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Deutsche Zusammenfassung

Viele Probleme der Naturwissenschaften, Ökonomie und Finanzwissenschaften erfordern sehr
komplexe mathematische Modelle, um sie zufriedenstellend lösen zu können. Insbesondere in
letzterem Bereich sind stochastische Prozesse ein sehr bedeutsames Modellierungsmittel, weil sie
einer stochastischen und nicht einer deterministischen Entwicklung der Finanzmärkte Rechnung
tragen.
Im Falle regelmäßig an den Märkten gehandelter Derivate bestehen solche Modelle typischer-
weise aus stochastischen Prozessen, die das Verhalten der unterliegenden Variablen beschreiben,
beispielsweise Aktienkurse. Nach Angabe eines bestimmten Modells besteht der nächste Schritt
oft in der Herleitung einer partiellen Differentialgleichung für den Wert des Derivats. Dies be-
deutet, daß Lösungen des Modells in Form einer partiellen Differentialgleichung dargestellt sind,
die es zu lösen gilt, um den gesuchten Preis zu erhalten. Das vermutlich berühmteste Beispiel
ist die Black-Scholes Gleichung, die Fischer Black, Myron Scholes und Robert C. Merton 1973
(vgl. [8] und [76]) für den Preis von Aktienoptionen veröffentlichten.
Als Teil der Komplexität eines Modells kann es passieren (was auch sehr häufig geschieht), daß
keine analytische Lösung in geschlossener Form vorliegt. Deshalb muß man einen numerischen
Ansatz bemühen, der die exakte Lösung hinreichend gut approximiert. Um diese Genauigkeit
sicherzustellen sind sehr effiziente numerische Verfahren erforderlich, die speziell an die Eigen-
schaften des vorliegenden Problems angepaßt sind. Aufgrund der Komplexität der Modelle, die
durch den Wunsch entsteht, die Wirklichkeit bestmöglich zu modellieren, handelt es sich dabei
um eine anspruchsvolle Aufgabe, die gründliches Untersuchen der zugrundeliegenden mathema-
tischen Aspekte erfordert.
Das Ziel des wissenschaftlichen Rechnens besteht neben diesen Modellierungsaspekten aus zwei
Teilen, dem Diskretisieren und Lösen. Ersteres bezeichnet die Approximation der exakten
Lösung durch Ersetzen der PDE durch ein lineares Gleichungssystem und letzteres im Bere-
itstellen effizienter Lösungsverfahren dazu.

Problemstellung dieser Arbeit
In dieser Diplomarbeit werden wir uns mit Mortgage-Backed Securities (Hypothekenverbriefun-
gen, MBSs) beschäftigen, wobei es sich um Zinsderivate mit eingebetteten Optionen handelt.
MBSs zahlen ihren Haltern gewöhnlich einen monatlichen Kupon, der durch Hypothekenzahlun-
gen von zumeist privaten Krediten entsteht. Die Optionen rühren vom Recht des Kreditnehmers
her, den Vertrag vorzeitig abzuzahlen oder durch Insolvenz die Zahlung einzustellen. In einem
solchen Fall enden auch die Zahlungen an den Besitzer des MBS. Folglich hängt der Wert
des Derivats von zwei Variablen ab, nämlich von Zinsen und Hauspreisen. MBSs sind von
besonderem Interesse für die meisten Marktteilnehmer, weil sie eine Möglichkeit darstellen,
Kreditrisiken zu verbriefen und weiterzuverkaufen. Im Sommer 2007 stieg ihre Bedeutung
im Zuge der US-amerikanischen Hypothekenkrise sogar noch weiter, als viele Verträge von
Kreditnehmern schlechter Bonität ausfielen. Der Grad der Krise und die Tatsache, daß weite
Teile der amerikanischen Wirtschaft kreditfinanziert sind (z. B. die Mehrzahl der Fusionen und
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2 DEUTSCHE ZUSAMMENFASSUNG

Übernahmen), machen sie sehr anfällig gegenüber steigenden Risikoprämien, was sogar weltweit
die Aktienmärkte in Aufruhr versetzte.
Eine Schlüsselrolle in dieser Diplomarbeit kommt der stochastischen Modellierung von Zinsen
und Hauspreisen zu. Daraus werden wir eine partielle Differentialgleichung in Zinsen, Haus-
preisen und der Zeit für den Wert eines solchen MBS herleiten. Auf die PDE werden wir dann
effiziente numerische Verfahren anwenden, um sie zu lösen, womit unser Vorgehen bespielsweise
dem von Black-Scholes, der Bewertung von Optionen mit stochastischer Volatilität oder aber
der Bewertung amerikanischer Optionen sehr ähnlich wird (vgl. [50] oder [79]).

Modellierung
In dieser Arbeit benutzen wir die Ergebnisse von Downing, Stanton und Wallace (vgl. [28])
als Ausgangspunkt. Wir verwenden das Cox-Ingersoll-Ross Modell (vgl. [20]) als Zinsprozeß
und den in [28] und [29] vorgeschlagenen für die Hauspreise. Letzterer ist bis auf die sep-
arat geschätzten Parameter fast identisch mit demjenigen für Aktienkurse des Black-Scholes
Modells (vgl. [51]). Dies bedeutet, daß sowohl Drift als auch Volatilität proportional zu den
Hauspreisen sind. Ferner gehen wir auf alternative Zinsmodelle ein, wie sie z. B. in [60] und
[78] vorgestellt werden, und diskutieren Eigenschaften des Hauspreisprozesses. Darüber hinaus
geben wir grundlegende Definitionen von Anleihen und Optionen und beschreiben Annuitäten.
Darunter findet sich u. a. eine Herleitung der Standardannuitäten-Formel und wir erklären,
warum sie auf festverzinsliche Kreditverträge angewendet werden kann.
Darüber hinaus leiten wir eine partielle Differentialgleichung für den Wert eines MBS her, indem
wir die berühmte Itô-Formel (vgl. [51], [58] oder [78]) auf obige stochastische Prozesse anwenden.
Dabei stellt sich heraus, daß wir es mit einer Gleichung zweiter Ordnung in Zinsen und Haus-
preisen ohne gemischte Ableitung (der Grund dafür liegt in der Unkorreliertheit der Braunschen
Bewegungen, die den Prozessen zugrundeliegen, was wir analog zu [28] annehmen) und erster
Ordnung in der Zeit zu tun haben. Die rechte Seite ist konstant, nämlich gerade der monatliche
Kupon. Folglich handelt es sich um eine parabolische Gleichung, die wir auf Regularität hin
untersuchen und wobei wir auf das Verhältnis von Diffusion zu Konvektion achten. Nahe des
Randes findet sich Konvektionsdominanz, die wir mit Hilfe von speziellen Transformationen und
Stabilisierungstechniken bei der Diskretisierung zu behandeln suchen.
Bezüglich der Regularität geben wir sehr starke Hinweise auf schlechtere Glattheit als H2

(zweiter Sobolevraum) selbst nach Transformation. Unsere Argumentation stützt sich darauf,
daß der Differentialoperator nicht gleichmäßig parabolisch ist, wie es in [2], [11], [37] und [69]
gefordert wird. Darüber hinaus vergleichen wir die Ergebnisse in [69] mit denen in [27] und
wenden dies auf unser Problem an.
Neben der PDE entwickeln wir ein Modell für das vorzeitige Beenden des Kontrakts durch Vor-
abzahlung oder Insolvenz. Entscheidend dabei ist, daß es sowohl finanziell optimales Beenden
als auch suboptimales Beenden berücksichtigt. Dies geschieht mit Hilfe von Funktionen, die
den jeweiligen Abbruchwegen Wahrscheinlichkeiten zuordnen (vgl. [28] und [87]). Ferner zieht
eine Beendigung Transaktionskosten nach sich. Diese wiederum werden wie in [28] als für jeden
Kreditnehmer unterschiedlich angenommen und gehen in die Bewertung ein, ob ein Abbruch
sinnvoll ist. Das wiederum arbeiten wir in die PDE-Lösung ein, indem wir diese mit den Werten
bei Vorabzahlung oder Insolvenz gewichten. Allerdings werden wir auf [51] basierend argumen-
tieren, daß es ausreicht, diese Gewichtung lediglich jeden Monat auszuführen und nicht in jedem
Zeitschritt.

Diskretisierung
Die Ortsdiskretisierung der transformierten PDE erfolgt dann mit Hilfe der Finite-Elemente-
Methode auf einem nicht-uniformen Gitter (vgl. [57], [70] oder [90]). Dabei plazieren wir mehr
Freiheitsgrade in den Gebieten, die wir als problematisch erachten in bezug auf Regularität und
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vorzeitiges Beenden. Einer der Hauptvorteile von finiten Elementen gegenüber finiten Differen-
zen ist die Verwendbarkeit von streamline upwind Petrov Galerkin (vgl. [19], [63] oder [96]),
welches eine Veränderung der Testfunktionen benutzt, um Stabilisierung zu erreichen. Darüber
hinaus leiten wir eine schwache Formulierung unserer PDE her, diskutieren die Standardfehler-
abschätzungen für elliptische Probleme gemäß [11] und fassen semi-diskrete Fehlerabschätzung
für parabolische Probleme, wie sie z. B. in [64] dargestellt sind, zusammen.
In der Zeit benutzen wir die sogenannten BDF-Formeln (vgl. [80]) innerhalb eines ordnungs-
und schrittweitenadaptiven Zeitschrittverfahrens. Die genannten Kriterien entnahmen wir [40]
und [86]. Wir versuchen also stets die Schrittweite so lang und die Ordnung zu hoch wie möglich
(höchstens 5) zu wählen und das Ablehnen von Schritten zu vermeiden. Darüber hinaus unter-
suchen wir den Konsistenzfehler und geben basierend auf [80] an, unter welchen Bedingungen
das Verfahren konvergiert.
Weiterhin zeigen wir, daß die wahrscheinlichkeitsgewichtete Lösung in L2 konvergiert, falls
die ungewichtete dies tut. Ferner merken wir an, daß dies das Funktionieren des gesamten
Lösungsverfahrens sicherstellt, welches aus dem Lösen der PDE und dem Wahrscheinlichkeits-
gewichten für alle 360 Monate der 30-jährigen Hypothek besteht.

Lösung des Modells
Beim Lösen des diskretisierten Problems versuchen wir abermals sehr effizient vorzugehen, indem
wir ein Mehrgitter-Verfahren mit vier Vergröberungsebenen in einem V-Zyklus verwenden (vgl.
[11], [45] und [64]). Dieses wiederum ist durch den iterativen GMRES-Löser (vgl. [82]) vorkon-
ditioniert (selbst durch unvollständige LU-Zerlegung (vgl. [42] und [83]) vorgeglättet), während
als Nachglätter das SORU-Vefahren benutzt wird. Der Vorteil dieses Lösers ist ein Verfahren
in optimaler Komplexität, d.h. es ist von Ordnung O(N), wenn N die Anzahl der Unbekan-
nten bezeichnet. Dies ist sehr gut, wenn man bedenkt, daß die klassische Gauß-Elimination von
Ordnung O(N3) ist (vgl. [47], [48] oder [89]). Nichtsdestotrotz verwenden wir für die Grobgit-
terkorrektur ein modifiziertes Gauß-Verfahren, nämlich den UMFPACK-Löser, der [21], [22],
[23] und [24] entnommen ist.
Ferner führen wir unsere numerischen Betrachtungen innerhalb des kommerziellen Pakets Com-
sol Multiphysics aus, das eine Vielzahl verschiedener Löser, Einstellungen und Glättern bere-
itstellt (siehe z. B. [96], [97] und [98]). Darüber hinaus können wir davon ausgehen, daß die
Implementierung schnell und zuverlässig ist.

Numerische Ergebnisse
Weiterhin testen wir unsere Diskretisierung, indem wir Konvergenzraten sowohl im Ort als
auch der Zeit bestimmen. Im Ort finden wir eine schlechtere Rate als aufgrund der Stan-
dardfehlerabschätzen erwartet. Der Grund dafür liegt darin, daß unsere Lösung die Regu-
laritätsvoraussetzungen verletzt. Darüber hinaus stellen sich die Einschränkungen des imple-
mentierten SUPG in Comsol Multiphysics als zu gravierend heraus (nur Elemente erster
Ordnung, nur konstante PDE-Koeffizienten), so daß wir sogar ohne SUPG bessere Resultate
bekommen als mit. In der Zeit erzielen wir die gute Konvergenzrate von 5.
Dieselben Tests führen wir für die wahrscheinlichkeitsgewichtete Lösung nach einem Monat aus,
wobei die Raten erhalten bleiben. Dies geschieht jeweils für realistische monatliche Kupons, die
sich aus einem Vertragszinssatz von plausiblen 5% ergeben.
Nachdem wir uns der Konvergenzraten versichert haben, widmen wir uns Rechnungen über die
gesamte Laufzeit von 30 Jahren für verschiedene Vertragszinssätze (5.0%, 8.5% und 10.0%) und
drei verschiedene Größenordnungen von Transaktionskosten (1.4%, 8.6% und 18.5%). Dabei
führen wir genau Buch darüber, wie oft es optimal ist, den Vertrag vorzeitig zu beenden und
vergleichen die verschiedenen Szenarien. Dies wird untermalt durch etliche graphische Aufbere-
itungen. Darüber hinaus bestimmen wir die Schwellen, an denen Insolvenz bzw. Vorabzahlung
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optimal wird, und vergleichen dies mit den übrigen Daten. Ferner betrachten wir den Unter-
schied zwischen dem Aktivpreis (asset) und dem Passivpreis (liability).
Die Ergebnisse werden quantifiziert, indem wir für verschiedene Zeiten die Normen der MBS-
Preise und Anzahl der optimal Vertragsbeendigungen ausrechnen. Dabei handelt es sich nicht
nur um Plausibilitätsüberprüfungen, sondern bereits um die Bewertung einer verbrieften Hy-
pothek mit unterliegendem Kontrakt, der gerade diesen vertraglichen Zinssatz hat und dessen
Kreditnehmer sich den entsprechenden Transaktionskosten ausgesetzt sieht.

Eigene Beiträge
Diese Arbeit enthält die folgenden zahlreichen eigenen Beiträge zur Bewertung von Mortgage-
Backed Securities:

• Regularitätsuntersuchung für das in [28] vorgestellte Modell

• erstmalige Verwendung finiter Elemente, um die ursprünglich in [28] vorgestellte Differen-
tialgleichung zu diskretisieren, anstatt klassischer weitverbreiteter finiter Differenzen

• eine logarithmische Transformation, die Probleme in Hauspreisrichtung behebt, anstelle
derjenigen aus [28]

• eine exponentielle Transformation, die zu schwächeren Singularitäten in Zinsrichtung führt
als die in [28] vorgeschlagene

• die Benutzung nicht-uniformer Gitter, um mehr Freiheitsgrade dort zu plazieren, wo wir
unter mathematischen Gesichtspunkten Probleme erwarten und die in bezug auf unser
Modell interessant sind, im Gegensatz zu den uniformen Gittern, wie sie in [28], [29] und
[87] benutzt wurden

• Anwendung des Mehrgitterverfahrens in jedem Zeitschritt, um die auftretenden linearen
Gleichungssysteme zu lösen

• ein modernes ordnungs- und schrittweitenadaptives Verfahren in der Zeit anstelle des
Hopscotch-Verfahrens (vgl. [44]), das in [28] verwendet wurde

• eine Bewertung des Pakets Comsol Multiphysics unter mathematischen, ökonomischen
und finanzwissenschaftlichen Gesichtspunkten durch Anwendung auf relevante Probleme
aus diesen Bereichen

• eine theoretische und numerische Untersuchung des Konvergenzverhaltens nach Gewich-
tung mit einer Wahrscheinlichkeitsverteilung, wie es in [28] vorgeschlagen wurde

• ein numerischer Vergleich der asset- und liability-Werte und damit einhergehend eine
vollständige MBS Bewertung für realistische Kombinationen aus Transaktionskosten und
vertraglichen Zinssätzen mit Hilfe der neuen Verfahren



Introduction

There are many problems in natural sciences, economics and finance which require very elaborate
mathematical models in order to be able to cope with them. Particularly in the latter fields
stochastic processes are a very important means of such modeling which account for a probability
driven development rather than deterministic knowledge of financial markets and their future
evolution.
In the case of derivative assets regularly traded at financial markets such models typically consist
of stochastic processes governing the behavior of underlying variables, for instance stock prices.
Having stated a certain model, the next step is very often the derivation and deduction of a
partial differential equation for the value of the derivative. This means that solutions to the
models are represented in the shape of a PDE and obtaining the desired price of the derivative
then amounts to solving the PDE. Probably the most prominent example is the renowned Black-
Scholes equation, which was proposed by Fischer Black, Myron Scholes and Robert C. Merton
in 1973 (cf. [8] and [76]) for the price of stock options.
As part of the degree of a model’s elaborateness it might (and in fact very often does happen)
that an analytical solution to the problem does not exist in closed form. Therefore we have
to rely on a numerical approach which approximates the analytical solution in a sufficiently
accurate way. In order to secure this accuracy very efficient numerical methods are required
which are designed to cope with the specific properties of the problem being dealt with. Due to
the complexity of models brought in by the desire to describe reality as exactly as possible this
is not an easy task and requires thorough study and knowledge of the underlying mathematical
aspects.
The goal of scientific computing consists, besides the aforementioned modeling aspects, of two
parts, discretization and solution. The former means approximation of the exact solution which
revolves around replacing PDEs by linear systems of equations. The latter one is providing
techniques to efficiently solve these linear systems.

Subject Matter of this Thesis
In this diploma thesis we shall focus on mortgage-backed securities (MBSs), which are interest
rate derivatives with embedded options. MBSs are fixed-income instruments which pay (usu-
ally monthly) coupons to their holders. These cashflows are generated by mortgage payments
on (mostly private) residential loans. The aforementioned embedded options arise from the
borrower’s right to default or prepay at any time during the life of the mortgage. In such a
case the stream of monthly payments to the proprietor of a share in a mortgage-backed secu-
rity is also ceased. In consequence, the value of an MBS depends on the development of two
underlyings, namely interest rates and house prices. MBSs are of particular interest to most
market participants (banks, financial institutions or other investors) because they constitute a
way of securitizing credit risk and reselling it to other customers. In the summer of 2007 their
importance rose even further with the spread of the US American mortgage crisis where many
mortgage contracts of mortgagors with low credit worthiness were defaulted. The extent of this
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6 INTRODUCTION

predicament and the fact that large parts of US economy are loan financed (for example the
majority of mergers and acquisitions) make the American economy very vulnerable to increasing
risk premia which even rattled stock markets all across the world.
The key aspect of this diploma thesis therefore becomes to state a setting in which house prices
(the relevant variable for possible default) and interest rates (the driving force behind pre-
payment) are modeled stochastically. From those stochastic processes we will derive a partial
differential equation in house prices, interest rates and time for the value of a mortgage-backed
security. To this PDE we then apply efficient numerical techniques in order to solve it. Thereby
our pricing pattern is very similar to contingent-claim pricing as it is done, for example, in the
Black-Scholes model (for references see above) or in its extensions, for instance to stochastic
volatility or American-style options (cf. [50] or [79]).

Modeling
In this work we take the findings by Downing, Stanton and Wallace (cf. [28]) as a starting
point. We prescribe the Cox-Ingersoll-Ross model (cf. [20]) as the stochastic process govern-
ing interest rate movements and the stochastic process proposed in [28] and [29] to account
for house price development. The latter process happens to be practically identical to the one
used in the Black-Scholes model for stock prices (cf. [51]) except for the parameters, which are
estimated separately. This means that both drift (the coefficient of the deterministic part) and
volatility (the coefficient of the Brownian motion driven part) are proportional to real estate
prices. Besides we mention several alternative interest rate models taken from [60] and [78] and
discuss properties of the house price process. Moreover basic definitions of assets like bonds
or options are reiterated alongside examples of their purposes and we deal with fixed-income
annuities. Among this we derive a formula for the present value of an annuity, the so-called
standard annuity formula, and we point out that it can be applied to the fixed-rate mortgages
we are considering.
In addition, we carry out the derivation of a PDE governing the price of a mortgage-backed
security by application of the famous Itô-formula (see [51], [58] or [78]) to the aforementioned
stochastic processes. This PDE turns out to be of second order in both house prices and interest
rates without a mixed derivative (the cause for which is that the two Brownian motions appear-
ing in the stochastic processes are assumed to be uncorrelated as proposed in [28]) and first order
in time with a constant right-hand side, which is the fixed monthly coupon of the underlying
mortgage. Hence we have to deal with a parabolic partial differential equation which is then
further examined paying minute regards to regularity statements and the convection-to-diffusion
ratio. We find convection dominance near the boundaries and we seek mending it through a
combination of transformation to more favorable variables and special stabilization techniques
when discretizing.
Concerning regularity we give strong evidence that a solution to our PDE is even after transfor-
mation not contained in the Sobolev space H2 with respect to interest rates and house prices.
The focal point around which our arguments revolve is that the differential operator is not uni-
formly parabolic as demanded in [2], [11], [37] or [69]. Moreover we make a comparison of the
results in [69] to those in [27] and apply this our problem.
Apart from the partial differential equation we develop a model for premature mortgage termi-
nation either through prepayment or through default. A crucial feature of this model is that it
accounts for both financially optimal and financially sub-optimal termination by virtue of so-
called hazard functions which allow us to define prepayment and default probabilities (cf. [28]
and [87]). Moreover transaction costs are incurred on any termination. Like in [28] we assume
them to be different for any borrower. We then incorporate this model into the PDE solution
process by adding a probability weighting of the PDE solution and the liability values (including
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transaction costs) of either way of termination. In particular, the decision of whether or not
termination is reasonable depends on frictions. Based on [51] we will argue that it suffices to
perform this weighting only once every month rather than in any single time step.

Discretization
Discretization in space is then provided for the transformed PDE using the finite element method
(cf. [57], [70] and [90]) on a non-uniform grid. In doing so we place more nodes and degrees of
freedom to those areas we expect to be problematic with respect to regularity and premature
termination. A major advantage of using finite elements rather than differences is that it enables
us to apply a streamline upwind Petrov Galerkin approach (cf. [19], [63] or [96]), which uses
a modification of the finite element testing functions, to our discretization in an attempt to
ensure stabilization. Besides we provide a reformulation of the PDE in a weak form and discuss
standard error estimates for finite element discretizations in the elliptic case based on [11] as
well as summary of semi-discrete estimates for parabolic equations based on [64].
In time we make use of the so-called backward differentiation formulas (cf. [80]) and we conduct
time-stepping adaptively in order (up to five) and step length. The illustrated criteria are based
on those from [40] and [86]. Thus we seek to take time steps as large as possible and of as high an
order as possible. Furthermore intended is avoiding the rejection of a step as often as possible,
which is also taken care of by the above criteria. Apart from these aspects of choosing the steps
we discuss the discretization error of these formulas, show local convergence (consistence) and
state criteria under which overall convergence can be ensured as it is outlined in [80].
Moreover we prove that the probability-weighted solution converges in L2 if the unweighted PDE
solution converges in L2. In addition, we point out that this ensures that the whole solution
process, which consists of solving a PDE and weighting the solution afterwards for all 360 months
of the 30-year mortgage, actually works.

Solving the Model
When it comes to solving the discretized problem we try to be very efficient, too, as we use a 4-
level V-cycle multigrid iteration (cf. [11], [45] and [64]) which is pre-conditioned by the GMRES
iterative solver (cf. [82]). In particular, the GMRES scheme is subjected to pre-smoothing itself
using an incomplete LU-factorization ([42] and [83]) and the SORU iteration is used for post-
smoothing purposes in the multigrid pattern. The benefit of this solver is a scheme which is
optimal in the number of spatial unknowns, i. e. it is of order O(N) if N is the number of degrees
of freedom in every time step. This is in fact very good taking into consideration that the classic
and renowned Gaussian elimination scheme is of order O(N3) (cf. for instance [47], [48] or [89]).
Nonetheless we utilize a modified Gaussian elimination, namely the UMFPACK solver, as an
exact coarse grid solver. The solver is taken from [21], [22], [23] and [24].
The numerical computations are conducted in the commercial package Comsol Multiphysics
which provides a wide variety of different solvers, solver settings and smoothers to choose from
(see, for example, [96], [97] and [98]). Moreover the implementation can be assumed to be fast
and reliable.

Numerical Results
Furthermore we test the discretization by ascertaining the convergence rates of our scheme both
in space and in time. In space we find a worse rate than expected on account of the discussed
standard error estimates. The reason for this is that our solution violates the regularity prerequi-
sites stated in the above standard error estimates. We additionally discern that the restrictions
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in the implemented SUPG in Comsol Multiphysics (first order elements, constant PDE co-
efficients only) are too severe to overcome so that the non-SUPG solution actually happens to
produce better results. In time we can attain good convergence rates of approximately 5.
In addition, the same tests are performed for the probability-weighted solution after one month
and we find that our convergence rates are maintained. Both convergence examinations are
considered for realistic monthly coupons (computed from the contractual interest rate which is
sensibly chosen as 5% in our test setting).
Having established the above convergence rates we carry out computations over a complete
mortgage lifespan of 30 years for varying contractual interest rates (5.0 %, 8.5 % and 10.0 %)
and three levels of transaction costs (1.4 %, 8.6 % and 18.5 %). In doing so we keep track of
optimal termination very closely and compare the termination data for those various combina-
tions of costs and coupons. To stress the results many graphical illustrations are provided which
underline the dependence on time, transaction costs and contractual interest rate. Furthermore
threshold levels for optimal termination are fathomed out and evaluated with respect to the
statistical data of how often termination is advisable. These considerations come along with a
comparison of asset and liability prices.
The results are quantitatively stated by determining the norms of the MBS prices for several
different times and the actual termination numbers. At the same time those results are not
only plausibility checks but rather a valuation of a mortgage-backed security with an underlying
mortgage contract of the respective contractual interest rate and a mortgagor facing the respec-
tive costs upon termination.

Own Contributions
There are various new contributions to the valuation of mortgage-backed securities proposed in
this thesis. They are the following:

• a consideration of regularity of solutions of the model propounded in [28]

• a finite element approach to discretize the PDE originally stated in [28] instead of classic
and widely used finite difference schemes

• a logarithmic transformation to remove problems in the house price variable direction
rather than the one used in [28]

• an exponential transformation rather than the one proposed in [28] leading to less severe
singularities in the interest rate variable

• the use of non-uniform grids in order to place more degrees of freedom in those areas which
are mathematically problematic and more interesting in terms of the model in contrast to
the uniform meshes used in papers [28] and [29] or in [87]

• the application of the multigrid iterative linear system solver to the discretized system in
every time step

• the use of modern adaptive time-stepping in both order and stepsize rather than the
Hopscotch method (cf. [44]) used in [28]

• an estimation of the Comsol Multiphysics package under mathematical, economical
and finance aspects rather than engineering by applying it to relevant problems from
those areas

• both a theoretical and numerical examination of how convergence aspects are maintained
during probability weighting as suggested in [28]
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• a numerical comparison of asset and liability values and thus a complete MBS valuation
for several reasonable combinations of frictions and contractual interest rates using the
improved numerical schemes

Outline of this Thesis
More detailedly this work is organized in five chapters as follows.
Chapter 1 is devoted to briefly introducing those financial assets we are going to deal with in
this diploma thesis. This is attained by providing basic definitions alongside examples for their
purposes. Moreover we explicitly discuss mortgages and derive several useful properties before
finally getting acquainted with mortgage-backed securities. We expound what they are, to whom
they are of importance and what their economic impact is.
In Chapter 2 we in detail describe the financial and mathematical model which is the funda-
ment of this work. We start with the consideration of different approaches to the MBS valuation
problem and state our approach. Then the stochastic processes covering interest rates and house
prices are described before outlining our approach to transaction costs for both a single mort-
gagor and a pool of borrowers. Moreover we point out that one has to meticulously distinguish
between the asset and the liability price of an MBS. Next we derive our PDE and we impose
boundary and initial conditions which are financially sensible and yield unique solvability of
the initial boundary value problem. Afterwards we take care of transformations by discussing
two transformations and their advantages. Eventually certain properties of our initial boundary
value problem are outlined and we account for sub-optimal behavior by introducing a probability
distribution for the behavior of mortgagors who might terminate the mortgage although they
should not and who might not cease payments although they should.
The subject matter of Chapter 3 is everything related to discretization. We start by reformulat-
ing the strong-form partial differential equation in a weak form. Next we derive a semi-discrete
problem carrying out the replacement of the variational equation by a finite element approxima-
tion while the time dimension remains untouched until our time-discretization pattern is outlined
and some of its convergence properties are shown. Moreover we provide estimates of the finite
element approximation in the elliptic case, deal with the effect of numerical quadrature instead
of exact integrals in the variational equation and we give error estimates for the semi-discrete
problem. Then the convergence results are extended to probability weighting, which is the main
theoretic result of this thesis. Finally we introduce numerical measures taken to change the
infinite domain and cope with convection effects and we conclude the chapter by discussing the
regularity of solutions.
In Chapter 4 we deal with the solution process of our discrete initial boundary value problem.
This starts by rewriting the semi-discrete problem in a differential algebraic system which is
solved by a Newton method. We then explain our order and stepsize adaptiveness and the
means by which both are determined. Concludingly the actual solver for the appearing linear
systems, namely a multigrid method, is presented and pre- and post-smoothers as well as our
coarse-grid solver are described.
In Chapter 5 we finally deal with numerical results. First we explain how we measure both the
spatial and time errors and which rate of convergence we can expect. We then move on justify-
ing that our measurement procedures work by applying them to well known problems (namely
the heat equation, for which even an analytical solution is examined, and a diffusion-convection
equation with smooth enough solutions). We then turn our attention towards the actual MBS
equation which is solved for the time of one month. Upon doing so we determine the convergence
rates for both the SUPG case and the non-SUPG case. Moreover we deal with the time error.
Afterwards convergence is tested and confirmed for the one-month probability-weighted solution.
We do so for two different transaction costs and again both in space and time. Eventually we
deal with an MBS over its entire lifespan of 30 years. This is done for three different transaction
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costs and three different contractual interest rates. In the course of doing so we illustrate a lot
of data about how often it is optimal to prematurely terminate and we distinguish between the
asset and liability case.
Concludingly there is an unnumbered chapter providing summary of the results of this thesis and
giving an outlook on possible future and forthcoming research in the area of pricing mortgage-
backed securities.
In the appendices we summarize certain background information about the techniques from
stochastic calculus (cf. Appendix A) and those from functional analysis (cf. Appendix B) which
are used in this thesis. In Appendix A we distinguish between stochastic processes (cf. A.1) and
stochastic differential equations (cf. A.2). In the latter section we show existence of solutions to
the stochastic differential equations (SDEs) by which our stochastic processes are defined.
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Chapter 1

Mortgages, Options, Bonds and
Securities

1.1 Basic Definitions of Options and Bonds

In this section I briefly define several financial instruments we are going to deal with in this
work. First, I will give a definition of options.

Definition 1.1.1 (Option) The holder of an option bears the right but not the obligation to
buy (call option) or sell (put option) an asset at a pre-determined strike price K at a certain
time (European style) or within a certain timespan (American style) in the future. Such options
are often referred to as plain vanilla options.

The underlying asset can be virtually everything. The most prominent examples are stocks or
stock indices but the asset can as well be taken from commodities, such as gold or oil, or even
from currencies or any other financial instrument. In this work, however, we are not going to
face plain vanilla options but rather options embedded in mortgage contracts (details will be
expounded in Section 2.1).
In the absence of transaction costs plain vanilla options yield the following profits Pcall and Pput

to their holders at maturity T :

Pcall(S, T ) = max(S(T )−K, 0)
Pput(S, T ) = max(K − S(T ), 0),

where S(T ) denotes the price of the underlying asset at time T . These payoff functions are also
illustrated graphically in Figure 1.1.
This reflects that the asset can be bought at a price K and sold at S(T ) in the case of a call or
vice versa in the case of a put. Unless yielding a profit an option is not exercised. Hence the
value of an option at maturity is known but the present value for a time t < T is still unknown.
In the renowned Black-Scholes model for option pricing a fair present value is established as the
expectation (under a suitable probability measure) of the discounted profit, i. e. in the case of
a call

fair value = E[e−rT Pcall].

