

Diffpack world wide web home page. http://www.oslo.sintef.no/diffpack/.

Douglas C. C. (1995) Example multigrid code using MPI. ftp://
na.cs.yale.edu/pub/mgnet/www/mgnet/Codes/douglas/.

Douglas C. C. (1995) Madpack: A family of abstract multigrid or multilevel
solvers. Comput. Appl. Math. 14: 3-20.

[DW90]

[DW95]

[GS94]

[Hac85]

[HLM91]

[Man93]

[PET]

[SBG96]

[Smi9l]

[Xu92]

[Zum96a]

[Zum96b]

Dryja M. and Widlund O. B. (1990) Towards a unified theory of domain
decomposition algorithms for elliptic problems. In Chan T. F., Glowinski
R., Périaux J., and Widlund O. B. (eds) Proc. Third Int. Conf. on Domain
Decomposition Meths., pages 3-21. STAM, Philadelphia.

Dryja M. and Widlund O. B. (1995) Schwarz methods of Neumann-
Neumann type for three-dimensional elliptic finite element problems.
Comm. Pure Appl. Math. 48: 121-155.

Gropp W. and Smith B. (1994) Scalable, extensible, and portable numerical
libraries. In Proceedings of Scalable Parallel Libraries Conference. IEEE,
Los Alamitos, CA.

Hackbusch W. (1985) Multi-Grid Methods and Applications. Springer,

Berlin.

Haase G., Langer U., and Meyer A. (1991) Domain decomposition methods
with inexact subdomain solvers. J. Numer. Lin. Alg. Appl. 1: 27-41.

Mandel J. (1993) Balancing domain decomposition. Comm. Numer. Meth.
FEngrg. 9: 233-241.

Petsc world wide web home page. http://www.mcs.anl.gov /petsc/petsc.html.

Smith B., Bjgrstad P., and Gropp W. (1996) Domain Decomposition. Par-
allel Multilevel Methods for Elliptic Partial Differential Equations. Cam-
bridge University Press, New York.

Smith B. F. (1991) A domain decomposition algorithm for elliptic problems
in three dimensions. Numer. Math. 60(2): 210-234.

Xu J. (1992) Iterative methods by space decomposition and subspace cor-
rection: A unifying approach. SIAM Review 34: 581-613.

Zumbusch G. W. (1996) Domain decomposition methods in Diffpack. Tech-
nical report, SINTEF Applied Mathematics, Oslo.

Zumbusch G. W. (1996) Multigrid methods in Diffpack. Technical Report
STF42 F96016, SINTEF Applied Mathematics, Oslo.

