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Einleitung

1.1 Motivation

Nicht-Newtonsche Fluide

Im Alltag begegnet man häufig Fließvorgängen in verschiedenster Form deren Entstehen und
Verständnis die Menschheit schon immer fasziniert hat. Die bekannten Navier-Stokes Gleichun-
gen erlauben es uns, Flüssigkeiten und Gase mathematisch zu beschreiben, die zur Klasse der
Newtonschen Fluide gehören. Ein Newtonsches Fluid erfüllt Newtons Gesetz der Viskosität,
wonach die im Fluid auftretende Spannung proportional zur ausgeübten Belastung ist. Die
Viskosität bezeichnet in diesem Zusammenhang die Proportionalitätskonstante. Zu den New-
tonschen Fluiden zählen Wasser sowie die meisten Gase.

Die Fortschritte im Bereich der chemischen Industrie im 20. Jahrhundert führten zur Entwick-
lung von komplexen Fluiden, die durch die klassischen Gleichungen nicht korrekt beschrieben
werden. Beispiele dafür sind Farben, Maschinenöle mit additiven Zusätzen, Zahnpasta oder
Shampoos. Sogar viele Flüssigkeiten in der Natur wie Eiweiß und Blut beziehungsweise alle
Fluide mit einer Mikrostruktur größer als die atomare Struktur erfüllen Newtons Gesetz nicht.
Alle Fluide, deren Viskosität einen komplexeren Zusammenhang aufweist, werden daher als
nicht-Newtonsch bezeichnet. Der Chemieprofessor Eugene Bingham prägte 1920 den Begriff
Rheologie für das Studium dieser nicht-Newtonschen Fluide.

Eine wichtige Klasse innerhalb der nicht-Newtonschen Fluide stellen die Polymerflüssigkeiten
dar, mit denen sich diese Arbeit insbesondere befassen wird. Wir stellen uns eine Polymerflüs-
sigkeit als ein Newtonsches Fluid vor, das zusätzlich langkettige Moleküle enthält. Durch den
Strömungswiderstand im Fluid werden die Moleküle gedehnt oder gestaucht und richten sich
gemäß der Strömung aus. Da die Moleküle wieder ihren Grundzustand anzunehmen versuchen,
führt dies zu einer elastischen Kraft, die durch einen makroskopischen Spannungstensor be-
schrieben wird. Da Polymerflüssigkeiten demnach nicht nur viskose sondern auch elastische
Eigenschaften aufweisen, bezeichnet man sie auch als viskoelastische Fluide.

Experimentelle Effekte

Wir veranschaulichen die Andersartigkeit zwischen Newtonschen und nicht-Newtonschen Flüs-
sigkeiten durch mehrere Experimente.

Ein bemerkenswerter Unterschied wird durch den Weißenberg-Effekt beschrieben, bei dem
man einen rotierenden Stab jeweils in einem Newtonschen und einem viskoelastischen Fluid
betrachtet. Im Newtonschen Fluid entstehen Zentrifugalkräfte, die die Flüssigkeit vom Stab
wegdrücken. Anders ist dies beim nicht-Newtonschen Fluid, in dem die Molekülketten in Rich-
tung des rotierenden Stabes gezogen werden, wodurch sich die ganze Flüssigkeit entgegen der
Schwerkraft am Stab hinaufzieht (siehe Abbildung 1.1 (a)). Wir können diesen Effekt in der
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(a) Weißenberg-Effekt (siehe Psidot [76]). (b) Siphon-Effekt (siehe Psidot [74]).

Abbildung 1.1: Durch ihre elastischen Eigenschaften können sich viskoelastische Fluide entgegen der
Schwerkraft bewegen.

(a) Barus-Effekt (siehe Psidot [75, 77]). (b) Verdickungseffekt auf einem Lautsprecher
(siehe Bend [7]).

Abbildung 1.2: Der Barus-Effekt tritt durch Normalspannungsdifferenzen auf. Für Maisstärke in Wasser
beobachten wir eine Erhöhung der Viskosität unter Scherung.

Theorie durch unterschiedliche Normalspannugen in verschiedene Richtungen erklären, wodurch
Zugspannung in Richtung des Rührstabs entsteht.

Der Effekt eines röhrenlosen Siphons veranschaulicht das Auftreten von starken elastischen
Kräften, wenn man eine Polymerflüssigkeit in eine Richtung dehnt. Wird eine nadellose Spritze
in ein nicht-Newtonsches Fluid getaucht und ein Teil der Flüssigkeit eingesaugt, kann der
Einsaugvorgang selbst dann fortgesetzt werden, wenn die Spritze wieder aus dem Fluid entfernt
wird (siehe Abbildung 1.1 (b)). Im Falle eines Newtonschen Fluids funktioniert dieser Vorgang
nicht, da der Wasserstrahl sofort abreißt, wenn man die Spritze herausnimmt.

Ein weiterer Effekt in Verbindung mit Normalspannungen ist der sogenannte Barus-Effekt.
Wenn ein viskoelastisches Fluid eine schmale Röhre verlässt, so führt dies zu einer Strangauf-
weitung über den Röhrendurchmesser hinaus. In Newtonschen Fluiden hängt dieser Effekt von
der Reynoldszahl ab, tritt jedoch nur stark vermindert auf. Zum Vergleich veranschaulichen
wir in Abbildung 1.2 (a) den Strangdurchmesser zwischen einem Newtonschen Fluid in rot und
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Abbildung 1.3: Gegenüberstellung eines Polymers und des vereinfachten Hantelmodells.

einem viskoelastischen Fluid in grün.

Wie zuvor erwähnt, existiert bei nicht-Newtonschen Fluiden ein komplexer Zusammenhang
zwischen der auftretenden Spannung bei Scherung und der Rate der Scherung. Die meisten
nicht-Newtonschen Fluide verändern dabei ihre Viskosität, die sich sowohl verringern als auch
erhöhen kann. In Abbildung 1.2 (b) zeigen wir einen Verdickungseffekt für Maisstärke in Wasser,
der durch einen mit 30 Hz vibrierenden Lautsprecher auftritt. Der Effekt zeigt sich durch das
Auftreten von sonderbaren Strukturen auf der Fluidoberfläche.

Insgesamt veranschaulichen die Experimente verschiedene Phänomene, die ein mathemati-
sches Modell wiedergeben muss. Darunter fallen Effekte der Viskositätsveränderung bei Sche-
rung, Normalspannungsdifferenzen, das langsame Abklingen von Spannungen, kurzzeitige Ge-
schwindigeitsüberschüsse im Fluid und Viskositätserhöhung unter Dehnung.

1.2 Modellierung viskoelastischer Fluide

Im Hinblick auf die Komplexität eines Polymers muss das mathematische Modell eingeschränkt
werden, um überhaupt numerische Simulationen durchführen zu können. Trotzdem sollen dabei
alle wichtigen Eigenschaften realer Polymere abgebildet werden. In dieser Arbeit machen wir
zwei Vereinfachungen, indem wir

• das Polymer durch ein Hantelmodell darstellen, das aus zwei identischen Kugeln und
einer elastischen Feder besteht (siehe Abbildung 1.3), und

• zwar die Interaktion zwischen dem Polymer und der umgebenden Newtonschen Flüssigkeit
betrachten, jedoch keine Interaktion der Moleküle untereinander berücksichtigen.

Ein Hantelmodell mit einer geeigneten nichtlinearen Feder repräsentiert das einfachste Modell,
das sowohl Molekülausrichtungen als auch Elastizitätseffekte durch Interaktion mit der Flüs-
sigkeit wiedergibt. Der zweite Aspekt bedeutet, dass sich unsere Betrachtungen auf verdünnte
Polymerflüssigkeiten konzentrieren. Das ist keine große Einschränkung, da die beschriebenen
Effekte auch für Flüssigkeiten beobachtet werden, in denen nur geringe Polymerkonzentratio-
nen auftreten. Trotzdem gibt es Ansätze, die die Interaktion von Molekülen berücksichtigen
wie beispielsweise in Prakash und Öttinger [72] und Prakash [71] beschrieben. Diese Ansätze
reduzieren den Aufenthaltsbereich der Moleküle auf ein beschränktes Volumen. Aufgrund ihrer
Komplexität wurden diese Ansätze bisher nur auf analytisch bekannte Geschwindigkeitsfelder
angewandt und nicht in praktischen Simulationen verwendet.
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Makroskopische Modellierung

Ein viskoelastisches Fluid lässt sich durch das vorhandene Geschwindigkeitsfeld, den auftre-
tenden Druck und einen zusätzlichen nicht-Newtonschen Spannungstensor beschreiben. Der
Spannungstensor berücksichtigt den Polymeranteil an der Gesamtspannung. Allgemein basieren
makroskopische Modellierungsansätze für nicht-Newtonsche Fluide darauf, den Navier-Stokes
Gleichungen einen besonderen Spannungstensor hinzuzufügen, der durch eine differentielle Zu-
standsgleichung berechnet wird. Die meisten makroskopischen Gleichungen lassen sich durch
Betrachtung der Kinetik eines Hantelmodells mit jeweiligem Federmodell herleiten. Die kineti-
schen Gleichungen werden dafür in eine geschlossene Zustandsgleichung für die makroskopische
Spannung umgeformt, wodurch es nicht notwendig ist, weiterhin das mikroskopische Hantel-
modell zu betrachten. Im Allgemeinen ist eine exakte Umformung in eine makroskopische Zu-
standsgleichung allerdings nicht möglich, es sei denn, man verwendet ein simples Federmodell
wie bei der linearen Hooke-Feder und dem makroskopischen Oldroyd-B Modell. Aus diesem
Grund muss das Hantelmodell noch weiter vereinfacht werden, was zu sogenannten Schlie-
ßungsansätzen führt. Trotz des Fortschritts, der in den vergangenen dreißig Jahren in diesem
Bereich erzielt worden ist, existieren immer noch keine zufriedenstellenden makroskopischen
Gleichungen, die in der Lage sind, alle auftretenden Aspekte in verdünnten Polymerflüssigkei-
ten zu beschreiben.

Multiskalenansätze

Seit kurzem werden wesentlich fortgeschrittenere Multiskalenansätze verwendet, die die kineti-
schen Gleichungen des Hantelmodells direkt lösen, um damit die makroskopischen Spannungen
zu bestimmen. Solche Ansätze vermeiden zusätzliche Fehler durch weitere Vereinfachungen und
ermöglichen es, das Wissen über die konkrete Physik in die Bewegungsgleichung des Hantelmo-
dells aufzunehmen. Da eine Brownsche Molekularbewegung auftritt, erhalten wir im Falle von
dreidimensionalen Strömungen eine stochastische Differentialgleichung im sechsdimensionalen
Raum. Die Gleichung weist sechs Dimensionen auf, da eine Hantel durch die räumliche Posi-
tion ~x und durch ihre Ausrichtung ~q beschrieben wird. Die Verbindung zum makroskopischen
Spannungstensor erfolgt als Erwartungswert über die aktuellen Hantelkonfigurationen mit Hilfe
einer Relation von Kramer.

Weiterhin erlaubt die Theorie stochastischer Prozesse eine Umformulierung der stochasti-
schen Differentialgleichung in eine sechsdimensionale, zeitabhängige Diffusionsgleichung für ei-
ne Wahrscheinlichkeitsdichtefunktion, die mit Hilfe deterministischer Verfahren gelöst werden
kann. Allgemein bezeichnet man die Diffusionsgleichung als Fokker-Planck Gleichung.

Partikelbasierter Ansatz

Beide Multiskalenansätze sind vergleichsweise neu im Bereich der Rheologie, da sie im Hinblick
auf den Speicherverbrauch und die Rechenzeit sehr teuer sind. 1993 wurde von Laso and Öttin-
ger [53] die partikelbasierte CONNFFESSIT -Methode (Calculation of Non-Newtonian Flow:
Finite Elements and Stochastic Simulation Techniques) entwickelt und auf zweidimensiona-
le Strömungsprobleme angewendet. Der ursprüngliche CONNFFESSIT-Ansatz enthielt jedoch
einige Nachteile, die zur Entwicklung von sogenannten

”
Mikro-Makro-Modellen der zweiten

Generation“ führten.
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Gitterbasierter Ansatz

Eine gitterbasierte Methode der zweiten Generation stellt beispielsweise die Methode der Brown-
schen Konfigurationsfelder (BCF) dar, die 1997 von Hulsen et.al. [41] entwickelt worden ist. Bei
der BCF-Methode ersetzt man die diskrete Menge von Polymeren durch feste Felder bezüglich
ihrer Position im Fluid. Aus diesem Grund handelt es sich um einen Eulerschen Ansatz. Der
wesentliche Vorteil im Vergleich zur ursprünglichen Methode besteht darin, dass der Spannungs-
tensor einen glatten Verlauf im Strömungsgebiet besitzt, obwohl ein stochastisches Rauschen
im zeitlichen Verlauf auftritt. Die BCF-Methode wurde beispielsweise von Bonvin [12] und von
Vargas et.al. [90] für zweidimensionale Strömungsprobleme umgesetzt.

In den Jahren 2003 und 2004 stellten Lozinski und Chauvière [19, 20, 57, 58] einen Dis-
kretisierungsansatz durch Spektralmethoden für die Fokker-Planck Gleichung vor. Aufgrund
der Komplexität der Gleichung unterteilten sie das Lösen der Fokker-Planck Gleichung in zwei
reduzierte Probleme, bei denen die Differentialoperatoren bezüglich ~x und ~q voneinander ent-
koppelt sind. Mit diesem Ansatz lösten sie zweidimensionale Strömungsprobleme (d.h. ~x ∈ R2),
bei denen die Molekülorientierung für die Fälle ~q ∈ R2 und ~q ∈ R3 untersucht worden ist. Im
Jahr 2008 hat Knezevic [50] den Ansatz zur Entkoppelung der Differentialoperatoren auf drei-
dimensionale Stokes-Strömungen angewendet, wobei die Fokker-Planck Gleichung mit Hilfe von
Spektralmethoden diskretisiert wird.

1.3 Überblick über die vorliegende Arbeit

Multiskalenbasierter Strömungslöser in 3D

In dieser Arbeit präsentieren wir erstmalig eine Koppelung eines existierenden, dreidimensio-
nalen Strömungslösers für komplexe Geometrien mit einem stochastischen BCF-Ansatz zur
Behandlung der vollen sechsdimensionalen, kinetischen Hantelgleichung. Der Strömungslöser
NaSt3DGPF [2] verwendet Finite Differenzen zur Diskretisierung der Navier-Stokes Gleichun-
gen, wobei für die Behandlung der konvektiven Terme Finite Volumen-Schemata höherer Ord-
nung wie VONOS, WENO oder ENO benutzt werden.

Um den Spannungstensor innerhalb des diskretisierten Strömungsgebietes zu berechnen, ver-
wenden wir 8000 Konfigurationsfelder in jeder Gitterzelle, die die tatsächliche Hantelorientie-
rung in dieser Zelle approximieren. Da dies die Komplexität des Problems im Vergleich zum
alleinigen Lösen der Navier-Stokes Gleichungen stark erhöht, müssen wir unseren Ansatz par-
allelisieren. Beispielsweise werden wir ein Strömungsproblem mit 503 Gitterzellen untersuchen,
wodurch sich 8000 · 503 = 109 stochastische Realisationen im Gesamtgebiet ergeben. Obwohl
8000 Realisationen pro Gitterzelle vergleichsweise gering erscheint, ist es im Hinblick auf das
Lösen der Navier-Stokes Gleichungen wichtiger, dass der Spannungstensor innerhalb des Strö-
mungsgebietes glatt ist, da nur die Divergenz des Spannungstensors für die Strömungsglei-
chungen von Relevanz ist. Die BCF-Methode stellt die Glattheit bezüglich des Ortes durch die
Anwendung der gleichen Brownschen Kraft in jeder Gitterzelle sicher. Außerdem verweisen wir
darauf, dass existierende 2D Ansätze mit der BCF-Methode zufriedenstellende Ergebnisse für
das makroskopische Geschwindigkeitsfeld produzieren, obwohl nur 2000 Konfigurationsfelder
pro Gitterzelle verwendet werden (vergleiche Vargas et.al. [90]).

Außerdem sei herausgestellt, dass der von uns verwendete BCF-Ansatz für den dreidimensio-
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nalen Strömungslöser mehrere Vorteile gegenüber dem deterministischen Fokker-Planck-Ansatz
bietet, da

• der stochastische Ansatz sehr robust im Hinblick auf die Komplexität der Strömung und
die verwendete Weißenbergzahl1 ist,

• der stochastische Ansatz sehr effizient parallelisiert werden kann und

• der Ansatz vergleichsweise günstig ist, sofern man nur an einer groben Approximation
des Spannungstensorfelds interessiert ist.

Tatsächlich gibt es Untersuchungen von Chauvière und Lozinski [19] darüber, dass ein stochas-
tischer Ansatz die Verwendung von Weißenbergzahlen erlaubt, die in dieser Höhe mit einem
Fokker-Planck-Ansatz oder den schlechteren makroskopischen Ansätzen nicht mehr möglich
sind. Im Gegensatz zum Spannungstensor weist die Fokker-Planck Gleichung bei hohen Weißen-
bergzahlen ein singuläres Verhalten auf, was eine feine Ortsdiskretisierung für ein numerisches
Lösen erforderlich macht.

Nichtlineare FENE-Feder

Da sich unser Multiskalenansatz für das exakte Modellieren des physikalischen Systems eig-
net, verwenden wir zur Verbindung der Kugelmassen eine nichtlineare FENE -Feder (Finitely
Extensible Nonlinear Elastic), die 1972 von Warner [93] entwickelt worden ist. Diese beschränkt
die Ausdehnung der Feder auf einen physikalisch korrekten, endlichen Wert. Dies hat jedoch
eine Singularität der Feder am Rand des Definitionsbereiches zur Folge. Weiterhin besitzt die
FENE-Feder aufgrund ihrer Komplexität kein makroskopisches Gegenstück, so dass wir in der
Tat ein vollständiges Multiskalenproblem betrachten. Neben der FENE-Feder untersuchen wir
noch einfachere Federmodelle wie das von Hooke und das FENE-P-Modell, um die Vorteile der
verwendeten FENE-Feder herauszustellen. Für die beiden einfacheren Modelle existiert jeweils
eine makroskopische Zustandsgleichung.

Homogene Strömungsprobleme

Obwohl das Hauptaugenmerk auf der Kopplung des instationären Strömungslösers mit dem
BCF-Ansatz liegt, betrachten wir zusätzlich die Fokker-Planck-Gleichung für den Fall einer
homogenen Strömung, um eine Validierung unserer Spannungstensorberechnungen und einen
Vergleich mit dem stochastischen Ansatz zu ermöglichen. Wir verwenden dafür einen Spektral-
ansatz in der Form von Lozinski [56]. Unsere Ergebnisse für homogene Strömungsfelder zeigen
für das FP-Modell die gleichen Einschränkungen hinsichtlich Robustheit, einer möglichen Pa-
rallelisierung und dem Berechnungsaufwand, wie zuvor bereits erwähnt. Dies bestätigt unsere
Wahl des stochastischen Ansatzes.

Weiter weisen wir darauf hin, dass im Falle eines homogenen Geschwindigkeitsfelds, bei
dem die Geschwindigkeit analytisch bekannt ist, die Fokker-Planck Gleichung nicht von der
Ortsvariablen ~x abhängt und sich das Problem abhängig von ~q auf zwei beziehungsweise drei
Dimensionen reduziert.

1Eine dimensionslose Kennzahl, welche das Verhältnis zwischen der mikroskopischen und der makroskopischen
Zeitskala angibt.
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Eigene Beiträge

Wir fassen an dieser Stelle die wesentlichen Beiträge dieser Arbeit zusammen:

• Wir geben einen Überblick über die mikroskopische und makroskopische Modellierung
von viskoelastischen Flüssigkeiten, über die modale und nodale Formulierung von Spek-
tralmethoden und die Ansätze für stochastische Verfahren.

• Wir erweitern einen bestehenden Spektralmethodenansatz mit Legendre-Polynomen von
Lozinski [56], um die Verwendung allgemeinerer Jacobi-Polynome zu ermöglichen.

• Wir präsentieren einen Algorithmus zur Erzeugung von Anfangskonfigurationen, die sich
gemäß der FENE-Wahrscheinlichkeitsdichtefunktion verteilen.

• Wir implementieren den BCF-Ansatz in einen dreidimensionalen Navier-Stokes-Löser und
diskutieren Möglichkeiten zur Randbehandlung der Konfigurationsfelder und Parallelisie-
rung des Ansatzes.

• Wir zeigen erstmalig Simulationsergebnisse eines gekoppelten Navier-Stokes-BCF Sys-
tems. Die neuen Ergebnisse basieren auf einem nicht-homogenen, multiskalenbasierten,
parallelen Strömungslöser, der komplexe Geometrien behandeln kann.

Aufbau der Arbeit

Die Arbeit ist wie folgt strukturiert:

Kapitel 2 liefert den theoretischen Hintergrund für die Simulation von rein Newtonschen, ma-
kroskopisch viskoelastischen und multiskalenbasierten viskoelastischen Fluiden. Wir ana-
lysieren die Nachteile verschiedener makroskopischer Ansätze und motivieren die Nutzung
von Multiskalenansätzen.

Kapitel 3 führt in numerische Verfahren zur Behandlung von partiellen und stochastischen
Differentialgleichungen ein. Wir diskutieren Finite Differenzen-Verfahren auf der Kugel
und Spektralmethoden zur numerischen Behandlung deterministischer Gleichungen, sowie
numerische Methoden zum Lösen von stochastischen Differentialgleichungen.

Kapitel 4 befasst sich mit homogenen Strömungsfeldern. Wir wenden die Spektralmethoden
auf die 2D Fokker-Planck-Gleichungen an, diskutieren die Verwendung von Kugelflächen-
funktionen für die 3D Fokker-Planck-Gleichung und implementieren Verfahren zur Zei-
tintegration von stochastischen Differentialgleichungen. Für die stochastischen Verfahren
stellen wir eine Methode zur Erzeugung geeigneter Anfangskonfigurationen vor und dis-
kutieren Möglichkeiten der Varianzreduktion.

Kapitel 5 beschäftigt sich mit dreidimensionalen, instationären, viskoelastischen Strömungs-
feldern. Zunächst betrachten wir das gekoppelte Navier-Stokes-BCF Modell und analy-
sieren die Vorteile gegenüber der CONNFFESSIT Methode. Anschließend konzentrieren
wir uns auf die Orts- und Zeitdiskretisierung des Multiskalensystems und diskutieren
die Randbehandlung der Konfigurationsfelder. Aufgrund der Komplexität des Problems
parallelisieren wir unseren Ansatz und untersuchen das Scale-Up Verhalten.
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Kapitel 6 beinhaltet unsere numerischen Ergebnisse. Wir präsentieren Ergebnisse für zwei-
und dreidimensionale homogene Scher- und Dehnungsströmungen und weiterhin für drei-
dimensionale, transiente Probleme wie die Strömung durch einen unendlichen Kanal,
eine Kontraktionsströmung im Verhältnis 4 zu 1 und die Umströmung einer Kugel. Im
Falle der homogenen Strömungsprobleme vergleichen wir den Spektralmethodenansatz
mit den stochastischen Berechnungen, analysieren verschiedene Feder-Modelle (FENE,
Hooke, FENE-P) und erzielen Ergebnisse für die stochastischen Rechnungen mit Wei-
ßenbergzahlen bis zu 10. Weiterhin validieren wir unser Navier-Stokes-BCF-Programm
durch Untersuchung einer Dehnungsströmung mit analytisch bekannter Lösung. Wir zei-
gen weiterhin, dass unser multiskalenbasierter Code für eine einfache Hooke-Feder das-
selbe Ergebnis wie eine Oldroyd-B Implementierung liefert. Zuletzt vergleichen wir die
weiteren instationären Rechnungen für die Kontraktionsströmung und die Umströmung
einer Kugel mit Ergebnissen in der Literatur, da es sich um klassische Benchmarkproble-
me handelt.

Kapitel 7 fasst die wesentlichen Ergebnisse dieser Arbeit zusammen und gibt einen Ausblick
auf zukünftige Fragestellungen und mögliche Erweiterungen.



1 Introduction

1.1 Motivation

Non-Newtonian Fluids

Fluid motion is a part of everyday experience and therefore has fascinated mankind for centu-
ries. The well-known Navier-Stokes equations adequately describe a class of liquids and gases
that is denoted as Newtonian fluids. For a Newtonian fluid we assume to fulfil Newton’s law
of viscosity, i.e. the exerted shear stress is proportional to the strain rate with the viscosity as
proportionality constant. This fluid class contains water and most gases.

The development of the chemical industry in the 20th century resulted in various complex
fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes
paint, engine oils with polymeric additives, toothpaste, and shampoo. Even worse, many fluids
in nature like egg white and blood as well as all fluids with a microstructure larger in size
than the atomic scale also violate Newton’s law of viscosity. We denote all fluids that feature a
more complex shear-stress relation as stated before as non-Newtonian. In the 1920’s, chemistry
professor Eugene Bingham coined the term rheology for the study of non-Newtonian fluids.

A very important subclass of non-Newtonian fluids are polymeric fluids which this thesis will
concentrate on. Polymeric fluids consist of long-chain molecules immersed in a Newtonian fluid.
Due to a drag force exerted by the liquid, polymeric molecules are stretched or compressed and
change their orientation. As the molecules attempt to resume their initial configuration, this
leads to an elastic force expressed by a macroscopic stress tensor. Consequently, since polymeric
fluids do not only behave viscous as a Newtonian fluid but also feature elasticity effects as a
solid, they are often called viscoelastic fluids.

Phenomena in Experiments

We illustrate the differences between Newtonian and non-Newtonian fluids by discussing several
phenomena that are solely observed for viscoelastic fluids.

One of the most remarkable phenomena is the Weissenberg effect. In this experiment, a
rotating rod is placed into a Newtonian as well as a viscoelastic fluid. In a Newtonian fluid the
rotating motion induces a centrifugal force that pushes the fluid outward away from the rod.
In contrast, the molecule chains of a viscoelastic fluid are pulled towards the rod so that the
fluid climbs up the rod against gravity (cf. Figure 1.1 (a)). In theory, we explain this effect due
to a non-zero normal stress difference that causes a tension in flow direction.

The tubeless syphon experiment exploits the occurrence of large elastic forces when extending
a polymeric fluid. If we insert a syringe into a viscoelastic fluid, start to fill it with the fluid and
simultaneously raise the syringe up, then the siphoning action still continues against gravity
(cf. Figure 1.1 (b)). If we used a Newtonian liquid instead, the jet of fluid would immediately
break.

9
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(a) Weissenberg effect (cf. Psidot [76]). (b) Tubeless siphon effect (cf. Psidot [74]).

Figure 1.1: Viscoelastic fluids move against gravity due to their elastic behaviour.

(a) Barus effect (cf. Psidot [75, 77]). (b) Thickening effect on speaker (cf. Bend [7]).

Figure 1.2: Barus effect linked to non-zero normal stresses; shear thickening effect for corn starch.

A further effect that is linked to normal stresses is the Barus effect. When a viscoelastic
fluid exits a small pipe, the jet that forms outside the pipe is much increased in diameter
in contrast to the diameter of the opening. For Newtonian fluids, the effect depends on the
Reynolds number but is strongly reduced. See Figure 1.2 (a) for a comparison of the Barus
effect between water (dyed in red) and a viscoelastic fluid (dyed in green).

As mentioned before, a non-Newtonian fluid exhibits a complex relation between shear stress
and strain rate. Most viscoelastic fluids are either shear-thinning or shear-thickening leading
to a change of viscosity. In Figure 1.2 (b) we illustrate the effect of shear-thickening for corn
starch in water that is put on a speaker cone vibrating at 30 Hz. The fluid is disturbed by the
oscillations which lead to an increase in viscosity and formation of weird structures.

In conclusion, the experiments illustrate several phenomena that a mathematical model
should necessarily describe. This includes shear-thinning or shear-thickening behaviour, non-
zero normal stress differences, stress relaxation, velocity overshoots, and viscosity thickening
effects under extensional flows.
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25µm

(a) (b)

Figure 1.3: A real polymeric molecule in comparison with a simplified dumbbell model.

1.2 Modelling of Viscoelastic Fluids

In view of the complexity of polymeric molecules, a restriction to a simplified mathematical
model is necessary that allows practicable numerical simulation but takes all essential charac-
teristics of real molecules into account. Here, we apply two major restrictions:

• we represent the molecules with a dumbbell model that consists of two identical beads
connected by an elastic spring (cf. Figure 1.3) and

• we model the interaction between the polymeric molecules and the Newtonian fluid but
assume that the polymers have no interaction among each other.

A dumbbell model with an appropriate (nonlinear) spring force is the most simple polymeric
model that adequately describes molecule orientation and elasticity effects caused by interaction
with the Newtonian fluid.

Due to the second aspect, we concentrate on dilute polymeric fluids. This is no real restriction
since the described phenomena can be clearly observed even for liquids with small polymeric
concentrations. However, there have been attempts to incorporate molecule interactions which
are denoted as excluded volume (EV) effects (cf. Prakash and Öttinger [72], Prakash [71]). Due
to its complexity, the approach has only been applied to analytically known flow fields but not
in practical simulations.

Macroscopic Modelling

A viscoelastic fluid is described by the velocity field, the pressure field, and an additional non-
Newtonian stress tensor that represents the polymeric contribution to the stress. In general,
macroscopic modelling of viscoelastic fluids consists of adding a special stress tensor to the
Navier-Stokes equations and solving a further differential constitutive equation to compute the
stress tensor components. Most macroscopic equations are derived by considering the kinetics
of a dumbbell model connected with a more or less complex microscopic spring force and a
reformulation in a constitutive equation in closed form for the macroscopic polymeric stress.
Then it is unnecessary to further investigate the microscale of the problem. But in general, an
equivalent macroscopic formulation is mostly lacking, except for the most simple spring forces
(e.g. Hookean spring and the macroscopic Oldroyd-B model). For this reason, the kinetic
models have to be simplified even further which leads to the so-called closure approximations.
Despite the progress that has been made in the last thirty years, there still exists no satisfying
macroscopic equation for correctly describing all aspects of dilute polymers.
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Multiscale Approaches

More advanced micro-macro approaches have been recently introduced that directly solve the
microscopic kinetic equations for a dumbbell molecule to obtain the macroscopic polymeric
stress. Using this ansatz avoids further simplification errors and allows the inclusion of all know-
ledge of the physical system in the kinetic equations for the dumbbell model. The Brownian
forces acting on the dumbbell are described by a stochastic process and give rise to a stochastic
differential equation. Since we do not only require the spatial position ~x(t) of the dumbbells
within the fluid domain but also their current orientation ~q(t) (i.e. ~q(t) represents the alignment
of the dumbbells at time t) the problem is described in six dimensions. Then, Kramer’s expres-
sion connects the macroscopic stress with the expectation value of the instantaneous dumbbell
configurations.

Furthermore, the theory of stochastic processes allows for an alternative interpretation of
the stochastic differential equation as a six-dimensional, time-dependent diffusion equation for
a probability density function which can be solved deterministically. A common term for the
diffusion equation in literature is Fokker-Planck equation (FP). Numerical methods that solve
the kinematic equations of motion base either on a Lagrangian or on an Eulerian description
of the system.

Lagrangian Description

The stochastic and the Fokker-Planck multiscale approach are comparatively new in rhe-
ology since they are very expensive in terms of computer memory and computation time.
In 1993, Laso and Öttinger [53] introduced the particle-based, stochastic CONNFFESSIT
method (Calculation of Non-Newtonian Flow: Finite Elements and Stochastic Simulation
Techniques) and applied it to two-dimensional flow problems. The original CONNFFESSIT
method exhibited several drawbacks which led to so-called “second generation micro-macro
techniques” (cf. Lozinski et al. [59]).

Eulerian Description

Hulsen et al. [41] introduced in 1997 a grid based second generation technique called the
Brownian configuration field (BCF) method. In the BCF method the discrete set of polymers
is replaced by an ensemble of configuration fields with fixed spatial position ~x (i.e. an Eulerian
approach). The BCF equation additionally includes a convective term to incorporate molecule
movement. Its major advantage over the original method is that the additional stress tensor
field is smooth in the physical flow space, although it exhibits stochastic noise in time. The
BCF method has been successfully applied to flow problems in two dimensions (cf. Bonvin [12]
or Vargas et al. [90]).

In 2003 and 2004, Lozinski and Chauvière [19, 20, 57, 58] introduced a spectral method ap-
proach for the numerical treatment of the Fokker-Planck equation. Considering the complexity
of the problem, they proposed an operator splitting for the Fokker-Planck equation and decom-
posed the problem into two equations with respect to ~x and ~q. Using this approach, they solved
two-dimensional flow problems (i.e. ~x ∈ R2) which contain dumbbell systems with orientation
vectors ~q ∈ R2 as well as ~q ∈ R3. In 2008, Knezevic [50] recently applied the operator splitting
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approach for the Fokker-Planck equation to three-dimensional Stokes flow problems and used
spectral methods for the discretisation of the split FP equation.

1.3 About this Thesis

Multiscale Flow Solver in 3D

In this thesis, we present a first-time approach to couple an existing three-dimensional flow
solver for complex geometries with a stochastic Brownian configuration field method for the full
six-dimensional dumbbell equation. The flow solver NaSt3DGPF [2] employs finite differences
to discretise the Navier-Stokes equations but uses high-order, finite volume-based schemes for
the discretisation of the convective terms (e.g. VONOS, WENO, ENO).

For the computation of the polymeric stress in the discretised space, we place 8000 config-
uration fields or stochastic realisations in each grid cell to approximate the actual dumbbell
configurations in that cell. As a consequence, we have to parallelise our algorithm since the
complexity of the problem strongly increases in size in comparison to a purely Newtonian cal-
culation in which we solely solve the Navier-Stokes equations. For instance, we will examine
a flow problem with 503 grid cells in total which yields 8000 · 503 = 109 stochastic realisa-
tions in total. 8000 realisations per cell may seem coarse, however, it is more important to
ensure that the stress tensor varies smoothly as it acts on the fluid velocities only via its di-
vergence. This can be done by employing the same Brownian force on each grid cell as in the
BCF method. Moreover, two-dimensional BCF approaches often apply only 2000 configuration
fields per element (cf. Vargas et al. [90]) and obtain satisfying macroscopic flow field results.

Note that a stochastic approach for a multiscale flow solver in three dimensions features
several advantages in contrast to a deterministic FP method as

• it is very robust with regard to the complexity of the problem and the chosen Weissenberg
number1 (cf. high Weissenberg number problem (HWNP) in Keunings [47]),

• the stochastic algorithms can be parallelised efficiently and

• the ansatz requires much less computation time if only a coarse approximation of the
stress tensor field is required.

In fact, it has been discovered that a stochastic multiscale approach copes with high Weis-
senberg numbers that are impractical for multiscale Fokker-Planck simulations or the inferior
macroscopic constitutive equations (cf. Chauvière and Lozinski [19]). In contrast to the stress
tensor, the probability density function for the FP equation becomes singular for high Weis-
senberg numbers which requires fine spatial resolution for a numerical treatment.

Nonlinear FENE Spring Force

Since our multiscale approach allows for a precise modelling of the physical system, we employ
a nonlinear FENE spring force (Finitely Extensible Nonlinear Elastic) suggested by Warner
[93] that restricts the dumbbells’ length to a (physically correct) finite maximum extension.

1A dimensionless number representing the ratio between the microscopic and macroscopic time scale.



14 1 Introduction

However, this results in a singularity at the boundary of the configuration domain. Due to its
complexity, the FENE spring possesses no macroscopic equivalent and is thus a full multiscale
problem. Beside the FENE spring force we also investigate the more simple Hookean and
FENE-P spring forces for which macroscopic counterparts exist, primarily to emphasise their
disadvantages in comparison to the FENE model.

Homogeneous Flow Problems

Although we couple a stochastic BCF method with a transient Navier-Stokes flow solver, we
also solve the Fokker-Planck equation for homogeneous flow problems using a spectral method
approach as in Lozinski [56] to validate the correctness of our stress tensor approximations.
Furthermore, this allows for a comparison between both methods in simple flow fields. Our
homogeneous flow results show the same restrictions for the FP model in view of robustness,
parallel efficiency and computation time as mentioned before which confirms the choice of a
stochastic method for transient flow fields.

Note that for homogeneous flow fields, the Fokker-Planck equation does not depend on
physical space ~x as the velocity field is analytically prescribed such that the Fokker-Planck
equation simplifies to two or three dimensions in space according to whether ~q ∈ R2 or ~q ∈ R3

is used.

Main Contributions of this Thesis

The main contributions of this thesis are as follows:

• We give an overview of micro- and macroscopic viscoelastic fluid modelling as well as of
spectral methods in modal and nodal formulation and stochastic simulation techniques.

• We extend an existing spectral discretisation of the Fokker-Planck equation with Legendre
polynomials from Lozinski [56] to allow for the usage of more general Jacobi polynomials.

• We present an algorithm to generate initial configurations which are distributed according
to a FENE probability density function.

• We apply the multiscale BCF method to a three-dimensional Navier-Stokes flow solver and
discuss boundary treatment of the configuration fields as well as parallelisation aspects.

• We show first-time simulations for a coupled three-dimensional Navier-Stokes-BCF sys-
tem. The new results are based on a full multiscale, non-homogeneous, parallel flow solver
that can cope with complex geometries.

Outline

The remainder of this thesis is structured as follows:

Chapter 2 provides the basic theory for the simulation of purely Newtonian, macroscopic vis-
coelastic and multiscale viscoelastic fluids. We analyse the drawbacks of several macro-
scopic polymer models and motivate the usage of multiscale approaches.
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Chapter 3 introduces numerical methods for the discretisation of partial and stochastic dif-
ferential equations. We discuss finite differences on the sphere and spectral methods for
a discretisation of deterministic differential equations on a spherical geometry as well as
numerical techniques for stochastic equations.

Chapter 4 considers the case of a homogeneous flow field. We apply spectral methods to the
two dimensional Fokker-Planck equation, discuss spherical harmonic basis functions for
the three dimensional Fokker-Planck equation and use time-integration schemes for the
discretisation of the stochastic differential equation. For the stochastic method, we fur-
ther present a method to generate appropriate initial configurations and discuss variance
reduction schemes.

Chapter 5 deals with three-dimensional, transient, viscoelastic flow fields. First, we present
our coupled Navier-Stokes-BCF model and analyse its advantages over a CONNFFESSIT
method. Then, we consider spatial and temporal discretisation of the multiscale system
and discuss boundary treatment of the configuration fields. Due to the complexity of the
problem, we parallelise the algorithm and investigate its scale-up behaviour.

Chapter 6 contains our numerical results. We present results for two- and three-dimensional
homogeneous shear and extensional flows and furthermore for three-dimensional, transi-
ent flow problems like a flow through an infinite channel, a contraction flow with ratio 4:1
and a flow around a sphere. For homogeneous flows, we compare the spectral approach
for the FP equation with stochastic results, analyse different spring force models (FENE,
Hooke, FENE-P) and obtain results for stochastic simulations with Weissenberg num-
bers up to 10. Furthermore, we validate our Navier-Stokes-BCF code by investigating
an extensional flow with an analytically known solution. Using a simple Hookean spring
force, we also prove that our multiscale approach yields the same results as a macroscopic
Oldroyd-B simulation. Lastly, we compare transient results of contraction flow and flow
around a sphere with those from literature as they are classical benchmark experiments.

Chapter 7 summarises the main results of this thesis and gives an outlook on future perspec-
tives and possible extensions.





2 The Mathematical Model

This chapter considers the mechanics of Newtonian and non-Newtonian fluids. In the begin-
ning, we describe the basic laws of macroscopic Newtonian fluids and derive the Navier-Stokes
equations. Considering the viscosity of fluids under shear and extensional flows, we develop
macroscopic differential and integral models for non-Newtonian fluids. Further analysis of the
internal structure leads to multiscale models that depend either on a Fokker-Planck equation
(i.e. a diffusion equation for a density function) or on a stochastic differential equation. At last,
we try to connect the microscopic and macroscopic description of non-Newtonian fluids with
the introduction of the Kramers expression and closure approximations.

2.1 Newtonian Fluid Mechanics

In this section, we describe the major principles of continuum mechanics for compressible and
incompressible fluid flows. The overview bases upon the books of Owens and Phillips [68],
Huilgol and Phan-Thien [40], Tanner [84] and the thesis of Claus [22].

2.1.1 Conservation Laws

In the beginning, we consider Reynolds’ transport theorem and use it for deriving the conser-
vation of mass and linear momentum equations. Therefore, let V ⊂ R3 be a volume element
filled with a fluid and let ~u(~x(t), t) be the velocity of a particle with position ~x(t) ∈ V at time
t. We can calculate the acceleration of a particle that moves along the velocity field ~u by using
the total derivative with respect to time

~a(~x(t), t) =
d

dt
~u(~x(t), t) =

∂~u

∂t
+
∂~u

∂x

dx

dt
+
∂~u

∂y

dy

dt
+
∂~u

∂z

dz

dt
=

∂

∂t
~u + (~u · ∇)~u. (2.1)

In fluid mechanics, we are interested in the time-dependent behaviour of scalar and vector fields
that move along the flow field ~u and therefore introduce the material derivative in an analogous
manner as in (2.1).

Definition 2.1 [Material Derivative]
The material derivative operator describes the time-dependent change of a scalar- or vector-
valued function that moves along a fluid field with velocity ~u. We define the operator as

D

Dt
≡ ∂

∂t
+ (~u · ∇)

with the convective term ~u · ∇.

We can interpret the material derivative as a connection between the Eulerian description
(i.e. frame of reference is fixed in space) and the Lagrangian description (i.e. frame of reference
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changes to the same degree as a moving particle) of a flow field. A moving observer, as is the
case in an Lagrangian description, would only notice the partial derivative with respect to t and
not the convective term. As a result, we are able to compute derivatives of volume integrals.

Theorem 2.2 [Reynolds Transport Theorem]
Let f(~x, t) be a scalar- or vector-valued function defined over a volume V (t) ⊂ R3 at process
time t. Then the theorem states that

d

dt

∫
V (t)

f dV =

∫
V (t)

(
Df

Dt
+ f∇ · ~u

)
dV

=

∫
V (t)

∂f

∂t
dV +

∫
∂V (t)

f~u · ~n dA

with ~n as the outward pointing normal vector on the surface of V (t). For the second rearrange-
ment, we use Gauss’s divergence theorem and allude that the derivation with respect to t and
integration do not commute as the volume V (t) changes with time.

Proof: Huilgol and Phan-Thien [40] give a proof by converting the domain of integration to
a stationary reference element.

In the following, we apply Reynolds theorem on the fundamental principle in physics that
the mass of a closed system remains constant for all time.

Conservation of Mass

Let ρ : R3 × [0, tmax] → R be the density function of a fluid element with volume V (t), then
m =

∫
V (t) ρ dV denotes the total mass of the system and the conservation of mass principle

(i.e. dm/dt = 0) states
d

dt

∫
V (t)

ρ dV = 0. (2.2)

We use Reynolds theorem to interchange differentiation and integration in (2.2) and receive∫
V (t)

(
Dρ

Dt
+ ρ∇ · ~u

)
dV = 0.

As size and shape of the volume are arbitrary, we deduce the continuity equation

Dρ

Dt
+ ρ∇ · ~u = 0.

For incompressible fluids (e.g. water and most viscoelastic flows) the density ρ is assumed to
be constant and thus the material derivative vanishes and the equation simplifies to

∇ · ~u = 0. (2.3)

Conservation of Linear Momentum

We subdivide forces acting on a fluid element into two categories. On the one hand, forces
which operate on the whole volume such as gravity are called body forces. On the other hand,
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we have surface forces which act by contact with the surface. Consequently, we write the total
force as

~Ftotal =

∫
V (t)

ρ~b dV +

∫
∂V (t)

~t dA

where ~b is the total body force per unit mass and ~t is the stress vector. The stress vector
represents the exterior force on the surface element dA. Subsequently, we use the relation

~t = σ · ~n (2.4)

between the stress vector ~t, the Cauchy stress tensor σ and the outward pointing unit normal
~n and refer to Section 2.1.2 for further analysis.

Newton’s second law of motion in an inertial frame of references explains the change of linear
momentum as a result of external forces ~Ftotal acting on the body which yields

d

dt

∫
V (t)

ρ~u dV︸ ︷︷ ︸
= momentum

=

∫
V (t)

ρ~b dV +

∫
∂V (t)

~t dA

Using Reynolds’ transport theorem on the left-hand side and applying (2.4) on the right-hand
side, we rewrite the equation as∫

V (t)

(
ρ
D~u

Dt
+ ~u

Dρ

Dt
+ ~uρ∇ · ~u︸ ︷︷ ︸

=0 (continuity equ.)

)
dV =

∫
V (t)

ρ~b dV +

∫
V (t)
∇ · σ dV. (2.5)

At last, since the equation holds for all closed bounded volumes V (t) and we assume the
integrands to be continuous, the conservation of momentum becomes

ρ
D~u

Dt
= ρ~b + ∇ · σ. (2.6)

Additionally, for problems with relevance to thermal effects the conservation of energy be-
comes important but can be omitted in our applications.

2.1.2 The Stress Tensor

In the following section, we concentrate on surface forces (e.g. pressure, friction) and their mod-
elling with a stress tensor σ. In equation (2.4) we have used σ to describe the relation between
the unit normal ~n on a surface element and the stress vector ~t on this element. Subsequently,
we give an existence theorem for the stress tensor and illustrate the relation in Figure 2.1.

Theorem 2.3 [Existence of a Stress Tensor]
Let D ⊂ R3 be a bounded region that includes V (t) at any time and let ~t be the stress vector
defined on ∂V (t), then there exists a second-order tensor σ(~x, t), the Cauchy stress tensor, with
the properties

•
~t = σ · ~n,
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~bdV

σ

~n

~t

dA

V(t)

Figure 2.1: Two different forces act on a fluid element V (t) which are the body force ~b (e.g. gravity,
electromagnetic forces) and surface forces (e.g. pressure, friction). For the description of
surface forces we consider the Cauchy stress tensor σ that we interpret as a linear mapping
from ~n to the stress vector ~t.

•
σ is symmetric,

i.e. σ is a linear mapping from ~n to ~t with six independent components.

Proof: Owens and Phillips [68] and Huilgol et al. [40] give detailed proofs of the theorem.

Additionally, the diagonal components σxx, σyy and σzz are called normal stresses whereas
the other components σxy = σyx, σxz = σzx and σyz = σzy are denoted as shear stresses.