In the 1970s Black, Scholes and Merton (cf. [8] and [76]) tackled the pricing problem by deriving
a partial differential equation for the fair value, which can be solved analytically for European
plain vanilla options. A different approach would be to directly deal with the expectation in a
Monte Carlo setting.
So far we have described what options are and how a price can be obtained. What we have yet
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Figure 1.1: Payoff functions at maturity for both a call and a put with strike price K = 50

to elucidate is what purpose can be behind the use of options. There are three fields in which
options are made use of, namely hedging, speculation and arbitrage. Speculation is a simple
bet on rising or falling markets which can consist of various combinations of different kinds of
options. Classic examples of such strategies include bull spreads (rising) or bear spreads (falling)
which are besides others detailedly expounded in [51].
Hedging means protection against certain market movements and arbitrage means exploiting
market inefficiencies to gain riskless profit. The following two examples for arbitrage and hedging
are also taken from [51]:

Example 1.1.2 (Arbitrage) If, for instance, a stock is traded at $132 in New York and at
e 100 in Frankfurt with an exchange rate of $1.3500 per Euro an arbitrageur could simultaneously
purchase 100 shares of the stock in New York and sell them in Frankfurt. This would yield a
risk-free profit of

100 (1.35$ 100− 132$) = 300$.

Example 1.1.3 (Hedging) Concerning hedges we might think of an American company due
to pay e 1,000,000 to a European supplier in 90 days. It could now buy a call option to acquire
e 1,000,000 at an exchange rate of, for example, $1.4000 in 90 days. If the exchange rate happens
to be above 1.4000 the company exercises the option and else it buys the money in the market
and lets the option expire worthless. Thereby the company is safe against adverse movement
while benefiting from favorable movement. But for this insurance the purchasing price of the
options has to be paid.

The other very important financial instrument we have to deal with is an interest rate derivative,
namely bonds. In its simplest form a bond is defined in the following way:

Definition 1.1.4 (Bond) A bond is a loan over a face value V by the issuer in order to borrow
money for a certain time T . In exchange he or she pays a coupon C to the borrower at pre-
determined intervals and repays the face value V at maturity T .

Typically bond issuers are companies or governments, mostly countries or states but there are
also municipal bonds. The coupon C to be paid for borrowing the money is determined by the
issuer’s credit-worthiness, i. e. the more likely he or she is to not being able to meet the repay
obligation the more expensive the bond becomes. Concerning the lifespan no typical time can
be stated since there are bonds far exceeding thirty years but also bonds of less than five years.
The coupon C is usually determined by an interest payment, for instance 6% of the face value
per year and it can be paid annually, every half year or at any other pre-determined times.
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Compared to options obtaining a fair price for bonds is a relatively simple matter because
according to [51] the present value, which is the sum of the discounted future payments, would
be appropriate.

Example 1.1.5 (Present Value of a Bond) Consider a five-year bond over $1000 with 6%
annual coupon payment. Moreover assume the spot rate r = 2.5% to be equal for any of the five
years. Then the price of the bond is computed as follows:

60$
1.025

+
60$

1.0252
+ . . .+

60$
1.0255

+
1000$
1.0255

= 1162.60$.

According to [51] the spot rate is defined as follows:

Definition 1.1.6 (Spot Rate) The n-year spot interest rate is the interest rate on an invest-
ment that is made for a period of time starting today and lasting for n years. The investment
considered should be a pure n-year investment with no intermediate payments. This means that
all the interest and the principal is repaid to the investor at the end of year n. The n-year spot
rate is also referred to as the n-year zero-coupon yield. This is because it is, by definition, the
yield on a bond that pays no coupons.

In addition to spot rates there are forward interest rates for periods of time in the future.
The reason, why the above definitions were given is that we are going to price an interest rate
derivative which can be interpreted as a combination of options and bonds.

1.2 Treating Mortgages as Annuities

In this section I propound and derive the standard annuity formula and elucidate why and how
it can be applied to mortgages. Usually an annuity is a constant annual payment made to its
holder.

1.2.1 The Standard Annuity Formula

The standard annuity formula is a formula for the present value of an annuity. In [28] the
authors stated the formula without proof.

Lemma 1.2.1 (Standard Annuity Formula) Assume C > 0 to be an annual payment made
n times and further denote by r > 0 the risk-free interest rate. Then the present value B of the
annuity satisfies:

B =
C

r

[
1− 1

(1 + r)n

]
. (1.1)
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Proof - Lemma 1.2.1:
For the present value of an annuity the following holds:

B =
C

1 + r
+

C

(1 + r)2
+ . . .+

C

(1 + r)n

= C +
C

1 + r
+

C

(1 + r)2
+ . . .+

C

(1 + r)n
− C

= C
1−

(
1

1+r

)n+1

1− 1
1+r︸ ︷︷ ︸

1+r
r

“
1−( 1

1+r )
n+1

”
−C

= C

(1 + r)(1−
(

1
1+r

)n+1
)− r

r


=

C

r

[(
1−

(
1

1 + r

)n+1
)

+ r

((
1−

(
1

1 + r

)n+1
)
− 1

)]

=
C

r

[
1−

(
1

1 + r

)n+1

− r

(
1

1 + r

)n+1
]

=
C

r

[
1− (1 + r)

(
1

1 + r

)n+1
]

=
C

r

[
1−

(
1

1 + r

)n]
=

C

r

[
1− 1

(1 + r)n

]
.

Altogether this establishes (1.1).
�

This formula can be slightly adjusted so that one can apply it to monthly payments. To do so
we presuppose that the monthly interest rate r̃ and the monthly payment C̃ satisfy:

C̃ = C/12
r̃ = r/12.

When considering monthly payments there are twelve times as many as in the annual case so
that we eventually arrive at:

B =
C

r

[
1−

(
1

1 +
(

r
12

)12 n

)]
.

In fact, the assumptions about r̃ and C̃ are a simplification because depositing money for one year
at rate r and receiving interest at the end of the year yields a different benefit than depositing
money for a year with monthly interest payments at a rate r/12.

1.2.2 Application to Fixed-Rate Mortgages

In this subsection I discuss why fixed-rate mortgages can be regarded as annuities. Intuitly this
seems quite plausible because a fixed-rate mortgage consists of fixed monthly payments. But in
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the following this statement shall be justified systematically.
First, we note a recursion formula for the remaining principal to be repaid on a mortgage. As-
sume a mortgage of N payments with a contactual interest rate c where at time n the remaining
principal is Rn so that the following recursion formulae hold:

Rn = (1 + c)Rn−1 − C

RN = 0 which reflects amortization.

Lemma 1.2.2 Under the assumptions about the mortgage outlined above we can state that the
initial debt amounts to:

R0 =
C

1 + c
+ . . .+

C

(1 + c)N−1
+

C

(1 + c)N
. (1.2)

In addition, the same formula can be used to not only calculate the original debt but also the
remaining principal at any given time n < N by replacing N by N − n.

Proof - Lemma 1.2.2:
Let us start with the additional statement: At time n < N there is an outstanding debt and
one could sign in to a new loan over that sum which expires at the same time as the old loan.
Then the new one has time N − n to maturity and the same payments as the old loan so that
the remaining principal on the old loan is the initial principal on the new one, i. e.

Rn = R̃0

=
C

1 + c
+ . . .+

C

(1 + c)N−n−1
+

C

(1 + c)N−n
.

The main part of the lemma is proved by mathematical induction.
For the basis, i. e. N = 1, we assert:

R0 =
C

1 + c
.

Since there is only one payment to be made and this payment is the amount of the loan plus
interest the statement is apparently true.
Next we have to perform the induction step assuming assertion (1.2) to be true for N and then
deducing the statement for N+1. Applying the recursion formula and the assumption to N = 1
we obtain

R0 (1 + c)− C = R1

=
C

1 + c
+ . . .+

C

(1 + c)N−1
+

C

(1 + c)N
.

It follows:
R0 =

C

(1 + c)2
+ . . .+

C

(1 + c)N
+

C

(1 + c)N+1
+

C

1 + c
,

which is exactly the desired statement.
�

Moreover we see that the formula in the lemma is the same formula as derived before for the
present value of an annuity. Therefore we can state the following:

• the remaining principal on a fixed-rate mortgage can be computed using the standard
annuity formula

• the remaining principal on a fixed-rate mortgage would be the present value of an annuity
paying the same coupon if the current rate of risk-free interest was the contractual interest
rate of the mortgage.
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1.3 About Mortgage-Backed Securities

In this section I finally elucidate what mortgage-backed securities are. They are bond-like fi-
nancial instruments and belong to the wider class of so-called asset-backed securities with the
asset being mortgage payments.
What does that mean? An ordinary bond is basically a stream of future payments to the bond-
holder. In the case of a mortgage-backed security these payments are provided or backed, as it
is often called, by the usually monthly payments a mortgagor makes to the financial institution,
from which he or she has borrowed money. These mortgage loans themselves can be backed by
private homes or any commercial sites. Until now there is nothing special about them, but they
have one very important additional feature: The mortgagor possesses the right to repay his or
her outstanding debt prematurely at any time, which means that the duration of the cashflows
to the holder of the mortgage-backed security is unknown. In addition, as it is the case with
any bond, the holder faces the credit or default risk of the original mortgage loan. Therefore
MBSs are more complex than plain vanilla bonds.
Mortgage-backed securities are created by financial institutions who intend to pass on or sell
credit risk to customers. This is done by pooling several residential mortgages and dividing this
pool into a certain number of shares then retailed. So by buying x % of the pool one acquires
a claim upon x % of the payments (interest and principal) by the mortgagors. Therefore the
holder of such a share is fully exposed to default risk. In the United States there are govern-
ment institutions like the Federal National Mortgage Association (FNMA) or the Government
National Mortgage Association (GNMA) who provide protection against credit risk in exchange
for a servicing fee usually about 0.5 % of the cash flow. More information on that can, for
instance, be found in [28], [29], [51], [87] or [88].
So far one might get the impression that mortgage-backed securities do not differ from regular
government-issued fixed-income securities. But there is one major difference and that difference
is the embedded prepayment option held by the borrower which according to [51] is a very typ-
ical feature in US mortgage contracts.
Altogether a secondary market to the primary mortgage market is created, in which credit risk
is traded. As stated in [28] and [29] it turned out that this market is actually one of the fastest
growing bond markets in the US. Therefore pricing mortgage contracts as well as possible is
required and important.

1.3.1 Different Types of MBSs

Besides those standard passthrough mortgage-backed securities there are more elaborate ones
like collateralized mortgage obligations (CMOs) or IOs and POs which are abbreviations for
”interest only” and ”principal only”.
The latter ones belong to the class of stripped MBS which means that the cashflow of principal
and interest is separated and channeled to different investors. In the case of POs the investor
receives a certain amount of money and additionally benefits from high prepayment rates because
the capital is returned early. The opposite is true for IOs because the total amount of cashflow
is uncertain since interest payments are stopped if prepayment occurs. Hence the investor
speculates on low prepayment rates.
In a CMO, for example, investors are divided into several classes, say A, B and C. First all class
A investors are paid off, then class B and so forth. In consequence, all three classes differ in the
risk to which they are exposed and hence a financial institution can match different investors’
different intentions better. Further details can be found in [51].
In this work we shall focus on the classic passthrough MBSs, though.
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1.3.2 Economic Importance

The next item I would like to stress is that MBSs are not only interesting by themselves as
relatively new financial products. They also reflect important economic aspects from a wider
perspective.
Mortgage-backed securities are closely linked to a major risk in US economy. This is because
a large part of US economy is credit-financed by private consumers. And since these loans are
mostly collateralized by houses, namely private homes, credit-worthiness of private consumers
is particularly vulnerable by a change in house prices and interest rates. This is, for instance,
pointed out in the articles [49] and [71] by Heaton and Leisinger respectively.
Since in recent years house prices in the United States tremendously rose many more and larger
loans could be taken. This was fueled even further by historically low interest rates. How low
interest rates actually were and still are is probably best illustrated in Figure 1.2 where the
federal funds rates are plotted for roughly speaking the past fifty years.

Figure 1.2: Historical Federal Fund Rates (taken from www.wikipedia.org)

In early 2007 the situation began to deteriorate and hamper US economy when house prices
no longer increased and even declined. Moreover interest rates have risen over the past two
years. The immediate effect was mostly in variable-interest-rate contracts from the so-called
sub-prime sector, which is what the high-risk credit market is called. When interest rates rose
those high-risk mortgagors could no longer match their increasing interest obligation and they
were forced to default houses of less value than assumed before. Figure 1.3 gives an idea of the
extent of this development. To better understand the economic implications it might be helpful
to consider who the investors in mortgage-backed securities are. According to [49] these are not
only financial investors like hedge funds, which one might have expected, but also less aggres-
sive pension funds or even governments like China who seek diversification of their exposure
by reducing currency reserves. The motivation behind investing in MBSs is the higher coupon
compared to classic bonds. The reason for the higher coupon is the higher risk of an individual
mortgage.
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Figure 1.3: Left: development of US house prices and interest rates, right: development of US
home sales (both taken from www.faz.net)

In the summer of 2007 it became apparent how large the market for trading of credit and mort-
gage risk is when a crisis broke out in the US. During this crisis several financial institutions
ran into bankruptcy because of defaulted mortgages and hedge funds heavily invested in this
market faced huge losses.
Moreover stock markets plummeted, too, because market participants were afraid that this
quandary might slow down the development of the whole US economy. For example, the
renowned Dow Jones index lost about 1, 000 points in comparison to its mid-July all-time high
of over 14, 000 points. In addition, these problems spread all across the world with the German
DAX, for instance, plunging from 8, 150 to about 7, 300 points.
The above and more information about that can be found in [99] and [100].



Chapter 2

The Model

2.1 Approach to the Problem

In the literature on pricing mortgage-backed securities two fundamentally different approaches
have emerged, structural models and reduced-form models.
As outlined in [28] and [29], characteristic about structural models is the rational minimization
of the liability value by the borrower in response to changes in the underlying state variables
such as interest rates or house prices. As a result pricing becomes very similar to standard
contingent-claims like American-style options. This approach was first carried out by Dunn and
McConnell in 1981 (cf. [34] and [35]). But they did neither account for transaction costs nor
for suboptimal option exercise. Though over the course of time these features were gradually
added and prepayment and default were both considered at the same time. See, for example,
[60], [61] and [62] or [87], [88]. The former ones all deal with prepayment and default but at
least in part do not estimate results produced by their models empirically and the latter ones
account for heteregeneous transaction costs.
In contrast to structural models reduced-form models do not explicitly simulate the underlying
state variables. Instead termination is considered to be a function of a set of variables influ-
encing the borrower’s behavior, such as house prices and interest rates on the one hand but
also personal factors like divorce or credit-worthiness on the other hand. More precisely at each
time premature termination is considered to occur with a certain probability depending on the
aforementioned factors. Examples for reduced-form models are [84], [25] and [26] in the case of
mortgage valuation. According to [28] there are similar approaches for corporate risky debt, for
instance [18], [30] or [53].
Among the advantages of reduced-form models is the relatively good ability to fit historical data
about mortgage-termination. However, there is a lack of forecasting credibility because mort-
gage prices themselves or proxies for the borrower’s options are used instead of directly valuing
them.
In this diploma thesis, though, I shall focus on a structural approach.

In order to value mortgage-backed securities we have to define a mathematical model. Within
this model we will derive and solve a partial differential equation for the desired value.

2.1.1 General Remarks

First we should mention what properties we expect our model to incorporate. As explained
above in Section 1.3 an MBS consists of an underlying bond (the stream of cashflows) with
additional prepayment and default options. The option of prepayment can be interpreted as a
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call option on the underlying bond and the default option as a put on the house.
So to the holder of an MBS its value Mt is

Mt = Bt − Vp − Vd,

where Bt denotes the value of the underlying bond and Vp and Vd are the values of the options
respectively. As part of the valuation of the MBS one has to find out when it is financially
optimal to exercise one of the options, that is to prepay or default.
Heuristically speaking prepayment makes sense when interests rates drop low enough so that
refinancing (picking up a new loan and using it to repay the other) is less expensive than con-
tinuing to make the original payments. Conversely defaulting is optimal when house prices are
low enough, because you give away your house but save the remaining payments.
Our choice is a so-called two-factor model as proposed in [28] with the two factors being the
rate of risk-free interest and the house prices. We consider this to be a sensible approach as it
accounts for both prepayment and default risk.
To be more exact we choose two stochastic processes rt and Ht for risk-free interests and house
prices, which we will specify in Section 2.2. In order to understand the thresholds for optimal
prepayment and default we do not need to know what the processes actually look like.
Moreover I would like to mention that prepaying and defaulting is associated with transaction
costs. As I did with the interest rate and house price processes before, I will only explain in
Section 2.3 how they are modelled. So for our current purposes we shall be content with knowing
that there are proportional transaction costs Xd and Xp for default and prepayment respectively.

2.1.2 Optimality of Default

In the case of default the homeowner hands over his or her house to the financial institution and
in exchange stops making the remaining scheduled payments on the mortgage. In consequence,
it is optimal to exercise the default option if

Mt ≥ Ht (1 +Xd). (2.1)

Here we have to heed that for the house prices dropping below the value of the underlying
bond does not suffice because the options also have values to their owners, which they forfeit
by exercise. Moreover the two options are not independent of one another since exercising one
precludes exercise of the other at a later time. So the house prices have to drop low enough to
compensate for the forfeit of both options.

2.1.3 Optimality of Prepayment

The case of prepayment is slightly more complicated than default because it is not one of the
underlyings that has to drop far enough but an expression depending on the interest rate. The
idea of prepayment is that the mortgagor initiates a new loan for the value of the remaining
principal to be paid. If the time to maturity remains the same he or she will have to pay a
smaller monthly coupon C̃ due to the declined interest rates. More precisely a call option on
the underlying bond is exercised, which is in-the-money because the lower interest rates are the
higher is a bond’s value. So we have to ponder under which circumstances doing so is financially
optimal.
First we recall from Section 1.2 how to calculate the remaining principal F of a loan at time t,
i. e. time T − t to maturity, and deduce:

F (t) =
C

c

(
1− 1

(1 + c
12)12(T−t)

)
.
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Optimal prepayment now means that the payment on refinancing, namely (1 +Xp)F (t), is less
than the values of the liability and the options, which again has to be taken account of since
option exercise comes along with forfeiting possible future exercise of either option. So we
procure the following condition:

Mt ≥ (1 +Xp)F (t). (2.2)

We should heed that the right-hand-side of the inequality is actually independent of interest
rates and that a decrease of interest rates causes an increase in the value of M .
Furthermore I would like to point out that the optimality condition indeed has the desired prop-
erty, that there are smaller payments to be made if the interest rates are small enough. But
on the other hand it cannot be ensured that there is always some r such that prepayment is
optimal because if transaction costs are high enough they will always exceed the effect of lower
interest.
In addition, we make the facilitating assumption of not considering curtailments (partial pre-
payments). In [87] an argument is given why they can be virtually ruled out.

2.2 The Interest Rate and House Price Models

In this section I first describe the stochastic process we use for interest rates and then move on
elucidating the one for house prices.
There are various models governing interest rate processes among which we have decided to use
the one proposed by Cox, Ingersoll and Ross in 1985 (cf. [20]). It is probably the most prominent,
renowned and utilized one in literature dealing with mortgages and mortgage derivatives. In
this model interest rates are governed by the stochastic differential equation

drt = (κ(θr − rt)− ηrt)dt+ Φr
√
rt dWr. (2.3)

We note that this is a mean-reverting process, where θr is the long-term mean and κ the rate of
reversion to it; η is the so-called price of interest rate risk and Φr the proportional volatility in
interest rates. The stochastic process Wr is assumed to be a standard Brownian motion.
Among the advantages of this process is the property that if the parameters satisfy certain
conditions it is always non-negative if so initially, i. e. r0 > 0. However, zero is not an absorbing
barrier as interest rates can be positive at a time t2 > t1 even if rt1 = 0 holds.
Besides the Cox-Ingersoll-Ross model there are several other famous one-factor models, i. e.
those models which depend on merely one source of randomness. For example, the Vasicek
model

drt = (a− brt)dt+ σdWt,

the Brennan and Schwartz model

drt = (a− brt)dt+ σrtdWt

or Merton’s model

rt = r0 + at+ σWt

drt = a dt+ σ dWt.

Details and references for those models can be found in [78]. A generalization of both the
CIR-model and the Vasicek-model is formed by the Hull and White model

drt = a(b− crt)dt+ σrβ
t dWt, 0 ≤ β ≤ 1.
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One possible enhancement of the one-factor interest rate models would be to not only incorporate
the spot rate r but also a long-term rate l, which makes the description of the actual term-
structure more realistic since there are more degrees of freedom. The processes might look as
follows:

dr = [a1 + b1(l − r)]dt+ σr dWr

dl = l(a2 + b2r + c2l)dt+ σl dWl.

Disadventageous is the consumption of more computing resources particularly in the presence
of a third process governing the house prices because then one actually has to deal with a three-
dimensional problem instead of a two-dimensional one. As pointed out in [60] and [87] it has
nonetheless been used for instance by Schwartz and Torous in [84] but only when not considering
default risk.

Having discussed our choice of the interest rate model I next wish to outline how the house
prices are modelled. We assume Ht to evolve according to a geometric Brownian motion

dHt = θHHtdt+ ΦHHt dWH .

Here θH denotes the expected increase in house prices and ΦH the corresponding volatility.
To understand the next step it is helpful to briefly take notion of the fact that this process is
practically the same as the one used for stock prices in the standard Black-Scholes model (cf.
[8], [51], [76] or [78]) .
In the case of shares there is usually a cash flow, the dividend, to the proprietor of the stock.
Considering house prices there is no dividend but a flow of rents which we denote by qH .
Moreover we consider a market price of risk λH for the house prices as well as the principle
that the economy behaves risk-neutrally after adjusting, which means that the expected return
equals the risk-free interest rate, i. e.

θH − λHΦH + qH = r,

where θH − λHΦH is the risk-adjusted appreciation rate of the real estate. Hence we obtain the
following risk-adjusted stochastic process for the house prices:

dHt = (rt − qH)Htdt+ ΦHHt dWH . (2.4)

More details on this standard argument and the market price of risk can be found in [51] and
[60].
Furthermore a very important feature of this process which will be exploited when imposing
boundary data in Section 2.6 is that zero is an absorbing barrier. This can be seen by looking
at the stochastic differential equation which tells us that if H = 0 for some t, dH also vanishes
and thus H remains zero for t̄ > t.

Having discussed several alternative models we have decided to use the following ones in this
diploma thesis:

dHt = θHHtdt+ ΦHHtdWH

drt = (κ(θr − rt)− ηrt)dt+ Φr
√
rt dWr.
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They are calibrated by the following set of parameters:

qH = 0.025
ΦH = 0.085
κ = 0.13131
θr = 0.05740
Φr = 0.06035
η = −0.07577.

Concerning parameter estimation for these models as well as the parameters appearing in Section
2.3 on transaction costs we have to state that the results are taken from [28] and [29] and we did
not carry out an estimation ourselves. In the two mentioned works a least squares approach was
followed to fit historical market and termination data, thus leading to the problem of minimizing
the non-linear functional

χ(Θ) =
N∑

i=1

Ti∑
t=1

(ωit − ω̂(Θ))2 ,

where Θ is the vector of all parameters to be estimated, N the number of mortgage pools
observed and t the time of observation. It was solved by the Nelder-Mead downhill simplex
algorithm.

2.3 Modeling of Transaction Costs

Concerning transaction costs there are various features we have not addressed yet. In this section
I describe what we expect and how it is realized.
Until now we have merely considered mortgage holders who always act in a financially optimal
way. But in reality this is certainly not the case as there are borrowers who repay their loans
prematurely for non-monetary reasons such as relocation or divorce etc. and loaners who do
not exercise their prepayment options although reason would suggest to do so. Moreover in a
strictly rational world all mortgagors would optimally prepay once it becomes optimal for one
borrower to do so. To amend these shortcomings we expect our model to at least satisfy the
following conditions:

1. Borrowers face transaction costs when they opt to default or prepay

2. Different borrowers face different transaction costs

3. Prepayment and default occur depending on a certain probability rather than pure financial
reasons.

Since we never consider single mortgages but always a pool of very similar mortgages (i. e.
common time to maturity, common or just slightly different contractual interest rates etc.) we
have to distinguish between two different probability aspects. The first is the likeliness of a
single borrower to terminate his or her contract given his or her personal transaction costs and
the second is the distribution of transaction costs across the pool of mortgages.
This is the same model as used in the papers [28], [29] and [87]. Moreover it allows us to deal
with a pool of mortgages without knowing how many contracts are actually in the pool which is
the case because we model the differences between the loaners through transaction costs rather
than individual hazard functions (for an explanation see below). Justification can be attained
by arguing that termination behavior translates to non-monetary transaction costs like the work
to organize refinancing or the fact that some people are more reluctant to change contracts than
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others even if it is optimal to do so. If transaction costs are interpreted as the sum of both
monetary and individual non-monetary expenses this approach can be justified. Additionally
it is a relatively convenient way of entering heterogeneity in the model since transaction costs
are only one parameter whereas the below hazard functions have five parameters and a function
covering time development we would have to meticulously estimate.

2.3.1 Premature Termination by a Single Borrower

First we introduce a random variable X defined as

X = time until premature termination through default or prepayment,

which we furthermore assume to be exponentially distributed, i. e. the probability of early
termination within time t conditional on not having occured prior is

P [X < t] = 1− exp(−λ t)

for some time- and state-dependent parameter λ. In order to obtain λ we make use of a so-
called hazard function as elucidated in [29]. Such a function is supposed to describe the risk of
premature termination and hence consists of parts referring to each source of risk. First there is
a background hazard arising from the aforementioned suboptimal behavior and second the risk
is increased if prepayment or default becomes optimal. The function looks as follows:

λ(t) = β0 + β1 arctan(t/β2)Pt + β3 arctan(t/β4)Dt

=: λ0 + λp + λd.

The variables Pt and Dt are indicator variables which take the value one if prepayment or default
respectively is optimal and zero otherwise.
At this point it is very important to heed that a probability computed in this way only governs
the overall risk of early contract termination while we are interested in the single probabilities
for prepayment and default. To resolve this problem we have to distinguish between four cases:

1. neither prepayment nor default is optimal

2. prepayment is optimal but default is not

3. default is optimal but prepayment is not

4. both prepayment and default are optimal.

In order to be able to account for suboptimal termination we presume that in the case of
suboptimality prepayment occurs according to the background hazard rate. Doing so we are
now able to deal with the four cases:

• case 1
This is the simplest case because there is only the background hazard. Therefore we can
obtain the desired probabilities as follows (for a justification see below):

Pd = 0
Pp = 1/2 (1− exp(−λ0)).

• case 2
If prepayment is optimal and default is not the overall likeliness of premature termination
and default probability have to be computed in the following way:

Pp = 1− exp(−(λ0 + λp))
Pd = 0.
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• case 3
This case is slightly more complicated than the second one because it does not work
analogously. The probabilities we prescribe are the following ones:

Pp = 1/2 (1− exp(−λ0))
Pd = 1/2 [1− exp(−(λ0 + λd))] .

Again, a justification is given below.

• case 4
In this case, i. e. both prepayment and default are reasonable, we have to figure out the
exercise of which option yields the higher benefit. More precisely we have to compare the
payment incurred on default H(1+Xd) to the one on prepayment, namely (1+Xp)F . The
smaller payment then determines which way of termination is considered optimal. The
other is not considered optimal so that we are either in case 2 or 3.

So the value of an MBS at time t is the probability weighted average of the solution to the partial
differential equation (2.6) we are going to derive in Section 2.5 and the respective payments made
on termination with the weights being the probabilties for the occurence of the respective event
calculated in the above manner.
We are still due giving a justification for the above choices of the probabilities. If we blindly
just added probabilities of the type

P = 1− exp(−λ)

we might face the problem of Pp + Pd ≥ 1 which would be completely unreasonable. Therefore
in the critical case we introduce the coefficient 1/2 which ensures the ratio between the two
probabilities is maintained and none is favored over the other. We then obtain:

Pd + Pp = 1− 1/2 exp(−λ0)︸ ︷︷ ︸
≤1

[1 + exp(λd)︸ ︷︷ ︸
≤1

].

Altogether this means Pd + Pp ≤ 1 and thereby establishes the desired property.

2.3.2 Distribution of Transaction Costs

The subject matter of this section is the modeling of borrower heterogeneity, i. e. different mort-
gagors face different transaction costs on refinancing or defaulting. This is attained by assuming
the frictions to be spread across a pool of mortgages according to a probability distribution.
Our choice is the beta-distribution with the parameters α = 0.86703 and β = 5.09893 (taken
from [28] and [29]), the mean µ and variance σ2 of which can be calculated as

µ =
α

α+ β

σ2 =
αβ

(α+ β)2(α+ β + 1)
.

Since we lack any knowledge about the number of mortgages in a respective pool our strategy
is to approximate a beta-distribution, or more precisely its cumulative distribution function,
which is defined as

F (x) = P [X ≤ x],

by finitely many values Xj and corresponding weights cj . First I will state a lemma on the
convergence of a certain approximation.
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Lemma 2.3.1 Let m ∈ N and let F ∈ C1((0, 1)). Consider the weights cj = 1/m and Xj =
F−1(2j−1

2m ) for j = 1, . . . ,m and the function

F̂m(x) :=
m∑

j=1

cjI[Xj ≤ x],

where I is an indicator function. Then F̂ converges uniformly to F , i. e.

sup
x∈[0,1]

|F (x)− F̂m(x)| m↑∞−→ 0.

Proof - Lemma 2.3.1:
First we note that the approximation is exact at the points x = 0 and x = 1 and at the points
x = F−1(2j−1

2m ) the error is 1
2m . Now choose an arbitrary x ∈ (0, 1). Then depending on x there

is a j0 such that x ∈ [F−1(2j0−1
2m ), F−1(2(j0+1)−1

2m )] =: J and on J F̂m is constant. So we obtain
the estimate:

|F (x)−
m∑

j=1

cjI[Xj ≤ x]| ≤ sup
x∈J

|F (x)− F (F−1

(
2j0 − 1

2m

)
)|+ 1

2m

≤ 1
2m

+ sup
x∈J

|F ′(x)| |x− F−1

(
2j0 − 1

2m

)
|

≤ 1
2m

+ sup
x∈[0,1]

|F ′(x)|︸ ︷︷ ︸
<∞

|x− F−1

(
2j0 − 1

2m

)
|︸ ︷︷ ︸

−→0

m↑∞−→ 0

Since the above is valid for arbitrary x it also holds for the supremum as claimed.
�

This approximation of the cumulative distribution function was introduced in [87] and it is also
used in the more recent papers [28] and [29]. In the former reference, however, no evidence of
convergence was given but it was stressed that these choices of the quantiles cj and costs Xj

minimize
sup

x∈[0,1]
|F (x)− F̂m(x)|,

which motivates this approach.
Moreover we have to consider the proportions of the pool, for which prepayment and default
respectively is optimal. As it is pointed out in [28] and [29] the optimality conditions (2.1) and
(2.2) can be reinterpreted to saying that early termination is optimal if transaction costs are
low enough, i. e. less or equal than thresholds X∗

p and X∗
d . Knowing the weights cjt at time t

one can write down the proportions by using indicator functions:

P ∗tp =
m∑

j=1

cjt I[Xj ≤ X∗
p ]

P ∗td =
m∑

j=1

cjt I[Xj ≤ X∗
d ].
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Using this we can compute the expectation for premature termination at time t:

ω̄j
t = P j

r P
∗
tp + P j

d P
∗
td + Pe (1− P ∗tp − P ∗td).

Here P j
r is the probability for optimal prepayment, P j

d the one for optimal default and Pe the
likeliness for termination for exogenous reasons.
In addition, the proportions of the considered pool having transaction costs Xj have to be
updated in each time step according to whether or not they have prepaid or defaulted the step
before. Doing so one has to distinguish between four different cases:

cjt+1 =



cjt(1−Pr)
1−ω̄t

if prepayment is optimal, but default is not
cjt(1−Pd)

1−ω̄t
if default is optimal, but prepayment is not

cjt(1−Pr−Pd)
1−ω̄t

if both prepayment and default is optimal
cjt(1−Pe)

1−ω̄t
if neither prepayment nor default is optimal.

These updated weights can then be used to compute the value of a mortgage-backed security as
the weighted average of the values of the single unpooled mortgages with transaction costs Xj ,
i. e.

M(t) =
m∑

j=1

cjtM
j(t),

where for brevity other functional arguments than time have been omitted. The starting weights
are cj0 = 1

m for j = 1, . . . ,m. So the valuation process for an MBS pool is the following:

1. Solving PDE (2.6) in every time step. According to Sections 2.5, 2.6 and 2.8, in which the
initial boundary value problem is scrupulously stated this will be backwards in time.

2. Carrying out the weighting for t = 0

3. Working forward in time to procure weighted solutions for times t > 0 by adjusting the
weights in the aforementioned way.

In particular, the last item means that one has to store the solution for at least every month
throughout the entire computation instead of discarding them which is burdensome with respect
to memory efficiency.

