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viiAbstra
tIn this thesis a numeri
al approa
h for the simulation of three-dimensionalin
ompressible two-phase �ows is presented. It is based on a level set methodfor 
apturing the interfa
e. The mathemati
al model 
onsists of the in
om-pressible Navier-Stokes equations and an adve
tion equation for the level setfun
tion. The e�e
t of surfa
e tension is modeled by a singular for
e termlo
ated at the interfa
e.For the spatial dis
retization we use �nite elements on a nested hierar
hy oftetrahedral grids. An adaptive multilevel re�nement algorithm allows for lo-
al re�nement and 
oarsening of the grid hierar
hy. By partial integrationof the Lapla
e-Beltrami operator the weak formulation of the surfa
e tensionfor
e term 
an be stated in su
h a way that se
ond derivatives indu
ed by the
urvature 
an be avoided. It is shown that a standard Lapla
e-Beltrami dis-
retization on a pie
ewise planar approximation of the interfa
e only yields anorder of 1/2 w. r. t. the H1 norm, and on the other hand that by a slight mod-i�
ation this order 
an be in
reased up to a value of at least 1. The pressuredistribution is 
ontinuous in both phases, respe
tively, but has a jump a
rossthe interfa
e due to surfa
e tension. The approximation of su
h fun
tions instandard �nite element spa
es yields poor results with an order of 1/2 w. r. t.the L2 norm. The introdu
tion of an extended �nite element (XFEM) spa
eprovides se
ond order approximations. For this purpose a standard �nite ele-ment spa
e is augmented by additional basis fun
tions in
orporating a jumpat the interfa
e.For the time dis
retization a one-step theta-s
heme is applied whi
h leads to a
oupled system of level set and Navier-Stokes equations. The 
oupling 
an betreated by a Pi
ard iteration. By applying a linearized variant of the theta-s
heme the equations 
an be de
oupled. The nonlinearity of the Navier-Stokesequations is handled by a �xed point approa
h. The arising Oseen problemsare solved by an inexa
t Uzawa method or by Krylov subspa
e methods, whereproblem-adapted pre
onditioners are applied whi
h a

ount for the jump ofthe material properties between both phases. For the reparametrization ofthe level set fun
tion a Fast Mar
hing method is used.The methods have been implemented in the software pa
kage DROPS. Thestru
ture of the 
ode and basi
 design 
on
epts are brie�y dis
ussed. We also
onsider parallelization aspe
ts, as the 
onsumption of memory resour
es and
omputational time are typi
ally huge for 
omplex problems su
h as two-phase�ows.



viiiThe 
orre
t implementation and the a

ura
y of several numeri
al 
omponentsis analyzed by means of some test 
ases. Finally, examples originating fromdroplet and falling �lm appli
ations are 
onsidered. These two-phase systemsplay an important role in 
hemi
al engineering pro
esses and are some ofthe major resear
h topi
s in the 
ollaborative resear
h 
enter SFB 540 at theRWTH Aa
hen University. Some numeri
al results for simulations of levitateddroplets, rising bubbles and a falling �lm are presented.



ZusammenfassungIn der vorliegenden Arbeit wird ein Ansatz zur numeris
hen Behandlungvon inkompressiblem dreidimensionalen Zweiphasenströmungen vorgestellt,der auf einer Levelset-Methode zur Verfolgung der Phasengrenze basiert. DieModellglei
hungen bestehen aus den inkompressiblen Navier-Stokes-Glei
hun-gen sowie einer Advektionsglei
hung für die Levelset-Funktion. Die Ober-�ä
henspannung wird dur
h einen singulären Kraftterm modelliert, der aufder Phasengrenze lokalisiert ist.Zur örtli
hen Diskretisierung werden Finite Elemente auf einer ges
ha
htel-ten Hierar
hie von Tetraedergittern eingesetzt. Ein adaptiver Multilevel-Verfeinerungsalgorithmus ermögli
ht die lokale Ver- und Entfeinerung derGitterhierar
hie. Der Ober�ä
henspannungsterm wird in der s
hwa
hen For-mulierung dur
h partielle Integration des Lapla
e-Beltrami-Operators in eineForm überführt, in der zweite Ableitungen vermieden werden, die dur
h dieKrümmung hervorgerufen werden. Es wird gezeigt, dass mit einer Standard-Lapla
e-Beltrami-Diskretisierung auf einer stü
kweise planaren Approxima-tion der Phasengrenze nur eine Annäherung der Ordnung 1/2 bzgl. der H1-Norm errei
ht werden kann, dur
h eine lei
hte Modi�kation die Ordnungdagegen auf mindestens 1 erhöht werden kann. Der Dru
k ist in beidenPhasen jeweils stetig, besitzt aber aufgrund der Ober�ä
henspannung einenSprung an der Phasengrenze. Die Approximation sol
her Funktionen ist inStandard-Finite-Elemente-Räumen nur mit Ordnung 1/2 bzgl. der L2-Normmögli
h. Die Einführung eines erweiterten Finite-Elemente-Raumes (XFEM)ermögli
ht eine Approximation zweiter Ordnung. Hierbei werden zusätzli
heBasisfunktionen hinzugefügt, die einen Sprung an der Phasengrenze aufweisen.Zur Zeitdiskretisierung kommt ein Theta-S
hema zu Einsatz, das auf eingekoppeltes System von Levelset- und Navier-Stokes-Glei
hungen führt. Dieskann mit einer Pi
ard-Iteration gelöst werden. Dur
h eine linearisierte Vari-ante des Theta-S
hemas kann eine Entkopplung der Glei
hungen errei
ht wer-den. Die Ni
htlinearität der Navier-Stokes-Glei
hungen wird dur
h einen Fix-punktansatz behandelt. Die auftretenden Oseen-Probleme werden dur
h eineinexakte Uzawa-Methode oder dur
h Krylov-Teilraumverfahren gelöst, wobeiproblemangepasste Vorkonditionierungste
hniken zum Einsatz kommen, dieden Sprung der Sto�daten von der einen Phase in die andere berü
ksi
hti-gen. Zur Reparametrisierung der Levelset-Funktion wird eine Fast-Mar
hing-Methode verwendet.Die Methoden wurden in dem Software-Werkzeug DROPS implementiert, des-sen Struktur und zugrundeliegendes Design kurz dargestellt werden. Dabeiix



xwird au
h auf Parallelisierungsaspekte eingegangen, da die Spei
her- und Re-
henzeitanforderungen für sol
h komplexe Probleme wie Zweiphasenströmun-gen enorm groÿ sein können.An einigen Testbeispielen wird die korrekte Implementierung und Genauigkeiteiniger numeris
her Komponenten überprüft. S
hlieÿli
h werden Anwendungs-beispiele aus dem Berei
h von Tropfen- und Filmsystemen behandelt, dieGegenstand der Fors
hung in dem verfahrenste
hnis
h ausgeri
hteten Sonder-fors
hungsberei
h SFB 540 der RWTH Aa
hen University sind. Dabei wer-den numeris
he Ergebnisse von Simulationen levitierter Tropfen, aufsteigenderTropfen sowie eines Fall�lmes präsentiert.
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1. Introdu
tionDue to the advan
es in 
omputer te
hnology and improvements of numeri
almethods in the last de
ades, the simulation of one-phase �ows in liquid orgaseous media has be
ome state of the art and is applied as a standard tool inindustry and resear
h. However, a 
loser look at the simulation of two-phase�ow problems, su
h as rising air or oil droplets in water, 
learly reveals a dif-ferent pi
ture. One major problem is the o

urren
e of numeri
ally indu
edos
illations of the velo
ity �eld in the vi
inity of the interfa
e, so-
alled spu-rious 
urrents [WKP99, FCD+06℄. We mention some other 
hallenges in the
ontext of two-phase �ow problems:
• the di�erent material properties of the two phases indu
ing a jump inthe 
oe�
ients of the partial di�erential equations,
• the singular surfa
e tension for
e term whi
h is only de�ned at the in-terfa
e,
• topologi
al 
hanges of the interfa
e like the break-up or merging of bub-bles.As the numeri
al methods for two-phase problems are not yet mature inmany respe
ts, for example w. r. t. a

ura
y, there is an a
tive �eld of 
ur-rent resear
h on the improvement of existing methods or the design of newapproa
hes.In this thesis we des
ribe a numeri
al strategy for the simulation of three-dimensional in
ompressible two-phase �ow problems. It is based on a levelset method for 
apturing the interfa
e and a �nite element dis
retization onadaptive multilevel tetrahedral grids. The main a
hievements of this thesisare the development and analysis of two novel methods for the numeri
altreatment of surfa
e tension whi
h feature a higher a

ura
y 
ompared tostandard methods in this �eld:
• a modi�ed Lapla
e-Beltrami dis
retization of the singular surfa
e tensionfor
e term whi
h is lo
alized at the interfa
e, 1



2 1. Introdu
tion
• an extended �nite element (XFEM) spa
e for the pressure to representthe jump a
ross the interfa
e whi
h is present due to surfa
e tension.1.1. Two-phase systems in 
hemi
al engineeringappli
ationsIn this se
tion we give a few examples of two-phase �ow systems whi
h are ofinterest in the area of 
hemi
al engineering and are a topi
 of 
urrent resear
hin the Collaborative Resear
h Center SFB 540 [SFB℄ at the RWTH Aa
henUniversity. In the SFB 540 several groups from di�erent s
ienti�
 dis
iplinessu
h as 
hemi
al engineering, 
hemistry, physi
s, s
ienti�
 
omputing andmathemati
s 
ollaborate to gain more insight into kineti
 phenomena arisingin multi-phase systems. Among them some groups are working on numeri
alsimulation (whi
h is also the fo
us of our group), while others are 
ondu
tingexperiments to 
olle
t measurement data or developing adequate models forthe des
ription of the observed phenomena.The goal of the SFB 540 is to enhan
e the modeling of momentum, heat andmass transport in multiphase systems, in whi
h interfa
ial phenomena oftenplay a dominant role. This is a

omplished by the formulation and solutionof inverse problems, whi
h aim to mat
h the measurement data with thesimulation results as good as possible. In the most simple 
ase this means the�tting of a few model parameters, in more elaborate 
ases the inverse problem
onsists in estimating an unknown fun
tion [GSM+05, KGM+08℄. Questionsof model stru
ture and model identi�
ation or optimal experimental design(i. e., roughly speaking, whi
h experiment gives most information), whi
h arearising in this 
ontext, are also 
onsidered on the basis of inverse problems.This integrated modeling pro
ess is 
alled `model-based experimental analysis'[Mar05℄, or MEXA for short, whi
h explains the title of the SFB 540: `Model-based experimental analysis of kineti
 phenomena in �uid multi-phase rea
tivesystems'.The main 
ontribution from our resear
h group is the development of the soft-ware pa
kage DROPS for the simulation of three-dimensional in
ompressibletwo-phase �ow problems. Many of the numeri
al methods implemented inDROPS are des
ribed in Part II of this thesis. The software 
ode is writ-ten in C++ and developed by a 
ouple of people at the Chair of Numeri
alMathemati
s and the Chair of S
ienti�
 Computing at the RWTH Aa
henUniversity. We refer to Chapter 9 for a 
ompa
t overview of the design and



1.1. Two-phase systems in 
hemi
al engineering appli
ations 3

Figure 1.1.: Photo of a lev-itated droplet in a measure-ment devi
e. The photo wastaken applying an exposuretime of 3 se
onds to show thestability of the droplet. Pro-vided by proje
t B3, SFB 540.
Figure 1.2.: Photo showing the surfa
e of a falling�lm. The measurement devi
e at the top is usedfor measuring the lo
al �lm thi
kness. Providedby Georg Dietze, proje
t C2, SFB 540.

stru
ture of the DROPS 
ode.We are interested in the following two-phase systems, whi
h are of interest inthe 
hemi
al engineering 
ommunity: The �rst one is a bubble in a surrounding�uid. This is related to bubble 
olumn rea
tors, where mass transport takespla
e a
ross the phase interfa
e of bubble swarms. For investigation purposesa single bubble is 
onsidered, the 
hosen substan
es are sili
on oil, n-butanolor toluene in water. In a spe
ial measurement devi
e, where the bubble 
anbe held in a stable �xed position, NMR measurements of momentum (andmass) transfer are operated by our proje
t partners [AGHK+05℄. A photoof the levitated bubble in the devi
e is shown in Figure 1.1. The goal is toimprove the interfa
e model by pre
ise measurement in the vi
inity of theinterfa
e and a

urate numeri
al simulation of the system. The latter is ourtask. Some numeri
al results of the hydrodynami
s of bubbles are presentedin the Se
tions 11.1 and 11.2.The se
ond system we are interested in is the �ow of thin liquid �lms, whi
hare o

urring in falling �lm apparatuses. In appli
ations these are mainlyused for heating, 
ooling and evaporation pro
esses. The liquid �lm is �owingdown an in
lined wall and develops a wavy stru
ture at the interfa
e to the



4 1. Introdu
tiongaseous phase, even without external ex
itation, see Figure 1.2. This wavi-ness enhan
es heat and mass transport and is therefore an interesting �eld ofinvestigation. Our proje
t partners are measuring important parameters su
has �lm thi
kness, velo
ity information at 
ertain points or planar se
tions, sur-fa
e temperature and temperature and 
on
entration distribution inside the�lm by means of several measurement te
hniques [LASLR05, SMDK06℄. Theliquid phase in our examples is 
hosen as water or sili
on oil, the gaseous phase
onsists of air or nitrogen. Sin
e the material properties of this liquid-gas sys-tem di�er by a fa
tor of roughly 103 and the interfa
e is very large 
omparedto the bubble experiment, the numeri
al simulation is very 
hallenging in this
ase. Some �rst results of numeri
al simulations are given in Se
tion 11.3.1.2. Numeri
al approa
hThe 
omplexity of the aforementioned appli
ation examples de�nes the 
hal-lenges one is fa
ing when treating su
h phenomena numeri
ally. This will giveus a guideline for the development pro
ess of our numeri
al method, i. e., inthe 
hoi
e and 
ombination of adequate numeri
al tools. Some of the keyissues are listed below:The transport phenomena are essentially 3D, hen
e we 
annot restri
t to2D or 3D rotationally symmetri
 models. We therefore need the abilityto handle three-dimensional in
ompressible �ows. The high 
omplexityof 3D problems demands the usage of parallel 
omputers, otherwise asu�
ient grid resolution 
an often not be a
hieved on a single pro
essordue to memory limitations and/or huge 
omputational times.Many important transport phenomena o

ur at the interfa
e demanding ahigh resolution in the interfa
ial region. Otherwise the development ofreliable interfa
e models is not possible. Hen
e we have to apply adap-tivity lo
ally at the interfa
e, 
ombined with load distribution in the 
aseof parallelization.The interfa
e is moving in time, therefore we have to deal with a non-sta-tionary problem and need some interfa
e lo
alization te
hnique. Alsothe grid has to be adapted from time to time if the interfa
e tends tomove out of the re�nement zone.Surfa
e for
es are dominant. In the 
ase of the levitated droplet, surfa
e ten-sion is high as the 
urvature is large due to the small bubble diameter.In the 
ase of the falling �lm 
apillary for
es are dominant be
ause of



1.2. Numeri
al approa
h 5the large extent of the interfa
e. Hen
e we need a spe
ial numeri
altreatment of surfa
e tension to avoid spurious 
urrents at the interfa
eor keep them as small as possible.Dis
ontinuous pressure. In the presen
e of surfa
e tension there is a pressurejump at the interfa
e due to the Lapla
e-Young law. For the approxi-mation of dis
ontinuous fun
tions we introdu
e extended �nite elementansatz fun
tions whi
h are dis
ontinuous a
ross the interfa
e.Large jumps in 
oe�
ients of the PDE have to be handled, at least for thefalling �lm problem. This demands spe
ial quadrature te
hniques for in-tegrals with dis
ontinuous integrands in the dis
retization pro
ess. Spe-
ial pre
onditioning te
hniques for the S
hur 
omplement matrix haveto be applied for the solution of the dis
rete problem to a

ount for thejumping 
oe�
ients.Based on these requirements and properties of two-phase �ow problems, wehave 
hosen several numeri
al methods whi
h are in our opinion appropriatefor this task. In the following we list the main ingredients of our numeri
alstrategy:
• The level set method is applied for 
apturing the interfa
e between thetwo phases. This method is also 
apable of des
ribing topology 
hangesof the interfa
e.
• The spatial dis
retization is based on a hierar
hy of three-dimensionaltetrahedral grids whi
h are 
onstru
ted in su
h a way that they are 
on-sistent (i. e., no hanging nodes) and that the hierar
hy of triangulationsis stable. Lo
al re�nement and 
oarsening are easy to realize.
• For the dis
retization of level set and Navier-Stokes equations we use
onforming P2 �nite elements for the velo
ity u and level set fun
tion
ϕ as well as extended �nite elements (XFEM) for the pressure p. Theevaluation of integrals with dis
ontinuous integrands arising during theassembly of the system matri
es are 
al
ulated by spe
ial quadraturete
hniques whi
h a

ount for the position of the interfa
e.
• We use a Lapla
e-Beltrami te
hnique for the dis
retization of the sur-fa
e tension for
e term, whi
h avoids se
ond derivatives indu
ed by theinterfa
ial 
urvature. By a slight modi�
ation the a

ura
y of the dis-
retization 
an be signi�
antly in
reased 
ompared to standard Lapla
e-Beltrami approa
hes on pie
ewise planar interfa
e approximations.
• The one-step theta-s
heme or a linearized variant of it is applied for timeintegration.



