Overlapping Domain Decomposition Methods in Diffpack

Gerhard W. Zumbusch

VAVAVAVA/
A \/\/\/N

Diffpacls

The Diffpack Report Series
November 22, 1996

' STNITEE

This report is compatible with version 2.4 of the Diffpack software.

The development of Diffpack is a cooperation between

e SINTEF Applied Mathematics,
e University of Oslo, Department of Informatics.

e University of Oslo, Department of Mathematics

The project is supported by the Research Council of Norway through the technology
program: Numerical Computations in Applied Mathematics (110673/420).

For updated information on the Diffpack project, including current licensing conditions,
see the web page at

http://www.oslo.sintef .no/diffpack/.

Copyright © SINTEF, Oslo
November 22, 1996

Permission is granted to make and distribute verbatim copies of this report provided the
copyright notice and this permission notice is preserved on all copies.

Abstract

The report gives an introduction to the overlapping domain decomposition solvers of
Schwarz type in Diffpack. It is meant as a tutorial for the use of iterative solvers,
preconditioners and nonlinear solvers based on overlapping Schwarz methods for par-
tial differential equations. Additive Schwarz methods serve as a standard method
for solving equation systems on parallel computers. They are also useful for com-
putations on complicated domains constructed from simple domains where efficient
equations solvers are available. We provide an introduction to the implementation
and use of such methods in Diffpack. The first steps are guided by a couple of ex-
amples and exercises. We also want to refer to an accompanied tutorial on multigrid
methods in Diffpack, which methods and codes are quite related.

Contents
1 Introduction
2 Overlapping Domain Decomposition

3 My first Domain Decomposition Preconditioner
3.1 Code o e
3.2 Partitionand overlap Lo L oL
3.3 Shape and dimension L Lo
3.4 Inexactsolver
3.5 Averaging on theoverlap L.

3.6 Coarse grids acceleration L.

4 Overlapping Schwarz as an iterative method
4.1 Multiplicative Schwarz L0 o
4.2 Symmetric multiplicative Schwarz 00000

4.3 Experiments e e e

5 Nonlinear Schwarz iteration

6 Conclusion

References

14
16
17
18
20

23
26
28
28

31
31
44

48

50

Overlapping Domain Decomposition Methods in Diffpack

Gerhard W. Zumbusch *

November 22, 1996

1 Introduction

The increase of computer power enables larger and larger numerical simulations to
be performed. In the field of partial differential equations, especially in finite ele-
ments, one can easily reach the limits of any given computer. Unfortunately the size
of the simulations cannot grow the same way as the computer memory and perfor-
mance grows using standard methods. The bottleneck usually is the solution of the
equations. While most operations in finite elements have linear complexity and are
well suited for parallel computing with local communication patterns (like matrix
assembly), standard linear algebra has a higher complexity and more expensive com-
munication patterns. Hence the complexity of linear algebra tends to dominate any
large scale simulation.

This observation leads to the development of several more efficient equation solvers
especially suited for finite element computations. Starting with dense matrix and
banded matrix Gaussian elimination, node ordering schemes for more efficient sparse
matrix Gaussian elimination were developed. The next line of development covers the
use of standard iterative solvers like Gauss-Seidel iteration and conjugated gradients
with some suitable algebraic preconditioning. The equations are no longer solved
exactly, but up to a precision small compared to other errors introduced in the
computation. This also means that there is some responsibility left to the user to
employ a suitable termination criterion for the iterative solver.

This is typical for the path of development: We are leaving simple-to-use black-box
solvers like Gaussian elimination and introduce more flexibility. This also means
more user responsibility for the efficiency of the method. The potential danger is
twofold: The method may be inefficient due to a poor choice made by the user, and
even worse the method may give wrong results due to a too early termination of the
solver.

Since we are still not satisfied with the performance of standard iterative solvers for
large scale simulations, we introduce a divide and conquer strategy: The complexity
of a standard iterative solver is still larger than linear complexity. The solution
of two problems of half the size is cheaper than solving one large problem. The
bisection strategy can of course be applied recursively. The question now is how to

SINTEF Applied Mathematics. Email: Gerhard.Zumbusch@math.sintef.no.

o=+

S5=-
[0
[=¢]
O

nd

divide a problem into sub-problems and how to put the solutions of the sub-problems
together to an approximate solution of the global problem. We are constructing
iterative solvers or preconditioners for a global problem by splitting the global domain
into smaller domains and using solvers for the smaller domains. There are several
strategies to do that.

DDSolver

@
~
(AddMultigridJ (Nested Sym Add
Multlgrld) SchwarzDD SchwarzDD

FASMultigrid Nested - anrseAddCoarsa
FASMultigri SchwarzDD

Figure 1: Hierarchy of multigrid and domain decomposition methods

Nonlinear
Multigrid

It is just the purpose of this Diffpack tutorial to provide some guidance to the use of

overlapping domain decomposition methods. Of course we will have to explain how

to use the methods in Diffpack first. But beyond getting your own code up and -
running, we will discuss several parameters and features. Users writing simulators
not covered in these introductory examples may nevertheless find the discussion and

the several exercises useful. The exercises cover questions, which are more general

and not restricted to the specific model. They may be helpful for more advanced

simulators.

Since the field of domain decomposition methods is a field of active research, there are
lots of conference proceedings and thousands of research papers related. For further
reading and for theory we will refer to some of the literature. We especially want

to refer to [7] and as a starting point for further searches to the proceedings of the
rererences

“Domain Decomposition” [3] conferences.

We assume familiarity with some of the basic concepts of Diffpack [1]. We will use
and modify some examples presented in [4] and [8]. It may be helpful to have access
to the Diffpack manual pages dpman while reading this tutorial. The source codes
and all the input files are available at $DPR/src/app/pde/ddfem/src/.

2 Overlapping Domain Decomposition

We fix some notation to define the overlapping domain decomposition methods.
Given a second order differential operator £ and a domain €2, we look for the so-

lution of

Ly = f onf
u = g3 onl CIN

%u = g ondQ\T

The idea is now to partition the global domain into overlapping sub-domains. Each
domain is discretized the same way the global domain is discretized. This is a different
way of splitting the finite element space into sub-spaces than the multigrid splitting.

We partition the global domain €2 into a set of sub-domains). We construct a set
of overlapping sub-domains €2; D Q). We define the inner boundaries to be

T = 99; \ 09

We assume that the finite element spaces on Q, Q; and Q) match. The inner bound-
aries I'; do not cut elements, but are part of some element boundaries. We also
assume that the distance

c > dist(Q,T;) > C
is bounded independent of mesh size.
We define the sub-problems for a given last iterate wg like this:
Lu = f onf
ug on I';

g1 ondNT
Zu = go on (0NT)\T

SIS
I

3 My first Domain Decomposition Preconditioner

We first consider the case of domain decomposition used as a preconditioner B. We
define the additive Schwarz preconditioner as

B =) 5;Q;
j

with an exact solver S; for a sub problem on ; and a projection); from € to Q;.
The evaluation of a preconditioner in a Krylov iteration can also be interpreted as
one step of a iterative solution procedure with initial guess 0 applied to some right
hand side. Hence the last iterate wug is zero. The boundary conditions at the inner
boundaries of the sub-domains are therefore homogeneous Dirichlet conditions.

The method was originally proposed by Dryja and Widlund [2] for numerical com-
putations.

3.1 Code

We start with the code MultiGrid?2 for the implementation of the additive Schwarz
preconditioner. It is a simulator for the Poisson equation on a uniform grid on a
unit square or unit (hyper-) cube implementing a multigrid preconditioner. The

Figure 2: Boundary Conditions in a Overlapping Schwarz Iteration

differences in the header files are: We do not need preSmooth and postSmooth, since
in the additive version each sub-domain is only visited once. We do not need the
residual since we are constructing an additive preconditioner. We also change the

Overlapl.h

term smooth to sub_solve more appropriate here.!

// prevent multiple inclusion of Overlapl.h
#ifndef Overlapl_h_IS_INCLUDED
#tdefine Overlapl_h_IS_INCLUDED

ttinclude <FEM.h> // FEM algorithms, FieldFE, GridFE etc

#include <DegFreeFE.h> // mapping: nodal values -> unknowns in linear sys.
#include <LinEgAdm.h> // linear systems, storage and solution

#include <MenuUDC.h> // menu system utilities

#include <Store4Plotting.h> // storage tool for later visualization

#include <VecSimplest_Handle.h> // VecSimplest’s needed

#include <DDSolver.h> // DDSolver

#include <DDSolverUDC.h> // interfacing to DDSolver

#include <DDSolver_prm.h> // DDSolver parameters

class Overlapl : public FEM, public MenuUDC, public Store4Plotting, public DDSolverUDC
{

protected:
// general data:
Handle(FieldFE) u; // finite element field, the primary unknown
Vec(real) linsol; // solution of linear system

// grid related data:

int no_of _grids; // number of domains

prun(Precond) precondPrm; // prm for DD preconditioner
prum(DDSolver) ddsolver_prm; // parameters domain decomposition solver
VecSimplest (Handle (LinEqSolver)) sub_solve; // linear solution
VecSimplest (Handle (prm(LinEqSolver))) sub_solve_prm;// linear solution parameter
VecSimplest (Handle (LinEqSystemStd)) system; // linear system, storage

VecSimplest (Handle (GridFE)) grid; // finite element grid

VecSimplest (Handle (DegFreeFE)) dof; // trivial mapping here: nodal values

!you will find the code in Overlapi/

VecSimplest (Handle (prm(Matrix (NUMT)))) mat_prm; // Matrix parameters
VecSimplest (Handle (Proj)) proj; // projection operators
Handle (DDSolver) ddsolver; // domain decomposition solver

// general data:

Handle(LinEgAdm) 1lineq; // linear system, storage and solution
Handle(FieldFE) error; // the error field (analytical - numerical sol.)
real L1_error, L2_error, Linf_error; // various norms of the error

virtual real f(const Ptv(real)& x); // source term in the PDE

virtual real k(const Ptv(real)& x); // coefficient in the PDE

virtual void f£illEssBC (Spaceld space);// set boundary conditions

virtual void integrands // evaluate weak form in the FEM equations
(ElmMatVec& elmat, FiniteElement& fe);

virtual void scanGrids(MenuSystem& menu);// construct grids

virtual void initProj(); // setup proj
virtual void initMatrices(); // setup stiffness matrices on coarse grids
public:

Overlapl ();
“Overlapl () {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan (MenuSystem& menu);

virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen

// DDSolverUDC
Spaceld getNoOfSpaces() const; // no_of_grids
BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,

Spaceld space, StartVectorMode start,

DDSolverMode mode=SUBSPACE);
BooLean transfer (const LinEqVector& fv, Spaceld fi,

LinEqVector& tv, Spaceld ti,

BooLean add_to_t= dpFALSE, DDTransferMode=TRANSFER); // apply proj

virtual int getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork work_tp) const;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const;
virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp) const;
virtual real getStorageSolve (Spaceld space) const;
String comment ();
+;
#endif

We need one global grid discretizing €2 which has the number no_of _grids. This is the
linear system we want to solve using a preconditioned conjugate gradient iteration.
The additive Schwarz preconditioner uses the grids 1 to no_of_grids-1. The grid
are arranged in a pattern given by partition. Each grid is structured as given by
subdomain. The grids are aligned with a fixed overlap. The grid are constructed in
the procedure scanGrids.

The grid transfer operation needed in the additive Schwarz iterations are projections
from the global grid to a local grid and back (see figure 3). We set up no_of _grids-1

Figure 3: Additive Overlapping Schwarz Iteration

transfer operators which are mainly copy operators, copying the appropriate parts
of the global vector to the local vector and vice versa. The operators are set up in
initProj and are called in transfer.