2.4 Asset or Liability

One important feature of mortgage-backed securities, which can very easily be overlooked, is
the difference between the asset price and the liability price. This discrepancy arises because
the asset holder does not receive all the payments the liability holder makes on premature
termination since the latter one also has to pay for the transaction, i. e. the asset holder does
not obtain the transaction costs.
Paying regard to this fact the prices are calculated in the following way:

Ml(r,H, t) = PdHt(1 +Xd) + Pp Ft(1 +Xp) + (1− Pd − Pp)MPDE(r,H, t)
Ma(r,H, t) = PdHt + Pp Ft + (1− Pd − Pp)MPDE(r,H, t).

The subscripts a and l indicate the asset or liability case respectively. Moreover one has to
heed that the asset price cannot be valued without pricing the liability simultaneously because
whether or not premature termination is optimal depends on the liability price and not on the
asset price.
Since the asset price differs from the liability value in the absence of transaction costs, the
liability value is apparently always greater than the asset value.
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2.5 Derivation of the PDE

In this section we are going to derive the partial differential equation for the value of a mortgage-
backed security. It was stated in [28] but no proof or derivation was provided.
Given the two stochastic processes

drt = (κ(θr − rt)− ηrt)︸ ︷︷ ︸
=:αr

dt+ Φr
√
rt dWr

and

dHt = (rt − qH)Ht dt+ ΦHHt dWH

from Section 2.2 for the interest rates and house prices respectively, we aim to derive a partial
differential equation for the value of the corresponding mortgage-backed security M = M(r,H, t)
paying a monthly coupon C. Moreover we assume the Brownian motions Wr and WH to be
uncorrelated, just as in [28].
The stretegy of the derivation is very similar to deriving the Black-Scholes equation as it is
done in [51]. We start by constructing a riskless portfolio Π, but in our case we have to heed
that the MBS is an interest rate derivative, which means that there is no underlying asset one
can purchase to perform an intended hedge for the interest rate process. Therefore we have no
choice but to have Π consist of two MBSs M1 and M2 differing in time to maturity and a certain
amount of houses H. We balance it as follows:

Π := M1 −∆2M2 −∆1H. (2.5)
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Since our stochastic processes satisfy the assumptions of Theorem A.1.6 we can apply the two-
dimensional Itô-formula and attain

dΠ = dM1 −∆2dM2 −∆1dH −∆1qHHdt+ (1−∆2)Cdt

=
∂M1

∂t
dt+ Cdt+

∂M1

∂H
dH +

∂M1

∂r
dr +

1
2

(
Φ2

rr
∂2M1

∂r2
+ Φ2

HH
2∂

2M1

∂H2

)
dt−

∆2

[
∂M2

∂t
dt+ Cdt+

∂M2

∂H
dH +

∂M2

∂r
dr +

1
2
(Φ2

rr
∂2M2

∂r2
+ Φ2

HH
2∂

2M2

∂H2
)dt
]
−

∆1 [(r − qH)Ht dt+ ΦHHt dWH ]−∆1qHHdt

= [
∂M1

∂t
+ C −∆2

∂M2

∂t
−∆2C −∆1(r − qH)H +

1
2
Φ2

rr
∂2M1

∂r2
+

1
2
Φ2

HH
2∂

2M1

∂H2
−

∆2
1
2
Φ2

rr
∂2M2

∂r2
−∆2

1
2
Φ2

HH
2∂

2M2

∂H2
−∆1qHH] dt+

[
∂M1

∂r
−∆2

∂M2

∂r

]
dr +[

∂M1

∂H
−∆2

∂M2

∂H

]
dH −∆1ΦHHdWH

= [
∂M1

∂t
+ C −∆2

∂M2

∂t
−∆2C −∆1(r − qH)H +

1
2
Φ2

rr
∂2M1

∂r2
+

1
2
Φ2

HH
2∂

2M1

∂H2
−

∆2
1
2
Φ2

rr
∂2M2

∂r2
−∆2

1
2
Φ2

HH
2∂

2M2

∂H2
−∆1qHH] dt+

[
∂M1

∂r
−∆2

∂M2

∂r

]
(αr dt+

Φr

√
r dWr) +

[
∂M1

∂H
−∆2

∂M2

∂H

]
((r − qH)Ht dt+ ΦHHt dWH)−

∆1ΦHHdWH

= [
∂M1

∂t
+ C −∆2

∂M2

∂t
−∆2C −∆1(r − qH)H +

1
2
Φ2

rr
∂2M1

∂r2
+

1
2
Φ2

HH
2∂

2M1

∂H2
−

∆2
1
2
Φ2

rr
∂2M2

∂r2
−∆2

1
2
Φ2

HH
2∂

2M2

∂H2
] + αr[

∂M1

∂r
−∆2

∂M2

∂r
] +

H(r − qH)[
∂M1

∂H
−∆2

∂M2

∂H
]

−∆1qHH]dt+ Φr

√
r

[
∂M1

∂r
−∆2

∂M2

∂r

]
dWr + ΦHH

[(
∂M1

∂H
−∆2

∂M2

∂H

)
−∆1

]
dWH

!= rΠ dt

In the latter step we presume that the change in the value of our portfolio in the absence of
risk, i. e. after eliminating the stochastic terms, should equal the profit gained on depositing the
money at the riskless interest rate. To ensure the annihilation of the stochastic terms we have
to make the following demands leading to certain balancing factors ∆1 and ∆2:

1. ∂M1
∂r −∆2

∂M2
∂r

!= 0 ⇒ ∆2 = ∂rM1
∂rM2

2. [∂M1
∂H − ∂rM1

∂rM2

∂M2
∂H ]−∆1

!= 0 ⇒ ∆1 = ∂HM1 − ∂rM1
∂rM2

∂HM2.

Inserting these choices into the equation will as desired eliminate the stochastic terms so that
after using the definition of the portfolio (2.5) itself we obtain:

rΠdt = rM1dt− rM2
∂rM1

∂rM2
dt− rH

(
∂HM1 −

∂rM1

∂rM2
∂HM2

)
dt

= rM1dt− rM2
∂rM1

∂rM2
dt− rH ∂HM1dt+ rH

∂rM1

∂rM2
∂HM2dt.
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Combining both these calculations and rearranging in terms of M1 and M2 yields:

0 = rM1 − (r − qH)H∂HM1 − ∂tM1 − C − 1
2
[
Φ2

rr ∂
2
rM1 + Φ2

HH
2 ∂2

HM1

]
−[
∂rM1

∂rM2
(rM2 − (r − qH)H∂HM2 − ∂tM2 − C

−1
2
[
Φ2

rr ∂
2
rM2 + Φ2

HH
2 ∂2

HM2

]
].

Or equivalently after dividing by ∂rM1:

0 =
1

∂rM1
(rM1 − (r − qH)H ∂HM1 − ∂tM1 − C − 1

2
[Φ2

rr ∂
2
rM1

+Φ2
HH

2 ∂2
HM1])− [

1
∂rM2

(rM2 − (r − qH)H ∂HM2

−∂tM2 − C − 1
2
[Φ2

rr ∂
2
rM2 + Φ2

HH
2 ∂2

HM2])].

Since the first part of the equation depends only on a maturity T1, whereas the second part
depends merely on a maturity T2, both parts can only equal one another if they are independent
of maturity. Hence from here on one can omit the subscripts and write the equation in the
following form:

a(r, t) =
1

∂rM

(
rM − (r − qH)H ∂HM − ∂tM − C − 1

2
[Φ2

rr ∂
2
rM + Φ2

HH
2 ∂2

HM ]
)

for some function a(r, t). According to [4] a can additionally be written as:

a(r, t) = αr − Φr

√
r λ(r, t),

where λ is the so-called market price of interest rate risk. Overall this yields the following partial
differential equation for the value of a mortgage-backed security M after dividing by −1:

−rM + (r− qH)H∂HM + ∂tM +C +
1
2
[Φ2

rr∂
2
rM + Φ2

HH
2∂2

HM ] + (αr −Φr

√
rλ(r, t)) ∂rM = 0.

If we set λ = 0, which we deem sensible, as the market price of risk has already been addressed
in the model for the interest rates and house prices, we procure the following PDE for valuing
mortgage-backed securities:

1
2
Φ2

rrMrr +
1
2
Φ2

HH
2MHH + [(κ(θr − r)− ηr)]Mr + (r − qH)HMH +Mt − rM +C = 0. (2.6)

2.6 Boundary and Initial Values for the PDE

The previously derived partial differential equation (2.6) holds for any derivative depending on
the variables r, H and t driven by the same stochastic processes. Therefore the characterics of an
MBS are solely imposed by the boundary and initial values (or those at maturity respectively).
Moreover as we know, for instance from [64] or [69], such PDEs do not have unique solutions
without properly prescribing such boundary and initial data. Hence we have to specify those
data both for mathematical and finance reasons.

To start with the initial/terminal data we heed that a mortgage-backed security has a finite
lifespan. Generally speaking it has a value because of the scheduled future payments on the
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mortgage. Thus after expiration of the mortgage it is worthless because there are no more
payments to be made. Hence the following terminal condition arises:

M(H, r, T ) = 0,

which reflects the fact that at maturity all payments have been made because of amortization.

Concerning the boundary values there are four boundaries we have to deal with. These bound-
aries are infinitely large interest rates, infinitely large house prices, vanishing interest rates and
vanishing house prices.
The simplest of the four is certainly the infinitely large interest rates. In this case the value
becomes independent of house prices because the underlying bond, i. e. the present value of the
scheduled future coupon payments, turns worthless. In consequence, the incorporated options
are of no value to their holder either so that we arrive at the condition

lim
r→∞

M l(H, r, t) = 0.

If on the other hand the house prices approach infinity default risk is practically absent because
the default option is by far out-of-the-money so that within the mortgage-backed security only
the interest rate risk remains. In other words, the MBS becomes a callable bond only depending
on interest rates. Hence changes in the house prices do not affect the MBS. Therefore we impose
a vanishing Neumann-condition on this boundary, thus

lim
H→∞

∂M

∂H
= 0

is prescribed.
In the case of vanishing house prices immediate default occurs and consequently

M(0, r, t) = 0

has to hold. This becomes plain by interpreting vanishing house prices as the opportunity to
exercise a call option on the underlying bond, and thus save the remaining payments, at a
vanishing strike price. Moreover the situation cannot improve to a more beneficiary one to the
mortgagor because as mentioned in Section 2.2 the underlying house price process has an ab-
sorbing barrier at zero which means that the price will forever remain at zero if it once is. And
because of that most payment can be saved by immediate exercise.
Eventually we have to deal with vanishing interest rates which happens to be the most compli-
cated case. The value we prescribe at this boundary is:

M(H, 0, t) = min(C (T − t), (1 +X)Ft, (1 +X)Ht).

This is actually a simplification because we assume the options to be exercised at once or never
and then choose the least liability between prepayment, default and underlying bond without
options. Nonetheless this simplification can be made palpable by considering the two options
separately.
If it is not optimal to default now house prices are too high at the moment and have to drop
in order to compensate for this deficiency in addition to the decline always needed because of
the fewer number of payments to be saved on exercise so that altogether a relatively strong and
therefore improbable movement is necessary. Much the same can be said about prepayment and
interest rates except for the fact that they cannot drop any further than zero.
Due to those arguments we have decided to neglect the possibility of a strong movement and
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live with the simplification instead of a free boundary. Moreover by our choices continuity of
the boundary is ensured since for vanishing house prices and interest rates we have

lim
H→0

M(H, 0, t) = 0

lim
r→0

M(0, r, t) = 0

while on the other boundary

lim
H→∞

M(H, 0, t) = min(C (T − t), (1 +X)Ft)

and thus

∂H

(
lim

H→∞
M(H, 0, t)

)
= 0

holds. On the boundaries where we assume M to vanish identically those continuity checks are
apparently satisfied, too.

2.7 Properties of the Initial Boundary Value Problem

In this section I am going to outline several very important properties of our initial boundary
value problem derived in the previous two sections.
The first aspect one should take notion of is the infinite computational domain (0,∞)× (0,∞).
This has to be addressed and altered for numerical solution but roughly speaking it poses only
a relatively small problem. In the next section I will explain how we attempt to handle this by
transformation and truncation.
The other very important and more complicated aspect is the differential operator itself. We
are dealing with an equation of the following type:

Lu(r,H, t)− ut(r,H, t) = f(r,H, t),

where L is defined as:

Lu(r,H, t) =
1
2
Φ2

rr ∂rru+
1
2
Φ2

HH
2 ∂HHu+ [κ(θr − r)− ηr] ∂ru+ (r − qH)H∂Hu− r u.

We examine what happens to this operator at the boundary, particularly the boundaries r = 0
and H = 0. Therefore we have to consider the coefficient functions

k1(r) =
1
2
Φ2

rr

k2(H) =
1
2
Φ2

HH
2

b1(r) = κ(θr − r)− ηr

b2(r,H) = H(r − qH)
a(r) = −r.

Here k1 and k2 represent diffusion, b1 and b2 convection and a is the reaction term. At the
boundaries r = 0 and H = 0 the following happens:

k1(0) = 0
k2(0) = 0
b1(0) = κθr

b2(0,H) = −HqH
b2(r, 0) = 0
a(0) = 0.
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Figure 2.1: The plot shows the convection-diffusion ratio and and the convection dominance
near the boundary r = 0

In particular, we note that the diffusion coefficients vanish so that L degenerates at the bound-
aries r = 0 and H = 0. Because of this we have to check how the convection coefficients behave
in comparison to diffusion, i. e. we have to consider the following quotients:

lim
r→0

b1(r)
k1(r)

= lim
r→0

κ(θr − r)− ηr
1
2Φ2

rr
= ∞

lim
H→0

b2(r,H)
k2(r)

= lim
H→0

H(r − qH)
1
2Φ2

HH
2

= ∞ for fixed r.

In Figure 2.1 this effect is also graphically illustrated for r. The above limites mean that
for both small r and H the equation becomes convection dominated, so that classic numerical
discretizations might turn instable. This is, for instance, outlined in [48] or [63]. In consequence,
we have to find a transformation which resolves that problem or we have to deal with it separately
when discretizing. In the next section it turns out that for H the former can be done whereas
it remains a problem in r-direction.
Moreover we have to do the same checks for the other boundaries. Apparently all coefficients
approach infinity for r →∞ and H →∞ respectively. Hence we consider the quotients:

lim
r→∞

b1(r)
k1(r)

= lim
r→0

κ(θr − r)− ηr
1
2Φ2

rr

= −2(η + κ)
Φ2

r

= −30.4987

lim
H→∞

b2(r,H)
k2(r)

= lim
H→∞

H(r − qH)
1
2Φ2

HH
2

= lim
H→∞

2(r − qH)
Φ2

H H

= 0 for fixed r.

We notice that there are no problems on the far boundary. Moreover we have to heed that b2
depends on both r and H so that we are in need of checking the following four simultaneous
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limites:

lim
r,H→0

b2(r,H)
k2(H)

= ∞

lim
r→∞,H→0

b2(r,H)
k2(H)

= ∞

lim
r,H→∞

b2(r,H)
k2(H)

=
2

Φ2
H

lim
r→0,H→∞

b2(r,H)
k2(H)

= 0.

We find that by the additional limes in r no further problems are raised.

2.8 Transformation of the PDE

We examine the partial differential equation (2.6) which reads as

1
2
Φ2

rrMrr +
1
2
Φ2

HH
2MHH + [(κ(θr − r)− ηr)]M l

r + (r − qH)HMH +Mt − rM + C = 0

in the variables r, H and t subject to the boundary and terminal conditions from Section 2.6:

M(0, r, t) = 0
M(H, r, T ) = 0

lim
r→∞

M(H, r, t) = 0

lim
H→∞

MH(H, r, t) = 0

Mr(H, 0, t) = min(C (T − t), (1 +X)Ft, (1 +X)Ht)

for some transaction costs X. As outlined in the previous section we are facing the problems
of a degenerating operator which causes at least in part dominant convection and of an infinite
computational domain. In the following I will introduce two transformations which besides
truncation will take care of that. However, we will find that that those problems cannot be
completely removed so that we have to rely on further stabilization methods.
Transformation means defining a function U such that

U(z(H), y(r), s) := M(H, r, t).

Doing so we attain the following transformation formulae for the first and second derivatives in
r, H and t:

MH = Uz
dz

dH

Mr = Uy
dy

dr

Mt = Us
ds

dt

MHH = Uzz

(
dz

dH

)2

+ Uz

(
d2z

dH2

)
Mrr = Uyy

(
dy

dr

)2

+ Uy

(
d2y

dr2

)
.



2.8. TRANSFORMATION OF THE PDE 35

These transformation formulae hold for any transformation of the above type. Thus in a concrete
example it suffices to state the explicit functional form of the transformation, compute the
appearing derivatives and insert the results in the original PDE.
So I will first state such a transformation, then carry out the adjustments and afterwards I will
examine which benefit the transformation yields.

2.8.1 Black-Scholes-Type Transformation

The aim of this transformation is to eliminate the variable H in the original PDE from the
coefficients and to change the infinite domain in r. Moreover a time-reversal is used, which
alters the terminal condition at maturity to an initial condition in the transformed problem.
Precisely we choose the following:

x = 1− exp(−γrr)
y = A ln(H)
s = T − t

The parameters A and γr of our choice are:

A = 0.5
γr = ln(20) ≈ 2.9957.

Along with this transformation comes a change in the domain on which the PDE is defined
since the original domain (0,∞)× (0,∞) is mapped to (0, 1)× (−∞,+∞) independently of the
choices of γr and A. Why they are chosen in the above way is justified in Section 3.7 where a
truncation strategy is proposed.
This leads to the following derivatives and inverse transformations which we will then be inserted
into the transformation formulae and the original PDE:

dy

dH
=

A

H
dx

dr
= γr(1− x)

d2y

dH2
= − A

H2

d2x

dr2
= −γ2

r (1− x)

H = exp(y/A)

r = − 1
γr

ln(1− x).

So the r-, t- and H-derivative terms transform to

MH = Uy
A

H
Mr = Uxγr(1− x)

MHH = Uyy
A2

H2
− Uy

A

H2

Mrr = Uxxγ
2
r (1− x)2 − Uxγ

2
r (1− x)

Mt = −Us.
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Altogether this results in the following transformed PDE:

0 = −1
2
Φ2

rγr ln(1− x)(1− x)2 Uxx +
1
2
Φ2

HA
2 Uyy

+
(
αrγr(1− x) +

1
2
Φ2

rγr(1− x) ln(1− x)
)
Ux (2.7)

−A
(

1
2
Φ2

H +
ln(1− x)

γr
+ qH

)
Uy +

ln(1− x)
γr

U − Us + C.

Besides the PDE itself we have to transform its boundary conditions for which we obtain:

lim
x→∞

u(x, y, s) = lim
r→∞

M(r,H, t)

= 0
u(0, y(H), s) = M(0,H, t)

= min(C (T − t), Ft(1 +X), H(1 +X))
= min(C (T − t), Ft(1 +X), exp(y/A)(1 +X))

lim
y→−∞

u(x, y, s) = M(r, 0, t)

= 0
lim

y→∞
uy(x, y, s) = 0.

2.8.2 Benefit of the Transformation

This section shall be devoted to examining the properties of the transformed partial differential
equation. As before we have to check the transformed differential operator for degeneration.
Concerning H, which has become y, the problems were removed since the coefficients

b̃2(x, y) = −A
(

1
2
Φ2

H +
ln(1− x)

γr
+ qH

)
k̃2(y) =

1
2
Φ2

HA
2

are independent of y so that their quotient is constant. Heed that for x→ 1 convection becomes
dominant. But this problem is solved by truncation as it is outlined in Section 3.7. Moreover
y ranges from −∞ to +∞ which is roughly speaking even more infinite than before. Yet, as it
is done in the case of the Black-Scholes equation this problem can also be solved by truncation
(cf. Section 3.7).
Concerning x or r respectively things are more complicated and we have to closely look at the
coefficient functions:

k̃1(x) = −1
2
Φ2

rγr(1− x)2 ln(1− x)

b̃1(x) =
1
2
Φ2

rγr ln(1− x)(1− x) + κθrγr(1− x) + (κ+ η)(1− x) ln(1− x)

and hence

b̃1(0) = κ θrγr

= 2.22579e− 2

k̃1(0) = −1
2
Φ2

rγr ln(1)

= 0

lim
x→0

b̃1(x)
k̃1(x)

= ∞.
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Figure 2.2: This plot shows the convection-diffusion ratio in x-direction of the transformed PDE
(2.7) and the convection-dominance near both boundaries

We note that the operator still degenerates and near the boundary x = 0 and that convection is
still dominant which is depicted in Figure 2.2. Seemingly the transformation went to no avail.
However, a logarithmic singularity is less harmful than a linear one.
In addition, we have to look at the effects on the far boundary. Assuming the truncation results
from Section 3.7 to be already known we compute the following:

lim
x→1

b̃1(x)
k̃1(x)

= lim
x→1

1/2Φ2
rγr ln(1− x)(1− x) + κθrγr(1− x) + ln(1− x)(1− x)(κ+ η)

−1/2Φ2
rγr(1− x)2 ln(1− x)

= lim
x→1

(
−1

1− x
− 2κθr

Φr

1
(1− x) ln(1− x)

− 2(κ+ η)
Φ2

rγr

1
1− x

)
= ∞

k̃1(xmax = 0.95) = −4.08574e− 5
b̃1(xmax = 0.95) = −8.00733.

Unfortunately we obtain a convection-to-diffusion ratio of 1.95984e5, which shows that we might
have to use stabilization techniques in x-direction.
Summing up those results one might say that the additional convection dominance at the far
boundary was the price to be paid for a less severe singularity at the other boundary. This is
acceptable because the near boundary is in some sense more important as it is the boundary
where potential prepayment occurs.
Moreover it is worthwhile examining and interpreting the derivative of the transformation in
x-direction, which is

x′(r) = γr exp(−γrr).

Compared to the original domain in r the transformed domain is more thoroughly resolved if
x′(r) > 1. This is the case if

r <
ln(γr)
γr

= 0.3662.

The reason behind that is that any such r is mapped to an x > r. Hence small r, in which
we are particularly interested, consume more space in x than in r so that after discretization of
the x-space more degrees of freedom relate to small interest rates than it would have been the
case if the r-space had been discretized. Altogether our transformation ensures that the possible
prepayment region is more carefully handled.
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2.8.3 Original Transformation

In this section I present the transformation of PDE (2.6) which was originally proposed in [28].
Moreover in the chapter on numerical results it will become plain that our transformation is far
more advantageous than this one.
In contrast to our transformation the original domain (0,∞)× (0,∞) is, again independently of
γr and γH , mapped to (0, 1)× (0, 1) by virtue of the following choices:

y :=
r

γr + r

z :=
H

γH +H
s := T − t.

The two parameters are selected as in [28]:

γr = 0.05740
γH = 1.25.

For the derivatives of the new variables we obtain

dz

dH
=

(1− z)2

γH

dy

dr
=

(1− y)2

γr

ds

dt
= −1

d2z

dH2
=

−2(1− z)3

γ2
H

d2y

dr2
=

−2(1− y)3

γ2
r

H =
γHz

1− z

r =
γry

1− y

and inserting them into the transformation formulas eventually yields:

M l
t = −Us

M l
H = Uz

(1− z)2

γH

M l
r = Uy

(1− y)2

γr

M l
HH = Uzz

(1− z)4

γ2
H

− Uz
2(1− z)3

γ2
H

M l
rr = Uyy

(1− y)4

γ2
r

− Uy
2(1− y)3

γ2
r

.

These substitutions for the derivatives as well as those for r, H and t are now inserted into the
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original equation so that we have:

0 =
1
2

Φ2
rr

γ2
r

[
Uyy(1− y)4 − Uy2(1− y)3

]
+

1
2

Φ2
HH

2

γ2
H

[
Uzz(1− z)4 − Uz2(1− z)3

]
+

(
[κ(θr − r)− ηr − Φr

√
rλ]
)
Uy

(1− y)2

γr
+ (r − qH)HUz

(1− z)2

γH
− Us − rU + C

=
β2

r

2
Uyy(1− y)4 +

β2
H

2
Uzz(1− z)4 +

[
−αr

γr
(1− y)2 − β2

r (1− y)3
]
Uy +

Uz

[
αH

γH
(1− z)2 − β2

H (1− z)3
]
− Us −

γry

1− y
U + C

where the constants βr, βH , αr and αH have the following meanings:

βr =
Φr

γr

√
r

βH =
ΦHH

γH

αr = Φr

√
rλ[κ(θr − r)− ηr]

αH = (r − qH)H.

But unfortunately we have not yet fulfilled our aim of completely removing r and H from the
equation and replacing them by y and z as they still appear in the constants. Therefore we
rewrite the constants as follows:

βr =
Φr√
γr

√
y

1− y

βH = ΦH
z

1− z

αr = −Φr

√
γry

1− y
λ+ κθr − (κ+ η)

γry

1− y

αH = (
γry

1− y
− qH)

z

1− z
.

Now they do no longer depend on r and H and can be inserted into the above equation, which
yields:

0 =
Φ2

r

2γr
y(1− y)3Uyy +

Φ2
H

2
z2(1− z)2Uzz + [

κθr

γr
(1− y)2 − (κ+ η)(1− y)y

−Φrλ

√
y

γr(1− y)
(1− y)2 − Φ2

r

γr
(1− y)2y]Uy (2.8)

+
[
(
γry

1− y
− qH)z(1− z)− Φ2

H (1− z)z2

]
Uz

+ γr
y

1− y
U − Us + C.

In the second step of the transformation process we have to heed that the boundary conditions
also require transformation. Because of z(0) = 0 and limr→∞ y(r) = 1 we procure:

U(0, y(r), s) = 0
U(z(H), y(r), 0) = 0

U(z(H), 1, s) = 0
U ′(1, y(r), s) = 0
U(z(H), 0, s) = min(C (T − t), (1 +X)Ft, (1 +X)H).
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2.9 Probability Weighting

As already mentioned in Section 2.3 a probabilty weighting of the solution of equation (2.6) has
to be performed following every time step. But fortunately one can resort to only weighting
the solution at the times of the coupon payments because exercise of either option is financially
suboptimal at any other times. In this section I would like to justify why this is the case.
First we will consider a series of European call options on the underlying bond. The strike times
of these options shall be the times of the coupon payments. We will then derive a lower bound
for the value of such a European option, which is also a lower bound for both the corresponding
American option and the American option which can be exercised during the whole lifespan of
the underlying bond. The last statements hold because every right given to the holder of the
European option is contained within the American options. Having these lower bounds we can
justify why option exercise is only reasonable at the coupon payment dates. The arguments
given are based on those expounded in [51].

Before starting we have to ensure that the results can actually be applied to mortgage-backed
securities. Within the mortgage-backed security there is a joint call option on the underlying
bond (prepayment or default) with a time-dependent strike. Since exercise of one option means
forfeit of the other it suffices to merely consider one option with strike

Xt = (1 +X) min(Ft,Ht).

This is an American-style option on a bond which can be exercised at any time during the life
of the mortgage, so that the above strategy can actually be applied in our setting.

2.9.1 Lower Bound for European Options

Assume the times t1, . . . , t360 to be the times of the scheduled coupon payments and consider
further European-style options with strike prices Xt1 , . . . , Xt360 for those times.
We now fix an arbitrary path for Ht and consider the following portfolios:

• portfolio A:
a European call-option c on the bond and an amount of cash equal to X exp(−

∫ ti
0 r(t)dt)

• portfolio B:
the bond.

Concerning portfolio A we can state that upon investing the amount of cash at the riskfree
interest rate its value increases to Xt at maturity of the option and if at that time Bt > Xt the
option is exercised and the value of the portfolio is (Bt − Xt) + Xt = Bt. If the reverse holds
and Bt ≤ Xt the option expires worthless and the value of the portfolio becomes Xt. Overall we
have:

value of portfolio A = max(Bt, Xt).

The value of portfolio B is apparently always the value of the bond. Summing up yields that
at the expiration date of the option portfolio A is always worth at least as much as portfolio B.
Due to this certainty the same must be true for the present value of the portfolios which means:

c+X exp
(
−
∫ ti

0
r(t)dt

)
≥ Bt.

Since the value of an option is always non-negative we eventually obtain

c ≥ max(B −X exp
(
−
∫ ti

0
r(t)dt

)
, 0).
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2.9.2 Option Exercise at a Coupon Date

First we have to note the analogy between coupon payments on a bond and dividend payments
on stocks. Both these cases are treated in a mathematically identical way and for a stock we
know that once it goes ex-dividend, i. e. a dividend D is paid, its price St drops to St −D.
Returning to our bond we therefore have to consider what happens if the option is exercised at
a coupon date. Due to the drop-off it is exercised only shortly prior to the payment and not
afterwards. If so, the value is

Btn −Xtn .

If the option is not exercise the value of the bond drops to Btn − C and by applying the lower
bound derived in the previous section we obtain that if exercise is not reasonable the following
condition has to hold:

Btn − C −Xtn+1 exp
(
−
∫ ti

0
r(t)dt

)
≤ Btn −Xtn .

Rewriting yields that it cannot be optimal to exercise if

C ≤ Xtn+1 exp
(
−
∫ ti

0
r(t)dt

)
−Xtn

or conversely exercise is only optimal if

C > Xtn+1 exp
(
−
∫ ti

0
r(t)dt

)
−Xtn .

2.9.3 Option Exercise Between Coupon Dates

Having stated this condition for the optimality of option exercise we can ponder what happens
if one exercises the option between two coupon payments instead of immediately prior to one.
To do so we consider a time ti < τ < ti+1. If exercise is optimal at least the following condition
has to be satisfied

Bτ −Xti+1 exp(−
∫ ti

0
r(t)dt) ≤ Bτ −Xτ

or equivalently

Xτ ≤ Xti+1 exp(−
∫ ti

0
r(t)dt)︸ ︷︷ ︸

≤1

.

Hence this condition can only be fulfilled if Xti+1 ≥ Xτ . Since Ft, the remaining principal to be
repaid to the lender, is obviously monotone decreasing Ht has to increase significantly between
τ and ti+1 in order to compensate for the exp-expression and the decrease in Ft, which makes
such a development relatively improbable. Thus option exercise in between two coupon payment
dates is highly unlikely.
Altogether this can be regarded as a justification why we can resort to considering option
exercise, which is in fact done by the probability weighting described in Section 2.3, only at the
coupon payment times.
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Chapter 3

Discretization of the PDE

In this chapter I will in detail describe how the partial differential equation (2.6) for the valuation
of MBSs is discretized. This process is at least in general independent of transformation and
it consists of two steps, namely the approximation in the spatial coordinates and the time
discretization. The aim of this process is to replace the PDE by a finite-dimensional linear
system of equations we can solve numerically.
In addition, we should mention right at the beginning that it plays a significant role whether
one first discretizes in space or in time. We choose to first discretize in space which is called the
method of lines. In this case we will eventually obtain an ordinary differential equation in the
finite element space.

3.1 Weak Formulation of the PDE

The first step of the discretization process is re-stating the partial differential equation in a
weak formulation. Its derivation is independent of whether or not equation (2.6) is transformed.
Therefore our strategy is the following: in Subsection 3.1.1 we first re-write a coefficient form
PDE in a divergence-form PDE (for explanations see below), then we state the actual weak
formulation in Subsection 3.1.2 and finally we mention the weak formulation in the concrete
example of the transformed PDE (2.7).

3.1.1 Divergence Form

We are dealing with a partial differential equation of the following form, the so-called coefficient
form:

k1(x)uxx + k2(y)uyy + b1(x)ux + b2(x, y)uy + c(x)u− ut = f in Ω× (0, T ).

Transforming it to divergence form means that it can be written as follows

∇ · (−K(x, y)∇u) + β(x, y) · ∇u+ c(x)u− ut = f in Ω× (0, T ), (3.1)

where β ∈ (C0(Ω))2 and K ∈ (C1(Ω))2×2 can be assumed to be diagonal since there are no
mixed second derivatives. In the ensuing subsection it will become plain that the divergence
form is more convenient for the purpose of integration by parts, a technique which will be used
to obtain the weak formulation.
If K11 = −k1(x) and K22 = −k2(y) is chosen, the desired property is attained by selecting

43
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β1 = b1(x)− ∂xk1(x) and β2 = b2(x, y)− ∂yk2(y) because

f = ∇ · (−K(x, y)∇u) + β(x, y) · ∇u+ c(x)u− ut

= −∇ ·
(
−k1(x)ux

−k2(y)uy

)
+ β(x, y) · ∇u+ c(x)u− ut

= (∂x(k1(x)ux) + ∂y(k2(y)uy)) + (b1(x)− ∂xk1(x))ux

+(b2(x, y)− ∂yk2(y))uy + c(x)u− ut

= k1(x)uxx + k2(y)uyy + b1(x)ux + b2(x, y)uy + c(x)u− ut.