6 1. Introdu
tion
• In ea
h time step the nonlinearity of the dis
rete Navier-Stokes problemis treated by a �xed point defe
t 
orre
tion. The Oseen problems aresolved by an inexa
t Uzawa method or Krylov subspa
e methods, wherewe use spe
ial S
hur 
omplement pre
onditioning te
hniques a

ountingfor the pie
ewise 
onstant material properties ρ and µ.
• The Fast Mar
hing method is used for reparametrization of the level setfun
tion ϕ.
• Most of the numeri
al 
omponents have been parallelized to enable thesimulation of 
omplex two-phase �ow problems with su�
ient resolutionin a�ordable 
omputational time.1.3. Outline of the thesisThe thesis is stru
tured in three parts des
ribing the mathemati
al model, thenumeri
al methods applied (
onstituting the largest part) and some numeri
alresults.In Part I the governing equations of motion for one-phase and two-phase �oware de�ned, 
f. Chapter 2. In Se
tion 2.2 we brie�y dis
uss di�erent methodsto des
ribe the unknown interfa
e. We use the level set method, where theinterfa
e is des
ribed as the zero-level of a s
alar fun
tion, the so-
alled levelset fun
tion, 
f. Se
tion 2.2.1.In Part II all numeri
al 
omponents are presented whi
h are part of the over-all numeri
al strategy. A short outline of the applied numeri
al methods isgiven at the beginning of Part II. We use a hierar
hy of nested tetrahedralgrids, a so-
alled multilevel triangulation, and a multilevel re�nement algo-rithm for lo
ally re�ning and 
oarsening the grid, 
f. Chapter 3. The �niteelement dis
retization of the level set and Navier-Stokes equations is des
ribedin Chapter 4. Due to surfa
e tension for
es for the dis
retization of two-phase�ow problems, some spe
ial aspe
ts have to be taken into a

ount, whi
h arehighlighted in Chapter 5. In Se
tion 5.3 the dis
retization of the singular sur-fa
e tension for
e term by a Lapla
e-Beltrami te
hnique is analyzed. For thedis
retization of the dis
ontinuous pressure an extended �nite element spa
e(XFEM) is applied, whi
h is des
ribed in Se
tion 5.4. Topi
s of Chapter 6 arethe time dis
retization and 
oupling of level set and Navier-Stokes equations.The iterative solution of the dis
rete problems and 
orresponding pre
ondi-tioning aspe
ts are addressed in Chapter 7. Chapter 8 is 
on
erned with thereparametrization of the level-set fun
tion and a simple volume 
orre
tion



1.3. Outline of the thesis 7strategy to enfor
e 
onservation of mass. The stru
ture of the software 
odeDROPS as well as 
ertain implementational aspe
ts in
luding the paralleliza-tion of some 
omponents are des
ribed in Chapter 9.Finally, in Part III we present some results obtained by the simulation toolDROPS. In Chapter 10 the performan
e of several numeri
al 
omponents isinvestigated by means of spe
i�
 test 
ases. Numeri
al results of 3D in
om-pressible two-phase �ow problems for real two-phase systems originating fromdroplet and falling �lm appli
ations are given in Chapter 11.In Chapter 12 we summarize the results of this thesis, draw some 
on
lusionsand formulate several resear
h topi
s relevant for future work.
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Part I.Mathemati
al model

9





2. Governing equations2.1. A 
ontinuous model for two-phase �owLet Ω be a polyhedral domain in R
3 and [t0, tf ] a time interval. In the fol-lowing we derive the Navier-Stokes equations for unsteady laminar �ow oftwo immis
ible �uids. We assume the �uids to be in
ompressible, vis
ous,Newtonian and pure (i. e., no mixture of di�erent 
omponents). Moreover weassume isothermal 
onditions for both �uids and therefore negle
t variationsof density ρ and dynami
 vis
osity µ due to temperature 
hanges. Hen
e, µand, due to in
ompressibility, also ρ are 
onstant (and positive) in ea
h phase.2.1.1. One-phase �owWe �rst 
onsider the Navier-Stokes equations for unsteady laminar �ow of onephase. Let u = u(x, t) ∈ R

3 and p = p(x, t) ∈ R denote velo
ity and pressure,respe
tively. We introdu
e a fun
tionX : Ω× [t0, tf ]→ Ωwith the following meaning. For a parti
le with the initial spatial positionx0 ∈ Ω at the initial time t0, X(x0, t) des
ribes the spatial position of theparti
le at the time t. This is the Eulerian des
ription of motion in spatially�xed 
oordinates. By de�nition, X(x0, t0) = x0 for all x0 ∈ Ω andXt(x0, t) :=
d

dt
X(x0, t) = u(X(x0, t), t)as the parti
les are moving with velo
ity u. Let W0 ⊂ Ω be an arbitrary,bounded subset and

W (t) := {X(x0, t) : x0 ∈W0 }.

W (t) des
ribes the position of the parti
les for time t, whi
h were lo
atedin W0 at initial time t0. Then for a C1 fun
tion f = f(x, t) the following11



12 2. Governing equationstransport theorem holds: For all t ∈ [t0, tf ],
d

dt

∫

W (t)

f(x, t) dx =

∫

W (t)

ft(x, t) + div(fu)(x, t) dx. (2.1)Considering 
onservation of mass we 
hoose f = ρ and obtain
0 =

d

dt

∫

W (t)

ρ dx =

∫

W (t)

ρt + div(ρu) dx.Sin
e W (t) is arbitrary, this is equivalent to
ρt + div(ρu) = 0for all (x, t) ∈ Ω× [t0, tf ]. Due to our assumption ρ = const this simpli�es to

divu = 0. (2.2)(2.2) is also 
alled 
ontinuity equation.We now 
onsider 
onservation of momentum. The momentum of mass 
on-tained in W (t) is given by
M(t) =

∫

W (t)

ρu dx.Due to Newton's law the 
hange of momentum M(t) is equal to the for
e
F (t) a
ting on W (t). This for
e is de
omposed in a volume for
e F1(t) anda boundary for
e F2(t). The external volume for
e F1(t) is given by thegravitational for
e,

F1(t) =

∫

W (t)

ρg dx,where g ∈ R
3 is the ve
tor of gravitational a

eleration. The boundary for
e

F2(t) is modeled by the surfa
e integral
F2(t) =

∫

∂W (t)

σn ds,where σ = σ(x, t) ∈ R
3×3 is the stress tensor and n = n(x, t) ∈ R

3 the outernormal on ∂W (t). Summarizing, Newton's law yields
d

dt
M(t) = F1(t) + F2(t) (2.3)

=

∫

W (t)

ρg+ div σ dx,



2.1. A 
ontinuous model for two-phase �ow 13where we applied Stokes' theorem for F2(t). Using the transport theorem (2.1)in the left-hand side of (2.3) with f = ρ ui, i = 1, 2, 3, we obtain
∫

W (t)

(ρ ui)t + div(ρ ui u) dx =

∫

W (t)

ρg+ div σi dx, i = 1, 2, 3,with σi the i-th row of σ. In ve
tor notation,
∫

W (t)

(ρu)t + div(ρu⊗ u) dx =

∫

W (t)

ρg+ div σ dx.Sin
e W (t) is arbitrary, this is equivalent to
(ρu)t + div(ρu⊗ u) = ρg+ div σfor all (x, t) ∈ Ω× [t0, tf ]. Note that div(ρu⊗ u) = (ρu · ∇)u+ (ρu)(div u)and due to the 
ontinuity equation (2.2), the last summand vanishes, yieldingthe so-
alled momentum equation
(ρu)t + (ρu · ∇)u = ρg+ div σ. (2.4)For vis
ous Newtonian �uids the stress tensor σ is modeled as

σ = −pI+ µD(u)where D(u) = ∇u + (∇u)T is the deformation tensor. Summarizing theequations from above, we end up with the well-known Navier-Stokes equationsfor in
ompressible �ow:
ρ(
∂u
∂t

+ (u · ∇)u)− div(µD(u)) +∇p = ρg, (2.5)
divu = 0 in Ω× [t0, tf ]. (2.6)Remark 2.1If µ is 
onstant (whi
h is the 
ase for isothermal one-phase �ows of a puresubstan
e) then the term div

(
µD(u)

) simpli�es to
div
(
µD(u)

)
= µ div

(D(u)
)

= µ
(
∆u+∇(div u)

)
= µ∆utaking into a

ount that divu = 0. ⋄
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Ω1

Ω2

ΓFigure 2.1.: 2D illustration of the 
omputational domain Ω 
onsisting of two phases
Ω1 and Ω2 and interfa
e Γ.2.1.2. Two-phase �owWe now 
onsider two-phase �ows, i. e., Ω 
ontains two di�erent immis
iblein
ompressible phases (�uid-�uid or �uid-gas) whi
h are moving in time andhave di�erent material properties ρi and µi, i = 1, 2. Therefore we assumethat for ea
h point in time, t ∈ [t0, tf ], Ω is partitioned into two subdomains
Ω1(t) and Ω2(t), Ω = Ω1(t)∪Ω2(t), Ω1(t)∩Ω2(t) = ∅, ea
h of them 
ontainingone of the phases, respe
tively. Both phases are separated from ea
h otherby the interfa
e Γ(t) = Ω1(t) ∩ Ω2(t), 
f. Figure 2.1. As mentioned before,we assume isothermal 
onditions and that both phases are pure substan
es.Moreover, we do not 
onsider rea
tion, mass transfer or phase transition.In ea
h of the phases 
onservation of mass and momentum has to hold, yieldingseparate Navier-Stokes equations on the two domains Ωi, i = 1, 2. Additionallywe have to 
onsider transition 
onditions at the interfa
e. As the phases arevis
ous and no phase transition is taking pla
e, the velo
ity 
an be assumedto be 
ontinuous at the interfa
e:

[u]Γ = 0. (2.7)Here for x ∈ Γ and a fun
tion f de�ned on Ω we use the notation
[f ]Γ(x) := f1(x)− f2(x), fi(x) := lim

ξ→x f(ξ) in Ωi, i = 1, 2.For the interfa
e for
e we 
hoose a standard model in
orporating surfa
e ten-sion, i. e., we assume that the jump of the normal stress along the interfa
e
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Γ is proportional to the lo
al 
urvature κ = κ(x),x ∈ Γ, 
f., for example,[BKZ92, S
r60℄:

[σn]Γ = τκn. (2.8)This is a free boundary 
ondition at the interfa
e. Here n denotes the outernormal on Γ pointing from Ω1 to Ω2. The 
urvature is de�ned by
κ(x) = − divn(x), x ∈ Γ,thus for a 
onvex interior of Γ we have the 
onvention that κ is negative. τis 
alled the surfa
e tension 
oe�
ient, whi
h is a material property of thetwo-phase system. In 
ombination with 
onservation of mass and momentumin ea
h phase this yields the following standard model for two-phase �ows:







ρi(
∂u
∂t

+ (u · ∇)u) = ρig+ div σi

divu = 0
in Ωi × [t0, tf ], i = 1, 2, (2.9)

[σn]Γ = τκn, [u]Γ = 0, (2.10)initial 
ondition u|t=t0 = u0 in Ω,suitable boundary 
onditions at ∂Ω.The density and vis
osity, ρi and µi, i = 1, 2, are assumed to be 
onstant inea
h phase.Instead of two separate Navier-Stokes equations on the 
omputational domains
Ωi, i = 1, 2, and additional interfa
e 
onditions it would be advantageous to
onsider an equivalent system of PDEs on the whole domain Ω. In fa
t, theso-
alled 
ontinuum surfa
e for
e (CSF) model (
f. [BKZ92, CHMO96℄) issu
h a model. It 
onsists of the Navier-Stokes equation on Ω with jumping
oe�
ients ρ, µ,

ρ =

{

ρ1 in Ω1,

ρ2 in Ω2,
µ =

{

µ1 in Ω1,

µ2 in Ω2.
(2.11)The free boundary 
ondition (2.8) is expressed in terms of a lo
alized for
eterm fΓ, whi
h appears on the right-hand side of the momentum equation.The CSF term fΓ is given by

fΓ = τκ δΓnΓ, (2.12)
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Γ

γ

W1

W2

x
Figure 2.2.: 2D illustration of a neighborhood W = W1 ∪W2 for an interfa
e pointx ∈ Γ.where δΓ is a Dira
 δ-distribution de�ned by

∫

Ω

δΓ(x)φ(x) dx =

∫

Γ

φ(s) dsfor a smooth fun
tion φ.Summarizing, the CSF model is as follows:






ρ(
∂u
∂t

+ (u · ∇)u) = ρg+ div σ + fΓ

divu = 0
in Ω× [t0, tf ], (2.13)initial 
ondition u|t=t0 = u0 in Ω,suitable boundary 
onditions at ∂Ω.Under reasonable smoothness assumptions one 
an show that (2.13) is in fa
tequivalent to (2.9)�(2.10). In the following lemma we show that the CSFmodel 
an be derived from 
onservation of momentum and mass in the wholedomain Ω.Lemma 2.2Let u, p be a solution of (2.9)�(2.10) su
h that σ(u) is di�erentiable. Thenwe have

∫

Ω

u · ∇q dx = 0 for all q ∈ C∞
0 (Ω), (2.14)i. e., the 
onservation equation for mass, divu = 0, holds in Ω (in the senseof distributions). Furthermore, 
onservation of momentum in an arbitrarysubdomain W ⊂ Ω yields

∫

W

ρ (ut + (u · ∇)u) dx =

∫

W

(ρg+ div σ) dx+

∫

W∩Γ

τκn ds. (2.15)
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onsider (2.14). Using divu = 0 in Ωi, i = 1, 2, and [u·n]Γ = 0,for q ∈ C∞
0 (Ω) we obtain
∫

Ω

u · ∇q dx =

2∑

i=1

∫

Ωi

u · ∇q dx
=

2∑

i=1

(∫

∂Ωi

q u · n ds− ∫
Ωi

q divu dx)
=

∫

Γ

q [u · n]Γ ds = 0.Now we 
onsider (2.15). For W ∩ Γ = ∅ we have the situation W ⊂ Ωiwith i = 1 or i = 2. The derivation of 
onservation of momentum for one-phase �ows was already dis
ussed in Se
tion 2.1.1 yielding (2.15), where theboundary integral is missing due toW ∩Γ = ∅. Thus we only have to 
onsiderthe 
ase γ := W ∩ Γ 6= ∅. Then W is subdivided by Γ into two subdomains
Wi := W ∩Ωi, i = 1, 2, 
f. Figure 2.2. Repeating the steps from Se
tion 2.1.1but without integrating by parts, we end up with

∫

W

ρ (ut + (u · ∇)u) dx =

∫

W

ρg dx+

∫

∂W

σn ds. (2.16)Note that applying Stokes' theorem to the boundary integral on the right-handside of (2.16) yields
∫

∂W

σn ds =

(
2∑

i=1

∫

∂Wi

σn ds)+

∫

γ

[σn]Γ ds

=

(
2∑

i=1

∫

Wi

div σ dx)+

∫

γ

τκn ds
=

∫

W

div σ dx+

∫

γ

τκn ds.Combined with (2.16) this proves the result.One important issue is hidden in the formulation of problem (2.13), namelythat the lo
ation of the interfa
e Γ(t) has to be known for ea
h time instant
t ∈ [t0, tf ]. This topi
 is dis
ussed in Se
tion 2.2.Note that the 
lassi
al strong formulation in (2.13) has to be treated with
are as the 
oe�
ients ρ, µ are dis
ontinuous a
ross Γ and thus, e. g., div σis not de�ned. It should rather be interpreted in a weak sense. The weakformulation of (2.13) is given below in Se
tion 2.1.4.
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onditionsIn the two-phase �ow models (2.9)�(2.10) and (2.13) suitable boundary 
ondi-tions on ∂Ω have to be added. We distinguish between essential and naturalboundary 
ondition. Let the boundary Σ = ∂Ω be partitioned in a part
ΣN ⊂ Σ where natural boundary 
onditions are imposed and a remainingpart ΣD = Σ \ ΣN with essential boundary 
onditions.The essential boundary 
onditions are of Diri
hlet type and are used for model-ing in�ow (in�ow boundary 
ondition) and walls (no-slip boundary 
ondition).The in�ow boundary 
ondition pres
ribes the velo
ity at the in�ow boundary
Σin ⊂ ΣD, u(x, t) = uin(x, t), (x, t) ∈ Σin × [t0, tf ],with uin su
h that uin · n ≤ 0 on Σin holds. The no-slip boundary 
onditionpres
ribes the velo
ity on Σwall ⊂ ΣD to be equal to the tangential velo
ityuwall of the related wall,u(x, t) = uwall(x, t), (x, t) ∈ Σwall × [t0, tf ],with uwall · n = 0 on Σwall. For a �xed wall we have uwall = 0, thus homoge-neous Diri
hlet boundary 
onditions on Σwall. In the following we representin�ow and no-slip boundary 
onditions in a 
ombined way byu(x, t) = uD(x, t), (x, t) ∈ ΣD × [t0, tf ]. (2.17)Natural boundary 
onditions are usually applied to model out�ow (out�owboundary 
ondition):

σn = −pextn on ΣN × [t0, tf ].Here pext is a given external pressure. One usually 
hooses pext = 0, thus weget a homogeneous natural boundary 
ondition on ΣN . In the following weassume
σn = 0 on ΣN × [t0, tf ]. (2.18)A dis
ussion on alternative out�ow boundary 
onditions 
an be found in[Tur99℄.2.1.4. Weak formulationWe �rst 
olle
t some useful results on partial integration. We assume that

p : Ω→ R and u,v : Ω→ R
3 are su�
iently smooth fun
tions. Then

∫

Ω

∇p · u dx = −
∫

Ω

p divu dx+

∫

∂Ω

pu · n ds.



2.1. A 
ontinuous model for two-phase �ow 19A simple 
al
ulation shows
−
∫

Ω

(
divD(u)

)
· v dx =

1

2

∫

Ω

tr
(D(u)D(v)

)
dx− ∫

∂Ω

(D(u)n) · v ds,where tr denotes the tra
e operator for matri
es, i. e., trM =
∑N

i=1Mii for
M ∈ R

N×N .For the weak formulation of (2.13) we introdu
e the spa
esV := (H1(Ω))3,V0 := {v ∈ V : v = 0 on ΣD },VD := {v ∈ V : v = uD on ΣD },

Q := L2,0(Ω) = { q ∈ L2(Ω) :

∫

Ω

q dx = 0 }.We de�ne the bilinear forms
m : V×V→ R : m(u,v) :=

∫

Ω

ρuv dx,
a : V×V→ R : a(u,v) :=

1

2

∫

Ω

µ tr
(D(u)D(v)

)
dx,

=
1

2

∫

Ω

µ

3∑

i,j=1

[D(u)
]

ij

[D(v)
]

ij
dx

b : V×Q→ R : b(v, q) := −
∫

Ω

q div v dx,and the trilinear form
n : V×V×V→ R : n(u;v,w) :=

∫

Ω

ρ(u · ∇v)w dx.For the weak formulation of the CSF term we introdu
e the linear form
fΓ : V→ R : fΓ(v) :=

∫

Γ

τκn · v ds. (2.19)The L2 s
alar produ
t in L2(Ω) is denoted by
(g, h)0 :=

∫

Ω

g · h dx.