In a first attempt, we model the stress tensor for fluids without internal friction which are
denoted as nonviscous or inviscid flows. No shear stresses occur in that case and the only
contribution to the stress comes from the hydrostatic pressure p. In a flow problem, p must
be found using the continuity equation (2.3) and the momentum equation (2.6) because the
pressure is not connected to the motion by a constitutive equation. Owing to the fact that the
pressure is uniform in all directions, the constitutive model for a fluid takes the form

σ = −p Id (σij = −pδij). (2.7)

Accordingly, the stress vector ~t and the unit normal ~n are linearly dependent for an inviscid
flow and ~n is an eigenvector of σ with eigenvalue p. Furthermore, for a fluid at rest the stress
tensor σ takes the same form. Indeed, if other components than the normal stresses appeared,
the fluid would be deformed.

For more complex flows, we expand σ with extra-stresses

σ = −p Id + τs + τp︸ ︷︷ ︸
≡ τ

(2.8)

whereas τs represents the solvent contribution to the stress (i.e. Newtonian flow case) and τp
describes an additional term for non-Newtonian fluids (e.g. contribution of polymer molecules



2.1 Newtonian Fluid Mechanics 21

−p + (τs + τp)xx

−p + (τs + τp)yy

(τs + τp)zy

(τs + τp)yz

(τs + τp)yx

(τs + τp)xz

z

y

x

(τs + τp)xy

−p + (τs + τp)zz

(τs + τp)zx

Figure 2.2: The components of σ are arranged on different faces.

immersed in the fluid). We illustrate the components of σ in Figure 2.2. Inserting (2.8) into
the momentum equation yields

ρ
D~u

Dt
= −∇p + ∇ · τs + ∇ · τs + ρ~b. (2.9)

In the following sections, we give a constitutive equation for τs and examine different ap-
proaches (differential, integral and multiscale models) to connect the polymeric extra-stress
tensor τp with the motion of the fluid.

2.1.3 Viscosity in Simple Flows

For a given fluid, we want to investigate the relation between extra-stress (τ = τs + τp) and
fluid motion and therefore need a measure for the internal resistance of the flow (i.e. viscosity).
Therefore, we investigate two simple types of flow, shear flows and extensional flows, and define
the shear viscosity and extensional viscosity correspondingly. The simplicity of these flows lies
in the well known velocity field that is not influenced by additional polymeric characteristics.
Actually, the velocity field is homogeneous in both cases which means that the velocity gradient

∇~u(~x, t) = ∇~u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 (2.10)

does not depend on physical space ~x or process time t. Note that there are two different
definitions for the velocity gradient in literature. In this thesis, we define the gradient as
(∇~u)i,j = ∂ui

∂xj
whereas most authors in rheology use the transpose definition (∇~u)i,j =

∂uj
∂xi

. In

contrast to the stress tensor, ∇~u is not symmetric and therefore some equations have to be
modified accordingly. Additionally, after we have introduced the concept of viscosity, we give
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y

x

d ~u = (γ̇y, 0, 0)

u0

Figure 2.3: In a simple shear flow the fluid is contained between two infinite plates with distance d. The
top plate moves with a constant velocity u0 and creates an y-dependent velocity profile for
the fluid because of internal friction.

precise definitions for Newtonian and non-Newtonian fluids.

Steady Shear Flow

In a steady xy-shear flow, the velocity field is given by

~u = (γ̇y, 0, 0) (2.11)

for a constant shear rate γ̇. The velocity profile results from a fluid contained between two
parallel and infinitely extended plates whereas the upper plate moves with a constant velocity
u0. For an illustration of this configuration, we refer to Figure 2.3.

Let d denote the distance between both plates, then we obtain the shear rate by the quotient
γ̇ = u0/d and the velocity gradient is ∇~u = γ̇~ex ⊗ ~ey.

In view of further analysis of τ , we define the viscosity of a fluid.

Definition 2.4 [Shear Viscosity]
Let ~u be the velocity field of a steady shear flow in x-direction, then we define the (shear-rate
dependent) viscosity

η(γ̇) =
τxy
γ̇

(2.12)

as the ratio between the shear stress component τxy and the shear rate. Furthermore, we term
the limit

η0 = lim
γ̇→0

η(γ̇)

as zero-shear-rate viscosity and
η∞ = lim

γ̇→∞
η(γ̇)

as infinite-shear-rate viscosity.

In general, η(γ̇) is a function depending on γ̇ with finite boundary values for γ̇ → 0 and
γ̇ →∞. However, we denote a fluid

• as Newtonian if the viscosity is a constant that does not depend on γ̇ and
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d

u0

Figure 2.4: The picture presents a schematic overview of a rheometer. The inner disc rotates with a
constant velocity u0 and locally generates, after an initial phase, a simple shear flow.

• as non-Newtonian for the general case.

As η(γ̇) is not constant in the non-Newtonian case, we classify fluids with

• monotonically decreasing viscosities as shear thinning or pseudo-plastic and with

• monotonically increasing viscosities as shear thickening or dilatant.

In practical applications, we are not able to use infinite plates but can create flows that are
similar to simple shear flows and easy to produce experimentally (cf. a rheometer in Figure
2.4). We name these viscometric flows. Interestingly, for viscometric flows two of the three
independent shear stresses of τ are zero. In the coordinate system described above, we have
τxy 6= 0 and τxz = τyz = 0 and therefore get

τ =

τxx τxy 0
τxy τyy 0
0 0 τzz

 . (2.13)

For clarification, let z be the fixed reference point of two Cartesian coordinate systems
whereas the second one is rotated by an angle of π around an axis through z in relation to
the first one. We illustrate the relative orientation in Figure 2.5. Considering the fact that we
have an isotropic material, both systems of reference exhibit the same flow field and therefore
the same stresses. However, as the stress tensor components τxz and τyz point in different
directions, they have to be zero.

At last, we define two other parameters which are important for the investigation of the flow
field and which distinguish Newtonian and non-Newtonian fluids.

Theorem 2.5 [Viscometric Functions]
We denote the two independent stress differences

N1(γ̇) ≡ τxx − τyy and N2(γ̇) ≡ τyy − τzz (2.14)

as the first and second normal stress differences. The three characteristic functions η(γ̇), N1(γ̇)
and N2(γ̇) are called viscometric functions.

Steady Extensional Flow

In an extensional flow a fluid element is stretched in one or several axes with constant elongation
rate ε̇ > 0. Depending on the form of ~u, we distinguish uniaxial and planar extensional flows
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τxz

τyz τxz
τyz

π
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y

y

Figure 2.5: Two stress tensor components have to be zero in a shear flow because two systems of
reference, rotated by π, show the same flow field and the same stresses. A similar illustration
can be found in Böhme [11].

(cf. Figure 2.6). The corresponding velocity field takes the form

~u = (ε̇x,− ε̇
2
y,− ε̇

2
z) for an uniaxial extensional flow and (2.15a)

~u = (ε̇x,−ε̇y, 0) for a planar extensional flow. (2.15b)

As uniaxial extensional flows take place in three dimensions and therefore are difficult to visu-
alise, we additionally describe the deformation of a cylindric volume element under such an
extensional flow in Figure 2.7. We expect for this experiment

• an extension in the x-direction and a decrease in the y − z cross section for an uniaxial
extensional flow and

• an uniform increase and decrease in two axes and no change in the third direction for
planar extensional flow.

Extensional flows behave differently than shear flows so that other fluid characteristics are
emphasised. For instance, a shear flow given by (2.11) deforms a fluid element by a fixed angle
and therefore produces one non-zero shear stress component (i.e. τxy 6= 0). In contrast, the
stress tensor in extensional flows exhibits only normal stresses and takes the form

τ =

τxx 0 0
0 τyy 0
0 0 τyy

 (2.16)

with only two independent components. As we are interested in the evolution of τxx− τyy with
respect to ε̇, we consequently define an analogon to the shear viscosity for the extensional flow
case.

Definition 2.6 [Extensional Viscosity]
The extensional viscosity ηE(ε̇) is defined as the ratio of the normal stress difference τxx − τyy
to the extensional rate ε̇

ηE(ε̇) =
τxx − τyy

ε̇
. (2.17)
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Planar extensional flow Uniaxial Extensional Flow

Figure 2.6: A planar extensional flow as in the left picture exhibits only fluid motion in the xy-plane
whereas an uniaxial extensional flow as in the right picture comes from two directions (e.g.
y- and z-direction) and flows in the direction of the third axis (e.g. x-direction).

If the extensional viscosity of a fluid increases while the parameter ε̇ is increased, we denote this
behaviour as extensional thickening. Obviously, the opposite case is called extensional thinning.

Another difference between shear and extensional flow lies in the curl of ~u. In all non-trivial
flow cases, we have

• ∇× ~u = 0 for an extensional flow and

• ∇× ~u 6= 0 for a shear flow.

We consider only flows in simply-connected regions and as the curl of ~u vanishes, we therefore
conclude the existence of a scalar potential for extensional flows (i.e. extensional flow fields are
conservative).

At last, we define a measure for the comparison of shear and extensional behaviour.

Definition 2.7 [Trouton ratio]
The Trouton ratio expresses the ratio between extensional viscosity and shear viscosity

Trouton ratio =
ηE(ε̇)

η0(γ̇)
. (2.18)

2.1.4 Newtonian Fluids

In Section 2.1.2 we have decomposed the total stress tensor into

σ = −p Id + τs + τp.



26 2 The Mathematical Model

x

y

z Fluid element at time t1

Elongated fluid
element at time
t2 > t1

Figure 2.7: In a steady uniaxial extensional flow, a cylinder is stretched in the x-direction. Correspond-
ingly, the y − z cross section decreases but maintains its circular form.

Obviously, for Newtonian fluids we have τp = 0 and Newton’s constitutive law states

τs = 2η0D. (2.19)

Concerning this matter, we have used the rate of deformation tensor

D =
1

2
(∇~u+∇~uT )

which is the symmetric part (i.e. DT = D) of the velocity gradient. The diagonal elements
of D are a measure for the stretching of filaments in the main coordinate direction. The
parameter η0 denotes the zero-shear-rate viscosity, but, as stated for the definition of viscosity,
a Newtonian fluid has a constant viscosity that is independent of the shear rate.

Inserting Newton’s law (2.19) into the momentum equation (2.9) and combining the result
with the continuity equation (2.3), we obtain the incompressible Navier-Stokes equations

ρ
D~u

Dt
= −∇p + η0∆~u,+ ρ~b,

∇ · ~u = 0.

(2.20)

Subsequently, we investigate the stress tensor of a Newtonian fluid for the simple flow cases
as described in Section 2.1.3:

1. Steady shear flow
We use Newton’s law (2.19) to calculate the total stress tensor

σ = −p Id + τs =

−p η0γ̇ 0
η0γ̇ −p 0
0 0 −p

 (2.21)
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and we obtain

N1(γ̇) = τxx − τyy = 0,

N2(γ̇) = τyy − τzz = 0

for the first and second normal stress differences. Additionally, as the shear viscosity is
constant, Newtonian flows are neither shear thinning nor shear thickening.

2. Steady extensional flow
For an extensional flow, σ becomes

σ = −p Id + τs =

−p+ 2η0ε̇ 0 0
0 −p+ 2η0ε̇ 0
0 0 −p+ 2η0ε̇

 (2.22)

which yields a constant extensional viscosity (cf. (2.17))

ηE(ε̇) = 3

and therefore a Trouton ratio ηE(ε̇)/η0 = 3.

We conclude from the analysis of both simple flows that Newton’s law is only valid for
a subclass of fluids that exhibit no shear-rate or extensional-rate dependent behaviour (e.g.
water, air). One reason for this restriction is that the solvent stress tensor in (2.19) depends
linearly on ~u and is isotropic (i.e. uniform in all directions). Accordingly, we introduce a
generalised Newtonian fluid to lift some restrictions from the Newtonian case.

Generalised Newtonian Fluids

In industrial applications the most relevant characteristic of non-Newtonian fluids is the shear
thinning effect (i.e. increasing shear rate γ̇, decreases viscosity). Hence, we describe an extension
for Newtonian fluids that

• includes the shear thinning or shear thickening effect for shear flows (cf. Section 2.1.3),

• also does not predict the first and second normal stress differences (i.e. differences are
zero as for a Newtonian fluid), and

• is not suited for extensional flows.

Therefore, we postulate that η0 may depend nonlinearly on the deformation tensor D. As the
viscosity is a scalar, it does not depend on a specific coordinate system. For this reason, η0 can
only depend on invariants of D. As D is symmetric and can be diagonalised, we describe η0

with three invariants ID, IID, and IIID which yields an expression

τs = 2η0(ID, IID, IIID)D.
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The three invariants are given by (cf. Bird [9])

ID =
3∑
i=1

Dii = trD = ∇ · ~u,

IID =
3∑
i=1

3∑
j=1

DijDji = ‖D‖2Frobenius,

IIID =
∑
i,j,k

DijDjkDki = trD3.

We conclude that

• ID = 0 for incompressible fluids and

• IIID = 0 for steady shear flows.

As a result, a constitutive equation for a generalised Newtonian fluid takes the form

τs = 2η0(‖D‖Frobenius)D. (2.23)

A generalised Newtonian fluid can also be considered as a non-Newtonian viscous fluid that
is inelastic (i.e. the deformation of the fluid is not reversible). In the next chapter, we con-
sider nonlinear models for non-Newtonian flows that include elasticity and explain more effects
occurring for shear and extensional flows.
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2.2 Macroscopic Models for Non-Newtonian Fluids

In this chapter, we concentrate on purely macroscopic models for non-Newtonian fluids. All
considered models can be derived by the use of continuum mechanics. However, there is a
relation between macroscopic and multiscale models that we consider in Section 2.3.6. Macro-
scopic theories are either based on differential or on integral models. Both approaches connect
the non-Newtonian extra-stress τp to the motion of a fluid described by ∇~u or the rate of
deformation tensor D. However, differential models have been analysed in more detail because
they can be implemented more easily in applications.

For the subsequent chapter, we use the books of Renardy [80], Macosko [60], Joseph [43],
Owens and Phillips [68], and Böhme [11].

2.2.1 Overview of Viscoelastic Fluids

In Section 2.1.3, we defines a fluid as non-Newtonian if the shear viscosity varies with the
shear rate γ̇. A lot of different fluids fall into this category and therefore require a further
categorisation. The subclass that we want to investigate are the viscoelastic fluids.

Definition 2.8 [Viscoelastic Fluids]
A non-Newtonian fluid that exhibits viscous and elastic properties is called a viscoelastic fluid.
A body behaves

• viscous if it resists deformation when a stress takes effect and

• elastic if a stress deforms it instantly, but it resumes to its original state directly after the
stress has been removed.

In general, a viscoelastic fluid shows different behaviour in shear and extensional flows than a
Newtonian fluid. Most viscoelastic fluids exhibit (cf. Definition 2.5 on page 23 )

• a shear viscosity η(γ̇) as a decreasing function of γ̇ (i.e. shear thinning),

• non-zero first and second normal stress differences N1(γ̇) and N2(γ̇) with N1(γ̇) > N2(γ̇),

• an extensional viscosity ηE(ε̇) that increases with ε̇ (i.e. extensional thickening), and

• a Trouton ratio ηE(ε̇)
η0(γ̇) > 3 (= Trouton ratio of Newtonian fluids).

Stress Relaxation after a Sudden Shearing

For illustration, we describe the different relations between stress and strain for viscous and
elastic bodies. Strain denotes the deformation of a body when a force is applied on it. Sub-
sequently, we perform an experiment in four steps, the stress relaxation experiment, that shows
how stress depends on strain for ideal viscous fluids and Hookean elastic bodies:

1. For 0 < ε� 1, a viscous or elastic body is at rest for all times t < −ε.

2. For t ∈ [−ε, ε], we shear the body with a rate γ̇(t) 6= 0 and obtain γ0 =
∫ ε
−ε γ̇(s) ds as the

magnitude of shear.
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Figure 2.8: First, the body is at rest and the stress is zero. For a small period of time, we shear the
body volume by a rate γ̇(t) such that a particle with height y has a displacement of d(y).
In the right picture, the particle still has a constant displacement of d(y) in relation to the
origin. The major value of interest is the decay of τ for t > ε.

3. For all t > ε, we keep the shear magnitude γ0 and the displacement d(y) constant and
therefore have a shear rate γ̇(t) = 0.

4. We measure the stress τ at each step.

In Figure 2.8 we give an illustration of the experiment.

For an ideal Newtonian fluid (cf. Definition 2.4 of viscosity), we have a constant relation for
the stress component τxy of τ and the (time-dependent) shear rate

η0 =
τxy(t)

γ̇(t)
.

Using this relation and considering the limit ε→ 0, we can calculate the shear variable γ(t) as

γ(t) =
1

η0

∫ t

−∞
τxy(s) ds =

{
γ0, for all t > 0,

0, for all t < 0.
(2.24)

From (2.24) it follows that τxy(t) has the form of a delta function with a magnitude of η0γ0.
Consequently, an ideal viscous fluid behaves in the same way. In contrast, an elastic object
shows a constant shear stress component τxy(t) > 0 for all t > 0.

We visualise the development of τxy for an ideal viscous fluid, for a Newtonian fluid, for a
typical viscoelastic fluid and for an ideal Hookean elastic body in Figure 2.9. If the considered
object is a fluid, the limit value of the stress for t→∞ is zero. On the other hand, solid objects
have a limit value unequal to zero.

Relaxation Time

In reality, no material is purely elastic or viscous, but the elasticity of water or the viscosity
of ice are neglectable in most observations. Furthermore, even the distinction between “fluid”
and “solid” relates on the frame of reference. Therefore, we have to introduce a measure for
the time scale in which the fluid relaxes again and reaches an equilibrium state.

Definition 2.9 [Relaxation Time]
The time t that is required for the shear stress τxy in a simple shear flow, under constant-strain
conditions, to return to zero (or to a specified percentage) is called relaxation time λ.
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(c) Viscoelastic fluid
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Figure 2.9: Stress relaxation after a sudden shearing of four different bodies. On the one hand, an ideal
viscous fluid (a) shows a sudden response where the arrow represents a delta function. On
the other hand, an elastic solid (d) exhibits a constant shear stress. Real fluids react in a
combination of both effects, but for Newtonian fluids (b) the viscous behaviour is much
more emphasised than for viscoelastic fluids (c).

Therefore, for every object we have a characteristic time scale which we express through λ.
For positive values of λ, the current stress does not only depend on the current motion of a
fluid but also on the history of the motion. A common term in this context is the “fading
memory” of a fluid. The effect of “fading memory” is measured by the relaxation time.

Let T0 be a characteristic time scale for an observer (e.g. the duration of an experiment),
then for the observer the reaction of a fluid does not depend on λ itself but on the ratio

De =
λ

T0
(2.25)

which is called the Deborah1 number. Accordingly, we interpret a body as a

• viscous fluid for De� 1,

• viscoelastic fluid for De ≈ 1, and as a

• elastic solid for De� 1.

2.2.2 Differential Models

A basic model for a viscoelastic fluid in 1D is the linear Maxwell model. Moreover, if we
want to describe one-dimensional fluids with a Newtonian component as well as a viscoelastic
component, we could use the linear Jeffrey model (cf. Figure 2.10). A common approach to

1Interestingly, Deborah is the name of a prophet who stated in the bible that “the mountains flowed before the
Lord.” Therefore, on a large time scale T0 we can consider a mountain as a flowing object.
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Maxwell model Jeffrey model

H

ηp

ηs

Figure 2.10: On the one hand, a common representation for the Maxwell model is a spring with spring
constant H (elastic behaviour) and a purely viscous dashpot with viscosity η0 in series. On
the other hand, a Jeffrey model combines the viscoelastic behaviour of the Maxwell model
with an additional dashpot that represents the Newtonian viscosity ηs of the solvent.

obtain a 3D constitutive equation is to generalise the 1D Maxwell or Jeffrey model into a
tensor formulation. However, as our interest lies in the construction of multiscale models, we
will shorten the introduction and only present the major results.

The 3D generalisation of the Maxwell model results in the Upper Convected Maxwell model;
the 3D equivalent to the Jeffrey model is the Oldroyd-B model. Later on, we will derive the
formal equivalence between a microscopic dumbbell with a Hookean spring and the Oldroyd-B
model.

For our tensor formulation we need a time derivative that takes frame invariance into account
(i.e. descriptions of material properties are invariant under changes of observers). Therefore, an
invariant time derivative belongs to a coordinate system which experiences the same modifica-
tion (e.g. deformation, rotation, stretching) as the fluid. We subsequently present an objective
time derivative that necessarily leads to nonlinear models.

Definition 2.10 [Upper convected derivative]
For an arbitrary tensor A, we define the upper convected derivative (Oldroyd derivative)

O
A ≡ DA

Dt
−∇~u ·A−A · (∇~u)T (2.26)

as a time derivative for a coordinate system that stretches and rotates with the material. As a
consequence, stresses are only induced by deformations and not by elongations or rotations.

Applying the upper convected derivative (2.26) to the one-dimensional Maxwell model yields
the Upper Convected Maxwell (UCM) model equation

τp + λ
O
τp = 2ηpD (2.27)

with relaxation time λ, rate of deformation tensor D and shear viscosity η0 as a constitutive
equation for τp. If we also consider a Newtonian contribution to the UCM model, we obtain
the Oldroyd-B model. Its constitutive equation takes the form

τ + λ
O
τ = 2η0(D + λs

O
D), (2.28)

where η0 = ηs + ηp is the total viscosity and λs = ηsλ
ηs+ηp

≡ βλ is the characteristic retardation
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time for the fluid. Here, β denotes the ratio of the solvent Newtonian viscosity to the total
viscosity. The Oldroyd-B model combines solvent and polymeric contribution to the stress so
that we can also write the equation in a split form

τ = 2ηsD + τp

τp + λ
O
τp = 2ηpD

(2.29)

(2.30)

that emphasises the non-Newtonian extra-stress component τp of τ .

Alternatively, we can define objective derivatives for a coordinate system that

• rotates and deforms with the material without considering elongations (lower convected
derivative) or

• only rotates but does not follow deformations or elongations (corotational derivative).

By using the alternative time derivatives, we obtain other constitutive equations such as the
Lower Convected Maxwell model or the Corotational Maxwell model. Other differential models
differ from the UCM model by including further nonlinear terms.

Behaviour in Steady Shear Flows

In Section 2.1.4, we give reasons for a constant shear viscosity and zero normal stress differences
N1(γ̇) and N2(γ̇) of Newtonian fluids. Therefore, we do not expect significant differences
between the UCM and the Oldroyd-B model as the Newtonian contribution to the viscometric
functions vanishes.

1. For a steady shear flow ~u = (γ̇, 0, 0), the constitutive equation for the UCM model (2.27)
becomes τxx τxy 0

τxy τyy 0
0 0 τzz

− λ

0 γ̇ 0

0 0 0
0 0 0

τxx τxy 0
τxy τyy 0
0 0 τzz


+

τxx τxy 0
τxy τyy 0
0 0 τzz

0 0 0
γ̇ 0 0
0 0 0


= ηp

0 γ̇ 0
γ̇ 0 0
0 0 0


because the material derivative Dτ

Dt vanishes. The solution of the system is

τxx = 2ηpλγ̇
2, τxy = ηpγ̇, and τyy = τzz = 0 (2.31)

and therefore the viscometric functions are

η(γ̇) =
τxy
γ̇

= η0, N1(γ̇) = τxx − τyy = 2ηpλγ̇
2, and N2(γ̇) = τyy − τzz = 0. (2.32)
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As a result, the shear-rate viscosity of the UCM model is constant which does not coincide
with the behaviour of viscoelastic fluids.

2. We obtain a similar result for a steady shear flow of an Oldroyd-B fluid whose constitutive
equation (2.28) takes the formτxx τxy 0

τxy τyy 0
0 0 τzz

− λ

0 γ̇ 0

0 0 0
0 0 0

τxx τxy 0
τxy τyy 0
0 0 τzz


+

τxx τxy 0
τxy τyy 0
0 0 τzz

0 0 0
γ̇ 0 0
0 0 0


= (ηs + ηp)︸ ︷︷ ︸

= η0

−2λsγ̇
2 γ̇ 0

γ̇ 0 0
0 0 0

 .

Analogously, solving the system yields

τxx = 2η0(λ− λs)γ̇2, τxy = ηpγ̇, and τyy = τzz = 0 (2.33)

and the viscometric functions for an Oldroyd-B fluid are

η(γ̇) =
τxy
γ̇

= η0, N1(γ̇) = τxx − τyy = 2η0(λ− λs)γ̇2, and N2(γ̇) = τyy − τzz = 0.

(2.34)

Unfortunately, both models are of limited use for shear description of a non-Newtonian fluid
because the predicted shear viscosity is constant. The sole exception is the class of Boger fluids
which are non-Newtonian, have a constant viscosity, possess a quadratic first normal stress
difference and zero second normal stress difference, and therefore can be modeled accurately.
Even worse, both models fail for the description of extensional flows.

Behaviour in Steady Extensional Flows

For this example, we only consider the constitutive equation for the Oldroyd-B model because
this includes the UCM results for η0 = ηp and λs = 0. We examine an uniaxial extensional
flow ~u = (ε̇x,− ε̇

2y,−
ε̇
2z) as described in Section 2.1.3. In this case, we have to solve the linear

system of equationsτxx τxy 0
τxy τyy 0
0 0 τzz

− λ

ε̇ 0 0

0 − ε̇
2 0

0 0 − ε̇
2

τxx τxy 0
τxy τyy 0
0 0 τzz


+

τxx τxy 0
τxy τyy 0
0 0 τzz

ε̇ 0 0

0 − ε̇
2 0

0 0 − ε̇
2
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Figure 2.11: The figure illustrates the Trouton ratio ηe/η(γ̇) depending on the product λε̇ for an
Oldroyd-B fluid with β = 0.1 and a Newtonian fluid. An Oldroyd-B fluid behaves strongly
extensional thickening because ηe becomes infinite for ε̇ = 1

2λ . For a Newtonian fluid
the Trouton ratio is equal to three for all time. Furthermore, for using the Trouton ratio
as ordinate of the plot, we consider the fact that for Newtonian and Oldroyd-B fluids
η(γ̇) = η0 ∀γ̇ (i.e. the denominator of ηe/η(γ̇) is constant).

= η0

2ε̇− 4λsε̇
2 0 0

0 −ε̇− λsε̇2 0
0 0 −ε̇− λsε̇2


for which we obtain the solution

τxx = 2η0ε̇
1− 2λsε̇

1− 2λε̇
, τyy = τzz = −η0ε̇

1 + λsε̇

1 + λε̇
, and τxy = 0 (2.35)

and an extensional viscosity

ηe(ε̇) =
τxx − τyy

ε̇
=

3η0(1− λsε̇− 2λλsε̇
2)

(1− 2λε̇)(1 + λε̇)
. (2.36)

In Figure 2.11, we illustrate the reason for the Oldroyd-B/UCM model to fail for the simulation
of extensional flows. For a given relaxation time λ, the extensional viscosity increases with
stronger flows ε̇ and becomes infinite for ε̇ = 1

2λ . As a physical interpretation, this results in an
unrestricted thickening of the fluid and accordingly does not describe characteristics of a real
fluid. At the end of Section 2.3.5, we give a micromolecular interpretation of the problem.

Disadvantages of Differential Models

In comparison to integral or multiscale models, differential models have been investigated in
more detail. They take the memory effect of a fluid into account with an objective time
derivative of the current state variables. Therefore, in a differential model it is unnecessary to
consider the previous state of the system.
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If we want to obtain a realistic description of viscoelastic fluid behaviour, we have to carefully
adapt the parameters of the differential model to a given problem or otherwise we obtain
false results (cf. Oldroyd-B model for extensional flows). For this reason, we need a deep
understanding of the physical properties so that we necessitate a microscopic description as
explained in Chapter 2.3. With deeper insight, we present more differential models (FENE-
P, FENE-L) that try to overcome the limitations of an Oldroyd-B fluid. However, there are
microscopic properties that we cannot generalise to constitutive equations so that we have to
accept restrictions for all macroscopic models.

2.2.3 Integral Models

For the description of integral models we need the concept of the relative deformation gradient
which we illustrate in Figure 2.12. For this reason, consider a particle P in the fluid with
position ~x1 at time t1 and position ~x2 at time t2 and t1, t2 ∈ (−∞, T ]. In this context, t2
denotes the current time that we compare with previous states of the system (for this reason
the lower bound is “−∞”). Let d ~x1 and d ~x2 denote differentials that correspond to ~x1 and ~x2,
then we define the deformation gradient tensor F ( ~x2, t2, t1) as the linear mapping

d ~x1 = F ( ~x2, t2, t1)d ~x2

with Fij =
∂x1,i

∂x2,j
, i, j = 1, . . . , 3.

We introduce the deformation gradient tensor as a concept for strain that operates on the body.
Unfortunately, F violates the principle of frame indifference that we have analysed in Section
2.2.2 for differential models. Indeed, the definition of F requires the identity

F ( ~x2, t2, t2) = Id ∀t2 ∈ [−∞, T ]

for all systems of reference which is violated for rotated systems. However, the relative mag-
nitude between both differentials is an invariant that we call the Cauchy-Green strain tensor.

Definition 2.11 [Cauchy-Green strain tensor]
For ~x2 ∈ R3 and t2 ∈ [0, T ], we define the symmetric Cauchy-Green strain tensor as

C( ~x2, t2, t1) ≡ F ( ~x2, t2, t1)T F ( ~x2, t2, t1) where t1 ∈ (−∞, T ].

The strain tensor represents the strain or deformation history of the material and fulfils C( ~x2, t2, t2) =
Id for all systems of reference. The inverse mapping C−1( ~x2, t2, t1) is called the Finger strain
tensor.

The K-BKZ Model

We present one of the most widely used nonlinear models that was proposed by Kaye [46]
and by Bernstein, Kearsley, and Zapas [8] and is therefore called K-BKZ model. The K-BKZ
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time t2 (current state)

Figure 2.12: The deformation gradient tensor describes the difference in deformation between the cur-
rent state of the system at t2 and a previous state t1 with t1 < t2.

equation for calculating the stress tensor takes in the notation of Le Bris [16] the form

τp( ~x2, t2) = −
∫ t2

−∞
M(t2 − s) f(C−1( ~x2, t2, s)) (Id−C−1( ~x2, t2, s)) ds (2.37)

for a given real-valued function f . The integrand is weighted by a memory function M(t2 − s)
that considers all previous states of the system. In general, the mapping s 7→ M(t2 − s) is
zero for s =∞ and an increasing function of s. Obviously, Newtonian fluids have a very short
memory so that M(t2 − s) = 0 for s < t2 − ε and ε > 0.

Apart from that, the factor Id−C−1( ~x2, t2, s) in (2.37) sets the stress tensor to zero if the
object is at rest (i.e. for s = t2).

For the special choice

• M(t2 − s) =
ηp
λ2

exp(− t2−s
λ ),

• f = 1

we can show that (2.37) fulfils the UCM equation (2.27) in Section 2.2.2. Therefore, we can
write an UCM fluid in an alternative integral form

τp( ~x2, t2) = −
∫ t2

−∞

ηp
λ2

exp(− t2 − s
λ

) (Id−C−1( ~x2, t2, s)) ds.

However, in general we cannot integrate nonlinear systems of differential equations in closed
form so that only the simple differential models have a corresponding integral equivalent.

Disadvantages of Integral Models

The K-BKZ model in the presented form is a nonlinear model but bases upon an assumption
of linearity. Indeed, the model assumes every previous configuration of C at time t1 < t2 to
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be in a “temporary” equilibrium state. Different equilibrium states with t0 6= t1 superimpose
linearly. Real fluids violate this assumption and therefore limit the range of application for the
K-BKZ model.

Moreover, the use of a memory kernel M(t2− s) requires to trace the trajectories of the fluid
particles back to their previous states. This increases the computational effort in comparison
to differential models where only the present state and its derivatives are considered. Con-
sequently, integral models are mostly used for simple laminar flows where the trajectories are
already known.

As a result, the disadvantages of simple differential and integral models demand to con-
sider the microscopic behaviour of fluids. The benefits are on the one hand more advanced
macroscopic models and on the other hand full multiscale models that circumvent modelling
restrictions.
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MACRO MICRO-MACRO

modelling capabilities low high

current utilisation industry laboratories

Stochastic Fokker-Planck

computational cost low high moderate

computational bottleneck HWNP variance, HWNP dimension, HWNP

Table 2.1: The table compares the macroscopic models from Chapter 2.2 with the multiscale models
from Chapter 2.3 in respect of modelling capabilities, current utilisation, computational cost
and their disadvantages. The computational cost is specified for models with low dimensional
configuration spaces D (i.e. dim(D) = 2) which we present later on. For more advanced
models (i.e. high-dimensional configuration spaces), the Fokker-Planck approach becomes
much more expensive than the stochastic model which we express by the term “dimension”
in the last row. All models suffer from the high Weissenberg number problem (HWNP) that
we describe in Section 6.2.5.

2.3 Multiscale Models for Non-Newtonian Fluids

In the following chapter, we introduce the multiscale micro-macro approach for computing
the extra-stress tensor τp in contrast to the macroscopic differential and integral models from
the previous chapter. The advantage of multiscale simulations for non-Newtonian fluids is an
adequate description of the underlying physics. On the contrary, micro-macro models require
a higher computational effort than classical models.

In the first section, we derive the Fokker-Planck equation and its equivalent stochastic dif-
ferential equation as the basic equation for polymeric fluids. In the next section, we describe
the Kramers expression that connects a microscopic description with the macroscopic stress
tensor τp. Then, we present analytical solutions and approximations for the Fokker-Planck
equation in simple flows. At last, we introduce closure approximations that allow to disregard
the Fokker-Planck equation in favour of a macroscopic tensor equation for τp.

As an overview to the subsequent chapter, we present Table 2.1 according to Le Bris et al.
[16] which compares microscopic models from the previous chapter with multiscale models from
the current chapter in terms of modelling capabilities, current utilisation, computational cost
and its disadvantages.

2.3.1 Introduction

Polymeric fluids

Up to now, we have described Newtonian and non-Newtonian fluids using the macroscopic equa-
tions of continuum mechanics. However, we can interpret a viscoelastic fluid as a Newtonian
fluid which contains an additional microstructure. Thus, we introduce the class of polymeric
liquids.

Definition 2.12 [Polymeric fluids]
A Newtonian solvent that contains polymer chains of large molecules is called a polymeric
fluid. The polymer chains contribute elastic behaviour to the Newtonian solvent. If a fluid has
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Figure 2.13: A real polymer (a) consists of 103 to 106 individual monomers that are chemically bonded
and have a size in the order of 10−6 m. Subsequently, we present various models in
descending order: the Kramers bead-rod chain model with eleven beads (b), the freely
joined bead-spring chain model with four beads (c) and the dumbbell model (d).

a low concentration of polymers, we denote it as dilute. In contrast, we denote fluids with high
concentrations of polymers as polymer melts or concentrated solutions.

The major differences between dilute and concentrated models are the following:

1. Dilute models treat polymers individually and only consider interactions between mo-
lecules and the surrounding Newtonian solvent. Therefore, individual polymers have no
interaction with each other.

2. Concentrated polymeric models limit the orientation of polymers to less degrees of free-
dom because the polymers block each other. The most important models for concentrated
solutions are network and reptation theories.

Owing to the presence of molecules within a Newtonian fluid, we split the viscosity of a fluid
in two components

η = ηs + ηp (2.38)

where ηs denotes the solvent viscosity and ηp the polymeric viscosity. Furthermore, we use the
stress tensor splitting

τ = τs + τp (2.39)

of equation (2.8).

Subsequently, we consider a dumbbell model for dilute polymeric fluids which is a multiscale
model as we do not only model the macroscopic fluid but also the meso- or microscopic polymer
molecule. Obviously, a dumbbell model is a very simplified approximation to a real molecule
(cf. Figure 2.13). However, even such a model reproduces convection, orientation and extension
of the polymers within the fluid which are the major parameters of influence.

The analysis of dumbbell models leads to a Fokker-Planck equation, a differential equa-
tion describing the time evolution of a probability density function (pdf), or to an equivalent
stochastic differential equation (cf. stochastic processes in Section 3.3).
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Figure 2.14: The dumbbell model consists of two beads with position ~r1 and ~r2 which interact through
a spring. The spring represents intermolecular forces between both beads. Even if the
model is comparatively simple, it can describe the major polymeric effects with a moderate
computational effort. For description, we express the Fokker-Planck equation in adapted
coordinates such as the centre of mass ~x and the orientation vector ~q.

2.3.2 Derivation of the Fokker-Planck Equation

The derivation of the Fokker-Planck equation bases on Lozinski [56], Knezevic [50], Owens
and Phillips [68], and Lozinski, Owens, and Phillips [59]. We consider a dumbbell within a
Newtonian fluid which we illustrate in Figure 2.14. A dumbbell consists of two separate masses
that are connected with a massless spring. The spring denotes intermolecular forces between
both beads. For description, let ~r1 be the position vector of the first mass m1 and in return
let ~r2 be the position vector of m2 with ~r1, ~r2 ∈ Ω ⊂ R3. We refer to Ω as the physical space
in which the macroscopic fluid is located. We further assume, for simplicity, that both beads
have the same mass m1 = m2 = m.

Newton’s second law describes the equations of motion for the beads as

mi
d2~ri
dt2

= ~F dragi + ~Fi + ~Bi, i = 1, 2, (2.40)

where we have the following components:

1. ~F dragi is the drag force on bead i. It opposes the relative motion of the beads through
the fluid and can be seen as a kind of fluid resistance.

2. ~Fi denotes the spring force on bead i caused by bead j (i 6= j). In the derivation, we
consider a general spring force so that we are able to use the results for different kind of
intermolecular forces. Later on, we concentrate on Hookean and FENE spring forces.

3. ~Bi is the Brownian force due to random collisions between bead i and adjacent molecules.
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The Drag Force

The drag force depends on the relative motion of the beads to the fluid ~u (~ri, t) − d~ri
t and on

the friction tensor ζ which is defined as

~F dragi = ζ

(
~u (~ri, t)−

d~ri
t

)
. (2.41)

A general ansatz for the second order tensor ζ is

ζ = ζ
(
~eq ⊗ ~eq + σ−1 (Id− ~eq ⊗ ~eq)

)
(2.42)

where ~eq denotes a unit vector in the direction of ~q with ζ and σ as parameters. The parameter
ζ is derived from Stokes’ Law as demonstrated in Bird [9].

Theorem 2.13 [Stokes’ Law]
The drag force - also called frictional force - on a sphere with radius a that is moving unidirec-
tionally with constant relative velocity ~v in a Newtonian solvent with viscosity ηs is

~F drag = 6πηsa~v

≡ ζ ~v.

Here, we have introduced the constant friction coefficient ζ := 6πηsa and [ζ] = kg
s .

If σ = 1 in (2.42), then the friction tensor is isotropic (i.e. uniform in all directions) because
it takes the form of the Kronecker Delta tensor ζ = diag(ζ, ζ, ζ). On the other hand, if σ < 1,
then the friction force in directions normal to ~q is stronger than its tangential component. For
simplicity, we concentrate on the case σ = 1.

Note that this ansatz neglects any influence from a molecule on the viscosity of the surround-
ing molecules. Therefore, this approach is restricted to dilute polymer solutions.

The Brownian Force

We write the Brownian force ~Bi in the form

~Bi =
√

2kBTζ
(
~eq ⊗ ~eq + 1/

√
σ (Id− ~eq ⊗ ~eq)

)
d ~Wi

σ=1
=
√

2kBTζ d ~Wi.
(2.43)

With d ~Wi = (Wi,1(t), ...,Wi,n(t))T , t ≥ 0 and i ∈ {1, 2} we describe a multi-dimensional
Wiener process, that means, a multidimensional Brownian motion. We can characterise the
process by its expectation

〈Wi,j (t)〉 = 0 for j = 1, ..., n

and the second moments

〈Wi,j (t1)Wi,j (t2)〉 =

∫ t1

0

∫ t2

0
δ
(
t′ − t′′

)
dt′′ dt′
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= min(t1, t2).

The factor
√

2kBTζ is a consequence of the equipartition of energy or equipartition theorem . It
connects the temperature of a system with its average energy (here: kinetic energy). According
to the theorem, the kinetic energy of the system is

Ekin =
f

2
kBT

for a system with f degrees of freedom. Here, the coefficient kB is the Boltzmann constant and
T denotes the thermodynamic temperature in the SI base unit Kelvin.

Langevin Equation

In [82], Schieber and Öttinger give reasons why the acceleration forces mi
d2~ri
dt2

(for i = 1, 2)
on the left-hand side (LHS) of (2.40) may be neglected. By substituting this assumption into
(2.40), inserting the equations for the drag (2.41) and the Brownian force (2.43), and dividing
the equation by ζ, we obtain a stochastic differential equation in the form of

d ~Xt = ~µ
(
~Xt, t

)
dt + σ

(
~Xt, t

)
d ~Wt (2.44)

which we also denote, in the context of statistical physics, as a Langevin equation. In doing
so, we have set

~Xt =

(
~r1 (t)
~r2 (t)

)
, ~µ

(
~Xt, t

)
=

(
~u (~r1(t), t) + ζ−1 ~F (~r2 (t)− ~r1 (t))

~u (~r2(t), t) + ζ−1 ~F (~r1 (t)− ~r2 (t))

)
,

σ =

√
2kBT

ζ
Id, and ~Wt =

(
~W1(t)
~W2(t)

)
.

Additionally, a stochastic differential equation is actually an integral equation that bases on
the concept of Itô integration (cf. Chapter 3.3 about stochastic processes). At the moment,
we do not try to solve the stochastic differential equation (2.44) but rather concentrate on the
corresponding partial differential equation for the pdf. The following theorem connects both
formulations and for this reason, it is of particular importance.

Theorem 2.14 [Kolmogorov Forward Equation]

Let ~X(t) ∈ Rd be the random variable of an Itô stochastic differential equation d ~Xt = ~µ
(
~Xt, t

)
dt+

σ
(
~Xt, t

)
d ~Wt, where ~Wt ∈ Rd is a d-dimensional Wiener process. If ~X(t) corresponds to a

probability density function ψ ∈ C2,1(R2d×[0, TEnd]) and X(t = 0) ∼ ψ(~x, 0), then the evolution
of ψ is given by

∂ψ

∂t
+

2d∑
i=1

∂

∂xi
(µiψ) =

1

2

2d∑
i,j=1

∂2

∂xi∂xj
(σi,jσj,iψ)

with a drift term ~µ and a diffusion term σ ⊗ σT .
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Proof: Rigorous proofs are given in Arnold [4] and Kallianpur [44].

Using the Kolmogorov Forward Equation on (2.44), we obtain a Fokker-Planck equation

∂ψ

∂t
+ ∇r1 ·

[
~u (~r1(t), t) + ζ−1 ~F (~r2 (t)− ~r1 (t))

]
(2.45)

+ ∇r2 ·
[
~u (~r2(t), t) + ζ−1 ~F (~r1 (t)− ~r2 (t))

]
=
kBT

ζ
∆r1ψ +

kBT

ζ
∆r2ψ.

A solution ψ of equation (2.45) gives the probability ψ(~x, ~q, t) d~q of finding a dumbbell with an
orientation between ~q and ~q + d~q at (~x, t).

Barycentric Coordinates

The evolution of ψ is better described in a coordinate system that represents the mass centre
and the orientation of the dumbbells. As illustrated in Figure 2.14, we define the centre of
mass ~x(t) ∈ Ω and the orientation vector ~q(t) ∈ D ⊂ Ω as

~x(t) =
~r1(t) + ~r2(t)

2
and ~q(t) = ~r2(t)− ~r1(t). (2.46)

Therefore, we switch from the (~r1, ~r2)-coordinates to the (~x, ~q)-system and denote D as the
configuration space that includes all possible orientations. The configuration space normally
exists on a mesoscopic length scale in comparison to the macroscopic space Ω. From (2.46) and
the chain rule we obtain

∂

∂ ~r1
=

1

2

∂

∂~x
− ∂

∂~q
and

∂

∂ ~r2
=

1

2

∂

∂~x
+

∂

∂~q

for the divergence operator. Additionally, for the Laplacian we perform the substitutions

∂2

∂ ~r1
2 =

1

4

∂2

∂~x 2
− 1

2

∂2

∂~x∂~q
− 1

2

∂2

∂~q∂~x
+

∂2

∂~q 2
and

∂2

∂ ~r2
2 =

1

4

∂2

∂~x 2
+

1

2

∂2

∂~x∂~q
+

1

2

∂2

∂~q∂~x
+

∂2

∂~q 2
.

By substituting these expressions into (2.45) and using the identity ~F (~q) = −~F (−~q), we obtain

∂ψ

∂t
+ ∇q ·

[(
~u (~x+ ~q/2, t)− ~u (~x− ~q/2, t)

)
ψ − 2

ζ
~F (~q)ψ

]
(2.47)

+ ∇x ·
[

1

2

(
~u (~x+ ~q/2, t) + ~u (~x− ~q/2, t)

)
ψ

]
=
kBT

2ζ
∆xψ +

2kBT

ζ
∆qψ,

where we have used the same notation ψ = ψ(~x, ~q, t) for the density function for simplicity.
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The Spring Forces

The identity ~F (~q) = −~F (−~q) is a consequence of Newton’s third law of motion. We only
consider conservative spring forces that can be derived as the negative gradient from a scalar
potential φ(~q), i.e.

~F (~q) = −∇~q φ(~q).

The scalar potentials that we are interested in, lead to the Hookean and FENE (Finitely
Extensible Nonlinear Elastic) spring forces. Let H be the spring constant and let ‖~qmax‖
denote the maximum extensibility of a FENE dumbbell, then we define two model forces:

1. Hookean dumbbells:

φ(~q) = −1

2
H‖~q‖2, (2.48)

~F (~q) = H~q. (2.49)

2. FENE dumbbells:

φ(~q) =
1

2
H ‖~qmax‖2 log

(
1− ‖~q‖2

‖~qmax‖2

)
, (2.50)

~F (~q) =
H~q

1− ‖~q‖2
‖~qmax‖2

with ‖~q‖ < ‖~qmax‖. (2.51)

On the one hand, the nonlinear FENE spring force involves a more realistic description of
physics as the linear Hookean dumbbell because the length of polymeric molecules is restricted.
On the other hand, the FENE spring force is much more challenging as it exhibits a singularity
at the boundary, i.e.

lim
‖~q‖→‖~qmax‖

~FFENE(~q) = ∞.