We note that β has to be chosen in a way ensuring that the additional term from the derivation of
the product K(x, y)∇u is annihilated. Henceforth we can without loss of generality presuppose
our PDE to be given in divergence form.

3.1.2 Weak Form

We assume the PDE (3.1) to be given on a domain Ω× (0, T ) ⊂ R2 × (0, T ) and for brevity we
define a differential operator L in the following way:

L := ∇ · (−K(x, y)∇) + β(x, y) · ∇+ c id (3.2)

In addition to the equation itself we have to consider boundary values of the following type:

u = gD on ΓD

∇u · ν = gN on ΓN .

Here ∂Ω = Γ = ΓD ∪̇ΓN denotes the boundary of Ω and is decomposed into two disjoint parts
denoted by ΓD and ΓN indicating the prescription of Dirichlet- or Neumann-values respectively.
ν be the outward normal of Ω. Hence we are dealing with mixed boundary conditions instead
of pure ones. Moreover they are not even homogeneous, i. e. gD does not vanish identically on
ΓD.
Before we can continue with the actual weak formulation we have to address and resolve two
problematic items:

• Reformulation of inhomogeneous boundary values to homogeneous boundary values and a
constraint

• Choice of space from which the testing functions are taken

While the former item will be dealt with below we consider functions from the space C2(Ω) ∩
C0(Ω̄) ∩ H1(Ω) which vanish in a neighborhood of ΓD concerning the second item. By V we
denote the closure of this space under the H1-norm (cf. Appendix B for a definition).

Multiplying the PDE with a testing function v ∈ V and integrating over Ω yields:∫
Ω
∇ · (−K(x, y)∇u) v +

∫
Ω

(β(x, y) · ∇u) v +
∫

Ω
c(x)u v =

∫
Ω
f v +

∫
Ω
ut v ∀ v ∈ V.

Applying integration by parts in the first integral we procure:∫
Ω
f v +

∫
Ω
ut v =

∫
Ω
(K(x, y)∇u) · ∇v +

∫
ΓN

K(x, y)∇u · ν︸ ︷︷ ︸
=gN=0

v +
∫

Ω
(β(x, y) · ∇u) v

+
∫

Ω
c(x)u v ∀ v ∈ V
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The other boundary integral over ΓD vanishes because of v ∈ V . Resolving the matrix and
vector expressions in the first two integrals we obtain the weak formulation of equation (3.1):∫

Ω
(k1uxvx + k2uyvy) +

∫
Ω

(β1uxv + β2uyv) +
∫

Ω
c(x)u v =

∫
Ω
f v +

∫
Ω
ut v ∀ v ∈ V (3.3)

What we have yet to discuss is what happened to the inhomogeneous boundary values for which
our testing space V does not account. To do so we introduce the following bilinear and linear
forms, the claimed properties of which follow from the respective properties of the gradient
operator and the Lebesgue integral:

A(u, v) :=
∫

Ω
(K(x, y)∇u) · ∇v +

∫
Ω

(β(x, y) · ∇u) v +
∫

Ω
c(x)u v

m(u, v) :=
∫

Ω
u v (3.4)

l(v) :=
∫

Ω
f v.

Then equation (3.3) can be written in the following variational form:

A(u, v) = l(v) +m(ut, v) ∀ v ∈ V. (3.5)

Next, I will deduce that one can formulate the inhomogeneous equation as a homogeneous one
with additional constraints. The argument is based on the one outlined in [11] for the elliptic
problem.
In order to do so we introduce a sufficiently smooth function u0 which be the extension of gD to
Ω̄. Note that using u0 we can always write an inhomogeneous problem as a homogeneous one if
we replace f by

f̃ := f − Lu0 + u0t.

Moreover we can define a linear form l̃ in the following way:

l̃(v) :=
∫

Ω
f̃ v.

Next we consider the function w := u− u0 (u be a solution of the homogeneous problem) which
vanishes on the Dirichlet-boundary by construction and satisfies:

A(w, v) = l̃(v) +m(ut, v) ∀ v ∈ V.

By definition we then have:

A(u, v)−A(u0, v) = A(w, v)
= l(v) +m(Lu0, v)−m(u0t, v)︸ ︷︷ ︸

=A(u0,v)

+m(ut, v).

So we eventually obtain the following variational equation with constraints:

A(u, v) = l(v) +m(ut, v) ∀ v ∈ V (3.6)
u− u0 ∈ V.

This is the desired form with homogeneous data on ΓD in the testing functions and an additional
constraint which ensures that u actually takes on the value gD = u0|ΓD

on the respective part
of the boundary.
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3.1.3 The Weak Formulation of Our PDE

In this section the weak formulation of our partial differential equation covering mortgage-backed
securities shall be explicitly stated. This is outlined for the PDE in its transformed face (2.7).
Therefore we recall the coefficients from Section 2.8:

k1(x) = −1
2
Φ2

rγr (1− x)2 ln(1− x)

k2(y) =
1
2
ΦH A2

b1(x) =
1
2
Φ2

rγr ln(1− x)(1− x) + κ θr γr (1− x) + (κ+ η) ln(1− x)(1− x)

b2(x) = −A
(

1
2
Φ2

H +
ln(1− x)

γr
+ qH

)
c(x) =

ln(1− x)
γr

.

According to Section 3.1.1 we have to state a matrix K and a vector-valued function β in the
following way:

K(x) =
(
−k1(x) 0

0 −k2

)
=

(
1
2Φ2

rγr (1− x)2 ln(1− x) 0
0 1

2ΦH A2

)
β(x) =

(
b1(x)− ∂xk1(x)

b2 − ∂yk2

)
.

Concerning β we exploit that k2 is independent of y and that

∂xk1(x) = Φ2
rγr(1− x) ln(1− x) +

1
2
Φ2

rγr(1− x)

so that altogether we procure:

β(x) =

(
−1

2Φ2
rγr ln(1− x)(1− x) + κ θr γr (1− x) + (κ+ η) ln(1− x)(1− x)− 1

2Φ2
rγr(1− x)

−A
(

1
2Φ2

H + ln(1−x)
γr

+ qH

) )
.

By this we have defined PDE (2.7) in its divergence form and by virtue of Section 3.1.2 in
consequence also in its weak form.

3.2 Spatial Discretization

In this section I will detailedly explain how I use finite elements in order to provide a spatial
discretization, which consists of deriving a linear system of equations based upon a given triangu-
lation and a choice of approximating functions Vh ⊂ V . The starting point of this discretization
is the constrained variational problem (3.6) we derived in Section 3.1.2:∫

Ω
k1uxvx + k2uyvy +

∫
Ω
β1uxv + β2uyv +

∫
Ω
c(x)u v =

∫
Ω
fv +

∫
Ω
utv ∀ v ∈ V

u− u0 ∈ V.

Since both the space of the testing functions V and the space in which we are seeking a solution
to the PDE (it be denoted by W ) have infinitely many dimensions we have to resort to approx-
imating V and W by finite-dimensional subspaces Vh ⊂ V and Wh ⊂W .
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Furthermore we make the simplifying assumption Wh = Vh which according to [11] is called
”conform”. So we are seeking a finite-dimensional solution uh ∈ Vh which approximates u. In
other words, uh can be expressed in the basis of Vh and we have to derive a linear system of
equations for the coefficients of uh in this particular basis.

3.2.1 Linear System of Equations

In order to derive the linear system of equations corresponding to the partial differential equation
we state the ”discretized” version of (3.3):∫

Ω
k1 (uh)x vx+k2 (uh)y vy+

∫
Ω
β1 (uh)x v+β2 (uh)y v+

∫
Ω
c(x)u v =

∫
Ω
f v+

∫
Ω
(uh)t v ∀v ∈ Vh

and rewrite it using the bilinear and linear forms A, M and l defined in (3.4). Hence the PDE
becomes

A(uh, v) = l(v) +m(ut, v) ∀ v ∈ Vh. (3.7)

Suppose now that the dimension of Vh is m ∈ N and that there is a basis ϕ1, . . . , ϕm of Vh. Then
the solution uh can be written as

uh(x, y, t) =
m∑

i=1

Ui(t)ϕi(x, y).

Furthermore it suffices for the discrete variational equation (3.7) to be true that it holds for any
of the basis functions so that by inserting uh we procure

m∑
i=1

UiA(ϕi, ϕj) = l(ϕj) +
m∑

i=1

U ′
i m(ϕi, ϕj) for j = 1, . . .m.

Pending the time discretization we can now obtain a linear system of equations by defining
matrices which shall also be denoted by A and M in an almost obvious way and a right-hand-
side F as follows:

aij = A(ϕi, ϕj) i, j = 1, . . . ,m
Fj = l(ϕj) j = 1, . . . ,m (3.8)
mij = m(ϕi, ϕj) i, j = 1, . . . ,m,

where A = (aij)i,j=1,...,m, M = (mij)i,j=1,...,m and F = (F1, . . . Fm)T and thus we obtain the
following linear system of equations

AU = F + MU ′. (3.9)

Having derived a linear system of equations representing the differential equation we now have
to deal with the constraints. We demand that they be satisfied pointwise for the interpolation
points ζi ∈ ΓD (cf. Section 3.2.2 for an explanation) in the Dirichlet boundary ΓD, i. e.

uh(ζi) =
m∑

j=1

Uj(t)ϕj(ζi)

!= gD(ζi) ∀ iwith ζi ∈ ΓD.
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By defining a matrix B = (bij)i,j=1,...,m and a vector G = (gi)i=1,...,m as

bij = ϕj(ζi)
gi = gD(ζi)

one can also write these pointwise constraints in a linear system of equations:

BU = G. (3.10)

But we have to keep in mind that we have yet to specify the approximation space Vh. Moreover
in order to be able to solve this system we have to compute the entries of the matrices A and
M and the appearing vectors which requires numerical integration and we have to discretize the
time derivative.

3.2.2 Triangulation

This section on triangulating is supposed to provide some basic definitions concerning triangu-
lations and corresponding vocabulary. Furthermore we attain some insight on what elementwise
regularity means.
But first we should start with the basic definitions which are in their entirety taken from [11].

Definition 3.2.1 A decomposition T = {T1, . . . , TM} of Ω is called admissible if the following
three properties are satisfied:

1. Ω̄ =
⋃M

i=1 Ti

2. If Ti ∩ Tj consists of one point only, it is a vertex of both Ti and Tj.

3. If Ti ∩ Tj consists of more than one point, Ti ∩ Tj is an edge of both Ti and Tj.

Heuristically speaking this definition means that unless empty the intersection of two elements
of the decomposition is a point (common vertex of both) or a common edge of both and the
union of all should be the whole domain Ω (or more precisely its closure).
All triangulations used in this thesis satisfy the following important property:

Definition 3.2.2 (Shape-Regularity) A family {Th}h of decompositions is called shape reg-
ular (quasi-uniform) if there is some κ > 0 such that any T ∈ Th contains a disc of diameter
2ρT with ρT ≥ hT

κ and hT is half the diameter of T .

Moreover we can state the following lemma on elementwise defined functions:

Lemma 3.2.3 Let Ω be a bounded domain and k ≥ 0. Then an arbitrarily often differentiable
function v : Ω̄ → R is in Hk(Ω) if and only if it is in Ck−1(Ω̄).

A proof of this lemma can be found in [11].
Furthermore I would like to stress that we are going to use non-uniform but still shape-regular
grids which ensures that the more critical a region of the domain is the more degrees of freedom
are placed there. Since this is done apriori based on the facts pointed out in the previous chapter
this helps to considerably improve the solution but is still a step short of actual adaptivity based
on aposteriori error estimators.
In Figure 3.1 we illustrate the shape of the grids we use in a schematic way, i. e. by plotting
such a grid for far less unknowns than used during our computations.
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Figure 3.1: Schematic illustration of the non-uniformly refined meshes used in this thesis

3.2.3 Finite Element Spaces

Before starting with a formal definition it is my intention to point out several of the character-
istics finite element spaces are supposed to have according to [11]:

• The computational domain is decomposed to polytopes, mostly triangles or rectangles in
2D and tetrahedrons or hexahedrons in 3D.

• Most of the time the restrictions to those entities are polynomials.

• The degree of the polynomial on a certain element is a local property.

• Overall the elements are supposed to be of regularity Ck.

First I will give a formal definition of what finite elements are.

Definition 3.2.4 (Finite Element) A finite element is a triple (T,Π,Σ) with the following
properties:

1. T is a polytope in Rd

2. Π is a finite-dimensional subspace of C(T ). Its dimension is denoted by s and its elements
are referred to as shape functions.

3. Σ is a set of s linearly independent functionals over Π. Any p ∈ Π is uniquely characterized
by the values of the s functionals from Σ.

Next we will explain what an affine family is, which ensures that we can transform any element
to a fixed reference element.

Definition 3.2.5 (Affine Family) A family of finite element spaces Sh with decompositions
Th of Ω is called an affine family if there exists an element (Tref ,Πref ,Σref ) with the following
property: For any Tj ∈ Th there is an affine mapping Fj : Tref → Tj such that for any v ∈ Sh

the restriction to Tj takes on the following shape:

v(x) = p(F−1
j x) for p ∈ Πref .

In addition, any functional l ∈ Σ looks like

l(v) = lref (p) with p = v ◦ F, lref ∈ Σref .
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Both these definitions were taken from [11].
Heuristically speaking the idea behind affine families is that it suffices to define the finite ele-
ment functions on a reference element, while on other elements they are defined via an affine
linear transformation to the reference element. This is extremely helpful in obtaining error es-
timates because the characteristics of the triangulation translate to the characteristics of the
transformation matrix and can then be incorporated through the transformation formula of the
Lebesgue integral. Moreover it enables us to give estimates on the reference element and by
same the means extend them to the whole domain.
Now I want to introduce the most prominent examples of finite elements, the so-called Lagrange
elements. They are actually polynomials of a given order and according to [11] and [96] look as
follows:

• first order M1
0

u ∈ C0(Ω), Πref = P1, dim(Πref ) = 3

• second order M2
0

u ∈ C0(Ω), Πref = P2, dim(Πref ) = 6

• third order M3
0

u ∈ C0(Ω), Πref = P3, dim(Πref ) = 10

• higher orders analogously.

This means that in the case of second order elements, for instance, the finite element function is
overall continuous on Ω but the restrictions to certain elements are second order polynomials,
which look as follows in a two dimensional space:

p(x, y) = a0 + a1 x+ a2 y + a3 x
2 + a4 x y + a5 y

2.

Hence this leads to six degrees of freedom a0, . . . , a5 as stated.
In order to make this more palpable I would like to state a remark on interpolation with such
polynomials in the case of triangular elements, which is exactly what we are going to use when
solving the equation:

Proposition 3.2.6 Let t ≥ 0. In the triangle T be given s = 1+2+ . . .+(t+1) points z1, . . . , zs
on (t + 1) lines. Then for any f ∈ C(T ) there is one and only one polynomial p of degree t
satisfying:

p(zi) = f(zi) for i = 1, . . . , s. (3.11)

The following proof of this statement is taken from [11].
Proof - Proposition 3.2.6:
The proof will follow the strategy of mathematical induction. We note that there is nothing to
be shown for t = 0 and assume the desired statement to already proven for t− 1.
Because of the invariance under affine-linear transformations we can assume an edge to coincide
with the x-axis and furthermore this edge be the one with the points z1, . . . , zt+1. Then there
exists a polynomial p0 = p0(x) such that

p0(zi) = f(zi) for i = 1, . . . , t+ 1.

By assumption there is also a polynomial q = q(x, y) of degree t− 1 which satisfies:

q(zi) =
1
yi

(f(zi)− p0(zi)) for i = t+ 2, . . . , s.
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Then p(x, y) = p0(x) + y q(x, y) satisfies (3.11).
�

This statement can be used to more formally define Lagrange-elements.

Definition 3.2.7 (Lagrange-Elements) Concerning a finite element space there be a set of
points such that the finite element functions are characterized by the values at those points. The
set of functions which do not vanish for one and only one of these points constitute a nodal basis
which is also referred to as Lagrange elements.

3.2.4 Error Estimates

Eventually I revisit some of the basic error estimates for finite element discretizations of elliptic
problems. Although we are dealing with a parabolic problem this is reasonable because semi-
discrete and fully discrete estimates as described in Section 3.5 depend on the approximation
properties of finite elements. More on that can be found in [64].
Elliptic problems can be written in the following variational form:

a(u, v) = (f, v) ∀ v ∈ V.

Other theoretic results (cf. Appendix B) teach us that there is a unique solution to this problem
if V is a Hilbert space and a is continuous and V-elliptic, which is defined as follows.

Definition 3.2.8 (Continuity, Ellipticity)

1. A bilinear form a : V ×V → R is called continuous if there is a constant C <∞ such that

|a(v, w)| ≤ C ||v||V ||w||V ∀ v, w ∈ V.

2. A bilinear form a : V × V → R is called V-elliptic if there is some α > 0 such that

|a(w,w)| ≥ α ||w||2V ∀w ∈ V.

α is called the ellipticity of a.

In addition, we consider the discretized elliptical problem, for the solution of which we are
seeking error estimates:

a(uh, v) = (f, v) ∀ v ∈ Vh.

The most fundamental error estimate, which is relatively easy to procure and which serves as
the starting point for further considerations, is the Céa-Lemma.

Lemma 3.2.9 (Céa-Lemma) Consider a V -elliptic bilinear form a and denote by uh and u
the respective solutions to the variational problems in V and Vh. Then the following estimate
holds:

||u− uh||V ≤ C

α
inf

vh∈Vh

||u− vh||V .

The following proof and the above definitions are taken from [11].
Proof - Lemma 3.2.9:
By subtraction of the definitions of u and uh we immediately obtain the so-called Galerkin-
orthogonality:

a(u− uh, v) = 0 ∀ v ∈ Vh.



52 CHAPTER 3. DISCRETIZATION OF THE PDE

Consider now vh ∈ Vh and v = uh − vh ∈ Vh. Because of the properties of a this yields:

α||u− uh||2V ≤ a(u− uh, u− uh)
= a(u− uh, u− vh) + a(u− uh, vh − uh)︸ ︷︷ ︸

=0

≤ C||u− uh||V ||u− vh||V .

Dividing by α and ||u−uh||V as well as taking into consideration that vh was arbitrary establishes
the desired inequality and completes the proof.

�

Having stated the Céa-lemma we recognize that in order to give an estimate for the approxi-
mate solution uh we have to estimate the infimum. Therefore we will examine how well u is
approximated by element-wise polynomials.
Before we are able to write down the estimate we have to explain the meaning of several expres-
sions appearing in the below statements. To do so assume a decomposition Th = {T1, . . . , TM}
of Ω and an m ≥ 1 and define a norm in the following way:

||v||m,h :=
√ ∑

Tj∈Th

||v||m,Tj .

Here || · ||m denotes the m-th Sobolev norm. If m ≥ 2 the embedding theorems by Sobolev (cf.
Appendix B) yieldHm(Ω) ⊂ C0(Ω) which strictly speaking means that any element [v] ∈ Hm(Ω)
has a continuous representative v, to which in turn polynomial interpolation can be applied. In
other words, there is a uniquely defined polynomial Ihv ∈ Vh and we seek to estimate ||v−Ihv||m,h

through ||v||t,Ω for some t ≥ m.
The main result on the quality of polynomial interpolation is the following:

Proposition 3.2.10 Let t ≥ 2 and Th be a shape-regular (quasi-uniform) triangulation of Ω.
Then interpolation by element-wise polynomials of degree t− 1 satisfies the inequality

||u− Ihu||m,h ≤ c(Ω, κ, t)ht−m |u|t,Ω for u ∈ Ht(Ω).

Concerning the validity of Proposition 3.2.10 we should strongly emphasize that u ∈ Ht is
required. If such a property is satisfied depends on the PDE. More precisely regularity theory
would have to be carried out. Such is done in Section 3.9. Besides that Proposition 3.2.10 is the
most important estimate concerning numerics because it tells us the convergence order we can
expect and spot if our problem is smooth enough depending on the order of the approximating
polynomials. A proof is given in [11].
But one can attain even more results by exploiting the given regularity of a problem. These
further accomplishments are error estimates in both the energy- and the L2-norm.

Theorem 3.2.11 (Energy norm) By Th a shape regular (quasi-uniform) family of decompo-
sitions of Ω be denoted. Then in the case of linear, quadratic or cubic triangle elements the
following estimate holds for the finite element solution uh:

||u− uh||H1(Ω) ≤ c h ||u||H2(Ω)

≤ c h ||f ||L2(Ω).

Theorem 3.2.12 (L2-norm) Under the assumptions of Theorem 3.2.11 and suitable further
presumptions we can state the following:
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1. If u ∈ H1(Ω) the following estimate is true:

||u− uh||L2(Ω) ≤ C ch ||u||H1(Ω).

2. If furthermore f ∈ L2(Ω) and hence u ∈ H2(Ω) we even have

||u− uh||L2(Ω) ≤ C2 c2 h2 ||f ||L2(Ω).

What is meant by suitable further presumptions can as well as proofs of both these theorems
be found in [11].

3.3 Numerical Quadrature

This section shall be devoted to the effects of approximating the integrals in the bilinear and
linear forms of Section 3.2 by quadrature formulas rather than computing them exactly.

3.3.1 Adjustments by Quadrature

As we know from (3.8) the entries of both the mass and the stiffness matrices M and A consist
of integrals we, in general, cannot compute exactly. They look as follows:

aij =
∫

Ω
(K∇ϕj) · ∇ϕi + (β · ∇ϕj)ϕi + c ϕiϕj

=:
∫
vij

mij =
∫

Ω
ϕiϕj .

The assembling is performed elementwise by transformation to a certain reference element T̂
where the integrals are of the following type and approximated in the following manner:∫

T̂
v̂(x̂) dx̂ ≈

R∑
i=1

ω̂i v̂(ξ̂i).

R is the number of quadrature points, ξi, i = 1, . . . , R, are the quadrature points and ωi, i =
1, . . . , R, are the respective weights. If we are dealing with an affine family there exists an
affine-linear transformation FT (x̂) = Bx̂+d for some B and d and one can compute the integral
on the element T via the transformation formula:∫

T
v(x)dx =

∫
T̂
v(x̂) dx̂ |det(B)|

≈
R∑

i=1

ωi,T v(ξi,T ),

where ωi,T = ω̂i |det(B)| and ξi,T = F (ξ̂i). Now the original stiffness matrix and the mass
matrix, or to be more precise the bilinear forms and linear forms by which they are defined, are
replaced by those forms one obtains when using quadrature. So we have:

ah(v, w) :=
∑

T∈Th

[
R∑

l=1

ωl,T (((K∇v) · ∇w)(ξl,T ) + (β · ∇v w)(ξl,T ) + (c v w)(ξl,T ))

]
(3.12)

lh(v) :=
∑

T∈Th

R∑
l=1

ωl,T (f v)(ξl,T ). (3.13)

The above definitions and arguments are taken from [64].
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3.3.2 Error Estimates

In this subsection I am going to write down several statements on the error caused by the
replacements (3.12) and (3.13) as well as on the measures that might be taken to ensure that
the error remains small.
First we have to introduce two variational problems, the first being the original problem and
the second the approximated problem:

u ∈ V : a(u, v) = l(v) ∀ v ∈ V
uh ∈ Vh : ah(uh, v) = l(v) ∀ v ∈ Vh,

where Vh ⊂ V . The main estimate of the error is provided by the so-called first lemma of Strang:

Theorem 3.3.1 (First Lemma of Strang) Presuppose ah to be uniformly elliptic on Vh, i.
e. there be an α > 0 such that for any h > 0 and v ∈ Vh

ah(v, v) ≥ α ||v||2.

Furthermore the bilinear form a be assumed to be continuous on V ×V . Then there is a constant
C which is independent of Vh such that

||u− uh|| ≤ C

(
inf

v∈Vh

(
||u− v||+ sup

w∈Vh

|a(v, w)− ah(v, w)|
||w||

)
+ sup

w∈Vh

|l(w)− lh(w)|
||w||

)
.

Interpreting this theorem we can make the following remarks:

• If a and ah as well as l and lh happen to equal one another, which is the case if the integrals
are computed exactly, the statement is just the Céa-Lemma.

• One has to ensure uniform Vh-ellipticity.

• The consistence errors in the supremum expressions should vanish as h approaches zero.

According to [64] other lemmas and theorems state that the latter can be accomplished of order
k if one uses a regular mesh, if u is sufficiently smooth, i. e. Hk+1, and if one uses quadrature
formulas which are exact for polynomials of degree 2k − 2. Also in [64] one can find a proof of
this theorem.
Eventually I would like to state and prove a criterion for the ellipticity condition, also taken
from [64]:

Lemma 3.3.2 The bilinear form a be V-elliptic and there be a function C(h) satisfying C(h) →
0 for h→ 0 such that

Ah(v) ≤ C(h)||v||

Ah(v) := sup
v∈Vh

|a(v, w)− ah(v, w)|
||w||

.

Then there is an h̄ > 0 such that ah is uniformly Vh-elliptic for h ≤ h̄.

Proof - Lemma 3.3.2:
By assumption we have the following two estimates:

α ||v||2 ≤ ah(v, v) + a(v, v)− ah(v, v)
|a(v, v)− ah(v, v)| ≤ Ah(v) ||v||

≤ C(h) ||v||2.
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If we choose h̄ in a way that C(h) ≤ α/2 for h ≤ h̄ it has the desired property:

ah(v, v) ≥ α ||v||2 − (a(v, v)− ah(v, v))
≥ α ||v||2 − |a(v, v)− ah(v, v)|
≥ α ||v||2 − C(h) ||v||2

≥
(
α− α

2

)
||v||2.

Hence for h ≤ h̄ ah is uniformly elliptic with the constant α
2 .

�

3.4 Time Discretization

The subject matter of this section is a review on multistep-methods for ordinary differential
equations which is of interest to us because after discretizing in space we obtain a system of
ODEs. In Section 3.4.1 I will introduce us to the so-called backward-differentiation formulas, in
Section 3.4.2 error estimates shall be provided and in Section 3.4.3 this is extended to systems
of ODEs.
To do so we will always deal with the following problem:

Problem 3.4.1 Let I ⊂ R be an interval with t0 ∈ I. Find y ∈ C1(I) such that

y′(t) = f(t, y(t)) for t ∈ I
y(t0) = y0,

where f : I × (−∞,+∞) → R be simultaneously continuous in t and y.

3.4.1 Backward-Differentiation Formulas

In order to elucidate what the so-called backward differentiation formulas are we first consider
a slightly more general case, the so-called q-step-methods.

Definition 3.4.2 (q-step-method) For q ≥ 0 a q-step-method is a method where for all n ≥
q − 1 un+1 depends on un+1−q but not on uk with k < n+ 1− q.

Moreover we shall restrain ourselves to linear multi-step-methods, i. e. methods of the following
type:

un+1 =
p∑

j=0

aj un−j + h

p∑
j=0

bjfn−j + hb−1fn+1 for n = p, p+ 1, . . . (3.14)

These schemes are (p+ 1)-step-methods and they are implicit if b−1 6= 0 and explicit else.
The backward-differentiation formulas, or BDF-schemes as they are abbreviated, are a special
case of these methods, namely those where bj = 0, j = 0, . . . , p. Hence BDF-schemes look as
follows:

un+1 =
p∑

j=0

aj un−j + hb−1fn+1 for n = p, p+ 1, . . . (3.15)

As we will see in the next section these schemes are only stable for p ≤ 5, so that it makes only
sense to list the coefficients for those schemes. The list in Table 3.1 is taken from [80].
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p a0 a1 a2 a3 a4 a5 b−1

0 1 0 0 0 0 0 1
1 4

3 −1
3 0 0 0 0 2

3

2 18
11 − 9

11
2
11 0 0 0 6

11

3 48
25 −36

25
16
25 − 3

25 0 0 12
25

4 300
137 −300

137
200
137 − 75

137
12
137 0 60

137

5 360
147 −450

147
400
147 −225

147
72
147 − 10

147
60
147

Table 3.1: Coefficients of the BDF-formulas for p ≤ 5

Example 3.4.3 We consider the special case p = 1 and show that in this case the BDF-formula
happens to be the implicit-Euler time discretization. This is true because:

un+1 =
p∑

j=0

ajun−j + h b−1 fn+1

= un + h fn+1.

This is apparently the implicit Euler.

3.4.2 Error Estimates

In this section some results on convergence and stability of multi-step-methods shall be stated
and for the most part also be proved. Since BDF-schemes are a special case of those the results
remain true for them. The presented results and definitions are taken from [80].
First recall the definition of consistence:

Definition 3.4.4 The multi-step-method (3.14) is said to be consistent if the local truncation
error satisfies

τ(h) → 0 for h→ 0.

If, in addition, τ(h) = O(hq) holds for some q ≥ 1 we say that the method is of order q.

In the previous definition we made use of the local truncation error which is defined as follows:

Definition 3.4.5 (Local Truncation Error) The local truncation error (LTE) τn+1(h) of the
multi-step-method (3.14) at tn+1 for n ≥ p is defined as

h τn+1(h) = yn+1 −

 p∑
j=0

ajyn−j + h

p∑
j=−1

bjy
′
n−j

 ,
where yn−j = y(tn−j) and y′n−j = y′(tn−j) for j = −1, . . . , p.

The first step on our way to convergence results is to know under which circumstances a scheme
is at least consistent. This is provided by the following theorem, which states conditions the
coefficients have to fulfil.

Theorem 3.4.6 The multi-step-method (3.14) is consistent if and only if the following algebraic
relations hold:

p∑
j=0

aj = 1

−
p∑

j=0

j aj +
p∑

j=−1

bj = 1.
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If furthermore y ∈ Cq+1(I) for some q ≥ 1, the scheme is of order q if and only if the above
conditions hold and for i = 2, . . . , q

p∑
j=1

(−j)i + i

p∑
j=−1

(−j)i−1bj = 1.

Proof - Theorem 3.4.6:
First y and f are expanded in a Taylor series which yields

yn−j = yn − jh y′n +O(h2)
fn−j = fn +O(h).

Reinserting into the multi-step-scheme and neglecting terms of order higher than one leads to:

yn+1 −
p∑

j=0

aj yn−j − h

p∑
j=−1

bj fn−j

= yn+1 −
p∑

j=0

aj yn + h

p∑
j=0

j aj y
′
n − h

p∑
j=−1

bj fn −O(h2)

 p∑
j=0

aj −
p∑

j=−1

bj


= yn+1 −

p∑
j=0

aj yn − h y′n

− p∑
j=0

jaj +
p∑

j=−1

bj

−O(h2)

 p∑
j=0

aj −
p∑

j=−1

bj

 .

In the last step we exploited the ODE and replaced fn by y′n. And by comparison with the
definition of the local truncation error we procure:

h τn+1(h) = yn+1 −
p∑

j=0

ajyn − hy′n

− p∑
j=0

jaj +
p∑

j=−1

bj

−O(h2)

 p∑
j=0

aj −
p∑

j=−1

bj

 .

And hence

τn+1(h) =
yn+1 − yn

h
+
yn

h

1−
p∑

j=0

aj

+ y′n

− p∑
j=0

jaj +
p∑

j=−1

bj


−O(h)

 p∑
j=0

aj −
p∑

j=−1

bj

 .

Since yn+1−yn

h → y′n for h→ 0 it follows that τn+1(h) converges to zero if and only if the algebraic
relations claimed above are satisfied.
The rest of the proof, i. e. the statement concerning higher order can be obtained in exactly the
same way by incorporating higher order terms in the initial Taylor series expansions.

�

This criterion for consistence does not suffice to yield convergence. Thus additional conditions
have to be fulfilled by the scheme. The below considerations about this aspect are taken from
[80].
Given a certain multi-step method we can consider the polynomial

ρ(r) = rp+1 −
p∑

j=0

aj r
p−j



58 CHAPTER 3. DISCRETIZATION OF THE PDE

and we denote its roots by r0, . . . , rn. Note that if our scheme is consistent 1 is a root. Now we
can state the root-condition:

Definition 3.4.7 (Root Condition) The multi-step-method (3.14) is said to satisfy the root-
conditon if all the roots are situated within the unit circle of the complex plane and if those on
the boundary are of multiplicity 1. Or equivalently:

|rj | ≤ 1 for j = 0, . . . , p
ρ′(rj) 6= 0 for those j with |rj | = 1.

Now we have all the ingredients necessary to state the main convergence result.

Theorem 3.4.8 A consistent multi-step-method converges if and only if it satisfies the root-
condition and the error in the initial data converges to zero for h→ 0.
If furthermore the method is of order q and the initial data error behaves like O(hq) for h→ 0,
it also converges with order q.