20 2. Governing equationsNote that for u,v ∈ V, p ∈ Q we get by partial integration
−
∫

Ω

div(σ)v dx = a(u,v) + b(v, p)− ∫
∂Ω

σnv ds. (2.20)Assuming homogeneous natural boundary 
onditions on ΣN , i. e., σn|ΣN = 0,all boundary integrals 
aused by partial integration vanish for v ∈ V0. Thenthe weak formulation of (2.13) is as follows:Find (u, p) ∈ VD ×Q su
h that for all t ∈ [t0, tf ]

m(
∂u
∂t
,v) + n(u;u,v)

+ a(u,v) + b(v, p) = (ρg,v)0 + fΓ(v) for all v ∈ V0, (2.21)
b(u, q) = 0 for all q ∈ Q, (2.22)initial 
ondition u|t=t0 = u0 in Ω.2.2. Lo
ating the interfa
eThe CSF model (2.13) has to be supplemented by some interfa
e lo
alizationte
hnique, be
ause the surfa
e for
e fΓ and the 
oe�
ients ρ, µ are dependingon Γ. Several interfa
e lo
alization te
hniques 
an be found in the literature.Most of these methods are either of front-tra
king or of front-
apturing type.We refer to [Smo01℄ for a survey on this topi
. Most of these methods arestrongly 
onne
ted to dis
retization 
on
epts and often they 
annot be for-mulated in a 
ontinuous manner. Therefore dis
retization notions are used inthe dis
ussion of these methods below.The front-tra
king methods are based on an expli
it representation of theinterfa
e as a dis
retized manifold, whi
h is evolved in time. Either the gridis �tted to the interfa
e and deformed a

ording to the �ow �eld (Lagrangianapproa
h), or a separate representation is used for the interfa
e, e. g., someinterfa
e mesh, while the grid dis
retizing the 
omputational domain is kept�xed (Eulerian approa
h).The Lagrangian front-tra
king approa
h is mostly used for simulations of free-surfa
e �ows (
f. [Bän01, Beh02℄), where the 
omputational domain 
oversonly one phase and the moving interfa
e is part of the domain's boundary.There are only few appli
ations of this method to two-phase �ows (e. g.,



2.2. Lo
ating the interfa
e 21[JT94, TBM92, Tez07℄). The main di�
ulty of this method is to preventgrid deterioration over time. Non-lo
al updating strategies ranging from sim-ple proje
ting methods to 
omplete remeshing are used to keep the quality ofthe elements.In Eulerian front-tra
king methods (e. g., [UT92, TBE+01, GGL+98, MCN03,DFG+06, Mao07℄) the interfa
e is represented by a separate data stru
turestoring the position and 
onne
tivity of marker points on the interfa
e. Thesemarker points are individually adve
ted by the lo
al velo
ity �eld. During theevolution of the interfa
e, points have to be inserted or removed to providean a

urate representation of the interfa
e. If the topology of the interfa
e
hanges (e. g., when bubbles merge or break up), a proper update of theinterfa
e representation is hard to realize, in parti
ular for the 3D 
ase, whi
his a major drawba
k of this method. However, in [ZALC05℄ su
h a method isapplied to three-dimensional droplet break up yielding satisfa
tory results.The most popular front-
apturing methods are the Volume of Fluids (VOF)method and the level set method. In both 
ases the interfa
e is de�ned im-pli
itly by some indi
ator fun
tion, the so-
alled VOF or level set fun
tion,respe
tively.The VOF method (see e. g., [HN81, GW01, BKW04℄) is a volume-tra
king ap-proa
h whi
h uses a 
ell-wise 
onstant fun
tion to indi
ate the volume fra
tionof a 
ertain phase for ea
h 
ell. If 
ombined with 
onservative �nite volumes
hemes, one bene�t of the method is its 
onservation of mass property. Amajor disadvantage is the non-uniqueness of the interfa
e lo
ation. For the ad-ve
tion of the VOF fun
tion and the 
omputation of normals and 
urvature asharp interfa
e has to be re
onstru
ted lo
ally from the volume fra
tion infor-mation in ea
h time step. If one tries to keep the interfa
e relatively smooth,this task is not straight-forward. Therefore, several interfa
e re
onstru
tionalgorithms have been developed and improved over the years. A 
omparisonof some VOF methods is given in [Rud97℄.For the level set method (
f. [CHMO96, OF01, OS88, Sus03℄) the interfa
eis given by the zero-level set of a 
ontinuous fun
tion, whi
h is positive inthe one phase and negative in the other. Thus the position of the interfa
e isuniquely des
ribed and 
an be re
onstru
ted from its impli
it representation (ifneeded). Moreover, topology 
hanges 
an be handled without further e�ort.A drawba
k of this method is that 
onservation of mass is not inherentlyin
orporated in it.The level set te
hnique has been su

essfully used in many two-phase in-
ompressible �ow simulations. By far most of these simulations use �nite
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e or �nite volume dis
retization methods (
f. [OF01, Set99℄ and thereferen
es therein and [Sus03℄). There are relatively few publi
ations in whi
hthe level set method is 
ombined with �nite element dis
retization te
hniques.Su
h a 
ombination for a 2D simulation is presented in [Tor00, TE00℄ and[Smo01, Smo05℄. Other referen
es are [PS01, Hys06℄. In [MR06, CMR08℄the level set equation is dis
retized by a dis
ontinuous Galerkin method. InSe
tion 2.2.1 a more detailed des
ription of the level set method is given.2.2.1. The level set methodThe level set method was introdu
ed by Sethian and Osher [OS88℄. Anoverview of the method and its appli
ations is given in [Set99, OF01℄.The basi
 idea of the level set method is to represent the interfa
e Γ impli
itlyby the zero level set of some 
ontinuous, s
alar fun
tion ϕ : Ω × [t0, tf ] → R,i. e.,
Γ(t) = {x ∈ Ω : ϕ(x, t) = 0 }, t ∈ [t0, tf ].Moreover, the sign of ϕ(x, t) indi
ates in whi
h phase x is lo
ated, i. e., whetherx ∈ Ω1(t) or x ∈ Ω2(t). As a 
onvention, we assume ϕ(·, t) < 0 in Ω1(t) and

ϕ(·, t) > 0 in Ω2(t). There are many possible 
hoi
es of su
h fun
tions ϕ.From the 
omputational point of view the most 
onvenient one is the signeddistan
e fun
tion, i. e.,
|ϕ(x, t)| = dist(x,Γ(t)).For this 
hoi
e we have ‖∇ϕ‖ = 1. In pra
ti
e, we will use an approximativesigned distan
e fun
tion for ϕ. A 2D example of a level set fun
tion for thesetting shown in Figure 2.1 is given in Figure 2.3.We assume that the initial lo
ation Γ|t=t0 of the interfa
e is known, givenby an initial value for the level set fun
tion ϕ(x, t0) = ϕ0(x). The evolutionof the interfa
e is determined by the lo
al �ow �eld u|Γ as the interfa
e istransported by the moving �uid. Formulated in a Lagrangian manner of amoving 
oordinate system, if x(t) ∈ Ω is the position of a parti
le movingwith the �uid andif x(t0) ∈ Γ(t0), then x(t) ∈ Γ(t) for all t ∈ [t0, tf ]. (2.23)Rewriting (2.23) in terms of the level set fun
tion ϕ, for ea
h x(t0) ∈ Γ(t0)we obtain

ϕ(x(t), t) = ϕ(x(t0), t0) = 0 for all t ∈ [t0, tf ].
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Figure 2.3.: 2D level set fun
tion ϕ for two-phase example from Figure 2.1.Extending this to the whole domain Ω, for ea
h x(t0) ∈ Ω

ϕ(x(t), t) = ϕ(x(t0), t0) = const for all t ∈ [t0, tf ].Hen
e,
0 =

d

dt
ϕ(x(t), t)

= ϕx(x, t) ẋ(t) + ϕt(x, t) for all (x(t), t) ∈ Ω× [t0, tf ]. (2.24)Note that ẋ(t) = u(x(t), t), as u denotes the velo
ity of parti
les. Substitutingthis in (2.24) we obtain the following evolution equation for the level setfun
tion ϕ,
ϕt + u · ∇ϕ = 0 in Ω× [t0, tf ]. (2.25)(2.25) is 
alled the level set equation. Note that (2.25) is a pure hyperboli
problem. We introdu
e the Sobolev spa
e V := H1(Ω). Then a weak formu-lation of (2.25) is given byFind ϕ ∈ V su
h that for all t ∈ [t0, tf ]

(ϕt, v)0 + (u · ∇ϕ, v)0 = 0 for all v ∈ V. (2.26)
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 problems 
an be found in [QV94℄.One advantage of the level set approa
h is the fa
t that geometri
 propertiesof the interfa
e Γ su
h as normals and 
urvature 
an be easily 
omputed:n =
∇ϕ
‖∇ϕ‖ , (2.27)

κ = − divn = − div
∇ϕ
‖∇ϕ‖ . (2.28)Remark 2.3The 
omputation of 
urvature is needed for the evaluation of the surfa
e for
eterm fΓ, 
f. (2.19). Instead of formula (2.28), whi
h requires the 
omputationof se
ond order derivatives of ϕ, we use a Lapla
e-Beltrami te
hnique des
ribedin Se
tion 5.3 whi
h only needs �rst order derivatives of ϕ. As we assume

ϕ ∈ H1(Ω), 
learly the latter approa
h is more suitable. ⋄The jumps in the 
oe�
ients ρ and µ 
an also be des
ribed by using the levelset fun
tion ϕ. Introdu
ing the Heaviside fun
tion H : R→ R,
H(x) =







0 x < 0,

0.5 x = 0,

1 x > 0,we de�ne
ρ(ϕ) := ρ1 + (ρ2 − ρ1)H(ϕ), µ(ϕ) := µ1 + (µ2 − µ1)H(ϕ). (2.29)Even though the level set method is a very elegant method from the mathe-mati
al point of view, it also su�ers from some nasty features. Firstly, duringthe evolution of the level set fun
tion, the signed distan
e property is lost andhas to be reestablished from time to time. This reparametrization has to behandled with 
are as the zero level set should be kept �xed or moved by onlya `small' amount. Se
ondly, the dis
retization of the Navier-Stokes equationsindu
es loss or gain of mass as the method is not inherently mass-
onservingfor a dis
rete divergen
e-free velo
ity �eld uh. This has to be 
orre
ted bysome suitable strategy. These issues are dis
ussed in Chapter 8.
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OverviewIn the following the main features of the numeri
al methods are presented,whi
h are used for solving the two-phase �ow problem dis
ussed in the previ-ous 
hapter. The des
ription is rather short and intends to give a s
hemati
overview of the overall stru
ture of the solution strategy, see also Figure 2.4 fora sket
h of the outline. A more detailed des
ription of the several 
omponentsis given in the Chapters 3�9.To be able to dis
retize the phase interfa
e with a high resolution, an adaptivere�nement algorithm based on multilevel tetrahedral grids is applied. Thisallows for a highly re�ned mesh 
lose to the interfa
e and a relatively 
oarsemesh in other regions of the domain. If the interfa
e is moving (like in theexample of the rising bubble), the mesh 
an easily be adapted to follow theinterfa
e by appropriate re�nement and 
oarsening of the tetrahedral elementsfrom time to time. The re�nement algorithm is des
ribed in Chapter 3.Both Navier-Stokes and level set equations are dis
retized in spa
e by �nite el-ements. We use P2 �nite elements for the level set fun
tion whi
h are stabilizedby streamline di�usion (SDFEM). For the dis
retization of the Navier-Stokesequations P2-FE for the velo
ity and P1-FE or extended PΓ
1 -FE for the pres-sure are used. The Taylor-Hood (P2-P1) �nite element pair is known to beLBB stable. For the P2 − PΓ

1 �nite element pair this is an open question. Inour simulations we did not experien
e any stability problems. The jumping
oe�
ients are treated by means of a spe
ial quadrature strategy. More details
an be found in Chapter 4.The numeri
al treatment of surfa
e tension raises (at least) two 
hallengingissues whi
h are addressed in Chapter 5.
• For the weak formulation of the CSF term a Lapla
e-Beltrami te
hniqueis used avoiding the 
al
ulation of se
ond derivatives when 
omputingthe 
urvature. The CSF term is dis
retized as a surfa
e integral, so thereis no need for numeri
ally approximating the Dira
 delta distribution inthe volume integral formulation. In Se
tion 5.3 we treat this issue.
• Due to the dis
ontinuous pressure jump a
ross the interfa
e in pres-27



28 Overviewen
e of surfa
e tension for
es, known as the Lapla
e-Young law, it isadvantageous to swit
h to another FE spa
e for the pressure variable(PΓ
1 -FE instead of P1-FE). The 
onstru
tion of appropriate FE spa
esis dis
ussed in Se
tion 5.4.For the time dis
retization impli
it s
hemes like the one-step theta s
heme orthe Fra
tional Step s
heme are applied. For the Fra
tional Step s
heme twodi�erent variants � one with operator splitting and one without � are pre-sented. Espe
ially the time dis
retization of the CSF term has to be handledwith 
are, as it leads to restri
tive time step sizes if it is treated expli
itly. Inea
h (ma
ro) time step a 
oupled Navier-Stokes and level set problem has to besolved. Here the problem is de
oupled by introdu
ing a �xed point approa
h,whi
h 
an be seen as some kind of Pi
ard iteration. Time dis
retization and
oupling strategy are dis
ussed in Chapter 6.The solution of the dis
rete problems is topi
 of Chapter 7. The nonlinear-ity of the Navier-Stokes problem is treated by a defe
t 
orre
tion approa
h.Krylov subspa
e methods are used as iterative solvers for the linear problems.For the saddle point problems an inexa
t Uzawa method (S
hur 
omplementapproa
h) is applied. Pre
onditioning of the S
hur 
omplement operator hasto take into a

ount the jumping 
oe�
ients 
aused by di�erent material prop-erties in the two phases.Even though the level set approa
h is very attra
tive for interfa
e 
apturing,there are some disadvantages that have to be over
ome. During the adve
tionpro
ess, the signed distan
e fun
tion property gets lost and has to be reestab-lished by a 
ertain reparametrization. A variant of the fast mar
hing methodhas turned out to be a favorable 
hoi
e for this task. As 
onservation of massis not inherently in
orporated into the method, it is enfor
ed arti�
ially bya simple 
orre
tion of the level set fun
tion. These topi
s are addressed inChapter 8.Finally, Chapter 9 des
ribes the stru
ture and design of the software pa
kageDROPS [DRO℄, where all the aforementioned methods have been implemented.DROPS is written in C++ and developed by a 
ouple of people at the IGPM,RWTH Aa
hen University, Germany. The software is applied to simulate thehydrodynami
s and heat and mass transfer in two-phase �ow problems arisingin the Collaborative Resear
h Center SFB 540 [SFB℄.Remark 2.4In the following we brie�y motivate the 
hoi
e of the numeri
al methods.Due to the nested multilevel hierar
hy of tetrahedral meshes whi
h allows sim-ple re�nement and also 
oarsening routines we 
an realize a high resolution



29Dis
retizationGeometri
al aspe
ts Ch. 3
• grids: multilevel tetrahedral grid hierar
hy
• adaptivity: lo
al re�nement at the interfa
eSpatial dis
retization by FEM Ch. 4
• P2-P1-FE for velo
ity, pressure
• stabilized FEM for level set equationTreatment of surfa
e tension Ch. 5
• modi�ed pressure spa
e (XFEM)
• improved Lapla
e-Beltrami dis
retization of fΓTime dis
retization Ch. 6

• one-step θ-s
heme
• fra
tional step s
heme
• 
oupling of level set and Navier-StokesIterative Solvers Ch. 7

• Navier-Stokes: linearization + defe
t 
orre
tion
• Oseen: Uzawa-type methods + general Krylov-type methods
• pre
onditioningReparametrization Ch. 8
• redistan
ing of level set fun
tionImplementation Ch. 9
• data stru
tures + algorithms
• parallelization aspe
tsFigure 2.4.: Overview of numeri
al methods and outline of Part II of the thesis.
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lose to the interfa
e Γ. For the lo
al re�nement in that area we need a suitablemarking strategy. For this the level set fun
tion is very well suited, be
auseit yields a good approximation of the distan
e to the interfa
e. Another im-portant reason why we use the level set te
hnique is the fa
t that topologi
al
hanges of the interfa
e (e. g., o

urring during droplet-droplet intera
tion)
an be handled without further e�ort. For interfa
e tra
king approa
hes thisis a more deli
ate task, as the interfa
e mesh has to be 
ompletely restru
-tured. Also the VOF method su�ers from a bad interfa
e re
onstru
tion inthis 
ase.The �nite element method is a �exible dis
retization method, whi
h 
an dealwith 
omplex geometries. Due to the use of �nite element dis
retizationson a nested multilevel grid hierar
hy, multigrid solution te
hniques 
an beapplied. A further ni
e property of the �nite element approa
h is that we 
anapply partial integration to the Lapla
e-Beltrami operator and thus eliminatethe se
ond order derivatives that o

ur in the 
urvature κ. A disadvantage
ompared to �nite volume methods is the fa
t that the dis
retization has tobe stabilized for 
onve
tion-dominated problems and that the �nite elementmethod is not 
onservative.We use impli
it time integration s
hemes to avoid the time step restri
tionsof expli
it methods for small grid sizes h.