The homogeneous Dirichlet boundary conditions on the inner sub-domain boundaries
are implemented automatically since these conditions are imposed on all boundaries.
In the case the conditions differ on 92, the boundary indicators may be used to
denote inner boundaries. This will be demonstrated for the multiplicative Schwarz
iteration.

#include <Overlapil.h>
#include <PreproBox.h>
#include <ElmMatVec.h>
#include <FiniteElement.h>
#include <ErrorEstimator.h>
#include <Vec_real.h>
#include <PrecDD.h>

#include <createElmDef.h> // for calling hierElmDef in Overlapl::define
#include <createMatrix_real.h> // creating stiffness matrices
#include <createDDSolver.h> // creating multigrid object

#include <createLinEqSolver.h> // creating sub domain solver
#include <createRenumUnknowns.h> // renumbering grids
#include <RenumUnknowns.h> // renumbering grids

Overlapil:: Overlapl () {}

void Overlapil:: adm (MenuSystem& menu) // administer the menu

{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu); // read menu answers into class variables and init
}

void Overlapil:: define (MenuSystem& menu, int level)

{
// the domain is fixed: [0,1] "nsd

Overlap1.C

menu.addItem (level,
"no of space dimensions", // menu command/name

"nsd", // command line option: +nsd
nn

", // default answer (2D problem)
"I1'); // valid answer: 1 integer

menu.addItem (level,

"'subdomain', // menu command/name

"subdomain", // command line options: +partition
"string like 2,4,2",

"[4,4]", // default answer: 4x4 division (5x5 nodes)
"s"y; // valid answer: string

menu.addItem (level,
"'partition", // menu command/name
"partition", // command line options: +refinement
"string like [2,2,2] = 8 domains",
"[2,2]", // default answer: 2x2 domains
"S'); // valid answer: string

menu.addItem (level,

"overlap", // menu command/name

"overlap", // command line option: +overlap
nn

qe, // default answer

"I1'); // valid answer: 1 integer

menu.addItem (level,
"element type", // menu item command/name

"elm_tp", // command line option (+elm_tp here)
"classname in ElmDef hierarchy",
"ElmB4n2D", // default answer

// valid answers are the classnames in the ElmDef hierarchy
// where all the elements in Diffpack are defined:
validationString(hierElmDef())); // list all the classnames

// submenus:
LinEgAdm: : defineStatic (menu, level+1);// linear system parameters
prm(DDSolver):: defineStatic (menu, level+1);// DD parameters

menu.setCommandPrefix("local);
prm(LinEgSolver) : :defineStatic (menu, level+1);// sub domain solver parameters

menu.unsetCommandPrefix () ;

menu.addItem (level,

"renumber unknowns', // menu item command/name

"ren", // command line option (+ren here)
"select a renumbering algorithm",

hierRenumUnknowns () [0], // default answer

validationString(hierRenumUnknowns())); // list all classnames

FEM: : defineStatic (menu, level+1);// numerical integration rule
Store4Plotting:: defineStatic (menu, level+1);// dumping of fields and curves

void Overlapl:: scan (MenuSystem& menu)

{

// load answers from the menu:

-~

scanGrids(menu); // scan and construct the grids

// allocate data structures in the class:
u.rebind (new FieldFE (grid(mo_of_grids)(),"u")); // allocate, with field name "u"
error.rebind (new FieldFE (grid(mo_of_grids) (), "error"));
int i;
for (i=1; i<=no_of_grids; i++)
dof (i) .rebind (new DegFreeFE (grid(i)(), 1)); // 1 for 1 unknown per node

lineq.rebind (new LinEqAdm()); // make linear system and solvers
lineg->scan (menu); // determine storage and solver type
linsol.redim (dof(no_of_grids)->getTotalNoDof()); // init length of lin.sys. solution
lineg->attach (linsol); // use linsol as sol.vec. in lineq

precondPrm.scan(menu) ;
lineg->attach (precondPrm);

menu.setCommandPrefix("local);

for (i=1; i<no_of_grids; i++) {
sub_solve_prm(i) .rebind(new prm(LinEqSolver));
sub_solve_prm(i)->scan (menu);
sub_solve(i) .rebind(createlLinEqSolver (sub_solve_prm(i)()));
system(i) .rebind(new LinEqSystemStd (EXTERNAL_STORAGE));

}

menu.unsetCommandPrefix () ;

ddsolver_prm.scan(menu) ;
ddsolver = createDDSolver(ddsolver_prm) ;
ddsolver->attachUserCode (*this) ;

for (i=1; i<no_of_grids; i++) {
mat_prm(i).rebind(new prm(Matrix(NUMT)));
mat_prm(i)->scan (menu);
mat_prm(i)->sparse_adrs.rebind (new SparseDS);
}
}

void Overlapl:: scanGrids (MenuSystem& menu) // construct hierarchy of grids
{

int i;

int nsd = menu.get ('"no of space dimensions").getInt();

int overlap = menu.get ("overlap").getInt();

Ptv(int) part(msd);
Is dIs(menu.get ("partition"));
dIs->ignore (’[’);
for (i = 1; 1 <= nsd; i++) {
dIs->get (part(i));
if (i < nsd)
dIs->ignore (’,’);

Ptv(int) subdom(nsd);
Is rIs(menu.get ('subdomain"));
rIs->ignore (’[’);
for (i = 1; 1 <= nsd; i++) {
rIs->get (subdom(i));
if (i < nsd)
rIs->ignore (’,’);

Ptv(int) dom(nsd);
for (i = 1; i <= nsd; i++)
dom(i) = subdom(i) * part(i) - overlap * (part(i)-1);

no_of_grids = 1;
for (i = 1; i<= nsd; i++)
no_of _grids *= part(i);

no_of_grids += 1; // compute no_of_grids
sub_solve.redim (no_of _grids);
system.redim (no_of _grids);
sub_solve_prm.redim (no_of_grids);
proj.redim (no_of _grids-1);
grid.redim (no_of _grids);

dof .redim (no_of _grids);
mat_prm.redim (no_of _grids-1);

String elm_tp = menu.get ("element type');

for (i=1; i<=no_of_grids; i++) {
int j;
// ---- make grid using a box preprocessor and the menu information: ----
// construct the right syntax for the box preprocessor:
// d4=2 [0,1]1x[0,1]
// d=2 elm_tp=ElmB4n2D [2,2] [1,1]
// this must valid for any nsd so we must make some string manipulations:
String geometry = aform("d=%d ",nsd); // e.g. "d=2"
String grading = "[";
int k = i-1;
for (j = 1; j <= nsd; j++) {
real x0, x1;
if (i<no_of_grids) {
int ix = k % part(j); // split into row, column ...
k =k / part(j);

x0 = (ix * (subdom(j) - overlap)) / (real) dom(j);
x1 = (ix * (subdom(j) - overlap) + subdom(j)) / (real) dom(j);
} else

{x0=0.; x1=1.;}
geometry += aform("[%g,%gl", x0, x1); grading += "1"; // [.3,.71x[0,1]
if (j < nsd) {

geometry += "x"; grading +=",";
}
}
grading += "]";
String part = "["; // partition string e.g. [4,4]
for (j=1; j<=nsd; j++) {
int n;

if (i<no_of_grids) n = subdom(j);
else n = dom(j);

part += aform("%d",n);
if (j<nsd)
part += "on
}

part += u]u;

String partition = aform("d=Yd elm_tp=Ys div=Ys grading=is",
nsd,elm_tp.chars() ,part.chars(),

grading.chars());

//generate grids
PreproBox p;
p.geometryBox() .scan (geometry);
p-partitionBox() .scan (partition);
grid(i) .rebind (new GridFE());
p.generateMesh (grid(i)());

// make an empty grid

String reduce = menu.get ("renumber unknowns');

RenumUnknowns* r = createRenumUnknowns (reduce);
r->renumberNodes (grid(i)());

delete r;

FEM: :scan (menu);
Store4Plotting::scan (menu, grid(no_of_grids)->getNoSpaceDim());

s_o << "\n #x*x Finite element grids: ***x\n";

s_o << " element type: " << elm_tp << "\n";

s_o << "\n sub domain:\tNo of nodes: " << grid(1)->getNolNodes()
<< ",\tno of elements: " << grid(1)->getNoElms();

s_o << "\n total :\tNo of nodes: " << grid(no_of_grids)->getNoNodes ()
<< ",\tno of elements: " << grid(no_of_grids)->getNoElms();

s_o << "\n\n";

}
void Overlapil:: fillEssBC (Spaceld space)
{
dof (space) ->initEssBC (); // init for assignment below
int nno = grid(space)->getNoNodes(); // no of nodes
for (int 1 = 1; i <= nno; i++)
if (grid(space)->BoNode (i)) // is node i subj. to any boundary indicator?
dof (space)->fillEssBC (i, 0.0); // u=0 at nodes on the boundary
//dof (space)->printEssBC (s_o, 2); // for checking the essential boundary cond.
}

void Overlapl:: integrands (ElmMatVec& elmat, FiniteElement& fe)

{
int i,j,q;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)
const real detJxW = fe.detJxW();
const int nsd = fe.getNoSpaceDim();

// det J times numerical itg.-weight

// find the global coord. x of the current integration point:
Ptv(real) x (grid(1)->getNoSpaceDim());

fe.getGlobalEvalPt (x);

real f_value = f(x);

real k_value = k(x);

real nabla_prod;
for (1 = 1; 1 <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla_prod = 0;
for (q = 1; q <= nsd; g++)
nabla_prod += fe.dN(i,q) * fe.dN(j,q);

elmat.A(i,j) += k_valuex*nabla_prod*detJxW;

}
elmat.b(i) += fe.N(i)*f_valuexdetJxW;

10

// load type and order of the numerical integration rule

}
real analyticalSolution (const Ptv(real)& x, real /*t*/)
{
const int nsd = x.size();
real p = 1;
for (int 1 = 1; i <= nsd; i++)
p *= x(i) * (x(i) - 1);
return p;
}
void Overlapil:: initProj() // setup proj operators
{
for (int i=1; i<no_of_grids; i++) {
proj(i) = new ProjInterpSparse();
proj(i)->rebindDOF (*dof (i), *dof (no_of_grids));
proj(i)->init();
}
}

void Overlapl:: initMatrices() // setup stiffness matrices on sub-domains
{
for(int i=1; i<no_of_grids; i++) {
£i11EssBC (1); // set essential boundary conditions
Handle (Vec(NUMT)) u;
Handle(Vec(NUMT)) rhs;
u = new Vec(NUMT) (dof(i)->getTotalNoDof ());
rhs = new Vec(NUMT) (dof (i)->getTotallloEqs ());

mat_prm(i)->nrows = dof(i)->getTotalNoEqs ();
mat_prm(i)->ncolumns = dof (i)->getTotalNoDof ();
mat_prm(i)->nsd = dof (i)->grid() .getNoSpaceDim() ;

if (mat_prm(i)->storage == "MatStructSparse")
makeSparsityPattern (mat_prm(i)->offset,
mat_prm(i)->ndiagonals, dof(i)(});
else if (mat_prm(i)->storage.contains("Sparse"))
makeSparsityPattern (mat_prm(i)->sparse_adrs(), dof(i)());
else if (mat_prm(i)->storage == "MatBand")
mat_prm(i)->bandwidth = dof (i)->getHalfBandwidth();

Handle (Matrix(NUMT)) A;
A = createMatrix(NUMT) (mat_prm(i)());

dof (i) ->initAssemble() ;
makeSystem (dof(i)(D, AQ), rhs());

system(i)->attach(A());
ddsolver->attachLinRhs (rhs(), i, dpTRUE);
ddsolver->attachLinSol(u(), i);

void Overlapl:: solveProblem () // main routine of class Overlapl

{
initMatrices();
initProj();