Local Homogeneity Assumption

Subsequently, we consider two cases for the flow field in which the second one is a generalisation
of the first one. These cases are

• homogeneous flows, i.e. flows with a velocity field ~u of the form

~u(~p) = κ (~p− ~x) + ~u(~x), p, x ∈ Ω, (2.52)

and κ as an abbreviation for the velocity gradient ∇~x~u that may depend on time t but
not on the space variables ~x and ~p and

• non-homogeneous flows that satisfy a local homogeneity assumption.

For non-homogeneous flows, we cannot use a description as in equation (2.52) but drop
this restriction at least locally on the length scale of a dumbbell. Therefore, using a Taylor
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expansion up to the linear term, we can write ~u(p) in the vicinity of ~x as

~u(~p) = ∇~x~u (~p− ~x) + ~u(~x) for all p ∈ Bε (~x) and x ∈ Ω. (2.53)

We make a similar assumption for the density function ψ (i.e. ψ is linear on the length scale
of a dumbbell) as this simplifies the description of the configuration space D and we denote
this as the local homogeneity assumption. The assumption is reasonable as the length scale
of a dumbbell (cf. configuration vector ~q) is normally orders of magnitude smaller than the
macroscopic length scale (cf. dumbbell position vector ~x) and will be used throughout the
whole thesis.

Using the linearity assumption on ~u (~x+ ~q/2, t) and ~u (~x− ~q/2, t), equation (2.47) becomes

∂ψ

∂t
+ ∇q ·

[(
∇~x~u ~q −

2

ζ
~F (~q)

)
ψ

]
+ ∇x · (~uψ) =

kBT

2ζ
∆xψ +

2kBT

ζ
∆qψ. (2.54)

For a homogeneous flow, ψ (t, ~x, ~q) = ψ (t, ~q) does not depend on physical space ~x and the
Fokker-Planck equation reduces to

∂ψ

∂t
+ ∇q ·

[(
κ ~q − 2

ζ
~F (~q)

)
ψ

]
=

2kBT

ζ
∆qψ. (2.55)

Properties of the Probability Density Function

As ψ(~x, ·, ·) : C2,1(D, [0, T ]) → R is a pdf for fixed ~x ∈ Ω, ψ has to fulfil two important
properties:

1. The initial condition is non-negative, i.e.

ψ(~x, ~q, 0) > 0 ∀ (~x, ~q) ∈ Ω×D. (2.56)

2. The integral of ψ over the configuration space D is constant and can be normalised
according to ∫

D
ψ(~x, ~q, t) d~q = 1 ∀ (~x, t) ∈ Ω× [0, T ]. (2.57)

Indeed, any solution ψ of the Fokker-Planck equation (2.54) conserves the probability condition
(2.57) which is proved in Knezevic [50]. Since any solution fulfils this condition, we use (2.57) as
an error indicator for the numerical approximation ψN of ψ in Section 4.1.2 (cf. with equation
(4.16)).

Strongly Non-homogeneous Flows

If we consider small tubes with diameters in the order of the molecules (e.g. blood in a vein), we
would have to omit the linearity assumption of ψ as the molecules interact with the boundary
region. This would lead to a configuration space D that depends on ~x. For instance, for the
FENE spring force (2.51) we assume D to be a ball with radius ‖~qmax‖ which would take,
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without using the assumption, the form

D(~x) = {~q | ‖~q‖ < ‖~qmax‖} ∩ {~q | ~x+ ~q/2 ∈ Ω} .

Due to boundary considerations, the configuration space D might become difficult to represent
even for simple geometries Ω. In literature, these fluids are termed as strongly non-homogeneous
flows. For the sake of simplicity, we will skip their consideration.

Dimensionless Formulation

Even if we could use the equations (2.54) or (2.55) for the computation of ψ, we prefer to
solve the problem in a dimensionless formulation. Therefore, we introduce l0, λ, L0, and U0 as
intrinsic parameters of the system. In doing so, we have

• l0 =
√
kBT/H as characteristic length-scale of a dumbbell ([l0]=m),

• λ = ζ
4H as characteristic relaxation time of a dumbbell ([λ]=s),

• L0 as characteristic length of a macroscopic flow ([L0]=m),

• and U0 as characteristic velocity of a macroscopic flow ([U0]=m/s)

with H as spring constant. Using these characteristic units, we define new dimensionless
quantities

~x∗ := ~x/L0, (2.58a)

~q∗ := ~q/l0, (2.58b)

~u∗ := ~u/U0, (2.58c)

t∗ := U0/L0t, (2.58d)

and transform the differential operators with the chain rule, e.g.

∂

∂~q
=

∂

∂~q∗
d~q∗

d~q
=

1

l0

∂

∂~q∗
(2.59a)

∂2

∂~q 2
=

∂

∂~q∗

(
∂

∂~q

)
d~q∗

d~q
=

1

l20

∂2

∂~q∗2
. (2.59b)

If we substitute (2.58a) - (2.58d) and (2.59a) - (2.59b) into (2.54), we obtain

U0

L0

∂ψ

∂t∗
+

∂

∂~q∗
·

(
U0

L0
∇~x∗~u∗ ~q∗ ψ − 2H/(ζ)︸ ︷︷ ︸

= 1/(2λ)

~F ∗(~q∗)ψ

)

+
U0

L0

∂

∂~x∗
· (~u∗ψ) =

kBT

2ζ l20︸ ︷︷ ︸
= 1/(8λ)

(
l0
L0

)2

∆~x∗ψ +
2kBT

ζ l20︸ ︷︷ ︸
= 1/(2λ)

∆~q∗ψ.
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where we have used the relaxation time λ = ζ
4H . Note that we describe the dimensionless form

of the spring forces ~F ∗(~q∗) in equation (2.64) and (2.66). Multiplying by L0/U0 and using the
dimensionless Weissenberg number, we obtain

∂ψ

∂t∗
+

∂

∂~q∗
·
((
∇~u∗

)
~q∗ ψ − 1

2Wi
~F ∗(~q∗)ψ

)
+

∂

∂~x∗
· (~u∗ψ) =

1

8Wi

(
l0
L0

)2

∆~x∗ψ +
1

2Wi
∆~q∗ψ.

(2.60)

For further considerations, we drop the asterisk on the Fokker-Planck equation. Now, we give
a definition for the Weissenberg number that we use in equation (2.60).

Definition 2.15 [Weissenberg number]
The Weissenberg number Wi ≡ λU0/L0 is defined as the product of the microscopic time-scale
λ with the macroscopic shear rate γ̇ ≈ U0/L0 (cf. Definition 2.4 of shear viscosity).

It has a similar definition as the Deborah number in Section 2.2.1 but is used in other contexts.
While the Weissenberg number is used to compare elastic forces (of solids) to viscous effects (of
fluids), the Deborah number describes the ratio between the microscopic and macroscopic time-
scale. Therefore, we can have situations with large Deborah number and small Weissenberg
number and vice versa. However, some authors use both dimensionless numbers in an analogous
manner.

Interestingly, equation (2.60) gives reasons for a further simplification of the Fokker-Planck

equation. Given that l0 � L0, the diffusion in ~x is very small because
(
l0
L0

)2
� 1 and thus

can be neglected. Even though this is a standard approach in literature, Barrett et al. [5] have
shown that this ansatz leads to a degenerate parabolic equation with hyperbolic characteristics
in physical space. Nevertheless, we also neglect the diffusion in physical space Ω and obtain
equivalent dimensionless formulations of (2.54) and (2.55) which are

∂ψ

∂t
+

∂

∂~q
·
((
∇~u
)
~q ψ − 1

2Wi
~F (~q)ψ

)
+

∂

∂~x
· (~uψ) =

1

2Wi
∆~q ψ (2.61)

for non-homogeneous flows with a density function ψ : R7 → R (i.e. ψ depends on ~x, ~q and t)
and

∂ψ

∂t
+

∂

∂~q
·
(
κ ~q ψ − 1

2Wi
~F (~q)ψ

)
=

1

2Wi
∆~q ψ (2.62)

for homogeneous problems and a simplified pdf ψ : R4 → R.

Dimensionless Spring Forces

Analogue to the nondimensional characteristic units of (2.58a) and (2.58d), we have to nondi-
mensionalise the elastic spring forces F (~q) of equation (2.49) and (2.51) such that we get
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1. Hookean dumbbells (nondimensionalised):

φ(~q) = −1

2
‖~q‖2, (2.63)

~F (~q) = ~q, (2.64)

2. FENE dumbbells (nondimensionalised):

φ(~q) =
1

2
b log

(
1− ‖~q‖

2

b

)
, (2.65)

~F (~q) =
~q

1− ‖~q‖
2

b

with ‖~q‖ <
√
b. (2.66)

Here, we have introduced b as a dimensionless unit for the maximum length of a FENE dumbbell
which we define by

b =
‖~qmax‖2

l20
=

H ‖~qmax‖2

kBT
.

2.3.3 Equivalent Stochastic Description

In the beginning of Section 2.3.2, we have examined a force balance equation (2.40) and after
further analysis obtained a stochastic differential equation. Theorem 2.14 (Kolmogorov Forward
Equation) provides a theoretical background for the equivalence between stochastic description
and the description of a deterministic diffusion equation for ψ. For this reason, we write the
stochastic counterparts of the deterministic equations (2.61) and (2.62) as

d~Qt(~x) =

(
−~u(~x, t)∇ ~Qt(~x) +

(
∇~u(~x, t)

)
~Qt(~x) − 1

2Wi
~F ( ~Qt(~x))

)
dt +

√
1

Wi
d ~Wt (2.67)

for non-homogeneous flows and

d~Qt =

(
κ ~Qt −

1

2Wi
~F ( ~Qt)

)
dt +

√
1

Wi
d ~Wt (2.68)

for homogeneous flow fields. Obviously, the stochastic process ~Qt represents the vector ~q(t) of
the dumbbell orientation.

We note that some authors prefer to leave the time parameter t dimensionful while nondi-
mensionalise the other values as in (2.58a) - (2.58c). Nevertheless, the equations for ψ or the
stochastic process only differ in the Weissenberg number Wi which has to be replaced by the
relaxation time λ. Furthermore, the Itô integral depends on a dimensionful time parameter.
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2.3.4 The Kramers Expression

In this section, we derive the connection between the solution ψ of the Fokker-Planck equation
(on a microscopic length scale) and the polymeric extra-stress (on a macroscopic length scale)
represented by the stress tensor τp (cf. equation (2.8)). This concept was first proposed by
Kramers [52] and is therefore called Kramers expression. We follow Bird [10] and Li et al. [54]
in the derivation of the Kramers expression. Note that the ansatz bases on a dimensionful
description of the stress and will be nondimensionalised later on.

The micromolecular dumbbells of the previous section cause extra stress to the Newtonian
solvent because of three major effects. These are contributions from

• the spring force τ (c)
p ,

• the bead motion τ (b)
p ,

• external forces τ (e)
p .

However, if the same force acts on each bead, which we suppose for Hookean and FENE spring
forces, there is no external force contribution to the stress tensor (i.e. τ (e)

p = 0) and the tensor
itself is symmetric. Therefore, we only consider the first two effects.

Contribution from the Spring Force

We consider an arbitrary plane with an area S that moves along the fluid and is described by
an unit normal vector ~n. Dumbbells whose connecting vectors ~q interfere with the plane cause
stress denoted by τ (c)

p . For further analysis, we consider the average spring force if bead “1” is
on the negative side (i.e. ~n · ~q > 0) and bead “2” is on the positive side of the plane and vice
versa (i.e. ~n · ~q < 0). For the sign convention of the plane and an illustration of the problem,
we refer to Figure 2.15.

First, we are interested in the number of intersecting dumbbells. This quantity depends on

• the number of dumbbells per unit volume or polymer number density nd = Np/V ,

• the volume (~n · ~q)S in which a dumbbell remains, and

• the probability ψ(~q, t) d~q to find a dumbbell with an orientation between ~q and ~q + d~q.

As each dumbbell contributes a spring force of F (~q) and the identity F (−~q) = −F (~q) holds,
we obtain the total amount of force ~FΣ acting on the plane as

~FΣ = nd S

∫
all ~q

~q ⊗ ~F (~q)ψ(~q, t) d~q︸ ︷︷ ︸
2nd order tensor

·~n. (2.69)

If we divide (2.69) by S, we can identify the result with τ (c)
p · ~n. Therefore, the stress τ (c)

p

depending on the connecting spring is

τ (c)
p = nd

∫
~q ⊗ ~F (~q)ψ(~q, t) d~q ≡ nd

〈
~q ⊗ ~F (~q)

〉
. (2.70)
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~q

1

2

~n

‖~q‖

~q · ~n

Plane of area S
moving with the fluid

Figure 2.15: One contribution to the non-Newtonian stress tensor is given by springs that represent
intermolecular forces between the beads. For the derivation, we consider those springs
whose chaining intersects a surface element of area S.

Note that if g is a function that depends on the orientation vector ~q, we can define the expect-
ation of g as

〈g(~q)〉 ≡
∫
g(~q)ψ(~q, t) d~q. (2.71)

Moreover, for the cases of non-homogeneous flow fields, we note that τ (c)
p and ψ also depend

on the physical space Ω.

Contribution from the Bead Motion

An additional component τ (e)
p of the extra-stress tensor τp appears from the movement of the

dumbbells itself through the plane. First, we consider the number of beads “1” with mass m
which cross a plane that moves along the fluid with velocity ~u. Let ~̇r1 denote the velocity of
bead “1” at an interval ∆t, then the volume of beads that intersect the plane depends on the
relative motion ~̇r1 − ~u between the beads and the plane.

Using the notation of Figure 2.16, we deduce that

• the volume
(
d~r1
dt − ~u

)
· ~nS∆t will cross the plane during an interval ∆t,

• the total number of dumbbells within this volume element is

nd

(
d~r1

dt
− ~u
)
· ~nS∆t

where nd is the number of dumbbells per unit volume, and
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1

2

~̇r1− ~u
~n

‖ ~̇r1− ~u
‖∆t

Plane of area S
moving with fluid
velocity ~u

Figure 2.16: Dumbbells whose beads cross the marked plane contribute additional stress to it. The
number of dumbbells depends on the relative velocity between the microscopic beads on
the one hand and the plane on the other hand.

• the total momentum ~pΣ transported across the plane is

~pΣ = nd

((
d~r1

dt
− ~u
)
· ~nS

)
∆t︸ ︷︷ ︸

total number of dumbbells

m

(
d~r1

dt
− ~u
)

︸ ︷︷ ︸
momentum/dumbbell

Furthermore, for the polymers within the Newtonian solvent we assume that they are close to
the thermodynamic equilibrium, i.e. the system is close to a steady state. Due to the previous
assumption, we can describe the velocity distribution of the beads with the Maxwell-Boltzmann
distribution from the kinetic gas theory. The Maxwell-Boltzmann distribution is a Gaussian
distribution that is completely characterised by its first two moments, mean and variance,
which take the form 〈

~X
〉

= 0 (2.72)〈
~X2
〉

=
kBT

m
Id (2.73)

for the random variable ~X. Accordingly, the expectation of ~pΣ (more precisely the expectation
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of its components) is described in the expression

〈~pΣ〉 =

〈
nd

(
d~r1

dt
− ~u
)2

· ~nS∆tm

〉

= nd S∆tm

〈(
d~r1

dt
− ~u
)2
〉
· ~n

(2.73)
= ndS∆t kBT Id · ~n.

We identify now the average momentum flux (i.e. momentum per unit time per unit area),
caused by all beads “1” that cross the plane, with half of the stress vector ~t (cf. theorem 2.3 on
page 19) such that

−1

2
~t = −1

2
τ (b)
p · ~n = ndkBT Id · ~n.

Obviously, the prefactor 1/2 results from the fact that we have only considered bead “1” but
expect the same results from bead “2”. Consequently, the contribution from the bead motion
to the polymeric stress τp is

τ (b)
p = −2ndkBT Id. (2.74)

Kramers Expression (Dimensionful)

Combining equations (2.70) and (2.74), we deduce an expression to calculate the polymeric
stress for a known number density nd and pdf ψ. However, we cannot set “τp ≡ τ (c)

p + τ (b)
p ”

as there already is a polymeric contribution from the RHS of this sum to the pressure term in
our basic equation (2.8) for the total stress σ, i.e. in σ = −p Id + τs + τp.

In (2.83) of Section 2.3.5 we have considered equilibrium flows, one of the most simple flow
fields, in which the fluid velocity is constant everywhere. Therefore, the velocity gradient κ is
zero and ψeq(~q) only depends on configuration space D. For such a flow field we expect the
dumbbells to be relaxed such that there is no polymeric stress contribution τp and we hence
demand

τp
!

= 0 for ψ = ψeq.

On the contrary, we notice τ (c)
p + τ (b)

p = −ndkBT Id 6= 0 for ψ = ψeq(~q). As a solution, we
separate the isotropic equilibrium stress (i.e. −ndkBT Id) from the above sum and add it to
the pressure term for which only ∂

∂~xp(~x) is relevant. Finally, we get the Kramers expression as

τp(~x, ~q, t) ≡ τ (c)
p + τ (b)

p + ndkBT Id︸ ︷︷ ︸
absorb equ. solution into ∇p

= ndkBT

∫
~q ⊗ ~F (~q)ψ(~x, ~q, t) d~q − ndkBT Id.

(2.75)

Since equation (2.75) takes effect for the surface forces of the Navier-Stokes equations (cf.
(2.9)) by its divergence, we could additionally omit the constant factor on the right hand side
(RHS) if we simulate real fluids. However, we also investigate model problems (e.g. steady
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shear and extensional flow) which require the complete equation (2.75) for comparison with
the analytical solutions.

Kramers Expression (Non-dimensional)

In an analogous manner as for the Fokker-Planck equation (2.58a) - (2.58d), we nondimension-
alise the Kramers expression by introducing a characteristic unit l0 for the dumbbell length
scale and get

~q∗ = ~q/l0, ~F ∗(~q∗) =
1

Hl20
~F (~q) =

1

kBT
~F (~q).

Hence, (2.75) can be rewritten as

τp(~x∗, ~q∗, t∗) = ndkBT

(∫
~q∗ ⊗ ~F ∗(~q∗)ψ(~x∗, ~q∗, t∗) d~q∗ − Id

)
. (2.76)

Further considerations regarding the coefficient ndkBT allow a reformulation of the above
equation in terms of the polymeric zero shear-viscosity ηp and the relaxation time λ (cf. (2.12)).
For dilute dumbbell solutions in a shear flow we can show that ηp can be approximated by

ηp ≡
τxy
γ̇
≈ αb,dλndkBT (2.77)

where αb,d is a coefficient depending on the dimension d of the configuration space D with

αb,d ≡


1, for Hookean dumbbells (b→∞),
b+d+2
b , for d-dimensional FENE dumbbells,

b+d
b , for d-dimensional FENE-P dumbbells.

(2.78)

We have dim(D) = 2 or dim(D) = 3 in our applications. Furthermore, the introduced FENE-P
springs are an approximation to the FENE model where only the expected extension 〈~q〉 in the
denominator is considered (we use 〈·〉 in the sense of (2.71)), i.e.

~F ∗(~q∗) =
~q∗

1− 〈‖~q
∗‖2〉
b

. (2.79)

We further describe the FENE-P spring force in Chapter 2.3.6.

Inserting (2.77) into (2.76) and multiplying the equation with L0
U0(ηs+ηp) , we obtain dimen-

sionless equations that relate

• Hookean dumbbells to the macroscopic stress

τp(~x, ~q, t) =
(1− β)

Wi

(∫
~q ⊗ ~q ψ(~x, ~q, t) d~q − Id

)
, (2.80)
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• FENE dumbbells to the stress tensor,

τp(~x, ~q, t) =
(1− β)

Wi

(
b+ d+ 2

b

) (∫
~q ⊗ ~q

1− ‖~q‖
2

b

ψ(~x, ~q, t) d~q − Id

)
, (2.81)

• and FENE-P dumbbells to the stress tensor

τp(~x, ~q, t) =
(1− β)

Wi

(
b+ d

b

) (
〈~q ⊗ ~q〉

1− 〈‖~q‖
2〉

b

− Id

)
. (2.82)

Again, we omit the asterisk to denote non-dimensional units and use the expectation “〈〉” in
the sense of equation (2.71). Apart from that, we have reused the non-dimensional parameters

Wi = λU0/L0,

β =
ηs

ηs + ηp

with β as the ratio between the Newtonian viscosity to the total viscosity.

2.3.5 Fokker-Planck Equation for Simple Flows

Throughout the whole chapter, we have investigated the viscosity for two simple flow fields
which are

• the steady state shear flow (cf. (2.12)),

• the steady state extensional flow (cf. (2.15a)-(2.15b)).

Now, we further consider the more simple case of a constant velocity field within the whole
domain (i.e. κ = 0 in the FP equation (2.62)) which we denote as

• the equilibrium solution.

The equilibrium solution represents the case of totally relaxed dumbbells so that the polymeric
stress τp vanishes and the solution does not depend on physical space Ω or process time t.
Subsequently, we present solutions/ approximations for all three steady state flows in a similar
manner as in Lozinski [56].

Equilibrium Solution

If we set ~u = 0 for the velocity gradient, the Fokker-Planck equation (2.62) takes the form

∂ψeq(~q)

∂~q
+ ~F (~q)ψeq(~q) = 0 (2.83)
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which we can solve analytically. In short, the steady-state equilibrium solution ψeq is

ψeq = C1 exp

(
−‖~q‖

2

2

)
(2.84)

for Hookean spring forces,

ψeq = C2

(
1− ‖~q‖

2

b

)b/2
(2.85)

for FENE dumbbells and

ψeq = C3

(
b+ d

b

)d/2
exp

(
−b+ d

2b
‖~q‖2

)
(2.86)

for the FENE-P model.

The constants C1, C2, and C3 are required to achieve the normalisation property of ψ in
(2.57). Their explicit values can be found in an article from Herrchen et al. [38]. The importance
of the equilibrium solution lies in two areas of applications which are

• the gauging of the Kramers expression (2.75) for the polymeric stress τp,

• the usage of the equilibrium solution as an initial condition for ψ as we expect the
polymers to be relaxed in the beginning.

Steady Shear Flows

In equation (2.11) we describe a steady xy-shear flow with a velocity gradient of the form

κ = γ̇

0 1 0
0 0 0
0 0 0

 .

However, in this context the parameter γ̇ is a dimensionless shear factor as we consider nondi-
mensionalised units.

Although the steady shear flow is comparatively simple, there exists no analytical solution for
the steady shear flow. Instead, we give a first-order approximation to the solution in terms of
γ̇. Therefore, we approximate ψshear as a sum of the equilibrium solution ψeq and an additional
first-order shear contribution ψ1 that we combine as

ψshear = ψeq
(
1 + Wi γ̇ψ1 +O((Wi γ̇)2)

)
. (2.87)

Inserting (2.87) into the homogeneous FP equation (2.62) and using the property (2.83), we
obtain the equation

∂

∂~q
·
(
ψeq

∂ψ1

∂~q

)
= 2

∂

∂~q
·
(

1

γ̇
κ~qψeq

)
(2.88)
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for the additional density component ψ1 that exhibits the solution

ψ1 =
1

γ̇
κ : ~q ⊗ ~q.

Here, the operator “ : ” denotes the (scalar) double dot product of two second order tensors.
As a result, a first-order shear flow approximation in γ̇ to ψ is

ψshear = C4 exp

(
−‖~q‖

2

2

) (
1 + Wi κ : ~q ⊗ ~q

)
(2.89)

for a Hookean spring force and

ψshear = C5

(
1− ‖~q‖

2

b

)b/2 (
1 + Wi κ : ~q ⊗ ~q

)
(2.90)

for FENE dumbbells. Note that some authors denote γ̇ as dimensionful shear-rate (i.e. [γ̇] =
1/s) and therefore use the relaxation time λ instead of the Weissenberg number Wi in the
previous equations.

Steady Extensional Flows

We distinguish two different types of extensional flows (cf. (2.15a) - (2.15b)) which are the uni-
axial extensional flow and the planar extensional flow. Fortunately, the FP equation possesses
an analytical steady-state solution for all types of extensional flows if we use the FENE spring
force. Actually, there exists an analytical solution for all homogeneous flow fields in which the
velocity gradient κ is symmetric as it is the case for extensional flows. The solution is

ψext = C

(
1− ‖~q‖

2

b

)b/2
exp (Wi κ : ~q ⊗ ~q) (2.91)

with C as a normalisation constant. For further information, Bird et al. [10] present this
formula in equation (13.2-14).

Otherwise, in equation (2.35) of Section 2.2.2 we have proved that the Oldroyd-B model
and therefore also the multiscale Hookean dumbbell model fail for the description of steady
extensional flows. For this reason there exists no finite density function in this case. A mi-
cromolecular description reveals the problem for an Oldroyd-B fluid, because as the Hookean
spring is not restricted in length (cf. finite length

√
b for FENE dumbbells), it becomes infin-

itely extended at a nondimensional extension rate of ε̇ = 1
2Wi which leads to an infinite stress

tensor.

2.3.6 Closure Approximations

The aim of this chapter is to get an insight into the mesoscopic behaviour of polymers to
adequately describe their contribution to the polymeric stress. So far, we have considered three
different spring forces which are the Hookean, the FENE, and the FENE-P spring. Normally,
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we would have to solve a seven-dimensional (2.61) or four-dimensional (2.62) Fokker-Planck
equation for ψ and then compute the polymeric stress with the Kramers expression which
requires high computational effort.

However, there are spring forces for which it is unnecessary to solve the Fokker-Planck
equation. More precisely, we subsequently present that

• the Hookean dumbbell model possesses a closed form constitutive equation which turns
out to be the UCM/ Oldroyd-B differential model of Chapter 2.2.2 and

• the FENE-P model is a simplification of the classical FENE spring force so that we are
able to find a corresponding macroscopic formulation.

Closed Formulation for Hookean Dumbbells

First, we derive the mathematical equivalence between the Hookean dumbbell model on the
one hand and the UCM/ Oldroyd-B model on the other hand. For a more detailed analysis,
we refer to the book of Owens and Phillips [68].

Therefore, we multiply the seven-dimensional Fokker-Planck equation (2.61), i.e.

∂ψ

∂t
+

∂

∂~x
· (~uψ)︸ ︷︷ ︸

= Dψ
Dt

=
∂

∂~q
·
(
−
(
∇~u
)
~q ψ +

1

2Wi
~F (~q)ψ

)
+

1

2Wi
∆qψ

with the (i, j)-component qiqj of ~q ⊗ ~q and integrate it over the configuration space D such
that the FP equation becomes

D

Dt

∫
D
qiqjψ d~q =

∫
D
qiqj

3∑
k=1

∂

∂qk

(
−

3∑
l=1

∂uk
∂ql

qlψ +
1

2Wi

∂ψ

∂qk
+

1

2Wi
qkψ

)
d~q.

We then use integration by parts on the RHS (two times on the diffusive part of the equation),
insert ~F (~q) = ~q for Hookean dumbbells, and keep in mind that ψ vanishes at ∂D to obtain

1

Wi

∫
D
qiqjψ d~q +

D

Dt

∫
D
qiqjψ d~q −

3∑
l=1

(
∂ui
∂ql

∫
D
qlqjψ d~q −

∂uj
∂ql

∫
D
qiqlψ d~q

)
=

1

Wi
δij .

Replacing the componentwise analysis with a full tensor ~q⊗ ~q description and using (2.71), we
introduce the conformation tensor

〈~q ⊗ ~q〉 ≡
∫
D
~q ⊗ ~q ψ d~q

and rewrite the equation in a more compact tensor notation as

1

Wi
〈~q ⊗ ~q〉 +

O
〈~q ⊗ ~q〉 =

1

Wi
Id. (2.92)

Here, we have reused the upper convected derivative “O” from Definition 2.10 on page 32.
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A comparison between the confirmation tensor and the dimensionless Kramers expression
for Hookean dumbbells as in (2.80) reveals

〈~q ⊗ ~q〉 =
Wi

(1− β)
τp + Id. (2.93)

Inserting (2.93) into (2.92) and using
O
Id = −(∇~u+∇~uT ), we obtain

τp + Wi
O
τp = 2(1− β)D

with D as the rate of deformation tensor from Chapter 2.1.4. For β = 0 (i.e. the fluid behaves
totally non-Newtonian) this is the non-dimensional formulation of the UCM model as in (2.27);
for β 6= 0 we have to add the solvent contribution to the stress and obtain the non-dimensional
Oldroyd-B equation from equation (2.28) which proofs the stated equivalence.

Closure Approximations for FENE Dumbbells

For nonlinear spring forces (e.g. FENE spring force) it is not possible to find a closed system of
equations. Alternatively, there exists a variety of approximations to the FENE potential which
have such a closure. These are the so called closure approximations. We present some closure
approximations and refer for a detailed description to a series of articles from Yu et al. [96],
Du et al. [27] and Hyon et al. [42].

• A comparatively simple approximation to the FENE spring force is the FENE-P model
by Peterlin [69]. The FENE-P closure approximates (2.81) by a pre-averaging assumption〈

~q ⊗ ~q
1− ‖~q‖

2

b

〉
≈ 〈~q ⊗ ~q〉

1− 〈‖~q‖
2〉

b

≡ A

1− tr(A)/b

with the conformation tensor A = 〈~q ⊗ ~q〉. In the same way as for the Oldroyd-B model,
we obtain a constitutive equation for A which we write as

A

1− tr(A)/b
+ Wi

O
A = Id.

Even if we only consider steady state situations, the FENE-P closure disagrees with the

FENE spring force. This is caused by only restricting the average
〈
~q 2
〉1/2

by
√
b which

does not prevent that there are still configurations whose length exceeds
√
b.

• Lielens et al. [55] proposed another approximation, the FENE-L closure, in which the pdf
ψ takes a product form

ψ(~q) = ψl(~q)ψo(~q/‖~q‖)

with ψl(~q) as the distribution of the dumbbells length and ψo(~q/‖~q‖) as the distribution of
the unit orientation vector. Both distributions are determined by using the conformation
tensor A and a fourth-order moment

〈
~q 4
〉
. Instead of the FENE-P closure, the FENE-L



60 2 The Mathematical Model

closure adequately models distributions that differ from the equilibrium ψeq but still fails
for transient flows with high shear or extension rates.

Obviously, there exists a variety of closure approximations (e.g. FENE-CR, FENE-Dα,. . .)
which dramatically reduce the computational effort but for some situations significantly differ
from the original FENE spring force. As a result, aiming at a broad range of applications, we
directly solve the Fokker-Planck equations for the FENE spring as this is the only possibility
to circumvent modelling problems.



3 Numerical Methods

In this chapter, we describe different numerical techniques that we use later on. On the one
hand, we consider methods for the solution of a density function like finite differences (FD) or
spectral methods. On the other hand, we introduce stochastic processes because in Chapter
2.3 we also consider an alternative description of the FP equation as a stochastic differential
equation (SDE). In general, spectral methods require much more effort in discretisation than
FD schemes. In exchange, if spectral methods are carefully adapted to the problem, they
outperform other methods with respect to convergence order. At last, we consider stochastic
methods which are particularly suitable for high-dimensional problems.

3.1 Finite Differences on the Sphere

Finite differences are a comparatively simple approach for the discretisation of a partial differ-
ential equation. Indeed, the main idea of this method is to replace the infinitesimal limit value
of a derivative with a finite differential quotient. We consider an interval [a, b] and subdivide
it equidistantly a = x0 < x1 < ... < xn = b according to

xi = x0 + ih with i = 0, ..., n

and h = (b − a)/n. Suppose we want to approximate the first derivative of u ∈ C4((a, b)),
common schemes are the forward difference

u′(xi) =
u(xi+1)− u(xi)

h
− h

2
u′′(ξi) with ξi ∈ (xi, xi+1), (3.1)

the backward difference

u′(xi) =
u(xi)− u(xi−1)

h
+
h

2
u′′(ξi) with ξi ∈ (xi−1, xi), (3.2)

and the central difference

u′(xi) =
u(xi+1)− u(xi−1)

2h
− h2

6
u(3)(ξi) with ξi ∈ (xi−1, xi+1). (3.3)

The intermediate value ζi results from the Taylor expansion of u(xi). A combination of first
order schemes yields an approximation to the second derivative of u′′(xi):

u′′(xi) =
u(xi+1)− 2u(xi) + u(xi−1)

h2
− h2

12
u(4)(ξi) with ξi ∈ (xi−1, xi+1). (3.4)
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We note that finite differences are a local method. Actually, we consider only nearby nodal
values for the approximation of a derivative and therefore obtain a sparse linear system of
equations after discretisation. The approach possesses two options to improve the accuracy of
the approximation:

1. Usage of high-order schemes to include more global information of the domain.

2. Decrease of the mesh size h which defines the distance between grid points.

Both strategies exhibit the drawback of an increase in computation time. Furthermore, a high-
order scheme requires smoother functions and a special boundary treatment near the border of
the domain. On the other hand, a decrease in the mesh size worsens the condition of the linear
system of equations that follows from the discretisation of the underlying differential equations.
A more detailed introduction to finite differences is given in Quarteroni [78] and in Smith [83].

Subsequently, we concentrate on finite differences in spherical, cylindrical and toroidal geo-
metries as further described in Boyd [15] and Randall [79]. Despite the differences between
distinct coordinate systems for these geometries, all systems have one problem in common: lines
of constant polar or azimuthal angle converge in one singular point. For instance, the latitude
and longitude lines on an earth globe converge in a singular point at the poles. Additionally,
a sphere has a further singular point at the centre. Figure 3.1 illustrates the accumulation
of grid values near singular points. As a result, this leads to two consequences for numerical
computation. First, the time-step size for each time-discretisation scheme is restricted because
of the fine grid resolution close to the singularities. In literature, a common term for this beha-
viour is the ”pole problem”. A second consequence is that the differential operator in spherical
coordinates maintains a singularity itself, even if the solution is smooth at every point of the
domain. Therefore, the numerical treatment has to deal with problems which are not only re-
lated to the physical system as a whole but also to the mathematical description of the system.
The Courant-Friedrichs-Levy condition (CFL condition) provides the theoretical background
for understanding the restriction in time-step size.

Definition 3.1 [Courant-Friedrichs-Lewy condition]
A CFL condition denotes a necessary criterion for the stability of an explicit time-discretisation
scheme for differential equations with hyperbolic behaviour. In general, the criterion restricts
the convection of information between different grid cells in terms of numerical stability. The
method was first published in 1928 by Richard Courant, Kurt Friedrich, and Hans Lewy [23].
In one-dimensional computation the restriction in time t takes the form

∆t < Cpde
hmin
umax

where umax is the fastest wave speed permitted by the differential equation, hmin is the smallest
mesh size of the computational grid, and Cpde is a problem-dependent constant.

Because of the CFL condition, the restriction is more severe for non-equidistant grids than
for homogeneous grid distributions. On a sphere, a homogeneous subdivision of the spherical
coordinates r, θ, and φ yields irregularly distributed grid points. In Figure 3.1 the distance
between two grid points A and B on a circle in the x− y-plane with radius r1 and inclination
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Figure 3.1: A sphere exhibits singularities at the poles and at the centre.

angle θA and θB is
hr1 = r1 (θB − θA), (3.5)

which tends to zero at the centre of the sphere (i.e. r1 → 0). Therefore, an implementation
necessitates additional considerations as implicit time-discretisation schemes, deletion of grid
points, or heavy damping near singular points (i.e. low accuracy of the model).

The second consequence of the coordinate lines is the singular behaviour of the differen-
tial operators itself. For instance, the Laplacian for Cartesian coordinates in 3-dimensional
Euclidean space takes the form

∆ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.6)

and has constant coefficients. In contrast to this, the corresponding formulation in spherical
coordinates

∆ ≡ 1

r

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(φ)

∂

∂φ

(
sin(φ)

∂

∂φ

)
+

1

r2 sin2(φ)

∂2

∂θ2
(3.7)

becomes singular for the cases φ → 0 and r → 0. Although the singularity is only an effect
of the mathematical description, finite differences require explicit boundary conditions for the
grid point closest to r = 0.

Obviously, finite differences are not the method of choice for the Fokker-Planck equation in
the homogeneous flow case (2.62). Nevertheless, we use them as a method for the solution
of the 3D homogeneous extensional flow problem (cf. Section 6.2.2). The main idea is to be
able to compare the advantages and disadvantages of various techniques and find the most
appropriate method for the given differential equation. A simple solution that circumvents the
pole problem is the usage of Cartesian coordinates. The Cartesian coordinate system in R3 is
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x

y

Figure 3.2: Finite difference approximation using Cartesian coordinates eliminates the pole problem on
spheres and circles. On the other hand, the approximation of the surface is only first order
accurate and requires fine grid discretisation.

Algorithm 1: Explicit low-storage third order Runge-Kutta scheme by Williamson for the solution

of the Fokker-Planck equation in Cartesian coordinates. The algorithm requires fine grid resolutions

(≈ 3003 grid points) to reach a reasonable accuracy and therefore memory limitations become

important. Low-storage schemes require only two levels of storage (for ψ and G) and are therefore

an appropriate choice.

Data: Three-dimensional array ψ of size imax × jmax × kmax

Result: Discrete solution of Fokker-Planck ODE in the form of ∂ψ
∂t = f(ψ, t)

Set n = 0;

Subdivide interval [xmin, xmax] = [−
√
b,
√
b] into imax subintervals;

Analogue distribution for [ymin, ymax] and [zmin, zmax];
Assign initial values to ψ ;
while n ≤ nend do

if x2 + y2 + z2 ≤ b then

G ← f(ψ, t(n));
ψ ← ψ + 1

3∆tG;

G ← −5
9 G + f(ψ, t(n) + 1

3∆t);
ψ ← ψ + 15

16∆tG;

G ← −153
128 G + f(ψ, t(n) + 3

4∆t);

ψ(n+1) ← ψ + 8
15∆tG;

else

ψ(n+1) ← 0.0 // i.e. homogeneous Dirichlet boundary conditions

end
Compute τ by evaluation of ψ[i][j][k] with Newton-Cotes rule for triple integrals;

t(n+1) = t(n) + ∆t, n = n + 1;

end
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not adapted to spherical geometry and causes the problem to adequately describe the boundary
of the sphere. This necessitates a fine grid size to obtain a sufficient resolution of the sphere
(i.e. about 3003 grid points), because the approximation of the spherical surface is only first
order accurate. We demonstrate the coarse surface discretisation in Figure 3.2. In Cartesian
coordinates the Fokker-Planck equation for the FENE spring force for homogeneous flow cases
takes the form

∂ψ

∂t
= − ∂

∂q1

[
ψ(
∂u

∂x
q1 +

∂u

∂y
q2 +

∂u

∂z
q3) − q1ψ

2Wi (1− (q1
2 + q2

2 + q3
2) /b)

]
− ∂

∂q2

[
ψ(
∂v

∂x
q1 +

∂v

∂y
q2 +

∂v

∂z
q3) − q2ψ

2Wi (1− (q1
2 + q2

2 + q3
2) /b)

]
(3.8)

− ∂

∂q3

[
ψ(
∂w

∂x
q1 +

∂w

∂y
q2 +

∂w

∂z
q3)− q3ψ

2Wi (1− (q1
2 + q2

2 + q3
2) /b)

]
+

1

2Wi
∆~q ψ.

With respect to ~q we use the schemes (3.1) - (3.4) for the discretisation of the derivatives,
for time discretisation we use an explicit low-storage third order Runge-Kutta scheme. As a
result, we obtain Algorithm 1 on page 64 to solve a problem in the form ∂ψ

∂t = f(ψ, t). The
stress tensor as in (2.81) is computed with the discrete nodal values of ψ on the grid by using
a triple integral Newton-Cotes formula described in Sadiku [81].
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3.2 Spectral Methods

3.2.1 Basic Principles of Spectral Methods

The basic principle of spectral methods is to approximate the solution of a PDE by a finite sum
of globally defined and orthogonal basis functions. For further information on spectral methods
we refer to the textbooks of Canuto [18], Kopriva [51] and Karniadakis [45]. According to a
given problem, different choices for basis functions are possible. First, we give answer to three
questions that will be used to develop the theory of spectral methods in the one-dimensional
case.

1. For an orthogonality property we necessitate an inner product space. With regard to the
product space which requirements do we have to make?

2. Which choices for the basis functions do we have?

3. How do we calculate the time-dependent coefficients for a given orthogonal basis?

As for the answer to the first question, let ω : [a, b]→ R+ be a positive valued weight function
and L2

ω([a, b]) the Lebesgue space of square-integrable functions u on [a, b] with respect to ω
such that

‖u‖L2
ω
≡ ‖u‖ω ≡

(∫ b

a
|u(x)|2ω(x) dx

)1/2

< ∞. (3.9)

Actually, L2
ω([a, b]) possesses the same Hilbert space property as L2([a, b]) which we obtain in

the special case ω(x) = 1 for all x ∈ [a, b]. We define the inner product ( . , . )ω : L2
ω ×L2

ω → R

as

(u, v)ω ≡
∫ b

a
u(x)v(x)ω(x) dx (3.10)

and denote u, v ∈ L2
ω as L2

ω-orthogonal if

(u, v)ω = ‖u‖ω ‖v‖ω δu,v (3.11)

where δu,v is the Kronecker delta function. Consequently, in Table 3.1 we introduce several
L2
ω-orthogonal basis functions and their corresponding weight functions.
The Jacobi, Chebyshev and Legendre polynomials are eigenfunctions of the Sturm-Liouville

problem. A detailed discussion of the problem is given in Zettl [98]. We use a similar formulation
as in Chapter 5 of Teschl [86].

Theorem 3.2 [Sturm-Liouville theorem]
A Sturm-Liouville problem for u ∈ C2((a, b)) is a second-order boundary value problem that
takes the form

− d

dx

(
p(x)

du(x)

dx

)
+ q(x)u(x) = λω(x)u(x) with a < x < b,

and boundary conditions for u.

(3.12)

Furthermore, we have q and ω in C0([a, b]), p in C1([a, b]) and p(x), ω(x) > 0 for all x ∈ (a, b).
The problem is to find non-trivial eigenvalues λ and the corresponding eigenfunctions u(x) of
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Basis function Notation Domain Weight function

Fourier basis exp(ikx) [0, 2π] 1

Jacobi polynomials J
(αJ ,βJ )
k (x) [−1, 1] (1− x)αJ (1 + x)βJ

Legendre polynomials Lk(x) [−1, 1] 1

Chebyshev polynomials Tk(x) [−1, 1] (1− x)−
1
2 (1 + x)−

1
2

Spherical Harmonics Ωnm(φ, θ) [0, 2π]× [0, π] 1

Table 3.1: The table lists orthogonal basis functions that are most common for spectral methods.
Legendre (αJ = βJ = 0) and Chebyshev polynomials (αJ = βJ = −1/2) are special cases
for the more general Jacobi polynomials. They are often used in numerical computation due
to recurrence formulae that exist for them.

(3.12). The problem is called singular if the coefficient p(x) vanishes at the boundary (i.e.
p(a) = p(b) = 0) and is called regular otherwise. For singular problems, the theorem states the
existence of solutions, i.e. the Sturm-Liouville has a countable number of discrete eigenvalues
λ1, λ2, . . . which accumulate only at ∞ and the corresponding eigenfunctions u1(x), u2(x), . . .
are orthogonal in L2

ω.

Nevertheless, for spectral methods we require algebraic polynomial eigenbases because we
can compute them and their derivatives efficiently. It turns out that on [−1, 1] only one singular
Sturm-Liouville problem has polynomial eigenfunctions, the Jacobi polynomials, which solve
the problem

− d

dx

(
(1− x)1+αJ (1 + x)1+βJ du(x)

dx

)
= λ (1− x)αJ (1 + x)βJ u(x)

with − 1 < x < 1, αJ , βJ > −1 and a weight function ω(x) = (1− x)αJ (1 + x)βJ .

(3.13)

The Chebyshev polynomials result as a special case from the Jacobi polynomials with the
choice αJ = βJ = −1/2 in (3.13) and the Legendre polynomials from αJ = βJ = 0. A Jacobi

polynomial J
(αJ ,βJ )
N (x) with degree N has exactly N distinct roots in the interval [−1, 1] which

is important for the Gauss quadrature formula in Section 3.2.3. An advantage of Legendre
polynomials is the simplicity of the weight function (i.e. ω(x) = 1) which eases to evaluate
them analytically. Apart from that, for periodic problems we prefer to use exponential Fourier
series of the form {exp(ikx)}k=0,1,2,... or the equivalent real interpretation with sine and cosine
functions. Note that trigonometric functions are eigenfunctions of the Sturm-Liouville problem
(3.12) for p(x) = ω(x) = 1 and q(x) = 0 ∀x ∈ [a, b]. Problems on spherical geometry correlate
with spherical harmonic basis functions which we discuss in Section 4.1.3.

Polynomial Approximation

Let Ω = [a, b] × [0, T ] ⊂ R2 and let {pk(x)}k=0,1,2,... be a set of orthogonal polynomials with

x ∈ [a, b], are we able to approximate every u ∈ L2
ω(Ω) with polynomials uniformly? This

is the result of the Weierstrass approximation theorem which states in our context that for a
given u ∈ L2

ω(Ω) and fixed t ∈ [0, T ], there exists a system s(r) ≡ span {pk(x)}k=0,1,2,...,r and a
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p̃ ∈ s(r) such that
‖u(·, t)− p̃‖ω → 0 as r →∞.

As a result, we are able to rewrite u in a series of the form

u =

∞∑
k=0

ûk pk, (3.14)

whereas in general the coefficients ûk depend on time but not on space and the opposite way
round for the basis functions. In applications we approximate u on the space PN that contains
all polynomials of degree ≤ N. Therefore, we define a truncated expansion of u as

PNu =
N∑
k=0

ûk pk (3.15)

and try to obtain a rapid decay of the expansion coefficients to minimise the approximation
error. We denote the relation between u ↔ ûk as the transform of u between physical space
and frequency domain. Additionally, the truncated expansion u → PNu yields an orthogonal
projection of L2

ω ≡ L2
ω([a, b]) upon PN, which we write in the form

(PNu, qk)ω = (u, qk)ω ∀qk ∈ PN. (3.16)

This is a further consequence of the orthogonality property of pk.

As stated in the third initial question, the orthogonality of pk in L2
ω permits the computation

of the coefficients by using the inner product on L2
ω × L2

ω. By substituting (3.14) into (u, pk)ω
we obtain

1

‖pk‖2ω
(u, pk)ω =

1

‖pk‖2ω

∫ 1

−1
u(x) pk(x)ω(x) dx

=

∞∑
i=0

ûi
‖pk‖2ω

∫ 1

−1
pi(x) pk(x)ω(x) dx︸ ︷︷ ︸

= δik‖pk‖2ω

= ûk.