3. Adaptive multilevelre�nement3.1. Multilevel grid hierar
hyWe �rst introdu
e some notions for the geometri
 entities by the followingde�nitions.De�nition 3.1 (Triangulation)A �nite 
olle
tion T of tetrahedra T ⊂ Ω is 
alled a triangulation of Ω (or Ω)if the following holds:1. meas3(T ) > 0 for all T ∈ T ,2. ⋃T∈T T = Ω,3. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S 6= T .Here int(U) means the interior of the set U ⊂ Ω. ⋄De�nition 3.2 (Consisten
y)A triangulation T is 
alled 
onsistent if the interse
tion of any two tetrahedrain T is either empty, a 
ommon fa
e, a 
ommon edge or a 
ommon vertex. ⋄De�nition 3.3 (Stability)A sequen
e of triangulations (T0, T1, T2, . . .) is 
alled stable if all angles of alltetrahedra in this sequen
e are uniformly bounded away from zero. ⋄It is known that for �nite element dis
retizations in many 
ases the weaker(maximal angle) 
ondition �all angles of all tetrahedra are uniformly boundedaway from π� would be su�
ient. However, using the latter 
ondition, strongerrequirements on the robustness of iterative solvers are needed, whi
h 
an beavoided when using the minimal angle 
ondition in De�nition 3.3.De�nition 3.4 (Re�nement)For a given tetrahedron T a triangulation K(T ) of T is 
alled a re�nementof T if |K(T )| ≥ 2 and any vertex of any tetrahedron T ′ ∈ K(T ) is either a31



32 3. Adaptive multilevel re�nementvertex or an edge midpoint of T . In this 
ase T ′ is 
alled a 
hild of T and Tis 
alled the parent of T ′.A re�nement K(T ) of T is 
alled regular if |K(T )| = 8, otherwise it is 
alledirregular.A triangulation Tk+1 is 
alled re�nement of a triangulation Tk 6= Tk+1 if forevery T ∈ Tk either T ∈ Tk+1 or K(T ) ⊂ Tk+1 for some re�nement K(T ) of
T . ⋄De�nition 3.5 (Multilevel triangulation)A sequen
e of 
onsistent triangulationsM = (T0, . . . , TJ ) is 
alled a multileveltriangulation of Ω if the following holds:1. For 0 ≤ k < J : Tk+1 is a re�nement of Tk.2. For 0 ≤ k < J : if T ∈ Tk ∩ Tk+1, then T ∈ TJ .The tetrahedra T ∈ TJ are 
alled the leaves ofM. Note that T is a leaf i� Thas no 
hildren inM.A tetrahedron T ∈M is 
alled regular if T ∈ T0 or T resulted from a regularre�nement of its parent. Otherwise T is 
alled irregular.A multilevel triangulationM is 
alled regular if all irregular T ∈M are leaves(i. e., have no 
hildren inM).
T0 is 
alled the 
oarsest or initial triangulation, TJ is 
alled the �nest trian-gulation. ⋄Remark 3.6LetM be a multilevel triangulation and Vk (0 ≤ k ≤ J) be the 
orresponding�nite element spa
es of 
ontinuous fun
tions p ∈ C(Ω̄) su
h that p|T ∈ Pqfor all T ∈ Tk (q ≥ 1). The re�nement property 1 in De�nition 3.5 impliesnestedness of these �nite element spa
es: Vk ⊂ Vk+1. ⋄De�nition 3.7 (Hierar
hi
al de
omposition of M)LetM = (T0, . . . , TJ) be a multilevel triangulation of Ω. For every tetrahedron
T ∈ M a unique level number ℓ(T ) is de�ned by

ℓ(T ) := min{ k : T ∈ Tk }.The set Gk ⊂ Tk,
Gk := {T ∈ Tk : ℓ(T ) = k }is 
alled the hierar
hi
al surplus on level k, k = 0, 1, . . . , J . Note that

G0 = T0, Gk = Tk \ Tk−1 for k = 1, . . . , J.
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e H = (G0, . . . ,GJ ) is 
alled the hierar
hi
al de
omposition ofM.Note that the multilevel triangulationM 
an be uniquely re
onstru
ted fromits hierar
hi
al de
omposition due to re�nement property 2 in De�nition 3.5.⋄Remark 3.8The hierar
hi
al de
omposition indu
es simple data stru
tures in a 
anoni
alway. The tetrahedra of ea
h hierar
hi
al surplus Gk are stored in a separatelist. Thus every tetrahedron T ∈ M is stored exa
tly on
e sin
e T has aunique level number ℓ(T ). By introdu
ing unique level numbers also for ver-ti
es, edges and fa
es, these sub-simpli
es 
an be stored in the same manner:For a sub-simplex S the level number ℓ(S) is de�ned as the level of its �rstappearan
e. Additionally, the obje
ts are linked to 
ertain 
orresponding ob-je
ts by pointers (e. g., a tetrahedron is linked to its verti
es, edges, fa
es,
hildren and parent). ⋄3.2. Adaptive re�nementIn this se
tion we des
ribe a re�nement algorithm whi
h is, apart from someminor modi�
ations, the algorithm presented in [Bey95, Bey98℄. This methodis based on similar ideas as the re�nement algorithms in [BSW83, BBJ+97℄.We restri
t ourselves to tetrahedral meshes. However, the method 
an easilybe modi�ed su
h that it is appli
able to other element types su
h as, forexample, hexahedra and pyramids.The re�nement strategy is based on a set of regular and irregular re�nementrules (also 
alled red and green rules, due to [BSW83℄), whi
h are des
ribedin the following two se
tions. The regular and irregular rules are lo
al in thesense that they are applied to a single tetrahedron. These rules are appliedin a (global) re�nement algorithm that des
ribes how the lo
al rules 
an be
ombined to ensure 
onsisten
y and stability, 
f. De�nitions 3.2 and 3.3.3.2.1. The regular re�nement ruleLet T be a given tetrahedron. For the 
onstru
tion of a regular re�nementof T it is natural to 
onne
t midpoints of the edges of T by subdividing ea
hof the fa
es into four 
ongruent triangles. This yields four sub-tetrahedra atthe 
orners of T (all similar to T ) and an o
tahedron in the middle. Thiso
tahedron is further subdivided into four sub-tetrahedra with equal volume
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Figure 3.1.: Regular re�nement.(
f. Figure 3.1). A stable tetrahedral regular re�nement strategy, based on anidea from [Fre42℄, is presented in [Bey95, Bey00℄. We re
all this method.Let T = [x(1), x(2), x(3), x(4)] be a tetrahedron with ordered verti
es x(1), x(2),
x(3), x(4) and

x(ij) :=
1

2
(x(i) + x(j)) , 1 ≤ i < j ≤ 4,the midpoint of the edge between x(i) and x(j). The regular re�nement

K(T ) := {T1, . . . , T8} of T is 
onstru
ted by the (red) rule
T1 := [x(1), x(12), x(13), x(14)] , T5 := [x(12), x(13), x(14), x(24)] ,

T2 := [x(12), x(2), x(23), x(24)] , T6 := [x(12), x(13), x(23), x(24)] ,
T3 := [x(13), x(23), x(3), x(34)] , T7 := [x(13), x(14), x(24), x(34)] ,

T4 := [x(14), x(24), x(34), x(4)] , T8 := [x(13), x(23), x(24), x(34)] .

(3.1)
T1, . . . , T4 are the sub-tetrahedra at the 
orners of T , and T5, . . . , T8 form theo
tahedron in the middle of T . In [Bey00℄ it is shown that for any T therepeated appli
ation of this rule produ
es a sequen
e of 
onsistent triangula-tions of T whi
h is stable. For a given T all tetrahedra that are generated insu
h a re
ursive re�nement pro
ess form at most three similarity 
lasses.3.2.2. Irregular re�nement rulesLet T be a given 
onsistent triangulation. We sele
t a subset S of tetrahedrafrom T and assume that the regular re�nement rule is applied to ea
h of thetetrahedra from S. In general the resulting triangulation T ′ will not be 
on-sistent. The irregular (or green) rules are used to make this new triangulation
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onsistent. For this we introdu
e the notion of an edge re�nement pattern.Let E1, . . . , E6 be the ordered edges of T ∈ T . We de�ne the 6-tuple
R(T ) = (r1, . . . , r6) ∈ {0, 1}6by:

• ri = 1 if Ei is an edge of a tetrahedron S ∈ S (i. e., edge Ei is re�nedand has two sub-edges in T ′) and
• ri = 0 otherwise (i. e., edge Ei is not re�ned) .For T ∈ S we have R(T ) = (1, . . . , 1). For T ∈ T \S the 
ase R(T ) = (0, . . . , 0)
orresponds to the situation that the tetrahedron T does not 
ontain anyverti
es from T ′ at the midpoints of its edges. For ea
h of the 26 − 1 possiblepatterns R 6= (0, . . . , 0) there exists a 
orresponding re�nement K(T ) of T (inthe fashion of (3.1)) for whi
h the verti
es of the 
hildren 
oin
ide with verti
esof T or with the verti
es at the midpoints on the edges Ei with ri = 1. Thisre�nement, however, is not always unique. This is illustrated in Figure 3.2.

Figure 3.2.: Non-unique fa
e re�nement.To obtain a 
onsistent triangulation in whi
h the subdivision of adja
ent fa
esof neighboring tetrahedra mat
hes spe
ial 
are is needed. One way to ensure
onsisten
y is by introdu
ing a so-
alled 
onsistent vertex numbering:De�nition 3.9 (Consistent vertex numbering)Let T1 and T2 be two adja
ent tetrahedra with a 
ommon fa
e F = T1 ∩ T2and lo
al vertex ordering
Tl = [x

(1)
l , x

(2)
l , x

(3)
l , x

(4)
l ], l = 1, 2.The pair (T1, T2) has a 
onsistent vertex numbering, if the ordering of theverti
es of F indu
ed by the vertex ordering of T1 
oin
ides with the oneindu
ed by the vertex ordering of T2. A 
onsistent triangulation T has a
onsistent vertex numbering if every two neighboring tetrahedra have thisproperty. ⋄



36 3. Adaptive multilevel re�nementRemark 3.10We note that a 
onsistent vertex numbering 
an be 
onstru
ted in a rathersimple way. Consider an (initial) triangulation T̃ with an arbitrary numberingof its verti
es. This global numbering indu
es a 
anoni
al lo
al vertex orderingwhi
h is a 
onsistent vertex numbering of T̃ . Furthermore, ea
h re�nementrule 
an be de�ned su
h that the 
onsistent vertex numbering property of theparent is inherited by its 
hildren by pres
ribing suitable lo
al vertex orderingsof the 
hildren. (3.1) is an example of su
h a rule. Using su
h a strategy a
onsistent triangulation T̃ ′ that is obtained by re�nement of T̃ a

ording tothese rules also has a 
onsistent vertex numbering. ⋄Assume that the given triangulation T has a 
onsistent vertex numbering. Fora fa
e with a pattern as in Figure 3.2 one 
an then de�ne a unique fa
e re�ne-ment by 
onne
ting the vertex with the smallest number with the midpointof the opposite edge. For ea
h edge re�nement pattern R ∈ {0, 1}6 we thenhave a unique rule. We emphasize that if for a given tetrahedron T the edgere�nement pattern R(T ) is known, then for the appli
ation of the regular orirregular rules to this tetrahedron no information from neighboring tetrahedrais needed. Clearly, for parallelization this is a very ni
e property.3.2.3. Multilevel re�nement algorithmUp to now we dis
ussed how the 
onsisten
y of a triangulation 
an be a
hievedby the 
hoi
e of suitable irregular re�nement rules based on the 
onsistentvertex numbering property. We will now explain how the regular and irregularrules 
an be 
ombined in a repeated re�nement pro
edure to obtain a stablesequen
e of 
onsistent triangulations. The 
ru
ial point is to allow only there�nement of regular tetrahedra, i. e., 
hildren of irregularly re�ned tetrahedra,also 
alled green 
hildren, are never re�ned. If su
h a green 
hild T is markedfor re�nement, instead of re�ning T the irregular re�nement of the parent willbe repla
ed by a regular one. As the appli
ation of the regular rule (3.1) 
reatestetrahedra of at most 3 similarity 
lasses (
f. [Fre42, Bey00℄), the tetrahedra
reated by a re�nement pro
edure a

ording to this strategy belong to an a-priori bounded number of similarity 
lasses. Hen
e the obtained sequen
e oftriangulations is stable.The idea of the so 
alled red-green re�nement strategy 
an be best explainedby a simple 2D example: for ease of presentation we use triangles instead oftetrahedra and show the a
tion of a one-level re�nement method. Considerthe following multilevel triangulationM = (T0, T1) as depi
ted in Figure 3.3.
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T0 T1Figure 3.3.: Initial multilevel triangulation with some leaf tetrahedra marked forre�nement (indi
ated by shading).In T1 two triangles are marked (by shading) for re�nement. A one-level re-�nement algorithm (like the one des
ribed in [BSW83℄) only uses the �nesttriangulation T1 as input. It �rst applies the regular re�nement rule (the so
alled �red re�nement�) to marked regular triangles and to the parents of green
hildren, whi
h are either marked or neighbors of marked triangles � green
hildren are never re�ned be
ause of stability reasons. This red re�nementof 
ourse yields an in
onsistent triangulation (
f. Figure 3.4 in the middle).Thus in the next step appropriate irregular re�nement rules are applied toavoid hanging nodes (�green 
losure�). The output of the one-level re�nementalgorithm is the new triangulation T2 (
f. Figure 3.4 on the right).
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���� red green

T1

T2Figure 3.4.: One-level red/green re�nement.The new triangulation T2 is 
onsistent, but not a re�nement of T1 in the senseof De�nition 3.4. Related to this, the 
orresponding FE spa
es are not nested,whi
h is not favorable if one wants to use multigrid solvers for the solution ofthe linear systems. Another important disadvantage is the fa
t that it is notobvious how to treat 
oarsening of the grid, whi
h is also an important task,if the re�nement zones are moving in time. This, for example, o

urs in therising bubble problem, where tetrahedra in the lower part of the grid have tobe unre�ned, when the interfa
e has moved further upwards.In multilevel re�nement algorithms both input and output are multilevel tri-angulations (
f. De�nition 3.5). That means that in general the algorithm notonly a�e
ts the �nest triangulation like in the 
ase of the one-level method, butthe whole multilevel triangulation, whi
h 
an be seen in the next example. Themultilevel method is more 
ompli
ated than the one-level algorithm, but o�ersimportant advantages: Property 1 of De�nition 3.5 assures the nestedness ofthe belonging FE spa
es, 
f. Remark 3.6. The multilevel stru
ture also allows



38 3. Adaptive multilevel re�nementto treat lo
al re�nement and 
oarsening in a similar way. In view of theseadvantages we implemented a multilevel re�nement algorithm in DROPS.For the des
ription of the multilevel re�nement algorithm we introdu
e thenotions of status and mark of a tetrahedron. Let M = (T0, . . . , TJ ) be amultilevel triangulation that has been 
onstru
ted by applying the regularand irregular re�nement rules and let H = (G0, . . . ,GJ ) be the 
orrespondinghierar
hi
al de
omposition. Every tetrahedron T ∈ H is either a leaf of M(i.e., T ∈ TJ ) or it has been re�ned. The label status is used to des
ribe thisproperty of T :For T ∈ H : status(T ) =







NoRef if T is a leaf ofM,RegRef if T is regularly re�ned inM,IrregRef if T is irregularly re�ned inM.The label IrregRef also 
ontains the number of the irregular re�nement rule(one out of 63) that has been used to re�ne T , i.e., the binary representationof status(T ) 
oin
ides with the edge re�nement pattern R(T ) of T .In adaptive re�nement an error estimator (or indi
ator) is used to mark 
ertainelements of TJ for further re�nement or for deletion. For this the label markis used:For T ∈ H : mark(T ) =







Ref if T ∈ TJ is marked for re�nement,Del if T ∈ TJ is marked for deletion,status(T ) otherwise.
We des
ribe a multilevel re�nement algorithm known in the literature. Thebasi
 form of this method was introdu
ed by Bastian [Bas96℄ and developedfurther in the UG-group [BBJ+97, BBJ+99, UG℄. We use the presentation asin [Bey95, Bey98℄, whi
h is shown in Algorithm 3.11.



3.2. Adaptive re�nement 39Algorithm 3.11 (Multilevel re�nement)Algorithm SerRe�nement(G0, . . . ,GJ)for k = J, . . . , 0 do // phase IDetermineMarks(Gk); (1)MarksForClosure(Gk); (2)for k = 0, . . . , J do if Gk 6= ∅ then // phase IIif k > 0 then MarksForClosure(Gk); (3)if k < J then Unre�ne(Gk); (4)Re�ne(Gk); (5)if GJ = ∅ then J := J − 1; (6)else if GJ+1 6= ∅ then J := J + 1; (7)The input of SerRe�nement 
onsists of a hierar
hi
al de
omposition
H = (G0, . . . ,GJ )in whi
h all re�ned tetrahedra T are labeled by mark(T ) = status(T ) a

ordingto their status and the unre�ned T ∈ TJ have mark(T ) ∈ {NoRef,Ref,Del}.The output is again a hierar
hi
al de
omposition, where all tetrahedra aremarked a

ording to their status.The main idea underlying the algorithm SerRe�nement is illustrated using themultilevel triangulation (T0, T1) from above. The hierar
hi
al de
omposition

H and the 
orresponding marks are shown in Figure 3.5.
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G1

G0

mark(T ) = NoRefmark(T ) = RegRefmark(T ) = IrregRefmark(T ) = RefFigure 3.5.: Input hierar
hi
al de
omposition.Note that for the two shaded triangles in G1 we have status(T ) 6= mark(T ).For all other triangles status(T ) = mark(T ) holds. In phase I of the algo-rithm (top�down: (1),(2)) only marks are 
hanged. In DetermineMarks some



40 3. Adaptive multilevel re�nement
G̃1

G̃0Figure 3.6.: After phase I.

Gnew
2

Gnew
1

Gnew
0Figure 3.7.: Output hierar
hi
al de-
omposition.tetrahedra are labeled with new marks, whi
h are of the type RegRef (forred re�nement) or NoRef (for 
oarsening). The green 
losure marks are setin MarksForClosure, where appropriate irregular re�nement marks are deter-mined from the edge re�nement patterns to avoid hanging nodes.On
e phase I has been 
ompleted the marks have been 
hanged su
h thatmark(T ) ∈ {NoRef,RegRef, IrregRef} holds for all T ∈ H, 
f. Figure 3.6. Weemphasize that all green 
hildren in G̃1 have mark(T ) = NoRef, as they arenot re�ned be
ause of stability reasons. Instead the 
orresponding irregularre�ned parents in G̃0 are labeled by mark(T ) = RegRef.In the se
ond phase (bottom�up: (3)-(5)) the a
tual re�nement (
oarseningis not needed in our example) is 
onstru
ted: A 
all of Unre�ne(Gk) deletesall tetrahedra, fa
es, edges and verti
es on level k + 1, whi
h are not neededanymore due to 
hanged marks. In the subroutine Re�ne(Gk) all T ∈ Gkwith mark(T ) 6= status(T ) are re�ned a

ording to mark(T ) and new obje
ts(tetrahedra, fa
es, edges, verti
es) on level k + 1 are 
reated. A subsequent
all to MarksForClosure in (3) 
omputes the appropriate re�nement marksfor the new 
reated tetrahedra in the next sweep of the for-loop.In the output hierar
hi
al de
omposition

Hnew = (Gnew

0 ,Gnew

1 ,Gnew

2 )



3.2. Adaptive re�nement 41we havemark(T ) = status(T ) for all T ∈ Hnew, 
f. Figure 3.7. The output mul-tilevel triangulationMnew = (T new

0 , T new

1 , T new

2 ) is regular (
f. De�nition 3.5)and is given by
T new

0 = Gnew

0 , T new

1 = Gnew

1 , T new

2 = Gnew

2 ∪{T ∈ Gnew

1 : mark(T ) = NoRef }.Note that T new

0 = T0, T new

1 6= T1 (!) and that the new �nest triangulation T new

2is the same as the triangulation T2 in Figure 3.4 resulting from the one-levelalgorithm.A more detailed dis
ussion of the subroutines in algorithm SerRe�nement (
f.Algorithm 3.11) is given in [Bey95, Bey98, Gro02℄.Remark 3.12A parallelized version of the algorithm, 
alled ParRe�nement, has been devel-oped and is des
ribed in [Gro02, GR05℄. It is based on a formal des
riptionof the distributed geometri
 data whi
h is very suitable for parallelization.This formal des
ription was introdu
ed in [Gro02℄ and is 
alled an admis-sible hierar
hi
al de
omposition, 
f. De�nition 9.2. It was proved that theappli
ation of the multilevel re�nement algorithm ParRe�nement to an inputadmissible hierar
hi
al de
omposition again yields an admissible hierar
hi
alde
omposition. The same holds for a suitable load balan
ing strategy de-s
ribed in [Gro02℄. Both parallel re�nement algorithm and load balan
ingstrategy have been implemented and were su

essfully applied up to a num-ber of 64 pro
essors. This implementation has served as a starting point for afurther parallelization of DROPS [For07℄ whi
h is 
urrently 
ondu
ted by ourpartners at the Chair of S
ienti�
 Computing, RWTH Aa
hen University. ⋄
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4. Spatial dis
retization byFinite ElementsLet T be a 
onsistent triangulation of Ω, e. g., T = TJ the �nest triangulationintrodu
ed in the previous 
hapter. For k ≥ 1 we introdu
e the spa
es ofpie
ewise polynomial 
ontinuous fun
tions,
X

k := { vh ∈ H1(Ω) : vh|T ∈ Pk ∀T ∈ T }, (4.1)
X

k
D := X

k ∩H1
0,ΣD

(Ω) (4.2)with H1
0,ΣD

(Ω) the spa
e of all fun
tions in H1(Ω) vanishing on the Diri
hletboundary ΣD (in the sense of tra
es). For the dis
retization of the Navier-Stokes and level set equations we will 
onsider the spa
es for 1 ≤ k ≤ 2, so
alled P1 (pie
ewise linear) and P2 (pie
ewise quadrati
) �nite elements.4.1. Dis
retization of the Navier-StokesequationsFor the �nite element dis
retization of the Navier-Stokes equations we 
hoose�nite dimensional subspa
es Vh ⊂ V0 and Qh ⊂ Q for velo
ity and pressure,respe
tively. Here we 
hoose the Hood-Taylor �nite element pairVh ×Qh :=
(
X