11

f£illEssBC (no_of_grids); // set essential boundary conditions
makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system

ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

Precond &prec =lineq->getPrec();

if (prec.description().contains("Domain Decomposition")) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

¥

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineqg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n **#* solverisconverged in %3d iterations ***\n\n",
c? "™ "™ : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:

dof (no_of_grids)->vec2field (linsol, u());

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

ErrorEstimator::errorField (analyticalSolution, u(), DUMMY, error());

Store4Plotting: :dump (error());

ErrorEstimator::Lnorm (analyticalSolution, // supplied function (see above)

u(), // numerical solution

DUMMY, // point of time

Li_error, L2_error, Linf_error, // error norms
GAUSS_POINTS) ; // point type for numerical integ.

void Overlapil:: resultReport ()

{
s_o << oform("\nLl-error=%12.5e, L2-error=%12.5e, max-error=%12.5e\n\n",
L1_error, L2_error, Linf_error);
// in small problems (less than 100 nodes), print the nodal error
// values on the file "errors.dat"
if (grid(no_of_grids)->getNoNodes() < 100)
error->values() .print ("FILE=error.dat","Nodal values of the error field");
}
real Overlapil:: f (const Ptv(real)& x)
{
const int nsd = grid(1)->getNoSpaceDim();
// could check nsd == x.size() for consistency
int i,j; real s,p;
s = 0;
for (i = 1; 1 <= nsd; i++) {
p=1;
for (j = 1; j <= nsd; j++)
if (i '= j)
p *= x(j) * (x(j) - 1);
s += 2*p;
¥
return -s;
}

12

real Overlapil:: k (const Ptv(real)& /*x*/)
{ return 1; }

Spaceld Overlapl:: getNoOfSpaces() const
{ return no_of_grids; }

BooLean Overlapil:: solveSubSystem (

LinEgVector& b, LinEqVector& x,

Spaceld space, StartVectorMode /*start*/, DDSolverMode /*modex*/)
{

sub_solve_prm (space)->startmode = ZERO_START;

system (space)->attach (x, b);

sub_solve (space)->solve (system (space)());

system(space)->allow_factorization = dpFALSE;

Vec(NUMT) &sol = CAST_REF(x.vec(), Vec(NUMT));
dof (space) ->fillEssBC (sol);

return dpTRUE; // solution has changed
BooLean Overlapi:: transfer (

const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode)

{
if (ti == no_of_grids)
proj(£fi)->apply(fv, tv, NOT_TRANSPOSED, add_to_t);
else if (fi == no_of_grids)
proj(ti)->apply(fv, tv, TRANSPOSED, add_to_t);
else fatalerrorFP("Overlapl:: transfer","undefined");
return dpTRUE;
}

int Overlapl:: getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork) const
{
if (ti == no_of_grids)
return proj(fi)->getWork();
else if (fi == no_of_grids)
return proj(ti)->getWork();
return 0;

}

real Overlapl:: getStorageTransfer (Spaceld fi, Spaceld ti) const
{
if (ti == no_of_grids)
return proj(fi)->getStorage();
return 0;

}

int Overlapl:: getWorkSolve (Spaceld space, const PrecondWork) const
{ return sub_solve (space)->getWork(); }

real Overlapl:: getStorageSolve (Spaceld space) const
{ return sub_solve (space)->getStorage(); }

String Overlapl:: comment ()
{ return "Overlapl additive Schwarz preconditioner test"; }

13

3.2 Partition and overlap

The first exercises with overlapping additive Schwarz preconditioners deal with asymp-
totics. We try to figure out the dependency of the convergence rates on the size of
the sub-domains, the number of sub-domains and the size of the overlap.?

Exercise 1 Size of sub-domains.

(table 1, test1.1)

menu item answer
no of space dimensions 2
subdomain {[2,2] & [4,4] & [8,8] & [16,16]}
partition [2,2]
overlap 1
element type ElmB4n2D
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method AddSchwarzDD
local basic method GaussElim

Table 1: Size of sub-domains, testl.1i

We set up a standard version of an additive Schwarz preconditioner. We use the 2
dimensional test problem. We fix the overlap 1, the partition of sub-domains as 2 by
2 and a tolerance for the conjugated gradient iteration. We want to have a look at the
convergence rate or the number of iterations needed to solve the problem dependent
on the number of unknowns in each sub-domains.

Increasing the number of unknowns for a local problem also increases the number of
unknowns of the global problem. Hence we expect some degradation of the perfor-
mance which should be compensated by the preconditioner. Additionally the relative
size of the overlap decreases which also degrades performance. Figure out some num-
bers and guess some formulas for the dependence. Store the numbers for comparisons
with subsequent exercises.

Exercise 2 Size of overlap.

(table 2, test2.1)

We now fix the number of unknowns on each sub-domain as well as the number of
sub-domains. We vary the overlap. Look at the convergence rates for increasing
overlap. How is the dependence? Can you guess a formula?

2you will find the input parameters in Overlapi/Verify/

14

menu item answer
subdomain [4,4]
partition 8,8]
overlap {1&2& 3}
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method | AddSchwarzDD

Table 2: Size of overlap, test2.1

We expect some speed up by increasing the overlap. This is obvious for complete
overlap but also true for small increasing overlap.

Exercise 3 Absolute overlap.

(table 3, test3.1)

menu item answer
subdomain {[4,4] & [8,8] & [16,16]}
partition [2,2]
overlap {1&2& 4}
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method AddSchwarzDD

Table 3: Absolute overlap, test3.1

We now combine the last two exercises. We fix the absolute size of the overlap
according to the assumption at the beginning of the chapter. We increase the number
of unknowns in each sub-domain and at the same time we increase the overlap. We
again compare the convergence rates. How do they look like?

We can observe the pure preconditioning effect now, which should give a bounded
number of iterations.

Exercise 4 Number of sub-domains.

(table 4, test4.1)

We now have a look at the number of sub-domains. We fix the overlap to 1, the
number of unknowns in each sub-domain and the global solution tolerance. We
increase the number of sub-domains. Observe the convergence rate of the iteration.

The number of unknowns on the global grid is increasing. Hence the performance
will deteriorate. Information transport is only local since each sub-domains shares
data only with its neighbors. Increasing the number of sub-domains means therefore
increasing the number of cycles to transport information from one sub-domain to all

15

menu item answer
subdomain [5,5]
partition {[2,2] & [3,3] & [4,4] & [8,8]}
overlap 1
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method AddSchwarzDD

Table 4: Number of sub-domains, test4.i

other domains. This further degrades performance. The last issue will lead us to
Schwarz methods with a coarse grid acceleration.

3.3 Shape and dimension

Exercise 5 The shape of sub-domains.

(table 5, test5.1)

menu item answer
subdomain {[6,6] & [4,9] & [3,12] & [2,18]}
partition {[4,4] & [2,8] & [1,16]}
overlap 1
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method AddSchwarzDD

Table 5: The shape of sub-domains, testb5.1

Up to now we always have put square shaped sub-domains €2; together to a square
shaped €. This means cutting the global domain €2 along 2 and y axis into pieces.
Alternatively we can also cut 2 into rectangular shaped stripes. We compare the
convergence rates of both methods. We fix the number of sub-domains, the number
of unknowns in each sub-domain and the discretization of the global domain, but we
vary the shape of the sub-domains. Which shape gives the best performance? Try to
explain the result.

The number of cycles to transport information from one sub-domain to all other
domains from neighbor to neighbor may serve as a model for explanation. Difficulties
arising in large cycles here may be overcome by using an additional coarse grid.

While additive Scharz iteration usually is used on parallel computers other issues like
the number of neighbors and the size of the inner boundaries play a role. Hence it
may even be more favorable for large numbers of sub-domains to use squared shaped
(isotropic) partitions of the domain £2.

Exercise 6 Three dimensions.

16

(table 6, test6.1)

menu item answer
no of space dimensions 3
subdomain {[3,3,3] & [6,6,6]}
partition [2,2,2]
overlap {1& 2}
element type ElmB8n3D
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method AddSchwarzDD

Table 6: Three dimensions, test6.1

We now have a look at a three dimensional test example on the unit cube. The cube
is partitioned into cube shaped sub-domains in a pattern like 2 X 2 X 2. We can
redo all experiments done for the two dimensional case. However the main question
is about boundedness of the convergence rate for fixed absolute overlap (exercise 3).
Redo at least this exercise and compare the results.

It is not at all obvious in general that convergence results derived for the two di-
mensional case also hold in three dimensions. We can also compare results in one
dimension or on hyper-cubes in higher dimensional spaces.

Solving larger problems than we did up to now usually means both, solving larger sub-
problems and increasing the number of sub-problems. We solved all sub-problems
by a direct Gauss elimination. Solving larger sub-problems requires more efficient
algorithms. Switching to an iterative sub-problem solver immediately imposes the
question of termination criteria, solution tolerance and the influence of iteration errors
on the preconditioning.

3.4 Inexact solver

Exercise 7 Inezact sub-domain solver.

(table 7, test7.1)

We have a look at iterative solvers for sub-domain problems. The size and number
of sub-domains is fixed. We choose a preconditioned conjugate gradient iteration, a
Jacobi iteration and a symmetric SSOR iteration as sub-domain solvers. We choose
a relative termination criterion. Compare the deterioration of the convergence rate
when we relax the tolerance for the sub-domain solver. How does inexact sub-domain
solution influence the overall convergence? What is a good termination criterion
without loosing too much efficiency in the outer iteration? What is the optimal
criterion concerning the total number of operations?

The final goal is to use even more efficient sub-domain solver such as a multigrid or
domain decomposition itself. The reason to use an additive Schwarz iteration on top

17

menu item answer
local basic method ConjGrad
local max iterations {1&2&4&8& 16 & 32}
subdomain [10,10]
partition [2,2]
overlap 1
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method AddSchwarzDD

Table 7: Inexact sub-domain solver, test7.1

of such efficient solvers often is parallel computing. The additive Schwarz requires
only little communication during each step and has a fairly simple structure.

3.5 Averaging on the overlap

We now want to improve and extend the implementation given step by step. There is
one small modification to improve the performance of the preconditioner for overlap
larger than one. The sub-domains solution are just collected and added up on the
global grid. On the overlap, that is the part of the domain shared by several sub-
domains, there are several contributions added. This occurs if the size overlap is
greater than one. One idea to improve the preconditioner is to use an average of
the contributions on the overlap instead of just adding the contributions. A way of

writing this is by the construction of a (continuous) partition of unity {x;}.

1 Xz

Q2

Figure 4: Partition of unity

xi(z) = 0
suppx; C £
Yix; =1 on €

The averages are computed taking the functions x; as weights. The preconditioner

looks like
B =} VX; S VXiQ;
J
which easily can be hidden in the projection); and its adjoint.

We extend the initProj procedure to modify the transfer operator. The partition
is computed as one over the number of sub-domains a point is in.?

3you will find the code in Overlap2/

18

#include <Overlap2.h>
Overlap2:: Overlap2 () {}

void Overlap2:: initProj() // setup proj operators
{

Overlapil:: initProj();

modifyProj (1, no_of_grids-1);
}

void Overlap2:: modifyProj(Spaceld i0, Spaceld il) // modify proj
{
int i;
Vec (NUMT) &uu = u->values();
uu.£i11(0);
for (i=i0; i<=il; i++) {
Vec (NUMT) loc (dof(i)->getTotalNoDof ());
loc.£ill(1);
dof (1) ->fillEssBC2zero ();
dof (i) ->fil1lEssBC (loc);
dof (1) ->unfillEssBC2zero (); // 1 inside and O on the boundary

LinEgVector uv(uu);

proj(i)->apply(loc, uv, NOT_TRANSPOSED, dpTRUE); // sum up
}
{

Vec (NUMT) &uu = u->values();

int s = uu.size();

for (int k=1; k<=s; k++)

uu(k) = 1 / sqrt(uu(k)); // sqrt(the local contribution)

}
for (i=i0; i<=il; i++) {

Vec (NUMT) loc (dof(i)->getTotalNoDof ());

LinEqgVector 11(loc);

proj(i)->apply(uu, 11, TRANSPOSED);

dof (1) ->fillEssBC2zero ();

dof (i) ->fillEssBC (loc);
dof (1) ->unfillEssBC2zero (); // result inside and O on the boundary

proj(i)->scale(loc, NOT_TRANSPOSED); // modify the transfer operator

Exercise 8 Size of overlap.