Finally we have to note that for p ≤ 5 the BDF-schemes satisfy the root-condition, whereas
according to [80] for p > 5 this cannot be ensured generally.
Altogether this yields that for p ≤ 5 the BDF-schemes converge. A proof of Theorem 3.4.8 can
be found the aforementioned reference as well as further analysis and equivalence statements on
the root-condition.

3.4.3 Systems of ODEs

So far we have focused solely on one-dimensional equations. But actually we have to deal with
a system of potentially coupled ordinary differential equations. As long as we can find a way to
decouple the equations that does not pose a problem because in this case the system could be
treated as finitely many one-dimensional ones for which we already have convergence results.
The system we have to solve is equation (3.9) which resulted from the spatial discretization and
which can also be written as

M−1AU − U ′ = M−1F.

If M−1A is diagonalizable there is matrix Q such that Λ = Q−1M−1AQ is diagonal and we can
transform the system in the variable U to an equivalent one in the variable z′ := Q−1M−1AU .
We obtain:

A−1MQz′ = Qz −M−1F

or equivalently:
z′ = Q−1M−1AQ︸ ︷︷ ︸

=:Λ

z +Q−1M−1AM−1F.

In this way we have attained a diagonal system of equations:

z′ = Λz − F̃ ,

where F̃ := Q−1M−1AM−1F and to which the statements for one-dimensional ODEs can be
applied.

3.5 Semi-Discrete Estimates

In this section I will state several so-called semi-discrete error estimates for parabolic problems.
They estimate how the error caused by the spatial discretization spreads over time, while time
is not yet discretized.
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Unfortunately we are actually interested in an estimate for the fully discrete equation but
nonetheless semi-discrete estimates can be helpful because one always has the following:

||u(tk)− uk
h|| ≤ ||u(tk)− uh(tk)||︸ ︷︷ ︸

semi-discrete error

+ ||uh(tk)− uk
h||︸ ︷︷ ︸

error of the time discretization

.

Concerning the notation: u denotes the exact solution to the variational equation (3.5), uh the
solution to the system of ODEs (3.9) resulting from the spatial discretization and uk

h the fully
discrete solution at time step k.
I will now give three estimates for the error of the semi-discrete equation where in contrast to
our initial boundary value problem from Sections 2.5, 2.6 and 2.8 vanishing Dirichlet-boundary
conditions are presumed. The first is in the L2-norm, the second in the H1- or energy norm
and the third one for higher order finite elements. In all the following theorems it shall always
be assumed that the solution is sufficiently smooth for the norms on the right-hand-side to be
reasonably defined. Moreover v and vh denote the respective initial data.
The estimates are taken from [64] where one can also find proofs.

Theorem 3.5.1 If u and uh are the solutions to the variational and semi-discrete variational
equations (3.5) and (3.7) respectively for t > 0 we have the following estimate:

||uh(t)− u(t)||L2 ≤ ||vh − v||L2 + c h2

(
||v||L2 +

∫ t

0
||ut||L2

)
.

The next estimate deals with the H1-semi-norm, i. e. it estimates the error made in the gradient:

Theorem 3.5.2 Under the same assumptions as in the previous theorem one obtains for t > 0:

|uh(t)− u(t)|H1 ≤ |vh − v|H1 + C h

{
||v||H2 + ||u(t)||H2 +

(∫ t

0
||ut||2H1

)1/2
}
.

And eventually I state an estimate which yields a higher order approximation under suitable
further assumptions:

Theorem 3.5.3 If u and uh are defined as previously and if furthermore the Ritz-projection
satisfies the following estimate

||Rhw − w|| ≤ C hr||w||Hr (3.16)

we even have

||uh(t)− u(t)||L2 ≤ Chr

(
||v||Hr +

∫ t

0
||ut||

)
for t ≥ 0.

The last theorem is indeed one for higher order finite elements because the additional condition
(3.16) is only fulfilled if the finite element order is high enough. The Ritz-projection is, for
instance, defined in [11]. Roughly speaking it is the a-orthogonal projection onto Vh ⊂ V .

3.6 The Effect of Probability-Weighting on Convergence

In this section I am going to show that a probability-weighted finite element solution still con-
verges to the probability-weighted exact solution if the unweighted solution converges. This has
to be examined because the above error estimates only account for the PDE solution process,
whereas the process of probability weighting uses the finite element solution as its starting point.
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Therefore we consider a prepayment probability P h
p and a default probability P h

d as defined in
Section 2.3 which depend on h since in checking for optimality of either termination method the
numerical PDE solution is used. We then compute

Ũk
i = (1− P h

p − P h
d )Ui + P h

p (1 +X)Ft + P h
d (1 +X) exp(y/A)

for some transaction cost X in order to adjust the coefficients of the FEM solution at time step
k. By doing so we indeed weight the whole finite element solution uh since

ũk
h :=

DOF∑
i=1

Ũk
i ϕ

h
i

= (1− P h
p − P h

d )
DOF∑
i=1

Uk
i ϕ

h
i +

DOF∑
i=1

(1 +X)P h
p Ft ϕ

h
i +

DOF∑
i=1

(1 +X)P h
d exp(y/A)ϕh

i

= (1− P h
p − P h

d )
DOF∑
i=1

Uk
i ϕ

h
i + (1 +X)P h

p Ft

DOF∑
i=1

ϕh
i︸ ︷︷ ︸

=1

+(1 +X)P h
d exp(y/A)

DOF∑
i=1

ϕh
i︸ ︷︷ ︸

=1

= (1− P h
p − P h

d )uk
h + (1 +X)P h

p Ft + (1 +X)P h
d exp(y/A).

Accordingly we have a weighted exact solution ũ:

ũ := (1− Pp − Pd)u+ Pd (1 +X) exp(y/A) + Pp (1 +X)Ft

Next, we prove that ũk
h converges to ũ(tk) in the following sense:

Theorem 3.6.1 (Probability-weighted Convergence) Assume u to be an exact solution of
the initial boundary value problem (2.6) subject to the initial and boundary conditions stated in
Section 2.6 and uk

h the respective fully discrete finite element solution at the k-th time step.
Moreover a convergence result

||uk
h − u||L2

h→0−→ 0 (3.17)

be given. If ũk
h and ũ are defined as above we also have:

||ũk
h − ũ||L2

h→0−→ 0. (3.18)

In addition, the same statement holds for the transformed initial boundary value problem (2.7)
subject to the respective modified initial and boundary data in Section 2.8.

To be able to prove this statement we have to recall the Hölder-inequality, a proof of which can
be found in [2].

Lemma 3.6.2 (Hölder-inequality) Let m ∈ N and fi ∈ Lpi(µ) for i = 1, . . . ,m and a mea-
sure µ with pi ∈ [1,∞] and p ∈ [1,∞] satisfying

∑m
i=1

1
pi

= 1
p . Then the product f1 f2 . . . fm ∈

Lp(µ) and the following estimate holds:

||
m∏

i=1

fi||Lp ≤
m∏

i=1

||fi||Lpi .

Proof - Theorem 3.6.1:
The proof consists of two steps. First we have show that the probabilities P h

d and P h
p converge

to Pd and Pp respectively in L2. And exploiting that we then procede to show the desired
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convergence result for the weighted solutions.
Let us begin with the second item:

||ũk
h − ũ||L2 = ||(1− P h

p − P h
d )uk

h + (1 +X)P h
p Ft + (1 +X)P h

d exp(y/A)
−((1− Pp − Pd)u+ Pd (1 +X) exp(y/A) + Pp (1 +X)Ft)||L2

= ||(1− Pp − Pd)u− (1− P h
p − P h

d )uk
h + (Pp − P h

d ) (1 +X) exp(y/A)

+(Pp − P h
p ) (1−X)Ft||L2

≤ ||(1− Pp − Pd)u− (1− P h
p − P h

d )uk
h||L2

+||(Pd − P h
d ) (1 +X) exp(y/A)||L2 + ||(Pp − P h

p ) (1−X)Ft||L2

Hölder
≤ ||(1− Pp − Pd)u− (1− P h

p − P h
d )uk

h||L2

+(1 +X) || exp(y/A)||L2︸ ︷︷ ︸
<∞

||(Pd − P h
d )||L2︸ ︷︷ ︸

h→0
−→0

+(1 +X) ||Ft||L2︸ ︷︷ ︸
<∞

||(Pp − P h
p )||L2︸ ︷︷ ︸

h→0
−→0

.

In the last step we took advantage of the fact that the probabilities converge so that apparently
we only have to estimate the first expression:

||(1− Pp − Pd)u− (1− P h
p − P h

d )uk
h||L2 ≤ ||(1− Pp − Pd)u− (1− Pp − Pd)uk

h||L2

+||(1− Pp − Pd)uk
h − (1− P h

p − P h
d )uk

h||L2

≤ ||1− Pp − Pd||L2 ||u− uk
h||L2

+ ||uk
h||L2 ||(1− Pp − Pd)− (1− P h

p − P h
d )||L2

≤ ||1− Pp − Pd||L2︸ ︷︷ ︸
<∞

||u− uk
h||L2︸ ︷︷ ︸

→0 by (3.17)

+ ||uk
h||L2︸ ︷︷ ︸

<∞

||(P h
p − Pp)− (Pd − P h

d )||L2︸ ︷︷ ︸
≤||(P h

p −Pp)||L2+||(Pd−P h
d )||L2

h→0−→ 0.

What remains to be shown is the L2-convergence for the prepayment and default probabilities.
Because of the symmetry in their definitions it suffices to show the statement for one of them,
say P h

p . Consider the following difference between the statements checked for the optimality
decision:

||(1 +X)Ft − uk
h − ((1 +X)Ft − u)||L2 ≤ ||u− uk

h||L2
h→0−→ 0 in L2.

Note that in the limes the optimality decision is the same no matter if accepted or rejected. In
other words both indicator functions, one for optimality and one for sub-optimality, convergence
in L2, so that we obtain the following:

|Pp − P h
p | = |(K1 − exp(−λ1)) 1sub-optimal + (K2 − exp(−λ1)) 1optimal −

(K1 − exp(−λ1)) 1h
sub-optimal + (K2 − exp(−λ2)) 1h

optimal)

≤ (K1 − exp(−λ1)) |1h
sub-optimal − 1sub-optimal|+K2 − exp(−λ2) |1h

optimal − 1optimal|.

Here we took into consideration that all probabilities from Section 2.3 can be written in the
form:

P = K − exp(−λ).
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for some K and λ. By monotonicity of the Lebesgue integral and ||v||L1 ≤ ||v||L2 ∀ v ∈ L2 we
obtain:

||Pp − P h
p ||L2 ≤ ||(K1 − exp(−λ1)) |1h

sub-optimal − 1sub-optimal| ||L2

+ ||(K2 − exp(−λ2)) |1h
optimal − 1optimal| ||L2

Hölder
≤ ||K1 − exp(−λ1)||L2︸ ︷︷ ︸

<∞

||1h
sub-optimal − 1sub-optimal||L2︸ ︷︷ ︸

h→0
−→0

+ ||K2 − exp(−λ2)||L2︸ ︷︷ ︸
<∞

||1h
optimal − 1optimal||L2︸ ︷︷ ︸

h→0
−→0

Altogether this establishes the desired convergence result (3.18).
�

The just proved result is the central point for our numerical approach because it ensures that the
convergence obtained for the PDE part is not hampered by the probability weighting. Further-
more I would like to point out that the same arguments can be applied to the problem obtained
by prescribing the weighted solution as initial datum for the time interval of an ensuing month.
Doing so we procure convergence for the second and later time steps, so that convergence is
ensured for the whole lifespan of the underlying mortgage.

3.7 Truncation of the Domain

In this section I will discuss why the domain has to be truncated and how the boundary values
are adjusted.
First we note once again that after transformation the partial differential equation (2.7) is
defined on a domain with Ω = (0, 1) × (−∞,+∞), which is apparently infinite. Therefore we
have to pick ymin > −∞, ymax < +∞ and replace the domain by (0, 1)× (ymin, ymax) whereby
we attain a finite computational domain. But doing so we also recognize that our boundary
values which have been defined for the limites y → ∞ and y → −∞ can no longer be imposed
without committing an error. However, we choose to tolerate it saying that the conditions are
approximately satisfied if ymin is selected small enough and if ymax is sufficiently large.
The choices we make are:

ymax = 3.5
ymin = −2.3.

This choice can be justified by a scaling of the equation. More precisely we consider 100, 000 to
be a typical house price and by assuming this to be the initial debt of a mortgage this would
translate to a monthly coupon of C = 320 on assuming c = 5% contractual interest. This can
be computed using the formulas from Section 1.2.
We now scale this coupon by a factor a = 100, 000, thus changing the right-hand-side of the
PDE to 1. So we have to alter the left-hand-side in the same way. But because of the linearity
of the differential operator L defined in (3.2) the solution u changes by the same scaling factor,
i. e.

L
(u
a

)
− ∂t

(u
a

)
=

1
a

(Lu− ∂tu)

= −1
a
C.
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Moreover according to Lemma 1.2.2 we know that for a fixed contractual interest rate c a change
in the coupon C to C/a directly leads to a change of the initial debt R0 to R0/a and vice versa.
Combining that with the aforementioned house prices can be interpreted as initial debt meaning
that the upper and lower bounds ymin and ymax can be set relative to house price 1 rather than
100, 000. Nonetheless the above choice corresponds to

Hmax = 1.0966 108

Hmin = 1, 005.184

in real house prices.
As already pointed out in Section 2.6 we have to ensure that the values on separate boundaries
fit one another in their common points, the vertices. In our case we have forfeited the property

lim
y→−∞

u(0, y, t) = 0 ∀ t > 0

by truncation because for y → ymin the boundary condition min(C(T − t), Ft(1 +X),Ht(y)(1 +
X)) remains positive and thus we obtain a jump at this boundary. In order to remove this jump
we make use of interpolation.
The easiest way to interpolate would be linear interpolation between the value of the boundary
condition and zero on a length δ > 0. But unfortunately this is not only the easiest way but it
also has a severe shortcoming in the fact that we would lose regularity as the resulting boundary
datum would only be continuous but not in C1. In order to overcome this we use the following
function taken from [72] and [96]:

χ(y, δ) = I{y>−δ}I{y<δ}

{
1
2

+
y

δ

[
15
16
− 5

8

(y
δ

)2
+

3
16

(y
δ

)4
]}

+ I{y≥δ}.

Here I stands for indicator functions which take on the value one on the specified set and zero
else. The advantage of this fifth-degree polynomial is that it smooths the jump from 0 to 1
with a continuous second derivative. Therefore the boundary condition can be mended in the
following way:

gtrunc(y, t) := χ(y − ymin − δ, δ) g(y, t),

where g denotes the original boundary condition. This choice ensures:

gtrunc(ymin, t) = 0 ∀t > 0
gtrunc(y, t) = g(y, t) ∀y > ymin + 2δ and ∀t > 0.

In our computations we will use gtrunc instead of g as our boundary condition.

3.8 Stabilization

This section shall be devoted to the presentation of a stabilization technique. The necessity of
stabilization can be inferred if the partial differential equation being solved contains a convective
term, i. e. a term involving first spatial derivatives, and if it has the property of becoming large
relative to the diffusive terms. Detailed examples of this phenomenon can be read and found in
[48].
As outlined in Section 2.7 concerning our equation this is indeed the case. Therefore we are in
need of applying a stabilization strategy and we choose the co-called streamline upwind Petrov-
Galerkin technique (SUPG), which is conscientiously elucidated in [63]. The idea behind this is
to add artificial diffusion and thus compensate for the convection dominance but it shall only
be provided when needed. However, we have to make three important simplifications, namely
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• we restrain ourselves to using first order finite elements only which yields vanishing second
derivatives,

• whenever the derivative of a coefficient function has to be computed the dependence on x
or y respectively is ignored and thus the coefficient function is treated as if it were constant,

• this technique is only applied in x-direction.

The first two of these simplifications are extremely severe and restrictive and we have to point
out that they might really hamper the effectiveness of the whole process because our coefficients
heavily depend on x. But at the same time I wish to emphasize that those restrictions are
not voluntarily accepted but rather imposed by the limitations of the Comsol Multiphysics
package which we use in order to solve our initial boundary value problem. In [96], [97] and
[98] it is said that the package is currently incapable of handling non-constant coefficients in
connection with SUPG and trying nonetheless leads to undetermined outcome. So we should
be aware and alert that our stabilization efforts might fall short and fail to be successful.
Stabilization is sought to be attained by abridging the weak formulation (3.3) of our equation.
More precisely the testing function v is replaced by a different testing function ṽ defined as

ṽ := v + δ′1{δ′>0} β1vx,

where δ′ is set in the following way:

δ′ =
δ h

|β1|
− k1

|β1|2
.

Here δ is a parameter and h the local mesh length. The other variables are taken from the
differential operator L defined in (3.2). Hence after replacing the testing function and multiplying
the equation with the new testing function the starting point of the derivation of the weak
formulation looks as follows:∫

(Lu v − ∂tu v) +
∫

(δ′β1vx)(Lu− ∂tu) =
∫
−Cv −

∫
(δ′β1vx)C

The expressions appearing first on each side of the equation are exactly those treated when
originally deriving the weak equation in Section 3.1. Therefore we can focus solely on the other
integrals. Concerning the left-hand-side we obtain:∫

(δ′β1vx)(Lu− ∂tu) =
∫
δ′β1(vxk1uxx + vxk2uyy + β1vxux + β2uxuy + au− ∂tu)

i.b.p.
=

∫
δ′β1( vxx︸︷︷︸

=0

k1ux + vxy︸︷︷︸
=0

k2uy + β1vxux + β2uxuy + au− ∂tu)

=
∫
δ′β1 (β1vxux + β2vx + au− ∂tuvx)

At this point one should heed that in the step where integration by parts was used we suppressed
the dependence of δ′, β and k1 on the spatial variables x and y.
Hence incorporating SUPG with the above restrictions amounts to replacing k1 and a by the
expressions

k̃1 = k1 + δ′β2
1

ã = a+ aδ′β1

and adding the remaining expressions
∫
δ′β1β2 uyvx,

∫
δ′β1∂tu vx on the left-hand-side and

−
∫
Cδ′β1vx on the right-hand-side of the weak equation.
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3.9 Regularity of Solutions

The subject matter of this section is to make plain and plausible that the solutions of our PDEs
(2.6) and (2.7) subject to the respective boundary data from Sections 2.6 and 2.8 are of less
regularity than the second Sobolev space. This is a very crucial aspect because in Proposition
3.2.10 it is pointed out that in the case of linear elements second order in required for the
estimate to hold. Hence if the solution fails to be that smooth we cannot expect to discern a
convergence rate which is that good and we have to be content with a worse rate.
Before being able to do so we have to introduce the concept of uniform parabolicity/ellipticity
for a differential operator ∂t + L with L being defined in (3.2). This is, for instance, elucidated
in [37] or [69].

Definition 3.9.1 (Uniform Parabolicity) We say that the partial differential operator ∂t+L
is uniformly parabolic if there exists a constant θ > 0 such that

n∑
i,j=1

kij(x, t)ξi ξj ≥ θ |ξ|2

for all (x, t) ∈ U × (0, T ] and ξ ∈ Rn, where U ⊂ Rn is the open set on which L is defined.

This definition is taken from [37].
The first thing we do now is argue that the condition of uniform parabolicity as claimed in the
error estimates of Section 3.2 is violated by our differential operator in both the original and
the transformed case.

Lemma 3.9.2 The differential operators from the partial differential equations (2.6) and (2.7)
are not uniformly parabolic.

Proof - Lemma 3.9.2:
We consider the diffusion matrices from equations (2.6) and (2.7)

K1(r,H) =
(
−1/2 Φ2

rr 0
0 −1/2 Φ2

HH
2

)
K2(x, y) =

(
1/2 Φ2

rγr(1− x)2 ln(1− x) 0
0 1/2 Φ2

HA
2

)
and for arbitrary but fixed ξ ∈ Rn we estimate:

ξTK1ξ = −1
2
Φ2

r rξ
2
1 −

1
2

Φ2
H H2 ξ22

≥ −1
2

min(Φ2
rr︸︷︷︸

r→0→ 0

,Φ2
HH

2︸ ︷︷ ︸
H→0→ 0

)

︸ ︷︷ ︸
→0

(
ξ21 + ξ22

)︸ ︷︷ ︸
=||ξ||22

→ 0

ξTK2ξ =
1
2
Φ2

rγr (1− x)2 ln(1− x) ξ21 +
1
2

Φ2
H A2 ξ22

≥ 1
2

min(Φ2
rγr (1− x)2 ln(1− x)︸ ︷︷ ︸

x→1→ 0

,Φ2
H A2)

︸ ︷︷ ︸
→0

(
ξ21 + ξ22

)︸ ︷︷ ︸
=||ξ||22

→ 0.
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Since in both cases the minimum estimate is optimal in the sense that min(a, b) is the small-
est number z such z ≤ a and z ≤ b, it is impossible to find a θ with the desired prop-
erty which means that both times the differential operator fails to be uniformly parabolic.

�

In other words, the statement of the lemma means that θ = 0 would be appropriate.
In Section 3.2 we saw that the Céa-Lemma (cf. Lemma 3.2.9) teaches us about approximate
solutions:

||u− uh|| ≤ C

θ
inf

vh∈Vh

||u− vh||

→ ∞ for θ → 0.

This along with the theorem of Lax-Milgram from Appendix B are strong hints that both regu-
larity as well as the error estimates crucially depend on the modulus of ellipticity or parabolicity
θ.
Next we state a theorem on uniqueness and existence in Sobolev spaces for equations of our type
which is taken from [69]. Once again it shows how difficult it is to obtain H2-regularity since
parabolicity as well as a C2-boundary are presumed (ours is only Lipschitz as it is rectangular).
Definitions of smoothness of domains can be found in [2] and [69]. Moreover the authors deal
with a pure Dirichlet problem rather than a mixed boundary value problem for which regularity
of a certain level is harder to procure and they still barely show H2.
Before being able to state the theorem we have to introduce some notation, i. e. several norms
and spaces used in it. The definitions are also taken from [69].

Definition 3.9.3

1. For r, q ≥ 1 we define the norm

||u||q,r,QT
=

(∫ T

0

(∫
Ω
|u(x, t)|q

)r/q

dt

)1/r

and the space
Lq,r(QT ) = {u measurable | ||u||q,r,QT

<∞}

and for the special case r = q we set || · ||q,q,QT
=: || · ||q,QT

as well as Lq,q(QT ) =: Lq(QT ).

2. W 2l,l
q (QT ) for l integral (q ≥ 1) is the Banach space consisting of the elements of Lq(QT )

having generalized derivatives of the form Dr
t D

s
x with any r, s satisfying 2r + s ≤ 2l. Its

norm is defined by

||u||(2l)
q,QT

=
2l∑

j=0

∑
2r+s=j

||Dr
t D

s
xu||q,QT

,

where the summation is taken over all non-negative integers r, s satisfying 2r + s = j.

3. The local norm is defined as

||f ||(loc)
r,QT

= sup
qT

||f ||r,qT , qT = ω × (0, T ), ω = Ω ∩ cube.

In particular, I wish to emphasize that this definition of the parabolic Sobolev spaces W 2l,l
q is a

generalization of the definition of Sobolev spaces in Appendix B, where they are denoted by H,
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to time-dependent functions. In the following W and H are used interchangeably if it is clear
from the context which one is meant.
Now we have all the ingredients necessary to give the regularity and existence result on parabolic
equations with Dirichlet boundary data which is taken from [69].

Theorem 3.9.4 (Regularity of Solutions of Parabolic Equations) Let q > 1. Suppose
that the coefficients cij of the operator L are bounded continuous functions in QT , while the
coefficients bi and a have finite norms ||bi||(loc)

r,QT
and ||a||(loc)

s,QT
with

r =

{
max(q, n+ 2) for q 6= n+ 2
n+ 2 + ε for q = n+ 2

s =

{
max(q, n+2

2 ) for q 6= n+2
2

n+2
2 + ε for q = n+2

2

and ε being an arbitrarily small positive number. Suppose, further, that the quantities ||bi||(loc)
r,Qt,t+τ

and ||a||(loc)
s,Qt,t+τ tend to zero for τ → 0. Let the boundary S be of class C2. Then, for any

f ∈ Lq(QT ), Φ ∈ W
2−2/q
q (Ω) and g ∈ W

2−1/q,1−1/2q
q (ST ), with q 6= 3/2, satisfying in the case

q > 3/2 the compatibility condition
Φ|S = g|t=0

the Dirichlet problem has a unique solution u ∈W 2,1
q (QT ). It satisfies the estimate

||u||(2)
q,QT

≤ c
(
||f ||q,QT

+ ||Φ||2−2/q
q,Ω + ||g||(2−1/q)

q,ST

)
.

For any f ∈ L3/2(QT ) and any Φ ∈W 2/3
3/2 (Ω), g ∈W 4/3,2/3

3/2 (ST ) such that the function

Ψ =

{
Φ(x), x ∈ Ω
g(x, t), x ∈ S

given on ΓT , has the finite norm

{{Ψ}}(4/3)
3/2,ΓT

:= cf. [69]

the Dirichlet problem has a unique solution u ∈W 2,1
3/2(QT ) which satisfies the inequality

||u||(2)
3/2,QT

≤ c
(
||f ||3/2,QT

+ {{Ψ}}(4/3)
3/2,ΓT

)
.

A proof exceeds the scope of this diploma thesis but can nonetheless be found in [69].
This statement shows that even under this large array of assumptions we can only ensure W 2-
regularity if the operator is uniformly parabolic which according to Lemma 3.9.2 is definitely
violated in our case. Therefore we have to expect significantly worse properties than W 2 even
if a way of relinguishing the severe restriction to C2-boundaries and replacing it by a Lipschitz-
boundary could be found. This is further stressed in [69] where it is pointed out that the uniform
parabolicity is a very crucial presumption.
In contrast to this analysis of uniformly parabolic operators in Sobolev spaces in [27] degenerate
equations are dealt with. These are equations which fail to be uniformly parabolic. However, in
order to compensate for this shortcoming very strict growth conditions have to be imposed for
the coefficient functions.
Unfortunately the author only deals with solvability in Hölder spaces so that we cannot compare
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the results to ours in a Sobolev setting since there is no embedding result from Hölder to Sobolev
spaces as stated in Appendix B for the reverse direction.
Altogether this section can be summed up saying that the solution to our PDE (either the
original one (2.6) or the transformed one (2.7)) is of less regularity than H2 so that we have to
expect worse convergence rates than predicted by the standard error estimates in Section 3.2.



Chapter 4

Solving the Equation

This section deals with the solver we apply to the discretized initial boundary value problem
(3.9) and (3.10).
The solver we choose is the commercial package Comsol Multiphysics 3.2b which is designed
to solve PDEs (also non-linear ones) by using the finite element method. Moreover it provides
a variety of different linear system solvers and can be considered quite reliable.
Our strategy, which in fact copies the one implemented in Comsol Multiphysics (cf. [96],
[97] and [98])) is to rewrite the aforementioned problem as a differential algebraic equation and
derive and use a Newton method to solve it.

4.1 Rewriting as a DAE

In Section 3.1 we have derived the following system of ordinary differential equations one procures
after discretizing in the spatial variables (cf. (3.9) and (3.10)):

AU = F +MU ′

BU = G.

The subject matter of this subsection is now going to be the rewriting in a system of differential-
algebraic equations which means that both the differential equation and the constraints appear
in the same equation.
This is attained by enlarging the solution vector U to a vector Ũ not only containing the degrees
of freedom situated in the interior Ω̄− ∂Ω of the computational domain Ω but also accounting
for those on the Dirchlet-boundary ΓD. In consequence, anything else also has to be abridged.
We define the following:

Ã :=
(
A 0
0 B

)
M̃ :=

(
M 0
0 0

)
F̃ :=

(
F
G

)
.

Having done so we obtain the following differential-algebraic equation:

ÃŨ = F̃ + M̃Ũ ′. (4.1)

This equation is solved using a Newton method I describe in the next section.

69
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4.2 Newton-Iteration

The first step we have to take is writing the DAE (4.1) as g(U,U ′, t) = 0 where the function g
is defined in the following way:

g(U,U ′, t) := F −AU +M U ′.

Heed that for the sake of clarity Ũ , Ã, F̃ and M̃ are now referred to as U,A, F and M assuming
that we are dealing with a DAE as defined in Section 4.1. Moreover we take notion of the fact
that only U and U ′ depend on t because the coefficient functions of the PDE are independent
of time and that this g happens to be affine-linear in U and U ′.
The following derivation is largely based on [13] and was only slightly abridged.

4.2.1 Derivation of the Newton-iteration

We now have to derive the Newton-iteration scheme. To do so discretizing the time-derivative
by the backward-differentiation formula of order p (cf. (3.15)) as previously described is the first
step. Therefore at time step n → n + 1 we assume to be given previous solutions un, . . . , un−p

and we have

un+1 =
p∑

j=0

ajun−j + τnb−1fn+1,

where τn denotes the stepsize at step n. If interpreted as the discretization of a differential
equation u′ = f one can write:

u′n+1 = fn+1

=
1

τnb−1

un+1 −
p∑

j=0

ajun−j


=: αum+1 + β,

where

α =
1

τnb−1

β = −
p∑

j=0

aj

τnb−1
un−j .

Applying this result we can write the discretized DAE at time tn in the following way:

g(tn, Un, αUn + β) = 0.

The next step on our way to the iteration pattern is the linear approximation of g by a Taylor
series expansion around a previous iterate (note that one has to distinguish between the time
step n+ 1 and the (m+1)-st step of the Newton-iteration):

g(tn+1, U
m+1, αUm+1 + β) ≈ g(tn+1, U

m, αUm + β) + (Dg)(Um+1 − Um)
!= 0.

In our case the Jacobian matrix Dg satisfies

Dg = αM +A
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so that we attain the Newton-iteration scheme:

Um+1 = Um − (αM +A)−1g(tn+1, U
m, αUm + β). (4.2)

Thus performing a Newton-step amounts to solving the following linear system of equations:

Jx = b,

where J , x and b are defined as:

x = Um+1 − Um

J = αM̃ + Ã

b = −g(tn+1, U
m, αUm + β).

Summing up the aforementioned the Newton-iteration consists of:

1. evaluation of g(tn+1, U
m, αUm + β)

2. solving the linear system Jx = b

3. updating the iterate: Um+1 = Um + x

The starting iterate for the Newton-iteration is always zero. What we have yet to specify is
when the iteration is terminated, which I will outline in the next section, how the appearing
linear systems of equations are solved and how the time steps are chosen.

4.2.2 Controlling the Newton-Iteration

In this section I want to describe how the iteration is terminated. Of course, it should be
terminated if an iterate is accurate enough. To determine if this is the case we make use of the
rate of convergence ρ computed as:

ρ =
(
||Um+1 − Um||
||U1 − U0||

)1/m

.

If the condition
ρ

1− ρ
||Um+1 − Um|| < 0.33

holds the iteration is terminated. If ρ > 0.9 or m > 4 the iteration is restarted with a smaller
stepsize based on the criteria outlined in Section 4.3.
But we still have to explain which norm is taken in the above calculation. The norm is actually
a user-defined one because it depends on absolute and relative tolerances, ATOL and RTOL
respectively, prescribed by the user. Then weights wi are defined as:

wi := RTOLi |U i|+ATOLi

and the norm is specified as

||x||WRMS :=

[
1
N

N∑
i=1

(
xi

wi

)2
]1/2

,

where WMRS stands for ”weighted root-mean-square” and N is the number of degrees of free-
dom. By introducing a diagonal matrix D :=

√
N diag(w1, . . . , wN ) this norm can be expressed

in the Euclidean 2-norm:
||x||WRMS = ||D−1x||2.
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4.3 Time-Stepping

The subject matter of this section is the time-stepping algorithm, which is adaptive in both
order and stepsize. By this one seeks to substantially reduce the computational work through
choosing the stepsizes as large as possible and to enhance accuracy by choosing high-order
formulas whenever possible. But out of this three main questions arise with which we have to
deal in the following:

1. Under which circumstances do we wish to accept a step and when do we prefer rejecting
it?

2. Based on which criteria do we choose the order for an ensuing step and how is the order
selected?

3. Which stepsize do we use in the next step?

In order to answer these questions reasonably we have to use error estimators. So in the following
I will outline which ones are applied and how they are used to determine the order and length
of the next step.
This strategy is taken from [40] and [86] and whenever they are omitted for the sake of brevity
and tractibility details can be found and read there.