2
D

)3 × X
1,whi
h ful�lls the inf-sup 
ondition (also known as LBB stability)

inf
qh∈Qh

supvh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0
≥ β > 0 (4.3)with β > 0 independent of h. 43



44 4. Spatial dis
retization by Finite ElementsRemark 4.1In Se
tion 5.4 we will introdu
e an alternative �nite element spa
e QΓ
h forthe pressure whi
h allows for dis
ontinuities at the interfa
e Γ and is thusmore appropriate to approximate pressure jumps indu
ed by surfa
e tension.Certain theoreti
al questions like the LBB stability of the pair Vh × QΓ
h arestill unanswered and topi
s of 
urrent resear
h. ⋄We 
onsider the 
ontinuous problem in weak formulation, 
f. (2.21)�(2.22).For the time being we address the simple 
ase of homogeneous boundary 
ondi-tions, i. e., uD(x, t) = 0 for all (x, t) ∈ ΣD×[t0, tf ] and σn = 0 on ΣN×[t0, tf ],
f. Se
tion 2.1.3. The treatment of non-homogeneous boundary 
onditions willbe dis
ussed in Se
tion 4.1.1. The asso
iated Galerkin dis
retization is givenas follows:Find uh(t) ∈ Vh and ph(t) ∈ Qh su
h that for (almost every) t ∈ [t0, tf ]

m(u′
h(t),vh) + n(uh(t);uh(t),vh)

+ a(uh(t),vh) + b(vh, ph(t)) = (ρg,vh)0 + fΓ(vh) for all vh ∈ Vh,(4.4)
b(uh(t), qh) = 0 for all qh ∈ Qh,(4.5)initial 
ondition uh|t=t0 = u0 in Ω.Here we use the notation from Se
tion 2.1.4 for the bilinear forms m(·, ·),

a(·, ·), b(·, ·), the trilinear form n(·; ·, ·) and the linear form fΓ(·).Let NVh
:= dimVh and NQh

:= dimQh be the dimensions of the �niteelement spa
es. For tetrahedral meshes the nodes of the P1 �nite elementare lo
ated at the verti
es of the triangulation, 
f. Figure 4.1. Let x̂i ∈ R
3denote the spatial 
oordinate of the i-th P1 node, i = 1, . . . , NQh

. For the P2�nite element the nodes are lo
ated at the verti
es and the midpoint of theedges of the triangulation, its spatial 
oordinates are denoted by x1, . . . ,xNVh
.Note that, due to vh|ΣD = 0 for all vh ∈ Vh, nodes on Diri
hlet boundariesare not taken into a

ount for the 
onstru
tion of Vh. We introdu
e nodalbases {vi}i=1,...,NVh

and {qi}i=1,...,NQh
of Vh and Qh, respe
tively. Then by
onstru
tion, vi(xj) = 0 and qi(x̂j) = 0 for i 6= j and vi(xi) = 1, qi(x̂i) = 1.By means of the nodal bases, the Galerkin problem (4.4)�(4.5) 
an be equiva-lently written in matrix-ve
tor notation. For this we de�ne the isomorphisms
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Figure 4.1.: P1 (4 nodes, on the left) and P2 �nite element (10 nodes, on the right).
JVh

: R
NVh → Vh and JQh

: R
NQh → Qh by

JVh
(x) :=

NVh∑

i=1

xi vi,

JQh
(y) :=

NQh∑

i=1

y
i
qi,

(4.6)
for all ve
tors x ∈ R

NVh , y ∈ R
NQh . These isomorphisms represent the linkbetween 
oe�
ient ve
tors and asso
iated �nite element fun
tions. Based onthat, the matri
es A,M,N(w) ∈ R

NVh
×NVh and B ∈ R

NQh
×NVh are de�nedby

〈M u, v〉 := m
(
JVh

(u), JVh
(v)
) (mass matrix),

〈Au, v〉 := a
(
JVh

(u), JVh
(v)
) (dis
rete di�usion),

〈N(w)u, v〉 := n
(
JVh

(w); JVh
(u), JVh

(v)
) (dis
rete 
onve
tion),

〈B v, q〉 := b
(
JVh

(v), JQh
(q)
) (dis
rete divergen
e)for all u,v,w ∈ R

NVh and q ∈ R
NQh . Here 〈·, ·〉 denotes the Eu
lidean innerprodu
t of two ve
tors.We rewrite the Galerkin problem (4.4)�(4.5) in matrix-ve
tor notation:



46 4. Spatial dis
retization by Finite ElementsFind uh(t) ∈ R
NVh , p

h
(t) ∈ R

NQh su
h that for (almost every) t ∈ [t0, tf ]

(
Mu′

h(t)
0

)

+

(
[N(uh(t)) +A] BT

B 0

)(uh(t)
p

h
(t)

)

=

(b
0

)

, (4.7)initial 
ondition uh|t=t0 = u0,where the upper right-hand side b is given bybi := (ρg,vi)0 + fΓ(vi), i = 1, . . . , NVhand for the initial 
ondition u0 the property JVh
(u0) = u0 holds.4.1.1. Non-homogeneous boundary 
onditionsIn the previous se
tion we only 
onsidered the dis
retization for homogeneousboundary 
onditions. We now dis
uss the 
ase with general Diri
hlet boundary
onditions u = uD on ΣD × [t0, tf ]and general natural boundary 
onditions

σn = gN on ΣD × [t0, tf ].De�ne the �nite element spa
e VD
h := (X2)3 ⊃ Vh, whi
h also has nodes onthe Diri
hlet boundary ΣD. Let NΣD := dimVD

h − dimVh be the numberof nodes on ΣD and {vD
i }i=1,...,NΣD

the 
orresponding nodal basis fun
tions.Note thatVD
h = Vh⊕span(vD

1 , . . . ,vD
NΣD

). We denote by xD
i the spatial 
oor-dinate of the lo
ation of the i-th node on ΣD, i. e., xD

i is either the 
oordinateof a vertex on ΣD or the midpoint of an edge on ΣD.For t ∈ [t0, tf ] let uD
h (t) =

NΣD∑

i=1

αivD
isu
h that uD

h (t)(xD
i ) = uD(xD

i , t) for all i = 1, . . . , NΣD . By 
onstru
tion,uD
h (t)(xi) = 0 for all i = 1, . . . , NVh

and t ∈ [t0, tf ]. We introdu
e JVD
h

:

R
NVh × [t0, tf ]→ VD

h with
JVD

h
(x, t) := JVh

(x) + uD
h (t) (4.8)



4.1. Dis
retization of the Navier-Stokes equations 47The Galerkin problem with non-homogeneous boundary 
onditions is as fol-lows:Find uh(t) ∈ VD
h with uh(t)|ΣD ≡ uD

h (t) and ph(t) ∈ Qh su
h that for(almost every) t ∈ [t0, tf ]

m(u′
h(t),vh) + n(uh(t);uh(t),vh) + a(uh(t),vh) + b(vh, ph(t))

= (ρg,vh)0 + fΓ(vh) +

∫

ΣN

gNvh ds for all vh ∈ Vh,(4.9)
b(uh(t), qh) = 0 for all qh ∈ Qh, (4.10)initial 
ondition uh|t=t0 = u0 in Ω.Note that the surfa
e integral over ΣN in the right-hand side of (4.9) arisesfrom partial integration and substitution of the natural boundary 
ondition, 
f.(2.20). In pra
ti
e, we do not use this formulation, but the following equivalentone. Let u0

h := uh − uD
h ∈ Vh be the homogeneous part of the �nite elementsolution uh. Repla
ing uh(t) by u0

h(t) in (4.9)�(4.10), we obtainFind u0
h(t) ∈ Vh and ph(t) ∈ Qh su
h that for (almost every) t ∈ [t0, tf ]

m((u0
h)′(t),vh) + n(uh(t);u0

h(t),vh) + n(u0
h(t);uD

h (t),vh)

+ a(u0
h(t),vh) + b(vh, ph(t))

= (ρg,vh)0 + fΓ(vh) +

∫

ΣN

gNvh ds

−m((uD
h )′(t),vh)− n(uD

h (t);uD
h (t),vh)− a(uD

h (t),vh) for all vh ∈ Vh,(4.11)
b(u0

h(t), qh) = −b(uD
h (t), qh) for all qh ∈ Qh,(4.12)initial 
ondition u0

h|t=t0 = u0 − uD
h (t0) in Ω.Then the seeked �nite element solution is given byuh = u0

h + uD
h .Note that the right-hand side of (4.11) 
ontains additional terms a

ountingfor the non-homogeneous Diri
hlet boundary values. On the left-hand side



48 4. Spatial dis
retization by Finite Elementsthere are two o

urren
es of the trilinear form n(·; ·, ·), hen
e, the matrix Nhas to be repla
ed by Ñ ∈ R
NVh

×NVh , where
〈Ñ(w(t))u(t), v(t)〉 := n

(
JVD

h
(w(t), t); JVh

(u(t)), JVh
(v(t))

)

+ n
(
JVh

(u(t)); uD
h (t), JVh

(v(t))
)for all u(t),v(t),w(t) ∈ R

NVh , t ∈ [t0, tf ].Writing (4.11)�(4.12) in equivalent matrix-ve
tor notation we obtainFind u0
h(t) ∈ R

NVh , p
h
(t) ∈ R

NQh su
h that for (almost every) t ∈ [t0, tf ]

(
M(u0

h)′(t)
0

)

+

(
[Ñ(uh(t)) +A] BT

B 0

)(u0
h(t)
p

h
(t)

)

=

(b̃̃
c

)

, (4.13)initial 
ondition u0
h|t=0 = u0,withuh = u0

h + uD
h ,b̃ = b+ vN − vD,vN

i =

∫

ΣN

gNvi ds, i = 1, . . . , NVh
,vD

i = m((uD
h )′(t),vi) + n(uD

h (t);uD
h (t),vi) + a(uD

h (t),vi), i = 1, . . . , NVh
,

c̃j = −b(uD
h , qj), j = 1, . . . , NQh

.Thus, the dis
retization is very similar to (4.7), but with a di�erent right-handside and a slightly 
hanged dis
rete 
onve
tion matrix Ñ .4.1.2. Treatment of jumping 
oe�
ientsThe material 
oe�
ients ρ and µ have to be handled with 
are as they aredis
ontinuous a
ross Γ. They o

ur in integrals of the form
I =

∫

Ω

αG(x) dx,where α ∈ {ρ, µ} is pie
ewise 
onstant and G is a 
ontinuous smooth fun
-tion on ea
h element T ∈ Th. There are two possible ways to deal with the
omputation of su
h integrals with dis
ontinuous integrands:



4.1. Dis
retization of the Navier-Stokes equations 49(A) Integration on parts. Split the integral into two integrals on the subdo-mains,
∫

Ω

αG(x) dx = α1

∫

Ω1

G(x) dx+ α2

∫

Ω2

G(x) dx.The integrands on the right-hand side are 
ontinuous and smooth onea
h tetrahedron and thus standard quadrature rules 
an be used. How-ever, te
hni
al di�
ulties arise for tetrahedra T ∈ T whi
h are inter-se
ted by Γ, as we have to integrate over its two parts Ωi ∩ T , i = 1, 2whi
h are not tetrahedral in general, 
f. Figure 5.9. This issue is furtherdis
ussed in Se
tion 5.4.4.(B) Integration of regularized integrands. Repla
e the dis
ontinuous α by a
ontinuous smoothed αε. This 
an be a
hieved by repla
ing the Heavi-side fun
tion H in (2.29) by a smoothed Heaviside fun
tion Hε : R→ R,
Hε(x) =







0 x ≤ −ε,
ν(x

ε ) x ∈ (−ε, ε),
1 x ≥ ε.with

ν(ξ) =
1

2
+

1

32
(45ξ − 50ξ3 + 21ξ5), (4.14)
f. [Tor00℄. Also other 
hoi
es of smooth transition fun
tions ν(ξ) 
anbe found in the literature, e. g., ν(ξ) =

1+sin(ξ π
2
)

2 [SSO94℄. For theapproximation of I, we apply quadrature to the integral
Iε :=

∫

Ω

αε(ϕ(x))G(x) dx.For the �rst approa
h we have the following error bound.Remark 4.2 (Dis
retization error for approa
h A)Assume that Γ is approximated by a pie
ewise planar interfa
e approximation
Γh with the property

|d(x)| ≤ c h2 for all x ∈ Γh,where d(x) := dist(x,Γ) is the distan
e fun
tion for Γ. For the 
onstru
tionof su
h an interfa
e approximation Γh we refer to Se
tion 5.1.2 where more



50 4. Spatial dis
retization by Finite Elementsdetails are given. Γh subdivides Ω into two subdomains Ωi,h, i = 1, 2. Theintegral I is approximated by integrating on both subdomains,
Ih := α1

∫

Ω1,h

G(x) dx+ α2

∫

Ω2,h

G(x) dx.Usually the integration is performed tetrahedron by tetrahedron. If a tetra-hedron T is 
ut by the planar interfa
e approximation Γh, the domains ofintegration T ∩ Ωi,h, i = 1, 2, are not ne
essarily tetrahedral. For more de-tails on how to integrate over the two parts of a 
ut tetrahedron we refer toSe
tion 5.4.4.In the following the error |I − Ih| is analyzed in terms of h. We introdu
e thesets D+
h := Ω1 \ Ω1,h, D−

h := Ω1,h \ Ω1 and Dh := D+
h ∪ D−

h . Note that Dh
ontains all points between Γ and Γh and that meas3(Dh) ≤ c h2. Then for
G ∈ L∞(Dh) we have
|I − Ih| ≤ |α1 − α2| ‖G‖L1(Dh) ≤ |α1 − α2| ‖G‖L∞(Dh) meas3(Dh)

≤ c h2.
(4.15)

⋄We now turn to the se
ond approa
h. Clearly, the se
ond method is mu
heasier to implement than the �rst one, but introdu
es a new parameter ε.For the 
hoi
e of ν(ξ) as in (4.14), an extensive analysis and 
omparison withthe �rst approa
h is given in [Tor00, Tor02℄ for the 2D 
ase. Based on theseinvestigations the se
ond approa
h is used in [TE00℄. We give here the maindis
retization error results from [Tor02℄. Before that we have to introdu
esome notions for polynomial transition fun
tions.De�nition 4.3Let ν : [−1, 1]→ R be a polynomial with ν(−1) = 0 and ν(1) = 1. Then ν is
alled a transition polynomial. ν has m ≥ 0 vanishing moments, if
∫ 1

−1

ν(ξ) ξα dξ =
1

α+ 1
for all α = 0, 1, . . . ,m.

ν has an transition smoothness of order k ≥ 0, if
ν(β)(±1) = 0 for all β = 1, . . . , k. ⋄Theorem 4.4 (Dis
retization error for approa
h B, 2D 
ase)We 
onsider the 2D 
ase Ω ⊂ R

2. Let QT be a quadrature formula for atriangle T su
h that QTf =
∫

T f(x) dx for all polynomials f up to the order
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n. We introdu
e the regularization error

Eε :=

∫

Ω

(H −Hε)(ϕ(x))G(x) dxand the quadrature error
Equad :=

∫

Ω

Hε(ϕ(x))G(x) dx− ∑

T∈Th

QT (HεG).Then the total error Etot :=
∫

ΩH(ϕ(x))G(x) dx −∑T∈Th
QT (HεG) is thesum of regularization and quadrature error,

Etot = Eε + Equad. (4.16)Assuming that ε ·maxx∈Γ |κ(x)| < 1, where κ is the lo
al 
urvature of Γ, andthat ν(ξ) has m vanishing moments, for the regularization error we have
Eε ∼ εβ+2, with β = 2

⌊
m+ 1

2

⌋

. (4.17)If G ∈ Ck, Hε ∈ Ck and n > k, where n is the order of the quadrature rule
QT , then

Equad ∼
hk+2

εk+1
. (4.18)Proof. Given in [Tor02℄.Remark 4.5For the transition fun
tion ν(ξ) mentioned above in (4.14) we have m = 2vanishing moments and a transition smoothness of order k = 1. Thus we haveto apply a quadrature rule whi
h is exa
t up to the order of at least n = 2,yielding

Etot ∼ ε4 +
h3

ε2
.When the grid size h 
hanges due to re�nement the regularization parameter

ε should be s
aled with h su
h that ε ∼ h1/2. In that 
ase we have
Etot ∼ h2.This is the same order of 
onvergen
e as for the �rst approa
h, 
f. (4.15) inRemark 4.2. ⋄



52 4. Spatial dis
retization by Finite ElementsEven though the se
ond approa
h seems to be quite 
onvenient, we experi-en
ed some 
riti
al problems. When dis
retizing the mass matrix M ,
Mij =

∫

Ω

ρε(ϕ(x))vivj dx, 1 ≤ i, j ≤ NVh
,using a quadrature rule of order 2 or even of order 5 yields a matrix whi
h isnot always positive de�nite. This undesired e�e
t was also observed for othermatri
es involving dis
ontinuous 
oe�
ients and has of 
ourse a signi�
antimpa
t on the 
onvergen
e behavior of the iterative solvers. We thereforefavor the �rst approa
h, although its implementation is more tedious, as itavoids the additional smoothing parameter ε and guarantees a positive de�nitedis
retization of ellipti
 operators.4.2. Dis
retization of the level set equationThe level set equation (2.26) is also dis
retized by �nite elements. For thispurpose we use P2 �nite elements and introdu
e the �nite-dimensional spa
e

Vh := X
2 ⊂ H1(Ω). Note that there are no boundary 
onditions stated for thelevel set fun
tion ϕ, hen
e NVh

:= dimVh is equal to the number of verti
esand edges of the 
orresponding triangulation Th. Let {vi}i=1,...,NVh
be thenodal basis of Vh and JVh

: R
NVh → Vh the isomorphism de�ned by

JVh
(x) :=

∑

i=1,...,NVh

xi vi (4.19)for all ve
tors x ∈ R
NVh .As the level set equation is purely hyperboli
, the standard Galerkin dis
retiza-tion should not be used and requires some stabilization. We apply a streamlinedi�usion stabilization whi
h 
an be seen as a Petrov-Galerkin method withtrial spa
e Vh and spe
ial test fun
tions v̂h. For ea
h tetrahedron T ∈ Th astabilization parameter δT = δT (hT ,uh|T ) is 
hosen, where hT denotes themaximal diameter of T . The test fun
tions are then de�ned as
v̂h|T := vh + δTuh · ∇vh, T ∈ Th,whi
h indu
es additional di�usion in streamline dire
tion explaining the nameof the method. For an analysis of the streamline di�usion method and rea-sonable 
hoi
es of the stabilization parameter δT we refer to [RST96℄. We use