(3.17)

In the case of exponential basis functions exp(ikx) we denote the computation of the discrete
Fourier components as the forward transformation and the synthesis of the Fourier modes back
to physical space as the backward transformation of the Fourier transformation (FT).

Convergence Order

At last, we investigate the decay of the expansion coefficients and the approximation speed. For
certain basis functions (e.g. Fourier series for periodic functions and Jacobi-type polynomials for
non-periodic functions) that are sufficient smooth the expansion coefficients decay faster than
any algebraic polynomial. Indeed, we expect a less oscillating behaviour for smooth functions.
As high wavenumbers ûk correspond to high oscillation of u, the rapid decay of the coefficients
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ûk is comprehensible. Subsequently, we use a more precise and more general definition from
Boyd [15] and define the algebraic index of convergence for the expansion coefficients uk as the
largest number r which fulfils

lim
k→∞

|uk| kr < ∞.

If the expansion coefficients decay faster than any finite index r, we denominate this as expo-
nential or spectral convergence. For this purpose, f has to be smooth in the sense of being
infinite times differentiable or (even stronger) a complex analytic function. Spectral accuracy
is an asymptotic property which appears after all essential structures of the function have
been resolved. Nevertheless, in situations where spectral methods can be used they normally
outperform other discretisation methods for given costs with regard to accuracy.

3.2.2 Gaussian Quadrature

In Section 3.2.3 we compare the concepts of modal and nodal approximation. For the explan-
ation of the different methods, we first have to consider quadrature rules as they are strongly
correlated with nodal approximations.

Theorem 3.3 [Gauss integration]
Let x0 < . . . < xN−1 be the N distinct roots in [−1, 1] of an ω(x)-orthogonal polynomial pN in

PN (e.g. the Jacobi polynomial J
(αJ ,βJ )
N (x)) and let the quadrature weights ω0 < . . . < ωN−1 be

the solution of the linear system

N−1∑
j=0

(xj)
k ωj =

∫ 1

−1
xkω(x) dx, 0 ≤ k ≤ N − 1. (3.18)

Then, all quadrature weights ωj are positive and numerical integration

Intω(q) ≡
N−1∑
j=0

q(xj)ωj (3.19)

is exact for all polynomials q ∈ P2N-1, i.e.

Intω(q) =

∫ 1

−1
q(x)ω(x) dx ∀q ∈ P2N-1. (3.20)

Proof: see Canuto et al. [18] or Mercier [64].

Gauss integration (GI) is optimal with respect to the highest polynomial degree that can
be integrated exactly for a given number of quadrature points. Therefore, by using just N
quadrature points it is not possible to construct an integration scheme with exact integration of
polynomials up to a degree of 2N. For the case that pN (x) in Theorem 3.3 is a Jacobi polynomial

J
(αJ ,βJ )
N (x), we denote the N roots x0 < . . . < xN−1 as the Gauss-Jacobi quadrature points. In

the same manner, we obtain the Gauss-Legendre and Gauss-Chebyshev points.
The quadrature points do not include the boundary of [−1, 1] so that they have to be included
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Figure 3.3: Low-order Legendre polynomials L0(x), L1(x) and L2(x) contribute low-frequency inform-
ation to the approximation of the solution. An increase in the polynomial order, as can be
seen from the polynomials L6(x) and L25(x), adds further high-frequency information to
the approximation.

additionally. For the case x0 = −1 < . . . < xN−1 = 1 the method is accurate for polynomials
up to a degree 2N−3 as the degrees of freedom are reduced by the two boundary points. If the
boundary values are included in the quadrature formula, we use the term Gauss-Lobatto-Jacobi
for the quadrature points and analogue terms for the other variants.

3.2.3 Modal and Nodal Approximation

In (3.15) we describe an approximation to the unknown solution in terms of orthogonal polyno-
mials and corresponding coefficients, where each basis function contributes information from a
special wave number. Low-order polynomials contribute low-frequency information to the ap-
proximation of the unknown function u and on the other hand high-order polynomials resolve
the high-frequency oscillation. We illustrate the aspect of low- and high-frequency information
with Legendre polynomials in Figure 3.3. A common term in literature for an approximation in
the presented form is a modal (or hierarchical) basis representation. The term “modal” clarifies
that each basis function is associated with one particular wave frequency of u.

On the other hand, an alternative ansatz requires the use of a grid. We then try to interpolate
the unknown function on these grid point values in the domain. A spectral approximation based
on grid points is called a nodal method. The approach is connected to the finite difference
scheme, because both methods use a grid and approximate derivatives with derivatives of
an interpolation polynomial. The major difference is that FD methods use a local low-order
polynomial for approximation, whereas nodal approaches use global high-order representations.
The global approach results in an immediate transport of information from a single disturbance
up to the whole domain. Therefore, for spectral methods we cannot expect to obtain a sparse
matrix after discretisation as it would be the case for FD methods. Nonetheless, in the case
of a strong form PDE formulation Fornberg [31] considers nodal methods as a high-accuracy
limit of finite difference methods.

Another difference is the choice of grid point values. In simple geometries a homogeneous
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Figure 3.4: Both pictures present a Lagrange interpolation of the Runge function. Though, while the
left interpolant Iequ(f) uses eleven uniform interpolation points

{
−1,− 4

5 , . . . , 1
}

, the right
one bases on eleven Gauss-Lobatto-Chebyshev points (i.e. boundary points are included).
Interestingly, the left interpolant yields an accurate interpolation at the centre but fails at
the boundary. On the other hand, the right interpolant approximates the unknown uniformly
and is the method of choice for spectral techniques.

distribution of nodal values makes sense for a FD discretisation, but a nodal spectral method
always uses roots of orthogonal polynomials as listed in Table 3.1. For clarification, we inter-
polate the Runge function

u(x) =
1

1 + 25x2

by using the Lagrange polynomials {hk(x)}k=0,...,N−1 of degree N-1 and write

IN−1(u) =

N−1∑
k=0

uxk hk(x) (3.21)

with uxk as a discrete approximation of u(xk). Figure 3.4 illustrates two Lagrange interpolants
of the form (3.21) but with different choices for the nodes x0 < . . . < xN−1. The left interpolant
uses a uniform distribution of [−1, 1] whereas the right one uses the Gauss-Lobatto-Chebyshev
points xk = cos( kπ

N−1), k = 0, . . . , N − 1. Runge proved that the interpolation error tends
towards infinity if an equidistant distribution is used and the polynomial order is increased.
This is caused by oscillation that occurs close to the boundary (Runge phenomenon). On the
other hand, the more Gauss-Lobatto-Chebyshev points we use, the faster the error decays.
This explains the effectiveness of Gaussian quadrature nodes.

Now, we further describe characteristics of Lagrange polynomials hk(x). Our interpolation of
the unknown shall be exact at the x0 < . . . < xN−1 and therefore has to feature the important
property hk(xj) = δkj which we illustrate in Figure 3.5. Furthermore, the polynomials at the
nodes are, roughly speaking, a discrete approximation to shifted delta-distributions δ(x− xk).
For instance, let {xk}k=0,...,N−1 be the sequence of Gauss-Legendre nodes (i.e. we can neglect a
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weight function in the integrand) and j ∈ {0, . . . , N − 1}, then we have a relation of the form∫ ∞
−∞

u(x)δ(x− xj) dx = u(xj) ←→
∫ 1

−1
u(x)hj(x) dx

GI
≈

N−1∑
k=0

u(xk)ωk hj(xk)︸ ︷︷ ︸
=δkj

= u(xj)ωj .

For efficient computation we write the Lagrange polynomials in the barycentric formulation

hk(x) =
N−1∏
i=0
i 6=k

x− xi
xk − xi

=
bk

(x− xk)
∑N−1

i=0
bi

x−xi

with bk =
1∏N−1

j=0
j 6=k

(xk − xj)
(3.22)

as the barycentric weights. The second equal sign in (3.22) is written in the sense that the RHS
possesses a removable singularity at x = xi, i = 0, . . . , N − 1, i 6= k and allows a continuous
extension (i.e. hk(xi) ≡ 0) in the form of the classical Lagrange interpolation. The advantage
of the formulation with barycentric weights bk in (3.22) lies in the efficient computation of the
Lagrange interpolant. In this formulation it is possible to evaluate (3.21) in O(N) instead of
O(N2) operations because the factor

∑N−1
i=0

bi
x−xi in the denominator is independent of k and

the weights bk can be precomputed and stored for further usage.

The different approaches of the modal approximation PNu and the nodal interpolation IN (u)
lead to different numerical results. The error between both formulations ‖PNu − IN (u)‖ω is
called aliasing error. An analysis of the error reveals the relation

‖u− IN (u)‖2ω = ‖u− PNu‖2ω + ‖PNu− IN (u)‖2ω

such that the aliasing error is orthogonal to the truncation error. Therefore the interpolation
error on the left hand side (LHS) is always larger than the modal approximation error. Non-
etheless, both methods exhibit a similar asymptotic behaviour and are comparable in their
errors for practical usage.

3.2.4 Weak and Strong Formulation of Differential Equations

In general, a given problem like the Poisson problem on the square Ω = [−1, 1]× [−1, 1] can be
formulated differently according to the numerical method of choice. For finite differences we
use the strong formulation of a PDE and search for an u ∈ C2(Ω) that fulfils

−∆u = s on Ω,

u = u0 at ∂Ω
(3.23)

for a given source term s ∈ L2(Ω). On the other hand, finite elements require the weak
formulation of the problem. We search now for a u ∈ H1(Ω) (Hilbert space of square-integrable
functions with finite L2-norm for weak derivatives up to order one) that solves, for a given right
hand side s ∈ L2(Ω), the weak problem∫

Ω
∇u · ∇v dx =

∫
Ω
s v dx ∀v ∈ C∞c (Ω). (3.24)
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Figure 3.5: The Jacobi polynomial J
(0.5,0.5)
6 has six roots x0 ≈ −0.9, x1 ≈ −0.62, x2 ≈ −0.22,

x3 ≈ 0.22, x4 ≈ 0.62, and x5 ≈ 0.9 that we use as nodes for the Lagrange polynomials
h0(x), . . . , h5(x). An important property of Lagrange interpolation is the behaviour at the
nodal values in the form hk(xj) = δkj .

One of the advantages of the weak formulation is that the requirements on the solution are less
strict (one time weak differentiable instead of twice differentiable).

Multidimensional Approximation

For a given Poisson problem in R2 we need a method to extend spectral approximations to
multiple space dimensions. In two-dimensional rectangular domains we use tensor product
expansions of two one-dimensional basis functions and extend the method for multidimensional
rectangular domains accordingly. As a consequence, we decide for different basis representations
if the problem differs in every direction. For instance, we approximate a problem that is periodic
in the x direction and non-periodic in the y direction with an ansatz

PNMu(x, y, t) =

N/2∑
k=−N/2

M∑
l=0

ûkl(t) exp(ikx)︸ ︷︷ ︸
periodic

hl(y).︸ ︷︷ ︸
non-periodic

(3.25)

In the case of an irregular domain we have two possibilities to apply spectral methods. First,
we find a coordinate transformation that allows the mapping of an irregular domain onto a
rectangular or spherical domain which is not always possible. Otherwise, we decompose the
domain in small subdomains (e.g. triangulation) and apply the tensor product approach on
a reference element. This leads to the so called spectral element method which combines
characteristics of finite elements (domain decomposition) with spectral methods (high-order
orthogonal polynomials).
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Spectral methods

basic functions

periodic non-periodic
Fourier basis Legendre polynomials

Spherical harmonics Chebyshev polynomials
(periodic in φ) Jacobi polynomials

differential equation strong form weak form

basis representation modal nodal

Table 3.2: Spectral methods do not only differ in the choice of an appropriate basis function but also
in the basis representation and the weak or strong formulation of the underlying problem.

Example of a Weak and Strong Poisson Problem

For spectral methods we have the freedom of choice which formulation for a PDE we prefer
as a wide class of spectral methods exists and makes a classification more difficult. Our aim
is not to explain every method in detail but rather give a categorisation for the different
methods. Therefore, we skip the treatment of the boundary conditions and concentrate on the
major discretisation ansatz. The categorisation we use bases on the summary in Chapter 4.8
of Kopriva [51]. Later on, we use it to classify our method of choice for the solution of the
Fokker-Planck equation.

Subsequently, we present a list with several possibilities to cope with the Poisson problem
in (3.23) or (3.24). Additionally, Table 3.2 provides an overview of different approaches for
spectral methods.

1. Strong form of the equation - nodal representation
In literature the most common name for this approach is collocation method. We apply
the Laplace operator on the interpolation polynomial IN (u) for u in a two-dimensional
analogue of (3.21), interpolate the forcing term s(x, y) on the right hand side, and obtain

−∆(IN (u)) = −
N∑
k,l

uxk,yl h
′′
k(x)hl(y) −

N∑
k,l

uxk,yl hk(x)h
′′
l (y) =

N∑
k,l

sxk,yl hk(x)hl(y).

Using a grid on the square we demand the equation to be solved exactly on the nodal
values (xi, yj). We then get

−
N∑
k,l

uxk,yl h
′′
k(xi) δlj −

N∑
k,l

uxk,yl δki h
′′
l (yj) =

N∑
k,l

sxk,yl δki δjl for i, j = 0, . . . , N

which can be further simplified and written in the form of a matrix-vector product. For
further explanation of collocation methods we refer to the books of Fornberg [31] and
Trefethen [88].

2. Weak form of the equation - modal representation
Depending on the chosen orthogonal polynomial, this approach is called a Legendre-
Galerkin, Jacobi-Galerkin, Fourier-Galerkin, ... method. For the Legendre polynomials
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we approximate the unknown u and the the force term s in the form

PNN (u(x, y)) =
N∑

k,l=0

ûkl Lk(x)Ll(y),

PNN (s(x, y)) =
N∑

k,l=0

ŝkl Lk(x)Ll(y)

(3.26)

with the unknown coefficients ûkl and ŝkl. The weak formulation (3.24) is valid for every
test function and, for the case of identical test and trial functions, therefore is also valid
for all Legendre polynomials of order ≤ N which gives

(∇PNN (u),∇{Lm(x)Ln(y)} )ω=1 = (PNN (s), Lm(x)Ln(y) )ω=1 ∀ m,n = 0, . . . , N.

for the inner product in L2
ω. By substituting (3.26) into the last equation we have to

solve the weak problem

N∑
k,l=0

ûkl

∫ 1

−1

∫ 1

−1

{
∂Lk(x)

∂x
Ll(y)

∂Lm(x)

∂x
Ln(y) + Lk(x)

∂Ll(y)

∂y
Lm(x)

∂Ln(y)

∂y

}
dx dy

=

N∑
k,l=0

ŝkl

∫ 1

−1

∫ 1

−1
Lk(x)Ll(y)Lm(x)Ln(y) dx dy ∀ m,n = 0, . . . , N.

For the derivatives of the basis functions we use recurrence formulae that connect the
polynomials and its derivatives, for instance (2k + 1)Lk(x) = L

′
k+1(x) − L′k−1(x). After

that, we utilise the L2-orthogonality of the basis functions and receive a linear system of
equations.

3. Weak form of the equation - nodal representation
At last, we describe an approach that combines certain elements from the previous meth-
ods. The method has different terms in literature. Whereas Kopriva [51] calls it a nodal
Galerkin method, Canuto [18] uses the term Galerkin with numerical integration (G-NI).
Again, we interpolate the unknown IN (u) with Lagrange polynomials in the form (3.21)
but in contrast to the collocation method we insert the interpolation in the weak formu-
lation (3.24) of the Poisson problem. We further use that Lagrange basis functions of the
interpolated test function IN (v) =

∑
vmnhm(x)hn(y) are linearly independent to get the

product

N∑
k,l=0

uxk,yl

∫ 1

−1

∫ 1

−1

{
∂hk(x)

∂x
hl(y)

∂hm(x)

∂x
hn(y) + hk(x)

∂hl(y)

∂y
hm(x)

∂hn(y)

∂y

}
dx dy

=

N∑
k,l=0

sxk,yl

∫ 1

−1

∫ 1

−1
hk(x)hl(y)hm(x)hn(y) dx dy ∀ m,n = 0, . . . , N.

(3.27)
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The difference now is that we do not solve the integrals exactly but approximate them
with a separate Gaussian quadrature relating to the x and y component by using Fubini’s
theorem, e.g. ∫ 1

−1
hk(x)hm(x) dx ≈

N∑
i=0

hk(xi)hm(xi)ωi = δkm ωk

for a given set of quadrature nodes {xi} and the corresponding Lagrange polynomials
{hi}. Finally, we get a problem in a similar form as in the collocation approach but with
additional quadrature weights ω(x) and ω(y) for the integration with respect to x and y.
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3.3 Stochastic Processes

3.3.1 Basic Concepts of Stochastic Calculus

We use the theory of stochastic processes and stochastic differential equations (SDEs)

• for the derivation of Brownian force in a FP equation like (2.67) or (2.68) and

• for the development of efficient numerical techniques to solve problems with high-dimensional
configuration spaces.

Therefore, we have to introduce some basic concepts of stochastic analysis to formulate the
underlying problems properly. For a more detailed introduction to the theory of SDEs we refer
to the book of Øksendal [65]; an introduction with applications to polymeric fluids is given in
Öttinger [66]. We only describe major characteristics of stochastic calculus in a similar way as
Le Bris et al. [16] or Higham [39].

In the following section, we describe a probability space with the triple (Ω,Σ, P ), where Ω
denotes a sample space, Σ is a σ-algebra over Ω and P is a probability measure. In our context,
the canonical probability space that characterises polymer configurations is (Rn, Bn, P : Bn →
R

+) with Bn as the Borel σ-algebra generated by open intervals on Rn. We furthermore
necessitate real-valued random variables X which are functions X : Ω→ R that fulfil

{ω ∈ Ω|X(ω) ≤ s} ∈ Σ ∀ s ∈ R,

i.e. every set of the form {ω ∈ Ω|X(ω) ≤ s} is an event for any real s. Based on random
variables, we introduce stochastic processes which represent the idea of time-dependent random
variables.

Definition 3.4 [Stochastic Process]
Let (Ω,Σ, P ) be a probability space, then we denote a family of real-valued random variables
X = (Xt)t∈T

X : Ω× T → R, (ω, t) 7→ Xt(ω)

as a (real-valued) stochastic process. In the multidimensional case ~X : Ω× T → Rn, we name
a collection of n real-valued random variables ~Xt(ω) = (Xt,1(ω), . . . , Xt,n(ω)) a vector-valued
stochastic process. For a fixed ω ∈ Ω, the function t 7→ Xt(ω) is called a trajectory and we
think of t as a variable for the current time in either a closed interval T = [0, tmax] or the
nonnegative axis T = [0,∞).

In the derivation of the Fokker-Planck equation, we use a stochastic process for modelling
random collisions between beads of the dumbbells and surrounding molecules. The associated
process is called Brownian motion or Wiener process.

Definition 3.5 [Wiener process]
A Wiener process Wt(ω) is a Gaussian stochastic process that is characterised by the properties

• P (Wt=0 = 0) = 1 (i.e. the event occurs P almost surely),

• its trajectories are (almost surely) continuous, and



78 3 Numerical Methods

• the increments are independent and are normally distributed with zero mean and variance
t− s for 0 ≤ s < t (i.e. Wt(ω)−Ws(ω) ∼ N(0, t− s) ).

Furthermore, we can interpret the trajectory of a Wiener process as limit of a random walk
(i.e. successive sequence of random, nondirectional steps). Consequently, the trajectory of a
Wiener Process is not differentiable at all because a random walk is not differentiable at any
change of direction.

3.3.2 Stochastic Differential Equations

Subsequently, before dealing with stochastic differential equations, we have to declare the mean-
ing of a stochastic integral with respect to a Wiener process. First, similar to Riemann integra-
tion, we consider stochastic integration for piecewise constant functions and afterwards extend
it to locally bounded (i.e.

∫
T Xt(ω)2 dt < ∞) and non-anticipating processes Xt (note that

from now on we do not mention the reference to ω). An informal definition for Xt to be
non-anticipating is that the future development of Xt>t0 is independent from the previous de-
velopment Xt<t0 for all t0 ∈ T . We require the integrand to be non-anticipating to be able to
define the Itô integral properly.

Definition 3.6 [Itô stochastic integral]
Let Xt be a real-valued, locally bounded and non-anticipating stochastic process and Wt a Wiener
process based on the same probability space (Ω,Σ, P ), then we define the Itô integral of Xt with
respect to Wt as limit∫ tmax

0
Xt dWt ≡ lim

n→∞

∑
tj−1,tj∈Ξn

Xtj−1(Wtj −Wtj−1) (3.28)

for a partition Ξn of T with mesh size 1/n going to zero for n → ∞. Again, we obtain
the stochastic integral of a vector-valued stochastic process ~Xt by integrating every component
separately.

The integral itself is also a random variable and the sequence on the RHS of (3.28) converges
in probability which is a consequence of the weak law of large numbers. When we use the Itô
integral, we always evaluate an integrand Xt at the left side of each interval [tj−1, tj ] in Ξn; an
alternative evaluation at the midpoint (Xtj−1 +Xtj )/2 yields the Stratonovich integral. Instead
of the deterministic case, the stochastic integrals actually depends on the point of evaluation if
Wt and Xt are not independent from each other. Indeed, for the integral of Wt on T = [0, tmax]
we obtain ∫ tmax

0
Wt dWt︸ ︷︷ ︸

Itô integral

=
1

2
W 2
tmax
− 1

2
tmax

tmax>0
6= 1

2
W 2
tmax

=

∫ tmax

0
Wt dWt.︸ ︷︷ ︸

Stratonovich integral

Both integral definitions have their theoretical advantages, but, due to the explicit Euler scheme
we use further on, we henceforth concentrate on the Itô integral. With the existence of an integ-
ration concept for stochastic processes, we can develop a stochastic analogon to a deterministic
differential equation. However, we cannot define a concept for SDEs based on derivatives of
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stochastic processes as they do not exist in general (e.g. a Wiener process is not differentiable).
Therefore, we formulate a SDE as an equivalent integral equation.

Definition 3.7 [Stochastic differential equation]
Let ~Wt be an m-dimensional Wiener process and ~Xt an n-dimensional stochastic process which
fulfils the requirements for the definition of an Itô integral. We denote ~Xt as a solution of the
multicomponent stochastic differential equation

d ~Xt = ~A(t, ~Xt)dt + B(t, ~Xt) · d ~Wt (3.29)

for an n-dimensional column vector ~A and an n×m-matrix B, if ~Xt = (Xt,1, . . . , Xt,n) solves
the integral equation

Xt,i = X0,i︸ ︷︷ ︸
componentwise view

+

∫ t

0
Ai(s, ~Xs) ds︸ ︷︷ ︸

Lebesgue integral

+

m∑
j=1

∫ t

0
Bij(s, ~Xs) dWs, j︸ ︷︷ ︸
Itô integrals

for i = 1, . . . , n

and t ∈ [0, tmax]. We call ~A the drift term, B the diffusion tensor, and d ~Wt the white noise.

Subsequently, we present a fundamental result for the existence and uniqueness of solutions
to SDEs.

Theorem 3.8 [Existence and Uniqueness Result]
If the integrands ~A(t, ~Xt) and B(t, ~Xt) in (3.29) satisfy a Lipschitz condition

‖ ~A(t, ~u)− ~A(t, ~v)‖ ≤ C1‖~u− ~v‖,
‖B(t, ~u)−B(t, ~v)‖ ≤ C2‖~u− ~v‖

for all t ∈ T , u, v ∈ Rn, fulfil a linear growth condition

‖ ~A(t, ~u)‖ ≤ C3(1 + ‖~u‖),
‖B(t, ~u)‖ ≤ C4(1 + ‖~u‖)

for some positive constants C1, . . . , C4, and the initial condition d ~X0 is independent of ~Wt, then
there exists a unique solution to the underlying stochastic differential equation for all t ∈ T .

Proof: Rigorous proofs for the theorem above can be found in the books of Øksendal [65]
and Gard [33].

3.3.3 Numerical Integration Schemes

Stochastic differential equations are only analytically solvable in some special cases and mainly
for linear equations, similar to their deterministic counterparts. Therefore, we have to con-
centrate on numerical approximation schemes for a SDE based on a nonlinear FENE spring
force. We investigate the quality of approximation schemes with the concept of strong and
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weak convergence order. For every ω ∈ Ω, we could in principle compare the error

‖ ~Xt,appr. − ~Xt,exact‖

between the approximation ~Xt,appr. and the exact trajectory ~Xt,exact. However, most events
ω ∈ Ω have a low probability P (ω) and the quantity of major interest is the expectation

〈
‖ ~Xt,appr. − ~Xt,exact‖

〉
≡

∞∑
j=1

‖ ~Xt,appr.(ωj)− ~Xt,exact(ωj)‖P (ωj) for discrete Ω = {ω1, ω2, . . . } .

In order to apply a numerical method, we divide T = [0, tmax] equidistantly into t0 = 0 < t1 <
· · · < tmax with time step size ∆t and give the following definition.

Definition 3.9 [Strong Order of Convergence]
A numerical scheme with discrete time step size ∆t converges strongly with order v > 0 against
the exact solution ~Xt,exact with t ∈ {t0, . . . , tn}, if there exists a constant c > 0, such that〈

‖ ~Xt,appr. − ~Xt,exact‖
〉
≤ c (∆t)v

for all time steps ∆t.

The strong order of convergence is essential when single trajectories need to be fully resolved.
However, in the case of polymeric fluids we are not interested in individual trajectories but

rather in certain averages of the form
〈
ϕ( ~Xt,appr.)

〉
for a sufficiently smooth function ϕ. The

expression that we actually think about is the extra-stress tensor as in (2.81) that takes a

similar form as
〈
~F ( ~Xt,appr.)⊗ ~Xt,appr.

〉
in this context. This relates to the weak solution of

the differential equation.

Definition 3.10 [Weak Order of Convergence]
An approximation scheme ~Xt,appr. converges weakly with order v against ~Xt,exact, if, for all
ϕ ∈ C2v+1(Rn) and all time step sizes ∆t, there exists a constant c > 0, such that∣∣∣〈ϕ( ~Xt,appr.)

〉
−
〈
ϕ( ~Xt,exact)

〉∣∣∣ ≤ c(∆t)v.

Analogously to the deterministic case, strong convergence for a SDE implies weak convergence
but not vice versa.

We now introduce the most simple numerical scheme, the Euler-Maruyama method, which
we write componentwise (i.e. for i = 1, . . . , n) as

Xtr,i = Xtr−1,i +

∫ tr

tr−1

Ai(s, ~Xs) ds +
m∑
j=1

∫ tr

tr−1

Bij(s, ~Xs) dWs, j (3.30)

≈ Xtr−1,i +Ai(tr−1, ~Xtr−1) ∆t +

m∑
j=1

Bij(tr−1, ~Xtr−1) (Wtr, j −Wtr−1, j)
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= Xtr−1,i +Ai(tr−1, ~Xtr−1) ∆t +
m∑
j=1

Bij(tr−1, ~Xtr−1)
√

∆t N(0, 1)︸ ︷︷ ︸
=N(0,∆t)

where tr, tr−1 ∈ {t0, t1, . . . , tmax} and N(0, 1) is a (j-dependent) Gaussian random variable with
zero mean and variance one. With the use of the Itô integral, the stochastic integrals on the
RHS have to be evaluated at the left side tr−1 of [tr−1, tr] and therefore all numerical schemes
have to be explicit in the stochastic term. For this reason we cannot define a full implicit Euler-
Maruyama scheme as it would produce wrong results. Otherwise, at least the deterministic
drift vector ~A(t, ~Xt) can be evaluated implicitly. With respect to convergence order, the explicit
scheme yields

• a strong convergence order 1/2 in general (i.e. multiplicative noise),

• a strong convergence order 1 if B(t, ~Xt) = B(t) does not depend on ~Xt (i.e. additive
noise), and

• a weak convergence order 1 in general.

Subsequently, we try to give reasons for the lower strong convergence order of the Euler-
Maruyama method in comparison to the explicit Euler method for ODEs and refer to the book
of Gard [33] for a detailed proof. The Itô stochastic integral and therefore the Euler-Maruyama
scheme evaluates B(t) at tr−1, but the diffusion tensor changes its values during an interval
of size ∆t in the order of its standard deviation (∆t)1/2 which reduces the accuracy of the
method.

In the view of the low convergence order for the Euler-Maruyama scheme, we further present
a higher-order scheme. On the one hand, we could try to perform a Taylor-like expansion of the
diffusion B(t, ~Xt) which is called an Itô-Taylor expansion in this context. On the other hand,
the evaluation of the integral is more expensive for an Itô-Taylor expansion and therefore we
concentrate on a predictor-corrector approach and use the Euler-Trapezoidal method to get

~Ytr,i = ~Xtr−1,i +Ai(tr−1, ~Xtr−1) ∆t +

m∑
j=1

Bij(tr−1, ~Xtr−1)
√

∆t N(0, 1) (3.31)

~Xtr,i = ~Xtr−1,i +
1

2

[
Ai(tr, ~Ytr) +Ai(tr−1, ~Xtr−1)

]
∆t

+
m∑
j=1

1

2

[
Bij(tr, ~Ytr) +Bij(tr−1, ~Xtr−1)

] √
∆t N(0, 1)

which is also written by components i = 1, . . . , n. The predictor step computes ~Ytm,i as an

approximation to ~Xtr,i and then uses the idea of a Crank-Nicolson discretisation in the corrector

step to compute ~Xtr,i. Additionally, the predictor-corrector pair has

• a weak convergence order 1 in general (i.e. multiplicative noise) and

• a weak convergence order 2 if B(t, ~Xt) = B(t) does not depend on ~Xt (i.e. additive noise)
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as mentioned in Lozinski et al. [59]. In Chapter 4.2, we investigate the stochastic equation for
a dumbbell model which has a constant diffusion coefficient and therefore, we expect to obtain
a weak convergence order 2 for the predictor-corrector scheme.



4 Stress Tensor Approximation for
Homogeneous Flows

This chapter concentrates on stationary flow systems in which the velocity gradient tensor
is constant in the fluid domain Ω. In this case, the Fokker-Planck equation reduces from a
six-dimensional to a three-dimensional diffusion equation which we can either solve by using
deterministic discretisation schemes as in Chapter 4.1 or applying Monte Carlo techniques to
the equivalent stochastic differential equation as in Chapter 4.2. Later on, we present numerical
results for both approaches in Chapter 6.

4.1 Fokker-Planck Equation for Homogeneous Flows

The aim of this chapter is to solve the Fokker-Planck equation which we obtain in the case
of a homogeneous flow field. This is a flow field in which the velocity gradient tensor ~∇x~u is
constant throughout Ω,

~∇x~u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 =

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

 = constant.

In literature, a constant velocity gradient is often denoted with the symbol κ. A homogeneous
flow field greatly simplifies the description of the underlying flow problem. Indeed, in that case

• we do not need to solve the Navier-Stokes equations,

• the probability density function ψ (t, ~x, ~q) = ψ (t, ~q) does not depend on physical space
~x and therefore

• the non-dimensional FP equation takes the form

∂ψ

∂t
+ ~∇~q ·

[(
κ · ~q − 1

2 Wi
~F (~q)

)
ψ (~q)

]
=

1

2 Wi
∆~q ψ (~q) . (4.1)

4.1.1 2D Fokker-Planck Equation in the Plane

In the following section, we use an approach for the solution that was first proposed by Lozinski
and Chauviere [57] and is further explained in Lozinski [56] and in Lozinski et al. [59]. We
restrict the orientation of the configuration vector, i.e. the dumbbell orientation, to the plane
which leads to a two-dimensional Fokker-Planck equation in configuration space. Due to the

83
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fact that in the case of a FENE spring force the probability density function (pdf) ψ is restricted
to a disc with radius

√
b, we describe the problem in polar coordinates

q1 = r cos(φ), q2 = r sin(φ) with r ∈ [0,
√
b] and φ ∈ [0, 2π]. (4.2)

Moreover, at the end of the section we also discuss the more simple Hooke spring force where the
density ψ is unbounded in its domain of definition as a boundary case of the FENE dumbbell
case. (i.e. b→∞). With (4.2) and the differential operators

div~q ~v =
1

r
vr +

∂vr
∂r

+
1

r

∂vφ
∂φ

(for a vector-valued ~v(r, φ)) and

∆~q f =
1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂φ2
(for a scalar-valued f(r, φ))

in polar coordinates we are able to express (4.1) in the form

∂ψ

∂t
= − rb1(κ, φ)

∂ψ

∂r
− b2(κ, φ)

∂ψ

∂φ
+

1

2Wi

(
br

b− r2
+

1

r

)
∂ψ

∂r

+
b2

Wi (b− r2)2
ψ +

1

2Wi

∂2ψ

∂r2
+

1

2Wi r2

∂2ψ

∂φ2
.

(4.3)

Thereby, we have used the abbreviations

b1(κ, φ) = κ11 cos(2φ) +
κ12 + κ21

2
sin(2φ),

b2(κ, φ) = −κ11 sin(2φ) +
κ12 + κ21

2
cos(2φ) +

κ21 − κ12

2
,

and the identity κ11 + κ22 = 0 because of the source-free velocity field ~u. Before we are able
to discretise (4.3), we have to deal with the singularities of the FENE coefficients br

b−r2 + 1
r ,

b2

(b−r2)2
and 1

r2
at the boundaries r = 0 and r =

√
b. We introduce a coordinate transformation

[0,
√
b]→ [−1, 1], a standard operation for spectral methods, and a new unknown α that arises

out of the behaviour of ψ at the boundary. For ψ we know that

• ψ(t, r, φ) = 0 for r =
√
b (dumbbells cannot leave the sphere) and

• ∂ψ(t,r,φ)
∂r = 0 for r = 0 (a consequence of the symmetry of ψ with respect to ~q).

We fulfil these requirements with the transformation

ψ(t, r, φ) =

(
1− η

2

)s
α(t, η, φ) with r2 = b

1 + η

2
,

η ∈ [−1, 1] and s ∈ R+\ {0}
(4.4)

and obtain an additional parameter s for optimisation. Indeed, in literature the optimal choice
for s is a subject of ongoing discussion because

• s = b
2 (i.e. a transformation of the form ψ = (1− |~q|2/b)b/2 α = ψeq α) lets disappear the

spring force in the weak formulation of (4.3) (see Knezevic [28]),
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x

y

φ

Chebyshev points

x

y

φ

Equidistant points

Figure 4.1: The left picture shows a nine-point Chebyshev discretisation of [−1, 1] transformed on
[0,
√
b], whereas the boundary points are not included. Half of the points lie in a circle

that fills ≈ 50% of the total area. Therefore, we are able to achieve a reasonable point
distribution for the disc in the case of Chebyshev points. In contrast, 25% of the total area
contains half of the grid points for an equidistant distribution. For further information we
refer to the book of Trefethen [88].

• s = b
4 (i.e. a transformation of the form ψ = (1 − |~q|2/b)b/4 α =

√
ψeq α) yields a

symmetric bilinear form in the weak formulation of (4.3) (see Knezevic [50]),

• a large value for s yields a more accurate solution for ψ, but

• a small value for s increases the stability of the algorithm because steep gradients of ψ
at the boundary are less pronounced then.

As a result of transformation (4.4) we do not further concentrate on the boundary conditions for
the new unknown α since the boundary conditions for ψ are fulfilled automatically. Moreover,
a distribution of the interval [−1, 1] with Gauss-Legendre or Gauss-Chebyshev points yields a
better filling of the disc after retransformation on [0,

√
b] than an equidistant interval distribu-

tion that we describe in Chapter 3.1. We illustrate the theoretical advantages of our spectral
method approach in Figure 4.1.

By substituting (4.4) into (4.3), we get an equation of the form

∂α

∂t
= L0α + κ11L1α + κ12L2α + κ21L3α. (4.5)

Here, L0, L1, L2 and L3 denote linear operators independent of κ that we write in the notation
of Lozinski [56] as

L0 =
2(b− 2s)(2− s− sη)

bλ(1− η)2
+

2

bλ

(
(b− 4s)(1 + η)

1− η
+ 2

)
∂

∂η
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+
4(1 + η)

λb

∂2

∂η2
+

1

λb(1 + η)

∂2

∂φ2
,

L1 =
2s(1 + η)

1− η
cos(2φ)− 2(1 + η) cos(2φ)

∂

∂η
+ sin(2φ)

∂

∂φ
,

L2 =
s(1 + η)

1− η
sin(2φ)− (1 + η) sin(2φ)

∂

∂η
− 1

2
cos(2φ)

∂

∂φ
+

1

2

∂

∂φ
, and

L3 =
s(1 + η)

1− η
sin(2φ)− (1 + η) sin(2φ)

∂

∂η
− 1

2
cos(2φ)

∂

∂φ
− 1

2

∂

∂φ
.

(4.6)

4.1.2 Discretisation using Spectral Methods

Although we have various possibilities to discretise the Fokker-Planck equation in configuration
space, most authors prefer the usage of spectral methods. A reason for that is the simplicity of
the underlying domain in polar coordinates which allows us to use a spectral approach without
the necessity of a domain decomposition (cf. spectral elements). Furthermore, for most flow
situations we expect a smooth development of ψ in time since the domain of definition does not
contain any obstacles that would affect the probability of a certain configuration. Nevertheless,
other schemes as finite difference methods (see Yu et al. [97] or Du et al. [28]) or finite element
methods as in Knezevic [50] have also been applied to the problem.

For N = (NF , NR) ∈ N2, our approximation space for the spectral methods is

VN = span {hk(η)Φil(φ), i = 0, 1; i ≤ l ≤ NF , 0 ≤ k ≤ NR} (4.7)

with basis functions

• {hk(η)}0≤k≤NR as Lagrange interpolation polynomials that base on the Gauss-Chebyshev
or Gauss-Legendre points ηr and

• {Φil(φ) = (1− i) cos(2lφ) + i sin(2lφ)}i=0,1; i≤l≤NF as the even ordered trigonometric
functions.

Therefore, we use a tensor product expansion that is modal in the angular coordinate φ and
nodal in the radial coordinate r. Furthermore, we restate the differential equation in the weak
form so that we have a classical Galerkin approach in φ and a nodal Galerkin or Galerkin
with numerical integration (G-NI) scheme in η as described in Section 3.2.4. The different
approaches for the angular and radial coordinates implicate a different computation of the
involved integrals. Actually, we solve the integrals with respect to φ analytically, whereas we
use Gaussian quadrature for integrals with respect to η. We illustrate the approximation space
for NR = 3 with the Gauss-Legendre points and four basis functions h0(η)Φ0,1(φ), h1(η)Φ0,1(φ),
h2(η)Φ0,1(φ), and h3(η)Φ0,1(φ) in Figure 4.2.

The decision between the Gauss-Legendre and Gauss-Chebyshev points depends on personal
preferences because both methods offer a similar convergence behaviour. However, we skip
the boundary values η = −1 and η = 1 in every possible sequence {ηr} since ψ satisfies the
boundary conditions regardless the boundary values of α (cf. (4.4)). In addition, we only notice
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Figure 4.2: The figure visualises four tensor product basis functions h0(η) cos(2φ), h1(η) cos(2φ),
h2(η) cos(2φ), and h3(η) cos(2φ) for the discretisation of the Fokker-Planck equation on
the sphere. The Lagrange polynomials are of order four and are based on the four roots
of the Legendre polynomial L4(x) which are x0 ≈ −0.86, x1 ≈ −0.34, x2 ≈ 0.34, and
x3 ≈ 0.86. Four auxiliary lines perpendicular to the η-axis signalise the quadrature nodes;
on the other hand, five auxiliary lines perpendicular to the φ-axis signalise the roots of
cos(2φ) at 0, π/2, π, 3π/2, and 2π.

even ordered trigonometric functions in the approximation space which is a direct consequence
of the symmetry of ψ with respect to ~q (or α(η, φ) = α(η, φ+ π) for all η and φ).

We now write (4.5) in the weak form and therefore multiply the equation by a test function
v(t, η, φ) and a weight function ω(η), which is equal to one in the case of the Legendre points
and otherwise ω(η) = (1− η)−0.5(1 + η)−0.5 (cf. table 3.1 on page 67), and perform integration
over the configuration space. By doing so, we obtain∫ 2π

0

∫ 1

−1

∂α

∂t
v(t, η, φ) ω(η) dη dφ

=

∫ 2π

0

∫ 1

−1
(L0α + κ11L1α + κ12L2α + κ21L3α) v(t, η, φ) ω(η) dη dφ

(4.8)

for all test functions v. Next, we replace α by its approximation

αN (t, η, φ) =

1∑
i=0

NF∑
l=i

NR∑
k=0

αilk(t)Φil(φ)hk(η) (4.9)

to get the Galerkin approximation and take the test function v to be any polynomial of the



88 4 Stress Tensor Approximation for Homogeneous Flows

same degree as αN so that we can write v as

v(t, η, φ) =
1∑
j=0

NF∑
m=j

NR∑
n=0

vjmn(t)Φjm(φ)hn(η). (4.10)

As it is sufficient to consider only the basis functions hn(η)Φjm(φ) as test functions, we obtain
(2NF + 1)(NR + 1) equations∫ 2π

0

∫ 1

−1

∂α

∂t
hn(η)Φjm(φ) ω(η) dη dφ

=

∫ 2π

0

∫ 1

−1
(L0α + κ11L1α + κ12L2α + κ21L3α) hn(η)Φjm(φ) ω(η) dη dφ,

for j = 0, 1; m = j, . . . , NF ; n = 0, . . . , NR.

(4.11)

Now, we insert our approximation αN from (4.9) into (4.11), evaluate the integrals with respect
to η (numerical) and φ (analytical), and receive discretised operators (∂αN∂t )jmn, (L0αN )jmn,

(L1αN )jmn, (L2αN )jmn and (L3αN )jmn. In this context, (∂αN∂t )jmn is a short term for

(∂αN
∂t

)
jmn

=
(∂α
∂t
,Φjmhn︸ ︷︷ ︸

=vjmn

)
L2
ω [−1,1]⊗L2[0,2π]

=

∫ 2π

0

∫ 1

−1

∂α

∂t
vjmn(η, φ)ω(η) dη dφ

and analogue for the other operators. We describe the conversions for the first two operators
in detail and just give the final results for the other operators as they can be transformed
analogously.

For the first operator (∂αN∂t )jmn on the left of (4.11), we have the approximation

(
∂αN
∂t

)
jmn

=

1∑
i=0

NF∑
l=i

NR∑
k=0

∂αilk(t)

∂t

∫ 2π

0

∫ 1

−1
hk(η)Φil(φ)hn(η)Φjm(φ) ω(η) dη dφ

GI
≈

1∑
i=0

NF∑
l=i

NR∑
k=0

∂αilk(t)

∂t

∫ 2π

0
Φil(φ)Φjm(φ)

NR∑
r=0

hk(ηr)︸ ︷︷ ︸
= δrk

hn(ηr)︸ ︷︷ ︸
= δrn

ωr dφ

=

1∑
i=0

NF∑
l=i

∂αiln(t)

∂t
ωn

∫ 2π

0
Φil(φ)Φjm(φ) dφ︸ ︷︷ ︸

= δijδlm(1+δi0δl0)π

=
∂αjmn(t)

∂t
ωn (1 + δj0δm0)π.

In general, Gaussian integration, as performed from the first to the second row, is not exact
and therefore introduces an additional error. Furthermore, the sequence {ωr} denotes the
quadrature weights that we describe in more detail in Section 3.2.3.
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Second, we derive (L0αN )jmn and therefore use the definition of L0 in (4.6) to obtain

(L0αN )jmn

=
∑
i,l,k

αilk(t)

∫ 2π

0

∫ 1

−1

{
2(b− 2s)(2− s− sη)

bλ(1− η)2
hk(η)Φil +

2

bλ

(
(b− 4s)(1 + η)

1− η
+ 2

)
h
′
k(η)Φil

+
4(1 + η)

λb

∂2hk(η)

∂η2
Φil(φ) +

1

λb(1 + η)

∂2Φil(φ)

∂φ2︸ ︷︷ ︸
=−4l2 Φil(φ)

hk(η)

}
hn(η)Φjm(φ) ω(η) dη dφ

GI
≈

1∑
i=0

NF∑
l=i

NR∑
k=0

αilk(t)

∫ 2π

0
Φil(φ)Φjm(φ)

NR∑
r=0

{
2(b− 2s)(2− s− sηr)

bλ(1− ηr)2
hk(ηr)︸ ︷︷ ︸
= δrk

+
2

bλ

(
(b− 4s)(1 + ηr)

1− ηr
+ 2

)
h
′
k(ηr) +

4(1 + ηr)

λb
h
′′
k(ηr) −

4l2

λb(1 + ηr)
hk(ηr)︸ ︷︷ ︸
= δrk

}
hn(ηr)︸ ︷︷ ︸
= δrn

ωr dφ

=
∑
i,l

{(
2(b− 2s)(2− s− sηn)

bλ(1− ηn)2
− 4l2

λb(1 + ηn)

)
αiln +

NR∑
k=0

(
2

bλ

(
(b− 4s)(1 + ηn)

(1− ηn)
+ 2

)
h
′
k(ηn)

+
4(1 + ηn)

λb
h
′′
k(ηn)

)
αilk

}
ωn

∫ 2π

0
Φil(φ)Φjm(φ) dφ︸ ︷︷ ︸

= δijδlm(1+δi0δl0)π

=

{(
2(b− 2s)(2− s− sηn)

bλ(1− ηn)2
− 4m2

λb(1 + ηn)

)
αjmn +

NR∑
k=0

(
2

bλ

(
(b− 4s)(1 + ηn)

(1− ηn)
+ 2

)
h
′
k(ηn)

+
4(1 + ηn)

λb
h
′′
k(ηn)

)
αjmk

}
ωn (1 + δj0δm0)π.