(table 2, see Verify/test2.1)

We just repeat the exercise 2 for the new code. That is the variation of the size of the
overlap. Compare the results with the original implementation Overlapl. Compare
also the error and the solution plots for both performing just one iteration.

The procedure of averaging is also quite useful in the case of multiplicative Schwarz
iteration, especially to construct initial guesses for iterative sub-domain solvers.

19

Overlap2.C

We have used a piecewise constant partition of unity. One way to improve the
procedure further is to use continuous or even smooth partitions. This applies for
overlap sizes greater than two elements.

3.6 Coarse grids acceleration

As we already saw, the Schwarz iteration is quite sensitive on the number of sub-
domains involved. The problem can be explained by transporting information from
one sub-domain to the others. If there is a long chain of neighbors involved, it takes
several cycles to pass along the information. This means information of the right
hand side cannot be faster. On the other hand we actually observe this slow down of
the Schwarz iteration.

An idea to fix the problem is the introduction of a coarse grid. This enables some
global information transport in just one iteration. We introduce one additional sub-
problem number 0 which covers the whole domain €2 using a very cheap discretization
compared to the original discretization to solve on. We choose the same kind of finite
element discretization as used the the other sub-problems. Each element covers about
the size of one sub-domain Q; However the coarse grid is not exactly aligned to sub-
domain boundaries, but the coarse grid lines lay on the overlap. The coarse space is
not a sub-space of the global finite element space.

Qy = Q

B =Y 5Q;

=0

Figure 5: Overlapping Schwarz Iteration with a Coarse Grid

We extend the scanGrids procedure generating an additional coarse grid. The trans-
fer from and to the coarse grid is not modified by the partition of unity.*

#include <Overlap3.h>
#include <PreproBox.h>

“you will find the code in Overlap3/

20

Overlap3.C

#include <createRenumUnknowns.h> // renumbering grids
#include <RenumUnknowns.h> // renumbering grids

Overlap3:: Overlap3 () {}

void Overlap3:: initProj() // setup proj operators
{

Overlapi:: initProj();

modifyProj (2, no_of _grids-1);
}

void Overlap3:: scanGrids (MenuSystem& menu) // construct hierarchy of grids
{

int i;

int nsd = menu.get ("no of space dimensions").getInt();

int overlap = menu.get ("overlap").getInt();

Ptv(int) part(msd);
Is dIs(menu.get ("partition"));
dIs->ignore (’[’);
for (1 = 1; 1 <= nsd; i++) {
dIs->get (part(i));
if (i < nsd)
dIs->ignore (’,’);

Ptv(int) subdom(nsd);
Is rIs(menu.get ('subdomain"));
rIs->ignore (’[’);
for (i = 1; 1 <= nsd; i++) {
rIs->get (subdom(i));
if (i < nsd)
rIs->ignore (’,’);

Ptv(int) dom(nsd);
for (i = 1; i <= nsd; i++)
dom(i) = subdom(i) * part(i) - overlap * (part(i)-1);

no_of_grids = 1;
for (i = 1; i<= nsd; i++)
no_of_grids *= part(i);

no_of_grids += 2; // compute no_of_grids, coarse grid + global grid
sub_solve.redim (no_of _grids);

system.redim (no_of _grids);

sub_solve_prm.redim (no_of_grids);

proj.redim (no_of _grids-1);

grid.redim (no_of _grids);

dof .redim (no_of _grids);

mat_prm.redim (no_of _grids-1);

String elm_tp = menu.get ("element type');

for (i=1; i<=no_of_grids; i++) {
int j;
// ---- make grid using a box preprocessor and the menu information: ----
// construct the right syntax for the box preprocessor:
// d4=2 [0,1]1x[0,1]

21

// d=2 elm_tp=ElmB4n2D [2,2] [1,1]
// this must valid for any nsd so we must make some string manipulations:
String geometry = aform("'d=Y%d ",nsd); // e.g. "d=2"
String grading = "[";
int k = i-2;
for (j = 1; j <= nsd; j++) {
real x0, x1;
if ((i<no_of_grids)&&(i>1)) {
int ix = k % part(j); // split into row, column ...
k =k / part(j);

x0 = (ix * (subdom(j) - overlap)) / (real) dom(j);
x1 = (ix * (subdom(j) - overlap) + subdom(j)) / (real) dom(j);
} else

{x0=0.; x1=1.;}
geometry += aform("[%g,%gl", x0, x1); grading += "1"; // [.3,.71x[0,1]
if (j < nsd) {
geometry += "x"; grading += ",";
}
}

grading += "]";

String part_s = "["; // partition string e.g. [4,4]
for (j=1; j<=nsd; j++) {
int n;
if (i==1) n

part(j); // coarse grid

else if (i<no_of_grids) n = subdom(j);
else n = dom(j); // global grid
part_s += aform("%d",n);
if (j<nsd)
part_s += ",";

}

part_s += "]";

String partition = aform("d=}d elm_tp=Ys div=Ys grading=is",
nsd,elm_tp.chars() ,part_s.chars(),
grading.chars()) ;

//generate grids

PreproBox p;

p.geometryBox() .scan (geometry);
p-partitionBox() .scan (partition);

grid(i) .rebind (new GridFE()); // make an empty grid
p.generateMesh (grid(i)());

String reduce = menu.get ("renumber unknowns');

RenumUnknowns* r = createRenumUnknowns (reduce);
r->renumberNodes (grid(i)());

delete r;

FEM::scan (menu); // load type and order of the numerical integration rule
Store4Plotting::scan (menu, grid(no_of_grids)->getNoSpaceDim());

s_o << "\n #x** Finite element grids: ***x\n";

s_o << " element type: " << elm_tp << "\n";

s_o << "\n coarse grid:\tNo of nodes: " << grid(1)->getNoNodes ()
<< ",\tno of elements: " << grid(1)->getNoElms();

s_o << "\n sub domain:\tNo of nodes: " << grid(2)->getNolNodes()

<< ",\tno of elements: " << grid(2)->getNoElms();

22

s_o << "\n total :\tNo of nodes: " << grid(no_of_grids)->getNoNodes ()
<< ",\tno of elements: " << grid(no_of_grids)->getNoElms();
s_o << "\n\n";
}

We can redo the previous exercises comparing the results with the overlapping Schwarz
method with and without a coarse grid. The most interesting part probably is the
dependence on the number of sub-domains.

Exercise 9 The number of sub-domains.

(table 4, Verify/test4.1)

We use an additive Schwarz preconditioner with fixed overlap and a fixed number of
unknowns in each sub-domain. We increase the number of sub-domains and look at
the convergence rate or the number of iterations. What kind of dependence can be
observed? How does this compare to the results in exercise 47

The computations introduce additional work per iteration. Compare the numbers
according to the total number of operations (or computing time). Find a criterion
when it pays off to use a coarse grid and when it does not.

Exercise 10 Size of overlap.

(table 2, Verify/test2.1)

It may be interesting to compare the three version of additive Schwarz method dis-
cussed up to now. We choose the exercise with varying overlap size again. Compare
the convergence rates or number of iterations for all methods. Standard additive
Schwarz, with averaging on the overlap and with additional coarse grid. It may also
be instructive to compare this to the standard additive Schwarz method with coarse

grid.

We have used a conforming finite element coarse grid discretization for reasons of
simplicity. There are several other possible ways to construct an appropriate coarse
grid discretization. One could construct a coarse grid discretziation which really
matches the global grid.

One lower order method on the coarse grid is a piecewise constant approximation
on the same coarse grid we have used. This means averaging approximately on each
sub-domain and using this value as an unknown in the coarse grid system. The
main purpose of the coarse grid system is long distance information transport in
the presence of a large number of sub-domain. The approximation properties of the
coarse grid are of less importance.

4 Overlapping Schwarz as an iterative method

While a preconditioner can be considered as one step of an iterative procedure applied
to a zero initial guess, using an iterative procedures requires handling of non zero

23

initial data. One way to do this (also called Richardson iteration) is to evaluate
the residual, apply one iteration with zero initial data to the residual and treat the
solution (or a multiple) as an update of last iterate.

v — u — B(Au — f)

This approach may be appropriate if the whole solution has changed like in the
correction step of a multigrid method. It is too much work, if only parts of the
solution are changed like in a multiplicative Schwarz iteration or only parts of the
solution are needed like in overlapping Schwarz iteration.

Hence in the following implementation we use a different approach. We use a copy of
the right hand side of the global grid on each sub-domain. We use the given data on
the boundary of each sub-domain as a Dirichlet boundary condition for computation
on that sub-domain. In the notation above this is ug # 0. We avoid computing
residuals.

In order to use the Schwarz iteration without preconditioning, we have to employ an
averaging technique on the overlap similar to the averaging for the additive precon-
ditioner with a partition of unity {x;}. We now only apply the scaling to the transfer
from a local sub-domain to the global domain since we have copied the residual with-
out modifications from the global domain to sub-domain. Hence we redefine the
transposed transfer operators.

Qi = Xi-Qi
Q7 = xi @

We extend the additive Schwarz implementation Overlap2 to a multiplicative Schwarz
iteration and a preconditioner.’

We change the data of the transfer operators from a vector to a matrix of projections.
We also introduce scaling data for the transfer from one sub-domain onto itself.

MatSimplest (Handle (Proj)) proj; // projection operators
VecSimplest (Handle (LinEqVector)) unity; // partition of unity

The main changes in the code concern boundary conditions and data transfer. We in-
troduce two boundary indicators, number one for the Dirichlet boundary I" of d€2 and
number two for the inner boundaries I';. The original boundary indicators introduced
by PreproBox [5] for a (hyper-) cube are mapped to the new ones.

in function MOverlapl:: scanGrids

p.generateMesh (grid(i)());

String boInd_g = "nb=2 names= global inner 1=(";
String boInd_i = "), 2=(";

Syou will find the code in MOverlap1/

24

MOverlapl.h

MOverlapl.C

k =i-1;

for (j = 1; j <= nsd; j++) {
int ix = k % part(j) + 1; // split into row, column ...
k =k / part(j);

String bl = aform("%d ", j);

if ((ix==part(j)) || (i==no_of_grids))
boInd_g += bi;

else bolnd_i += bl;

String b0 = aform("%d ", j+nsd);
if ((ix==1)||(i==no_of _grids))
bolnd_g += b0;
else bolnd_i += b0;
}
boInd_g += bolnd_i;
bolnd_g += ")";
grid(i)->redefineBoInds(boInd_g);

Based on this distinction of boundary conditions, we are able to implement the vari-
able Dirichlet conditions on I';. The £111EssBC function has an additional argument.
It is a solution vector on the sub-domain containing the prescribed Dirichlet values.
The £i11EssBC function inserts the values into the dof object. In order to use a
stiffness matrix assembled once and to insert the Dirichlet values later it is necessary
to set some flags prior to assembly.

function MOverlapl:: fillEssBC (LinEqVector& x, Spaceld space)

void MOverlapil:: £illEssBC (LinEqVector& x, Spaceld space) //begin_f£ill
{

Vec (NUMT) &xx = CAST_REF(x.vec(), Vec(NUMT));

dof (space) ->initEssBC () ; // init for assignment below

int nno = grid(space)->getNoNodes(); // no of nodes

for (int 1 = 1; i <= nno; i++)

if (grid(space)->BoNode (i)) // is node i subj. to any boundary indicator?
if (grid(space)->BoNode (i, 1))
dof (space)->fil1lEssBC (i, 0.); // u=0 at nodes on the boundary

else if (grid(space)->Bolode (i, 2))
dof (space) ->fillEssBC (i, xx(i)); // inner boundary
} // end_fill

in function MOverlapl:: initMatrices()

dof (i) ->symmModDue2essBC(OFF); // do not insert Dirichlet BCs now
dof (i) ->modifyVecDue2essBC(OFF); // do not change rhs due to BCs

Unfortunately this implies an unsymmetric modification of the stiffness matrix in the
current version of Diffpack. We are forced to use unsymmetric sub-domain solver.