δT = c hT with a suitable 
onstant c > 0. If the velo
ity �eld uh shows strong
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al �u
tuations, the 
hoi
e δT = c hT

‖uh‖∞,T
is suggested in [Pri06℄. As this isnot well-de�ned for uh = 0 and tends to in�nity for u→ 0 we re
ommend touse

δT = c
hT

max {ε0/hT , ‖uh‖∞,T}instead for some small ε0 > 0.The streamline di�usion �nite element dis
retization of the level set equationis given by
∑

T∈Th

(ϕ′
h(t) + uh(t) · ∇ϕh(t), vh + δTuh(t) · ∇vh)0,T = 0 for all vh ∈ Vh,(4.20)where t ∈ [t0, tf ]. Introdu
ing the matri
es E = E(uh) ∈ R

NVh
×NVh and

H = H(uh) ∈ R
NVh

×NVh given by
Eij :=

∑

T∈Th

(
vj , vi + δTuh · ∇vi

)

0,T
(stabilized mass matrix),

Hij :=
∑

T∈Th

(uh · ∇vj , vi + δTuh · ∇vi

)

0,T
(stabilized dis
rete 
onve
tion),where 1 ≤ i, j ≤ NVh

, we rewrite (4.20) in matrix-ve
tor notation:Find ϕ(t) ∈ R
NVh su
h that for (almost every) t ∈ [t0, tf ]

E ϕ′(t) +H ϕ(t) = 0. (4.21)
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5. Numeri
al treatment ofsurfa
e tensionDue to the Lapla
e-Young law, typi
ally the pressure has a jump a
ross theinterfa
e, when surfa
e tension for
es are present (τ 6= 0), 
f. Remark 5.1below. In numeri
al simulations, this dis
ontinuity and inadequate approx-imation of the lo
alized surfa
e for
e term often lead to strong unphysi
alos
illations of the velo
ity uh at the interfa
e, so 
alled spurious velo
ities orspurious 
urrents, 
f. , e. g., [LNS+94, FCD+06℄. In this 
hapter we present analternative �nite element dis
retization approa
h whi
h signi�
antly redu
esthe size of these spurious velo
ities 
ompared to known methods. For themotivation and analysis of our approa
h we further simplify (2.21)�(2.22) and
onsider a stationary Stokes problem with a 
onstant vis
osity (µ1 = µ2 = µin Ω). We emphasize, however, that the methods that we present are notrestri
ted to this simpli�ed problem but apply to the general Navier-Stokesmodel (2.21)�(2.22) as well. We introdu
e the following Stokes problem: �nd
(u, p) ∈ V0 ×Q su
h that

a(u,v) + b(v, p) = (ρg,v) + fΓ(v) for all v ∈ V0,

b(u, q) = 0 for all q ∈ Q, (5.1)where
a(u,v) :=

∫

Ω

µ∇u∇v dx, b(v, q) = −
∫

Ω

q div v dx,with a vis
osity µ > 0 that is 
onstant in Ω. The unique solution of thisproblem is denoted by (u∗, p∗) ∈ V0 ×Q.Remark 5.1The problem (5.1) has a smooth velo
ity solution u∗ ∈ V0 ∩
(
H2(Ω)

)3 and apie
ewise smooth pressure solution p with p|Ωi
∈ H1(Ωi), i = 1, 2, whi
h hasa jump a
ross Γ. These smoothness properties 
an be derived as follows. The
urvature κ is a smooth fun
tion (on Γ). Thus there exist p̂1 ∈ H1(Ω1) su
hthat (p̂1)|Γ = κ (in the sense of tra
es). De�ne p̂ ∈ L2(Ω) by p̂ = p̂1 in Ω1,55
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p̂ = 0 on Ω2. Note that for all v ∈ V0,
fΓ(v) = τ

∫

Γ

κnΓ · v ds = τ

∫

Γ

p̂1nΓ · v ds
= τ

∫

Ω1

p̂1 div v dx+ τ

∫

Ω1

∇p̂1 · v dx = τ

∫

Ω

p̂ div v dx+ τ

∫

Ω

g̃ · v dx,with g̃ ∈ L2(Ω)3 given by g̃ = ∇p̂1 in Ω1, g̃ = 0 on Ω2. Thus (u∗, p∗ + τ p̂)satis�es the standard Stokes equations
a(u∗,v) + b(v, p∗ + τ p̂) = (ρg+ τ g̃,v) for all v ∈ V0,

b(u∗, q) = 0 for all q ∈ Q.From regularity results on Stokes equations and the fa
t that Ω is 
onvex we
on
lude that u∗ ∈ H2(Ω)∩H1
0 (Ω) and p∗ + τ p̂ ∈ H1(Ω). Thus [p∗ + τ p̂]Γ = 0(a.e. on Γ) holds, whi
h implies

[p∗]Γ = −τ [p̂]Γ = −τκ,i.e., p∗ has a jump a
ross Γ of the size τκ. ⋄Example 5.2 (Stati
 Bubble)A simple example that is used in the numeri
al experiments in Se
tion 10.4 isthe following. Let Ω := (−1, 1)3 and Ω1 a sphere with 
enter at the origin andradius r < 1. We take g = 0. In this 
ase the 
urvature is 
onstant, κ = − 2
r ,and the solution of the Stokes problem (5.1) is given by u∗ = 0, p∗ = τ 2

r + c0on Ω1, p∗ = c0 on Ω2 with a 
onstant c0 su
h that ∫Ω p∗ dx = 0. ⋄The outline of this 
hapter is as follows. In Se
tion 5.1 we introdu
e an inter-fa
e approximation Γh of the interfa
e Γ and formulate some abstra
t proper-ties of the interfa
e approximation our analysis is based on. Furthermore, wedes
ribe how the interfa
e approximation is implemented in our 
ode su
h thatthe desired properties are ful�lled. In Se
tion 5.2 the spurious velo
ities aretra
ed ba
k to two major error sour
es, the dis
retization error of the surfa
etension for
e and the approximation error of the dis
ontinuous pressure. Bothare analyzed in the subsequent se
tions. Se
tion 5.3 des
ribes the dis
retiza-tion of the surfa
e tension for
e fΓ based on a Lapla
e-Beltrami te
hnique.For this approa
h a dis
retization error of O(
√
h) is proved and some slightmodi�
ation with an improved O(h) behavior is introdu
ed. In Se
tion 5.4it is shown that standard �nite element spa
es are not very suitable for theapproximation of fun
tions with a jump a
ross Γ due to an approximationerror of size O(

√
h). We introdu
e a new �nite element spa
e whi
h is moresuitable for this task, based on the extended �nite element method (XFEM)by Belyts
hko [MDB99, BMUP01℄.



5.1. Interfa
e approximation 575.1. Interfa
e approximationRe
alling the de�nition of fΓ,
fΓ(v) = τ

∫

Ω

κδΓvn dx = τ

∫

Γ

κvn ds for all v ∈ V0,we see, that this term 
an either be dis
retized by 
omputing a volume integralwhere the integrand 
ontains a (regularized) delta fun
tion δΓ or by 
omputinga surfa
e integral over an approximation of the interfa
e Γ. Both approa
hes
an be found in the literature, see for instan
e [TE00, Hys06, PS01, MGCR07℄for the volume integral approa
h and [MCN03, GRR06, Smo05℄ for the surfa
eintegral approa
h. We favor the surfa
e integral approa
h as it seems to bemore natural and avoids the di�
ulties arising from the numeri
al treatmentof the delta fun
tion. For evaluating the surfa
e integral we need to knowthe lo
ation of the interfa
e Γ, whi
h is only impli
itly given by the level setfun
tion. Hen
e, a lo
al interfa
e re
onstru
tion method has to be appliedwhi
h provides an approximative interfa
e Γh.Before des
ribing how an approximation Γh of the interfa
e Γ 
an be 
on-stru
ted in pra
ti
e, we �rst give some abstra
t 
onditions whi
h the interfa
eapproximation Γh should ful�ll (
f. Se
tion 5.1.1). Our theoreti
al analysis ofthe dis
retization of the surfa
e tension for
e fΓ in Se
tion 5.3 will be basedon these abstra
t 
onditions. We note that due to this fa
t the analysis is notonly restri
ted to our 
on
rete interfa
e re
onstru
tion method des
ribed inSe
tion 5.1.2 but applies to any interfa
e re
onstru
tion method that meetsthe requirements formulated in the 
onditions (5.5)�(5.7) below.5.1.1. Assumptions on ΓhFor the formulation of assumptions on the approximate interfa
e Γh it is 
on-venient to introdu
e the signed distan
e fun
tion
d : U → R, |d(x)| := dist(x,Γ) for all x ∈ U.Thus Γ is the zero level set of d. We assume d < 0 on the interior of Γ (thatis, in Ω1) and d > 0 on the exterior. Note that nΓ = ∇d on Γ. We de�nen(x) := ∇d(x) for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U .Here and in the remainder of the se
tion ‖ · ‖ denotes the Eu
lidean norm.Remark 5.3In our approa
h we use the dis
rete level set fun
tion ϕh as approximation forthe distan
e fun
tion d, whi
h is not available. ⋄
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e tensionThe Hessian of d is denoted by H:H(x) = D2d(x) ∈ R
3×3 for all x ∈ U. (5.2)The eigenvalues of −H(x) are denoted by κ1(x), κ2(x) and 0. For x ∈ Γ theeigenvalues κi(x), i = 1, 2, are the prin
ipal 
urvatures, and κ(x) = κ1(x) +

κ2(x) is the mean 
urvature.We will need the orthogonal proje
tion P onto the tangential spa
e of Γ,P(x) = I− n(x)n(x)T for x ∈ U. (5.3)Using the distan
e fun
tion d we introdu
e assumptions on the approximateinterfa
e Γh. In Se
tion 5.1.2 below we indi
ate how in pra
ti
e an approxi-mate interfa
e Γh 
an be 
onstru
ted whi
h satis�es these assumptions. Let
{Γh}hΓ>0 be a family of polygonal approximations of Γ. Ea
h Γh is 
ontainedin U and 
onsists of a set Fh of triangular fa
es :

Γh =
⋃

F∈Fh

F. (5.4)For F1, F2 ∈ Fh with F1 6= F2 we assume that F1 ∩ F2 is either empty or a
ommon edge or a 
ommon vertex. The parameter hΓ denotes the maximaldiameter of the triangles in Fh:
hΓ = max

F∈Fh

diam(F ).By nh(x) we denote the outward pointing unit normal on Γh. This normal ispie
ewise 
onstant with possible dis
ontinuities at the edges of the trianglesin Fh.The approximation Γh is assumed to be 
lose to Γ in the following sense:
|d(x)| ≤ ch2

Γ for all x ∈ Γh, (5.5)
ess infx∈Γh

n(x)Tnh(x) ≥ c > 0, (5.6)
ess supx∈Γh

‖P(x)nh(x)‖ ≤ chΓ. (5.7)Here c denotes a generi
 
onstant independent of hΓ.Remark 5.4The 
onditions (5.6), (5.7) are satis�ed if
ess supx∈Γh

‖n(x)− nh(x)‖ ≤ min{c0, chΓ}, with c0 < √2, (5.8)
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T

T ′

Γ
Γh

Figure 5.1.: Constru
tion of approximate interfa
e for 2D 
ase.holds. This easily follows from
‖n(x)− nh(x)‖2 = 2

(
1− n(x)Tnh(x)

)
,and

‖P(x)nh(x)‖ = ‖P(x)
(n(x)− nh(x)

)
‖ ≤ ‖n(x)− nh(x)‖. ⋄5.1.2. ImplementationWe brie�y explain the approa
h that is used in our implementation DROPS(
f. [DRO℄) for 
omputing Γh. Let S be the (lo
ally re�ned) triangulationof Ω, 
onsisting of tetrahedra, that is used for the dis
retization of the �owvariables with �nite elements, 
f. (2.21)�(2.22). The level set equation for dis dis
retized with 
ontinuous pie
ewise quadrati
 �nite elements on a trian-gulation T , 
f. Se
tion 4.2. This triangulation is either equal to S or obtainedfrom one or a few re�nements of S, i. e., T = TJ is the �nest and S = Tk,

0 ≤ k ≤ J is a possibly 
oarser triangulation of the multilevel triangulation
M, 
f. Chapter 3. The pie
ewise quadrati
 �nite element approximation of don T is denoted by dh.We now introdu
e one further regular re�nement of T (subdivision of ea
htetrahedron in 8 
hild tetrahedra), resulting in T ′. Let I(dh) be the 
ontinuouspie
ewise linear fun
tion on T ′ whi
h interpolates dh at all verti
es of alltetrahedra in T ′. Note that the degrees of freedom of the P1 FE on T ′(lo
ated at the verti
es) 
oin
ide with the degrees of freedom of the P2 FE on
T (lo
ated at the verti
es and midpoints of edges).The approximation Γh of the interfa
e Γ is de�ned by

Γh := {x ∈ Ω : I(dh)(x) = 0 } (5.9)
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Figure 5.2.: Sign pattern of dh on T ∈ T ′ and 
orresponding interfa
e segment
ΓT = T ∩ Γ (in gray): either a triangle or a quadrilateral.whi
h 
onsists of pie
ewise planar segments F = ΓT ⊂ Γh, where

ΓT := T ∩ Γh (5.10)for T ∈ T ′.The interfa
e mesh size parameter hΓ is the maximal diameter of these seg-ments. This (maximal) diameter is approximately the (maximal) diameterof the tetrahedra in T ′ that 
ontain the dis
rete interfa
e, i.e., hΓ is approx-imately the maximal diameter of the tetrahedra in T ′ that are 
lose to theinterfa
e. In Figure 5.1 we illustrate this 
onstru
tion for the two-dimensional
ase. Note that in general the segments of Γh are not aligned with the fa
esof the tetrahedral triangulation T ′
h.Ea
h of the planar segments of Γh is either a triangle or a quadrilateral, de-pending on the sign pattern of dh on the 
orresponding T ∈ T ′, 
f. Figure 5.2.By 
onstru
tion the verti
es of a planar segment ΓT are lo
ated on those edgesof T along whi
h dh 
hanges its sign. If there are two positive and two negativevalues of dh on the verti
es of T , then the 
orresponding interfa
e segment

ΓT is a quadrilateral. In all other 
ases ΓT is a triangle. The quadrilaterals
an (formally) be divided into two triangles. Thus Γh 
onsists of a set Fh oftriangular fa
es.Spe
ial 
ases may o

ur if some of the values of dh on the verti
es of T areequal to zero. Let 0 ≤ n0 ≤ 4 be the number of these zero values. In thefollowing we dis
uss the shape of ΓT in all the 
ases n0 = 0, 1, 2, 3, 4.
• n0 = 0 is not a spe
ial 
ase, the situation is as depi
ted in Figure 5.2whi
h was dis
ussed in the foregoing paragraph.
• For n0 = 1, 2 we distinguish two 
ases: If the other 4 − n0 non-zerovalues have the same sign, then ΓT is a point (n0 = 1) or a line segment
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Figure 5.3.: 2D examples for interfa
e degeneration, where the proposed interfa
ere
onstru
tion fails. Left: 
urvature κ too large for grid resolution (|κ| ≥ 2

hΓ
). Right:distan
e d between interfa
es too small for grid resolution (d ≤ hΓ).(n0 = 2) and 
an be ignored as meas2 ΓT = 0. Otherwise the non-zerovalues are of di�erent sign yielding 3 − n0 edges with a 
hange of sign,as a simple 
ase di�erentiation shows. Thus ΓT has 3 verti
es, hen
e ΓTis a triangle.

• In the 
ase n0 = 3 the interfa
e segment ΓT is equal to a fa
e of T . Thenone has to take 
are that this fa
e is not 
ounted twi
e (additionally bythe neighboring tetrahedron in T ′ whi
h also has ΓT as one of its fa
es)when 
omputing a surfa
e integral on Γh.
• If n0 = 4 then the interfa
e segment is not 2D but 3D (ΓT = T ) whi
h,of 
ourse, makes not mu
h sense. If su
h a situation o

urs, the 
orre-sponding segment is ignored and a warning is given. This is typi
ally anindi
ation that the grid is too 
oarse to represent the interfa
e properly,
f. Figure 5.3.For the example 5.2, in whi
h Γ is a sphere, the resulting polygonal approx-imations Γh for h = 1

5 and h = 1
10 resp. are shown in Figure 5.4. Here theradius is 
hosen as r = 1

2 , see also the numeri
al experiment presented inSe
tion 10.3.Remark 5.5Related to the assumptions (5.5)-(5.7) we note the following. If we assume
|I(dh)(x)− d(x)| ≤ c h2

Γfor all x in a neighborhood of Γ, whi
h is reasonable for a smooth d andpie
ewise quadrati
 dh, then for x ∈ Γh we have |d(x)| = |d(x)− I(dh)(x)| ≤
c h2

Γ and thus (5.5) is satis�ed. Instead of (5.6), (5.7) we 
onsider the su�
ient
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Figure 5.4.: Approximate interfa
e Γh for the example from Se
tion 10.3 on a
oarse grid (left) and after one re�nement (right).
ondition (5.8). We assume
‖∇I(dh)(x)−∇d(x)‖ ≤ c hΓfor all x in a neighborhood of Γ (x not on an edge), whi
h again is reasonablefor a smooth d and pie
ewise quadrati
 dh. Due to ‖∇d‖ = 1 we then alsohave ‖∇I(dh)(x)‖ = 1 + O(h), in a neighborhood of Γ. For x ∈ Γh (not onan edge) we obtain

‖nh(x)− n(x)‖ =

∥
∥
∥
∥

∇I(dh)(x)

‖∇I(dh)(x)‖ − ∇d(x)

∥
∥
∥
∥

≤
∣
∣
∣
∣

1

‖∇I(dh)(x)‖ − 1

∣
∣
∣
∣
· ‖∇I(dh)(x)‖ + ‖∇I(dh)(x)−∇d(x)‖

≤ c hΓ,and thus (5.8) is satis�ed (for hΓ su�
iently small). ⋄5.2. Consequen
es of Strang's LemmaWe assume that a pie
ewise planar surfa
e Γh is known, whi
h is 
lose to theinterfa
e Γ in the sense of (5.5)�(5.7). The indu
ed polyhedral approximationsof the subdomains are Ω1,h = int(Γh) (region in the interior of Γh) and Ω2,h =
Ω \Ω1,h. Furthermore, we de�ne the pie
ewise 
onstant approximation of the
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es of Strang's Lemma 63density ρh by ρh = ρi on Ωi,h. We assume that for vh ∈ Vh the integrals in
(ρhg,vh) = ρ1

∫

Ω1,h

g · vh dx+ ρ2

∫

Ω2,h

g · vh dx
an be 
omputed with high a

ura
y. This 
an be realized e�
iently in ourimplementation be
ause if one applies the standard �nite element assemblingstrategy by using a loop over all tetrahedra T ∈ Th, then T ∩ Ωi,h is eitherempty or T or a relatively simple polygonal subdomain (due to the 
onstru
-tion of Γh). For more details we refer to Se
tion 5.4.4.The dis
retization of (5.1) is as follows: determine (uh, ph) ∈ Vh × Qh su
hthat
a(uh,vh) + b(vh, ph) = (ρhg,vh) + fΓh

(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh.
(5.11)The approximation fΓh

(vh) of fΓ(vh) is dis
ussed in Se
tion 5.3.1 below.Using standard �nite element error analysis (Strang lemma) we get a dis-
retization error bound. In our appli
ations we are parti
ularly interested inproblems with µ≪ 1. Therefore, in the next theorem we give a dis
retizationerror bound that shows the dependen
e on µ.Theorem 5.6Let (u∗, p∗), (uh, ph) be the solution of (5.1) and (5.11), respe
tively. Thenthe error bound
µ ‖uh − u∗‖1 + ‖ph − p∗‖L2 ≤ c

(

µ infvh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2

+ supvh∈Vh

|(ρg,vh)− (ρhg,vh)|
‖vh‖1

(5.12)
+ supvh∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1

)holds with a 
onstant c independent of h, µ and ρ.Proof. The result follows from a s
aling argument. For f ∈ V′
0, fh ∈ V′

h let
(û, p̂), (ûh, p̂h) be the solutions of the µ-independent Stokes problems

∫

Ω

∇û∇v dx+ b(v, p̂) = f(v) for all v ∈ V0,

b(û, q) = 0 for all q ∈ Q, (5.13)
∫

Ω

∇ûh∇vh dx+ b(vh, p̂h) = fh(vh) for all vh ∈ Vh,

b(ûh, qh) = 0 for all qh ∈ Qh.