4.3.1 Notation Used in the Following Discussion

Before really beginning with the explanation of the time-stepping algorithm I want to quickly
list the definition of several expressions appearing below:

αi(n+ 1) =
τn+1

tn+1 − tn+1−i

αs = −
k∑

j=1

1
j

α0(n+ 1) = −
k∑

j=1

αi(n+ 1)

[yn] = yn

[yn, yn−1, . . . , yn−k] =
[yn, yn−1, . . . , yn−k+1]− [yn−1, yn−2, . . . , yn−k]

tn − tn−k

ψi(n+ 1) = τn+1 + τn + . . .+ τn+2−i

= tn+1 − tn+1−i

Φ1(n) = yn

Φi(n) = ψ1(n)ψ2(n) . . . ψi−1(n)[yn, yn−1, . . . , yn−i+1]
Φ̃ = Φ,but evaluated at the correct solution y(t)

σ1(n+ 1) = 1

σi(n+ 1) =
τ i
n+1

(i− 1)!
ψ1(n+ 1) . . . ψi(n+ 1).

Further details about these expressions can be found in [40].
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4.3.2 Accepting of a Step

As it is elucidated in [40] the derivative in a BDF-discretization and the local truncation error
cannot merely be written as we did in Section 3.4.1 but also as:

τn+1 y
′
n+1 =

k+1∑
i=2

αi−1(n− 1) Φi(n+ 1)− (αs − α0(n+ 1)) Φk+2(n+ 1)

and the correct solution y(t) satisfies:

τn+1 y
′(tn+1) =

k+1∑
i=2

αi−2(n+ 1) Φ̃i(n+ 1)− (αs − α0(n+ 1)) Φ̃k+2(n+ 1) + Tn+1,

where the local truncation error Tn+1 is:

Tn+1 = (αk+1(n+ 1) + αs − α0(n+ 1)) Φ̃k+2(n+ 1) +
∞∑

i=k+3

αi−1(n+ 1) Φ̃i(n+ 1).

If we now want to estimate the error made in a step we have to understand that there are two
sources of error if we want to obtain a solution at a time tn ≤ t̂ ≤ tn+1:

1. the local truncation error which is the amount by which the solution to the DAE fails to
satisfy the BDF-formula

2. the interpolation error for arbitrary times in between tn and tn+1.

Since the BDF-method itself can be interpreted as polynomial interpolation the principal term
can be estimated by

(αk+1(n+ 1) + αs − α0(n+ 1)) ||yn+1 − y
(0)
n+1||.

Concerning the second source of error it can be estimated by

αk+1(n+ 1) ||Φk+2(n+ 1)||.

Combining all that we attain an error estimator for our step by which we can determine whether
or not we wish to decline it. The step is accepted if the following condition holds:

ERR = M ||yn+1 − y
(0)
n+1||

≤ 1.0,

where the constant M is defined as:

M := max(αk+1(n+ 1), |αk+1(n+ 1) + αs − α0(n+ 1)|).

As mentioned initially a more detailed justification for those estimators is omitted because it
can be found in [40] and [86].
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4.3.3 Order Selection

To be able to reasonably select an order for the next step one has to be able to estimate the
error resulting from this. As one can read in [40] and [86] such estimates are provided by the
following expressions:

TERKM2 = ||(k − 1)σk−1 (n+ 1)Φk(n+ 1)|| ≈ ||hk−1 y(k−1)||
TERKM1 = ||k σk (n+ 1) Φk+1(n+ 1)|| ≈ ||hk y(k)||

TERK = ||(k + 1)σk+1 (n+ 1) Φk+2(n+ 1)|| ≈ ||hk+1 y(k+1)||
TERKP1 = ||(k + 2)σk+2 (n+ 1) Φk+3|| ≈ ||hk+2 y(k+2)||

σk+2 =
1

k + 2
.

They estimate the local error for a decrease of 2, a decrease of 1 etc. provided the preceding
steps had been taken at equal length and order k − 1, k − 2 respectively and they require a
successful completion of the current step. Roughly speaking those estimates are based on a
Taylor series representation of the numerical solution computed with constant stepsize and they
estimate the next-order term after termination. Details are outlined in [86].
Having said this, the question arises of how we utilize those estimates to determine the order
of the next step. The philosophy behind the selection scheme is that a change of order has
to show an immediate advantage and a tendency of improvement, i. e. TERKM1 < TERK
would indicate an advantage and TERKM2 < TERKM1 a tendency. Taking into account
that such estimates are not always available the order is decreased by one if

max(TERKM1, TERKM2) ≤ TERK for k > 2 or
TERKM1 ≤ 0.5 TERK for k = 2

or if TERKP1 is available if

TERKM1 ≤ min(TERK, TERKP1).

The procedure for an increase of the order is quite similar. For 1 < k < maxorder the order is
increased by one if

TERKP1 < TERK.

Given the results from the test for a decrease one automatically has

TERKP1 < TERK < max(TERKM1, TERKM2).

In the case k = 1 the order is increased if

TERKP1 < 0.5 TERK.

Except for the starting step and the procedure following a rejection of a step the order selection
strategy is complete. Both exceptions shall be dealt with in the section on stepsize choosing.

4.3.4 Stepsize Selection

Given an order k for the step it is outlined in [86] that the estimated error after a step of length
r τ is rk+1 TERK. Of course, it is our aim to choose r as large as possible, i. e. optimally the
largest r such that

rk+1 TERK ≤ ε,
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where ε is a user-prescribed error tolerance. But since in this case the estimated error would be
approximately as large as the given error tolerance one is a little more careful and replaces ε by
0.5 ε.
First it is checked whether or not the previous stepsize can be doubled, i. e. if

0.5 ε ≥ 2k+1 TERK.

If this is indeed the case the stepsize is doubled but an enlargement with r > 2 is precluded at
all times. Moreover if this is not possible the stepsize is not enlarged at all.
The second item to be discussed is whether one can keep the stepsize or if it has to be diminished
which would be the case if

0.5 ε ≥ TERK.

In case this condition holds we select r as claimed optimally above, namely

r =
(

0.5 ε
TERK

)1/k+1

,

but at the same time we restrain it to r ≤ 0.9 and r ≥ 0.5.
The philosophy behind this perhaps a little conservative strategy is to reduce the overall number
of steps by avoiding as many rejected steps as possible.
If nonetheless a step is rejected the order is lowered by one. After three consecutive rejections
it is set to one with the corresponding stepsize being the minimum of the optimal choice and
half the previous length.
The last item we have to address is which procedure is an appropriate one at the beginning.
Since there is no data available at this point we start using order one, which is adjusted as more
data becomes available. In addition, the following is chosen for the initial step

τ = min
(
τinput, 1/4

√
ε

|y′(t0)|

)
,

where τinput is a user-defined maximal initial stepsize. An explanation why this is a sensible
choice can be found in [86].
This concludes the section on the time-stepping procedure.

4.4 The Linear System Solver

In this chapter I intend to portray the multigrid method we apply in order to solve the linear
systems of equations derived in the previous section. The multigrid method is an iterative solver
and its presentation is based on [45] and [64].
For doing so we need a grid hierarchy T0 ⊂ . . . ⊂ Tl with corresponding finite element spaces
satisfying Vk ⊂ Vk+1 for k = 0, . . . , l−1 and Vl = Vh where Vh is the space in which we are seeking
an approximate solution to our PDE. So in the following we assume such a nested sequence of
spaces to be given.
Along with such a nested sequence of spaces come prolongation mappings Pk : Vk−1 → Vk by
which an element of Vk−1 can be interpreted as one of Vk. Now let x̄l be an iterate for the
solution xl to the linear system Jlxl = bl. Here the subscript l indicates that it belongs to the
space Vl. We can then write down the error equation for the error yl := xl − x̄l:

Jl yl = bl − Jlx̄l.

One is interested in yl because

Jl(x̄l + yl) = Jlxl

= bl,
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which means that if one knows the error one knows the exact solution.
If yl can be approximated well in Vl−1 it seems reasonable to inexactly or iteratively solve the
error equation in Vl−1 in order to save computational work. Good enough approximation quality
is ensured by so-called pre- and post-smoothing which I will explain below in Section 4.5. On
the coarsest grid we can even afford to solve the problem exactly using a direct solver because
of the small number of degrees of freedom. The step k → k + 1 of the multigrid iteration looks
as follows:

Algorithm 4.4.1 (Multigrid Iteration) Assume to be given the k-th iterate x(k)
l on level l.

1. pre-smoothing
Perform ν1 pre-smoothing steps of an iterative pre-smoother Spre

l and set

x
(k+1/3)
l = Sν1

l x
(k)
l .

2. coarse-grid correction
If l = 1 the following error equation be solved directly and exactly and if l > 1 µ steps of
a multigrid iteration be taken:

Jl−1yl−1 = rl−1,

where the residuals rl−1 and rl are defined as

rl−1 := P−1
l rl

rl := bl − Jlx
(k+1/3)
l .

Then set

x
(k+2/3)
l = x

(k+1/3)
l + Plyl−1.

3. post-smoothing
Perform ν2 post-smoothing steps of an iterative post-smoother Spost

l and set

x
(k+1)
l = Sν2

l x
(k+2/3)
l .

Moreover we have to state under which circumstances the iteration terminates. Our aim of
course is to produce a solution, which is as good as possible or more precisely which satisfies the
accuracy requirement

ρ |b− Jx| < TOL |b|.

Here TOL denotes a user-defined tolerance and ρ an additional factor, also to be specified by the
user. But there is another way through which termination can be initiated namely a maximum
number of iteration steps. If this number is reached the iteration process stops and returns the
current iterate regardless of whether or not the accuracy requirement is matched.
Eventually we have to shed a few words on pre- and post-smoothing. Pre- or post-smoothers or
pre-conditioners are iterative solvers for linear systems which can be used as solvers themselves.
But when used as smoothers only very few steps are taken because it is not intended to obtain
a reliable solution but rather to improve the quality of the current multigrid-iterate and have a
better starting point for the next iteration step. In Section 4.5 I will outline the smoothers we
used.
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4.5 Pre- and Post-smoothers

In the preceeding sections I have already mentioned the use of pre- and post-smoothers. So
in this section I intend to briefly summarize the smoothers we use and explain what such a
smoother does.
Before it was our aim to solve a linear system of equations Jx = b as efficiently as possible.
Roughly speaking the biggest influence on efficiency comes from the condition of the linear
system, which increases the number of iterations the larger it becomes (cf. [48] or [89]). Therefore
it is a reasonable strategy to replace the linear system of equations by another equivalent but
far more advantageous one

P−1Jx = P−1b.

Here P is the iteration matrix of an arbitrary iterative solver and the above is attained if it is
better conditioned, i. e. if κ(P−1J) << κ(J). For a definition of the condition of a matrix the
above references can be suggested.
In the following I am going to outline those concrete versions of P we utilized.

4.5.1 Incomplete LU-factorization

The description of the incomplete LU-factorization in this section is based on the articles [15]
and [83].
The purpose of the incomplete LU factorization is to omit certain matrix entries during factor-
ization and replace them by zero. If the matrix to be factorized is sparse this spares fill-in to a
certain extent. More precisely it works in the following way:

Algorithm 4.5.1 (Incomplete LU) For an n-by-n matrix A the factorization proceeds as
follows:
for r = 1 until n− 1 do

d := 1/arr

for i := (r + 1) until n do
if (i, r) ∈ S then

e := d air, air := e
for j = r + 1 until n

if (i, j) ∈ S and (r, j) ∈ S then
aij := aij − e arj

end if
end for (j-loop)

end if
end for (i-loop)

end for (r-loop)

In this algorithm S is a subset of A (hence the name incomplete LU) and for the other entries
we prescribe:

lij = 0 if j > i or (i, j) /∈ S

and
uij = 0 if i > j or (i, j) /∈ S.

As an example one might state that

S = {(i, j) | aij 6= 0}
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would maintain the sparsity structure of A in the factors L and U , whereas

S = A

would simply replicate the classic Gaussian elimination.
Our choice for S which is taken from [96] is that an element is dropped if its absolute value is
smaller than the Euclidean norm of the entire column times a drop tolerance, i. e. aij is dropped
if

aij < TOL |Aj |,

where Aj denotes the j-th column of A. Our selection of the drop tolerance is

TOL = 0.01.

4.5.2 UMFPACK Coarse-Grid Solver

As pointed out earlier on the coarsest level of our multigrid hierarchy the linear systems shall be
solved directly rather than iteratively up to a given tolerance. This is affordable since there are
only relatively few variables on the coarsest level and on the other hand accuracy is improved.
For instance, if we use four levels in 2D with uniform refinement in between there are 44 = 256
times more unknowns on the finest level than on the coarsest. This means, if there are two and
a half million degrees of freedom on the finest level there are only about ten thousand on the
coarsest, which is not a particularly large system.
The direct solver of our choice is LU factorization. But since classic Gaussian elimination is
of order N3 (cf. for example [48] or [89]) it is not very efficient so that we make use of the
UMFPACK-solver which is explicitly designed by Timothy Davis (for references see below) to
solve systems Ax = b, where A is sparse and unsymmetric. More precisely it factorizes

PRAQ = LU.

Here P is a row re-ordering to maintain stability, Q is column re-ordering to limit and/or pre-
serve an upper bound on the fill-in and R is a row re-scaling diagonal matrix. The fill-in is of
interest and becomes an issue to deal with because if A is sparse, i. e. in our case it is a 5-striped
matrix, the factorization LU does not have to be sparse. However, if it is that is very helpful
because then during the process of actually solving the system Ax = b many operations can be
spared.
An overview over the solver’s properties and interfaces can be found in [24]. In [21], [22] and
[23] the implemented re-ordering strategies are described. The authors mostly rely on so-called
unifrontal and multifrontal methods or combinations of both. Moreover those methods are ex-
tensively tested in the mentioned papers. According to [22] in unifrontal methods factorization
proceeds as a sequence of partial factorizations and eliminations on dense submatrices (called
frontal matrices), whereas in multifrontal methods there are several such submatrices. In addi-
tion, one has to distinguish between the symmetric and the unsymmetric case.
In pseudo-code the UMFPACK-algorithm for numerical factorization given in [23] looks as:

Algorithm 4.5.2 (UMFPACK)
initializations
k = 0, i = 0
for each chain:

current frontal matrix is empty
for each frontal matrix in the chain

i = i+ 1
for |Ci| iterations:
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k = k + 1
find the k-th pivot row and column
apply pending updates to the k-th pivot column
if too many zero entries in the frontal matrix (or new LU part)

apply all pending updates
copy pivot rows and columns into LU data structure

end if
if too many zero entries in the frontal matrix

create new contribution block and place on stack
start new frontal matrix

else
extend the frontal matrix

end if
assemble contribution blocks into current frontal matrix
scale pivot column
if ] pivots in current frontal matrix ≥ nB

apply all pending updates
copy pivot rows and columns into LU data structure

end if
end for (|Ci| iterations)

end for (each frontal matrix in the chain)
apply all pending updates
copy pivot rows and columns into LU data structure
create new contribution block and place on stack

end for (each chain)

In the aforementioned Ri are the rows and Ci the candidate pivot columns. From my perspective
giving further details or examples on the algorithm exceeds the scope of this section and amounts
to reiterating past literature. So for the sake of clarity and brevity this shall be omitted.

4.5.3 Pre-Conditioned GMRES

In this section I am going to explain the main ideas behind the GMRES-algorithm based on the
works referenced in [13] and [82]. This is of interest to us since we make use of this algorithm
in its scaled, preconditioned and incomplete version. But first we will deal with the original
unabridged one.
Once again the intention is to iteratively solve a linear system Ax = b but terminate the iteration
after only very few steps. The idea is to minimize the residual in a series of subspaces. This
means if we think of x0 as an initial guess and x = x0 + z we obtain an equivalent problem
Az = r0 where r0 = b−Ax0.
Considering the subspace

Kl = span{r0, Ar0, . . . , Al−1r0}

a z = zl is uniquely determined by

||b−Axl||2 = min
x∈x0+Kl

||b−Ax||2

= min
z∈Kl

||r0 −Az||2.
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Given an orthonormal basis {v1, . . . , vl} of the Krylov subspace Kl one obtains matrices

Vl = [v1, . . . , vl] ∈ RN×l

Rl×l 3 Hl = V T
l AVl,

where Vl satisfies V T
l Vl = idl. As pointed out in [13] such a basis can be computed using the

Arnoldi process or as it is done here by a modified Gram-Schmidt-procedure (cf. [38] for an
explanation).
If the vectors r0, Ar0, . . . , Alr0 are linearly independent we have dim(Kl+1) = l+ 1 and one can
define a matrix H̃l ∈ R(l+1)×l:

H̃l :=
[
Hl

rT

]
r := (0, . . . , 0, hl+1,l)T ∈ Rl

satisfying
AVl = Vl+1H̃l.

Furthermore, letting z = Vly we have

||r0 −Az||2 = ||r0 −AVly||2
= ||r0 − Vl+1H̃ly||2
= ||e1β − H̃y||2

because Vl+1 is orthogonal and where β = ||r0||2. The minimizing vector y = yl is then computed
by a QR-factorization of H̃l using Givens-rotations. Denoting the sin θ elements by sj , j =
1, . . . , l, one can even write

||b−Axl||2 = β |s1 · . . . · sl|

as is outlined in the aforementioned references. Altogether this results in the following basic
GMRES-algorithm as listed in [13]:

Algorithm 4.5.3 (GMRES)

1. Compute r0 = b−Ax0 and set v1 = r0/||r0||2.

2. For l = 1, . . . , lmax do

(a) Form Avl and orthogonalize it against v1, . . . , vl via

wl+1 = Avl −
l∑

i=1

hilvi

hil = (Avl, vi)
hl+1,l = ||wl+1||2
vl+1 = wl+1/hl+1,l.

(b) Update the QR-factorization of H̃l.

(c) Compute ρl = ||r0||2 |s1 · . . . · sl| = ||b−Axl||2.
(d) if ρl ≤ δ, go to step 3, otherwise return to a)

3. Compute xl = x0 + Vlyl.
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We are now going to slightly modify this process in step 2a for the sake of significantly saving
computational work. Step 2a is altered to not beginning the sum at i = 1 but rather at
i = i0 = max(1, l + 1− p) for a p ≤ l + 1.
Next we have to account for scaling and pre-conditioning. Scaling be done by the matrix D
defined in Section 4.2 and pre-conditioning be performed by a matrix P . We can then restate
the linear system Ax = b as Ãx̃ = b̃ where

Ã = D−1P−1AD

x̃ = D−1x

b̃ = D−1P−1b.

Combining all of that leads to the Scaled Pre-conditioned Incomplete GMRES (again as listed
in [13]):

Algorithm 4.5.4 (Scaled Pre-Conditioned Incomplete GMRES)

1. (a) r0 = b−Ax0, stop if ||r0||WRMS < δ

(b) r̃0 = D−1P−1r0, compute ||r̃0||2 = ||P−1r0||WRMS, ṽ1 = r̃0/||r̃0||2

2. For l = 1, . . . , lmax do

(a) Ãlṽl = D−1P−1ADṽl

(b) h̃il = (Ãṽl, ṽi), w̃l+1 = Ãlṽl −
∑l

i=i0
h̃ilṽi

(c) h̃l+1,l = ||w̃l+1||2, ṽl+1 = w̃l+1/hl+1,l

(d) Update the QR-factorization of H̃l = h̃ij = QlRl (an (l + 1)× l)-matrix

(e) Compute the residual norm ρl indirectly using s1, . . . , sl

(f) if ρl < δ go to step 3, otherwise go to a)

3. Compute ||r̃0||QT
l e1 = (ḡl, g), z̃ = ṼlR̃

−1
l ḡl, xl = x0 +Dz̃

4.5.4 SOR/SORU Iteration

The SOR and SORU pre-conditioners are very basic modifications of the Gauss-Seidel iteration
and can be stated rather quickly. They look as follows:

xk+1 = xk +M−1(b−Axk).

Apparently they only differ in the iteration matrix M . To explain the structure of M we assume
the matrix A to be decomposed in the form A = L+D+U , where D is the diagonal of A and L
and U are the strict lower and upper triangles respectively. After fixing a relaxation parameter
ω ∈ (0, 2] the matrices are the following:

MSOR =
L+D

ω

MSORU =
U +D

ω
.

In the case ω = 1 the Gauss-Seidel-algorithm is obtained.
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4.5.5 Range of Application

Having outlined several pre-conditioners and a coarse grid solver we ought to mention where
they are used.
In solving the linear systems in the Newton-iteration (4.2) we are going to use the multigrid
solver, which shall be pre-conditioned by the GMRES-method desribed in Algorithm 4.5.4. This
GMRES-algorithm will itself be pre-conditioned by the incomplete LU-factorization. As a post-
smoother in the multigrid method we will use the SORU pattern.
When carrying out numerical experiments in Chapter 5 I will explicitly state the parameters
used (like the number of multigrid levels) and the number of pre- and post-smoothing steps
applied.



Chapter 5

Numerical Results

In this section I am going to outline numerical results of our valuation of mortgage-backed
securities. But before doing so we will ascertain that our pattern works by applying it to two
known problems, the heat equation and a convection-diffusion equation.
The first aspect we examine is the solution process of the PDE without any perturbations caused
by the probability weighting, which means solving the PDE for the first of the 360 months only
and we omit the ensuing probability adjustments.
Afterwards we consider the same for the probability-weighted one-month solution before dealing
with full 30-year computations. The main goal of examining numerical results is procuring
and confirming convergence rates as they are outlined in the error estimates of the sections on
discretization.

5.1 The Procedure of Error Measurements

Confirming convergence rates of given error estimates amounts to measuring the numerical
solutions or the error in the respective norms. And when it comes to measuring the numerical
error we face the problem of lacking knowledge about an exact solution. This is crucial since the
error estimates compare the numerical solution to the exact one but on the other hand this is a
usual problem because if one knew the exact solution in a closed form the numerical approach
would not be needed.
We therefore try to overcome this shortcoming by replacing the exact solution u by a solution
ūh obtained on an extremely fine mesh. We deem that plausible because

||u− uh|| ≤ ||u− uh̄||︸ ︷︷ ︸
≈ 0

+||uh̄ − uh||.

If the mesh for uh̄ is chosen sufficiently fine the error ||u−uh̄|| can be assumed to be approximately
zero and we resort to measuring ||uh̄ − uh||. Out of this two question arise:

1. Which norm is used and how is it computed?

2. How are the solutions from different grids compared?

5.1.1 Interpolation

Loosely speaking we use interpolation to represent a coarser solution uh on the grid of the
fine solution uh̄. More precisely, consider h̄ << h and a corresponding interpolation operator
Ih : Vh → Vh̄ where Vh and Vh̄ respectively are the corresponding FEM-spaces for level h̄ and

83
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level h. We then compute ||uh̄ − Ih(uh)|| and consider this the error of uh.
Ih is defined in the following way:

Ih(uh) =
DOF (Vh̄)∑

i=1

Uiϕ
h̄
i ,

where Ui = uh(xi) and xi is the i-th mesh point of the grid belonging to Vh̄.
Heuristically this means the coarser solution is evaluated at the mesh points of the finer grid. In
practice this evaluation is performed by the femlab built-in function postinterp which computes
the value of an FEM-function at arbitrary coordinates.

5.1.2 Computation of the Norms

We consider two different norms, the L2-norm and the discrete supremum norm, that is the
L∞-norm. The L2-norm of an element uh ∈ Vh can be computed exactly using the mass matrix
defined in (3.8) (the degrees of freedom of the FEM-space be denoted by N):

||uh||2L2 =
∫

Ω
u2

h

=
∫

Ω

(
N∑

i=1

Uiϕi

)2

=
N∑

i=1

N∑
j=1

UiUj

∫
Ω
ϕiϕj︸ ︷︷ ︸

mij

= UTMU.

This is then applied to the error function uh̄ − Ih(uh) ∈ Vh̄.
Secondly the maximum norm is computed in the following way:

||uh||L∞ = max
i=1,...,N

|uh(xi)| = max
i=1,...,N

|Ui|.

In addition, it ought to be mentioned that all the appearing solutions are time-dependent and
hence they are evaluated at the terminal time t = 1/12 = 1 month.

5.1.3 Expectations

Before plotting any results we should discuss what can be expected concerning the convergence
rates. This is in turn based on the error estimates given in Section 3.2, which for instance yield
third order convergence for quadratic finite elements.
But at this point one has to be careful and distinguish between the mesh length h used in the
error estimates and the number of degrees of freedom (henceforth denoted by N) used for the
plots. The latter one is a stricter measuring stick since h refers only to one spatial direction
whereas we are dealing with two-dimensional problems. More generally the following connection
holds between N , the dimension d and the mesh length h:

N =
(

1
h

)d

or equivalenty
h = N−1/d.

Hence hα-convergence corresponds to a rate N−α/d or −α
d in doubly logarithmic plotting.
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5.1.4 Measurement of the Time Error

The time error of the finite element solution is estimated similarly to the spatial error because
once again we have to resort to using a fine reference solution but this time concerning the time
evolution. Moreover we use a relatively fine grid in the spatial dimensions so that the spatial
error can be neglected.
Since we can use the same grid for any time evolution examined we have the advantage that no
interpolation is needed to compare solutions to the fine-evolution solution. Hence we measure
the error in the following way:

||u− uk
h|| ≤ ||u− uk

h̄||︸ ︷︷ ︸
≈0

+||uk
h̄ − uk

h||.

Here uk
h̄

denotes the discrete solution obtained by using a very fine time evolution and uk
h

denotes the discrete solution the error of which we intend to measure. To avoid confusion it
is my intention to point out that in both cases the index k is used to indicate that the same
terminal time, say tk, is used. But we have to heed that the evolution, i. e. the precise sequence
of time steps taken to get there, is, in general, completely different as in the case of uk

h̄
many

more steps are taken.
Because of the fact that we use the same spatial grid for all time evolutions uk

h̄
and uk

h are
defined on the same mesh so that their difference and there norm can be computed without
interpolation. As before we are going to measure the error in both the L2- and the L∞-norm.
Concerning the expected convergence rate no precise statement can be made since the error
estimates in Section 3.4.2 are only valid for a time evolution of constant order and stepsize. But
in our case we can only compute a solution adaptively in both order and stepsize. Nonetheless
the detected rates will be stated.

5.2 Justification for this Procedure

The purpose of this section is to give justification for the procedure of error measurement outlined
in the previous section. This will be attained by applying it to two known problems. Such a
justification process is absolutely mandatory because of the quite difficult differential operator
which precludes knowledge of an exact solution. Therefore we examine our measurement strategy
for several simplified operators where difficulties like degeneration are gradually added.
The first testing example is the two-dimensional heat equation for which we even know an
exact solution and the second example is a diffusion-convection-reaction equation where all
coefficients are set to one so that there is a sufficiently smooth solution as we know from [37] or
[69]. Concerning initial and boundary data we take the same as in the MBS case.
In addition to that it is our aim to determine how much finer the reference solution has to be in
comparison to the finest examined solution. That is, we are looking for a threshold γ such that

DOF (Vh̄) ≥ γ DOF (Vh) for any examined h.

This is achieved by approaching the reference solution ever and ever closer without recognizing
a deterioration in the convergence rate. As the following examples show γ = 1.5 is an adequate
choice.

5.2.1 The Heat Equation

We consider the open domain Ω = (0, π)× (0, π) and suppose

u(x, y, t) = sin(x) sin(y) exp(−t)
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to be an exact solution to the heat equation

4u− ut = f inΩ× (0, 1/12).

In consequence, we have to prescibe

f(x, y, t) = − sin(x) sin(y) exp(−t)

for the right-hand-side f which is obtained by applying the differential operator to u. Further-
more inserting the boundaries x = 0, 2π and y = 0, 2π yields u|∂Ω = 0. As initial values we
choose

u0(x, y) := u(x, y, 0) = sin(x) sin(y).

We now have two different intentions, first to check convergence against the exact solution and
second to examine convergence using a fine-mesh solution as a reference. Both times we measure
the error for the terminal time T = 1/12 in the L2- and L∞-norms as described above. This
means we have to compute the following:

||uh(·, T )− u(·, T )||L2 =
∫

Ω
|uh(x, y, T )− sin(x) sin(y) exp(−T )|2dx dy

||uh(·, T )− u(·, T )||L∞ = max
i=1,...,DOF

|Ui − sin(xi) sin(yi) exp(−T )|.

The first integral is approximated using the femlab quadrature function postint. In both cases
dividing by the norm of the exact solution yields the relative error. These norms can fortunately
be computed exactly:

sup
Ω
|u(·, 1/12)| = sin(π/2) sin(π/2) exp(−1/12)

= 0.920044415

||u||L2(Ω) =
∫ π

0

∫ π

0
sin2(x) sin2(y) exp(−1/6) dx dy

= exp(−1/6) [1/2x− 1/4 sin(2x)]π0 [1/2 y − 1/4 sin(2y)]π0
= 2.088609939.

In Figure 5.1 we have plotted the error versus the number of degrees of freedom in doubly
logarithmic scaling for reference solutions of 539, 905 and 2, 157, 569 DOFs. This allows us to
take the convergence rate as the slope of the corresponding linear plot.
In this example we used the following set of parameters:

Atol = 1e− 12
Rtol = 1e− 10

maxorder = 5
mglevels = 4

presmooth = GMRES (5 steps)
postsmooth = SORU (5 steps)

FEM − order = 2.

Evaluating the data the expected rate of −1.5 is confirmed.
To conclude this section the above is verified by comparison to the convergence rate we observe
when testing against the exact solution. This is crucial at this point because comparison against
fine solutions is only an approximation of the truth and our actual interest. And the whole
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Figure 5.1: On the left: convergence plots for a reference solution with 539,905 DOFs and on
the right: the same plots but with a reference solution of 2,157,569 DOFs
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Figure 5.2: convergence plot for the exact solution of the heat equation

purpose of this section was justification of this procedure and to instill trustability for more
elaborate differential operators.
Therefore in Figure 5.2 we plot the errors against the exact solution. Fortunately enough the
in theory expected convergence rate of −1.5 is reproduced and it confirms the results of the
previous measurements. Hence we can feel safe in deeming the above strategy reliable.

5.2.2 Second Example

We shall now examine a more advanced example. It still does not feature the same differential
operator as the MBS equation but except for the coefficients every part is present. We consider
the equation

uxx + uyy + ux + uy + u− ut = 1 in (0, 2π)2 × (0, 1/12).

This differential operator is similar to the one of the MBS equation in the fact that only the
dependence of the coefficients on the spatial coordinates is dropped and the coefficients are set
to one. Moreover the right-hand-side equals one.
Next we have to state the boundary and initial data. The latter shall be identically zero exactly
as in the MBS case and the boundary data only differ in the non-zero Dirichlet data. The
vanishing Dirichlet and Neumann data are kept. On the respective fourth boundary we modify
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the MBS data using C = 1, c = 0.025, ymin = 0 and no transaction costs.
This is an interesting example for our purposes because according to [37] and [69] it is smooth
enough to satisfy the standard error estimates from Section 3.2 and just as for the MBS we lack
knowledge of an exact solution.
As before we resort to measuring the error in the L2-norm and the L∞-norm by interpolation
to two very fine reference grids and confirm the expected convergence rate of −1.5. The set of
parameters used is:

Atol = 1e− 12
Rtol = 1e− 10

maxorder = 5
mglevels = 4

presmooth = GMRES (5 steps)
postsmooth = SORU (5 steps)

FEM − order = 2.

In Figure 5.3 the errors have been depicted.
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Figure 5.3: On the left: convergence plots for a reference solution with 539,905 DOFs and on
the right: the same plots but with a reference solution of 2,157,569 DOFs

Moreover we test the behavior of time error measurement. To do so we choose a grid of 1, 110, 803
degrees of freedom. Using the parameters

Atol = 1e− 15
Rtol = 1e− 13

and same solver settings as above the solution process for the reference solution took 853 steps
and 37, 654.191 seconds of CPU time. In addition, we computed the following norms for the
reference solution:

||uk
h||L2 = 5.05810489567e− 4

||uk
h||L∞ = 2.74549049071e− 4.

The results are plotted in doubly logarithmic scaling in Figure 5.4 and we spot a convergence
rate of −4.63.



5.3. THE PDE SOLUTION FOR ONE MONTH’S TIME 89

101 102 103
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

number of time steps

er
ro

r

L2 error abolute
L2 error relative
max error absolute
max error relative

Figure 5.4: Convergence plot of the time error

5.3 The PDE Solution for One Month’s Time

This section marks the starting point for the presentation of the actual results we are interested
in. As it was pointed out before the solution process consists of solving a PDE for the time
of one month, weighting the results by a certain probability distribution and prescribing the
weighted result as the initial value for the next month’s PDE solution process.
Because of this I have chosen to first examine the PDE result after one month without any
influence by the probability weighting. Having said that in the following we will deal with the
partial differential equation (2.7) as well as its mixed boundary values and the right-hand-side
derived in Section 3.7. In doing so I will distinguish between the solution obtained without
stabilization procedure and the one using the techniques outlined in Section 3.8.
For those computations the following set of parameters is used:

Atol = 1e− 14
Rtol = 1e− 12

maxorder = 5
mglevels = 4

presmooth = GMRES (5 steps)
postsmooth = SORU (5 steps)

FEM − order = 1
δ = 0.1.