In the same way, we derive the other operators as

(L1αN )jmn =
1∑
i=0

NF∑
l=i

NR∑
k=0

{(
2s(1 + ηn)

1− ηn
δkn − 2(1 + δn)h

′
k(ηn)

)
J0
iljm + K1

iljmδkn

}
αilk ωn

(L2αN )jmn =
1∑
i=0

NF∑
l=i

NR∑
k=0

{(
s(1 + ηn)

1− ηn
δkm − (1 + ηn)h

′
k(ηn)

)
J1
iljm −

1

2
K1
iljmδkn

}
αilk ωn

+ (−1)jnα(1−j)mn ωn π

(L3αN )jmn =
1∑
i=0

NF∑
l=i

NR∑
k=0

{(
s(1 + ηn)

1− ηn
δkm − (1 + ηn)h

′
k(ηn)

)
J1
iljm −

1

2
K1
iljmδkn

}
αilk ωn

− (−1)jnα(1−j)mn ωn π

in which we have introduced abbreviations J0
iljm, J1

iljm, K0
iljm, and K1

iljm for the integrals with
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respect to φ. We evaluate these integrals analytically which yields

Jpiljm =

∫ 2π

0
cos(2φ− pπ

2
) Φil(φ)Φjm(φ) dφ

=
π

2

[
δl+m,1 cos

(
(p− i− j) π

2

)
+ δm−l,1 cos

(
(p+ i− j) π

2

)
+ δl−m,1 cos

(
(p− i+ j)

π

2

)]
for p = 0, 1 and on the other hand, we use the relation Φ

′
il(φ) = 2l (−1)1−i sin(2lφ+ iπ/2)

Kp
iljm =

∫ 2π

0
sin(2φ+ p

π

2
) Φ
′
il(φ)Φjm(φ) dφ = 2l (−1)p sgn(m− l) Jpiljm

where

sgn(x) =


1, for all x > 0,

0, for x = 0 (sufficient to be finite),

−1, for all x < 0.

The result we have achieved so far can be simplified further by a division through the col-
lective factor πωn in all operators of (4.11). On the contrary, Kopriva [51] supposes that for
general nodal Galerkin approaches in both directions (our approach is only nodal in η) the
symmetry of the coefficient matrix would be destroyed when one divides the equation through
the quadrature weights. After the division has been performed, we have a similar formulation
than in a collocation approach.

Basis Representation for Initial Condition

In (2.85), we have derived the equilibrium state for ψ in two dimensions

ψeq(~q) =
b+ 2

2πb

(
1− |~q|

2

b

) b
2

that we use as an initial condition. First, we convert ψ into the new unknown α, as described
in (4.4), and receive

αeq(η, φ) =
b+ 2

2πb

(
1− η

2

) b
2
−s
.

For a discrete approximation of αeq, we have to represent the equilibrium state in the form

αN,eq(η, φ) =

1∑
i=0

NF∑
l=i

NR∑
k=0

αilk(0)Φil(φ)hk(η)

with up to now unknown coefficients αilk(0). We determine the coefficients as

αilk(0) =
(αeq(η, φ),Φil(φ)hk(η))ω

(Φil(φ)hk(η),Φil(φ)hk(η))ω
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=

∫ 2π
0

∫ 1
−1

b+2
2πb (1

2 −
1
2η)b/2−sΦil(φ)hk(η)ω(η) dη dφ∫ 2π

0

∫ 1
−1 Φ2

il(φ)h2
k(η) dη dφ

GI
≈ b+ 2

2πb

∑NR
r=0 ωr(

1
2 −

1
2ηr)

b/2−sδrk
∫ 2π

0 Φil(φ) dφ∑NR
t=0 ωtδtk

∫ 2π
0 Φ2

il(φ) dφ

=
b+ 2

2πb

(
1

2
− 1

2
ηk

)b/2−s
δi0δl0 (4.12)

in which we have used
∫ 2π

0 Φil(φ) dφ = 2πδi0δl0 and
∫ 2π

0 Φ2
il(φ) dφ = (1 + δi0δl0)π. Therefore,

the initial condition solely depends on the radial basis functions which was expected since
α(η, φ) = α(η) is uniform with respect to the angle φ.

Computation of the Extra-stress Tensor

In Section 2.3.4, we derive equation (2.81) to compute the additional non-Newtonian stress
tensor that takes the form

τ =
1− β
Wi

(
b+ 4

b

)(
−Id +

∫
|~q|<
√
b
~q ⊗ ~F (~q)ψ d~q

)
(4.13)

in two dimensions. With the transformation to η in (4.4) and the radial unit vector ~er =
(cos(φ), sin(φ)) (with ~q = r~er), we rewrite ~q ⊗ ~F (~q) as

~q ⊗ ~F (~q) =
r2

1− r2

b

~er ⊗ ~er = b
1 + η

1− η
~er ⊗ ~er.

We formulate the integral in (4.13) for a general Jacobi-weight function ω(η) = (1−η)αJ (1+η)βJ

as this includes the special case of Legendre weight functions we use in Chapter 6.1 (see Theorem
3.2 for further information). Hence we write∫

|~q|<
√
b
~q ⊗ ~F (~q)ψ d~q =

∫ 2π

0

∫ 1

−1

b2

2s+2
(1 + η)1−βJ (1− η)s−1−αJ α(η, φ) ~er ⊗ ~er ω(η) dη dφ,

insert (4.9), and evaluate the integrals in a similar manner as before (Gaussian quadrature for
η and analytical evaluation with respect to φ). For τxx, the first component of τ , we use the
identity

∫ 2π
0 cos2(φ) cos(2lφ− iπ2 ) dφ = πδi0δl0 + π

2 δi0δl1 and may write τxx as

τxx(t) =
1− β
Wi

(
b+ 4

b

)(
−1 +

πb2

2s+3

NR∑
k=0

ωk(1 + ηk)
1−βJ (1− ηk)s−1−αJ {2α0,0,k(t) + α0,1,k(t)}

)
(4.14)
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with {ωk}k=0,...,NR
as the corresponding weights to ω(η). Analogously, we calculate the other

stress tensor components as

τxy(t) = τyx(t) =
1− β
Wi

(
b+ 4

b

)
πb2

2s+3

NR∑
k=0

ωk(1 + ηk)
1−βJ (1− ηk)s−1−αJα1,1,k(t) and

τyy(t) =
1− β
Wi

(
b+ 4

b

)(
−1 +

πb2

2s+3

NR∑
k=0

ωk(1 + ηk)
1−βJ (1− ηk)s−1−αJ {2α0,0,k(t)− α0,1,k(t)}

)
.

(4.15)

At last, to integrate ψ over the whole configuration space, we obtain∫
|~q|<
√
b
ψ d~q ≈ πb

2s+1

NR∑
k=0

ωk(1 + ηk)
−βJ (1− ηk)s−αJα0,0,k(t). (4.16)

We compute (4.16) because of its relevance as an error indicator. Due to the fact that we have
a probability measure, the integral of ψ over the domain should be one at all times. Actually,
Lozinski et al. prove in [59] the conservation property of the spectral method for ψ provided
the parameter s is an integer from 0 to NR.

Time Discretisation for Fokker-Planck Scheme

We now concentrate on the discretisation of the ODE system

∂~αN
∂t

= (L0 + κ11L1 + κ12L2 + κ21L3) ~αN (4.17)

with ~αN = {αilk(t)} as the vector of unknowns which determine αN (t, η, φ) in (4.9) and Li
as the matrix representation of the differential operator Li, i = 0, 1, 2, 3. In Algorithm 1 we
present an explicit low-storage Runge-Kutta scheme and therefore now focus on an alternative
implicit Crank-Nicolson method in Algorithm 2. The implicit method requires the solution of
a linear system of equations in every time-step which we solve with an iterative CG solver in
the notation of Meister [61]. Nevertheless, we have also used an explicit Runge-Kutta method
in this case and refer to Algorithm 1 for any specific differences. Note that for postprocessing
purposes we have to retransform ~αN → ~ψN with the inverse of (4.4) and evaluate (4.9).

4.1.3 3D Fokker-Planck Equation on the Sphere

In literature most multiscale, non-Newtonian flow problems base on two-dimensional planar
flows. Nevertheless, even for the two-dimensional Navier-Stokes equations, there is no necessity
for the configuration vector ~q to be also restricted to two dimensions although the difference
between the two- and three-dimensional results is rather small in that situation. Additionally,
for a three-dimensional flow field the usage of a 3d Fokker-Planck equation is required.

In the following, we describe a natural extension for the approximation space to three di-
mensions and the theoretical advantages of spherical harmonics for the underlying problem.
However, we do not discuss a derivation of a discretised operator and refer to Lozinski [56]
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Algorithm 2: Implicit Crank-Nicolson scheme for the solution of the Fokker-Planck equation. The

implicit method requires the solution of a linear system of equations in every time-step which we

solve with an iterative CG solver in the notation of Meister [61]. In every step we expect the iterative

solver to require a low number of iterations, because we use the previous solution ~α
(n)
N as an initial

guess for the new unknown.

Data: Vector of quadrature points {ηr}, quadrature weights ωr, derivative matrices Li,
tolerance ε and three-dimensional coefficient matrix for αN .

Result: Discrete approximation of pdf ψ and extra-stress tensor values.
Set n = 0;
Compute quadrature points {ηr} and corresponding weights ωr;

Calculate coefficients αilk(0) of initial condition with (4.12) → ~α
(0)
N ;

Compute barycentric weights for Lagrange interpolation as in (3.22);

Precompute and save derivative matrices h
′
k(ηn) and h

′′
k(ηn) for later usage;

while n ≤ nend do

~α
(n)
N,0 ← ~α

(n)
N // additional index counts CG iterations

A ← (1− 1
2∆t (L0 + κ11L1 + κ12L2 + κ21L3));

~b ← (1 + 1
2∆t (L0 + κ11L1 + κ12L2 + κ21L3)) ~α

(n)
N,0;

~p0 ← ~b−A~α(n)
N,0, ~r0 ← ~b−A~α(n)

N,0;

β0 ← ‖~r0‖22;
for m = 0, 1, . . . , itermax and βm > ε do

~vm ← A~pm;

λm ← βm
(~vm,~pm)2

;

~α
(n)
N,(m+1) ← ~α

(n)
N,(m) + λm~pm;

~rm+1 ← ~rm − λm~vm;
βm+1 ← ‖~rm+1‖22;

~p ← ~rm+1 + βm+1

βm
~pm;

end

~α
(n+1)
N ← ~α

(n)
N,(m+1);

Compute τ (n+1) with (4.14) and (4.15);

t(n+1) = t(n) + ∆t, n = n + 1;

end

for that. The coordinates of choice for a configuration vector ~q restricted to the interior of a
sphere, are spherical coordinates

q1 = r sin(θ) cos(φ), q2 = r sin(θ) sin(φ), q3 = r cos(θ) (4.18)

where r ∈ [0,
√
b], φ ∈ [0, 2π] and θ ∈ [0, π].
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Again, as in (3.7) we consider the Laplace problem of a scalar-valued function f : R3 → R

1

r

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(φ)

∂

∂φ

(
sin(φ)

∂

∂φ

)
+

1

r2 sin2(φ)

∂2

∂θ2
= 0 (4.19)

but limit our interest to the surface of the sphere (i.e. r = 1) and to functions f without any
dependence with respect to r. We are interested in solutions for the eigenvalue problem

∆r=1Ω(φ, θ) = −n(n+ 1)Ω(φ, θ)

for n ∈ N, Ω : S2 → R and ∆r=1 as the surface Laplace operator. It turns out that for a given
n the eigenvalue problem has (2n+ 1) independent solutions m = −n, . . . , n which we write in
a real-valued form

Ωnm(φ, θ) =

{
Pnm(cos(θ)) cos(mφ), m > 0,

Pn|m|(cos(θ)) sin(|m|φ), m < 0
(4.20)

as in Weisstein [94]. Thereby, we term the normalised associated Legendre functions with
Pnm(cos(θ)) which are further explained in Fornberg [32]. The solutions in the presented form
are called real spherical harmonics and our interest lies in emphasising their importance for the
pole problem (cf. Chapter 3.1 for a discussion of the pole problem). Therefore, we rewrite the
associated Legendre functions Pnm in the form

Pnm(cos(θ)) = (−1)m sinm(θ)
dmLn(cos(θ))

d(cos(θ))m
(4.21)

and interpret them as derivative of order m of the Legendre polynomial Ln with an additional
factor sinm(θ). Considering that θ ∈ [0, π], the prefactor implies an m-th order zero of the
spherical harmonic Ωmn at the poles. The harmonics circumvent the pole problem because of
the high-order zero in θ = 0 and θ = π as its degree m is coupled to the wavenumber cos(mφ)
or sin(mφ) in longitude φ (cf. equation (4.20) ). The basis functions of high-order m would
normally lead to a fine discretisation of the angle φ at latitudes close to the pole (cf. Figure 3.1).
For this reason, we want to dampen the amplitude of the harmonics far away from the equator
which is just the effect of the coefficient sinm(θ) in (4.21). In Figure 4.3, we illustrate the effect
of damping for an increasing order of m so that these harmonics have low amplitudes outside
an area around the equator.

For (NF , NR) ∈ N2, an appropriate choice for a three-dimensional approximation space is

VN = span {hk(η)Ωnm(φ, θ), 0 ≤ n ≤ NF , m = −n . . . , n, 0 ≤ k ≤ NR} (4.22)

with hk(η) as the Lagrange polynomials based on Gauss-Jacobi points and Ωnm(φ, θ) as real-
valued spherical harmonics. According to the pole problem on the sphere this ansatz

• avoids the singularity at the centre of the sphere (i.e. r = 0), because quadrature points
transformed on [−1, 1] thin out there and

• circumvents the singularities at the poles (i.e. θ = 0 and θ = π)

and therefore realises a uniform discretisation of the sphere. In conclusion, if we want to
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Figure 4.3: Spherical harmonic basis functions Pnm(cos(θ)) cos(mφ) for n = 8 and m = 1, 3, 6, 8.
Except for P8,0(cos(θ)), all harmonics satisfy the zero boundary property at θ = 0 and
θ = π. Furthermore, for an increasing m, the peaks of the harmonics shift to the area
around the equator and ensure an equidistant resolution of the sphere.

discretise an equation of Fokker-Planck type on a sphere, we obtain the best results by the use
of spherical harmonic basis functions.
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4.2 Stochastic Simulation Techniques for Homogeneous Flows

4.2.1 Time Integration Schemes

In this chapter, we consider the stochastic partial differential equation (SPDE)

d~Qt =

(
κ ~Qt −

1

2Wi
~F ( ~Qt)

)
dt +

√
1

Wi
d ~Wt (4.23)

in its non-dimensional formulation which we obtain in (2.68) for the description of a homo-
geneous flow field. Obviously, the three-dimensional stochastic process ~Qt = (Qt,x, Qt,y, Qt,z)
represents the dumbbell orientations in the x-, y- and z-directions at time t ∈ T = [0, tmax].
As mentioned above, the velocity gradient tensor ~∇x~u in a homogeneous flow field is constant
throughout Ω (physical space) which we denote by the symbol κ ≡ ~∇x~u.

For an introduction to the fundamental concepts of stochastic differential equations and
adequate numerical integration schemes we refer to Chapter 3.3.

Euler-Maruyama Method

Subdividing the observation time T = [0, tmax] into n subintervals [tr−1, tr) with tr−1, tr ∈
{t0 = 0, t1, . . . , tn = tmax} and applying the Euler-Maruyama scheme (3.30) to the SPDE (4.23)
yields a discrete approximation of the stochastic process

~Qtr = ~Qtr−1 +

(
κ ~Qtr−1 −

1

2Wi
~F ( ~Qtr−1)

)
∆tr−1 +

√
1

Wi
∆ ~Wtr−1 , for r = 1, . . . , n (4.24)

with ∆ ~Wtr−1 = ~Wtr − ~Wtr−1 =
√

∆tr−1
~N(0, 1). Here, we denote ~N(0, 1) as a sequence of three

independent Gaussian random variables with zero mean and variance one. Accordingly, the
product

√
∆tr−1

~N(0, 1) characterises Gaussian random variables with zero mean and variance
∆tr−1.

Additionally, we give a componentwise description of (4.24) in a Cartesian system of reference

and use, for example, a dimensionless FENE spring force ~F ( ~Q) =
~Q

1− ‖
~Q‖2
b

as in (2.66). Then

we obtain Qtr,x
Qtr,y
Qtr,z

 =

 Qtr−1,x

Qtr−1,y

Qtr−1,z

 + ∆tr−1

 κ11Qtr−1,x κ12Qtr−1,y κ13Qtr−1,z

κ21Qtr−1,x κ22Qtr−1,y κ23Qtr−1,z

κ31Qtr−1,x κ32Qtr−1,y κ33Qtr−1,z


− ∆tr−1

1

1− ‖ ~Qtr‖
2

b

 Qtr,x
Qtr,y
Qtr,z

 +

√
∆tr−1

Wi

 rx
ry
rz


for r = 1, . . . , n and random numbers rx, ry, and rz ∼ N(0, 1).

Predictor-corrector Method

A predictor-corrector method for a given process time tr−1 is a two-step scheme which
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• first calculates an intermediate stochastic process ~Ptr by extrapolating ~Qtr−1 to the next
discrete time-step tr and then

• uses the additional information from ~Ptr to obtain a numerical approximation to ~Qt at
t = tr.

Using the same notation as before in combination with the predictor-corrector scheme as de-
scribed in (3.31), we get the algorithm

~Ptr = ~Qtr−1 +

(
κ ~Qtr−1 −

1

2Wi
~F ( ~Qtr−1)

)
∆tr−1 +

√
1

Wi
∆ ~Wtr−1 , for r = 1, . . . , n

(4.25)

~Qtr = ~Qtr−1 +
1

2

κ ( ~Qtr−1 + ~Ptr

)
− 1

2Wi

(
~F ( ~Qtr−1) + ~F (~Ptr)

)
︸ ︷︷ ︸

in general nonlinear

∆tr−1 +

√
1

Wi
∆ ~Wtr−1 .

We note that both steps of (4.25) share the same vector increment ∆ ~Wtr−1 , i.e. they use the

same realisation of the Wiener process ~Wt at t = tr−1. During the analysis of the predictor-
corrector ansatz in Chapter 3.3 we have stated that we expect a weak convergence order 2 if
the diffusion term does not depend on the stochastic process ~Qt itself. Indeed, the prefactor√

1
Wi fulfils this requirement so that we expect a higher (weak) order of convergence as for the

Euler-Maruyama method.

Polymeric Stress Tensor

However, the numerical integration schemes model only one trajectory or path of the stochastic
process ~Q for one realisation of the Wiener process, i.e. for the corresponding probability space
(D,Σ, ψ) we describe the evolution t → ~Qt(ω) for a fixed outcome ω ∈ D (configuration
space) with respect to one realisation of ~Wt. In other words, we investigate the time-dependent
development of one possible dumbbell orientation. Actually, we are interested in describing the
evolution of ~Q which determines the complete system.

Accordingly, we have to generate a set of Nf independent outcomes ~Q
(s)
t , s = 1, . . . , Nf

and use scheme (4.24) or (4.25) to develop their individual trajectories. Therefore, each ~Q
(s)
t

experiences its own independent Brownian motion ~W
(s)
t . We characterise the trajectories in

time by the sequence ( ~Q
(s)
t0
, ~Q

(s)
t1
, . . . , ~Q

(s)
tr ). At process time t = tr, we compute the current

stress tensor τp by taking an ensemble average (i.e. performing a Monte Carlo integration) over

the Nf realisations of the stochastic process ~Qtr . For instance, the stress tensor for dumbbells
with a FENE spring force (cf. equation (2.81)) can be approximated by

τp( ~Q, tr) =
(1− β)

Wi

(
b+ d+ 2

b

) 〈 ~Qtr ⊗ ~Qtr

1− ‖ ~Qtr‖
2

b

〉
− Id

 (4.26)
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≈ (1− β)

Wi

(
b+ d+ 2

b

)  1

Nf

Nf∑
s=1

~Q
(s)
tr ⊗ ~Q

(s)
tr

1− ‖
~Q
(s)
tr
‖2

b

− Id

 (4.27)

The arithmetic mean in (4.27) converges in probability to the average in (4.26) for Nf →
∞ if the stochastic processes ~Q(s), s = 1, . . . , Nf are independent among each other. This
is a consequence from the strong law of large numbers which guarantees an almost surely
convergence. On the contrary, the disadvantage of the stochastic method lies in the variance of
the computed result and the low order of convergence. Therefore, variance reduction methods
become important which we will discuss at the end of this chapter.

4.2.2 Equilibrium Configurations

Since problem (4.23) is time-dependent, we require initial conditions ~Q
(s)
0 ≡ ~Q

(s)
t0

for realisations
of the stochastic process. In Chapter 2.3.5, we have analysed the equilibrium solution ψeq for
the Fokker-Planck equation ψ. The equilibrium solution represents a fully relaxed dumbbell
system (i.e. τp = 0) and takes the form

ψeq = C1 exp

(
−‖~q‖

2

2

)
(4.28)

for Hookean spring forces,

ψeq = C2

(
1− ‖~q‖

2

b

)b/2
(4.29)

for FENE dumbbells and

ψeq = C3

(
b+ d

b

)d/2
exp

(
−b+ d

2b
‖~q‖2

)
(4.30)

for the FENE-P model with normalisation constants C1, C2 and C3.

Due to the correspondence between the Fokker-Planck equation on the one hand and its
stochastic interpretation on the other hand, we have to generate equilibrium approximations
~Q

(s)
0 whose distributions belong to the probability density ψeq as in (4.28), (4.29) or (4.30).

For Gaussian equilibrium distributions as in (4.28) and (4.30), there exist various random
number generators. For illustration, in Figure 4.4 we present a two-dimensional Gaussian
distribution that corresponds to a Hookean equilibrium distribution ψHooke

eq from (4.28). Here
we have used a kernel density estimator (i.e. an estimator for the probability density function
of a random variable) from Botev [14] that assumes the density function to be Gaussian.

Von Neumann Rejection Sampling

The problem in generating random numbers for (4.29) is that the equilibrium distribution is not
Gaussian. As a result, a pre-implemented random number generator from a library normally
cannot create numbers that distribute according to this density function. In this case, the
method of choice is the rejection sampling or acceptance-rejection method proposed by von
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Figure 4.4: The figure illustrates a sequence of 3000 two-dimensional normal random numbers whose
corresponding density function has been reconstructed by a kernel density estimator. Note
that the reconstructed function has been smoothed so that it takes a regular shape.

Neumann [91]. Subsequently, we give an introduction of the method and refer to Section 7.3.6
of Numerical Recipes [73] for more information.

The main idea of the method bases on a geometrical argument that we present in one
dimension. Let ψ(x) be a given probability density with x ∈ [a, b] or x ∈ (−∞,∞) so that there
exists no direct method to create corresponding random numbers (e.g. the inverse transform
method necessitates the cumulative distribution function and its inverse to be implemented
which we do not know in general). We draw the graph of ψ(x) in a coordinate system so that

by definition the integral
∫ d
c ψ(x) dx (i.e. the area below the graph) represents the probability

of generating a random number in the interval [c, d] ⊂ [a, b] (cf. Figure 4.5). If we consider the
whole graph in two dimensions (x, ψ(x)) and find a method to fill the area under the graph
with points (xs, ys), s ∈ N uniformly, then the x-value of these point xs would belong to the
desired distribution ψ, i.e. we have found a correct sequence of random numbers.

Now, we add a further graph (x, f(x)) to the figure with an almost arbitrary probability
density function f(x) and denote f(x) as comparison function. The only restriction to f(x) is
that

• it fulfils ψ(x) ≤ f(x) for all x ∈ [a, b] and

• we have the possibility to generate random numbers for f(x).

If we generate random numbers xs that belong to f(x) and choose an arbitrary ys ∈ [0, f(xs)]
as y-coordinate in Figure 4.5, we fill the area under (x, f(x)) randomly. The rejection sampling
method then

• accepts those points (xs, ys) which also lie in the area below the graph (x, ψ(x)) and
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a bxs

(xs, f(xs))

reject xs

accept xs

ψ(x)

f(x)

generate quasi uniform
number distribution

Figure 4.5: The von Neumann rejection sampling generates random numbers xs according to a com-
parison function f . If we choose an arbitrary but uniform y-coordinate ys ∈ [0, f(xs)], we
receive a random but quasi uniform sampling of the area below the graph (x, f(x)). We
illustrate this on the left hand side of the figure. Now, we accept only those numbers that
also lie below the graph (x, ψ(x)).

• rejects the other ones.

As a result, we implement the von Neumann rejection method in the form of Algorithm 3.
However, the first requirement ψ(x) ≤ f(x) for all x ∈ [a, b] cannot be fulfilled by any prob-
ability density function f . Indeed, as probability density functions have to satisfy

∫
ψ dx =∫

f dx = 1 there exists an xs ∈ [a, b] with ψ(xs) > f(xs). For this reason, Algorithm 3 includes
a real constant M > 1 so that ψ(x) ≤Mf(x) for all x.

The parameter choice for M correlates with the efficiency of the algorithm, because we can
show that the percentage of accepted random numbers xs from f(x) for ψ(x) is exactly 1/M .
Therefore, the optimal choice Mopt for M is

Mopt = max
x∈[a,b]

ψ(x)

f(x)
> 1.

The parameter is optimal in the sense that the number of rejected sampling points is minimised
for a given function f . We note that Mopt = 1 implies ψ = f and we do not receive additional
information in that case. Nevertheless, the comparison function f has to be similar to ψ as
this reduces the value of Mopt and therefore our computational effort.

Unfortunately, the algorithm suffers from the curse of dimensionality, because high-dimensional
functions f concentrate their sampling points at the “corner regions”. If a high-dimensional f
approximates ψ, the percentage of accepted sample points tends to zero for increasing dimen-
sions of the underlying space. However, for homogeneous flow problems and an initial process
time t = 0 we have ψeq(·, 0) : R3 → R

+ and therefore notice no severe restriction from the
mentioned problem.

Subsequently, we apply Algorithm 3 to the case of three-dimensional FENE distributions.
In this case we use ψeq(·, 0) : B√b(0) → R

+ from (4.29) as initial density function, because

the configuration space is restricted to a sphere with radius
√
b. Furthermore, we decide for

U : B√b(0)→ R+ as comparison function f . The character “U” signalises that this is a uniform
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Algorithm 3: The von Neumann rejection sampling generates random numbers that belong to a

given density function ψ(x) if a suitable comparison function f(x) can be found. It uses a Monte

Carlo technique to filter random numbers of f(x) that also belong to ψ(x). However, the efficiency

of the algorithm depends on the similarity between ψ(x) and f(x). The better f(x) matches ψ(x),

the more realisations are accepted.

Data: Density function ψ(x), comparison function f(x), random number generator for
f(x), and a generator U(0, 1) for uniform distributed numbers in [0, 1]

Result: Sequence of random numbers for ψ(x)
Find real constant M > 1 with ψ(x) ≤Mf(x) for all x;
s ← 1;
while s ≤ Nf do

Sample random number xs from f(x);
Generate random number u ∈ U(0, 1);
if (uMf(xs)) ≤ ψ(xs) then

Accept xs as an realisation of ψ(x);
s← s+ 1;

else
Reject the value xs;

end

end

density function on the sphere with constant density U(~q) = 3/(4πb
3
2 ) for all orientations ~q.

As ψeq has its maximum at the origin and U is constant everywhere, we calculate the optimal
constant Mopt for the estimation as

MFENE
opt =

ψ(0)

U(0)
=

2

3B(3
2 ,

b+2
2 )

(4.31)

with B(x, y) the Eulerian beta function. Here we have used that the constant C2 for the
equilibrium density (4.29) in three dimensions takes the form

C2 = 2πb
3
2 B

(
3

2
,
b+ 2

2

)
.

Altogether, we present Algorithm 4 to generate a three-dimensional FENE equilibrium config-
uration ~Qj0 distributed according to ψFENE

eq .

At last, we note that Algorithm 4 describes the problem in Cartesian coordinates. We have
chosen this coordinate system to avoid the occurrence of inhomogeneities which might appear in
spherical coordinate systems and might lead to a non-uniform distribution that we necessitate
for the comparison function U (cf. pole problem on the sphere in Chapter 3.1). Nevertheless,
another approach that uses the von Neumann rejection method and spherical coordinates is
presented in the thesis of Bonvin [12].
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Algorithm 4: The algorithm samples Nf initial configurations ~Q
(s)
0 for the SPDEs (4.24) and (4.25).

Note that we evaluate the probability density function ψFENE
eq in Cartesian coordinates, because this

coordinate system guarantees a uniform point distribution which we require on B√b(0) (cf. pole

problem in Chapter 3.1).

Data: Generator U(0, 1) for uniform distributed numbers in [0, 1]

Result: Sequence of initial processes ~Q
(1)
0 , . . . , ~Q

(Nf )
0 according to ψFENE

eq

s ← 1;

updf← 3/(4πb
3
2 ) // uniform density on B√b(0)

Mopt ← 2/(3B(3
2 ,

b+2
2 )) // compare with (4.31)

while s ≤ Nf do
Generate random numbers q1,q2, and q3 ∈ U(0, 1);

qi ←
√
b(2qi − 1) for i = 1, 2, 3 // Transform numbers [0, 1]3 → [−

√
b,
√
b]3

// Restrict [−
√
b,
√
b]3 to B√b(0)

if q2
1 + q2

2 + q2
3 ≤ b then

Generate random number u ∈ U(0, 1);
if (u ·Mopt · updf) ≤ ψeq(q1, q2, q3) then

~Q
(s)
0 ← (q1, q2, q3);

s← s+ 1;

end

end

end

4.2.3 Variance Reduction Schemes

The basic concept of a variance reduction scheme is to reduce the statistical error or variance of a
stochastic simulation without increasing the computational effort, i.e. the number of simulated
trajectories Nf . In every time step t, we compute the stress tensor τ (t) by evaluating an
expectation of the form

〈
~Xt

〉
≡
〈
~Qt ⊗ ~F

(
~Qt

)〉
≈ 1

Nf

Nf∑
s=1

~Q
(s)
t ⊗ ~F

(
~Q

(s)
t

)
(4.32)

with Monte Carlo methods. On the contrary, let Var( ~Xt) = 〈 ~X2
t 〉−〈 ~Xt〉2 denote the variance of

~X then the statistical error for Nf samples is reduced by a factor of
√
Nf/Nf2 in comparison to

Nf2 (for Nf2 < Nf ) realisations. Consequently, the computational effort increases enormously if
high numerical accuracy is intended. Accordingly, this emphasises the importance of variance
reduction. Subsequently, we present the basic principles of variance reduction in a similar
manner as Bonvin [12] and Lozinski et al. [59].

As far as we know, two variance reduction methods are primarily used for the simulation of
polymer dynamics which are importance sampling and the idea of control variates.
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Importance Sampling

Importance sampling is a widely used method in the context of equilibrium statistical mech-
anics which can also be applied to non-equilibrium problems. The method investigates the
importance of different trajectories for the accuracy of the expectation (4.32). As the equi-
librium densities (4.28) to (4.30) have their maximum at the origin, most configurations are
generated there (cf. with Figure 4.4 ). However, these configurations contribute only marginal
information to the calculation of the average. On the other hand, realisations that are arranged
far away from the origin have a significant influence on the result. If few realisations are con-
sidered (i.e. Nf is small), these realisations lead to a high statistical error. The method avoids
this by giving those realisations a greater weight that have a more significant influence to the
result of the expectation. For a more detailed description of the approach in the context of
polymeric fluids, we refer to two articles from Melchior et al. [62, 63].

Control Variates

The control variate method reduces the variance of a stochastic process ~Xt by introducing
a “control” process ~Yt. Instead of computing 〈 ~Xt〉 directly, we decompose the calculation
according to 〈

~Xt

〉
︸ ︷︷ ︸

stochastic

=
〈
~Xt − ~Yt

〉
︸ ︷︷ ︸

stochastic

+
〈
~Yt

〉
.︸ ︷︷ ︸

deterministic

(4.33)

The idea is to choose a process ~Yt whose expectation can be computed deterministically so
that the variance of ~Yt is zero. Furthermore, we want the RHS of (4.33) to exhibit a reduced
variance in comparison to 〈 ~Xt〉, i.e.

Var( ~Xt) ≥ Var( ~Xt − ~Yt) = Var( ~Xt) + Var(~Yt)− 2Cov( ~Xt, ~Yt) (4.34)

with Cov( ~Xt, ~Yt) the covariance of ~Xt and ~Yt. Therefore, the variance is only reduced if both
processes are strongly correlated. We achieve this correlation by applying the same stochastic
noise (i.e. the same random numbers) on ~Xt and ~Yt.

We consecutively describe how to create a control variate for the stochastic processes (4.23).
The same ansatz can also be used for the SPDE (2.67) of a general non-homogeneous flow field
which possesses an additional convective term and a dependency of ~Qt from the position ~x in
physical space (i.e. for a coupled Navier-Stokes-Stochastic system). We denote all variables
that belong to the control variate with a subscript “c” to distinguish them from the original
processes. Hence, the underlying equation (4.23) becomes

d~Qt,c =

(
κc ~Qt,c −

1

2Wi
~Fc( ~Qt,c)

)
dt +

√
1

Wi
d ~Wt (4.35)

with ~Qt,c as control variate. Comparing (4.35) with the original equation, we conclude that we

can on the one hand use a more simple spring force ~Fc( ~Qt,c) or on the other hand describe a

more simple flow field ~uc to be able to determine
〈
~Qt,c ⊗ ~Fc( ~Qt,c)

〉
deterministically. Applying

scheme (4.33) on the equation for calculating the stress tensor and neglecting any coefficients
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yields

τp ≈
〈
~Qt ⊗ ~F ( ~Qt)− ~Qt,c ⊗ ~Fc( ~Qt,c)

〉
+
〈
~Qt,c ⊗ ~Fc( ~Qt,c)

〉
(4.36)

for all t ∈ T . Obviously, the closer the velocity field ~uc approximates ~u and the spring force
~Fc( ~Qt,c) approximates ~Fc( ~Qt,c), the better reduction rates can be achieved.

We describe two examples of control variates which are

1. the equilibrium control variate and

2. the Hookean control variate.

In Section 6.2.3, we investigate the variance reduction of an equilibrium variate for a homo-
geneous extensional flow. The method of Hookean control variates could be ideally used in
combination with the three-dimensional NaSt3DGPF solver [2] that we use at the Institute for
Numerical Simulation (cf. Chapter 5) as the solver features a method to compute the Hookean
stress tensor deterministically (i.e. an implementation of the macroscopic Oldroyd-B model).

Equilibrium Control Variate

We obtain an equilibrium control variate for the choice

• ~uc = 0 (i.e. κc = ~∇x~uc is also zero) and

• ~Fc( ~Qt,c) = ~F ( ~Qt,c) (i.e. reuse the original spring force).

Then, the SPDE (4.35) simplifies to

d~Qt,c = − 1

2Wi
~Fc( ~Qt,c)dt +

√
1

Wi
d ~Wt. (4.37)

This stochastic equation does not change the initial distribution of ~Qt=0,c at all with the
exception of a minor stochastic noise that results from the Wiener process. Consequently, we
obtain 〈 ~Qt,c ⊗ ~Fc( ~Qt,c)〉 ≈ 1 and τp,c ≈ 0 for all t. Actually, we only subtract stochastic noise
in the stress tensor equation (4.36) which we hope to reduce the overall noise term.

Interestingly, for the case of a non-homogeneous flow field as in (2.67) we note that the
equilibrium control variate does not depend on physical space ~x. Therefore, we only have to
model one Nf -dimensional vector ~Qt,c to apply the method to a transient flow solver which
results in a very low computational effort.

On the contrary, Bonvin [12] points out that there are situations in which the equilibrium
control variate may differ strongly from the original process ~Qt. Indeed, this effect appears in
simulations with complex velocity fields and large Weissenberg numbers. Then, the equilibrium
variate might actually increase the stochastic noise. Therefore, we only investigate this method
for the case of homogeneous flow fields as in Section 6.2.3.

Hookean Control Variate

In view of a multiscale simulation, we are primarily interested in the simulation of the nonlinear
FENE spring force as there exists no equivalent macroscopic constitutive equation. For this
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spring force, we describe the implementation of a Hookean control variate. Therefore, we
set

• ~uc = ~u (i.e. we take the original velocity field) and

• ~Fc( ~Qt,c) = ~FHooke( ~Qt,c) = ~Qt,c (cf. Hookean spring force (2.64))

and use ~F ( ~Qt) = ~FFENE( ~Qt) as original spring force. Now we consider two synchronous prob-
lems which are

• calculation of s = 1, . . . , Nf stochastic processes ~Q
(s)
t with the FENE spring force and

• calculation of an equal amount of control variates ~Q
(s)
t,c with the linear Hookean spring

force.

Furthermore, the ansatz requires to determine the stress tensor contribution from ~Q
(s)
t,c de-

terministically for which we use the Oldroyd-B model. This is a consequence of the equivalence
between the micromolecular Hookean dumbbell model and the macromolecular Oldroyd-B con-
stitutive equation (cf. proof in Section 2.3.6). For illustration, we rewrite equation (4.36) but
additionally apply it to the case of a Hookean control variate which yields

τp ≈

〈
~Qt ⊗ ~F ( ~Qt)︸ ︷︷ ︸

stochastic:
FENE

− ~Qt,c ⊗ ~Fc( ~Qt,c)︸ ︷︷ ︸
stochastic:
Hooke

〉
+

〈
~Qt,c ⊗ ~Fc( ~Qt,c︸ ︷︷ ︸

deterministic:
Oldroyd-B

)

〉
. (4.38)

On the one hand, a Hookean control variate disposes almost all stochastic noise for situations
in which both spring forces predict similar stress tensor values. On the other hand, there are
situations in which both models differ from each other (e.g. extensional flow case). In such
situations, we expect better results if we simply increase the number of trajectories from Nf

to 2Nf which requires the same computational effort as using a Hookean control variate.
At last, we mention that there exist various control variates for polymeric fluids. Indeed, any

model that possesses a closure equation (e.g. the FENE-P spring force) can be used as a control
variate. Then, one additionally has to solve the corresponding constitutive equation. However,
this is not a part of this thesis and we refer to Bonvin et al. [13] for further information.





5 Multiscale Viscoelastic Flow Solver

The primary purpose of this chapter is to describe the implementation of the considered
multiscale model for viscoelastic fluids into an existing three-dimensional, free-surface Navier-
Stokes flow solver - NaSt3DGPF [2]. The two-phase modelling capabilities of NaSt3DGPF are
described in more detail in the thesis of Croce [24] and in an article by Croce, Griebel and
Schweitzer [25]. It employs finite differences to discretise spatial derivatives but uses high-
order, finite volume-based schemes for the discretisation of the convective terms (e.g. VONOS,
WENO, ENO). NaSt3DGPF is fully parallelised using a domain decomposition approach that
is described in Griebel et al. [35]. We also consider the parallelisation of our viscoelastic model
but restrict ourselves to the case of non-Newtonian one-phase flows.

5.1 Multiscale Navier-Stokes-BCF Model

In this section, we concentrate on the coupling between the dimensionless macroscopic Navier-
Stokes equations (5.1) and (5.2) on the one hand and the microscopic stochastic differential
equation (5.3) and the Kramers expression (5.4) for dilute polymeric fluids on the other hand.
Combining these equations yields the system

∂~u∗

∂t∗
= −~u∗ · ~∇~u∗ − ~∇p∗ +

1

Re
β∆~u∗ +

1

Re
~∇ · τp∗ +

1

Fr2~g
∗

~∇ · ~u∗ = 0

d~Q∗t =

(
−~u∗ ~∇ ~Q∗t + ~∇~u∗ ~Q∗t −

1

2Wi
~F ∗( ~Q∗t )

)
dt∗ +

√
1

Wi
d ~W ∗t

τp
∗ =

αb,d (1− β)

Wi

(〈
~Q∗t ⊗ ~F ∗( ~Q∗t )

〉
− Id

)
with initial conditions: ~u∗(~x∗, 0) = ~u∗0(~x∗), ~x∗ ∈ Ω (physical space)

~Q∗0(~x∗) ∼ ψ(~x∗, ~q∗, 0) = ψeq(~q
∗), ~q∗ ∈ D (configuration space).

(5.1)

(5.2)

(5.3)

(5.4)

Here, the physical space Ω represents the fluid domain. Furthermore, the configuration space
D ⊂ R3 denotes the space of possible dumbbell orientations that is represented by realisations
of the stochastic process ~Q∗t (~x

∗). Therefore, we use the capital letter “Q” to signalise that the
orientation is a stochastic process and calculate the realisations of its initial state according to
a density function ψeq.

Furthermore, we have accomplished the non-dimensionalisation of the basic equations by
setting

~x∗ =
~x

L0
, ~u∗ =

~u

U0
, t ∗ =

U0

L0
t, ρ∗ =

ρ

ρ0
,

107
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p∗ =
p− p0

ρ0 U2
0

, ~Q∗t =
~Qt
l0
, τp

∗ =
L0

U0(ηs + ηp)
τp, ~g∗ =

~g

‖~g‖
.

Note that we describe the non-dimensionalisation of ~x, ~q, ~u, and t in connection with the
Fokker-Planck equation in (2.58a) - (2.58d). In doing so, we have used the characteristic units

• L0 as characteristic length of a macroscopic flow ([L0]=m),

• U0 as characteristic velocity of a macroscopic flow ([U0]=m/s),

• ρ0 as fluid density ([ρ0]=kg/m3),

• p0 as characteristic pressure ([p0]=kg/(m s2)),

• l0 =
√
kBT/H as characteristic length-scale of a dumbbell ([l0]=m) and

• λ = ζ
4H as characteristic relaxation time of a dumbbell ([λ]=s).

Interestingly, the Navier-Stokes equations for the velocity and the pressure field and the dilute
polymeric equations for the non-Newtonian extra-stress tensor τp describe the flow system
on the same time scale. Therefore, although the equations represent different length scales
of the system, we use a successive time integration scheme for the complete system. The
relation between both time scales is represented by the Weissenberg number which we define
subsequently.

Definition 5.1 [Dimensionless numbers in fluid dynamics]
In fluid dynamics, we denote the ratio of inertial forces to viscous forces

Re ≡ ρ0 U0 L0

ηs + ηp

as Reynolds number. Additionally, we term the ratio of inertial forces to gravitational forces

Fr ≡ U0√
L0‖~g‖

as Froude number. Furthermore, for the calculation of non-Newtonian fluids the Weissen-
berg number becomes important which gives the ratio

Wi ≡ λ
U0

L0

between the microscopic relaxation time of a dumbbell λ and a characteristic fluid process time
L0/U0. Note that the preceding definition is also termed Deborah number in literature. Another
dimensionless number of interest is the elasticity number that we define as

El ≡ Wi

Re

and which we interpret as the ratio between elasticity and inertial forces.
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The coupled system (5.1) - (5.4) contains two additional dimensionless units. These are

β =
ηs
η0

=
ηs

ηs + ηp
≤ 1

to describe the percentage of the Newtonian viscosity to the total viscosity η0 of the fluid and

αb,d ≡


1, for Hookean dumbbells (b→∞),
b+d+2
b , for d-dimensional FENE dumbbells,

b+d
b , for d-dimensional FENE-P dumbbells.

as a specific spring force constant (cf. (2.78)). For the sake of simplicity, we subsequently drop
the asterisk indicating non-dimensional units as all considered equations are dimensionless.

5.2 Eulerian and Lagrangian Representations

Obviously, the SPDE (5.3) for the stochastic process ~Qt(~x) depends on the fluid domain Ω. As
we discretise the Navier-Stokes equations on Ω using a staggered finite difference grid, we have
to calculate τp at these grid points. To keep it simple, there are two different implementations
to achieve this. These are a particle-based Lagrangian description on the one hand and a grid-
based Eulerian interpretation on the other hand. Relating to the area of non-Newtonian fluids
we have

• the CONNFFESSIT method (Lagrangian point of view) and

• the Brownian configuration field method (Eulerian point of view)

as corresponding implementations. Actually, the equation we use in (5.3) bases on the concepts
of Brownian configuration fields (BCFs).

However, historically the CONNFFESSIT approach has been developed first. Therefore, we
start with the CONNFFESSIT ansatz and analyse its several drawbacks which we circumvent
by using BCFs.

CONNFFESSIT

The techniques of micro-macro simulation for non-Newtonian fluids have been developed in the
early nineties. All previous calculations based on solving closed form constitutive equations.
In 1993, Laso and Öttinger [53] introduced the concept of CONNFFESSIT which bases on
solving a stochastic differential equation. CONNFFESSIT is an abbreviation for “Calculation
of Non-Newtonian Flow: Finite Elements and Stochastic Simulation Techniques”.

Originally, the method solves the Navier-Stokes equations by using a finite element mesh but
this can be replaced by other appropriate discretisation schemes. Then we obtain the following
scheme which we illustrate in Figure 5.1:

• At initial time, we insert a large number of dumbbells described by the pair (~x(s), ~Q(s)), s =
1, . . . ,M into the fluid and distribute them uniformly in Ω.
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~un+1

t = 0 t > 0
Figure 5.1: At initial time the CONNFFESSIT approach distributes the dumbbell molecules

equidistantly and advects their spatial position in every time-step according to the new
velocity field. Every dumbbell contributes information to the new stress tensor τp of its
current grid cell. As each dumbbell is influenced by its own Brownian motion, their orienta-
tions become uncorrelated with ongoing time (t > 0) even if the velocity field ~u is smooth.
We illustrate the different orientations with separate colours on the right hand side of the
figure.

At each time-step n→ n+ 1 we perform a three-step procedure:

• We use the current approximation of the polymeric stress τp
n to compute ~un+1 and pn+1

in the Navier-Stokes equations.

• Using the new velocity field ~un+1(~x), we advect every dumbbell centre of mass and
approximate its new orientation by employing

d~Q
(s)
n+1 =

(
~∇~un+1 ~Q(s)

n − 1

2Wi
~F ( ~Q(s)

n )

) (
tn+1 − tn

)
+

√
1

Wi
∆ ~W (s)

n (5.5)

for s = 1, . . . ,M .

• We calculate the new polymeric stress τp
n+1 in each element or grid cell with the Kramers

expression (cf. (5.4)) and integrate over all dumbbells that currently remain in that ele-
ment.

As a result, the CONNFFESSIT scheme is similar to the presented system of equations (5.1)

to (5.4) with the exception of the convective term −~un+1 ~∇ ~Q(s)
n from (5.3) that lacks in the

SPDE (5.5). Of course, this is taken into account by transporting the dumbbells’ centre of
mass separately.

Disadvantages of CONNFFESSIT

Although the method allows the description of purely microscopic models (e.g. dumbbells with
nonlinear FENE spring force), it exhibits several shortcomings that we note subsequently:

• Assuming that we inject M polymer fluids in a fluid domain that is discretised in Ng grid
cells (normally, we have M � Ng), then an average cell contains approximately M/Ng
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molecules at the beginning. As the dumbbells move within the fluid, we obtain grid cells
with higher and lower polymeric density than M/Ng.
→ Inject new particles in regions with low polymeric density.
→ Delete particles where the concentration exceeds M/Ng by far.

• As each molecule experiences an individual Brownian force, the dumbbell orientations
are uncorrelated.
→ τp exhibits wild spatial fluctuations that can only be reduced by increasing the ratio
M/Ng.