(5.14)
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al treatment of surfa
e tensionStandard error analysis for Stokes equations, using the Strang lemma, yields
‖ûh − û‖1 + ‖p̂h − p̂‖L2 ≤ c

(

infvh∈Vh

‖vh − û‖1 + inf
qh∈Qh

‖qh − p̂‖L2

+ supvh∈Vh

|f(vh)− fh(vh)|
‖vh‖1

)

,
(5.15)with a 
onstant c independent of f , fh and h. Now note that (u∗, p∗) satis�es(5.13) with û = u∗, p̂ = 1

µp
∗, f(v) = 1

µ

(
(ρg,v) + fΓ(v)

) and (uh, ph) satis�es(5.14) with ûh = uh, p̂h = 1
µph, fh(vh) = 1

µ

(
(ρhg,vh) + fΓh

(vh)
). The resultin (5.15) then yields (5.12).Remark 5.7We assume Ω to be 
onvex and thus the problem (5.13) is H2-regular. Usinga standard duality argument it follows that

‖û− ûh‖L2
≤ ch (‖û− ûh‖1 + ‖p̂− p̂h‖L2

) .Due to û = u∗, ûh = uh, p̂ = 1
µp

∗, p̂h = 1
µph, (
f. proof of Theorem 5.6) weget

‖u∗ − uh‖L2
≤ ch

(

‖u∗ − uh‖1 +
1

µ
‖p∗ − ph‖L2

)with a 
onstant c independent of µ and h. ⋄Corollary 5.8Let (u∗, p∗), (uh, ph) be as in Theorem 5.6 and de�ne
rh := supvh∈Vh

|(ρg,vh)− (ρhg,vh)|
‖vh‖1

+ supvh∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1
.The following holds:

‖uh − u∗‖1 ≤ c
(

infvh∈Vh

‖vh − u∗‖1 +
1

µ
inf

qh∈Qh

‖qh − p∗‖L2 +
1

µ
rh

)

, (5.16)
‖uh − u∗‖L2

≤ ch
(

infvh∈Vh

‖vh − u∗‖1 +
1

µ
inf

qh∈Qh

‖qh − p∗‖L2 +
1

µ
rh

)

,(5.17)
‖ph − p∗‖L2 ≤ c

(

µ infvh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2 + rh

)

, (5.18)with 
onstants c independent of h, µ and ρ. We observe that if µ ≪ 1 thenin the velo
ity error we have an error ampli�
ation e�e
t proportional to 1
µ .This e�e
t does not o

ur in the dis
retization error of the pressure.
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es of Strang's Lemma 65Remark 5.9For small µ values the dis
retization 
an be improved by adding a grad-divstabilization term to the Stokes equations. In [OR04℄ it is shown that withthis term the velo
ity errors (in ‖ · ‖1) are proportional to µ−1/2 (instead of
µ−1) and that for small µ values the dis
retization errors for the velo
ity aresigni�
antly smaller than without this grad-div term. ⋄We 
omment on the terms o

urring in the bound in (5.12). As explainedabove (Remark 5.1), the solution u∗ of (5.1) is smooth and thus with standard�nite element spa
es Vh for the velo
ity (e.g., P1 or P2) we obtain

infvh∈Vh

‖vh − u∗‖1 ≤ ch.Due to (5.5) we get |meas3(Ωi)−meas3(Ωi,h)| ≤ ch2
Γ, i = 1, 2, and using thiswe obtain

|(ρg,vh)− (ρhg,vh)| ≤
2∑

i=1

ρi

∣
∣
∣
∣
∣

∫

Ωi

g · vh dx− ∫
Ωi,h

g · vh dx∣∣∣∣
∣

≤ c(ρ1 + ρ2)hΓ‖vh‖1,and thus an O(hΓ) bound for the third term in (5.12).The remaining two terms in (5.12) are less easy to handle. In Se
tion 5.3we treat the fourth term. It is shown that a (not so obvious) approximationmethod based on a Lapla
e-Beltrami representation results in a O(hΓ) boundfor this term whereas a naive Lapla
e-Beltrami approximation, whi
h is usedin the literature, only yields O(
√
hΓ) if it is applied to a pie
ewise planarinterfa
e approximation.The se
ond term in (5.12) is dis
ussed in Se
tion 5.4.1. It is shown thatstandard �nite element spa
es (e.g., P0 or P1) lead to an error infqh∈Qh

‖qh−
p∗‖L2 ∼

√
hΓ. This motivates the use of another pressure �nite element spa
e,as explained in Se
tion 5.4.2, whi
h has mu
h better approximation propertiesfor fun
tions that are pie
ewise smooth but dis
ontinuous a
ross Γh.Remark 5.10Consider the problem as in Example 5.2. Then u∗ = 0, g = 0 and the boundin (5.12) simpli�es to

µ ‖uh‖1 + ‖ph − p∗‖L2

≤ c
(

inf
qh∈Qh

‖qh − p∗‖L2 + supvh∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1

)

. (5.19)
⋄



66 5. Numeri
al treatment of surfa
e tension5.3. Dis
retization of the surfa
e tension for
eIn this se
tion we dis
uss the dis
retization of the surfa
e tension for
e fΓ by aLapla
e-Beltrami te
hnique and analyze the dis
retization error ‖fΓ−fΓh
‖V′

h
.Based on this analysis we introdu
e an improved dis
retization f̃Γh

whi
h hasa higher order of 
onvergen
e. The results are also presented in [GR07b℄.5.3.1. Lapla
e-Beltrami dis
retizationIn this se
tion we explain how the lo
alized surfa
e tension for
e term fΓ(vh)in (2.21) is approximated. We use the te
hnique presented in [Bän01, Dzi91,GRR06℄. For this we �rst need some notions from di�erential geometry.Let U be an open subset in R
3 and Γ a 
onne
ted C2 
ompa
t hypersurfa
e
ontained in U . For a su�
iently smooth fun
tion g : U → R the tangentialderivative (along Γ) is de�ned by proje
ting the derivative on the tangentspa
e of Γ, i. e.

∇Γg = ∇g − (∇g · nΓ)nΓ. (5.20)Note that the tangential derivative 
an be written as ∇Γg = P∇g with Pde�ned as in (5.3).The Lapla
e-Beltrami operator of g on Γ is de�ned by
∆Γg := ∇Γ · ∇Γg.It 
an be shown that ∇Γg and ∆Γg depend only on values of g on Γ. Forve
tor valued fun
tions f, g : Γ→ R

3 we de�ne
∆Γf := (∆Γf1,∆Γf2,∆Γf3)

T , ∇Γf · ∇Γg :=

3∑

i=1

∇Γfi · ∇Γgi.We re
all the following basi
 result from di�erential geometry.Theorem 5.11Let idΓ : Γ→ R
3 be the identity on Γ and κ = κ1+κ2 the sum of the prin
ipal
urvatures. For all su�
iently smooth ve
tor fun
tions v on Γ the followingholds:

∫

Γ

κnΓ · v ds =

∫

Γ

(∆Γ idΓ) · v ds = −
∫

Γ

∇Γ idΓ ·∇Γv ds. (5.21)
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retization of the surfa
e tension for
e 67In a �nite element setting (whi
h is based on a weak formulation) it is naturalto use the expression on the right-hand side in (5.21) as a starting point forthe dis
retization. This idea is used in, for example, [Dzi91, Bän01, GT05,GRR06, Hys06, MCN03℄. In this dis
retization we use the approximation Γhof Γ.Given an approximate interfa
e Γh the lo
alized for
e term fΓ(vh) is approx-imated by
fΓh

(vh) := −τ
∫

Γh

∇Γh
idΓh
·∇Γh

vh ds, vh ∈ Vh. (5.22)Under the assumptions (5.5)-(5.7) on the family {Γh}hΓ>0 we will derive, inSe
tion 5.3.3, a bound for the approximation error
supvh∈Vh

fΓ(vh)− fΓh
(vh)

‖vh‖1
, with fΓh

(vh) as in (5.22). (5.23)Remark 5.12From Theorem 5.11, the fa
t that fΓ(v) = τ
∫

Γ κv · n ds is a bounded linearfun
tional on V0 and a density argument it follows that the linear fun
tional
fΓ : v→ −τ ∫

Γ

∇Γ idΓ ·∇Γv ds , v ∈ (C∞
0 (Ω)

)3
, (5.24)has a unique bounded extension to V0. Therefore, for fΓ : V0 → R we 
anuse both the representation in (2.19) and the one in (5.24) (these are the sameon a dense subset). This, however, is not the 
ase for fΓh

. Be
ause Γh is notsu�
iently smooth, a partial integration result as in Theorem 5.11 does nothold. The linear fun
tionalv→ −τ ∫
Γh

∇Γh
idΓh

·∇Γh
v dsis not ne
essarily bounded on V0. For this reason the restri
tion to vh fromthe �nite element spa
e Vh in (5.22) and (5.23) is essential. ⋄Remark 5.13At many pla
es in this se
tion, for example in (5.21), (5.2) and (impli
itly) in(5.5), and also in the analysis presented in the next se
tion the assumptionthat Γ is a C2 smooth interfa
e plays a 
ru
ial role. We do not know anyliterature in whi
h for a Navier-Stokes in
ompressible two-phase �ow prob-lem with surfa
e tension smoothness properties of the interfa
e are analyzed.In [AMY00℄ and [AMS01℄ a two-phase Stokes �ow problem without surfa
e
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al treatment of surfa
e tensiontension in whi
h the evolution is driven by the gravity for
e is analyzed. In[AMY00℄ it is proved that if the initial 
on�guration has a C2 smooth interfa
e
Γ = Γ(0) then for arbitrary �nite time t > 0 the interfa
e Γ(t) is a surfa
eof 
lass C2−ε for arbitrary ε ∈ (0, 2]. In [AMS01℄ it is shown that if Γ(0) isa C2+ℓ smooth surfa
e, with ℓ > 0, then Γ(t) is of 
lass C2+ℓ, too, for all
t ∈ [0, T ] and T > 0 su�
iently small. ⋄5.3.2. Extensions and proje
tionsIn this se
tion we 
olle
t some results that will be used in the analysis inSe
tion 5.3.3. The te
hniques that we use 
ome from the paper [DD07℄. Forproofs of 
ertain results we will refer to that paper.We introdu
e a lo
ally (in a neighborhood of Γ) orthogonal 
oordinate systemby using the proje
tion p : U → Γ:p(x) = x− d(x)n(x) for all x ∈ U.We assume that the de
omposition x = p(x) + d(x)n(x) is unique for allx ∈ U . Note that n(x) = n(p(x)) for all x ∈ U.We use an extension operator de�ned as follows. For a (s
alar) fun
tion vde�ned on Γ we de�ne

ve
Γ(x) := v(x− d(x)n(x)) = v(p(x)) for all x ∈ U,i.e., v is extended along normals on Γ. We will also need extensions of fun
tionsde�ned on Γh to U . This is done again by extending along normals n(x). For

v de�ned on Γh we de�ne, for x ∈ Γh,
ve
Γh

(x+ αn(x)) := v(x) for all α ∈ R with x+ αn(x) ∈ U. (5.25)The proje
tion p and the extensions ve
Γ, ve

Γh
are illustrated in Figure 5.5.We de�ne a dis
rete analogon of the orthogonal proje
tion P:Ph(x) := I− nh(x)nh(x)T for x ∈ Γh, x not on an edge.The tangential derivative along Γh 
an be written as ∇Γh

g = Ph∇g. In theanalysis a further te
hni
al assumption is used, namely that the neighborhood
U of Γ is su�
iently small in the following sense. We assume that U is a stripof width δ > 0 with

δ−1 > max
i=1,2

‖κi(x)‖L∞(Γ). (5.26)
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x̂1 x1 = p(x̂1)

n1

x̂2x2 = p(x̂2)

n2

Γh

Γ

Figure 5.5.: Example for proje
tion p and 
onstru
tion of extension operators. n1and n2 are straight lines perpendi
ular to Γ. For v de�ned on Γ we have ve
Γ ≡ v(x1)on n1. For vh de�ned on Γh we have ve

Γh
≡ vh(x̂2) on n2.Assumption 5.14In the remainder of the se
tion we assume that (5.5), (5.6), (5.7)and (5.26)hold. ⋄We present two lemmas from [DD07℄. Proofs are elementary and 
an be foundin [DD07℄.Lemma 5.15For the proje
tion operator P and the Hessian H the relationP(x)H(x) = H(x)P(x) = H(x) for all x ∈ Uholds. For v de�ned on Γ and su�
iently smooth the following holds:

∇Γh
ve
Γ(x) = Ph(x)

(I− d(x)H(x)
)P(x)∇Γv(p(x)) a.e. on Γh. (5.27)Proof. Given in Se
tion 2.3 in [DD07℄.In (5.27) (and also below) we have results �a.e. on Γh� be
ause quantities(derivatives, Ph, et
.) are not well-de�ned on the edges of the triangulation

Γh.Lemma 5.16For x ∈ Γh (not on an edge) de�ne
µ(x) =

[
Π2

i=1(1 − d(x)κi(x))
]n(x)Tnh(x), (5.28)A(x) =

1

µ(x)
P(x)

[I− d(x)H(x)
]Ph(x)

[I− d(x)H(x)
]P(x). (5.29)
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al treatment of surfa
e tensionLet Ae
Γh

be the extension of A as in (5.25). The following identity holds forfun
tions v and ψ that are de�ned on Γh and su�
iently smooth:
∫

Γh

∇Γh
v · ∇Γh

ψ ds =

∫

Γ

Ae
Γh
∇Γv

e
Γh
· ∇Γψ

e
Γh
ds. (5.30)Proof. Given in Se
tion 2.3 in [DD07℄.Due to the assumptions in (5.6) and (5.26) we have ess infx∈Γh

µ(x) > 0 andthus A(x) is well-de�ned.5.3.3. Dis
retization error analysisWe are interested in the di�eren
e between the terms
τ

∫

Γ

∇Γ idΓ ·∇Γvh ds and τ ∫
Γh

∇Γh
idΓh

·∇Γh
vh ds for vh ∈ Vh.Sin
e ∇Γ idΓ ·∇Γvh =

∑3
i=1∇Γ(idΓ)i · ∇Γ(vh)i we 
onsider only one term inthis sum, say the i-th. We write idΓ and v for the s
alar fun
tions (idΓ)i and

(vh)i, respe
tively. We write idΓh
for (idΓh

)i. Note that
∇Γ idΓ = P∇ idΓ = Pei, ∇Γh

idΓh
= Ph∇ idΓh

= Phei,with ei the i-th basis ve
tor in R
3. We introdu
e s
alar versions of the fun
-tionals fΓ and fΓh

de�ned in (5.24) and (5.22) (without loss of generality we
an take τ := 1):
g(v) :=

∫

Γ

∇Γ idΓ ·∇Γv ds, gh(v) :=

∫

Γh

∇Γh
idΓh
·∇Γh

v ds.As noted in Remark 5.12, g is a bounded linear fun
tional on H1(U). Toguarantee that gh and the extension operator in (5.25) are well-de�ned weassume v ∈ H1(Γh) ∩ C(Γh). Therefore, in the analysis in this se
tion weuse the subspa
e W of H1(U) 
onsisting of fun
tions whose restri
tion to Γhbelongs to H1(Γh) ∩ C(Γh).Remark 5.17If we use a Hood-Taylor pairVh×Qh in the dis
retization of the Navier-Stokesequations, then the i-th 
omponent v ∈ Vh of vh ∈ Vh = (Vh)3 is 
ontinuousand pie
ewise polynomial (on the tetrahedral triangulation S). Thus v ∈ Wholds. ⋄
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retization of the surfa
e tension for
e 71In this se
tion we �rst derive, for v ∈ W , a bound for |g(v)−gh(v)| in terms of
‖v‖1,U := ‖v‖H1(U) and ‖∇Γh

v‖L2(Γh). This bound is given in Corollary 5.18.Using this bound we then derive a bound for
sup
v∈Vh

|g(v)− gh(v)|
‖v‖1

,
f. Theorem 5.22. This immediately implies a bound for the approximationerror as in (5.23), 
f. Corollary 5.23.The analysis is based on the following splitting:
g(v)− gh(v)

=

∫

Γ

∇Γ idΓ ·∇Γv ds−
∫

Γh

∇Γh
ide

Γ ·∇Γh
v ds

+

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

=

∫

Γ

∇Γ idΓ ·∇Γv ds−
∫

Γ

Ae
Γh
∇Γ idΓ ·∇Γv

e
Γh
ds (
f. (5.30))

+

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

=

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds+

∫

Γ

(I−Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

+

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds. (5.31)In the 
orollary below we derive bounds for the three terms in (5.31). Notethat the �rst two terms do not involve idΓh
.Corollary 5.18The three terms in (5.31) 
an be bounded by

∣
∣
∣
∣

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds

∣
∣
∣
∣
≤ c hΓ ‖v‖1,U , (5.32)

∣
∣
∣
∣

∫

Γ

(I−Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

∣
∣
∣
∣
≤ c h2

Γ ‖∇Γh
v‖L2(Γh), (5.33)