We continue the documentation of the code extending the grid transfer operators to
include the multiplicative Schwarz iteration too.

25

4.1 Multiplicative Schwarz

The standard idea to improve the performance of an additive scheme is to transform
it into a multiplicative one. Instead of running all sub-domain solvers independently
on data of the last iteration step, we run the sub-domain solvers in a specific order
and use the latest data available.

B=1-(I-5Q1) (I-5Qz) (I-5,Qn)

The method was originally proposed by Schwarz [6] in the context of analytical
functions using overlapping domains.

e v

Figure 6: Multiplicative overlapping Schwarz Iteration

In the multigrid case we have used the residual function to update the right hand
side according to the previous modifications of the solutions. This was necessary since
the solution on the whole grid changed. In the overlapping Schwarz case modifications
by a sub-domain correction affect only part of the global domain. This means there
is a cheaper way than computing the residual on the whole domain. It is sufficient
to update the data only on the new sub-domain to compute on.

In order to minimize data transfer from and to the global grid, we introduce transfer
operators from one sub-domain to a neighboring sub-domain.

Qi; = Q;0Q;
Q;xi Q7

The transfer, initProj and modifyProj functions are modified according to the
matrix of projections Proj and scaling data unity. We set up the transfer operators
such that @);; is not the adjoint of @);; and @); is not the adjoint ()7 as discussed
above.6

-
function MOverlapl:: transfer

BooLean MOverlapl:: transfer (// begin_transfer
const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode)

{

if (fi'!'=ti)

Sthis code is also in MOverlapi1/

26

proj(fi, ti)->apply(fv, tv, NOT_TRANSPOSED, add_to_t);
else {
Vec(NUMT) &t = CAST_REF(tv.vec(), Vec(NUMT));
Vec (NUMT) &u = CAST_REF(unity(ti)->vec(), Vec(NUMT));
for (int i=1; i<=t.size(); i++)
t (1) *= u(i);

}

return dpTRUE;
} // end_transfer
function MOverlapl:: initProj()

void MOverlapil:: initProj() // setup proj operators begin_initp
{
int 1i,j;
for (i=1; i<=no_of_grids; i++)
for (j=1; j<=no_of_grids; j++)
if (1 != j) {
proj(i, j) = new ProjlnterpSparse();
proj(i, j)->rebindDOF(*dof (i), *dof(j));
proj(i, j)->init();
}
modifyProj (1, no_of_grids-1);
} // end_initp

function MOverlapl:: modifyProj()

void MOverlapl:: modifyProj(Spaceld i0, Spaceld il) // begin_modify proj
{
int i, j;
Vec (NUMT) &uu = u->values();
uu.£i11(0);
for (i=i0; i<=il; i++) {
Vec (NUMT) loc (dof(i)->getTotalNoDof ());
loc.£ill(1);
dof (1) ->fillEssBC2zero ();
dof (i) ->fil1lEssBC (loc);
dof (1) ->unfillEssBC2zero (); // 1 inside and 0 on the boundary

LinEqVector uv(uu);
proj(i, no_of_grids)->apply(loc, uv, NOT_TRANSPOSED, dpTRUE); // sum up

for (j=10; j<=i1; j++)
if (i!'=j)
proj(i, j)->scale(loc, NOT_TRANSPOSED); // no data from boundary i

}
int s = uu.size();
for (int k=1; k<=s; k++)

uu(k) = 1 / uu(k); // the local contribution
for (i=i0; i<=il; i++) {

Handle (Vec(NUMT)) loc = new Vec(NUMT) (dof(i)->getTotallloDof ());

LinEqgVector 11(loc());

proj(i, no_of_grids)->apply(uu, 11, TRANSPOSED);

27

dof (1) ->fillEssBC2zero ();
dof (i)->£il1EssBC (loc());
dof (1) ->unfillEssBC2zero (); // result inside and 0 on the boundary

proj(i, no_of_grids)->scale(loc(), NOT_TRANSPOSED); // modify the transfer operator
unity(i) = new LinEqVector(loc()); // scaling i -> i
for (j=10; j<=i1; j++)
if (i '= j)
proj(i, j)->scale(loc(), NOT_TRANSPOSED); // modify the transfer operator

} // end_modify

In the case we are using direct sub-domain solver which do not depend on an initial
guess, we can restrict the grid transfer further from one sub-domain to another sub-
domain to transferring data on the boundary of the overlap.

4.2 Symmetric multiplicative Schwarz

The construction of a multiplicative Schwarz preconditioner for a conjugated gradient
iteration requires symmetry. To achieve this we have to modify the Schwarz iteration
procedure, cycling forwards and backwards in the order of sub-domains. We may
perform the iteration on sub-domain n only once, but the other sub-domains are
visited twice (except for the first sub-domain in later iteration steps).

Figure 7: Symmetric Multiplicative Overlapping Schwarz Iteration

Bym = I — (I-51Q1) (I-5Q2) (I -8,Qn) (I -52Q2) (I -S51Q1)

4.3 Experiments

Exercise 11 Additive preconditioner and iteration.

(table 8 and 1, testl.i and testla.i)

28

menu item answer
subdomain {[2,2] & [4,4] & [8,8] & [16,16]}
partition [2,2]
overlap 1
basic method DDlter
preconditioning type PrecNone
domain decomposition method AddSchwarzDD
local basic method GaussElim

Table 8: Additive preconditioner and iteration, testla.i

The first test is a comparison of the additive Schwarz iteration and the additive
Schwarz preconditioner. We did the tests for the preconditioner already, so we add
the test for the iteration. We can compare the number of iterations and the computing
time. Does the surrounding conjugate gradient method for the preconditioner pay
off7 How is the dependency on the number of sub-domains? Compare the memory
requirement of both methods.

Can you explain, why the conclusion whether to prefer the iteration or the precondi-
tioner may look different than for the multigrid method? Do you have an idea, why
we even can use the additive as a stand alone iterative solver?

Exercise 12 Additive and multiplicative iteration.

(table 9, test2.1)

menu item answer
subdomain [8,8]
partition [2,2]
overlap 1
basic method DDlter
preconditioning type PrecNone

domain decomposition method | {AddSchwarzDD &

SchwarzDD &
SymSchwarzDD}
local basic method GaussElim

Table 9: Additive and multiplicative iteration, test2.1

We now can compare the additive and multiplicative methods. We choose the stand
alone iterative procedures. We use an exact sub-domain solver to avoid side-effects.
Compare the number of iterations. Try to estimate the number of operations for
each iteration for the three methods: Additive Schwarz, multiplicative Schwarz and
symmetric multiplicative Schwarz iteration. Which one is the most efficient method?

Another aspect is parallel computing, of course. Running multiplicative methods
in parallel usually requires some coloring strategies and some factor (the number

29

of different colors) more sub-domains than processors. Hence additive methods are
usually preferred for parallel implementations.

Exercise 13 Additive and multiplicative preconditioner.

(table 10, test3.1)

menu item answer
subdomain [8,8]
partition [2,2]
overlap 1
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method | {AddSchwarzDD &

SymSchwarzDD}
local basic method GaussElim

Table 10: Additive and multiplicative preconditioner, test3.1

We now compare additive and multiplicative methods used as preconditioners. Since
we use a conjugated gradient method, we cannot use the (alternating) multiplicative
Schwarz iteration, but we have to use the symmetric variant instead. Compare the
number of iterations.

The previous remark on parallel computing and additive methods also applies here.
Exercise 14 Size of overlap in the Schwarz iteration.

(table 11, test4.1)

menu item answer
subdomain [4,4]
partition 8,8]
overlap {1&2& 3}
basic method DDlter
preconditioning type PrecNone
domain decomposition method | SchwarzDD
#1: max error 1.0e-3

Table 11: Size of overlap in the Schwarz iteration, test4.1

We have a look at the question for the size of the overlap again. We now ask for
the optimal overlap in the presence of an iterative Schwarz solver. The sub-domains
communicate only via the overlap, there is no surrounding iteration facilitating any
further data exchange. Compare the number of iterations for different overlap sizes.
What kind of dependency do you observe?

30

How about the overall performance of the solution procedure? How does this overall
performance look like for very cheap (only few iterations) sub-domain solvers? Why
is the issue of the overlap more important for the iterative Schwarz method than for
the Schwarz preconditioner?

Exercise 15 Multiplicative preconditioner and iteration.

(table 10 and 9)

Finally we can compare the symmetric multiplicative Schwarz method used as an
iterative procedure and as a preconditioner. Since we did all the necessary tests
already, we can compare previous results. Look at the number of iterations. Does
the conjugated gradient method improve the efficiency? Does it pay off7 Compare
this to your findings for the additive Schwarz iteration and preconditioner.

5 Nonlinear Schwarz iteration

If we want to solve nonlinear problems by the overlapping Schwarz method, we have
several possiblities:

We can use the overlapping Schwarz method discussed so far as a linear solver
or a preconditioner for a linear solver inside some nonlinear solution procedure like
Newton iteration or successive iteration. Procedures like this may be called Newton-
Schwarz methods. Most of the work is done in assembling matrices and solving linear
problems which both can be nicely done for example in parallel. The nonlinear outer
iteration inherits the parallel performance from the inner Schwarz iteration. The open
question is the termination criterion for the inner loop, the coupling of the control
for both linear inner and nonlinear outer loop. We leave the actual implementation
of such a method to the user, since it is mainly the combination of codes N1E1liptic
and Overlap3 already presented [8].

Instead we present the opposite approach of a nonlinear Schwarz iteration. The idea
is to use the mechanism of splitting the domain into overlapping sub-domains and the
pattern of grid transfer between the sub-domains and apply this mechanism directly
to the nonlinear problem. The sub-problems turn out to be nonlinear problems
now, which are solved approximately by some nonlinear iterative solvers like Newton
iteration or successive iteration. The term Schwarz-Newton may be used for this.
The major difference to the overlapping Schwarz iteration discussed so far is that the
linear sub-domain solvers are replaced by nonlinear sub-domain solvers. The Schwarz
algorithm, the grid transfer and the boundary conditions remain the same.

5.1 Code

Based on the nonlinear template N1El1liptic of [8] we create a simulator for the
nonlinear overlapping Schwarz iteration. We combine features of the nonlinear multi-
grid implementation N1MultiGridl and the linear overlapping Schwarz iteration

31

Newton-
Schwarz

Schwarz-
Newton

MOverlapl and mainly merged the code. It may be useful to consult the docu-
mentation of these codes given already in addition to the following remarks.”

We introduce three different test examples, a linear one, one problem with nonlinear
right hand side and one problem with nonlinear operator.

The main structure of the code is taken from the nonlinear multigrid example N1MultiGrid1.
The sub-domain solvers are built upon a class N1Level. It is instantiated for each
sub-domain and contains the grid, the nonlinear assembly procedure, the nonlinear
solvers and linear solvers to be used in the interior loop of the nonlinear ones.