• In every time-step, we have to compute the Brownian force for M polymeric molecules
which is expensive for high values of M .

• For the calculation of τp, we have to assign the dumbbells to their current grid cells which
requires additional effort for the allocation.

• The CONNFFESSIT ansatz is difficult to parallelise, because different processors have
to communicate with each other if molecules change between their subdomains which
requires a dynamic communication pattern.

• It is difficult to use variance reduction schemes like the equilibrium control variate (cf.
Section 4.2.3), because the control variate is only weakly coupled to the widespread
polymeric system.

In 1998, Halin et al. [36] introduced the Lagrangian particle method (LPM). This ansatz
also bases on a Lagrangian point of view but circumvents several of its shortcomings. In fact,
the LPM does not transport individual polymers but collections of molecules. However, as we
are interested in a grid-based description we refer to the book of Owens and Phillips [68] for
further information.

Brownian Configuration Fields

In this thesis, we implement the BCF method that was first introduced in an article from Hulsen
et al. [41] and further analysed in Öttinger et al. [67]. We first consider its basic concepts and
therefore use the theses of Bonvin [12] and of Van Heel [89].

As our coupled system of equations (5.1) - (5.4) employs the BCF method, we denote it as a
Navier-Stokes-BCF model. First, we present a schematic survey of the initial configuration and
a typical time-step and then examine its advantages concerning the CONNFFESSIT ansatz.
Note that we describe temporal discretisation of the coupled system in more detail in Section
5.3.
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~un+1

T = 0 T > 0
Figure 5.2: The BCF approach places Nf configuration fields at fixed spatial positions (indicated by

an orange circle). For simplicity, we only consider one configuration field per cell (i.e.
Nf = 1). Obviously, additional configuration fields for Nf > 1 would have different initial
orientations related to the first orientation but would have identical orientations related to
its neighbours in Ω. As each grid cell experiences the same Brownian force (i.e. stochastic
noise does not depend on physical space Ω), the dumbbell orientations change primarily
because of differences in the velocity field ~u. Therefore, the spatial fluctuation in the stress
tensor is vastly reduced.

Schematic overview:

• We use the current approximation of the velocity field ~un(xi) to solve (5.3)

d~Q
(s)
n+1(xi) =

(
−~un(xi) ~∇ ~Q(s)

n (xi) + ~∇~un(xi) ~Q
(s)
n (xi)

− 1

2Wi
~F ( ~Q(s)

n (xi))
)

∆tn +

√
1

Wi
∆ ~W (s)

n︸ ︷︷ ︸
independent of i

(5.6)

in every grid cell i = 1, . . . , Ng and for every configuration field s = 1, . . . , Nf . For
simplicity of our notation, we have numbered the three-dimensional grid cell domain by
using only one index “i” instead of (i, j, k).

• We calculate the new polymeric stress τp
n+1(xi) in each grid cell i = 1, . . . , Ng with the

Kramers expression (cf (5.4)) by integrating over all Nf fixed configuration fields in that
element.

• With the new stress tensor τp
n+1 we compute ~un+1 and pn+1 in the Navier-Stokes equa-

tions.

Although the scheme is related to the CONNFFESSIT ansatz, it solves all its disadvantages
we have mentioned before (cf. Figure 5.2):

• As the configuration fields have fixed spatial positions, the polymeric density in all grid
cells is constant at all times.
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• The Brownian force ~W
(s)
n in (5.6) depends on the configuration field (i.e. it depends on

s) but does not depend on physical space (i.e. it does not depend on i). Therefore, the
same initial orientations in different grid cells experience the same stochastic noise which
reduces spatial fluctuations.

• In every time step, we have to compute Nf discrete approximations of the Wiener process
~W

(s)
n , s = 1, . . . , Nf instead of NgNf ≈M realisations as in the CONNFFESSIT method,

because we reuse ~W
(s)
n for all Ng grid cells.

→ Reduced computational effort.

• It is unnecessary to track the BCF positions.

• For parallelisation, we have to communicate the BCFs in overlapping subdomains which
is easier to implement due to a static communication pattern.

• It is comparatively easy to implement the equilibrium control variate method (cf. Section
4.2.3), because we only add the computation of Nf control variates to the system. Using
the equilibrium control variates, we have to calculate Nf Ng + Nf BCFs per time-step
instead of Nf Ng BCFs as in the normal case.

As a result, the BCFs method overcomes some of the limitations that we have investigated
in the CONNFFESSIT approach. For this reason, some authors refer to the BCF method as a
“second generation micro-macro technique” (cf. Lozinski et al. [59]).

5.3 Temporal Discretisation

Explicit Chorin Projection Method

The computation of the velocity field ~u and the pressure field p by solving the Navier Stokes
equations (5.1) - (5.2) is a challenge on its own. Generally, a naive solution of the momentum
equations (5.1) leads to a velocity field that violates the continuity equation (5.2). To circum-
vent this problem, we apply a projection method that decouples ~u and p. Furthermore, the
method is explicit in ~u but implicit in p and first-order accurate in time. It was independ-
ently developed by Chorin [21] and Temam [85]. We have augmented the scheme with the
computation of the non-Newtonian stress tensor yielding the following steps:

Step 1 Solve the Brownian configuration field equation in i = 1, . . . , Ng grid cells and for
s = 1, . . . , Nf configuration fields by using an explicit Euler-Maruyama method

d~Q
(s)
n+1(xi) =

(
−~un(xi) ~∇ ~Q(s)

n (xi) + ~∇~un(xi) ~Q
(s)
n (xi)−

1

2Wi
~F ( ~Q(s)

n (xi))
)

∆tn

+

√
∆tn

Wi
~N(0, 1)(s). (5.7)
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Step 2 Compute the new stress tensor at each node xi by employing the Kramers expression

τp
n+1(xi) =

(1− β)

Wi
αb,d

 1

Nf

Nf∑
s=1

~Q
(s)
n+1 ⊗ ~F

(
~Q

(s)
n+1

)
− Id

 . (5.8)

Step 3 Solve the momentum equation without considering the pressure gradient ∇p to obtain
an intermediate velocity field ~u∗, i.e.

~u∗(xi) = ~un(xi) + ∆tn
(
− ~un(xi) · ~∇~un(xi) +

1

Re
β∆~un(xi)

+
1

Re
~∇ · τpn+1(xi) +

1

Fr2~g
n(xi)

)
. (5.9)

Step 4 Solve the pressure Poisson equation

∆pn+1(xi) =
1

∆tn
~∇ · ~u∗(xi) (5.10)

with a preconditioned, iterative Krylov subspace solver like CG or BiCGStab.

Step 5 Project the intermediate velocity field ~u∗ onto the space of divergence free velocities
by enforcing ~∇ · ~un+1 = 0 so that we obtain

~un+1(xi) = ~u ∗(xi) − ∆tn∇pn+1(xi). (5.11)

Next, we consider boundary conditions for p that are necessary to calculate a numerical
solution of the Poisson problem (5.10). If we use (5.11) to rewrite the normal derivative of the
pressure at the boundary, i.e.

∂pn+1

∂~n

∣∣∣
Γ

= ∇pn+1 · ~n
∣∣∣
Γ

=
~u ∗Γ − ~u

n+1
Γ

∆tn
· ~n,

we obtain homogeneous Neumann boundary conditions for the choice

~u ∗ = ~un+1 on ∂Ω.

Then, the pressure is determined except for an additive constant. We establish this constant
by setting ∫

Ω
pn+1 dV = 0.

Due to an explicit discretisation of the velocities, we employ this ansatz for flow problems
with comparatively moderate Reynolds numbers (i.e. Re ≤ 100). Flow situations with lower
Reynolds numbers require an implicit discretisation of the diffusive velocity terms to avoid re-
strictions in time-step size. We present the corresponding scheme subsequently. However, since
we use the explicit projection method for flows with high polymeric viscosity (i.e. percentage of
Newtonian viscosity only β ≈ 0.01), we observe elastic behaviour even if the elasticity number
El is comparatively low.
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Time-step Restriction

The advantage of an explicit time-discretisation lies in its relatively low computational effort
per time-step. On the contrary, explicit schemes are only stable for cases in which the time-step
size does not exceed a critical limit. Therefore, we investigate the restriction in time-step size
for the Navier-Stokes equations which requires a stability analysis of the linearised equations.

As the momentum equations in (5.1) contain an additional non-Newtonian stress tensor
τp, this results in further restrictions in time-step size in comparison with purely Newtonian
calculations. Trebotich et al. [87] specifies the restriction for the convective terms in x-direction
as

∆tx ≤
∆x

maxi,j,k

[
|ui,j,k|+

√
2(τxx + 1−β

Wi )/Re

] .
In the exact same manner, we obtain restrictions ∆ty and ∆tz in the other coordinate directions
(cf. Section 5.4 for an explanation of the used notation) so that the total restriction for the
convective terms is

∆tc = min
Ω

(∆tx,∆ty,∆tz). (5.12)

This is the Courant-Friedrich-Levy (CFL) condition that we further investigate in Chapter 3.1
for finite differences on the sphere.

Additionally, we restrict the diffusion to take effect only on one further grid cell per time-step.
This results in (cf. Peyret [70])

∆td ≤
[
β

Re

(
2

(∆x)2
+

2

(∆y)2
+

2

(∆z)2

)]−1

(5.13)

as corresponding restriction.

A further restriction in time-step size comes from gravitational force ~g. Croce [24] calculates
the effect from the x-component as

∆tgx ≤

maxi,j,k(|ui,j,k|)
∆x

+

√(
maxi,j,k(|ui,j,k|))

∆x

)2

+
4|gx|
∆x

−1

(5.14)

and analogue for the other components as ∆tgy and ∆tgz which yields in combination a restric-
tion of ∆tg = minΩ(∆tgx ,∆tgy ,∆tgz).

As result, we restrict our adaptive time-step size according to

∆t ≤ θmin
Ω

(∆tc,∆td,∆tg). (5.15)

Semi-implicit Projection Method

Since we are also interested in fluid situations in which the elastic behaviour of the non-
Newtonian fluid becomes important (i.e. El = Wi/Re is high), we present an implicit discret-
isation scheme for the diffusive terms to avoid restrictions in time-step size. However, as the
time-integration of the Brownian Configuration Field equation remains unchanged, we only
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concentrate on the major characteristics of the ansatz and refer to the thesis of Klitz [48] for
further information.

The semi-implicit scheme exhibits two differences according to the explicit Chorin method:

• We use a Crank-Nicolson ansatz for the discretisation of the diffusive velocity components,
i.e.

~un+1 − ~un

∆tn
= −∇pn+ 1

2 − ~un · ~∇~un +
β

2 Re
∆(~un+1 + ~un)︸ ︷︷ ︸

Crank-Nicolson

+
1

Re
~∇ · τpn+1 +

1

Fr2~g
n.

• The calculation of the intermediate velocities ~u∗ in Step 3 includes the pressure gradient
term following a scheme proposed by Bell [6].

Then, we obtain a modified method that consists of the following steps:

Step 1 Solve the Brownian configuration field equation for every configuration field by using
an explicit Euler-Maruyama method

d~Q
(s)
n+1 =

(
−~un ~∇ ~Q(s)

n + ~∇~un ~Q(s)
n −

1

2Wi
~F ( ~Q(s)

n )
)

∆tn +

√
∆tn

Wi
~N(0, 1). (5.16)

Step 2 Compute the new stress tensor with the Kramers expression, i.e.

τp
n+1 =

(1− β)

Wi
αb,d

(〈
~Q(s)
n ⊗ ~F ( ~Q(s)

n )
〉
− Id

)
. (5.17)

Step 3 Solve a Helmholtz equation for an intermediate velocity field ~u∗(
Id− ∆tnβ

2 Re
∆

)
~u∗ = ~un − ∆tn

(
∇pn−

1
2 + ~un · ~∇~un − β

2 Re
∆~un

− 1

Re
~∇ · τpn+1 − 1

Fr2~g
n
)
. (5.18)

by using an SSOR preconditioned CG method.

Step 4 Use ~u∗ as the RHS of a Poisson problem which delivers a pressure correction φn+1 and
recovers ~un+1, i.e.

∆φn+1 =
1

∆tn
∇ · ~u∗, (5.19)

~un+1 = ~u∗ −∆tn∇φn+1. (5.20)

Step 5 We obtain the new pressure by computing

pn+ 1
2 = pn−

1
2 + φn+1 − ∆tnβ

2 Re
∆φn+1. (5.21)
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Note that Step 1 and 2 are the same as for the explicit projection scheme. Additionally, the
semi-implicit method requires additional boundary treatment for ~u∗

∣∣
Ω

in comparison to the
explicit projection method (cf. Klitz [48]). Furthermore, we set homogeneous initial values for
the pressure.

On the one hand, the semi-implicit ansatz necessitates the solution of an additional system
of linear equations in every time-step which increases the computational effort. On the other
hand, this ansatz abolishes the restriction in time-step size ∆td from the diffusive terms (5.13).
Accordingly, this ansatz is reasonable for low Reynolds numbers which we require for most
viscoelastic simulations.

5.3.1 Algorithms

As a result, we present complete algorithms for the explicit Chorin method on the one hand
and the semi-implicit projection on the other hand.

Algorithm 5: Explicit Chorin projection method for multiscale viscoelastic flows

Data: Initial conditions for ~u 0 and p0 and an equilibrium density ψeq

Result: Values for ~u, p and τp at time t ≤ tmax

Set t← 0, n← 0;
Initialise velocity field with ~u 0;

Generate s = 1, . . . , Nf realisations ~Q(s) ∼ ψeq // von Neumann rejection sampling

Initialise all BCFs with the equilibrium configuration, i.e. ~Q
0,(s)
i,j,k = ~Q(s) for all i, j, k;

Compute initial stress tensor values τp
0 by using (5.8) // should be close to zero

while t ≤ tmax do
Compute new time-step size ∆tn according to (5.15);
Set boundary values for ~un+1 and pn+1;

Set boundary values for the BCFs ~Q
n+1,(s)
i,j,k ;

Use (5.7) to compute new configuration field values ~Q
n+1,(s)
i,j,k ;

Obtain new stress tensor τp
n+1 with (5.8) // Kramers expression

Set boundary values for intermediate velocities ~u ∗;
Compute ~u ∗ according to (5.9);
Solve the Poisson problem (5.10) which yields pn+1;
Compute the new velocity field ~un+1 using the pressure correction (5.11);
t← t+ ∆tn, n← n+ 1

end

The explicit ansatz is useful for flows that involve higher Reynolds numbers (Re ≥ 100) as
the time-step restriction for the diffusive terms is negligible in these cases. However, note that
in the case of multiscale viscoelastic computation the explicit scheme is only slightly cheaper
than the semi-implicit method even for flows with high Reynolds numbers. This is caused by

the high computational effort to compute the new configuration field values ~Q
n+1,(s)
i,j,k in (5.7).

Therefore, if we can omit several time-steps because of a higher time-step size in the semi-
implicit method this overcompensates all additional effort. In fact, although we simulate flow
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problems, we spend most of the time to simulate stochastic processes.

Subsequently, we present an algorithm for the semi-implicit projection method.

Algorithm 6: Semi-implicit projection method for multiscale viscoelastic flows

Data: Initial conditions for ~u 0 and p0 and an equilibrium density ψeq

Result: Values for ~u, p and τp at time t ≤ tmax

Set t← 0, n← 0;
Apply boundary conditions for the ∆ part of the Helmholtz matrix;

Initialise velocity and pressure field with ~u 0 and p
1
2 = 0;

Generate s = 1, . . . , Nf realisations ~Q(s) ∼ ψeq // von Neumann rejection sampling

Initialise all BCFs with the equilibrium configuration, i.e. ~Q
0,(s)
i,j,k = ~Q(s) for all i, j, k;

Compute initial stress tensor values τp
0 by using (5.17) // should be close to zero

while t ≤ tmax do
Compute new time-step size ∆tn according to (5.15) without diffusive restriction;

Set boundary values for ~un+1 and pn+ 1
2 ;

Set boundary values for the BCFs ~Q
n,(s)
i,j,k ;

Use (5.16) to compute new configuration field values ~Q
n+1,(s)
i,j,k ;

Obtain new stress tensor τp
n+1 with (5.17) // Kramers expression

Set boundary values for intermediate velocities ~u ∗;
Solve the Helmholtz equation for ~u ∗ according to (5.18);
Solve the Poisson problem (5.19) which yields the pressure difference φn+1;
Compute the new velocity field ~un+1 using the pressure difference (5.20);

Calculate the new pressure field pn+ 1
2 with (5.21);

t← t+ ∆tn, n← n+ 1
end

As a result, we underline the high computational effort of both algorithms. Therefore, if we
want to use one of the schemes for multiscale simulations in three dimensions, we require an
ansatz to parallelise our algorithms. Therefore, we concentrate on parallelisation in Chapter
5.6.

5.4 Spatial Discretisation

In Section 5.3, we have considered time-integration of the coupled Navier-Stokes-BCF system.
Now, we concentrate on the spatial discretisation in Ω for a three-dimensional finite difference
grid. Up to now, we have use a linearised index “i” for the position in physical space. This
will be replaced by a three-component description (i, j, k) to denote the cell position within the
grid.

Staggered Grid

For the discretisation of the Navier-Stokes equations (5.1) and (5.2) and the Brownian Con-
figuration Field stochastic equation (5.3) in physical space Ω, we subdivide Ω into rectangular



5.4 Spatial Discretisation 119
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Figure 5.3: A staggered grid bases on the idea to store scalar values (e.g. p) in the cell centres and
position the components of vector-valued variables (e.g. ~u) at the cell faces. Our imple-
mentation for the second-order tensor τp also uses a position at the cell centres to restrict
the computation time.

subdomains and evaluate the unknown values ~u, p, τ p, and ~Q on a staggered grid. As we
discretise in three dimensions, we work on a grid with Nx cells in the x-direction and in con-
formity Ny cells in the y-direction and Nz cells in the z-direction. The complete grid then
consists of Ng = NxNyNz grid cells. Due to the staggered grid, we position the pressure
pi,j,k (with i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz) as well as the six independent stress

tensor components of τpi,j,k and the BCFs ~Qi,j,k in the centre of cells and evaluate the velocity

components ui+1/2,j,k, ui,j+1/2,k and ui,j,k+1/2 at the cell faces (cf. Figure 5.3). Here, ~Qi,j,k
represents a total number of Nf configuration fields that lie in the centre of the cell with index
(i, j, k).

A staggered grid ensures a strong coupling between the pressure field on the one hand and the
velocity field on the other hand. For the non-Newtonian extra stress, Gerritsma has investigated
the additional coupling with τp in Chapter 5 of his thesis [34]. He supposes to use a staggered
grid for τp as well but to position only the normal stress components (i.e. τxx, τyy, and τzz) in
the centres of the cells. By contrast, he places the shear stress components (i.e. τxy, τxz, and
τyz) at the edges of a grid cell.

Although his ansatz guarantees the coupling between τp and p, it seems to be more suited
to the case of constitutive equations for τp in which the computational effort is vastly reduced
(cf. Section 5.6 for an analysis of the computational cost). Indeed, as the information for τp is
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completely incorporated in ~Qi,j,k, we would additionally have to place configuration fields at

the grid edges, i.e. at ~Qi+1/2,j+1/2,k, ~Qi+1/2,j,k+1/2, and ~Qi,j+1/2,k+1/2. Consequently, the total
number of configuration fields in Ω would add up to 4Nf Ng instead of Nf Ng. As a result, to
restrict the computation time with NaSt3DGPF, we position the components in the cell centres
in an analogous manner as in the thesis of Claus [22].

Discretised Equations

For the ongoing section, we denote the position in the cell centre with [·]i,j,k and illustrate this
choice in Figure 5.3. Consequently, we use [·]i± 1

2
,j,k to describe a position at the centre of the

left/ right cell surface and a corresponding notation for the other cell faces. Furthermore, we
employ ∆xi to term the length of cells with index i in the x-direction. At last, we use

∆xi+ 1
2

= (∆xi + ∆xi+1)

for the distance between the centre of the cell [·]i,j,k on the one hand and [·]i+1,j,k on the other
hand.

We discretise all spatial derivatives, with the exception of the convective terms in the
Brownian configuration field equation (5.7) and in the momentum equations (5.9), using cent-
ral differences on a staggered grid. For the discretisation of the convective terms we apply
high-order schemes like SMART, VONOS, ENO or WENO, indicate them with C(·) in our
equations and refer to Croce [24] for further implementation details. Since the spatial discret-
isation of the momentum and continuity equations has already been discussed in Claus [22] for
the explicit case and in Klitz [48] for the semi-implicit approach, we only present a component-
wise equation for Step 1 (cf. eqrefEquation:ChorinExplicitStep1) and Step 2 (cf. (5.8)) of the
time-integration schemes.

Step 1: Brownian Configuration Field Equation

The x-component Qx, n+1
i,j,k of the configuration field ~Qn+1

i,j,k in Step 1 for the FENE spring force
with maximum extension b (cf. (2.66)) is approximated by

Qx, n+1
i,j,k = Qx, ni,j,k + ∆tn

[
− C

(
u
∂Qx

∂x

)n
i,j,k

− C
(
v
∂Qx

∂y

)n
i,j,k

− C
(
w
∂Qx

∂z

)n
i,j,k

+

(
∂u

∂x

)n
i,j,k

Qx, ni,j,k +

(
∂u

∂y

)n
i,j,k

Qy, ni,j,k +

(
∂u

∂z

)n
i,j,k

Qz, ni,j,k

− 1

2Wi
·

Qx, ni,j,k

1− [(Qx, ni,j,k)
2 + (Qy, ni,j,k)

2 + (Qz, ni,j,k)
2]/b

]

+

√
∆tn

Wi
rx (5.22)

with rx ∼ N(0, 1) and (u, v, w) as the components of ~u. Note that we have to perform operation
(5.22) in grid cell [·]i,j,k not only once but for every of the s = 1, . . . , Nf realisations of the
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stochastic process. Furthermore, the component-wise equation for the y-component of ~Qn+1
i,j,k is

Qy, n+1
i,j,k = Qy, ni,j,k + ∆tn

[
− C

(
u
∂Qy

∂x

)n
i,j,k

− C
(
v
∂Qy

∂y

)n
i,j,k

− C
(
w
∂Qy

∂z

)n
i,j,k

+

(
∂v

∂x

)n
i,j,k

Qx, ni,j,k +

(
∂v

∂y

)n
i,j,k

Qy, ni,j,k +

(
∂v

∂z

)n
i,j,k

Qz, ni,j,k

− 1

2Wi
·

Qy, ni,j,k
1− [(Qx, ni,j,k)

2 + (Qy, ni,j,k)
2 + (Qz, ni,j,k)

2]/b

]

+

√
∆tn

Wi
ry (5.23)

with ry ∼ N(0, 1) and analogously

Qz, n+1
i,j,k = Qz, ni,j,k + ∆tn

[
− C

(
u
∂Qz

∂x

)n
i,j,k

− C
(
v
∂Qz

∂y

)n
i,j,k

− C
(
w
∂Qz

∂z

)n
i,j,k

+

(
∂w

∂x

)n
i,j,k

Qx, ni,j,k +

(
∂w

∂y

)n
i,j,k

Qy, ni,j,k +

(
∂w

∂z

)n
i,j,k

Qz, ni,j,k

− 1

2Wi
·

Qz, ni,j,k
1− [(Qx, ni,j,k)

2 + (Qy, ni,j,k)
2 + (Qz, ni,j,k)

2]/b

]

+

√
∆tn

Wi
rz. (5.24)

In (5.22) we have used (
∂u

∂x

)n
i,j,k

=
uni+1/2,j,k − u

n
i−1/2,j,k

∆xi
(5.25)(

∂u

∂y

)n
i,j,k

=
uni,j+1/2,k − u

n
i,j−1/2,k

∆yj
(5.26)(

∂u

∂z

)n
i,j,k

=
uni,j,k+1/2 − u

n
i,j,k−1/2

∆zk
(5.27)

for the velocity gradient and similar expressions for the other components of ∇~un. Since
the first velocity component u is defined on [·]i+1/2,j,k and [·]i−1/2,j,k, we can use the values
of u for (5.25) directly but first of all have to interpolate them for (5.26) and (5.27) onto
the corresponding cell faces. Indeed, we perform similar interpolations for the other velocity
components v and w.

Step 2: Kramers Expression

Before we present an expression for the xx- and xy-component of τp
n+1
i,j,k , we introduce a slight

modification in the notation of the Brownian configuration fields. As the reference to the
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current time-step n+ 1 in ~Qn+1
i,j,k is less important in this case, we drop the corresponding index

but rather reuse the indication “(s)” for the s = 1, . . . , Nf stochastic realisations. Again, we
consider the case of the FENE spring force (2.66) with an extension parameter b.

Then, equation (5.8) for the explicit or (5.17) for the semi-implicit case in Step 2 becomes

τxxi,j,k =
(1− β)

Wi

b+ 5

b

−1 +
1

Nf

Nf∑
s=1

(
Q
x, (s)
i,j,k

)2

1− [(Q
x, (s)
i,j,k )2 + (Q

y, (s)
i,j,k )2 + (Q

z, (s)
i,j,k )2]/b

 (5.28)

for the xx-component of the non-Newtonian stress tensor τp.

Additionally, we compute its xy-component in cell [·]i,j,k using the expression

τxyi,j,k =
(1− β)

Wi

b+ 5

b

1

Nf

Nf∑
s=1

Q
x, (s)
i,j,k Q

y, (s)
i,j,k

1− [(Q
x, (s)
i,j,k )2 + (Q

y, (s)
i,j,k )2 + (Q

z, (s)
i,j,k )2]/b

. (5.29)

Obviously, the other four independent components of τp
n+1
i,j,k base on a similar expression.

Initial Conditions

Since our coupled Navier-Stokes-BCF system is time-dependent, we require initial conditions
for ~u, p as well as for ~Q and τp. NaSt3DGPF [2] allows the setting of initial values for ~u with
a parameter file that is parsed at the beginning of a simulation. Therefore, we set

~u 0
i,j,k = ~u(xi,j,k, 0),

p0
i,j,k = p(xi,j,k, 0),

for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz.

For the micromolecular dumbbell model, we replace the initial value of τp by the initial
values of the Brownian configurations fields. In every grid cell, we position the same initial
distributions of the stochastic process according to the chosen spring force, i.e. we generate
s = 1, . . . , Nf configurations

~Q
0,(s)
i,j,k ∼ ψeq︸︷︷︸

independent
from i,j,k

for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz.

Here, ψeq denotes the equilibrium distribution for the Hookean spring force (4.28), the FENE
spring force (4.29) or the FENE-P spring force (4.30). For the sampling of the initial configu-
ration in agreement with ψeq, we apply the von Neumann rejection sampling method that we
describe in detail in Section 4.2.2.

At last, we consider initial values for the polymeric extra-stress. Since τp is connected to
the configuration fields by the Kramers expression, we already have prescribed initial values
for the stress. As the equilibrium density ψeq correlates with a vanishing polymeric stress, we
obtain

τp
0
i,j,k ≈ 0 for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz.
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Figure 5.4: The figure presents absolute values for the stress tensor component τxy depending on the
number of stochastic realisations (exact initial value is τxy = 0). We have marked the error
for 26 to 221 realisations. Even if the error does not decay monotonically, the law of large
numbers guarantees that we reach the exact value almost surely. For calculations using
NaSt3DGPF we position 2000 to 8000 realisations in every grid cell as more stochastic
realisations would lead to enormous computing times. Therefore, our initial error for τp lies
in the order of O(10−2).

Note that τp
0 is in general unequal to zero, because we only possess a stochastic approximation

of zero. For illustration, in Figure 5.4 we present initial values for the stress tensor component
τxy depending on the number of realisations Nf . Nevertheless, as the polymeric stress operates
on the fluid field only via its divergence it has no effect in practical applications whether we
actually start with a stress tensor of zero or not. Nevertheless, our results in τp have an
uncertainty in the order of the initial error.

5.5 Discrete Boundary Values

This section describes the placement of boundary values in obstacle cells with an adjacent fluid
cell. Let grid cell (i, j, k) be an obstacle cell and let cell (i − 1, j, k) be a fluid cell, then we
distinguish four different types of boundary conditions:

• Inflow Dirichlet conditions,

• outflow Neumann conditions,

• no-slip boundary conditions, and

• slip boundary conditions.

Additionally, we can also decide to skip boundary treatment for ∂Ω at all by using periodic
boundary conditions. Then, we continue the flow domain by using fluid information from the
opposite side of ∂Ω.
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Figure 5.5: The left hand side of the figure illustrates the setting of boundary values for the velocities.
Boundary values are either set on the cell face directly if the velocity component is already
defined there (ui−1/2,j,k in this case) or are otherwise extrapolated into the obstacle cells
(vi−1/2,j+ 1

2 ,k
and wi−1/2,j,k+ 1

2
). For the stochastic realisations and therefore for τp, we do

not know the boundary values explicitly and additionally do not know how to extrapolate
configuration fields into an obstacle cell. Therefore, our boundary method creates an error
in the order of O(∆xi/2) which decreases for finer grid resolutions.

A no-slip boundary condition for a fluid states that the fluid’s velocity is zero relative to the
boundary, i.e.

ub = ui−1/2,j,k = 0, vb = vi−1/2,j,k = 0, and wb = wi−1/2,j,k = 0. (5.30)

Alternatively, a slip boundary condition demands the velocity component normal to the bound-
ary to vanish as well as the normal derivative of the tangent velocity component. This yields

ub = ui−1/2,j,k = 0,
∂vb

∂x
=
∂vi−1/2,j,k

∂x
= 0, and

∂wb

∂x
=
∂wi−1/2,j,k

∂x
= 0 (5.31)

in connection with the described fluid cells. In that case, the velocity component ui−1/2,j,k lies
on the corresponding boundary face directly whereas vi−1/2,j,k and wi−1/2,j,k are defined on
other faces. Therefore, we have to extrapolate the velocities vi,j,k and wi,j,k within the obstacle
so that boundary conditions like (5.30) and (5.31) for vb and wb are fulfilled (cf. Figure 5.5).

In view of the non-Newtonian stress tensor τp, we also necessitate boundary conditions. For
macroscopic constitutive equations like the Oldroyd-B model we constitute boundary values
directly. In contrast, for a microscopic BCF model τp is not the primary variable of interest,
because we solve a stochastic equation for the stochastic processes. Therefore, we consider
boundary conditions for ~Q instead of τp.

A common approach is to position equilibrium configuration fields on the boundary face at
the beginning of the simulation and follow their evolution by taking the corresponding velocity
~ub into account. Then, we actually know the configuration field and the stress tensor value at
the boundary in every time-step and use them for our calculations. However, in Section 5.4 we
motivate the reasons for placing the fields ~Q(s) for s = 1, . . . , Nf in the cell centres. Therefore,
we do not know explicitly which values the stress takes at the boundary. Even if we knew the
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BCFs at the boundary, we would have to extrapolate these values into the obstacle cell which
is not intuitively clear.

To keep it simple, we have implemented a pragmatic approach. In doing so, we set

• the boundary conditions for ~u according to the chosen boundary method (e.g. no-slip
boundary conditions) and

• always use homogeneous Neumann boundary conditions for ~Q
(s)
i−1,j,k, i.e. we set

~Q
(s)
i,j,k︸ ︷︷ ︸

obstacle

= ~Q
(s)
i−1,j,k︸ ︷︷ ︸
fluid

for s = 1, . . . , Nf

which leads to
∂ ~Q

(s)
i−1,j,k

∂x = 0.

Then, the configuration field ~Q
(s)
i−1,j,k evolves in agreement with the velocity field at the bound-

ary. However, since the fields ~Q
(s)
i−1,j,k exhibit a distance of a half grid cell 1

2∆xi−1, we actually
use velocity values with a distance of one half grid cell to the boundary. Otherwise, for ar-

bitrarily fine discretisation (i.e. ∆xi−1 → 0) we expect our values for ~Q
(s)
i−1,j,k to tend to the

boundary values so that the error converges to zero.

5.6 Parallelisation

Since we present a multiscale ansatz for viscoelastic flows in this thesis, in every grid cell and
for every time-step we have to solve a system with ten unknowns that have a physical relevance
and thousands of additional Brownian configuration fields. Therefore, two problems occur that
accentuate the importance of parallelisation:

• The computational task requires large computing time to solve physical systems of in-
terest.

• A large number of realisations for ~Q(s), s = 1, . . . , Nf in every grid cell (i.e. Nf is large)
leads to high memory requirements. In fact, the computational effort for a problem can
be so large that it does not fit into the main memory of the computer.

In macroscopic fluid simulations using NaSt3DGPF [2] the former problem is of major in-
terest, because in general situations the computing time increases faster than the primary
storage amount. However, for the presented approach both problems have an equal priority.
In this chapter, we start with an illustration of the memory requirements, then briefly describe
domain decomposition approaches and at last present performance measurements using the
parallel computers at the Institute for Numerical Simulation and the Sonderforschungsbereich
611.

Computational Effort

In Section 6.3.2, we examine the flow through an infinite channel which we resolve by using
803 grid cells and Nf = 4000 realisations for the stochastic differential equation. Without
consideration of the ghost cell variables, the system necessitates about
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Figure 5.6: The parallelisation approach bases on domain decomposition of Ω into subdomain with an
overlapping boundary region. In every time-step, boundary values are interchanged between
the domains to guarantee a well defined problem for every processor. We illustrate boundary
values for Ω2 by red dots on the right-hand side of the figure.

• 4 MB for the pressure field p,

• 12 MB for the velocity field ~u,

• 24 MB for the six independent components of τp, and

• 46 GB for 4000 stochastic variables in every grid cell.

Here we have used that each Brownian configuration field consists of three components whereas
each component requires the size of an 8 byte double variable. Obviously, a sequential pro-
gramme cannot fulfil the stated memory requirements. Furthermore, as long as we do not write
the complete stochastic system into a file, we cannot continue an initial computation later on.
Since we are only interested in the physical system, we only have to store the matrices that
approximate p, ~u, and τp for postprocessing purposes.

Parallelisation Strategy

The most natural ansatz for the parallelisation of the Navier-Stokes equations is to decompose
our domain Ω into several subdomains Ω1, . . . ,ΩN so that each processor computes only the
unknowns that belong to its domain (cf. Griebel [35]). As a processor does not necessitate
access to the entire data structure, we can now solve problems that require high amounts of
storage memory.

Since a parallelised algorithm has to achieve the same results as its sequential analogue,
processors whose subdomains share a common boundary have to communicate with each other.
Therefore, neighbouring processors have to exchange relevant data on their common processor
boundary. For illustration, we present the processor boundary in Figure 5.6. Depending on
the discretisation stencil, we need an overlapping domain of one to three cells. For instance,
a WENO scheme (cf. Croce [24]) for the convective terms requires three overlapping grid cell
rows but guarantees a 5th-order accuracy in space.

For our multiscale approach, we exchange not only boundary values for ~u and p but also
boundary values for ~Q(s), s = 1, . . . , Nf in every time-step. Therefore, the most expensive part
of the communication between the processors belongs to the stochastic system. Furthermore, as
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we interchange the Brownian configuration fields it is theoretically unnecessary to communicate
stress tensor values at the boundary. However, it depends on the computer architecture and
the problem size whether exchanging τp or calculating the values with the Kramers expression
is more efficient.

To obtain an optimal speed-up for our parallelised algorithm, we normally have to ensure
that the load distribution for Ω1, . . . ,ΩN is optimal. Therefore, the subdomains should possess
the same size so that each processor has to treat the same number of unknowns. Unequal load
balancing leads to waiting time for some processors which reduces the parallel efficiency.

Performance Measurement

For the communication between the processes we use the Message Passing Interface (MPI)
which is designed for high performance computing on massively parallel machines and on
workstation clusters (cf. MPI [3]). An MPI implementation (e.g. MPICH [1]) consists of a
library with C, C++ or Fortran routines that enable message exchange between processors.

The numerical results that we present in this thesis using NaSt3DGPF were computed with
the parallel computers Himalaya and Eifel II of the Institute for Numerical Simulation and the
Sonderforschungsbereich 611. The HPC cluster Himalaya features

• 128 Dell PowerEdge 1850 nodes with a total of 256 Intel Xeon EM 64 T 3.2 GHz CPUs,

• a main memory of 4-6 GB per node, and

• a Linpack Performance of 1269 GFlop/s.

Furthermore, Eifel II exhibits

• 19 Dell PowerEdge 1950/2950 nodes with a total of 38 Intel Xeon X5355 2.66 GHz CPUs,

• a main memory of 12-16GB per node, and

• a Linpack Performance of 519.1 GFLop/s.

Both clusters are equipped with a Myrinet/ XP network interface that allows fast communica-
tion between the processors without having to rely on the TCP/IP protocol overhead.

As mentioned before, unequal load balancing reduces the parallel efficiency as some processors
have to wait for the results of other processors. Therefore, we want to measure the efficiency
of our parallel implementations in NaSt3DGPF so that the concepts of speed-up and scale-
up become important. Unfortunately, the speed-up measurement is quite complicated for our
multiscale approach as most complex problems (suited for a large number of processors) do not
fit into the main storage of a small number of processors. On the other hand, problems that
require less main storage are too small to be parallelised efficiently.

Accordingly, we measure the scale-up of our programme which we define subsequently.
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p Tp(pN)v [s] ScUv ScUN
multiscale viscoelastic Newtonian

1 232.3 1.0 1.0
2 227.1 1.0 0.85
4 237.6 0.98 0.68
8 247.0 0.94 0.65
16 252.6 0.92 0.50
32 255.1 0.91 0.42
64 272.2 0.85 0.21
128 301.4 0.77

Table 5.1: The table compares the scale-up behaviour of our multiscale viscoelastic method using
NaSt3DGPF on the one hand with a purely Newtonian calculation on the other hand where
each processor has a subdomain of 10× 20× 20 cells. Note that the multiscale simulation
takes about 80 times longer than its Newtonian counterpart. For small subdomain sizes, the
multiscale approach scales much better in the number of processors which is an effect of
the enormous increase in problem size. Therefore, our multiscale programmes are perfectly
adapted to massively parallel computers.

Definition 5.2 [Scale-up]
Let p be the number of processors, T1(N) the execution time of a problem with size N on
one processor, and Tp(pN) the time for the parallel execution of a problem with size pN on p
processors. Then, we define the scale-up of a parallel algorithm by

ScU ≡ T1(N)

Tp(pN)
=

execution time using serial algorithm for problem size N

execution time using p processors for problem size pN
.

In Section 6.3.2, we present results for the infinite channel with Nf = 4000 using 60 com-
puting nodes with two processors per node (i.e. altogether we use 120 processors) on a domain
with 803 grid cells. For the benchmark measurement, we compute a scaled-up version of this
problem by using 1 to 64 computing nodes with only one processors per node as this allows an
accurate comparison in computing time between the sequential and the parallel programmes.
We choose a fixed local problem size of 10 × 20 × 20 cells per processor, i.e. on p = 64 pro-
cessors we consider a problem pN = 40×80×80 cells in total. Then, we measure the computing
time for performing twelve complete time-steps. In Table 5.1, we analyse the scale-up of our
multiscale programme and compare the results with the scale-up of the NaSt3DGPF alone
(i.e. without using the multiscale BCF method). To achieve proper results for solely using
the macroscopic NaSt3DGPF solver, we measure the time for 5000 steps as the required time
for one time-step is vastly reduced compared to the multiscale viscoelastic model. In fact, for
Nf = 4000 realisations and the stated problem size the multiscale simulation takes about 80
times longer than its Newtonian counterpart but this factor varies strongly with the size of Nf .

Table 5.1 shows that the multiscale viscoelastic model scales very good which is not unex-
pected as the problem is vastly increased in terms of computational effort compared to the
Newtonian case. The relatively small subdomain size seems to be sufficient for our multiscale
computations so that we can apply a large number of processors even on small grid domains
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which would lead to a poor parallel efficiency in the case of the Newtonian flow solver, cf. last
column in Table 5.1. Note that, however, for subdomains that are larger in size, we also achieve
a reasonable scale-up for the Newtonian calculations (cf. Croce [24]).

As a result, even if a multiscale approach seems to be very expensive at the moment, these
disadvantages become less important the more processors are used for computing because of an
excellent scale-up behaviour. Since we expect parallel computers to become faster every year,
problems of the discussed size will be manageable in the near future.





6 Numerical Results

This chapter contains all numerical results using the described finite difference scheme (cf.
Chapter 3.1) and spectral methods for the Fokker-Planck equation (cf. Chapter 4.1) and fur-
thermore stochastic techniques for the equivalent stochastic equation (cf. Chapter 4.2). We
classify our results into

• homogeneous flow field simulations in Chapter 6.1 (2D) and Chapter 6.2 (3D), i.e., the
velocity field is analytically known and possesses a constant velocity gradient κ = ∇~u
throughout physical space Ω so that it is unnecessary to solve the Navier-Stokes equations
and

• complex flow field simulations in Chapter 6.3, i.e. the general case in which the stress
tensor τp actually contributes information to ~u and p and vice versa. For the solution of
the Navier-Stokes equations we employ the NaSt3DGPF [2] flow solver.

For illustration, we give a survey of the considered flow models. Subsequently, we investigate

• Newtonian flows,

• Oldroyd-B model flows,

• polymeric flows with a Hookean spring force,

• polymeric flows with a FENE spring force (Finitely Extensible Nonlinear Elastic), and

• polymeric flows with a FENE-P spring force.

Obviously, a Newtonian flow does not exhibit any elastic behaviour in first approximation and
is completely described by the Navier-Stokes equations (cf. Chapter 2.1). On the contrary,
the Oldroyd-B model adds a constitutive equation for the polymeric stress to the flow system
(cf. Chapter 2.2) and all polymeric models describe elastic behaviour as the effect of micro-
molecular dumbbells that interact with the Newtonian solvent (cf. Chapter 2.3). Actually, the
micromolecular models are of different importance for practical applications. In fact, the Hooke
and FENE-P model possess an equivalent closed-form constitutive equation and the Oldroyd-B
model turns out to be the macroscopic analogue to the Hookean dumbbell system (cf. Section
2.3.6). Therefore, only the nonlinear FENE spring force leads to a fully multiscale system as
it offers no equivalent macroscopic interpretation unless we consider closure approximations.
Accordingly, the motivation for using Hookean and FENE-P spring forces in the following is to
be able to compare different model predictions. In practice, we would employ the macroscopic
formulation.

131
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6.1 2D Homogeneous Flows

This chapter analyses homogeneous flow problems with a two-dimensional configuration space.
Subsequently, we apply the spectral approach for the Fokker-Planck equation (cf. Chapter 4.1)
and a stochastic technique (cf. Chapter 4.2) on

• a moderate extensional flow (i.e. ε̇ = 1.0),

• a strong extensional flow (i.e. ε̇ = 5.0),

• and a strong shear flow (i.e. γ̇ = 10.0).

We investigate the time-dependent behaviour of the non-Newtonian stress tensor using a non-
linear FENE spring force for all flow problems in 2D. For a comparison between the FENE
spring force on the one hand with the more simple linear spring forces on the other hand we
refer to Chapter 6.2 which considers problems with 3D configuration spaces.

6.1.1 Moderate Extensional Flow

We now consider the case of a planar extensional flow in which the flow is stretched in one axis.
In this case, the velocity field takes the form

~u = (ε̇x,−ε̇y) (6.1)

and as the fluid undergoes a moderate extension we set ε̇ = 1. For further explanation of
an extensional flow, we refer to Section 2.1.3 and Figure 2.6 on page 25. The significance of
extensional flows lies in the existence of an analytical solution for the steady state probability
density function ψ (cf. Section 2.3.5) since the velocity gradient κ is symmetric for extensional
flows.

Before we consider our numerical results, we concentrate on deriving the analytical solution.
For extensional flows, we do not only know the initial condition ψeq (2.85) of the density
function but also its steady state solution ψsol (2.91). Using the Kramers expression (4.13) we
compute the analytical solution τp

sol for process time t→∞ as

τp
sol =

1− β
Wi

(
b+ 4

b

)(
−Id +

∫
|~q|<
√
b
~q ⊗ ~q

1− ‖~q‖
2

b

ψext d~q︸ ︷︷ ︸
= 〈~q⊗ ~F (~q)〉 (i.e. expectation on a disc)

)
. (6.2)

Consequently, we insert the simulation parameters (cf. Table 6.1) into (6.2) and compute ref-
erence values for the three independent stress tensor components of τp

sol as

1. τ sol
xx ≈ 9.3724227777324

2. τ sol
yy ≈ −0.7297377607653

3. τ sol
xy = 0.0
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with zero shear stress components τ sol
xy = τ sol

yx . Obviously, the initial condition ψeq leads to zero
stress tensor values.

Fokker-Planck Equation

Using the spectral method approach from Section 4.1.2 for the Fokker-Planck equation, we
employ a set of parameters that we present in Table 6.1. As we decide for αJ = βJ = 0.0
as Gauss-Jacobi parameters, this implies that we use Legendre polynomials as basis functions
(cf. Chapter 3.2 on discretised FP equation for Gauss-Jacobi points). Furthermore, for time
integration of the Fokker-Planck scheme (4.17) we use an explicit, low-storage 3rd-order Runge-
Kutta method on the one hand or an implicit Crank-Nicolson method on the other hand (cf.
Algorithm 2 on page 93). Both approaches are applicable, but the explicit method requires
restrictions in time-step size. For more complex flow problems the time-step restriction for the
explicit scheme becomes too severe so that we have to use the implicit method. Therefore, we
use the 3rd-order Runge-Kutta method for the current extensional flow and the implicit ansatz
for the problems in Section 6.1.2 and Section 6.1.3.

Moderate Extensional Flow (Fokker-Planck)

Weissenberg number Wi 1.0
Newtonian viscosity β 0.0

Extensional rate ε̇ 1.0
Maximum spring extension b 10.0

Transformation factor s 2.0

Gauss-Jacobi
{ αJ 0.0

βJ 0.0

Spring force ~F (~q) FENE
Time Discretisation RK3rd

Time-step size (const.) ∆ t 10−5

Table 6.1: Parameters for two-dimensional extensional flow with moderate extensional rate.

As we only know initial and steady state values for ψ and τp, we cannot compare intermediate
values with an analytical solution. However, we expect a smooth evolution for τp since a
moderate extensional flow slowly leads to a preferred orientation of the dumbbells and elongates
the dumbbells in this direction. We present our results for the stress tensor development in
Figure 6.1. The figure contains the three independent stress tensor components as well as the
integral of ψ over the configuration space which yields 1.0 if ψ is a probability density function.
As ψ specifies the probability of a certain dumbbell orientation and therefore necessarily has
to be a density function, we use the computed result as an error indicator. For our simulations
we always obtain an integral of ψ that is equal to 1.0 with an accuracy of six significant digits
which emphasizes that spectral methods are appropriate for this problem.