Of course, δ only comes into play when using streamline upwind Petrov-Galerkin. If not, it is
redundant. As it was justified in the previous section we measure the error against a reference
solution for both the L2- and L∞-norm. In Table 5.1 the results are shown when not using
stabilization and Table 5.2 shows the same for use of SUPG. In both tables the relative error
is listed for which to compute we needed the respective norms of the reference solutions. We
obtained the following values for the non-SUPG case:

||uref
h ||L2 = 6.17814479641e− 4

||uref
h ||L∞ = 2.66664495818e− 4.

The computation of this solution took 550 time steps and and lasted for 217,643.713 seconds.
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DOFs steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
absolute relative absolute relative

161,372 393 4.68406e-6 7.58166e-3 1.09129e-4 4.09237e-1 891.555
204,920 453 7.22186e-7 1.16894e-3 3.22098e-5 1.20788e-1 1,330.154
252,096 432 4.41437e-7 7.14514e-4 3.03360e-5 1.13761e-1 1,614.049
284,875 493 3.04206e-7 4.92391e-4 2.03981e-5 7.64935e-2 2,072.309
329,078 473 2.14785e-7 3.47653e-4 1.89088e-5 7.09086e-2 2,563.025
386,452 464 1.81798e-7 2.94260e-4 1.48693e-5 5.57603e-2 2,857.486
469,204 480 1.54652e-7 2.50321e-4 1.26802e-5 4.75511e-2 3,491.322
547,129 531 1.16906e-7 1.89225e-4 1.01577e-5 3.80917e-2 5,179.038
656,343 549 9.63076e-8 1.55884e-4 9.72044e-6 3.64519e-2 6,383.517
747,316 517 8.20302e-8 1.32775e-4 6.52038e-6 2.44516e-2 7,415.362
821,238 477 7.45132e-8 1.20608e-4 5.67078e-6 2.12656e-2 7,468.554
914,215 539 6.70462e-8 1.08522e-4 4.27394e-6 1.60274e-2 9,603.386

1,094,681 635 5.91295e-8 9.57075e-5 4.12644e-6 1.54743e-2 14,809.388
1,640,104 509 4.72004e-8 7.63990e-5 2.43771e-6 9.14149e-3 20,792.545
1,830,547 603 4.23001e-8 6.84673e-5 1.08416e-6 4.06563e-3 30,378.172
1,939,171 576 4.12556e-8 6.67767e-5 1.10839e-6 4.15650e-3 31,144.646
2,059,265 508 4.04153e-8 6.54166e-5 1.06231e-6 3.98369e-3 33,621.298
2,196,543 561 3.97445e-8 6.43308e-5 1.09757e-6 4.11592e-3 35,472.926

Table 5.1: Numerical error of the MBS PDE without SUPG and with a reference solution of
10,221,317 DOFs

In the case of using SUPG the solution process of the reference solution also took 550 steps and
consumed 237,697.470 seconds of CPU time. Moreover we procured the following values for the
norms of the reference solution:

||uref
h ||L2 = 6.17894489878e− 4

||uref
h ||L∞ = 2.96059925054e− 4.

The data from Tables 5.1 and 5.2 is graphically illustrated in Figure 5.5. In the non-SUPG case
we find a convergence rate of −0.89 and using SUPG we detect −0.52.
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Figure 5.5: Left: convergence plot for the PDE without SUPG, right: same with use of SUPG

Next we have to measure the time error for both the use of streamline-upwind-Petrov-Galerkin
and for omitting it. The results of the former test are shown in Table 5.4 and the latter in Table
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DOFs steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
absolute relative absolute relative

41,815 382 2.69997e-5 4.36963e-2 2.83690e-5 9.58218e-2 228.989
204,920 465 1.63056e-5 2.63890e-2 6.59344e-5 2.22706e-1 1,854.345
252,096 439 1.63495e-5 2.64600e-2 6.60645e-5 2.23146e-1 2,239.007
284,875 493 1.64816e-5 2.66738e-2 6.07134e-5 2.05071e-1 2,721.007
329,078 480 1.63181e-5 2.64092e-2 5.94534e-5 2.00815e-1 2,888.096
386,452 495 1.65643e-5 2.68077e-2 6.30727e-5 2.13040e-1 3,647.817
469,002 480 1.62561e-5 2.63089e-2 5.95074e-5 2.00998e-1 4,244.836
547,129 531 1.64470e-5 2.66178e-2 6.01774e-5 2.03261e-1 5,791.319
656,343 549 1.62064e-5 2.62284e-2 6.63193e-5 2.24006e-1 7,570.655
747,316 517 1.61829e-5 2.61904e-2 6.23900e-5 2.10734e-1 8,808.673
821,238 477 1.51003e-5 2.44383e-2 5.88359e-5 1.98730e-1 8,958.268
914,215 539 1.35739e-5 2.19680e-2 5.77285e-5 1.94989e-1 11,453.809

1,094,681 635 1.31166e-5 2.12279e-2 5.73943e-5 1.93860e-1 19,340.785
1,640,104 509 1.07264e-5 1.73596e-2 4.88645e-5 1.65049e-1 29,918.569
2,059,265 508 9.66687e-6 1.56449e-2 4.60790e-5 1.55641e-1 41,146.901
2,352,519 548 8.89161e-6 1.43902e-2 3.90031e-5 1.31741e-1 37,673.877

Table 5.2: Numerical error of the MBS PDE with SUPG and with a reference solution of
10,221,317 DOFs

5.3. Moreover those results are depicted in Figure 5.6. From this figure we take convergence
rates of −5.16 and −4.71 for non-SUPG and SUPG respectively.

To obtain those results we used the same solver settings as we did during the measurement of the
spatial error. In addition, we used a grid of 1, 110, 803 degrees of freedom besides the following
tolerance settings:

Atol = 1e− 15
Rtol = 1e− 13

In the case without SUPG the time evolution took 761 steps, consumed 20, 308.017 seconds and

tolerances steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
Atol Rtol absolute relative absolute relative
1e-4 1e-2 16 2.67521e-7 4.33013e-4 8.60772e-7 3.22792e-3 1,724.001
1e-5 1e-3 16 2.66709e-7 4.31698e-4 8.56547e-7 3.21208e-3 1,863.851
1e-6 1e-4 20 4.28599e-7 6.93735e-5 1.12651e-7 4.22444e-4 2,144.488
1e-7 1e-5 33 6.37663e-10 1.03213e-6 4.66344e-9 1.74880e-5 2,246.203
1e-8 1e-6 51 8.18256e-11 1.32444e-7 8.40935e-10 3.15353e-6 2,583.257
1e-9 1e-7 78 1.93560e-11 3.13298e-8 1.89017e-10 7.08819e-7 3,195.378
1e-10 1e-8 112 5.85377e-12 9.47498e-9 5.67845e-11 2.12943e-7 3,567.380
1e-11 1e-9 162 4.38884e-13 7.10383e-10 4.22371e-12 1.58390e-8 5,086.678
1e-12 1e-10 231 6.72656e-14 1.08877e-10 6.44815e-13 2.41807e-9 6,572.675

Table 5.3: Time error of the MBS PDE without use of SUPG
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tolerances steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
Atol Rtol absolute relative absolute relative
1e-4 1e-2 16 2.68886e-7 4.35173e-4 8.64584e-7 2.88732e-3 1,457.495
1e-5 1e-3 16 2.68067e-7 4.33848e-4 8.60326e-7 3.22625e-3 1,643.468
1e-6 1e-4 20 4.30058e-8 6.96018e-5 1.15347e-7 4.32555e-4 1,799.526
1e-7 1e-5 33 6.41927e-10 1.03891e-6 4.94267e-9 1.85352e-5 2,220.834
1e-8 1e-6 51 8.22375e-11 1.33096e-7 8.47483e-10 3.17809e-6 2,449.747
1e-9 1e-7 78 1.94743e-11 3.15178e-8 1.90060e-10 7.12730e-7 3,219.143
1e-10 1e-8 112 5.89055e-12 9.53344e-9 5.71124e-11 2.14169e-7 3,583.206
1e-11 1e-9 162 4.41917e-13 7.15211e-10 4.26097e-12 1.59788e-8 5,340.402

Table 5.4: Time error of the MBS PDE using SUPG

the following norms could be computed:

||uk
h||L2 = 6.1781351015e− 4

||uk
h||L∞ = 2.6666463561e− 4.

Using stabilization 772 steps were taken during 19, 749.949 seconds and we obtained the below
norms:

||uk
h||L2 = 6.17883003096e− 4

||uk
h||L∞ = 2.94418347888e− 4.
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Figure 5.6: Left: time convergence plot for the PDE without SUPG, right: same with use of
SUPG

The solutions for both the use of SUPG and not using it have been plotted in Figure 5.7 on a
regular and uniform grid (200-by-200) in both spatial directions for the terminal time T = 1/12.
The values plotted were obtained by interpolation.
Having stated the results of our spatial and time convergence tests in Tables 5.1, 5.2, 5.3 and 5.4
and graphically illustrated them in Figures 5.5 and 5.6 we have to interpret the results. Doing
so we distinguish between convergence in time and spatial variables.
The time convergence plots of the MBS PDE show that the streamline-upwind Petrov-Galerkin
scheme does not have too much of an effect on the convergence plot. This is the case because
concerning time there are no smoothness and regularity problems which could be resolved when
using SUPG. Moreover the use was intended to deal with problems in x-direction rather than
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Figure 5.7: Left: solution plot for the PDE without SUPG, right: same with use of SUPG

in the time variable.
This discernment is underlined by the fact that the time evolution took an identical number
of time steps for each set of parameters Atol and Rtol. Only in the errors measured very
slight differences appear. Nonetheless there is a difference in the number of time steps taken to
compute the reference solution as in the non-SUPG case the solver takes only 761 steps, whereas
in the SUPG case 772 are necessary, roughly speaking a 1.5 % difference.
In addition, I would like to point out that very similar results for both cases could be expected
since in the time direction there were not any changes at all to the discretization.
In the spatial direction things are completely different. Although for a given number of degrees
of freedom mostly the same number of time steps was taken we can notice a considerably larger
error in all computations when using streamline upwind Petrov-Galerkin which even exceeds
three magnitudes. Moreover there is a significant drop in the observed convergence rate. Using
SUPG we obtain −0.52 whereas without SUPG −0.89 is detected.
Altogether we have to come to the conclusion that the limitations of this procedure imposed by
Comsol Multiphysics and expounded in Section 3.8 are too severe simplifications to overcome.
Therefore we cannot but admit that this stabilization procedure does not yield the desired effect
so that we shall no longer use it in our computations.
However, examining the solution plots in Figure 5.7 we find that there are scarcely any problems
at all without SUPG as one might have expected. Such problems could have been oscillations
particularly where there are steep gradients as well as a worse convergence rate than expected
which in fact appear when using SUPG as the solution plot shows. Despite the fact that there
are indeed steep gradients near the vanishing Dirichlet boundaries there are no oscillations at all
so that our solution pattern can be deemed stable. Moreover we do not spot a bad convergence
rate because we cannot expect one better than one because of Section 3.9 where we pointed out
that we have less regularity than H2 which is the minimum requirement for a rate of one or
better according to the estimates given in Section 3.2.
Before moving on to our consideration of the probability-weighted solution I will make a few
remarks on the overall rate of convergence. This is the rate discerned when simultaneously
refining in space and time and plotting the error against the number of degrees of freedom times
the number of time steps. Yet, it is based on the results obtained for independently considering
space and time.
The problem is that the number of time steps has to be adjusted in a way which exactly and
appropriately matches the spatial convergence rate or vice versa. To be able to predict the
overall rate consider rates α and β in space and time respectively for the actual number of
unknowns (say N in space and M in time), i. e. our pattern is of order O(N−α +M−β).



94 CHAPTER 5. NUMERICAL RESULTS

Atol Rtol steps a b predicted DOF
1e-5 1e-3 16 1.25 3.64637 1,000
1e-6 1e-4 20 1.65 18.23552 3,646
1e-7 1e-5 33 1.55 12.69101 66,494
1e-8 1e-6 51 1.53 11.77051 782,662
1e-9 1e-7 78 1.44 8.28222 9,212,329
1e-10 1e-8 112 1.45 8.62128 76,298,535
1e-11 1e-9 162 657,791,038

Table 5.5: Prediction of number of DOFs if refined in accordance to time convergence rate

From the computations already analysed in this section we have learned that the number of
time steps is unchangeably imposed by the tolerance settings, so that we have to set the degrees
of freedom according to the given refinements in time. More precisely, in such a refinement step
there is given an a and we are looking for a b such that

M ′ := aM

N ′ := bN.

Since our scheme is of order β in time the error changes by a−β and we seek to attain the same
in the spatial direction. Hence b = aβ/α is the adequate choice because

(N ′)−α + (M ′)−β = (bN)−α + (aM)−β

= a−β
[
N−α +M−β

]
.

If we take the previously determined α = 0.89 and β = 5.16 (and hence β/α = 5.79775) we
have to choose a and b in the way stated in Table 5.5. In the same table we also predict the
number of degrees of freedom imposed by those parameters if the coarsest grid consists of 1, 000
unknowns. Unfortunately it makes plain that such an examination is practically impossible.
On the one hand the starting grid of 1, 000 nodes is too coarse and even in this case we would
have to deal with several hundred millions of unknowns. So a more appropriate starting grid
would only lead to a deterioration of the situation. On the other hand dropping those cases
and considering only the ones with fewer unknowns would lead to too few data points to draw
reasonable conclusions.
In addition to these numerical experiments we carried out a comparison between this transfor-
mation which was introduced in Section 2.8.1 and the one propounded in the original paper (cf.
[28]) and reviewed by us in Section 2.8.3. Of course, we seek demonstration of the superiority
of our suggestion.
To do so chose the following set of parameters for our computations:

Atol = 1e− 12
Rtol = 1e− 10

maxorder = 5
mglevels = 4

presmooth = GMRES (5 steps)
postsmooth = SORU (5 steps)

FEM − order = 1

As a matter of fact it turned out that our transformation easily prevails since the convergence
aspects are so bad because of the worse boundary singularities that our solution pattern could
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not even be completed for the computation of the reference solution. It was actally aborted
after 49 time steps at a time of

t = 4.5108536914e− 5.

Until that point the duration of the computation had already consumed consumed 800, 967.414
seconds which amounts to about 9.5 days. From our point of view this warrants the conclusion
that no reasonable results can be procured within our setting or within any acceptable time.

5.4 The Probability-Weighted One Month PDE Solution

In this section we are going to deal with the same problem as in the previous section. But this
time we consider the errors after performing the probability weighting of the PDE solution as
discussed in Section 2.9. In particular, we are interested in the following items:

• convergence rates for both the spatial error and the time error

• dependence of both the solution and the error on transaction costs.

Therefore we carry out the solution process as before and apply the probability weighting for
two different transaction costs, namely

X1 = 0.001
X2 = 0.03,

where X1 means that transaction costs are virtually absent (0.1%) and X2 means 3% transaction
costs. We have to point out that the minimizing effect of the probability weighting should be
very hard to detect because of our time reversal, i. e. our one-month solution corresponds to
”one month to maturity”, which means that a benefit of early termination has to be huge to
materialize over the course of one month. With respect to this examining a longer period of time
would have been more sensible but the effect of probability weighting can be seen best when it
is kind of isolated which is only the case after one month.
For our spatial convergence test we utilize the following set of solver parameters for both levels
of transaction costs:

Atol = 1e− 12
Rtol = 1e− 10

maxorder = 5
mglevels = 4

presmooth = GMRES (5 steps)
postsmooth = SORU (5 steps)

FEM − order = 2.

In Table 5.6 the detailed results are given for X1 and in Table 5.7 the same is done for X2. As
before, the appearing relative errors are computed using the norms of the probability-weighted
solutions:

||uk
h||

X1

L2 = 6.17807099965e− 4

||uk
h||

X1
L∞ = 2.66587165019e− 4

||uk
h||

X2

L2 = 6.17865138159e− 4

||uk
h||

X2
L∞ = 2.666788952219e− 4.
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DOFs steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
abs rel abs rel

161,372 198 3.70670e-6 5.99977e-3 8.95529e-5 3.35924e-1 771.652
204,920 203 3.87099e-7 6.26569e-4 1.78894e-5 6.71053e-2 1,103.289
252,096 219 1.99856e-7 3.23493e-4 1.40728e-5 5.27887e-2 1,409.128
284,875 208 1.13059e-7 1.83000e-4 9.54968e-6 3.58220e-2 1,702.268
329,078 212 6.77227e-8 1.09618e-4 7.01506e-6 2.63143e-2 2,033.393
386,452 228 5.29531e-8 8.57114e-5 5.67727e-6 2.12961e-2 2,932.220
469,204 224 4.43424e-8 7.17739e-5 4.51410e-6 1.69329e-2 3,469.436
547,129 291 2.76113e-8 4.46924e-5 3.16423e-6 1.18694e-2 5,664.572
656,343 225 2.07524e-8 3.35904e-5 2.95162e-6 1.10719e-2 6,180.426
747,316 228 1.64914e-8 2.66934e-5 1.63728e-6 6.14163e-3 6,735.411
821,238 230 1.42835e-8 2.31197e-5 1.21703e-6 4.56522e-3 7,349.478
914,215 230 1.21078e-8 1.95980e-5 9.43110e-7 3.53772e-3 8,395.141

1,094,681 247 1.05122e-8 1.70153e-5 8.73149e-7 3.27529e-3 10,877.745
1,640,104 238 7.77897e-9 1.25913e-5 3.67943e-7 1.38020e-3 18,740.613

Table 5.6: Numerical error of the probability-weighted MBS PDE with a reference solution of
10,221,317 DOFs and transaction costs X1

DOFs steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
absolute relative absolute relative

161,372 198 3.70682e-6 5.99940e-3 8.95529e-5 3.35808e-1 822.327
204,920 203 3.87103e-7 6.26517e-4 1.78894e-5 6.70822e-2 1,172.371
252,096 219 1.99858e-7 3.23465e-4 1.40728e-5 5.27706e-2 1,551.371
284,875 208 1.13061e-7 1.82987e-4 9.54968e-6 3.58097e-2 1,646.890
329,078 212 6.77245e-8 1.09610e-4 7.01506e-6 2.63053e-2 2,094.708
386,452 228 5.29554e-8 8.57071e-5 5.67727e-6 2.12888e-2 2,592.235
469,204 224 4.43449e-8 7.17712e-5 4.51410e-6 1.69271e-2 3,255.139
547,129 291 2.76137e-8 4.46921e-5 3.16423e-6 1.18653e-2 5,012.824
656,343 225 2.07547e-8 3.35910e-5 2.95162e-6 1.10681e-2 4,853.303
747,316 228 1.64945e-8 2.66960e-5 1.63728e-6 6.13952e-3 5,711.476
821,238 230 1.42865e-8 2.31224e-5 1.21703e-6 4.56365e-3 6,517.478
914,215 230 1.21109e-8 1.96012e-5 9.43110e-7 3.53650e-3 7,777.320

1,094,681 247 1.05151e-8 1.70184e-5 8.73149e-7 3.27416e-3 9,332.201
1,640,104 238 7.78234e-9 1.25955e-5 3.67943e-7 1.37972e-3 17,128.482
1,830,547 239 6.33671e-9 1.02558e-5 2.79864e-7 1.04944e-3 18,268.549
1,939,171 239 6.17466e-9 9.99254e-5 2.52523e-7 9.46918e-4 20,463.217
2,059,265 241 6.11445e-9 9.89609e-5 2.14548e-7 8.04518e-4 21,194.452
2,351,857 253 5.76943e-9 9.33768e-5 1.99687e-7 7.48792e-4 22,703.448

Table 5.7: Numerical error of the probability-weighted MBS PDE with a reference solution of
10,221,317 DOFs and transaction costs X2
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Figure 5.8: Left: spatial convergence plot for the probability-weighted PDE with transaction
costs X1, right: same with transaction costs X2

tolerances steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
Atol Rtol absolute relative absolute relative
1e-4 1e-2 16 2.66891e-7 4.31998e-4 8.58947e-7 3.22201e-3 1,977.586
1e-5 1e-3 16 2.66081e-7 4.30687e-4 8.54731e-7 3.20619e-3 2,337.588
1e-6 1e-4 20 4.27539e-8 6.92028e-5 1.12412e-7 4.21670e-4 2,589.208
1e-7 1e-5 33 6.36187e-10 1.02975e-6 4.65355e-9 1.74560e-5 3,010.848
1e-8 1e-6 51 8.16460e-11 1.32155e-7 8.39152e-10 3.14776e-6 3,742.608
1e-9 1e-7 78 1.93129e-11 3.12605e-8 1.88616e-10 7.07520e-7 4,901.363
1e-10 1e-8 112 5.84066e-12 9.45388e-9 5.66641e-11 2.12554e-7 5,926.292
1e-11 1e-9 162 4.37882e-13 7.08770e-10 4.21476e-12 1.58100e-8 8,617.047
1e-12 1e-10 231 6.71106e-14 1.08627e-10 6.43449e-13 2.41365e-9 11,067.075

Table 5.8: Time error of the probability-weighted one-month PDE solution for transaction costs
X1

The results from Tables 5.6 and 5.7 are plotted in Figure 5.8. As it can be seen in the tables
there are hardly any differences in the error so that it is almost impossible to see a difference in
the graphs for X1 and X2.
Besides the error of the spatial discretization we have to examine the time discretization which
is also done for both transaction costs X1 and X2 using the same strategies as before. Table 5.8
shows the results for X1 and Table 5.9 does so for X2. The relative errors were computed using
the norms of the reference solution:

||uk
h||

X1

L2 = 6.1780592587e− 4

||uk
h||

X1
L∞ = 2.6658743066e− 4

||uk
h||

X2

L2 = 6.17807099965e− 4

||uk
h||

X2
L∞ = 2.66587165019e− 4.

Obtaining these reference solutions took 764 and 781 steps respectively and consumed 91, 318.486
and 30, 391.620 seconds. The results are graphically illustrated in the plots of Figure 5.9.
Apart from the convergence plots we have plotted the solutions of the probability-weighted PDE
as before on a (200-by-200)-grid with the values being obtained via interpolation in Figure 5.10.
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tolerances steps error in || · ||L2 error in || · ||L∞ CPU time [sec]
Atol Rtol absolute relative absolute relative
1e-4 1e-2 16 2.66954e-7 4.03384e-4 8.58947e-7 3.22090e-3 2,316.794
1e-5 1e-3 16 2.66143e-7 4.02158e-4 8.54731e-7 3.20509e-3 2,116.144
1e-6 1e-4 20 4.27690e-8 6.46266e-5 1.12412e-7 4.21525e-4 2,427.245
1e-7 1e-5 33 6.36311e-10 9.61505e-6 4.65355e-9 1.74500e-5 3,185.550
1e-8 1e-6 51 8.16521e-11 1.23381e-7 8.39152e-10 3.14667e-6 3,671.460
1e-9 1e-7 78 1.93149e-11 2.91860e-8 1.88616e-10 7.07277e-7 4,871.417
1e-10 1e-8 112 5.84136e-12 8.82665e-9 5.66641e-11 2.12480e-7 5,819.222
1e-11 1e-9 162 4.37953e-13 6.61774e-10 4.21476e-12 1.58046e-8 8,448.239

Table 5.9: Time error of the probability-weighted one-month PDE solution for transaction costs
X2
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Figure 5.9: Left: time convergence plot for the probability-weighted PDE with transaction costs
X1, right: same with transaction costs X2

In interpreting the probability-weighted results we distinguish, as before, between the time and
spatial error.
Concerning the former one we see that there is hardly any difference in the errors between
the solutions for transaction costs X1 and X2 just as we expected it. Moreover we observe
convergence rates −4.71 and −4.58 respectively which are almost identical to the one for the
non-weighted case.
Much the same can be said about the spatial error. Just as it was the case with the time error
there are only very slight differences in the errors measured and we procure convergence rates
of −1.15 and −1.07 for X1 and X2 respectively. In particular, we note that better rates are
obtained than before, the reason for which is that we used second-order elements instead of
first-order elements as we are no longer subjected to the limitations imposed by SUPG. But we
are still short of the desired rate of −1.5 if our solution was smooth enough.
Altogether this can be considered as a confirmation of Theorem 3.6.1 on probability-weighted
convergence and as indicative that our valuation pattern produces reasonable results since we
predicted such a low effect of early termination in the aforementioned. Nonetheless we notice
that in the case of higher transaction costs X2 the overall liability measured in the L2-norm
is slightly larger compared to X1 as it should be because termination is more expensive while
moving on without altering anything remains the same. In addition, we take notion of the
fact that both times probability-weighting causes a diminishing of the liability compared to not
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Figure 5.10: Left: solution plot of the probability-weighted PDE with transaction costs X1,
right: same with transaction costs X2

considering possible option exercise such that

U ≥ UX2 ≥ UX1

which is quite plausible because the higher transaction costs are the higher the liability should
be. Moreover closely looking at the solution plots in Figure 5.10 confirmes that there is scarcely
any difference resulting from the disparate transaction costs with only one month remaining on
the mortgage contract.

5.5 Long-Term Computations

Having exhaustively analysed the convergence aspects of both the partial differential equation
and the probability-weighted solution to the equation for one month’s time we now move on
examining what happens at larger time scales. Doing so we face five questions of major interest:

1. find an appropriate grid and time evolution in order to yield good enough accuracy while
maintaining an acceptable computational time

2. determine how often early termination occurs

3. examine the dependence of early termination on both time and transaction costs and
distinguish between prepayment and default in doing so

4. find the thresholds in both house prices and interest rates at which refinancing becomes
advisable depending on both time and transaction costs

5. account for mortgage pools in which each mortgagor faces different transaction costs.

In the following answers to those questions will be procured by carrying out all the necessary
computations.

5.5.1 Selection of Grids and Time Evolution

Over the course of our convergence analyses in the previous two sections (cf. 5.3 and 5.4) it
became apparent that even for the time of one month an enormous amount of CPU time can
be required. But since the valuation of an MBS backed by a 30-year mortgage amounts to
considering 360 months this poses a huge problem.
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DOF Atol Rtol time 30y (approximately)
656,343 1e-6 1e-4 474.304 48 hours
747,316 1e-6 1e-4 567.308 57 hours
821,238 1e-6 1e-4 703.477 70 hours
914,215 1e-6 1e-4 767.763 77 hours

Table 5.10: Computational times for several grids varying in the number of degrees of freedom

There are two ways to reduce the overall work, the first being coarser grids in every time step
and the second being a smaller number of time steps. However, both measures result in lower
accuracy which is nonetheless acceptable because for convergence purposes we were seeking a
level of accuracy far better than needed for ”normal” computations. Therefore we have to find
a compromise or more precisely as coarse a grid as possible and as few time steps as affordable
while maintaining a certain level of accuracy. The effect is illustrated in the following example:

Example 5.5.1 (CPU Time) Consider three different grids and time evolutions which take
about 700, 1, 000 and 1, 300 seconds for the one-month solution process. This leads to estimated
times of

70 hours ≈ 3 days
100 hours ≈ 4 days
130 hours ≈ 5.5 days

if we assume that in every month there should be approximately the same number of time steps
required but without considering that the probability weighting also takes its time in every month.
(The stated values were obtained by taking 360 times the duration for one month’s time.)

Altogether this example shows that it is worthwhile focusing on economic computations.
Our judgment is based on the results from Section 5.3 in which a time error of about 5e − 7
measured in the L2-norm was determined for Atol = 1e − 6 and Rtol = 1e − 4. The spatial
grid of our choice is taken from the examples in Table 5.10 where we carried out the one-
month computation on several differently fine grids and projected the duration for a 360-month
computation.
We choose the grid of about 650, 000 unknowns because of the relatively short duration of
the computations. In Figure 5.11 the unweighted one-month-PDE-solution is plotted for two
different meshes in order to illustrate that this choice seems accurate enough.

Figure 5.11: Left: one-month-PDE solution plot for 656, 343 DOFs, right: same with 747, 316
DOFs
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5.5.2 Full 30-Year-Computation

The subject matter of this section is going to be the valuation of a mortgage-backed security
over its entire lifespan of 360 months by the means outlined in thesis. To do so we use the grid
determined in the previous subsection and the following set of parameters for the PDE solution
process:

Atol = 1e− 6
Rtol = 1e− 4

maxorder = 5
mglevels = 4

presmooth = GMRES (5 steps)
postsmooth = SORU (5 steps)

FEM − order = 2.

As described in Section 2.3 we are interested in a pool across which transaction costs are spread
according to a β-distribution. To attain this we pick a number m ∈ N of different transaction
costs and calculate X1, . . . , Xm according to Lemma 2.3.1 which means that we have to use the
inverse cumulative distribution function F−1 by virtue of

Xj = F−1

(
2j − 1
2m

)
, j = 1, . . . ,m.

We choose m = 15 which is a relatively small number but taking into account that each com-
putation takes at least three days we have no choice but keeping it small.
However, we shall not carry out the actual mortgage pool computation because of the tremen-
dous amount of computational time it would consume. Instead we resort to a comparison of the
solution processes for three different levels of transaction costs (low-, high- and medium-level
costs). If we wanted to price an MBS backed by whole pool we would merely take the average
of the 15 solutions as outlined in Section 2.3. Presumably this would not lead to much further
insight.
We first determine the 15 costs in the aforementioned way to obtain:

X1 = 0.003739
X2 = 0.013564
X3 = 0.025073
X4 = 0.038022
X5 = 0.052428
X6 = 0.068422
X7 = 0.086225
X8 = 0.106174
X9 = 0.128759
X10 = 0.154715
X11 = 0.185203
X12 = 0.222206
X13 = 0.269578
X14 = 0.336672
X15 = 0.462117.
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Among those we opt to closely examine the solution process for X2, X7 and X11. Doing so we
measure the duration of solving the PDE and weighting its result for every of the 360 months and
during probability weighting we count for how many degrees of freedom prepayment is optimal,
default is advisable and neither of the two is the case. In addition, we seek approximation of
the threshold levels x∗ and y∗ with the property that they are the largest numbers such that

• default is optimal for every y ≤ y∗

• prepayment is optimal for every x ≤ x∗

Problematic about this is to actually maximize the thresholds because if early termination is
optimal for some x or y choosing x∗ = xmin and y∗ = ymin will always satisfy these two
conditions. The quality of this approximation is given by the grid we use because the finer the
grid is the more accurately the thresholds can be resolved. We measure them in the following
way:

Algorithm 5.5.2 (Computation of Thresholds)
The computation of the thresholds works in the following way:
Set x∗ := xmin and y∗ := ymin

For i = 1, . . . , DOF
if default is optimal for (xi, yi) and yi > y∗ set y∗ = yi

if prepayment is optimal for (xi, yi) and xi > x∗ set x∗ = xi

end for

In particular, we have to point out that there can be nodes for which both ways of termination
are advisable (i. e. better than keeping the loan without altering anything). In such a case the
more beneficiary way is determined in the sense that a minimization of the liability is intended,
so that the other one is not considered optimal any longer. Therefore our measurement is kind
of very strict because it accounts for optimality in both directions simultaneously instead of
considering them independently. Moreover x∗ and y∗ are time-dependent, so that they have to
be computed in every time step.

In the three plots of Figure 5.12 we have illustrated how often early termination occurs. Con-
cerning the total number we find that the more time to maturity there is remaining the more
often mortgages should be terminated. This behavior is qualitatively independent of transaction
costs, which means that for higher transaction costs there are still more terminations advisable
with more time remaining on the contracts.
However, transaction costs have an influence quantitatively. Intuitly one would immediately
predict that for higher transaction costs there should be fewer terminations if the remaining
time is held constant because the optimality criteria (2.1) and (2.2) are harder to be satisfied.
We actually find our intuition confirmed as there are more terminations for X2 than for X7 and
even fewer for X11. Moreover the aforementioned difficulties in attaining optimality translate
to more time remaining before the termination is optimal for the first time. In the plot we read
that for X2 it first happens in month 6 while for X7 and X11 this is the case in months 48 and
68 respectively.
So far we have only analyzed the overall behavior but assiduously distinguishing between de-
fault and prepayment yields further insight. We see that generally there has to be more time
remaining on the contract for default to become optimal than for prepayment. But transaction
costs have a larger effect on prepayment. The latter statement means that prepayment occurs
less often for higher transaction costs with X11 being large enough to rule out prepayment at
all. In the case of default such a preclusion cannot be observed for X11. For X2 and X7 there
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Figure 5.12: Number of degrees of freedom for which termination is financially optimal

is a strong increase in the number of prepayments for very few months remaining which is fol-
lowed by a slow decrease once default starts to become optimal. Concerning X2 prepayment
is first optimal in month 6 while default only becomes advisable in month 56. In the case of
X7 the respective numbers are month 48 and 61. The development of default is in contrast to
prepayment monotone in remaining time to maturity.