The grid transfer operators and the interface to the nounlinear overlapping Schwarz
iteration as well as handles to the sub-domains are contained in the main class
NlOverlapi. This splitting (borough from N1MultiGrid1) is necessary because we
use different nonlinear solvers at the same time (on different levels) and the nonlinear

interface in Diffpack are based on inheritance of NonLinEqSolverUDC.

#ifndef N1Overlapi_h_IS_INCLUDED
#tdefine N1Overlapi_h_IS_INCLUDED

ttinclude <FEM.h> // FEM algorithms, FieldFE, GridFE etc
#include <DegFreeFE.h> // mapping: nodal values -> linear system vec
#include <LinEgAdm.h> // linear systems, storage and solution

#include <NonLinEqSolverUDC.h> // user’s class interface to nonlinear solvers
#include <NonLinEqgSolver_prm.h> // parameters for nonlinear solvers

#include <NonLinEgSolver.h> // interface to nonlinear solvers
#include <Store4Plotting.h>

#include <DDSolver.h> // DDSolver

#include <DDSolverUDC.h> // interfacing to DDSolver
#include <DDSolver_prm.h> // DDSolver parameters

#include <VecSimplest_Handle.h>
class NlLevel : public FEM, public NonLinEqSolverUDC, public virtual HandleId
{

protected:
// general data:
Handle (GridFE) grid; // finite element grid
Handle(DegFreeFE) dof; // mapping: nodal values <-> linear system unknowns
Handle(FieldFE) u; // finite element field, the primary unknown
Handle (Vec (NUMT)) nonlin_solution; // nonlinear solution
Vec (NUMT) linear_solution; // solution of linear subsystem
Handle(LinEqgVector) linear_rhs; // rhs of linear subsystem
prm(NonLinEgSolver) nlsolver_prm; // parameters for solver
Handle(NonLinEgSolver) nlsolver; // nonlinear solver

Handle(LinEgAdm) lineq; // linear system, storage and solution

virtual void £illEssBCO(); // set zero boundary conditions
virtual void fillEssBC (Vec(NUMT)& x); // set given boundary conditions
virtual void integrands (ElmMatVec& elmat, FiniteElement& fe);

virtual void makeAndSolveLinearSystem ();

virtual real £ (const Ptv(real)& x, real u); // nonlinear source term
virtual real k (const Ptv(real)& x, real u); // nonlinear coefficient

“you will find the code in N10verlapi/

32

// needed in Newton Raphson iterations
virtual real df(const Ptv(real)& x, real u); // d/du of nonlinear source term
virtual real dk(const Ptv(real)& x, real u); // d/du of nonlinear coefficient
public:
NlLevel ();
“NlLevel () {}

static void defineStatic (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu, String% geometry, String& partition, String& bolnds);

virtual void attachSol(DDSolver& ddsolver, Spaceld i);
virtual void attachRhs(DDSolver& ddsolver, Spaceld i);
virtual DegFreeFE& getDof();

virtual Vec(NUMT)& getNonLinSolution();

virtual BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,
StartVectorMode start, DDSolverMode mode) ;

virtual int getWorkSolve () comst;

virtual real getStorageSolve () const;

CLASS_INFO
};

#tdefine ClassType NlLevel
#include <Handle.h>
#tundef ClassType

#define Type Handle(NlLevel)
#include <VecSimplest.h>
#tundef Type

class NlLevelf : public NlLevel
{
protected: // nonlinear rhs
virtual real f (const Ptv(real)& x, real u); // nonlinear source term
virtual real df(const Ptv(real)& x, real u); // d/du of nonlinear source term
public:
NlLevelf () {}
“NlLevelf () {}
};

class NlLevelk : public NlLevel
{
protected: // nonlinear operator
virtual real k (const Ptv(real)& x, real u); // nonlinear coefficient
virtual real dk(const Ptv(real)& x, real u); // d/du of nonlinear coefficient
public:
NlLevelk () {}
“NlLevelk () {}
};

class NlOverlapl : public MenuUDC, public Store4Plotting,
public NonLinEqSolverUDC, public DDSolverUDC
{
protected:
// general data:
VecSimplest (Handle(NlLevel)) level; // refinement levels
Handle (DegFreeFE) dof; // mapping: nodal values <-> linear system unknowns
Handle(FieldFE) u; // finite element field, the primary unknown

33

Handle (Vec (NUMT)) nonlin_solution; // nonlinear solution

Handle (Vec (NUMT)) linear_solution; // solution of linear subsystem
prm(NonLinEgSolver) nlsolver_prm; // parameters for solver
Handle(NonLinEqgSolver) nlsolver; // nonlinear solver

int no_of _grids; // multigrid levels
prm(DDSolver) ddsolver_prm; // parameters multigrid solver
Handle (DDSolver) ddsolver; // multigrid solver

MatSimplest (Handle (Proj)) proj; // projection operators
VecSimplest (Handle (LinEqVector)) unity; // partition of unity

virtual void initProj(); // set up projection matrices

virtual void modifyProj(Spaceld i0, Spaceld il); // modify them
public:

NlOverlapi ();

“NlOverlapl () {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan (MenuSystem& menu); // read and intialize data
virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen

// DDSolverUDC
Spaceld getNoOfSpaces() const; // no_of_grids
BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,
Spaceld space, StartVectorMode start, DDSolverMode mode=SUBSPACE) ;
BooLean transfer (const LinEqVector& fv, Spaceld fi,
LinEqVector& tv, Spaceld ti,
BooLean add_to_t= dpFALSE, DDTransferMode=TRANSFER); // apply proj

virtual int getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork work_tp) const;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const;
virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp) const;
virtual real getStorageSolve (Spaceld space) const;
String comment ();
b
#endif

The assembly is done in the standard way in N1Level. We do not need the special
options for introduction of Dirichlet values later to assembly, because we have to
assemble the matrices each time the nonlinear sub-domain solver requires an update.
At this time the Dirichlet values imposed by the Schwarz iteration are known already.
The nonlinear solvers include a Newton iteration and a successive substitution pro-
cedure. The standard linear sub-problem solver are available.

The grid generation, boundary indicators in N1Level and grid transfer operators in
N1MultiGrid1l are copied from our previous implementation of the Schwarz iteration
MOverlapl. The additive, the multiplicative and the symmetric multiplicative version

of the overlapping Schwarz iteration are available.

#include <N1lOverlapl.h>

34

#include <ElmMatVec.h>

#include <FiniteElement.h>
#include <createlNonLinEgSolver.h>
#include <ErrorEstimator.h>
#include <PreproBox.h>

#include <createElmDef.h>
#include <NonLinDD.h>

#include <createDDSolver.h>

#define Type Handle(NlLevel)
#include <VecSimplest.C>
#tundef Type

NlLevel:: NlLevel () {}

INIT_CLASS_INFO(NlLevel)

void NlLevel:: defineStatic (MenuSystem& menu, int level)

{
LinEgAdm: : defineStatic (menu, level+1);
prm(NonLinEqgSolver) : :defineStatic (menu, level+1);
FEM: : defineStatic (menu, level+1);
}

void NlLevel:: scan (MenuSystem& menu, String% geometry, String& partition, String& bolnds)
{

grid.rebind (new GridFE()); // create empty grid object

PreproBox p;

p.geometryBox() .scan (geometry);

p-partitionBox() .scan (partition);

p.generateMesh (grid()); // £ill grid
grid->redefineBoInds(bolnds); // redefine boundary indicators
u.rebind (new FieldFE (grid(),"u")); // allocate, with field name "u"

FEM: :scan (menu);

lineq.rebind (new LinEqAdm());
lineg->scan (menu);
dof .rebind (new DegFreeFE (grid(), 1)); // 1 unknown per node

nlsolver_prm.scan (menu);

linear_solution.redim (dof->getTotalNoDof());
nonlin_solution.rebind (new Vec(NUMT));
nonlin_solution->redim (dof->getTotalloDof ());
lineg->attach (linear_solution);

nlsolver.rebind (createNonLinEqSolver (nlsolver_prm));
nlsolver->attachUserCode (*this);
nlsolver->attachLinSol (linear_solution);

void NlLevel:: attachSol(DDSolver& ddsolver, Spaceld i)
{

nonlin_solution->fill (0.0);

ddsolver.attachLinSol (nonlin_solution(), i);

}
void NlLevel:: attachRhs(DDSolver& ddsolver, Spaceld i)

{
Handle (Vec (NUMT)) z;

35

z.rebind (new Vec (NUMT)) ;
z->redim(dof->getTotalNoDof ());
Handle(LinEqVector) zero;
zero.rebind(new LinEqVector(z()));

zero() = 0.;
ddsolver.attachLinRhs(zero(), i, dpTRUE);

DegFreeFE& NlLevel:: getDof ()
{ return dof(); }

Vec (NUMT)& NlLevel:: getNonLinSolution()
{ return nonlin_solution(); }

void NlLevel:: fillEssBCO ()

{
dof->initEssBC (); // init for assignment below
const int nno = grid->getNoNodes();

for (int 1 = 1; i <= nno; i++)
if (grid->BoNode (i)) // any boundary indicator?
dof->fillEssBC (i, 0.0); // homogeneous Dirichlet on any boundary.

void NlLevel:: £fillEssBC (Vec(NUMT)& x)
{
dof->initEssBC (); // init for assignment below
int nno = grid->getNoNodes(); // no of nodes
for (int 1 = 1; i <= nno; i++)
if (grid->BoNode (i)) // is node i subj. to any boundary indicator?
if (grid->BoNode (i, 1))
dof->fil1EssBC (i, 0.); // u=0 at nodes on the boundary
else if (grid->BoNode (i, 2))
dof->fillEssBC (i, x(i)); // inner boundary

void NlLevel:: integrands (ElmMatVec& elmat, FiniteElement& fe)

{
int i,j,s;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)
const real detJxW = fe.detJxW(); // det J times numerical itg.-weight
const int mnsd = fe.getNoSpaceDim(); // space dimension

const real u_pt = u->valueFEM (fe); // U (at present itg. point)
// find the global coord. x of the current integration point:
Ptv(real) x (nsd);

fe.getGlobalEvalPt (x);

const real f_value = f(x, u_pt);
const real k_value = k(x, u_pt);

real nablal,nabla2,h;

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
{
Ptv(real) Du_pt (nsd); // grad U
u->derivativeFEM (Du_pt, fe); // interpolate Du_pt
const real df_value = df(x, u_pt);

36

const real dk_value = dk(x, u_pt);

for (i = 1; i <= nbf; i++) {
nablal = 0;
for (s = 1; s <= nsd; s++) {
nablal += fe.dN(i,s)*Du_pt(s);
}
for (j = 1; j <= nbf; j++) {
nabla2 = 0;
for (s = 1; s <= nsd; s++)
nabla2 += fe.dN(i,s)*fe.dN(j,s);
h = k_value*nabla2 + dk_value*fe.N(j)*nablal -
df _value*fe.N(i)*fe.N(j);
elmat.A(i,j) += hxdetJxW;
}
h = k_value*nablal - f_valuexfe.N(i);
elmat.b(i) -= hxdetJxW;
}
}
else if (nlsolver->getCurrentState() .method == SUCCESSIVE_SUBST)
{
for (i = 1; i <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla2 = 0;
for (s 1; s <= nsd; s++)
nabla2 += fe.dN(i,s)*fe.dN(j,s);
elmat.A(i,j) += k_valuex*nabla2xdetJxW;
}
elmat.b(i) += fe.N(i)*f_valuexdetJxW;
}