The advantage of a spectral approach lies in its high accuracy which occurs after all essen-
tial structures of the unknown have been resolved. For illustration, we present the computed
steady state results (i.e. at t = 50s) for different polynomial orders NF and NR, i.e. for dif-
ferent degrees of freedom. Here, NR denotes the number of Gauss-Legendre quadrature points
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Figure 6.1: Numerical results for a planar extensional flow with extensional rate ε̇ = 1.0. The plot does
not only contain the three independent stress tensor components but also the integral of ψ
over the configuration space. We use the integral as an error indicator to prove that ψ is
still a probability density function (i.e. integral over ψ yields 1.0).

NF NR Computed result Relative error
∫
ψ d~q

3 7 9.4302870616314 6.2−3 1.000000
5 11 9.3727693397900 3.7−5 1.000000
7 15 9.3724237716453 1.1−7 1.000000
11 23 9.3724227773931 3.6−11 1.000000
15 31 9.3724227777387 6.7−13 1.000000

Table 6.2: The table presents the relative error and the computed results for the first stress tensor
component τxx in relation to the degrees of freedom (extensional flow with ε̇ = 1.0). The
plot of ψ over the configuration space yields 1.0 for all computations so that there does not
exist any additional error resulting from a violation of the normalisation property.

(η0, η1, . . . , ηNR) so that the corresponding Lagrange interpolation polynomials are of degree
NR (cf. Section 4.1.2). Furthermore, NF states the highest frequency for our real-valued Fourier
basis functions. As the solution is symmetric in the angular component φ, we only need half
of the trigonometric functions (i.e. the even ordered ones). Therefore, we choose NF to be half
of the size of NR and present our computed results for the first stress tensor component τxx
in Table 6.2. As mentioned before, the spectral approach is perfectly adapted to the problem
as it is described on a regular domain and its initial state and steady state are smooth (i.e.
ψeq, ψsol ∈ C∞(B√10(0))).

Subsequently, we analyse the evolution of the probability density function itself towards its
steady state (cf. Figure 6.2). We plot the density function by evaluating the basis system on
a Cartesian grid with 40 × 40 evaluation points. At the beginning, the dumbbells possess no
preferred orientation which results in an initial condition that does not depend on the angular
coordinate φ. Note that the initial condition ψeq (2.85) for the FENE spring force is not
Gaussian in contrast to the Hookean and FENE-P spring forces. Then the dumbbell system
evolves into a preferred orientation due to the stretching of the flow in one direction. As we
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can exchange both beads of the dumbbell or rotate the system by an angle of π and obtain the
same physical system, the solution also features this symmetry. After about t = 10, we further
note that the plot of ψ as well as the results for τp are close to their steady state and exhibit
only minor changes henceforth.

6.1.2 Strong Extensional Flow

Fokker-Planck Equation

We now consider an extensional flow with increased extensional rate ε̇ = 5.0. An increase in
ε̇ leads to a more challenging problem as the solution contains local regions with very high
gradients. If we used a finite difference or finite element scheme, this would necessitate an
adaptive discretisation ansatz that produces fine meshes at these regions or would otherwise
lead to very long computing times. On the contrary, our basis functions are defined globally so
that we can only increase the polynomial orders NF and NR. Accordingly, we have to apply
more polynomials to achieve an accurate solution in this case. Furthermore, we notice that
our problem features characteristics of a stiff equation as our 3rd-order Runge-Kutta scheme
becomes numerically unstable unless we choose small time-step sizes (in the order of 10−8).
Therefore, we decide for an implicit Crank-Nicolson scheme that only features a second-order
accuracy in time but allows the usage of higher time-step sizes. We present the parameters for
the strong extensional flow in Table 6.3.

Strong Extensional Flow (Fokker-Planck)

Weissenberg number Wi 1.0
Newtonian viscosity β 0.0

Extensional rate ε̇ 5.0
Maximum spring extension b 10.0

Transformation factor s 2.0

Gauss-Jacobi
{ αJ 0.0

βJ 0.0

Spring force ~F (~q) FENE
Time Discretisation CN2nd

Time-step size (const.) ∆ t 10−4

Table 6.3: Parameters for a two-dimensional extensional flow with strong extensional rate.

In an analogous manner as before, we calculate the analytical solutions for the stress tensor
components τxx, τyy, and τxy = τyx. Therefore, we insert the parameters of Table 6.3 into
the steady state solution ψsol for FENE spring forces (2.91) and evaluate the result using the
Kramers stress tensor relation (6.2). Then we obtain
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(a) t = 0.0 (equilibrium state) (b) t = 0.5

(c) t = 1.0 (d) t = 2.0

(e) t = 4.0 (f) t = 50.0 (steady state)

Figure 6.2: The figure illustrates the evolution of the probability density function ψ for a moderate
planar extensional flow with ε̇ = 1.0. In this case, ψ is defined on a disc with radius√

10 around the origin. We evaluate the basis system on a Cartesian grid with the area
[−
√

10,
√

10]×[−
√

10,
√

10] by using 40×40 evaluation points. The system evolves towards
a steady state that is known analytically.
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NF NR Computed result Relative error
∫
ψ d~q

7 15 156.0844321 2.8−1 1.000000
11 23 123.3704929 8.8−3 1.000000
13 27 122.4502169 1.3−3 1.000000
15 31 122.3131260 1.4−4 1.000000
23 47 122.2958174 2.5−9 1.000000

Table 6.4: The table shows the relative error and the computed results for the first stress tensor compon-
ent τxx compared to the degrees of freedom (extensional flow with ε̇ = 5.0). Interestingly,
even though coarse approximations yield results that are far away from the exact results,
they actually fulfil the normalisation property. After all essential structures of the unknown
are resolved, a spectral approach converges rapidly.

1. τ sol
xx ≈ 122.29581709311495

2. τ sol
yy ≈ −0.7040923275873284

3. τ sol
xy = 0.0

as analytical solution for τp. Consequently, in Table 6.4 we compare the computed results that
we achieve using a spectral approach with the analytical solution. We note that we need more
degrees of freedom to obtain the same relative error as for an extensional flow with ε̇ = 1.0.
We explain this effect due to a faster change of the dumbbells’ orientation as the fluid velocity
is strongly increased. Therefore, the stress tensor reaches its steady state value in a shorter
period of time as can be seen in Figure 6.4.

Moreover, a spectral approach offers the opportunity that the asymptotic error converges
with an order higher than any finite polynomial (spectral accuracy). We illustrate this by
plotting the relative error against the degrees of freedom in Figure 6.3. As we consider real-
valued sine and cosine functions, we obtain 2(NF + 1)(NR + 1) real degrees of freedom for
certain choices of NF and NR. We notice that our approach outperforms classical low-order
finite difference, finite element and finite volume schemes by far and achieves a superpolynomial
convergence rate.

At last, we illustrate the evolution of ψ in Figure 6.5 by plotting the density function at
different process times. Consequently, we decide for other time steps to plot ψ as the most
important changes take place directly after the simulation has started. As mentioned above,
the density function exhibits two localised regions with very high gradients. The physical in-
terpretation of this behaviour is that the dumbbells can take only one specific orientation if we
consider flow fields with high velocities. As the considered problem demands a high computa-
tional effort to be solved deterministically, we subsequently investigate the same problem with
a stochastic approach to be able to compare the characteristics of both approaches.
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Figure 6.3: The figure illustrates the relative error for a given number of degrees of freedom (i.e.
2(NF + 1)(NR + 1)) and compares the result with some typical orders of convergence that
are fitted through the first spectral error measurement and represent no actual computation.
As stated previously, spectral approaches achieve a high accuracy for comparatively few
degrees of freedom and outperform any methods with polynomial convergence rates in the
asymptotic.
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Figure 6.4: Numerical results for a planar extensional flow with extensional rate ε̇ = 5.0. In this case, in
comparison to the moderate extensional flow, we only plot the stress tensor components τxx
and τyy since τxy and the integral of ψ over the configuration space cannot be distinguished
from τyy in the chosen measure of the plot. The strong extensional flow results in fast stress
tensor changes within a short period of time.
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(a) t = 0.0 (equilibrium state) (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

(e) t = 0.5 (f) t = 20.0 (steady state)

Figure 6.5: The strong extensional flow with ε̇ = 5.0 reveals much stronger spatial gradients of ψ
compared to ε̇ = 1.0. Note that the density function takes a form close to its steady state
in a much shorter period of time (after t ≈ 1.0) and that we adapt the z-axis according to
the new shape of ψ. A physical interpretation of this occurrence is that the variance of the
dumbbells’ alignment is substantially reduced for stronger flow fields.
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Stochastic Partial Differential Equation

We subsequently present the results for an analogous computation using the stochastic method
described in Chapter 4.2. Now, in contrast to the deterministic approach, we do not model a
density function but describe the evolution of a discrete set of s = 1, . . . , Nf realisations for the
stochastic process. In Table 6.5 we present the parameters for a stochastic simulation which we
choose analogously to the parameters in Table 6.3. Note that we decide for a small time-step
size to be able to solely investigate the stochastic noise for a given number of realisations Nf

and do not catch an additional error in time. As our steady state approximations feature a
stochastic noise, we do not only present one specific stress tensor value of τxx but an arithmetic
mean over a time interval, i.e. we compute the expectation of τxx as

〈τxx〉 =
1

#M

∑
i∈M

τxx(ti) for M ≡ {tj |tj ≥ 2.0} . (6.3)

Strong Extensional Flow (Stochastic)

Weissenberg number Wi 1.0
Newtonian viscosity β 0.0

Extensional rate ε̇ 5.0
Maximum spring extension b 10.0

Spring force ~F ( ~Q) FENE
Time Discretisation Eu-Maruyama

Time-step size (const.) ∆ t 10−5

Table 6.5: Parameters for a two-dimensional extensional flow with strong extensional rate using a sto-
chastic approach.

We have decided to use an approximation after t = 2.0 as the stress tensor component τxx
only exhibits minor changes henceforth (cf. Figure 6.4). Furthermore, we calculate its variance
using the formula

Var(τxx) =
1

#M

∑
i∈M

(τxx(ti)− 〈τxx〉)2 for M ≡ {tj |tj ≥ 2.0} . (6.4)

In Table 6.6, we show the results for 〈τxx〉, Var(τxx) and the relative error in comparison
to the analytical solution that we have stated before depending on the number of stochastic
realisations Nf . We note that the variance of τxx depends linearly on Nf . On the contrary, the
error in τxx does not converge monotonically to zero but only in probability.

Next, we plot the evolution of τxx against the process time t for different numbers of stochastic
realisations Nf in Figure 6.6. Note that we plot our approximation for τxx at discrete intervals
∆t = 0.1 and not in agreement with the time-step size in Table 6.5. In accordance with Table
6.6, we observe that the more stochastic realisations we use the less oscillation occurs in the
stress tensor. On the contrary, the computation time also scales linearly with the number
of unknowns so that 106 approximations increase the computation time by a factor of 104 in
comparison with only 102 stochastic values.
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Realisations Nf 〈τxx〉 Rel. error 〈τxx〉 Var(τxx)

102 122.464877 1.4−3 44.83021
103 121.939040 2.9−3 4.588844
104 122.195037 8.2−4 0.467596
105 122.189977 8.6−4 0.046170
106 122.257581 3.1−4 0.003982

Table 6.6: The table illustrates the variance and relative error for τxx depending on the number of
stochastic realisations (extensional flow with ε̇ = 5.0). As stated before, the error does not
converge monotonically to zero as it only converges in probability. However, the variance of
the result depends on the number of realisations.
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Figure 6.6: The plot displays the evolution of τxx for an extensional flow (ε̇ = 5.0) in time using three
different coarse stochastic approaches. Obviously, the more stochastic realisations we use
the less stochastic noise appears in the plot. We do not present the graph using 105 or 106

realisations as it cannot be distinguished from the deterministic results in Figure 6.4.

Comparison of Both Approaches

We compare the advantages and disadvantages of both approaches in two space dimensions
with each other. A discretisation of the 2D Fokker-Planck equation using spectral methods

• allows computation of the analytical solution within machine accuracy,

• features a high order of convergence and

• is relatively cheap for its high accuracy.

A stochastic approach features the advantages that

• it is very cheap if only a coarse approximation is required and

• it is very robust with regard to the complexity of the problem.

Indeed, although we might have to adapt the time-step size for a stochastic method depending
on whether we compute a moderate flow with ε̇ = 1.0 or a strong flow with ε̇ = 5.0 we do not
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require any additional stochastic realisations to achieve numerically stable results regardless of
the complexity of the flow. On the contrary, for the spectral approach, the more complex the
flow problem, the more basis polynomials will be required. If we do not employ sufficient basis
functions, the deterministic scheme becomes numerically unstable.

Furthermore, the stochastic approach features a further advantage that becomes important
for high-dimensional configuration spaces. A three-dimensional configuration space implies a
three-dimensional Fokker-Planck equation for homogeneous (cf. (2.62)) and a six-dimensional
equation for transient flow fields (cf. (2.61)). Due to the complexity of the equation, a spectral
approach then becomes much more expensive in higher dimensions than for two dimensions. In
contrast, a stochastic method is also suited for problems with high-dimensional configuration
spaces. Therefore, from a specific dimension of the configuration space we have to rely on
stochastic approaches. As far as we know, it is a matter of current investigation whether a
deterministic Fokker-Planck approach is suited for dealing with general three-dimensional flow
fields or not.

6.1.3 Strong Shear Flow

In this section, we investigate homogeneous shear flows in the plane in which the velocity field
takes the form

~u = (γ̇y, 0) (6.5)

with γ̇ as shear rate. For further illustration of the flow field we refer to Section 2.1.3. In
contrast to homogeneous extensional flows, there exists no analytical solution for the density
function in this case but only a first order approximation in γ̇ (cf. (2.87)). However, since we
examine a shear flow using the same parameters as Chauvière et al. [20] and Knezevic [49], we
can compare the results for the time-dependent evolution of the stress tensor.

Fokker-Planck Equation

In Table 6.7 we list the parameters for the shear flow using the deterministic spectral approach
for the Fokker-Planck equation. As the shear rate γ̇ is comparatively high, we use more polyno-
mial basis functions and a small time-step size to achieve a numerically stable approximation.
In literature, the product “Wi γ̇“ is, ignoring a normalisation constant, often denoted as the
reduced shear rate (cf. Section 4.3.2 of Öttinger [66]).

In Figure 6.7 we illustrate the evolution of τxx, τxy and τyy using a discretisation with poly-
nomial order NF = 19 and NR = 39. Comparing our results with Chauvière et al. [20] and
Knezevic [49], we observe quite a good qualitative agreement in the evolution of τp. Further-
more, for the density function our approximation yields 1.0 within machine accuracy which
proves that our approximations fulfil the requirements of a probability density function for all
times.

Overshoots and undershoots of the fluid velocities and the stress tensor components are
typical for most viscoelastic flow problems. In Figure 6.7 we also observe that maximum
values for τxx, τxy, and τyy directly occur after the beginning of the calculation and decrease
subsequently. Actually, the maxima for the stress tensor components occur at different times.
First, τyy takes its maximum value at t ≈ 0.7 and afterwards τxy and τxx reach their maxima
at t ≈ 0.9 and t ≈ 1.5 respectively. Furthermore, there are more over- and undershoots of
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Strong Shear Flow (Fokker-Planck)

Weissenberg number Wi 1.0
Newtonian viscosity β 0.0

Shear rate γ̇ 10.0
Maximum spring extension b 150.0

Transformation factor s 2.0

Gauss-Jacobi
{ αJ 0.0

βJ 0.0

Spring force ~F (~q) FENE
Time Discretisation CN2nd

Time-step size (const.) ∆ t 10−4

Table 6.7: Parameters for a two-dimensional strong shear flow.

the stress tensor afterwards which are not visible in Figure 6.7 as the amplitude decays with
ongoing time. Interestingly, the second normal stress component τyy returns to its initial value
of zero with high accuracy. Since Chauvière et al. [20] and Knezevic [49] do not investigate the
evolution of τyy, we present our detailed analysis of |τyy| in Figure 6.8 without further proof.

Subsequently, we exhibit the time-dependent evolution of the probability density function in
Figure 6.9. For the shear flow we do not observe two separated peaks for the density function
but instead we note two maxima that are still connected with each other. Accordingly, a shear
flow orientates the dumbbells primarily and does not change their extension in the same way
as an extensional flow. In theory, the density function for a shear flow does not reach a steady
state value since it still exhibits oscillations which decay with ongoing time.

As the two-dimensional stochastic approach delivers the same results for the stress tensor
evolution as the Fokker-Planck method in Figure 6.7, we only apply stochastic techniques on
three-dimensional shear flows in Section 6.2.4.

As a conclusion, we have shown that a Fokker-Planck approach using spectral methods deliv-
ers approximations with high accuracy for two-dimensional flow problems. In the next chapter,
we concentrate on analogous problems that are defined on three-dimensional configuration
spaces.
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Figure 6.7: The plot shows the evolution of τxx, τxy, and τyy for a strong shear flow with shear rate
γ̇ = 10. For shear flows, we observe over- and undershoots in the stress tensor values, but
only the first overshoot is visible in the plot as the oscillations decay in time.

0 1 2 3 4 5 6 7 8 9 10 11 12

10−6

10−5

10−4

10−3

10−2

10−1

100

Time t

S
tr

es
s

co
m

p
on

en
t
|τ
y
y
|

|τyy|overshoot

undershoot

overshoot

Figure 6.8: The plot illustrates the absolute value of the stress tensor component τyy in a semilogar-
ithmic scale in detail so that we can observe the decaying oscillation around the initial value
of zero (cf. Figure 6.7). Since we consider |τyy| instead of simply τyy, we observe points
of discontinuity for the first derivative of the graph every time τyy changes its sign. After
t = 6.8 the values are undistinguishable to zero for the given accuracy.
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(a) t = 0.0 (equilibrium state) (b) t = 0.2

(c) t = 0.5 (d) t = 0.8

(e) t = 1.5 (maximum overshoot of τxx) (f) t = 12.0

Figure 6.9: The plot visualises the evolution of ψ for a strong shear flow (γ̇ = 10.0). Since the
maximum extension is b = 150 we plot ψ on a grid with area [−

√
150,
√

150]2. In contrast
to an extensional flow, we do not observe isolated peaks of the density function but instead
identify a wider support of ψ that connects the maximum values. We explain the result by
assuming that dumbbells primarily change their orientation in a shear flow instead of being
extended as in an extensional flow.
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6.2 3D Homogeneous Flows

In this chapter, we present our numerical approximation for three-dimensional, homogeneous
flow fields like extensional and shear flows using a stochastic approach (cf. Chapter 4.2). Unless
noted otherwise, we employ the nonlinear, multiscale FENE spring force for all our computa-
tions.

6.2.1 Extensional Flow with Different Spring Forces

We subsequently analyse uniaxial, three-dimensional extensional flows in the x-direction that
are described by a velocity field of the form

~u = (ε̇x,− ε̇
2
y,− ε̇

2
z) (6.6)

with ε̇ as extensional rate. The aim of this section is

• to investigate the accuracy of our three-dimensional stochastic schemes and

• to illustrate that the Hookean dumbbell/ Oldroyd-B and UCM model predict unrealistic
stress tensor values in this case.

For an illustration of an uniaxial extensional flow field we refer to Figure 2.6 in Section 2.1.3
where we further describe the characteristics of extensional flows.

Apart from that, we set ε̇ = 1.0 and Weissenberg number Wi = 0.5 for all spring forces that
we investigate in this section. This choice will become clear when we examine the Hookean
dumbbell model. Furthermore, the analytical results for the FENE and the Hookean spring
forces are known so that we are able to analyse the error for these models.

FENE Spring Force

Analogously to the two-dimensional case, we insert the steady state solution ψeq (2.85) into
the Kramers expression (4.13) which takes the form

τp
sol =

1− β
Wi

(
b+ 5

b

)(
−Id +

∫
|~q|<
√
b
~q ⊗ ~q

1− ‖~q‖
2

b

ψext d~q

)
(6.7)

in three dimensions. Note that we have to evaluate the integral in (6.7) over a sphere with
radius

√
b in contrast to the integration over a disc in (6.2); note further that the 3D Kramers

expression features slightly different coefficients as its 2D analogon. Inserting the parameters
of Table 6.8 into (6.7) yields
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1. τ sol
xx ≈ 4.024546,

2. τ sol
yy ≈ −0.741848,

3. τ sol
zz ≈ −0.741848,

4. zero for all shear stresses

as analytical solutions for the stress tensor components.

Extensional Flow (Stochastic)

Weissenberg number Wi 0.5
Newtonian viscosity β 0.0

Extensional rate ε̇ 1.0
Maximum spring extension b 10.0

Time Discretisation Eu-Maruyama
Time-step size (const.) ∆ t 10−3

Table 6.8: Parameters for a three-dimensional extensional flow using a stochastic approach.

Table 6.9 presents our numerical approximations for the expectation 〈τxx〉 and the variance
Var(τxx) of τxx using formulae (6.3) and (6.4) for all ti ∈M ≡ {tj |tj ≥ 3.0}. We have chosen to
employ all computed stress tensor values at t ≥ 3.0 for the computation of 〈τxx〉 and Var(τxx)
since the stress tensor has reached a value close to its steady state result henceforward (cf. Figure
6.10). Furthermore, from Table 6.9 we conclude that an increase in stochastic realisations
s = 1, . . . , Nf primarily reduces the variance of the expectation 〈τxx〉 but increases the accuracy
of the approximation very slowly in the order of O(N−0.5

f ).

Interestingly, the other spring force models predict differing results for the same flow para-
meters as in Table 6.8 which we will analyse subsequently.

Realisations Nf 〈τxx〉 Rel. error 〈τxx〉 Var(τxx)

102 3.974353 1.2−2 1.233224
103 4.066180 1.0−2 0.108274
104 4.039051 3.6−3 0.010986
105 4.028225 9.1−4 0.001220
106 4.026106 3.9−4 0.000118

Table 6.9: The table displays the relative error and the variance for the first stress tensor component
in a 3D extensional flow with a FENE spring force. On the one hand, we conclude that the
variance decreases in the order of O(N−1f ) but on the other hand the relative error only

decreases with an order of O(N−0.5f ).
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Figure 6.10: The plot illustrates the development of the stress tensor components for a 3D extensional
flow with a FENE spring force. Interestingly, the stress tensor for the FENE spring force
reaches finite steady state values in contrast to the Hookean dumbbell model which pre-
dicts an infinite first stress tensor component τxx for the same flow parameters (cf. Figure
6.11).

Hookean Spring Force

We now consider the analogous extensional flow problem for a linear Hookean spring model.
First, we are interested in deriving steady state values for the stress tensor so that we can
compare our approximations with an analytical solution. For a Hookean dumbbell fluid we
do not have to consider the probability density function in the extensional flow case, because
there exist analytical solutions for the equivalent macroscopic UCM (i.e. β = 0) and Oldroyd-B
models (i.e. β ∈ (0, 1)). Since we have already discussed the results in formulae (2.35) and
(2.36) of Section 2.2.2 for the Oldroyd-B case, we only present the major results for β = 0
which are

τxx =
2 ε̇

1− 2Wi ε̇
, τyy = τzz = − ε̇

1 + Wi ε̇
(6.8)

and zero for all other tensor components. If we insert the parameters of Table 6.8 into equation
(6.8), we obtain τyy = τzz = 2

3 but an infinite first stress tensor component τxx as its denomin-
ator becomes zero. We confirm this result in Figure 6.11 in which we match our approximation
of τxx for the Hookean dumbbell with the previous results for the FENE dumbbell. Although
we achieve the analytical results for τyy and τzz from (6.8), we skip them in Figure 6.11, because
we intend to explain the unrealistic results of the Hookean model for τxx.

In addition to the results in Figure 6.11, we have computed Hookean first stress tensor
approximations for process times t > 12 and further observe a continuous increase of τxx. In
Chapter 2.3 we have already given a micromolecular interpretation as the Hookean dumbbell
model is not restricted in its length. Due to the constant stretching in an extensional flow
the Hookean spring becomes more and more extended so that the stress grows continuously.
Therefore, only the restriction in length prevents the peaks of the 2D density function in Figure
6.5 to move more and more from the origin.

Furthermore, in Figure 6.11 we observe another difference between the FENE and the
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Figure 6.11: The plot compares the first stress tensor component τxx (FENE) from Figure 6.10 with
the results for a Hookean spring in the case of a 3D extensional flow. We observe that
τxx is unbounded for Hookean dumbbells and because of that the model is unsuited for
the description of extensional flows. Furthermore, we note that the FENE model exhibits
a quicker response on a sudden force as its stress tensor exhibits a steeper increase for
0 ≤ t ≤ 0.8.

Hookean spring. Although the FENE spring force predicts much lower (i.e. finite) first stress
tensor values, it shows a much quicker response to a sudden force which can be seen at initial
time 0 ≤ t ≤ 0.8 in Figure 6.11 where the predicted FENE stress exceeds the Hookean stress
values.

FENE-P Spring Force

At last, we investigate the difference between the original FENE spring force on the one hand
and one of its closure approximations, the FENE-P closure, on the other hand. The aim of
the FENE-Peterlin spring force (2.79) is to convey the advantages of the exact micromolecular
FENE model into a macroscopic constitutive equation (cf. Section 2.3.6). Accordingly, any
differences between both models are the result of a poor approximation of the FENE model by
the closure approximation.

In Figure 6.12, we compare the predictions of the FENE and FENE-P model for the first
and second stress tensor components τxx and τyy with each other. We note that the FENE-P
closure tends to overestimate the FENE amplitudes. For this reason, the FENE-P approach
predicts higher stress tensor values than the FENE model. Again, we explain this effect by
a micromolecular interpretation. As the FENE-P model only restricts the average of all con-

figurations
〈
~q 2
〉1/2

by
√
b this does not prevent the existence of configurations whose length

exceeds
√
b. However, the FENE-P model actually restricts the stress tensor to finite steady

state results so that the FENE-P model delivers at least better results than the Oldroyd-B
model for extensional flows.
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Figure 6.12: The figure compares the first and second normal stress tensor values predicted by the
FENE and the FENE-P dumbbell model. As the predictions for τzz are indistinguishable
from the values for τyy in both models and as all other stress components are zero, we
do not present them in the figure. We note that the FENE-P closure overestimates the
stresses as it restricts only the average dumbbell configuration vector by

√
b which still

allows several configurations to remain outside of the sphere.

6.2.2 Reconstruction of 3D Density Function

One important difference between the Fokker-Planck approach and the stochastic techniques is
that the Monte Carlo method does not consider a density function ψ at all but instead evolves
a random variable that is distributed according to ψ. Consequently, as we use a stochastic
method, we have to develop density recovering techniques so that we can present plots of the
density function as shown in Figure 6.2, Figure 6.5, and Figure 6.9. Note that we reconstruct
the probability density function only to illustrate that the stochastic realisations are actually
distributed according to ψ. For viscoelastic computation we only need results for the stress
tensor τp while ψ is no variable of interest.

In this section we present

• a reconstruction of the density function ψ by analysing the distribution of ~Qt and

• a finite difference ansatz for the Fokker-Planck equation (cf. Chapter 3.1) that yields
quantitative information for ψ.

In both cases, we consider a moderate uniaxial 3D extensional flow that is similar to the 2D
case in Table 6.1 (i.e. ε̇ = 1.0, Wi = 1.0, b = 10.0). Hence, we are able to compare the results
in this section with Figure 6.2 for the 2D probability density function.

Density Recovering

Our ansatz for recovering the probability density function from the stochastic process ~Qt is
based on subdividing the computational domain into cells, counting the number of stochastic
realisations in each grid cell and then calculating the percentage of realisations in each sub-
domain cell. As the obtained density function ψ : D ⊂ R3 → R

+ is difficult to visualise, we
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(a) Equilibrium state (stochastic) (b) Steady state (stochastic)

(c) Equilibrium state (exact) (d) Steady state (exact)

Figure 6.13: The figure presents a two-dimensional cut through the 3D density function on the sphere.
Altogether we employ 105 stochastic realisations, but only a few thousand are used for the
density functions in (a) and (b) so that the approximation only reconstructs the coarse
shape of the exact solutions (c) and (d). Nevertheless, we can prove that the stochastic
realisations are actually distributed according to ψ.

restrict our results to the density values on the x-y-plane z = 0. In Figure 6.13 we compare
the reconstructed density functions for 105 realisations on the whole sphere with the analytical
solutions for the equilibrium and the steady state density function (2.85) and (2.91).

The applied density approximation reproduces a very coarse shape of ψ, because only a few
thousand realisations on the sphere actually contribute information for the density function at
z = 0. Furthermore, as we employ a histogram scheme for the reconstruction of ψ, we introduce
an additional error depending on the size of a histogram cell. Nevertheless, we can prove that
the stochastic realisations are actually distributed according to ψ.

Deterministic Finite Difference Approach

In Chapter 3.1 we have considered an ansatz using finite differences for the discretisation of the
3D Fokker-Planck equation defined on B√b(0) ⊂ [−

√
b,
√
b]3. Although this approach is not

suited to compute exact steady state stress tensor values, it delivers a noise-free approximation
of the density function ψ in contrast to the stochastic method that we use in Figure 6.13. We
employ the same parameters as before and present the evolution of ψ with 2003 gird points at
discrete process times t = 0, t = 1, t = 2, and t = 5 in Figure 6.14 and Figure 6.15. Here, we
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Euler-Maruyama Euler-Maruyama with reduction

Nf 〈τxx〉 Relative error Var(τxx)
〈
τ vxx

〉
Relative error Var(τ vxx)

102 3.974353 1.2−2 1.233224 3.991044 8.3−3 0.494604
103 4.066180 1.0−2 0.108274 4.050090 6.3−3 0.046528
104 4.039051 3.6−3 0.010986 4.030791 1.6−3 0.004472
105 4.028225 9.1−4 0.001220 4.025878 3.3−4 0.000511
106 4.026106 3.9−4 0.000118 4.026851 5.7−4 0.000040

Table 6.10: For an extensional flow, we observe that an equilibrium control variate reduces the variance
by about 60 percent. Furthermore, the accuracy of the stress tensor approximation 〈τvxx〉
also seems to be improved, but this cannot be stated precisely as the error does not decay
monotonically. In the case of a homogeneous flow field with one stochastic process in total
an equilibrium control variate roughly doubles the computational cost. Nevertheless, for
non-homogeneous flow fields with thousands of stochastic processes the additional cost for
a control variate is negligible.

consider three different slices through the origin that are defined by x = 0, y = 0, and z = 0.

As a result, we discover that not only the equilibrium condition (2.85) and the steady state
solution (2.91) possess a symmetry around the x-axis, but also all intermediate values for the
density function ψ in 3D feature this symmetry. Consequently, our plots for the x-y plane (i.e.
z = 0) and the x-z plane (i.e. y = 0) are indistinguishable from each other. Furthermore, the
y-z plane (i.e. x = 0) in Figure 6.15 illustrates that the density function is stretched towards
the positive and negative x-axis so that the probability of having small dumbbell extensions
reduces with ongoing time.

6.2.3 Variance Reduced Extensional Flow

In Section 4.2.3 we have introduced the basic concepts of variance reduction for stochastic
simulations. A common approach in polymeric simulations is the usage of an equilibrium
control variate which evolves a second stochastic process in time by applying the same diffusive
noise and the same spring force on the system but omitting the influence of the velocity field
~u (cf. Section 4.2.3).

In the following section, we investigate the success of an equilibrium control variate for an
extensional flow with the same parameters as in Table 6.8. We present the variance reduced
results in Table 6.10 where we compare the approximations for the Euler-Maruyama scheme
from Table 6.9 with the approximations using a variance reduced Euler-Maruyama method.
Indeed, the equilibrium variate reduces the variance of our approximation by about 60 percent
and also seems to increase the accuracy which we achieve for the expectation 〈τxx〉.

For a homogeneous flow field an equilibrium control variate doubles the cost as we now
have to evolve two stochastic processes in time. As the variance for ~Qt scales linearly with
Nf , we could also halve the variance by just using 2Nf realisations for ~Qt without using a
control variate. Nevertheless, for a non-homogeneous flow field (i.e. we additionally have to
solve the Navier-Stokes equations) the computational cost for an equilibrium control variate is
negligible, because we can reuse one equilibrium control variate for all grid cells in which we
have to compute a stochastic process. If we could reduce the stochastic noise only by several
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(a) t = 0.0 (plane z=0) (b) t = 1.0 (plane z=0)

(c) t = 2.0 (plane z=0) (d) t = 5.0 (plane z=0)

(e) t = 0.0 (plane y=0) (f) t = 1.0 (plane y=0)

Figure 6.14: Figures (a) to (d) present density values for the x-y plane through the origin which are
identical to results for the x-z plane in (e) and (f) and the results (a) and (b) in Figure
6.15.
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(a) t = 2.0 (plane y=0) (b) t = 5.0 (plane y=0)

(c) t = 0.0 (plane x=0) (d) t = 1.0 (plane x=0)

(e) t = 2.0 (plane x=0) (f) t = 5.0 (plane x=0)

Figure 6.15: Figures (a) and (b) continue the 3D density function results (e) and (f) from Figure 6.14.
Furthermore, in (c) to (f) we illustrate density values for the y-z plane through the origin.
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Figure 6.16: The figure compares the stochastic noise between two coarse approximations of the sto-
chastic process in the extensional flow case where one approximation uses an equilibrium
control variate and the other one does not. Furthermore, we add the plot for the equilib-
rium control variate (stochastic noise) which performs oscillations around the zero stress
tensor value. Since the exact solution for τxx is approximately 4.02 (cf. Section 6.2.1),
we note that the approximations of “τxx (reduced)“ are actually better than without any
reduction.

percent in the non-homogeneous flow case, this would nevertheless be useful, as any decrease
in the number of realisations Nf actually saves computing time. Unfortunately, an equilibrium
control variate does not generally reduce the variance of our stochastic approach so that one
has to consider whether to use it for transient flow solvers (cf. Section 4.2.3).

For illustration, we visualise the effect of an equilibrium control variate in Figure 6.16 for
a simulation with only Nf = 100 realisations so that the effect of variance reduction becomes
obvious. As the exact result for the stochastic noise term which we simulate by the control
variate is zero, we expect these disturbances to also appear for the stochastic process ~Qt.
Consequently, we subtract these deviations from the original approximation for τxx and obtain
a variance reduced result.

6.2.4 Shear Flow with Different Spring Forces

The last homogeneous flow example considers a three-dimensional shear flow with the same
parameters as in the two-dimensional case since the 3D shear flow takes place in the x-y plane
(cf. Table 6.11), i.e. we analyse a flow field of the form

~u = (γ̇y, 0, 0) . (6.9)

Additionally, we employ a stochastic approach and compare the 3D shear flow results that are
predicted by the FENE, the Hookean, and the FENE-P spring force. Again, we present the
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parameters for simulation in Table 6.11.

Shear Flow (Stochastic)

Weissenberg number Wi 1.0
Newtonian viscosity β 0.0

Shear rate γ̇ 10.0
Maximum spring extension b 150.0

Time Discretisation Eu-Maruyama
Time-step size (const.) ∆ t 10−4

Realisations Nf 5 · 104

Table 6.11: Parameters for a three-dimensional strong shear flow using a stochastic approach.

In Figure 6.17 we illustrate the evolution of the stress tensor components τxx and τxy for
all considered spring forces models (i.e. FENE, Hooke, FENE-P) by using Nf = 5 · 104 sto-
chastic realisations. Similar to the 2D shear flow, the Hookean dumbbell model predicts more
pronounced stresses which can be explained by considering that the dumbbells are not re-
stricted in length. On the contrary, we have chosen a comparatively high maximum spring
extension b = 150 in Table 6.11 so that the FENE and FENE-P models are not as strongly
restricted in length as in the extensional flow case, but they still predict lower values than the
Hookean model. Furthermore, we observe that the FENE-P closure only recovers the major
characteristics of the FENE spring but not its actual stress tensor values.

If we compare the steady state results (not the complete plot) for the FENE spring in Figure
6.17 with the analogous 2D FENE results in Figure 6.7, we note that the final values are quite
similar. Indeed, they are nearly indistinguishable in certain parameter ranges. Fan [29] states
that the 2D shear flow is a very good approximation to the 3D case for reduced shear rate
Wi γ̇ ≈ 4 or less. Although we consider a shear flow with a reduced shear rate Wi γ̇ = 10,
at least the steady state values still seem to be comparable with the 2D case. Chauvière et
al. [20] have compared the 2D and 3D steady state values for τxy (exactly the shear viscosity
η(γ̇) (2.12) that depends on τxy) depending on the product Wi γ̇. They have found only small
steady state differences as long as Wi γ̇ ≤ 10. As a result, we note that the 2D shear flow
yields similar results to the 3D flow and is suited as a more or less coarse 3D approximation to
reduce computing time.

6.2.5 The High Weissenberg Number Problem

So far we have considered moderate Weissenberg numbers (Wi ≈ 1) for the FENE spring force
model. Since the beginning of viscoelastic fluid simulation in the 1970’s, it was observed by
all researchers that simulations of viscolelastic flows fail beyond a critical Weissenberg number
Wicrit. The problem is normally denoted as high Weissenberg number problem (HWNP) in
literature. The occurrence of instabilities at Wicrit is caused either by the mathematical model
itself or by numerical approximation errors. For a detailed description of the problem we refer
to Chapter 7 of Owens and Phillips [68] and an article from Keunings [47].

Due to the nonlinearity of the governing equations, there exists no general theory on exist-
ence and uniqueness results in mathematical modelling of viscoelastic flows. One the contrary,
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Figure 6.17: The plot visualises the stress components τxx and τxy for three different spring forces in
a homogeneous 3D shear flow. Again, we note that the values for the first stress tensor
components differ strongly between each spring force and we presume that the FENE
spring actually delivers the best approximations of a real polymeric fluid.

the limiting factor in most situations is the numerical method. Van Heel [89] observed that a
multiscale BCF method (cf. Chapter 6.3) allows the solution of complex flow problems with
Wi > 1.0 which can not be simulated adequately by macroscopic constitutive equations. Con-
sequently, since multiscale models incorporate more relevant aspects of physics, they seem to
be more robust regarding to the HWNP.

In Figure 6.18 we once again discuss a 3D shear flow with a FENE spring force. We employ
the same parameters as in Table 6.11 except for the chosen Weissenberg number which we
vary between Wi = 1 and Wi = 10. Obviously, an increase in the Weissenberg number
leads to a more pronounced first stress tensor amplitude and a stronger decline afterwards.
Despite the higher complexity of the problem, the stochastic approach does not require an
additional computational effort. This is a further advantage of the stochastic description over
a deterministic calculation.

Since we observe an adequate description of homogeneous shear flows even for high Weissen-
berg numbers, this might also lead to a better description of transient flow fields that we will
investigate subsequently. In Chapter 6.3 we employ our stochastic BCF method for transient
flows with Weissenberg numbers up to 1.0. Due to our experiences with homogeneous flow
calculations, we also expect correct stress tensor predictions for our multiscale flow solver even
for high Weissenberg numbers. However, since the occurrence of over- and undershoots in the
stress tensor results leads to similar effects for the fluid velocities (cf. Section 6.3.2), it has to
be further investigated in future whether a flow solver like NaSt3DGPF [2] can cope with such
increased oscillations in the velocity field.
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Figure 6.18: The figure shows the τxx stress component for a shear flow with the parameters from
Table 6.11 except for the Weissenberg number which we vary from 1.0 to 10.0. Depending
on the Weissenberg number, the stress tensor overshoots are strongly increased in size.
Furthermore, despite the increased complexity of the problem, our stochastic scheme does
not increase the computational effort or the number of stochastic realisations in contrast
to a deterministic approach for the Fokker-Planck equation.
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6.3 3D Multiscale Flows

This chapter contains the multiscale flow results using the three-dimensional flow solver NaSt-
3DGPF [2] for approximating the Navier-Stokes equations on the one hand and a stochastic
Brownian Configuration Field (BCF) method for solving the nonlinear FENE spring force
equation one the other hand. Further information can be found in Chapter 5 where we describe
the coupling between the corresponding equations.

Altogether, we discuss four coupled flow problems which are

• an uniaxial extensional flow,

• a flow through an infinite channel,

• a 4-1 contraction flow, and

• a flow around a sphere.

We validate our implementation by comparing the stress tensor predictions for the extensional
flow with analytical predictions for the corresponding flow field. Furthermore, we compare
our results for the 4-1 contraction flow and the flow around a sphere with similar experiments
in literature (cf. Knezevic [50]) since both flow fields are considered as model problems for
viscoelastic flows. Additionally, we show the equivalence between the macroscopic Oldroyd-B
model and the micromolecular Hookean dumbbell model.

6.3.1 Uniaxial Extensional Flow

First, we start with an analysis of the differences between the extensional flow for a coupled
multiscale model as considered in this chapter and an analogue homogeneous 3D flow problem
in Chapter 6.2. Theoretically, both approaches deliver the same results. However, in the
homogeneous case of Chapter 6.2 we employ the prescribed velocity field

~u(~x) = (ε̇x,− ε̇
2
y,− ε̇

2
z), ~x ∈ Ω, ε̇ ∈ R (6.10)

in all time-steps and we are aware that we only have to solve a reduced, ~x-independent equation
(cf. (2.68))

d~Qt =

(
κ ~Qt −

1

2Wi
~F ( ~Qt)

)
dt +

√
1

Wi
d ~Wt. (6.11)

Now, we disregard these simplifications and concentrate on the complete six-dimensional
equation (cf. (2.67))

d~Qt(~x) =

(
−~u(~x, t)∇ ~Qt(~x) +

(
∇~u(~x, t)

)
~Qt(~x) − 1

2Wi
~F ( ~Qt(~x))

)
dt +

√
1

Wi
d ~Wt (6.12)

that we discretise by using a Brownian Configuration Field approach (cf. Chapter 5). Here, we
set a prescribed number of Nf configuration fields in every grid cell of physical space Ω and
solve the ~x-dependent stochastic equation (6.12). The stress tensor values obtained from (6.12)
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and the Kramers expression (5.4) are then incorporated into the Navier-Stokes equations (5.1)
and (5.2) which hopefully return the extensional flow field (6.10).

Obviously, the approach in this section is much more challenging as

• we have to solve a stochastic equation for every grid cell of our computational domain Ω
which is far more expensive than in the homogeneous flow field case and

• we do not prescribe the velocity field analytically but employ velocity field values that
are actually computed numerically.

Nevertheless, we simulate an uniaxial extensional flow for the coupled Navier-Stokes-BCF sys-
tem (5.1) - (5.4) since this validates the correctness of our implementation. Furthermore, this
is an example of a flow field in which simple approaches (e.g. Oldroyd-B, Hookean dumbbell
model) deliver wrong results.

Problem Description

We perform all simulations in this section on a cubical domain illustrated in Figure 6.19. Here,
we have transformed the domain from [0, 2]3 onto [−1, 1]3 so that the extensional flow field can
be used in the form of (6.10). Note that the domain possesses four inflow boundaries where two
of them lie normal to the y-direction and the other two lie normal to the z-axis. Consequently,
the outflow domain is orthogonal to the x-axis. The velocity field is illustrated in Figure 6.19
with twenty steamtraces that represent the path of a particle under the current flow field.

We employ Dirichlet boundary conditions at the inflow domain given by (6.10) but set
homogeneous Neumann boundary conditions at the outflow domain. Indeed, we could also
use Dirichlet boundary conditions at the outflow domain, but if the non-Newtonian stress led
to oscillations in the velocity field this would cause numerical instabilities. For the discrete
velocity field and the Brownian configuration fields we apply the initial conditions

• ~u0(xi, yj , zk) = (xi,−0.5 yj ,−0.5 zk) for i, j, k = 1, . . . , 50 grid cells,

• ~Q
0,(s)
i,j,k ∼ ψeq︸︷︷︸

indep
from i,j,k

for s = 1, . . . , 8000 realisations.

Moreover, in Table 6.12 we present the common parameters for all three viscoelastic models
(i.e. FENE, Hooke, FENE-P). A Newtonian simulation uses the same parameters except for
β which is equal to one for Newtonian simulations and Wi and Nf which are omitted as no
non-Newtonian stress tensor is computed.

Newtonian simulation

An extensional flow which uses the prescribed velocity field (6.10) as initial condition is rather
uninteresting for purely Newtonian calculations (i.e. β = 1), because the initial condition is
already the solution of the problem. Consequently, the iterative solver for the pressure Poisson
problem that appears in the Chorin scheme in Chapter 5.3 only requires one step to solve the
linear system of equations. Therefore, we obtain the same result as illustrated in Figure 6.19
for all times.
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Figure 6.19: We investigate the extensional flow field on a cube [−1, 1]3 with a discretisation using 50
grid cells in each coordinate direction and Nf = 8000 realisations per cell which leads to
503 ·Nf = 109 configuration fields in total. According to (6.10) we set Dirichlet conditions
in direction of the y- and the z-axis whereas we apply homogeneous Neumann boundary
conditions at the faces normal to the x-direction. For illustration, we have displayed twenty
steamtraces to visualise the velocity field within the cube.

FENE Spring Force

Once again, we first investigate the nonlinear FENE model with maximum extension b = 10,
as it represents the only purely multiscale model without a macroscopic equivalence. In an
analogous manner as in Section 6.2.1, we compute steady state stress tensor values for an
ideal extensional flow by inserting the parameters from Table 6.12 and the steady state density
function ψeq (2.85) into the Kramers expression (6.7) and obtain

1. τ sol
xx ≈ 3.984,

2. τ sol
yy ≈ −0.734,

3. τ sol
zz ≈ −0.734,

4. zero for all shear stresses.

We note that the results are slightly different to the values in Section 6.2.1 as we now in-
corporate the viscosity of a Newtonian fluid represented by β = 0.01 > 0. Nevertheless, the
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3D Extensional Flow (Navier-Stokes-BCF)

Grid resolution 503 cells
Physical domain [−1, 1]3

Simulation time tmax 7.0
Reynolds number Re 200

Newtonian viscosity β 0.01
Weissenberg number Wi 0.5

Extensional rate ε̇ 1.0
Realisations per cell Nf 8000

Maximum spring extension b (FENE) 10.0
Time Discretisation Explicit (Chorin)
Convective Terms Quick

Table 6.12: The table contains the parameters for a 3D multiscale extensional flow using one of three
different spring force models (FENE, Hooke, FENE-P). For a purely Newtonian simulation
we omit the parameters Wi and Nf and set β = 1.