In Figure 5.13 we have plotted the threshold levels r∗ and H∗ of real interest rates and house
prices at which taking action to terminate the mortgage becomes financially optimal. Their
behavior is kind of parallel to the number of terminations as the more terminations occur the
higher these levels are. This is absolutely plausible because more terminations mean that op-
timality is more easily attainable which by definition directly translates to higher thresholds.
In addition, we notice that our interest rate thresholds are always smaller than the contractual
interest rate c which has to be the case as they have to compensate for both transaction costs
and forfeit of possible future option exercise.
Furthermore we perceive far more optimal default situations than there are for prepayment.
Part of the reason for this lies in the design of the optimality checks. When it comes to de-
faulting we directly check against real estate prices while in the case of prepayment we check
the remaining principal against a function of the interest rate, namely the PDE solution. By
virtue of the boundary datum for r = 0 it cannot become arbitrarily small in contrast to the
house prices. The second contribution we ought to mention is that we assumed a relatively small
contractual interest rate of 5% which realistic but nonetheless small with respect to historical
data (cf. Figure 1.2 in Section 1.3).
Another argument we can give why there are far more nodes at which termination through
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Figure 5.13: left: Thresholds for which prepayment becomes optimal, right: Same for default

default is optimal than there are for prepayment is that the mesh has more unknowns in the
default region than in the prepayment region. The respective regions are those areas in which
the respective termination method is optimal. Since those nodes are close to the boundaries
r = 0 and H = 0 the validity of this argument becomes apparent from Figure 3.1 in which our
mesh is plotted qualitatively.

Furthermore we are interested in gathering knowledge about the time development of the MBS
which is why we not only consider the solution at the terminal time T = 30 but also at inter-
mediate times. Of course, it does not make sense to plot every single one of the 360 months so
that we resort to focusing on seven intermediate times, namely

t1 = 1
t2 = 2
t3 = 10
t4 = 15
t5 = 20
t6 = 25
t7 = 30,

and in order to make plain that higher transaction costs in fact lead to a higher liability value
we measure it in the L2-norm in the same way as we did before during error measurement. The
results are listed in Table 5.11. In the same table we have also stated the asset values of the
MBSs and find that compared to the respective liability values they are always smaller. This
confirms our observation from Section 2.4.
The aforementioned solution plots can be found in Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19 and
5.20.

5.5.3 Comparison of Different Contractual Interest Rates

In this section I will examine the influence of a change in the contractual interest rates on
the number of early terminations and the thresholds at which premature termination becomes
optimal.
In the same way as in Section 5.5.2 we count the number of prepayments and defaults and
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cost X2 X7 X11

time liability asset liability asset liability asset
1 year 6.62877e-3 6.62605e-3 6.63627e-3 6.62817e-3 6.64567e-3 6.62817e-3
5 years 2.44426e-2 2.43691e-2 2.46859e-2 2.45444e-2 2.48466e-2 2.45569e-2
10 years 3.83243e-2 3.81723e-2 3.90278e-2 3.85580e-2 3.96007e-2 3.86869e-2
15 years 4.76407e-2 4.74761e-2 4.86272e-2 4.78544e-2 4.95832e-2 4.80261e-2
20 years 5.42244e-2 5.40383e-2 5.55344e-2 5.43221e-2 5.65995e-2 5.44649e-2
25 years 5.89139e-2 5.87022e-2 6.01331e-2 5.88877e-2 6.16194e-2 5.89981e-2
30 years 6.22804e-2 6.20407e-2 6.36147e-2 6.21933e-2 6.52767e-2 6.22389e-2

Table 5.11: Asset and liability values in L2-norm depending on time and transaction costs

Figure 5.14: MBS value with one year remaining for transaction costs X2, X7 and X11
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Figure 5.15: MBS value with two years remaining for transaction costs X2, X7 and X11

Figure 5.16: MBS value with ten years remaining for transaction costs X2, X7 and X11
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Figure 5.17: MBS value with fifteen years remaining for transaction costs X2, X7 and X11

Figure 5.18: MBS value with twenty years remaining for transaction costs X2, X7 and X11
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Figure 5.19: MBS value with twenty-five years remaining for transaction costs X2, X7 and X11

Figure 5.20: MBS value with thirty years remaining for transaction costs X2, X7 and X11
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determine the threshold levels according to Algorithm 5.5.2. We do so for contractual rates of

c2 = 0.085
c3 = 0.1,

which are also realistic levels if we take into account that many of the mortgages resold as MBSs
were first initiated some ten or fifteen years ago. And at those times eight to ten percent interest
obligation was quite common.
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Figure 5.21: Left: Number of nodes for which prepayment is optimal in the case of c2, Right:
same for c3

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

month

nu
m

be
r o

f o
pt

im
al

 d
ef

au
lts

transaction costs X2
transaction costs X7
transaction costs X11

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

nu
m

be
r o

f o
pt

im
al

 d
ef

au
lts

month

transaction costs X2
transaction costs X7
transaction costs X11

Figure 5.22: Left: Number of nodes for which default is optimal in the case of c2, Right: same
for c3

For the sake of comparison the occurence numbers of prepayment are plotted in Figure 5.21,
while in Figure 5.22 the figures for default are illustrated and Figure 5.23 shows the data for the
overall numbers of optimal early termination through either way.
In order to minutely evaluate the data we should first ponder what to expect for different levels
of contractual monthly coupons. The higher the scheduled monthly payment is the easier it
should become to benefit from market movements. Since in the case of higher coupons the
overall liability is also higher both interest rates and house prices do not have to drop as low
for termination to materialize as a liability minimization. In consequence, we expect to spot a
higher number of terminations in all three categories than before in Section 5.5.2 for c1 = 0.05.
Moreover for c3 they should be even higher than for c2. However, qualitatively the plots can be
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Figure 5.23: Left: Number of nodes for which either termination way is optimal in the case of
c2, Right: same for c3

expected to look very much the same as for c1. In the dependence on transaction costs we do
not expect any qualitative altering either compared to what we have found in Section 5.5.2.
Indeed, our expectations are confirmed. In all three categories we see that the higher transaction
costs are the more unlikely premature termination is or the harder the optimality conditions
(2.1) and (2.2) are to be satisfied. In addition, we take notion of the fact that the same rise
in optimal defaults we already discerned in Figure 5.12 is seen in Figure 5.22 while concerning
prepayment (cf. Figure 5.21) there once again is an increase followed by a slow decrease. Figure
5.23 looks very similar to Figure 5.22 because of the higher number of degrees of freedom for
which default is optimal than it is the case for prepayment. The reasons for this are the same
as in Section 5.5.2.
Yet, the actual numbers are slightly different. In the case of c3 we detect more optimal early
termination situations than in the case of c2 for each level of transaction costs. For instance,
there are 6, 202 optimal premature termination environments for X2 and c3 while only 5, 409 can
be identified for X2 and c2. Both numbers are those for 340 months remaining on the contract.
Moreover we find that the first time at which default is optimal depends on the contractual
interest rate. In the case of X7 and c3, for example, month 18 marks the first time while for X7

and c2 month 22 is spotted. Once again this stresses the fact that the less convenient the con-
tractual situation for a mortgagor is the more often termination becomes financially reasonable.
Furthermore I would like to emphasize and point out that in contrast to the previous section
where c1 = 0.05 is dealt with, X11 is neither in the case of c2 nor in the case of c3 a pre-
cluding level for optimal prepayment to occur. However, there is a tendency that for c2 the
optimality condition for prepayment is more difficult to be satisfied than for c3 translating to
later months at which it first becomes optimal. We observe 3-to-3, 25-to-20 and 55-to-45 for X2,
X7 and X11 respectively. In particular, the difference increases with increasing transaction costs.

Besides those absolute numbers of early termination we have also plotted the thresholds r∗ and
H∗ at which prepaying or defaulting turns optimal in Figures 5.24 and 5.25. As it was the case
in Section 5.5.2 the levels reflect the data, i. e. the more often either termination method is
financially optimal the higher the respective threshold is. Qualitatively the plots look similar to
those obtained for c1 but the thresholds are higher because termination occurs more often for
c2 and c3 and for c3 even more often than for c2. Except for those discernments one can state
the same explanations for the shape of the respective graphs as in Section 5.5.2.

Moreover we examine the liability values for c2 and c3 and we compare them to the respective
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Figure 5.24: Left: Interest rate thresholds at which prepayment becomes optimal for c2, Right:
same for c3
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Figure 5.25: Left: house price thresholds at which default becomes optimal for c2, Right: same
for c3

asset values in Tables 5.12 and 5.13 as well as the values for c1 as stated in Table 5.11. Once
again we measure them in the L2-norm and observe that the asset value is always smaller than
the liability value which is another confirmation of our argument from Section 2.4. In addition,
we again find the expected dependence on transaction costs and time, i. e. the more time there is
remaining on the contract the higher the liablity is and the lower transaction costs are the lower
the liability is. Comparing the values for c2 and c3 to those for c1 we see that a higher monthly
coupon (or equivalently a higher contractual interest rate) translates to a higher liability at all
times which is absolutely plausible from intuition.
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cost X2 X7 X11

time liability asset liability asset liability asset
1 year 1.60372e-2 1.60188e-2 1.60687e-2 1.60498e-2 1.60906e-2 1.60498e-2
5 years 5.73626e-2 5.71172e-2 5.85584e-2 5.85176e-2 5.93783e-2 5.85176e-2
10 years 8.58730e-2 8.54032e-2 8.88438e-2 8.91741e-2 9.14806e-2 8.91741e-2
15 years 1.02734e-1 1.02106e-1 1.06230e-1 1.07195e-1 1.10718e-1 1.07195e-1
20 years 1.13193e-1 1.12448e-1 1.17315e-1 1.18433e-1 1.22745e-1 1.18433e-1
25 years 1.19808e-1 1.18976e-1 1.24353e-1 1.25565e-1 1.30414e-1 1.25565e-1
30 years 1.24033e-1 1.23143e-1 1.28864e-1 1.30114e-1 1.35332e-1 1.30114e-1

Table 5.12: Asset and liability values for contractual interest rates c2 and c3

cost X2 X7 X11

time liability asset liability asset liability asset
1 year 1.82803e-2 1.82536e-2 1.83270e-2 1.83055e-2 1.83515e-2 1.83055e-2
5 years 6.45409e-2 6.42249e-2 6.60773e-2 6.50785e-2 6.73573e-2 6.63387e-2
10 years 9.49820e-2 9.43676e-2 9.82345e-2 9.59403e-2 1.01834e-1 9.88995e-2
15 years 1.11968e-1 1.11162e-1 1.16301e-1 1.13166e-1 1.21333e-1 1.17045e-1
20 years 1.21889e-1 1.20976e-1 1.26886e-1 1.23216e-1 1.32836e-1 1.27704e-1
25 years 1.27996e-1 1.26813e-1 1.33168e-1 1.29159e-1 1.39676e-1 1.34017e-1
30 years 1.31317e-1 1.30319e-1 1.36936e-1 1.32719e-1 1.43786e-1 1.37811e-1

Table 5.13: Asset and liability values for a contractual interest rate c3



Summary and Outlook

To conclude this diploma thesis it is my intention to summarize the main results and how they
were attained. Moreover I wish to give suggestions and an outlook on possible further research.

Main Results
In this diploma thesis we have presented a strategy for the valuation of mortgage-backed secu-
rities by taking a given approach as outlined in [28] and enhancing it with the latest numerical
techniques. Thereby we were able to deal with a complex financial asset from the field of
economics in a mathematically very efficient way and thus to combine these two subjects of
research. We are the first to use finite elements rather than differences in a structural model of
mortgage-backed securities and the first to apply backward-differentiation formulas and a multi-
grid iteration in this field. Also a new transformation is proposed which significantly reduces
problems encountered in [28].
There were three main problems in realizing these acchievements. The first was using a finite
element discretization for the partial differential equation which ensures convergence even after
weighting the numerical solution with the liabilities on prepayment or default. We found and
proved that this can be attained even by standard Lagrange elements provided only that the
PDE solution converges. The second problem was coping with a lack of regularity of the PDE
solution. Since it is worse than H2 the standard error estimates for finite elements cannot be ap-
plied and in consequence we perceive worse convergence rates than predicted in these estimates.
Our attempt to improve matters was to use the streamline upwind Petrov Galerkin method
which fell short because of the shortcomings of the solver Comsol Multiphysics which only
allows for first order elements and constant PDE coefficients. However, we were able to intro-
duce a transformation which removes the violation of uniform parabolicity (the cause for the
missing regularity) at least in house price direction so that after transformation all difficulties
stemmed from the interest rate direction.
Concerning time discretization we were able to use backward-differentiation formulas rather than
the inefficient and 30-year-old Hopscotch scheme (cf. [44]), which is used in [28], and a strategy
to adaptively select order and length of a step and thus minimizing the number of steps taken.
Having considerably improved discretization we solved the equations in optimal complexity
which we achieved with a multigrid solver which is pre-conditioned by the GMRES algorithm.
Eventually we tested the solver package by carrying out numerous computations for different
transaction costs and contractual interest rates upon distinguishing between the asset and liabil-
ity value. Thus we were able to show the robustness of our pattern. Moreover we demonstrated
that our transformations are more favorable than the ones proposed in [28].

Possible Enhancements Within the Model
Among the shortcomings of our scheme is the fact that streamline upwind Petrov Galerkin
did not work as intended because of the limitations of the implemented version in Comsol

113



114 SUMMARY AND OUTLOOK

Multiphysics. In addition, we did not have a scheme which is fully adaptive in space in every
time step and we rather imposed a non-uniform grid which remains the same over all time steps.
Moreover in an entirely addaptive pattern time steps could be chosen optimally according to the
given mesh.This full adaptivity is absolutely desirable because on the one hand it improves the
quality of the solution at any given time step with respect to the spatial error since additional
degrees of freedom are placed exactly where problems occur and not where we expect them to be
based on apriori judgment. On the other hand this extent of adaptiveness saves computational
work because no more variables than necessary are used to attain a given level of accuracy. And
using such improved solutions one might even spare several time steps.
However, such a method is very hard to implement since this should coincide with a change from
the method of lines to Rothe’s method. The latter means to first discretize in time and then
solve an elliptic problem in every time step. Doing so one faces the problem of having to map
solutions from previous time steps (if multi-step methods are used) to a possibly completely
different grid at the current time step. So an interpolation operator has to be provided and one
has to store at least two complete grids in every step.
Moreover it might be interesting to obtain further theoretic results, particularly about regularity.
This could include a rigorous proof that the solution of our PDE (2.6) is less regular than H2

or a proof that the solution is contained in a weighted Sobolev space (see for instance [67] and
[77]). But such research would better fit the field of functional analysis.
In addition, one might try to find very elaborate finite elements which ensure better convergence
properties than standard Lagrange elements.
These suggested enhancements have in common that they could be done within the existing
model and setting as they either seek improvement of the discretization or of the solution process.
In addition, one can also conduct research outside the scope of our model.

Further Applications
Apart from the numerics for this approach or further theory another starting point for future
research (and possibly huge numerical progress) might be modifying the model and interpreting
the MBS valuation as a free boundary value problem (with the free boundaries being the points
where early termination is optimal) as it is proposed in [29]. But following this approach would
require completely different numerical methods such as linear complementarity. This technique
is, for instance, used in the valuation of American-style options, which can also be interpreted
as a free boundary problem (cf. [50]).
Besides that our setting cannot only be used to price mortgage-backed securities (either in a
pool or as a single mortgage) but also for credit risk considerations by banks or other lenders.
This is the case because unless a mortgage contract is securitized and resold as an MBS the
lender of the original money bears and holds all the risk, i. e. in other words he or she owns a
mortgage-backed security although the mortgage is not officially declared as such. And hence a
bank might use this model to value its mortgage exposure.
Moreover our computations constitute the starting point for considering whole pools of mort-
gages as we would only need to carry out more computations for additional transaction costs
(which would have to be chosen appropriately in accordance with a certain probability distribu-
tion) and take the average.



Appendix A

Stochastic Calculus

In this appendix I want to review the basic aspects of stochastic calculus needed for our purposes
in this diploma thesis. This is largely based on the book on stochastic calculus by Karatzas and
Shreve (cf. [58]).
The appendix is organized in two sections the first dealing with stochastic processes in gen-
eral and the second is about stochastic differential equations by which the stochastic processes
appearing in this work are defined.

A.1 Stochastic Processes

Since all the stochastic processes appearing are driven by Brownian motions we commence by
stating the definition of a one-dimensional Brownian motion for which we need to know what
an adapted stochastic process is.

Definition A.1.1 The stochastic process X is adapted to the filtration Ft if for each t ≥ 0 Xt

is an Ft-measurable random variable.

And secondly the actual definition of a one-dimensional Brownian motion is:

Definition A.1.2 (Brownian Motion) A standard one-dimensional Brownian motion is a
continuous, adapted process B = {Bt,Ft; 0 < t <∞} defined on some probability space (Ω,F , P )
with the following properties:

1. B0 = 0 almost surely

2. For 0 ≤ s < t the increment Bt−Bs is independent of Fs and is normally distributed with
mean 0 and variance t− s.

Next I am going to state the multi-dimensional version of the Itô-formula. It describes the
behavior of a stochastic process which is the function of finitely many other stochastic processes.
But we need the following three definitions:

Definition A.1.3 Let X = {Xt,Ft; 0 ≤ t∞} be a right-continuous martingale. We say that X
is square integrable if E[X2

t ] <∞ for every t ≥ 0. If, in addition, X0 = 0 a.s. we write X ∈M2

or X ∈Mc
2 if X is also continuous.

Definition A.1.4 For X ∈M2 we define the quadratic variation of X to be the unique (up to
indistinguishability), adapted, natural, increasing process < X > for which < X >0= 0 a.s. and
X2− < X > is a martingale.
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In [58] it is pointed out that < X >t is the process from the Doob-Meyer decomposition of X2.
Moreover evidence of existence is given for X ∈M2.

Definition A.1.5 For any two martingales X,Y ∈ M2 we define their cross-variation process
< X,Y > by

< X,Y >t:=
1
4

[< X + Y >t − < X − Y >t]

for 0 ≤ t <∞ and observe that XY− < X,Y > is a martingale.

The reason for the latter claim is, according to [58], that for any two elements X,Y ∈ M2

both (X + Y )2− < X + Y > and (X − Y )2− < X − Y > are martingales and therefore so
is their difference 4X Y − [< X + Y > − < X − Y >]. Furthermore the authors elucidate that
< X,Y > is, up to indistinguishability, the only process of the form A = A(1) − A(2) with
A(j) adapted and natural increasing (j = 1, 2) such that XY − A is a martingale. But for
our purposes we shall be content with merely stating these facts without proof. In particular,
< X,X >=< X > holds.
Having stated all these definitions and properties we are finally able to assert the renowned
Itô-formula which is one of the most utilized techniques in standard contingent-claim pricing
and hence extremely important for financial mathematics. In this thesis it is applied during the
derivation of equation (2.6) in Section 2.5.

Theorem A.1.6 (Itô-Formula) Let {Mt := (M1
t , . . . ,M

d
t ), Ft; 0 ≤ t < ∞} be a vector of

local martingales in M c,loc and {Bt := (B1
t , . . . , B

d
t ), Ft; 0 ≤ t < ∞} be a vector of adapted

processes of bounded variation with B0 = 0 and set

Xt = X0 +Mt +Bt,

where X0 is an F0-measurable random vector in Rd. Let f(t, x) : [0,∞) × Rd → R be of class
C1,2. Then P − a.s. for 0 ≤ t <∞ the following holds:

f(t,Xt) = f(0, X0) +
∫ t

0
∂tf(s,Xs) ds+

d∑
i=1

∫ t

0
∂if(s,Xs) dBi

s +
d∑

i=1

∫ t

0
∂if(s,Xs) dM i

s

+
1
2

d∑
i=1

d∑
j=1

∫ t

0
∂i∂jf(s,Xs) d < M i,M j >s .

A proof of the Itô-formula is given in [58]. Due to its length and complicatedness we have opted
to omit it at this point.

A.2 Stochastic Differential Equations

This section is devoted to strong solutions of stochastic differential equations with respect to
Brownian motion. That is, we consider equations of the following type:

dXt = b(t,Xt) dt+ σ(t,Xt) dWt. (A.1)

Here we suppose bi(t, x), σij(t, x), 1 ≤ i ≤ d, 1 ≤ j ≤ m to be Borel-measurable mappings from
[0,∞)×Rd into R. We define the drift vector b(x, t) = {bi(t, x))}1≤i≤d and the dispersion matrix
σ(x, t) = {σij(t, x)}1≤i≤d,1≤j≤m and read the above equation componentwise. This as well as
the following statements and proofs are taken from [58].
This is of interest to us because we are dealing with such equations for interest rates and house
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prices in the one-dimensional case. But before we can state the definition of a strong solution
we have to make several other presumptions. We consider a probability space (Ω,F , P ) and
an m-dimensional Brownian motion W = {Wt,FW

t ; 0 ≤ t < ∞}. In addition, we suppose the
space to accomodate a vector ξ ∈ Rd, independent of FW

∞ , with a given distribution

µ(Γ) = P [ξ ∈ Γ], Γ ∈ B(Rd).

Moreover we consider the left-continuous filtration

Gt := σ(ξ) ∨ FW
t = σ(ξ,Ws; 0 ≤ s ≤ t) 0 ≤ t <∞

as well as the collection of null sets

N := {N ⊆ Ω | ∃G ∈ G∞ with N ⊆ G and P [G] = 0}

in order to create the augmented filtration

Ft := σ(Gt ∪N ), 0 ≤ t <∞ (A.2)

F∞ := σ(
⋃
t≥0

Ft). (A.3)

In [58] it is shown that both {Wt,Ft; 0 ≤ t <∞} and {Wt,Gt; 0 ≤ t <∞} are Brownian motions.
Now we have all the ingredients necessary to give the definition of a strong solution:

Definition A.2.1 (Strong Solution) A strong solution of the stochastic differential equation
(A.1) on the probability space (Ω,F , P ) with respect to the fixed Browian motion W and initial
condition ξ is a process X = {Xt, 0 ≤ t < ∞} with continuous sample paths and with the
following properties:

1. X is adapted to the filtration {Ft}

2. P [X0 = ξ] = 1

3. P [
∫ t
0{|bi(s,Xs)|+ σ2

ij(s,Xs)} ds <∞] = 1 holds for every 1 ≤ i ≤ d

4. the integral version

Xt = X0 +
∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs, 0 ≤ t <∞

of (A.1) holds almost surely.

Next we have to define a concept of uniqueness:

Definition A.2.2 (Strong Uniqueness) Let the drift vector b(t, x) and dispersion matrix
σ(t, x) be given. Suppose that whenever W is an r-dimensional Brownian motion on some
(Ω,F , P ), ξ is an independent, d-dimensional random vector, {Ft} is given by (A.2) and (A.3)
and X, X̃ are two strong solutions of (A.1) relative to W with initial condition ξ, then

P [Xt = X̃t, 0 ≤ t <∞] = 1.

Under those conditions we say that strong uniqueness holds for the pair (b, σ).

Having stated definitions of strong solutions and uniqueness of the stochastic differential equation
(A.1) we desire a criterion under which circumstances unique strong solutions exist.
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Theorem A.2.3 (Existence of Unique Strong Solutions) Suppose that the coefficients b(t, x),
σ(t, x) are locally Lipschitz-continuous in the space variable, i. e. for every integer n ≥ 1 there
exists a constant Kn > 0 such that for every t ≥ 0, ||x|| ≤ n and ||y|| ≤ n

||b(t, x)− b(t, y)||+ ||σ(t, x)− σ(t, y)|| ≤ Kn ||x− y||.

Then strong uniqueness holds for (A.1).

A proof of this statement can be found in [58].
Next it is my intention to apply this result to our stochastic differential equations (2.3) and (2.4)
governing the interest rate and house price processes:

dr = (κθr − (κ+ η) r) dt+ Φr

√
r dWr

dH = (r − qH)H dt+ ΦHH dWH .

Lemma A.2.4 Assume the two stochastic differential equations (2.3) and (2.4) to be given.
Then there are unique strong solutions on (0,∞) in the case of r and on [0,∞) in the case of
H.

Proof - Lemma A.2.4:
Concerning H the criterion is obviously satisfied for fixed r ∈ [0,∞) because both the drift and
dispersion coefficients are linear in H, independently of t, and linear functions are even globally
Lipschitz-continuous. Hence we choose:

Kn = max(r − qH ,ΦH).

In the case of r things are slightly more complicated because the drift vector is linear again
whereas the dispersion matrix is not. Therefore we consider some ε > 0 and by application of
the mean value theorem we estimate for r1, r2 > ε:

|
√
r1 −

√
r2| ≤ || 1

2
√
r
||∞ |r1 − r2|

=
1
2 ε
|r1 − r2|.

The latter claim holds because of the monotonicity of
√
·. Since ε was chosen arbitrarily this

altogether yields existence of unique strong solutions for r and H on (0,∞) and [0,∞) respec-
tively.

�



Appendix B

Functional Analysis

In this appendix I briefly summarize those statements and definitions from functional analysis
which yield existence and uniqueness of solutions to variational equations in the elliptic case and
which are helpful in procuring regularity statements. This is sensible because after reformulating
our PDE in a weak form in (3.3) variational equations are what we have to deal with. Moreover
the semi-discrete estimates from Section 3.5 require existence and regularity results for elliptic
problems.
Therefore we start by stating the representation theorem of Riesz and the theorem of Lax and
Milgram.

Proposition B.0.1 (Riesz) Let X be a Hilbert-space, denote by X ′ its dual space and by (·, ·)X

its scalar product. Then

J(x)(y) := (y, x)X ∀x, y ∈ X

defines an isometric linear isomorphism J : X → X ′.

Using this statement one can obtain the following statement:

Proposition B.0.2 (Lax-Milgram) Let X be a Hilbert space and a : X ×X → R be bilinear,
elliptic and continuous with constants c0 and C0 respectively. Then there is a uniquely defined
mapping A : X → X satisfying

a(y, x) = (y,Ax)X ∀x, y ∈ X.

In addition, A ∈ L(X) is invertible and fulfils

||A|| ≤ C0

||A−1|| ≤ 1
c0
.

Concerning proofs of both those statements we point out that they can be found in [2].
The desired existence and uniqueness results for elliptic problems can now be obtained by
applying those results to the Sobolev space H1,2

0 (Ω), the bilinear form a and linear form l
defined in Section 3.1.2.
Of course, we still have to define what Sobolev spaces are. They are spaces such that their
elements satisfy integrability conditions and weak differentiablity. More precisely according to
[2] this means:

Definition B.0.3 (Sobolev Spaces) Let m ≥ 0, m ∈ Z, 1 ≤ p ≤ ∞, Ω ⊂ Rn. Then we
define the Sobolev space of order m with exponent p in the following way:

Hm,p(Ω) = {f ∈ Lp(Ω)| for any multi-index |s| ≤ m there is f (s) ∈ Lp(Ω) with
f (0) = f and condition (B.1)}.
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Condition (B.1) is the following:∫
Ω
∂sζ f (0) = (−1)|s|

∫
Ω
ζ f (s) ∀ζ ∈ C∞0 (Ω). (B.1)

Moreover the Sobolev space shall be equipped with the following norm:

||f ||Hm,p(Ω) :=
∑
|s|≤m

||f (s)||Lp(Ω).

We would like to point out that in the case p = 2 Hm,2(Ω) is often referred to as Hm(Ω). The
expressions f (s) are called weak derivatives because if f is differentiable one can apply the rule
of integration by parts and f (s) happens to coincide with ∂sf .
In order to be able to define the spaces Hm,p

0 we need the following statement which further
elucidates the Sobolev spaces.

Proposition B.0.4 For f ∈ Hm,p(Ω) with 1 ≤ p < ∞ there is a sequence {fj}j∈N, fj ∈
Hm,p(Ω) ∩ C∞(Ω), such that

||f − fj ||Hm,p(Ω) −→ 0 for j →∞.

A proof of this theorem can be found in [2]. Now we are able to state the following definition:

Definition B.0.5 (Hm,p
0 (Ω)-spaces) Let Ω ⊂ Rn open, 1 ≤ p <∞ and m ≥ 0 integral. Then

we define:

Hm,p
0 (Ω) := {f ∈ Hm,p(Ω)| there is a sequence {fk}k∈N satisfying condition (B.2)}.

Condition (B.2) is the following:

||f − fk||Hm,p(Ω) −→ 0 k →∞. (B.2)

These Sobolev functions can be further characterized, i. e. one can give criteria under which
such a Sobolev function is contained in another Sobolev space. This is expressed in the following
embedding theorem.

Theorem B.0.6 (Embedding in Sobolev Spaces) Let Ω ⊂ Rn be open and bounded with
Lipschitz boundary. Further assume m1,m2 ≥ 0 integral and 1 ≤ p1 < ∞, 1 ≤ p2 < ∞. Then
the following assertions hold:

1. If m1− n
p1
≥ m2− n

p2
and m1 ≥ m2 there exists a continuous embedding id : Hm1,p1(Ω) →

Hm2,p2(Ω), i. e. for a constant C = C(n,Ω,m1,m2, p1, p2) we have an estimate:

||u||Hm2,p2 (Ω) ≤ C ||u||Hm1,p1 (Ω).

2. If m1 − n
p1
≥ m2 − n

p2
and m1 > m2 there is an embedding id : Hm1,p1(Ω) → Hm2,p2(Ω)

and it is continuous and compact.

3. For arbitrary open and bounded domains Ω ⊂ Rn the first two assertions hold for Hmi,pi
0 (Ω)

instead of Hmi,pi(Ω).

Proofs of these assertions can once again be found in [2].
Interpreting the results we see that the higher the dimension n is the easier the embedding
condition can be fulfilled and the higher the integration order p2 is the harder it becomes. In
particular, we note that for p1 = p2 H

m1,p1 ⊆ Hm2,p2 which seems very reasonable and plausible
from a common sense perspective.
Besides this embedding theorem there is another one which deals with the question under which
circumstances Sobolev functions can be continuous. More precisely the embedding theorem is
set in Hölder spaces:
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Theorem B.0.7 (Embedding from Sobolev Spaces into Hölder Spaces) Let Ω ⊂ Rn be
open and bounded with Lipschitz boundary. Moreover we assume an integer m ≥ 0 and 1 ≤ p <
∞ as well as an integer k ≥ 1 and 0 ≤ α ≤ 1. Then the following assertions hold:

1. If m− n
p = k+α there is a continuous embedding id : Hm,p(Ω) → Ck,α(Ω̄). More precisely,

for u ∈ Hm,p(Ω) there is one and only one continuous function which almost everywhere
coincides with u (and it be also denoted by u) such that

||u||Ck,α(Ω̄) ≤ C(Ω, n,m, p, k, α) ||u||Hm,p(Ω).

2. If m− n
p > k + α there is a continuous and compact embedding id : Hm,p(Ω) → Ck,α(Ω̄).

3. For arbitrary open and bounded sets Ω ⊂ Rn the first two statements hold for Hm,p
0 (Ω)

instead of Hm,p(Ω).

Having stated this embedding result we have yet to define what Hölder spaces are.

Definition B.0.8 (Hölder Spaces) For Ω ⊂ Rn open, bounded and m ≥ 0 as well as a Ba-
nach space Y with norm | · | and for 0 < α < 1 the Hölder spaces are defined in the following
way:

Cm,α(Ω̄;Y ) := {f ∈ Cm(Ω̄;Y )|Hölα(∂sf, Ω̄) <∞ for |s| = m},

where the Hölder constant Hölα(f, Ω̄) is defined as

Hölα(f, Ω̄) := sup
{
|f(x)− f(y)|
|x− y|α

| x, y ∈ Ω̄, x 6= y

}
∈ [0,∞].

Together with the norm

||f ||Cm,α(Ω̄) :=
∑
|s|≤m

||∂sf ||C0(Ω̄) +
∑
|s|=m

Hölα(∂sf, Ω̄)

they form Banach spaces.

This definition is taken from [2] where, in addition, both a proof of the latter claim on the
Banach space property and a proof of the embedding statements can be found.
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