}
else
errorFP("NlLevel: :integrands",
"Linear subsystem for the nonlinear method %s is not implemented",
getEnumValue(nlsolver->getCurrentState() .method) .chars());
// getEnumValue: returns a string of the enum, .chars() transforms the
// string to a const char#* that can be fed into the printf-like errorFP

void NlLevel:: makeAndSolveLinearSystem ()

{
dof->vec2field (nonlin_solution(), u()); // copy most recent guess to u
fillEssBC(nonlin_solution());

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
dof->fil1EssBC2zero(); // ensure no correction of known values!

else
dof->unfillEssBC2zero();// (set back to) normal treatment of ess. b.c.

makeSystem (dof(), lineq());
lineg->attach (linear_solution);
lineg->bl() .add(lineq->b1l(), linear_rhs());

// init startvector (linear_solution) for iterative solver:

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
// start for a correction vector (should -> 0)
linear_solution.fill (0.0);

else
// use most recent nonlinear solution

37

linear_solution = nonlin_solution();

lineg->solve(); // invoke a linear system solver

}

BooLean NlLevel:: solveSubSystem (
LinEqVector& b, LinEqVector& x, StartVectorMode start, DDSolverMode)

{
nonlin_solution.rebind(CAST_REF(x.vec(), Vec(NUMT)));
nlsolver->attachNonLinSol (nonlin_solution());
fillEssBC (nonlin_solution()); // set essential boundary condition
linear_rhs.rebind(b);
if (start==ZERO_START)
nonlin_solution->fill (0.0); // set all entries to 0 in start vector
dof->fil1EssBC (nonlin_solution());
// call nonlinear solver:
nlsolver->solve ();
return dpTRUE;
}

int NlLevel:: getWorkSolve () const
{// return lineq->getLinEqgSystem ().getWork();
return 0;

}

real NlLevel:: getStorageSolve () const
{// return lineq->getLinEqSystem ().getStorage();
return 0;

}

real NlLevel:: f (const Ptv(real)&, real) { return 1.;}
real NlLevel:: df (const Ptv(real)&, real) { return 0.;}

real NlLevel:: k (const Ptv(real)&, real) { return 1.;}

real NlLevel:: dk(const Ptv(real)&, real) { return 0.;}

real NlLevelf:: £ (const Ptv(real)&, real return exp(u_);}
real NlLevelf:: df (const Ptv(real)&, real u_ return exp(u_);}

real NlLevelk:: k (const Ptv(real)&, real u_) { return exp(u_);}
real NlLevelk:: dk(const Ptv(real)&, real u_) { return exp(u_);}
[o

NlOverlapi:: NlOverlapi () {}

void NlOverlapl:: adm (MenuSystem& menu)

{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu); // read menu answers into class variables and init
}

void NlOverlapl:: define (MenuSystem& menu, int level)

{

38

menu.addItem (level,

"'problem", // menu command/name
"'problem", // command line option: +nsd
"1 linear, 2 rhs, 3 coeff",

AL // default answer
"I[1:3]1"); // valid answer: 1 integer

// the domain is fixed: [0,1] "nsd
menu.addItem (level,

"'subdomain', // menu command/name

"subdomain", // command line options: +partition
"string like 2,4,2",

"[4,4]", // default answer: 4x4 division (5x5 nodes)
"s"y; // valid answer: string

menu.addItem (level,
"partition", // menu command/name
"partition", // command line options: +refinement
"string like [2,2,2] = 8 domains",
"[2,21", // default answer: 2x2 domains
"S'); // valid answer: string

menu.addItem (level,

"overlap", // menu command/name

"overlap", // command line option: +overlap
nn

qe, // default answer

"I1'); // valid answer: 1 integer

menu.addItem (level,
"no of space dimensions", // menu command/name

"nsd", // command line option: +nsd
nn

", // default answer (2D problem)
"I1'); // valid answer: 1 integer

menu.addItem (level,
"element type", // menu item command/name

"elm_tp", // command line option (+elm_tp here)
"classname in ElmDef hierarchy",
"ElmB4n2D", // default answer

// valid answers are the classnames in the ElmDef hierarchy
// where all the elements in Diffpack are defined:
validationString(hierElmDef())); // list all the classnames

// submenus:
prun(NonLinEqgSolver) ::defineStatic (menu, level+1);

prm(DDSolver) ::defineStatic (menu, level+1l);
Store4Plotting ::defineStatic (menu, level+1);
menu.setCommandPrefix("local);

NlLevel ::defineStatic (menu, level);

menu.unsetCommandPrefix () ;

void NlOverlapl:: scan (MenuSystem& menu)
{
// load answers from the menu:
int i;
int nsd = menu.get ('"no of space dimensions").getInt();

39

int overlap = menu.get ("overlap").getInt();

Ptv(int) part(msd);
Is dIs(menu.get ("partition"));
dIs->ignore (’[’);
for (i = 1; 1 <= nsd; i++) {
dIs->get (part(i));
if (i < nsd)
dIs->ignore (’,’);

Ptv(int) subdom(nsd);
Is rIs(menu.get ('subdomain"));
rIs->ignore (’[’);
for (1 = 1; 1 <= nsd; i++) {
rIs->get (subdom(i));
if (i < nsd)
rIs->ignore (’,’);

Ptv(int) dom(nsd);
for (i = 1; i <= nsd; i++)
dom(i) = subdom(i) * part(i) - overlap * (part(i)-1);

no_of_grids = 1;
for (i = 1; i<= nsd; i++)
no_of_grids *= part(i);

no_of_grids += 1; // compute no_of_grids
proj.redim (no_of _grids, no_of_grids);
unity.redim (no_of _grids-1);
level.redim (no_of _grids);

ddsolver_prm.scan(menu) ;
ddsolver = createDDSolver(ddsolver_prm) ;
ddsolver->attachUserCode (*this) ;

int p = menu.get ("problem").getInt();
for (i=1; i<=no_of_grids; i++)
switch (p) {
case 1: level(i).rebind (new NlLevel());
break;
case 2: level(i).rebind (new NlLevelf());
break;
case 3: level(i).rebind (new NlLevelk());
break;
default: fatalerrorFP("NlOverlapl:: scan","illegal problem number");

}

String elm_tp = menu.get ("element type");

for (i=1; i<=no_of_grids; i++) {
int j;

// ---- make grid using a box preprocessor and the menu information: ----

// construct the right syntax for the box preprocessor:

// d4=2 [0,1]1x[0,1]

// d=2 elm_tp=ElmB4n2D [2,2] [1,1]

// this must valid for any nsd so we must make some string manipulations:
String geometry = aform('d=%d ",nsd); // e.g. "d=2"

40

String grading = "[";
int k = i-1;
for (j = 1; j <= nsd; j++) {
real x0, xi;
if (i<no_of_grids) {
int ix = k % part(j); // split into row, column ...
k =k / part(j);

x0 = (ix * (subdom(j) - overlap)) / (real) dom(j);
x1 = (ix * (subdom(j) - overlap) + subdom(j)) / (real) dom(j);
} else

{x0=0.; x1=1.;}
geometry += aform("[%g,%gl", x0, x1); grading += "1"; // [.3,.71x[0,1]
if (j < nsd) {
geometry += "x"; grading +=",";
}
}

grading += "]";

String part_s = "["; // partition string e.g. [4,4]
for (j=1; j<=nsd; j++) {
int n;
if (i<no_of_grids) n = subdom(j);
dom(j);
part_s += aform("%d",n);
if (j<nsd)
part_s += ",";
}

part_s += "]";

else n

String partition = aform("d=}d elm_tp=Ys div=Ys grading=is",
nsd,elm_tp.chars() ,part_s.chars(),
grading.chars());

String boInd_g = "nb=2 names= global inmner 1=(";

String boInd_i = "), 2=(";
k = i-1;
for (j = 1; j <= nsd; j++) {

int ix = k % part(j) + 1; // split into row, column ...
k = k / part(j);

String bl = aform("%d ", j);

if ((ix==part(j)) || (i==no_of_grids))
boInd_g += bi;

else bolnd_i += bl;

String b0 = aform("%d ", j+nsd);
if ((ix==1)||(i==no_of_grids))
bolnd_g += b0;
else bolnd_i += b0;
}
boInd_g += bolnd_i;
bolnd_g += ")";

menu.setCommandPrefix("local);

level(i)->scan (menu, geometry, partition, boInd_g);
menu.unsetCommandPrefix() ;

level(i)->attachSol (ddsolver(), i);

//if (i==no_of_grids)

level(i)->attachRhs (ddsolver(), i);

41

}
initProj();

dof .rebind (level(no_of_grids)->getDof());

u.rebind (new FieldFE (level(no_of_grids)->getDof ().grid(),"u"));
// allocate, with field name '"u"

nlsolver_prm.scan (menu);

linear_solution.rebind (level(no_of_grids) ->getNonLinSolution());
nonlin_solution.rebind (new Vec(NUMT));
nonlin_solution->redim(level(no_of_grids) ->getDof () .getTotalNoDof());

nlsolver.rebind (createNonLinEqSolver (nlsolver_prm));
nlsolver—->attachLinSol (linear_solution());
nlsolver->attachlonLinSol (nonlin_solution());
nlsolver->attachUserCode (*this);

NonLinDD& sol = CAST_REF(nlsolver(), NonLinDD);
sol.attach (ddsolver());

void N1lOverlapil:: initProj() // setup proj operators
{
int i,j;
for (i=1; i<=no_of_grids; i++)
for (j=1; j<=no_of_grids; j++)
if (1 != j) {
proj(i, j) = new ProjlInterpSparse();
proj(i, j)->rebindDOF(level(i)->getDof (), level(j)->getDof());
proj(i, j)->init();

}
modifyProj (1, no_of _grids-1);
}
void N1lOverlapl:: modifyProj(Spaceld i0, Spaceld il)
{
int i, j;

Vec (NUMT) uu (level(no_of_grids)->getDof () .getTotallloDof ());
uu.£i11(0);
for (i=i0; i<=il; i++) {
Vec (NUMT) loc (level(i)->getDof().getTotallloDof ());
loc.fill(1);
level(i)->getDof () .fillEssBC2zero ();
level(i)->getDof () .£i11EssBC (loc);
level(i)->getDof () .unfillEssBC2zero (); // 1 inside and O on the boundary

LinEgVector uv(uu);
proj(i, no_of_grids)->apply(loc, uv, NOT_TRANSPOSED, dpTRUE); // sum up

for (j=10; j<=i1; j++)
if (i'=j)
proj(i, j)->scale(loc, NOT_TRANSPOSED); // no data from boundary i

}
int s = uu.size();
for (int k=1; k<=s; k++)

uu(k) = 1 / uu(k); // the local contribution
for (i=i0; i<=il; i++) {

Handle(Vec(NUMT)) loc = new Vec(NUMT) (level(i)->getDof().getTotalNoDof ());

42

LinEqgVector 11(loc());
proj(i, no_of _grids)->apply(uu, 11, TRANSPOSED);

level(i)->getDof () .fillEssBC2zero ();
level(i)->getDof () .£fillEssBC (loc());
level(i)->getDof () .unfillEssBC2zero (); // result inside and 0 on the boundary

proj(i, no_of_grids)->scale(loc(), NOT_TRANSPOSED); // modify the transfer operator
unity(i) = new LinEqVector(loc()); // scaling i -> i
for (j=10; j<=i1; j++)
if (i '= j)
proj(i, j)->scale(loc(), NOT_TRANSPOSED); // modify the transfer operator

void NlOverlapl:: solveProblem () // main routine of class NlOverlapil

{
nonlin_solution->£fill (1.0); // set all entries to 1 in start vector
level(1)->getNonLinSolution().£ill (1.0);