Newtonian viscosity only contributes one percent to the total viscosity of the fluid so that the
fluid behaviour is essentially non-Newtonian.

One aspect that is not intuitively clear is the development of the velocity field ~u in the
viscoelastic case. For the Newtonian case, we have stated that the initial velocity field is
already the solution of the flow problem. This is also the case for the non-Newtonian flow
field even though the system indicates stress because of stretching in one direction. Despite
an increase in the stress tensor field, the velocity field remains unchanged in theory as the
polymeric stress acts on the momentum equations (5.1) only via its divergence. Since the
stress should evolve uniformly in each of the 503 grid cells the polymeric stress tensor field is
divergenceless for an extensional flow. On the contrary, if our coupled system exhibited spatial
differences for the stress tensor field this would result in oscillations for the velocity field so
that the extensional flow is disturbed. By indicating that the stress tensor components evolve
according to analytical results we show that this problem does not occur.

Apart from the problem to assure that the velocity field fulfils the analytical values for
an extensional flow field (6.10) for all time there occurs an additional problem caused by an
increase in computation time. As we simulate the extensional flow on a grid using 50 cells in
each direction, we have to solve a stochastic differential equation with 503 positions ~x in physical
space Ω to obtain 503 stress tensor values τp(~x) and therefore have to restrict the number of
configuration fields or stochastic realisations Nf per cell. Actually, even by using a massively
parallel computer we restrict the number of realisations per cellNf to 8000 in Table 6.12, leading
to 503 · Nf = 109 stochastic realisations on the whole domain, as more configuration fields
become too expensive. Nevertheless, in literature we note that two-dimensional computations
do not apply more than 2000 configuration fields per cell which, for instance, can be seen in a
current article from Vargas, Manero and Phillips [90]. Although this results in a rather coarse
approximation of the stress tensor in every grid cell, the coupled system is numerically stable
which we will illustrate subsequently.
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Figure 6.20: The plot presents the stress tensor development at the centre of the cube (i.e. x = y =
z = 0). We observe small deviations for the stress tensor component τxx from the steady
state results. A reason for this can be found by analysing the velocity values at the centre
which hold the prescribed values not exactly and exhibit small deviations. Furthermore,
as we employ Nf = 8000 configuration fields in each of the 503, the accuracy is restricted
in every cell.

As mentioned previously, for this problem we compute i = 1, . . . , 503 stress tensor values
τp(xi) with six independent components altogether but all 503 results shall be absolutely equal.
Therefore, we first present the stress tensor development for one grid cell, compare the result
with the analytical steady state values and then analyse the spatial differences between each
cell. In Figure 6.20 we measure the stress tensor components τxx, τyy, and τzz at the origin of the
cube, i.e. at the coordinates x = y = z = 0 in physical space Ω. Additionally, we have marked
the steady state stress tensor values that we expect for an ideal extensional flow. We observe
that the stress tensor components τyy and τzz approximate the exact values restricted by the
stochastic accuracy for Nf = 8000 stochastic realisations in each grid cell. On the contrary,
we discover small overpredictions for the stress tensor component τxx for 2.5 ≤ t ≤ 4.5 that we
can explain by analysing the velocity field values.

Since we apply extensional flow field values (6.10) as initial condition, the velocity field at
(x, y, z) = (0.5, 0, 0) is initialised with ~u = (u, v, w) = (0.5, 0, 0). Consequently, any deviation
from these values results in an error for the velocity field at (0.5, 0, 0). In Figure 6.21 we
present the relative error of the first velocity component u in a semilogarithmic scale with
u∗ = 0.5 as exact solution. We note that u does not keep the initial value of 0.5 exactly but
performs small oscillations in the order of O(10−4) around this value. Accordingly, we presume
that there is a mutual dependency between small differences in the stress tensor component
τxx and the velocity component u because the stress tensor only reaches its analytical steady
state results for exact velocity values and vice versa. We have further added the steady state
error (i.e. for t ≥ 2.0) for τxx at this point to allow a comparison between fluid velocity and
stress tensor computation. As expected, the relative error in the velocity field is reduced by a
factor of 100 compared to the error in τxx.
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Figure 6.21: The figure compares the relative error in u with the error τxx at the grid point (0.5, 0, 0).
We observe that stochastic noise in the stress tensor also leads to oscillations in u which are
much reduced in size. Therefore, the accuracy in u is comparatively high considering that
we include a stochastic term in the momentum equations. This underlines the advantage
of a BCF approach (cf. Chapter 5.2) which applies a stochastic noise that is uniform in
physical space Ω (cf. Figure 6.22). Note that we plot the relative error for τxx at t ≥ 2.0
when the stress has reached its steady state value.

Next, we investigate the spatial differences between stress tensor values in adjacent cells. The
global velocity field is undisturbed only if the stress tensor values in each cell evolve uniformly
so that ∇ · τp is equal to zero in the momentum equations. As the stress for the considered
problem evolves primarily in the τxx-component, we illustrate its development on a plane x = 0
in Figure 6.22 (a) and (b) for t = 2.0 and t = 6.0. We further include two figures for a Hookean
dumbbell computation in Figure 6.22 (c) and (d) which we will discuss in the next section.

We determine that the stress tensor for the FENE spring in Figure 6.22 (a) and (b) exhibits
slightly different values when we compare the cell centre with the boundary regions. A com-
parison with other cuts through the cube reveals that τxx features small deviations between
the inflow boundary and the central region as well as the outflow boundary. We presume that
the velocity field close to the inflow boundary follows the exact extensional flow values more
closely as we apply Dirichlet boundary conditions there. Indeed, we observe that the stress
tensor close to the inflow boundary matches the exact steady state value within the stochastic
accuracy.

Nevertheless, the stress tensor varies smoothly between adjacent cells which underlines the
advantages of a BCF approach over a CONNFFESSIT ansatz (cf. Chapter 5.2). If we used
the original CONNFFESSIT method, we would have observed wild spatial fluctuations of the
stress tensor. These oscillations are more critical for the stability of the algorithm than minor
differences in τxx. Consequently, ∇·τp is also smooth between different grid cells which explains
the lower error in the velocity component ~u in comparison to the stress tensor. As our major
variables of interest are the fluid parameters ~u and p, we conclude that our Navier-Stokes-BCF
system is appropriate for the simulation of a multiscale viscoelastic fluid.



6.3 3D Multiscale Flows 165

(a) FENE spring at t = 2.0 (plane x=0) (b) FENE spring at t = 6.0 (plane x=0)

(c) Hookean spring at t = 6.0 (plane x=0) (d) Hookean spring at t = 18.0 (plane x=0)

Figure 6.22: The figure presents stress tensor values for the FENE model in (a) and (b) as well as
for the Hookean dumbbell system in (c) and (d). Smooth spatial variation in the stress
tensor τp is essential for the accuracy of ~u and the pressure p since we include ∇ · τp
in the momentum equations. As we observe only small variations for the stress in space
(not in time) this underlines the importance of the chosen BCF approach. Furthermore,
the figure illustrates that a Hookean dumbbell model is not suited for the description of
extensional flows. While the FENE stress reaches a steady state so that the results at
t = 2.0 in (a) and at t = 6.0 in (b) are very similar, the stress is not restricted in size for
the Hookean spring and for the equivalent Oldroyd-B model (cf. Figure (c) and (d) for
t = 6.0 and t = 18.0).
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Computation Time

As previously mentioned, the number of stochastic realisations Nf has a crucial influence on
computation time. Therefore, we have to balance the computation time on the one hand
with the accuracy of our stochastic approach on the other hand. For this simulation, we have
employed Nf = 8000 configuration fields per cell. The complete solution of the system required
40 hours on Himalaya (cf. Chapter 5.6) using 48 processors. In contrast, an analogue Newtonian
simulation necessitates about twenty minutes on 16 processors. One has to consider that a
Newtonian computation reaches a steady state for ~u and p after a few time-steps which the
viscoelastic computational does not since there are always small oscillations in the macroscopic
variables. Therefore, the percental increase in computation time is much reduced in those flow
cases that do not reach a steady state.

As a result, we always obtain stress tensor values with a reduced accuracy as long as parallel
computers are not strongly increased in computing speed. However, we do not have a modelling
or closure error as is the case for constitutive models. The errors of macroscopic models, even
though they do not exhibit any stochastic noise, can be much more profound than the stochastic
noise that we experience.

Hookean and FENE-P Model Predictions

In Section 6.2.1 we have already analysed the stress tensor predictions of the Hookean dumbbell
and the FENE-P model. In both cases the model predictions differed strongly from the FENE
spring force results. Consequently, we experience the same differences using the coupled Navier-
Stokes-BCF model. For both simulations we use analogue parameters from Table 6.12 as for
the FENE spring force simulation.

In Figure 6.22 (c) and (d) we present the Hookean dumbbell results for τxx at t = 6.0 and
t = 16 by cutting the cube with a y-z plane through the origin. We note that the stress
tensor values increase with ongoing time in contrast to the FENE model in Figure 6.22 (a)
and (b). In theory, the values should be identical in every grid cell, but one has to consider
that enormous values easily lead to inaccuracies and instabilities. Furthermore, we cannot
present results for the equivalent Oldroyd-B model as an appropriate implementation leads to
numerical instabilities. Nevertheless, we will compare our macromolecular Hookean dumbbell
results with the corresponding deterministic Oldroyd-B model afterwards.

In Figure 6.23 we compare the stress tensor predictions between the FENE and the FENE-P
model (cf. Section 6.2.1 for a comparison using a prescribed flow field ~u). Here, we compare
the approximations at x = y = z = 0 (origin) but indicate that the results are comparable for
all other grid cells. Consequently, unless we pay attention to choose a constitutive equation
that is suited for the considered problem we have to rely on the FENE spring force model if
we want to avoid modelling errors.

Comparison Hookean Dumbbell - Oldroyd-B model

In Section 2.3.6 we have derived the constitutive equation for the Oldroyd-B model from a
micromolecular Hookean dumbbell model. Since NaSt3DGPF [2] already features an imple-
mentation of the Oldroyd-B model (cf. Claus [22]) we are able to demonstrate this equivalence
in practical applications. However, as the deterministic Oldroyd-B model does not exhibit any
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Figure 6.23: The figure presents the stress tensor evolution for the FENE-P and FENE model at the
origin (0, 0, 0) of a cube [−1, 1]3. The simulation is comparable to the homogeneous flow
field experiment in Figure 6.12, but we additionally simulate the properties of a Newtonian
solvent as β = 0.01 > 0 and only use Nf = 8000 realisations per grid cell. Again, we
observe that the closure model cannot predict correct values for stress tensor component
in direction of the elongation.

stochastic noise and requires less computing time, there is no practical reason to implement a
Hookean dumbbell model except for allowing comparisons.

Again, we investigate an extensional flow but restrict the extensional rate ε̇ to 0.5 to obtain
finite stress tensor values. In this case, the velocity field is too weak to extend the dumbbell
molecules to an infinite length. We state the parameters for this simulation in Table 6.13.
After nondimensionalising the analytic steady state equations for an Oldroyd-B fluid (2.35),
we obtain

τxx =
2 (1− β)ε̇

1− 2Wi ε̇
, τyy = τzz = − (1− β)ε̇

1 + Wi ε̇
. (6.13)

Consequently, we derive

1. τ sol
xx ≈ 1.98,

2. τ sol
yy ≈ −0.396,

3. τ sol
zz ≈ −0.396,

as non-zero stress tensor values after inserting the parameters from Table 6.13 into (6.13).

In an analogous manner as before, in Figure 6.24 we compare the development of the stress
tensor values between the Hookean dumbbell model and its macroscopic counterpart at the
cube centre (i.e. x = y = z = 0). Apart from the stochastic noise in the dumbbell model, we
obtain a good qualitative agreement between both stress predictions. Further investigations
reveal that the Oldroyd-B model computes the predicted values within an accuracy of five
digits.
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Weak Extensional Flow (Navier-Stokes-BCF)

Grid resolution 503 cells
Physical domain [−1, 1]3

Simulation time tmax 15.0
Reynolds number Re 200

Newtonian viscosity β 0.01
Weissenberg number Wi 0.5

Extensional rate ε̇ 0.5
Realisations per cell Nf 8000
Time Discretisation Explicit (Chorin)
Convective Terms Quick

Table 6.13: For the comparison between the Hookean dumbbell and the Oldroyd-B model we simulate
a weak extensional flow with ε̇ = 0.5. Note that the parameter Nf for the number of
stochastic realisations belongs solely to the Hookean dumbbell system as the Oldroyd-B
model computes the stress tensor deterministically.

Next, in Figure 6.25 we compare the stress tensor development on a complete plane defined
by x = 0. Here, we analyse the stress tensor component τxx at three different process times
t = 0.5, t = 1, and t = 1.5. As we investigate a y-z plane for an extensional flow in the x-
direction, all edges represent an inflow boundary. Despite the good qualitative agreement for the
Oldroyd-B model in the central region of the Ω, we observe deviations near the inflow boundary.
This is caused by the boundary treatment of the Oldroyd-B model. The constitutive equation
necessitates Dirichlet boundary conditions at the inflow boundary that are not generally known.
For simplicity, one usually decides to set τpinflow = 0. Although this choice is reasonable for
general flow situations, it yields wrong results at the inflow boundary for an extensional flow.
As our Hookean dumbbell model exhibits a different boundary treatment the problem does not
occur there.

As a conclusion, despite the differences at the inflow boundary between the Oldroyd-B model
on the one hand (Dirichlet boundary conditions) and the Hookean dumbbell model on the other
hand (homogeneous Neumann boundary conditions) we indicate that both models approximate
the exact values at the centre within the accuracy of the chosen ansatz. Furthermore, the errors
for the Oldroyd-B model are negligible for general flow situations in which the major stresses
occur far away from the inflow boundary.
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Figure 6.24: The figure displays the stress tensor evolution for a macroscopic Oldroyd-B and a mi-
cromolecular Hookean dumbbell model at the centre of the computational domain. We
observe that both approaches predict similar stress tensor values within the accuracy of the
chosen method. This verifies the equivalence between both models as stated in Section
2.3.6.
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(a) Hookean dumbbell (t = 0.5) (b) Oldroyd-B (t = 0.5)

(c) Hookean dumbbell (t = 1.0) (d) Oldroyd-B (t = 1.0)

(e) Hookean dumbbell (t = 1.5) (f) Oldroyd-B (t = 1.5)

Figure 6.25: The figure compares the τxx stress tensor predictions from the Hookean dumbbell model
on the left hand side with the corresponding results predicted by the Oldroyd-B model on
the right hand side. The results are considered for the process times t = 0.5, t = 1.0 and
t = 1.5. As the Oldroyd-B model utilises homogeneous Dirichlet boundary conditions at
the inflow domain, we observe deviations from the predicted values there. This problem
does not occur for the Hookean dumbbell model.
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6.3.2 Flow Through an Infinite Channel

In this section we investigate a transient flow through an infinite channel with rectangular
cross section. We describe an infinite channel by employing periodic boundary conditions in
direction of the x-axis. In the other directions we set no-slip boundary conditions. The fluid
is at rest first but is driven by a gravitational force ~g = (gx, 0, 0) that leads to an increasing
velocity in the channel. The maximum velocity is restricted by effects of viscosity and elasticity
(for non-Newtonian fluids) that occur due to the movement of the fluid. We are interested in
analysing the increase in the velocity component u for a purely Newtonian as well as for two
different non-Newtonian FENE fluids. For illustration, in Figure 6.26 we present the setting
for one viscoelastic simulation.

In view of non-Newtonian channel flows, we expect the occurrence of the so called velocity
overshoot phenomenon. This effect describes the effect that the fluid velocity does not increase
monotonically as for a Newtonian fluid but exhibits oscillations that decay with ongoing time.
A detailed description of the effect for flows around a sphere is given in Chapter 9.2.4 of
Owens and Phillips [68]. Considering the velocity overshoots one important aspect is that
the maximum velocity at the first overshoot and the period of oscillation are proportional to
the square root of the relaxation time λ and the Weissenberg number Wi (cf. Wi ≡ λU0/L0

in Definition 2.15), respectively. Furthermore, if the Weissenberg number is too large, the
channel velocity is overdamped so that we only observe a single overshoot without any further

Figure 6.26: The experiment describes a fluid in an infinite channel which we realise by using periodic
boundary conditions in the flow direction x. As the fluid is driven by gravitational force,
we normally expect that the flow reaches its highest values at the end of the simulation.
For a non-Newtonian simulation this primarily depends on the Weissenberg number. The
figure illustrates a velocity field that we will denote by FENE SimB later on.
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Infinite Channel Flow (Navier-Stokes-BCF)

Newtonian FENE SimA FENE SimB
Grid resolution 803 cells 483 cells

Physical domain [0, 0.08]3 [0, 0.096]3

Simulation time tmax = 1.7
Reynolds number Re 20 200
Newtonian viscosity β 1.0 0.1

Weissenberg number Wi - 0.5
Realisations per cell Nf - 4000

Maximum spring extension b - 10.0
Gravitational force gx 5.0 4.0

Time discretisation Semi-implicit
Convective terms SMART

Table 6.14: The table includes all parameters for the Newtonian simulation as well as for the viscoelastic
cases that we denote as FENE Simulation A and Simulation B. Since the grid resolution for
the FENE SimA computation is high concerning that we simulate a 3D Navier-Stokes-BCF
model, we have to restrict the number of configuration fields to 4000 to achieve a moderate
computation time.

oscillation.

In Table 6.14 we summarise the parameters for a Newtonian and a FENE simulation using
a grid resolution of 803 cells on the one hand and a lower resolved FENE calculation with 483

grid cells on the other hand. For a better distinction between both FENE simulations we term
the first one Simulation A and the second one that employs a lower resolution Simulation B.
Note that the usage of 803 grid cells in FENE SimA requires an enormous computational effort
as it is in fact our computation with the highest number of grid cells as well as the number of
Brownian configuration fields throughout this thesis. Therefore, we restrict our computation
to Nf = 4000 BFCs per cell which increases the stochastic noise in each cell in comparison to
8000 realisations for the other examples.

In Figure 6.27 we compare the increase in channel velocity between the Newtonian com-
putation and the viscoelastic counterpart FENE SimA at the physical positions (x, y, z) =
(0.04, 0.04, 0.04) (i.e. the centre of Ω) and (x, y, z) = (0.04, 0.06, 0.04). We note an over-
damped velocity overshoot for the FENE model which does not occur for the Newtonian case.
The velocity overshoot for the FENE SimA approximation leads to an amplitude that is double
the size of the steady state velocity. We explain the occurrence of this overdamping due to the
relative small Reynolds number Re = 20 in comparison to the Weissenberg number and the
low percentage of Newtonian viscosity since β = 0.1.

In Figure 6.28 we also observe a velocity overshoot for SimB at (x,y,z)=(0.048,0.048,0.048)
(i.e. centre of ΩSim B), but this time we note an additional undershoot and a further increase
in u afterwards. Beside other differences between FENE SimA and SimB, both computations
differ in the chosen Reynolds number Re which we increased by a factor of 10 for the second
simulation. Consequently, the elasticity number El = Wi/Re is reduced by the same proportion.
Moreover, we further discuss the development of τxx in Figure 6.28 which exhibits stochastic
noise since Nf = 4000. By comparing u and τxx in Figure 6.28, we are able to comprehend
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the explanation of Harlen [37] with regard to the velocity overshoots. If the velocity field has
changed, a molecule adjusts its orientation delayed so that elastic effects occur later on. As a
result, the system reaches a velocity that is actually higher than its Newtonian counterpart at
the same time. We realise this behaviour in Figure 6.28 where we observe a further increase in
τxx after u has reached a relative maximum at t ≈ 0.26.

At last, we present results for the x-y plane z = 0 using values from Simulation B. In Figure
6.29 (a) - (c) we visualise the velocity field in flow direction at three different times which are
t = 0.26 (maximum velocity overshoot), t = 0.35 (maximum velocity undershoot), and t = 1.7
(end of computation). We observe that the total velocity field for all cells in Figure 6.29 (a) is
larger in size in comparison to (b). Nevertheless, we obtain the highest values for ~u = (u, 0, 0)
at the end as the fluid velocity increases again after t = 0.35.

Note that the temporal evolution of u is smooth even though the stress tensor τxx shows
stochastic oscillations with respect to time due to the low number of realisations per cell (cf.
Figure 6.28). I.e., the stochastic noise is not present in the velocity field, rendering the Navier-
Stokes-BCF model an adequate approach at least for the considered simulation case FENE
SimB. Note further that the spatial profile of both u and τxx is smooth (cf. Figure 6.29).

We also observe the occurrence of overshoots in velocity for the simulations in Section 6.3.3
(4-1 Contraction Flow) and Section 6.3.4 (Flow Around a Sphere). This emphasises the im-
portance of this effect for non-Newtonian calculations.
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Figure 6.27: The figure compares the channel velocity for a Newtonian simulation with the results using
a FENE spring force at two different positions. We measure u at the centre of the channel
(i.e. x = y = z = 0.04) and at position x = z = 0.04 and y = 0.06. As expected, the
channel velocity reaches its maximum at the centreline. Although the Reynolds number
and the gravitational force are identical for the Newtonian and non-Newtonian case, we
observe different steady state values. Furthermore, the FENE model features a velocity
overshoot with an amplitude that is double the size of the result at tmax.
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Figure 6.28: For the second simulation using a FENE spring force we compare the velocity in flow
direction at the centre of ΩSim B with the results for τxx at the same place. Following an
argumentation from Harlen [37] we observe that the increase in τxx directly occurs after
the velocity overshoot. This can be explained by the delayed extension of a dumbbell
considering a changed flow field.
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(a) u velocity component (t = 0.26, overshoot) (b) u velocity component (t = 0.35 undershoot)

(c) u velocity component (t = 1.7 tmax) (d) τxx stress component (t = 0.35)

Figure 6.29: We visualise the velocity profile for the second FENE simulation with the velocity values on
a x-y plane through the centre of Ω at three different process times. Indeed, the velocity
field at the overshoot (a) exceeds the latter velocity field in (b). Figure (c) presents the
velocity field at the end of the simulation. In Figure (d) we present the stress tensor
component τxx at t = 0.35 (undershoot). As expected, the friction of the fluid at the
channel walls leads to high stress tensor values.
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6.3.3 Contraction Flow with ratio 4:1

Description of Experiment

A fluid in a contraction flow undergoes a contraction while passing from a wide channel into
another one with a smaller diameter. The contraction experiment generates a complex flow as
it features

• strong shearing near the walls and

• uniaxial extension along the centreline.

We illustrate a 4:1 planar contraction with a ratio of four to one between the upstream and
the downstream channel in Figure 6.30.

Contraction flows are a classical benchmark problem in computational rheology as they
are numerically challenging on the one hand and are relevant in industrial applications on
the other hand. Since effects of shearing and extension occur during the experiment there are
situations in which non-Newtonian fluids behave differently than their Newtonian counterparts.
In particular, two effects that are often observed for contraction flows are vortex growth near
the re-entrant corners and velocity overshoots along the centreline.

Nevertheless, up to now the mechanism for the vortex development is not understood com-
pletely since it depends not only on the flow parameters (Reynolds number, Weissenberg num-
ber, elasticity number, inflow velocity) but also on the geometry of the considered channel. For
instance, Walters and Webster [92] have investigated the vortex development for polyacrylam-
ide (PAA) in a water/ maltose syrup mixture and observed no vortex activity for a 4:1 planar
contraction in a channel as in Figure 6.30 but very strong vortex activity for a 4.1:1 circular
contraction in a tube. However, the elasticity of the fluid seems to be the major parameter
for vortex growth. For further information on different kinds of contraction flows we refer to
Chapter 8 of Owens and Phillips [68].

centreline

vortex
region

vortex
region downstream

channel
upstream channel

Figure 6.30: The figure illustrates the geometry for a 2D contraction flow with a ratio four to one
between the upstream and the downstream channel. In the viscoelastic flow case two
important characteristics of the contraction flow are vortex dynamics near the re-entrant
corners and velocity overshoots along the axis of symmetry (centreline). As the problem
is symmetric along the centreline, most numerical simulations cut the domain into halves
to reduce the computational effort.
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Three-dimensional Numerical Simulation

As contraction flows are common benchmark experiments, there are various results for macro-
scopic viscoelastic models (e.g. Xue et al. [95] for the Oldroyd-B and PTT model) and several
simulations for multiscale models like Bonvin [12] for a coupled 2D BCF model and Knezevic
[50] for a 2D Navier-Stokes-Fokker-Planck system. On the contrary, since most simulations
differ in the chosen parameters and geometric dimensions they are not comparable among each
other.

In this thesis, we perform an analogous simulation to Knezevic [50] but we now describe
the setting in three dimensions and do not halve the problem in size at the centreline. Our
simulation considers a problem with an extension of 10 units in the x-direction, 8 units in the
direction of the y-axis and an extension of 1 unit in the direction of z (cf. Figure 6.31). We
employ a parabolic inflow profile at x = 0 that corresponds to a steady Poiseuille flow with
umax = 1 at the centreline. Furthermore, we use homogeneous Neumann boundary conditions
at x = 10, set no-slip boundary conditions at y = 0 and y = 8 as well as for the obstacle surface,
and apply periodic boundary conditions in the direction of z. We summarise the parameters
for the subsequent simulation in Table 6.15.

4:1 Contraction Flow (Navier-Stokes-BCF)

Grid resolution 100× 80× 10 cells
Physical domain [0, 10]× [0, 8]× [0, 1]
Simulation time tmax 6.0

Reynolds number Re 1
Newtonian viscosity β 0.59
Weissenberg number Wi 0.8
Realisations per cell Nf 8000

Maximum spring extension b (FENE) 12.0
Time Discretisation Semi-implicit
Convective Terms SMART

Table 6.15: The 4:1 contraction flow uses a comparatively low Reynolds number to emphasise elastic
behaviour. To prevent restrictions in time-step size, we employ an implicit discretisation of
the diffusive velocity terms in the Navier-Stokes equations. However, since the percentage
of Newtonian viscosity β is high, viscous effects dominate the fluid behaviour.

Next, we illustrate the Poiseuille profile at the inflow boundary in Figure 6.31. Bonvin [12]
points out that this is only a reasonable assumption for low and moderate Weissenberg numbers
as we use for this simulation. For higher Weissenberg numbers a FENE fluid exhibits shear
thinning effects (cf. Section 2.1.3) that act on the inflow profile. However, in our case the error
in the inflow velocity profile is negligible. Note that this effect does not occur for Newtonian
fluids as well as for those viscoelastic models that do not include shear thinning effects (e.g.
the Oldroyd-B model).

In Figure 6.32 and Figure 6.33 we present approximations for the velocity field as well as for
the stress tensor field. Since the flow system reaches a steady state after process time t ≈ 1.5
our result at t = 6 visualises an identical flow field with the exception of small stochastic noise
in τp. Furthermore, we show the velocity field at t = 0.05 just after the initialisation.
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Figure 6.31: We consider a 3D contraction flow with periodic boundary conditions in the direction
of z so that the results are comparable with a two-dimensional computation in a x-y
plane. Furthermore, we illustrate the flow field by setting ten stream traces at the inflow
boundary. The plane at x = 0 illustrates the Poiseuille inflow profile.

The analysis of the stress tensor field in Figure 6.33 reveals that the first stress tensor
component τxx occurs primarily at the channel walls whereas the shear stress component τxy
and the second normal stress component τyy emerge near the corner singularities. This result
is in agreement with the investigations from Bonvin [12] and Knezevic [50]. We further note
that the third stress component τzz in Figure 6.33 (d) is not zero, although we only consider
a two-dimensional problem. This is in agreement with the results in literature (cf. Chapter 4
of Lozinski [56]), because a dumbbell molecule in a 2D flow still has three degrees of freedom
as the physical space Ω (2D) and the configuration space D (3D) are nearly independent from
each other.

Figure 6.34 (a) presents a detailed view of the shear stress contour τxy near the upper obstacle.
We observe a characteristic form for the contour lines that is also noted in extensional flow
simulations from Bonvin [12]. He interprets the result by shear thinning effects that occur near
the corner singularity. Since shear thinning behaviour cannot be described adequately with the
Oldroyd-B model (cf. Section 2.2.2), more advanced models (e.g. FENE) have to be applied to
analyse the complex characteristics of most viscoelastic fluids.

For a more detailed analysis of the flow field in the steady state at t = 6, we plot the evolution
of several relevant variables at two characteristic lines through the channel. Furthermore, we
measure the temporal evolution of the velocity component u at the end of the downstream
channel. For clarification, we draw the rough position of the evaluation points in Figure 6.34
(b) and additionally state the precise coordinates of measurement. In Figure 6.35 we present
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(a) u velocity component (t = 0.05) (b) u velocity component (t = 6.0)

(c) v velocity component (t = 0.05) (d) v velocity component (t = 6.0)

(e) absolute velocity |~u| (t = 0.05) (f) absolute velocity |~u| (t = 6.0)

Figure 6.32: The figure displays the velocity components u and v as well as the velocity magnitude |~u|
shortly after the beginning of the simulation and when the system has reached a steady
state. Due to the reduced cross section of the downstream channel the velocity magnitude
is strongly increased. We further observe a small vorticity development near the re-entrant
corners.
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(a) normal stress component τxx (t = 6.0) (b) shear stress component τxy (t = 6.0)

(c) normal stress component τyy (t = 6.0) (d) normal stress component τzz (t = 6.0)

(e) first normal stress difference S1 (t = 6.0) (f) second normal stress difference S2 (t = 6.0)

Figure 6.33: The stress tensor components reach its maxima near the corner singularity with the excep-
tion of τxx. This can be explained by considering the high fluid velocity in the contracted
channel. Although we consider a two-dimensional problem due to periodic boundary con-
ditions in z we observe comparatively small stress in the τzz component. This is in
agreement with the results in literature since even problems in a two-dimensional physical
space Ω exhibit a 3D configuration space D (cf. Chapter 4 of Lozinski [56]).
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(a) Detail of τxy near upper obstacle (t = 6.0) (b) Illustration of evaluation lines and point
in Figures 6.35, 6.36, and 6.37

Figure 6.34: The left figure presents a zoom of the corner region showing the stress tensor component
τxy which reveals a characteristic shape for the contour lines. In the right figure we have
marked the evaluation points from which we extract flow field data represented in Figures
6.35, 6.36, and 6.37.

the results for a measurement at the centreline defined by (xc, 4, 0.5), xc ∈ [0, 10]. As τxy and
the velocity component v change their sign at the centreline, we do not plot their values at this
position. The channel contraction starts at x = 5 so that we observe relative maxima for the
normal stress tensor components at the beginning of the downstream channel. Obviously, the
velocity in flow direction increases strongly due to a smaller cross section at the contraction.

The data measurement in Figure 6.36 visualises the growth of the u velocity component
and the stress tensor components τxx and τxy in front of the downstream channel. Since the
contraction has an extension from y = 3 to y = 5, we perceive a maximum amplitude for the
stress tensor near the corners of the obstacle.

At last, we perform a velocity measurement of the first velocity component u at the end of
the downstream channel. As mentioned before (cf. Section 6.3.2), a viscoelastic fluid exhibits
velocity overshoots at the centreline which are not observed for Newtonian fluids. For compar-
ison, we have used the parameters in Table 6.15 for an analogue Newtonian computation. In
contrast to the viscoelastic case, we set β = 1 and ignore the Weissenberg number Wi as well
as the coefficients b and Nf . We present the results for the velocity comparison in Figure 6.37.
Obviously, we recognise an overshoot at t = 0.3 and an undershoot at t = 1.1 for the FENE
model which are not present for the Newtonian case. Additionally, the Newtonian case reaches
its steady state earlier after about t = 1.2 in contrast to t = 1.5 for the FENE fluid. However,
as the percentage of Newtonian viscosity in the simulated FENE fluid is comparatively high
(i.e. β = 0.59 in Table 6.15) the differences in u are not very pronounced but become the
more obvious the more β is reduced. A further difference between both simulations lies in the
computational effort which we will analyse subsequently.

Computation Time

We have obtained our results for the FENE fluid by computing 70 hours on 64 processors of
the HPC cluster Himalaya (cf. Chapter 5.6). The analogue computation for the Newtonian
flow case took 1 hour on 8 processors. This yields an increase of the computational effort by a
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Figure 6.35: The figure exhibits the flow data at the horizontal centreline marked in Figure 6.34 (b).
We observe maxima for the normal stress components near the contracted channel entry
at x = 5.

factor of 560 under the assumption of perfect parallel efficiency. However, one has to consider
that the Newtonian computation only requires a few iterations to solve the pressure Poisson
problem after the steady state has been reached. Due to a small stochastic noise in ~u and p
the multiscale calculation normally does not reach a steady state. Indeed, since there is an
interaction between τp on the one hand and ~u and p on the other hand this also increases
the number of iterations that the BiCGStab solver requires to obtain p. For each calculation
we have to carefully consider which grid resolution and number of configuration fields Nf can
actually be computed in an acceptable amount of time.
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Figure 6.36: In this figure we measure velocity and stress field values on a vertical line in y-direction
at x = 5 and z = 0.5. Here we observe peaks for the stress tensor components near the
corners.
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Figure 6.37: The figure presents a comparison for the velocity component u between the Newtonian
fluid and its FENE counterpart. We observe an over- and an undershoot for the non-
Newtonian fluid which is not featured by the Newtonian computation. The phenomenon
is well known for contraction flow measurements at the centreline.
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6.3.4 Flow Around a Sphere

The motion of a sphere through a viscous fluid with a low Reynolds number is a further classical
benchmark problem for Newtonian as well as for non-Newtonian fluids. The non-Newtonian
case exhibits several differences to the Newtonian experiment since we observe

• regions of strong shearing especially between the sphere and the surrounding channel
walls and

• the occurrence of extensional effects especially near the centreline in the wake of the
sphere.

Due to shear effects, we observe velocity overshoots for the sphere in the viscoelastic case that
correlate to the chosen Weissenberg number. In general, the higher the Weissenberg number,
the higher the amplitude of the first velocity overshoot. For low Weissenberg numbers the
frequency of the oscillation is increased in exchange for the reduced amplitude. Interestingly,
viscoelastic flows with low Weissenberg numbers can have such velocity undershoots that the
flow direction is inversed for a short period of time (sphere bouncing). An explanation of this
effect was given by Harlen [37]. As the dumbbell system requires to change its orientation and
extension for a new velocity field, the elastic contribution to the drag on the sphere reaches
its final value at a later point in time. Accordingly, the sphere may reach a higher speed as it
would normally be the case without elastic effects. This was first confirmed in simulations by
Zheng and Phan-Thien [99] in 1992.

Figure 6.38: We consider the flow around the sphere on a physical domain with 8 units in x-direction
as well as 4 units in the direction of y and z. The sphere has a radius of one unit with
its centre at (x, y, z) = (4, 2, 2). Note that we employ no-slip boundary conditions in
the y-direction but use periodic boundary conditions in the direction of the z-axis. We
illustrate the velocity field by placing several steamtraces around the sphere.
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We simulate the flow around a sphere with radius r = 1 on a domain with a 4 × 4 cross
section and a length of 8 units in flow direction x. This setting corresponds to the geometry in
Knezevic [50]. A complete analysis of the problem for a stochastic 2D micro-macro approach
can be found in an article from Vargas, Manero, and Phillips [90]. We illustrate the physical
domain Ω and the flow field around the sphere in Figure 6.38. In contrast to the flow field
in Knezevic [50], we employ no-slip boundary conditions in y-direction and periodic boundary
conditions in the direction of z. Thereby, we can show that the velocity overshoot effect only
occurs in the flow domain between the sphere and the no-slip wall and not in z-direction. For
the inflow domain at x = 0 we chose uinflow = 1 and apply homogeneous Neumann boundary
conditions for uoutflow at x = 8. We summarise the parameters of this calculation in Table 6.16.
Since we have decided for Re = 0.5 and Wi = 1 we calculate the problem with a comparatively
high elasticity number El = 2.

Flow Around a Sphere (Navier-Stokes-BCF)

Grid resolution 80× 40× 40 cells
Physical domain [0, 8]× [0, 4]× [0, 4]
Simulation time tmax 4.0

Reynolds number Re 0.5
Newtonian viscosity β 0.59
Weissenberg number Wi 1.0
Realisations per cell Nf 8000

Maximum spring extension b (FENE) 12.0
Time Discretisation Semi-implicit
Convective Terms SMART

Table 6.16: The table summarises the simulation parameters which are identical to the simulation in
Knezevic [50].

In Figure 6.39, we analyse the velocity component u at two different positions P1 and P2 in
Ω. Using the illustration from Figure 6.38 we recognise that the first measuring point P1 =
(4, 3.5, 2) lies directly above the sphere in y-direction and the second measuring point P2 =
(4, 2, 3.5) has been placed beside the sphere in z-direction. Interestingly, velocity overshoots
only occur at position P1 since we employ no-slip boundary conditions solely in y-direction.
We further note that this is caused by shearing effects as the shear stress component τxy(P1) is
unequal to zero in contrast to τxy(P2) = 0. As a result, we realise a coherence between velocity
overshoot effects and the emergence of shear stress.

We analyse the velocity field as well as the first normal and shear stress tensor field around
the sphere at tmax = 4 in Figure 6.40. As expected, we observe high shear stresses τxy above
and below the sphere (cf. Figure 6.40 (d)) but not at its sides (cf. Figure 6.41 (b)). In contrast,
the normal stress component τxx becomes dominant at the left and right side of the sphere (due
to periodic boundary conditions in z-direction) and at its back in flow direction (cf. Figure 6.40
(c) and Figure 6.41 (a)). The latter result coincides with strong extensional effects which are
reported in literature for the domain behind the sphere.

Next, in Figure 6.41 we indicate the stress that occurs directly on the surface of the sphere.
Again, we note strong shear stress τxy at the top of the sphere and first normal stress τxx at its
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Figure 6.39: We only observe a velocity overshoot at position P1 where u reaches a maximum of 1.5
directly after initialisation and a steady state value of 0.9. This only correlates with the
occurrence of shear stress τxy at position P1. Therefore, we observe a stronger normal
stress component τxx due to a higher fluid velocity u at position P2 beside the sphere.

side. In comparison to τxx, the other normal stress components τyy and τzz reach comparatively
low amplitudes.

Computation Time

At last, we state the computational effort that is required to simulate a multiscale non-
Newtonian flow with the listed parameters. The simulation took about 97 hours using 64
processors in total (cf. Chapter 5.6 on parallelisation and the computer architecture). In com-
parison, a Newtonian calculation with analogue parameters required about 2 hours with 8
processors. Accordingly, the computation time is increased by a factor of 400 for the setting in
Table 6.16.

As a result, one has to consider that 3D multiscale flow simulations require an enormous
effort so that this kind of computation has become possible only recently due to more powerful
supercomputers.
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(a) u velocity component at z = 2 (t = 4.0)

(b) v velocity component at z = 2 (t = 4.0)

(c) τxx stress component extract at z = 2 (t = 4.0)

(d) τxy stress component extract at z = 2 (t = 4.0)

Figure 6.40: All figures display the stress on the plane z = 2 but (c) and (d) concentrate on a magnified
extract around the sphere. We observe high normal stress τxx at the averted side of the
sphere as well as shear stress τxy at its top and bottom. We conclude that the sphere
possesses regions with dominant shear tension at the top and bottom side which coincides
with the velocity overshoot in u that we observe in Figure 6.39 for position P1.
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(a) τxx stress component at x = 4 (t = 4.0) (b) τxy stress component at x = 4 (t = 4.0)

(c) τxx on the sphere (t = 4.0) (d) τxy on the sphere (t = 4.0)

(e) τyy on the sphere (t = 4.0) (f) τzz on the sphere (t = 4.0)

Figure 6.41: In (a) and (b) we present the stress on a y-z plane through the centre of the sphere. We
only observe shear stress occurrence τxy for those sides of the sphere which lie in direction
of a no-slip wall. The figures (c)-(f) illustrate the stress components τxx, τxy, τyy, and
τzz on the surface of the sphere. Due to the chosen boundary conditions, we observe high
normal stress τxx on the sides of the sphere in z-direction and regions of strong shearing
at top and bottom in y-direction. The other normal stress contributions are comparatively
small.



7 Conclusion

Summary

In this thesis, we investigated and implemented a multiscale FENE model for dilute polymeric
fluids. We have chosen this approach due to fundamental modelling errors of macroscopic
constitutive equations even in simple flow fields (e.g. homogeneous extensional flows). The
main advantages of a nonlinear FENE spring force are

• an adequate description of molecule orientation for a changed flow field and

• a correct description of molecule extension.

Although macroscopic models obtained by closure approximations often simulate one of these
aspects correctly, their predictions for the other are mediocre at best.

Since our multiscale model can be described in the form of a Fokker-Planck equation on
the one hand or an equivalent stochastic formulation on the other hand, we discussed both
formulations. We solved the deterministic Fokker-Planck equation with a spectral method
approach achieving spectral accuracy in asymptotics for two-dimensional homogeneous flow
fields. Furthermore, we

• implemented an Euler-Maruyama scheme for the time-integration of the two- and three-
dimensional stochastic equations in homogeneous flow fields,

• analysed an equilibrium control variate for variance reduction, and

• introduced a method for generating initial configurations that are distributed according
to the FENE probability density function.

We demonstrated that the stochastic approach impressively succeeds in simulating strong shear
and extensional flow problems with high Weissenberg numbers up to 10.

For the description of three-dimensional, transient, polymeric fluids we coupled a stochastic
BCF method using a FENE spring force with the NaSt3DGPF flow solver. Note that the
underlying polymeric equation is six-dimensional in this case. We observed that the BCF
method led to results that were noisy in time, as with every stochastic method, but more
importantly smooth in physical space. Since the polymeric stress acts on the momentum
equations only via its divergence in physical space, it caused weak variations in the velocities
as well as in the pressure term so that their oscillations were reduced by a factor of 100 in
comparison to the stress tensor noise.

Concerning the immense complexity of a six-dimensional problem, we did not only have to
parallelise our Navier-Stokes-BCF solver to reduce the computing time but also to restrict the
amount of memory per processor so that it fitted into the main memory of a computer. We
confirmed the velocity and stress tensor predictions for an extensional flow using our multiscale

189
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scheme and extended this further to incorporate the Hookean and the FENE-P spring forces.
Both models feature an equivalent macroscopic formulation which turns out to be the Oldroyd-
B model in the case of a Hookean spring force. As the results for the Hookean dumbbell and
the FENE-P spring significantly differed from the FENE predictions, we actually proved the
necessity for a multiscale approach. Furthermore, we demonstrated the formal equivalence
between the Oldroyd-B and the Hookean dumbbell model by analysing the predictions of an
existing Oldroyd-B implementation in NaSt3DGPF with the Hookean spring that we imple-
mented within the Navier-Stokes-BCF system.

Beside the extensional flow case, we applied our programme on three further fundamental
flow problems which are

• a flow through an infinite channel,

• a 4:1 contraction flow, and

• a flow around a sphere.

Although there do not exist any detailed three-dimensional, multiscale FENE fluid results as
far as we know, we were able to compare our simulations with practical experiments since
the latter two problems are classical benchmark experiments. In accordance with physical
observations, we identified the regions with strong shearing, regions with extensional effects
and the domains with the occurrence of velocity overshoots in our simulations. Moreover, we
observed that the major parameter for the stability of this model is not the accuracy of the
stress tensor approximation but the smoothness of the stress field on the computational domain.
As a conclusion, we presented a first-time implementation of a multiscale BCF approach that
employs a FENE spring force into a three-dimensional, complex flow solver.

Future Perspectives

We conclude this thesis by considering possible future directions of research related to the
problem of multiscale viscoelastic flow simulation.

Problems with high Weissenberg numbers. We showed that the stochastic FENE model copes
with homogeneous, high Weissenberg number flow problems leading to oscillating stress
tensor results in time (i.e. over- and undershoots of the stress tensor). It remains to be
verified that a three-dimensional, transient flow solver can also handle the resulting over-
and undershoot effects for the fluid velocities if we employ Wi ≥ 2. However, this is
a problem regarding the flow solver itself and not the stochastic approximation of the
non-Newtonian stress tensor.

Advanced parallelisation techniques. Multiscale, three-dimensional flow problems in general
require a parallelisation of the algorithm to gain reasonable computing time. We have
shown that a three dimensional multiscale flow solver can be implemented efficiently
and achieves excellent scale-up results (cf. Chapter 5.6). Recently, Nvidia introduced
the parallel computing architecture CUDA that allows software developers to perform
their calculations on the graphics processing unit (GPU). If the programme is adapted
to CUDA, this leads to enormous increases in computing power. Our stochastic scheme
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is perfectly suited to be used with CUDA as the problem requires a high computational
effort but features a low communication overhead.

Free surfaces. Practical experiments with non-Newtonian fluids show results like the Weissen-
berg, the Barus and the tubeless siphon effect which are unknown for Newtonian liquids.
For an adequate simulation of these effects, we have to implement our multiscale approach
into a two-phase flow solver which NaSt3DGPF already provides.

More advanced multiscale models. Although we consider a complex FENE spring force, our
polymeric molecule is actually represented by a dumbbell model. As real polymers have
a very complex microstructure, it may be necessary to investigate more advanced bead-
spring chain models and consider the interaction between surrounding molecules. This
would lead to problems with more than six dimensions in space.

Sparse grid techniques. If we solved the Fokker-Planck equation directly instead of its sto-
chastic interpretation, the result would contain no stochastic noise. Since the problem
is six-dimensional for the multiscale dumbbell model, Knezevic [50] applied an operator
splitting approach proposed by Lozinski and Chauvière [57, 20]. An interesting extension
would be the direct solution of the six-dimensional problem using sparse grid methods in a
similar manner as Delaunay et al. for steady flow problems [26]. Given sufficient smooth-
ness, sparse grids allow a considerably reduced cost-benefit ratio compared to classical
methods (cf. Bungartz and Griebel [17]). On the contrary, concerning the involved coef-
ficients of the complexity estimates and the logarithmic terms, we cannot assume that
the effective dimension of the problem can be reduced such that we have to cope with
the full size of the problem (cf. Feuersänger [30]).

In summary, due to the complexity of high-dimensional polymers much exciting work remains
to be done.
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[82] J.D. Schieber and H.C. Öttinger. The effects of bead inertia on the Rouse model. The
Journal of Chemical Physics, 89(11):6972, 1988.

[83] G.D. Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford University Press, USA, 1985.

[84] R.I. Tanner. Engineering rheology. Oxford University Press, USA, 2000.

[85] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par
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