// call nonlinear solver:
if (!'nlsolver->solve ())
errorFP ("N1lOverlapl::solve","failed");
// load nonlinear solution found by the solver into the u field:
s_o<<"maximum = "<<nonlin_solution->norm(Linf)<<endl;

dof->vec2field (nonlin_solution(), u());
Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

void N1lOverlapl:: resultReport ()
{
// in small problems (less than 100 nodes), print the nodal error
// values on the file "errors.dat"
if (dof->getTotalNoDof() < 100)
u->values () .print ("FILE=u.dat","Nodal values of the solution field");

Spaceld NlOverlapl:: getNoOfSpaces() const
{ return no_of_grids; }

BooLean N1lOverlapil:: solveSubSystem (
LinEqVector& b, LinEqVector& x,
Spaceld space, StartVectorlMode start, DDSolverlMode mode)
{
BooLean res = level(space)->solveSubSystem(b, x, start, mode);
return res;

}

BooLean N1lOverlapil:: transfer (
const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode)

{
if (fi'!'=ti)
proj(fi, ti)->apply(fv, tv, NOT_TRANSPOSED, add_to_t);
else {

Vec (NUMT) &t
Vec (NUMT) &u

CAST_REF (tv.vec(), Vec(NUMT));
CAST_REF (unity (ti)->vec(), Vec(NUMT));

43

for (int i=1; i<=t.size(); i++)
t(1i) *= u(i);
}
return dpTRUE;
}

int NlOverlapl:: getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork) const

{
if (fi'!=ti) return proj(fi, ti)->getWork();
if (fi==no_of_grids) return 0;
return unity(£fi)->size();

}

real NlOverlapl:: getStorageTransfer (Spaceld fi, Spaceld ti) const
{

if (fi'!=ti) return proj(fi, ti)->getStorage();

if (fi==no_of_grids) return 0;

return unity(£fi)->size();

}

int NlOverlapl:: getWorkSolve (Spaceld space, const PrecondWork) const
{ return level(space)->getWorkSolve(); }

real NlOverlapl:: getStorageSolve (Spaceld space) const
{ return level(space)->getStorageSolve(); }

String NlOverlapl:: comment ()
{ return "NlOverlapl nonlinear Schwarz iteration test"; }

5.2 Experiments

In some sense, we can redo most of the exercises proposed for the linear version
of the overlapping Schwarz method (exercises 4-7, 12). We can always verify the
properties of the linear solvers running the linear test case. The idea then is to look
for the differences for the nonlinear test cases. The second part of the exercises is
concerned with the inexact solution of sub-domain problems which is natural for
nonlinear problems.®

Exercise 16 Size of overlap.

(table 12, test1.1)

All exercises with nonlinear can be done with all test problems available. The question
is, how the performance of a method deteriorates by the nonlinearity. So it is of
interest to compare the results of the linear problem with both nonlinear problems.
Of course a comparison of the performance for different types of nonlinearity is also
of interest. This includes the two test cases of a nonlinear right hand side and a
nonlinear coefficient of the differential operator. This can only serve as some example
of nonlinear problems, but may give some hints for more general problems.

8you will find the input parameters in N10verlapi/Verify/

44

menu item answer
problem {1&2& 3}
subdomain [4,4]
partition [2,2]
overlap {1&2& 3}
no of space dimensions 2
element type ElmB4n2D
nonlinear iteration method NonLinDD
max estimated nonlinear error 1.0e-2
nonlinear iteration stopping criterion 3
domain decomposition method SchwarzDD
local basic method SOR
local max iterations 4
local preconditioning type PrecNone
local nonlinear iteration method SuccessiveSubst
local max nonlinear iterations 4
local nonlinear iteration stopping criterion 3
local convergence reports 0

Table 12: Size of overlap, testl.1i

We can redo many of the exercises already performed for linear additive and mul-
tiplicative Schwarz methods. Of course there is a big similarity of the linear and
nonlinear methods.

The first test is related to the size of the overlap. Compare the number of iterations
for different overlap sizes. Relate the numbers to the linear and nonlinear test cases.
Observe the very moderate tolerance we are using, since nonlinear methods (in this
demonstration implementation) tend to be quite slow. Implementation specifically
dedicated to a kind of nonlinearity or a certain solution algorithm are of course much
more efficient (and numerically equivalent). So we only compare iteration numbers
and number of operations rather than computing times.

Exercise 17 Number of sub-domains.

(table 13, test2.1)

We vary the number of sub-domains. We use a moderate precision nonlinear sub-
domain solver and compare the effect of different nonlinearities. Compare the number
of iterations. What do you observe? Is there a difference between the linear and the
nonlinear test cases? Do the conclusions correspond with previous observations on
the number of sub-domains?

Exercise 18 Additive and multiplicative iteration.

(table 14, test3.1)

45

menu item answer
problem {1&2 & 3}
subdomain [4,4]
partition {12,2] & [3,3] & [4,4]}
overlap 1
nonlinear iteration method NonLinDD
domain decomposition method SchwarzDD
local basic method SOR
local max iterations 4
local nonlinear iteration method SuccessiveSubst
local max nonlinear iterations 4

Table 13: Number of sub-domains, test2.1

menu item answer
problem {1&2 & 3}
subdomain [5,5]
partition [3,3]
overlap 1
nonlinear iteration method NonLinDD

domain decomposition method | {AddSchwarzDD &
SchwarzDD &

SymSchwarzDD}
local basic method SOR
local max iterations 4
local nonlinear iteration method SuccessiveSubst
local max nonlinear iterations 4

Table 14: Additive and multiplicative iteration, test3.1

The next test is the comparison of the additive, the multiplicative and the symmetric
multiplicative Schwarz iteration for nonlinear problems. We did this comparison
for linear problems already. We use some moderate precision sub-domain solver.
Compare the number of iterations and and estimate for the number of operations.
How does the additive method compare to the multiplicative ones with respect to
the operation count and to the domain of convergence/ robustness?

Exercise 19 Inezact sub-domain solver.

(table 15, test4.1i)

The next exercises deal with the sub-domain solvers. The present implementation
uses some steps of a nonlinear solver calling some steps of a linear solver as approx-
imative sub-domain solvers. Of course it would be too expensive to solve nonlinear
sub-problems exactly. The outer Schwarz method is able to cope with inexact sub-
domain solvers, so we do not want to waste effort on the sub-domains. The question

46

menu item answer
problem {1&2& 3}
subdomain [10,10]
partition [2,2]
overlap 1
nonlinear iteration method NonLinDD
domain decomposition method SchwarzDD
local basic method SOR
local max iterations 1
local nonlinear iteration method | SuccessiveSubst
local max nonlinear iterations {1&4 &8}

Table 15: Number of sub-domains, test4.1

now is, how precise the sub-domain solvers have to be in order to achieve a good
overall performance.

We are looking at this question in three steps: We vary the number of nonlinear
solution steps on a sub-domain using a very poor linear solver. Compare the number
of iterations and an estimate for the overall efficiency? How many nonlinear iterations
seem to be optimal? Is there a difference between the different nonlinearities?

Exercise 20 Inezact nonlinear sub-domain solver.

(table 16, test5.1)

menu item answer
problem {1&2& 3}
subdomain [10,10]
partition [2,2]
overlap 1
nonlinear iteration method NonLinDD
domain decomposition method SchwarzDD
local basic method SOR
local max iterations {1& 10}
local nonlinear iteration method | SuccessiveSubst
local max nonlinear iterations 1

Table 16: Inexact nonlinear sub-domain solver, test5.1

Now we fix the number of nonlinear iterations on a sub-domain and vary the number
of linear iterations. This means that we use poor nonlinear sub-domain solvers and
even vary the quality of the linear algebra inside. Compare the number of iterations.
What is the optimal parameter? What is the difference between nonlinear and linear
problems?

47

Since nonlinear iterations are usually more expensive than linear ones, one uses linear
iterations rather than nonlinear ones. This may of course affect the quality of the
overall nonlinear Schwarz iteration. For the linear case the distribution of linear
and nonlinear iteration does not play a role, while the total number of iterations is
important.

Exercise 21 Different nonlinear sub-domain solvers.

(table 17, test6.1)

menu item answer
problem {1&2 & 3}
subdomain [10,10]
partition [2,2]
overlap 1
nonlinear iteration method NonLinDD
domain decomposition method SchwarzDD
local basic method SOR
local max iterations 4
local nonlinear iteration method | {SuccessiveSubst &

NewtonRaphson}
local max nonlinear iterations 4

Table 17: Inexact nonlinear sub-domain solver, test6.1

The last exercise compares different nonlinear sub-domain solvers. We use the succes-
sive substitution (Picard iteration) and the Newton-Raphson iteration. The Newton
iteration is considered to be faster in the vicinity of the solution, while the successive
substitution is more robust and cheaper.

We use a moderate precision linear solver and a few steps of the nonlinear solution
procedure. Compare the number of iterations and the number of operations. How
do you compare both methods with respect to efficiency and robustness?

6 Conclusion

In this report we have demonstrated the use of overlapping Schwarz methods in
Diffpack. This type of domain decomposition can be used as iterative linear equation
solver, nonlinear equation solver and most efficiently as preconditioner for iterative
equation solvers. The Schwarz method is based on equation solvers on the overlapping
sub-domains. All linear and nonlinear equation solvers available in Diffpack can be
utilized here, including multigrid and domain decomposition methods itself.

Overlapping domain decomposition can be used to solve problems defined on com-
plicated domains which can be constructed from simple shaped domains with ef-
ficient sub-domain solvers. However, the main field of application of overlapping
Schwarz methods is parallel computing, where the different sub-domains reside on

48

different processors. The Schwarz algorithm manages the communication between
the sub-domains. Both subjects, complicated geometry and parallel computing will
be covered in subsequent reports.

We have particularly emphasized the flexibility of the overlapping Schwarz method
and its similarity to the multigrid implementation in Diffpack. For practical usage
it is essential to be able to make good choice of the avaliable parameters. This is not
only true for general choices like additive and multiplicative methods and the use of
a coarse grid, but especially for details like the parameters of sub-domain solvers and
the partition of the global domain. The exercises could serve as some guidance even
for more complex problems to solve than treated in this introductory report.

49

References

[1]

(8]

A. M. BRUASET AND H. P. LANGTANGEN, A comprehensive set of tools for solv-
ing partial differential equations; Diffpack, in Numerical Methods and Software
Tools in Industrial Mathematics, M. Dahlen and A. Tveito, eds., Birkh&duser,
1996.

M. Drysa anD O. WIDLUND, An Additive Variant of the Schwarz Alternating
Method for the Case of Many Subregions, Courant Institute, New York, 1987.
Technical Report 339.

D. E. Keves anD J. Xu, Domain Decomposition Methods in Scientific and
Engineering Computing: Proceedings of the Seventh International Conference on
Domain Decomposition, vol. 180 of Contemporary Mathematics, American Math-
ematical Society, Providence, Rhode Island, 1994.

H. P. LANGTANGEN, Getting started with finite element programming in Diffpack,
Tech. Rep. STF33 A94050, SINTEF Informatics, Oslo, 1994.

H. P. LANGTANGEN, G. PEDERSEN, AND W. SHEN, Finite element preprocessors
in Diffpack, Tech. Rep. STF33 A94051, SINTEF Informatics, Oslo, 1994.

H. A. ScuwaRrz, Uber einige Abbildungsaufgaben, Ges. Math. Abh., 11 (1869),
pp. 65-83.

B. SmiTH, P. BiorsTAD, AND W. GrROPP, Domain Decomposition. Parallel Mul-
tilevel Methods for Elliptic Partial Differential FEquations, Cambridge University
Press, New York, 1996.

G. W. ZuMmBUSCH, Multigrid methods in Diffpack, Tech. Rep. STF42 F96016,
SINTEF Applied Mathematics, Oslo, 1996.

50