∣
∣
∣
∣

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

∣
∣
∣
∣
≤ c hΓ ‖∇Γh

v‖L2(Γh), (5.34)and thus
|g(v)− gh(v)| ≤ c hΓ ‖v‖1,U + c h2

Γ ‖∇Γh
v‖L2(Γh) + c hΓ ‖∇Γh

v‖L2(Γh)
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al treatment of surfa
e tensionholds for all v ∈W .Proof. (5.32)�(5.34) are proved in Lemma 4.1�4.3 in [GR07b℄. These boundstogether with the splitting (5.31) yield the result.In view of Corollary 5.18 and the error measure in (5.23) we want to derive abound for ‖∇Γh
v‖L2(Γh) in terms of ‖v‖1 for v from the s
alar �nite elementspa
e Vh. An obvious approa
h is to apply an inverse inequality 
ombinedwith a tra
e theorem, resulting in:

‖∇Γh
v‖L2(Γh) ≤ c h−1

min‖v‖L2(Γh) ≤ c h−1
min‖v‖1 for all v ∈ Vh. (5.35)This, however, is too 
rude (
f. the bound in Corollary 5.18). In order tobe able to derive a better bound than the one in (5.35) we have to introdu
esome further assumptions related to the family of triangulations {Γh}hΓ>0.We assume that to ea
h triangulation Γh = ∪F∈Fh

F there 
an be asso
iateda set of tetrahedra SΓ
h with the following properties:For ea
h F ∈ Fh there is a 
orresponding SF ∈ SΓ

h with F ⊂ SF . (5.36)For F1, F2 ∈ Fh with F1 6= F2 we have meas3(SF1
∩ SF2

) = 0. (5.37)The family {SΓ
h}hΓ>0 is shape-regular. (5.38)

c0hΓ ≤ diam(SF ) ≤ chΓ for all F ∈ Fh,with c0 > 0 (quasi-uniformity). (5.39)For ea
h SF ∈ SΓ
h there is a tetrahedron S ∈ S su
h that SF ⊂ S. (5.40)Re
all that S is the (�xed) tetrahedral triangulation that is used in the �niteelement dis
retization of the Navier-Stokes problem in (2.21)�(2.22). Notethat the set of tetrahedra SΓ

h has to be de�ned only 
lose to the approximateinterfa
e Γh and that this set not ne
essarily forms a regular tetrahedral tri-angulation of Ω. Furthermore, it is not assumed that the family {Γh}hΓ>0 isshape-regular or quasi-uniform.Remark 5.19Consider the 
onstru
tion of {Γh}hΓ>0 as in Se
tion 5.1.2. The approximateinterfa
e Γh is the zero level of the fun
tion I(dh), whi
h is 
ontinuous pie
e-wise linear on the tetrahedral triangulation T ′:
Γh =

⋃

F∈F

F,where ea
h F is a triangle or a quadrilateral. To ea
h F there 
an be asso
iateda tetrahedron SF ∈ T ′ su
h that F ⊂ SF . Re
alling the de�nition (5.10) of



5.3. Dis
retization of the surfa
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e 73an interfa
e segment, we note that in fa
t F = ΓT for T = SF ∈ T ′. If F is aquadrilateral then we 
an subdivide F and SF in two disjoint triangles F1, F2and two disjoint tetrahedra SF1
, SF2

, respe
tively, su
h that Fi ⊂ SFi ⊂ SFfor i = 1, 2. One 
an 
he
k that this 
onstru
tion results in a family {SΓ
h}hΓ>0that satis�es the 
onditions (5.36)-(5.40). ⋄In the following lemma we 
onsider a standard a�ne mapping between atetrahedron SF ∈ SΓ

h and the referen
e unit tetrahedron and apply it to thetriangle F ⊂ SF .Lemma 5.20Assume that the family {Γh}hΓ>0 is su
h that for the asso
iated family of setsof tetrahedra {SΓ
h}hΓ>0 the 
onditions (5.36)-(5.40) are satis�ed. Take F ∈ Fhand the 
orresponding SF ∈ SΓ

h . Let Ŝ be the referen
e unit tetrahedronand Φ(x) = Jx + b be an a�ne mapping su
h that Φ(Ŝ) = SF . De�ne
F̂ := Φ−1(F ). The following holds:

‖J‖2 meas3(Ŝ)

meas3(SF )
≤ c h−1

Γ , (5.41)
‖J−1‖2 meas2(F )

meas2(F̂ )
≤ c, (5.42)with 
onstants c independent of F and hΓ.Proof. Let ρ(SF ) be the diameter of the maximal ball 
ontained in SF andsimilarly for ρ(Ŝ). From standard �nite element theory we have

‖J‖ ≤ diam(SF )

ρ(Ŝ)
, ‖J−1‖ ≤ diam(Ŝ)

ρ(SF )
.Using (5.38) and (5.39) we then get

‖J‖2 meas3(Ŝ)

meas3(SF )
≤ c diam(SF )2

meas3(SF )
≤ c diam(SF )−1 ≤ c h−1

Γ ,and thus the result in (5.41) holds.The verti
es of F̂ = Φ−1(F ) are denoted by V̂i, i = 1, 2, 3. Let V̂1V̂2 be alongest edge of F̂ and M̂ the point on this edge su
h that M̂V̂3 is perpendi
ularto V̂1V̂2. De�ne Vi := Φ(V̂i), i = 1, 2, 3, and M := Φ(M̂). Then Vi, i = 1, 2, 3,
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e tensionare the verti
es of F and M lies on the edge V1V2. We then have
meas2(F̂ ) =

1

2
‖V̂1 − V̂2‖‖V̂3 − M̂‖ =

1

2
‖J−1(V1 − V2)‖‖J−1(V3 −M)‖

≥ 1

2
‖J‖−2‖V1 − V2‖‖V3 −M‖ ≥ c

ρ(Ŝ)2

diam(SF )2
meas2(F ),with a 
onstant c > 0. Thus we obtain

‖J−1‖2 meas2(F )

meas2(F̂ )
≤ c diam(Ŝ)2

ρ(SF )2
diam(SF )2

ρ(Ŝ)2
≤ c,whi
h 
ompletes the proof.Theorem 5.21Assume that the family {Γh}hΓ>0 is su
h that for the asso
iated family of setsof tetrahedra {SΓ

h}hΓ>0 the 
onditions (5.36)-(5.40) are satis�ed. Then thefollowing holds:
‖∇Γh

v‖L2(Γh) ≤ c h−
1
2

Γ ‖v‖1 for all v ∈ Vh.Proof. Note that
‖∇Γh

v‖2L2(Γh) =
∑

F∈Fh

‖∇F v‖2L2(F ).Take F ∈ Fh and let SF be the asso
iated tetrahedron as explained above.Let Ŝ be the referen
e unit tetrahedron and Φ : Ŝ → ST as in Lemma 5.20.De�ne v̂ := v ◦ Φ. Using standard transformation rules and Lemma 5.20 weget
‖∇F v‖2L2(F ) = ‖Ph∇v‖2L2(F ) ≤ ‖∇v‖2L2(F ) =

∑

|α|=1

‖∂αv‖2L2(F )

≤ c ‖J−1‖2
∑

|α|=1

‖(∂αv̂) ◦ Φ−1‖2L2(F )

≤ c ‖J−1‖2 meas2(F )

meas2(F̂ )

∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

maxx∈F̂

∣
∣∂αv̂(x)

∣
∣
2 ≤ c

∑

|α|=1

maxx∈Ŝ

∣
∣∂αv̂(x)

∣
∣
2
,with a 
onstant c independent of F . From (5.40) it follows that v̂ is a poly-nomial on Ŝ of maximal degree k, where k depends only on the 
hoi
e of the
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e Vh. On P∗
k := { p ∈ Pk : p(0) = 0 } we have, due toequivalen
e of norms:

∑

|α|=1

maxx∈Ŝ

∣
∣∂αv̂(x)

∣
∣
2 ≤ c

∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

for all v̂ ∈ P∗
k .Be
ause, for v̂ ∈ Pk and |α| = 1, ∂αv̂ is independent of v̂(0), the same in-equality holds for all v̂ ∈ Pk. Thus we get

‖∇F v‖2L2(F ) ≤ c
∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

≤ c ‖J‖2 ∑
|α|=1

‖(∂αv) ◦ Φ‖2
L2(Ŝ)

= c ‖J‖2 meas3(Ŝ)

meas3(SF )

∑

|α|=1

‖∂αv‖2L2(SF ) ≤ c h−1
Γ ‖∇v‖2L2(SF ) ,with a 
onstant c independent of F and h. Using (5.37) we �nally obtain

‖∇Γh
v‖2L2(Γh) ≤ c h−1

Γ

∑

F∈Fh

‖∇v‖2L2(SF )

≤ c h−1
Γ

∫

Ω

(∇v)2 dx ≤ c h−1
Γ ‖v‖21 ,whi
h proves the result.We now present the main result of this se
tion.Theorem 5.22Let the assumptions be as in Theorem 5.21. The following holds:

sup
v∈Vh

|g(v)− gh(v)|
‖v‖1

≤ c
√

hΓ.Proof. Combine the result in Corollary 5.18 with the one in Theorem 5.21.As a dire
t 
onsequen
e we obtain:Corollary 5.23Let the assumptions be as in Theorem 5.21. For fΓ and fΓh
as de�ned inSe
tion 5.3.1 the following holds:

supv∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1
≤ τc

√

hΓ.



76 5. Numeri
al treatment of surfa
e tensionProof. Note that
fΓ(vh)− fΓh

(vh)

= −τ
3∑

i=1

( ∫

Γ

∇Γ(idΓ)i · ∇Γ(vh)i ds−
∫

Γh

∇Γh
(idΓh

)i · ∇Γh
(vh)i ds

)

,and use the result in Theorem 5.22.An upper bound O(
√
hΓ) as in Corollary 5.23 for the error in the approxima-tion of the lo
alized for
e term may seem rather pessimisti
, be
ause Γh is an

O(h2
Γ) a

urate approximation of Γ. Numeri
al experiments in Se
tion 10.3and results in [GMT07℄, however, indi
ate that the bound is sharp.5.3.4. Improved Lapla
e-Beltrami dis
retizationIn this se
tion we show how the approximation of the lo
alized for
e term 
anbe improved, resulting in an improved error bound of the form O(hΓ) (insteadof O(
√
hΓ) in Corrolary 5.23).From Corollary 5.18 and Theorem 5.21 we see that the √hΓ behavior is 
ausedby the estimate in (5.34):

∣
∣
∣
∣

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

∣
∣
∣
∣
≤ c hΓ ‖∇Γh

v‖L2(Γh). (5.43)The term ∇Γh
idΓh

that is used in gh(v) o

urs in (5.43) but not in the othertwo terms of the splitting, 
f. (5.32), (5.33). We 
onsider
g̃h(v) =

∫

Γh

mh · ∇Γh
v dsand try to �nd a fun
tion mh = mh(x) su
h that g̃h(v) remains easily 
om-putable and the bound in (5.43) is improved if we use mh instead of ∇Γh

idΓh
.The latter 
ondition is trivially satis�ed formh = ∇Γh

ide
Γ (leading to a bound0 in (5.43)). This 
hoi
e, however, does not satisfy the �rst 
ondition, be
ause

Γ is not known. We now dis
uss another possibility, that is used in the exper-iments in Se
tion 10.3.Due to |d(x)| ≤ ch2
Γ we get from Lemma 5.15, for x ∈ Γh:

∇Γh
ide

Γ(x) = Ph(x)P(x)∇Γ idΓ(p(x)) +O(h2
Γ) = Ph(x)P(x)ei +O(h2

Γ).



5.3. Dis
retization of the surfa
e tension for
e 77In the 
onstru
tion of the interfa
e Γh, 
f. Se
tion 5.1.2, we have a pie
ewisequadrati
 fun
tion dh ≈ d available. De�neñh(x) :=
∇dh(x)

‖∇dh(x)‖ , P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh.Thus an obvious modi�
ation is based on the 
hoi
e mh(x) = Ph(x)P̃h(x)ei,i. e.,
g̃h(v) :=

∫

Γh

Ph(x)P̃h(x)ei · ∇Γh
v ds =

∫

Γh

P̃h(x)ei · ∇Γh
v ds. (5.44)In this approa
h the approximate interfa
e Γh is not 
hanged (pie
ewise pla-nar). For pie
ewise quadrati
s dh and v, the fun
tion ∇Γh

v = Ph∇v is pie
e-wise linear and P̃hei is pie
ewise (very) smooth on the segments of Γh. Hen
e,the fun
tional in (5.44) 
an be evaluated easily.Under reasonable assumptions the modi�ed fun
tional indeed yields a bettererror bound:Lemma 5.24Assume that there exists p > 0 su
h that
‖∇dh(x)−∇d(x)‖ ≤ c hp

Γ, for x ∈ Γh. (5.45)Then for all v ∈ W the following holds:
∣
∣
∣
∣

∫

Γh

(
∇Γh

ide
Γ−PhP̃hei

)
· ∇Γh

v ds

∣
∣
∣
∣
≤ c hmin{p,2}

Γ ‖∇Γh
v‖L2(Γh).Proof. From Lemma 5.15 we get for x ∈ Γh (not on an edge),

∇Γh
ide

Γ(x) = Ph(x)
(I− d(x)H(x)

)P(x)∇Γ idΓ(p(x))

= Ph(x)
(I− d(x)H(x)

)P(x)ei.We also have ∇Γh
idΓh

= Ph∇ idΓh
= Phei. Hen
e,

∣
∣
∣
∣

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

∣
∣
∣
∣

(5.46)
=

∣
∣
∣
∣

∫

Γh

(Ph(I− dH)Pei −Phei

)
· ∇Γh

v ds

∣
∣
∣
∣

≤ c ess supx∈Γh
‖Ph(x)

(I− d(x)H(x)
)P(x)−Ph(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)P(x)−Ph(x)P̃h(x)‖ (5.47)
+ |d(x)| ‖Ph(x)H(x)P(x)‖

)
‖∇Γh

v‖L2(Γh). (5.48)
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e tensionWe �rst derive a bound for (5.47). Using ‖∇d‖ = 1 it follows that ‖∇dh‖ =
1 +O(hp

Γ) holds. We drop x in the notation and using the assumption (5.45)we obtain
‖PhP−PhP̃h‖ = ‖Ph(P− P̃h)‖ ≤ ‖nnT − ñhñT

h ‖

≤ ‖(n− ñh)nT ‖+ ‖ñh(n− ñh)T ‖ = 2‖n− ñh‖

= 2

∥
∥
∥
∥
∇d− ∇dh

‖∇dh‖

∥
∥
∥
∥

≤ 2
∣
∣1− ‖∇dh‖−1

∣
∣ ‖∇dh‖+ 2‖∇d−∇dh‖ ≤ c hp.We now turn to (5.48). Note that due to (5.5) |d(x)| ≤ c h2

Γ for x ∈ Γh, and
ess supx∈Γh

‖Ph(x)H(x)P(x)‖ ≤ ess supx∈Γh
‖H(x)‖ ≤ c,hen
e yielding a bound |d(x)|‖Ph(x)H(x)P(x)‖ ≤ c h2

Γ for the term in (5.48).Combined with the inequality ‖PhP − PhP̃h‖ ≤ c hp
Γ for the term in (5.47)this proves the result.If we assume that the 
ondition in (5.45) is satis�ed for p = 2, whi
h is rea-sonable for a pie
ewise quadrati
 approximation dh of d, we get the followingimprovement due to the modi�ed fun
tional g̃h, 
f. Corollary 5.18:

|g(v)− g̃h(v)| ≤ c hΓ ‖v‖1,U + c h2
Γ ‖∇Γh

v‖L2(Γh) for all v ∈ W.Combining this with the result in Theorem 5.21 yields (under the assumptionas in Theorem 5.21):
|g(v)− g̃h(v)| ≤ c hΓ ‖v‖1,U + c h

3/2
Γ ‖v‖1 for all v ∈ Vh.Hen
e, using this modi�ed fun
tional g̃h we have a O(hΓ) error bound. Wetherefore de�ne the improved Lapla
e-Beltrami dis
retization by

f̃Γh
(v) := −τ

∫

Γh

P̃h∇ idΓh
·∇Γh

v ds = − τ
3∑

i=1

g̃h,i(vi) (5.49)for all v ∈ Vh.This signi�
ant improvement (O(hΓ) 
ompared to the O(
√
hΓ) error bound forthe fun
tional fΓh

) is 
on�rmed by the numeri
al experiments in Se
tion 10.3.
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ontinuous pressure 795.4. Finite element spa
e for the dis
ontinuouspressureAfter the analysis and improvement of the dis
retization of the lo
alized sur-fa
e for
e term fΓ given in the previous se
tion, we now turn to the approxi-mation of the pressure whi
h is dis
ontinuous a
ross the interfa
e Γ if surfa
etension for
es are present. We show that standard �nite element spa
es haveonly poor approximation properties for su
h fun
tions with a jump a
ross Γand introdu
e a new extended �nite element spa
e whi
h is more appropriatefor this task. Most of the results presented in this se
tion are from [GR07a℄.5.4.1. Approximation error for standard FE spa
esIn this se
tion we 
onsider the approximation error
inf

qh∈Qh

‖qh − p∗‖L2for a few standard �nite element spa
es Qh and explain why in general for afun
tion p∗ that is dis
ontinuous a
ross Γh one 
an expe
t no better boundfor this approximation error than c
√
h. This serves as a motivation for animproved pressure �nite element spa
e as presented in Se
tion 5.4.2. To ex-plain the e�e
t underlying the √h behavior of the error bound we analyzea 
on
rete two-dimensional example as illustrated in Figure 5.6. We take

Ω = (0, 1)2 ⊂ R
2 and de�ne

Ω1 := { (x, y) ∈ Ω : x ≤ 1− y }, Ω2 := Ω \ Ω1.The interfa
e Γ separating both subdomains from ea
h other is given by
Γ = { (x, y) ∈ Ω : y = 1− x }.A family of triangulations {Th}hΓ>0 is 
onstru
ted as follows. The start-ing triangulation T0 
onsists of two triangles, namely the ones with verti
es

{(0, 0), (0, 1), (1, 1)} and {(0, 0), (1, 0), (1, 1)}. Then a global regular re�ne-ment strategy (
onne
ting the midpoints of edges) is applied repeatedly. Thisresults in a nested sequen
e of triangulations Thk
, k = 1, 2, . . ., with mesh size

hk = 2−k. In Figure 5.6 the triangulation Th2
is shown. The set of trianglesthat 
ontains the interfa
e is given by (with h := hk)

T Γ
h := {T ∈ Th : meas1(T ∩ Γ) > 0 }.
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Γ

Γ

m

m4

m3

m2

m1

TU

TL

Figure 5.6.: Triangulation Th2
and a triangle T ∈ T Γ

hk
.In Figure 5.6 the elements in T Γ

h2
are 
olored gray.For h = hk we 
onsider the �nite element spa
es

Q0
h := { p : Ω→ R : p|T ∈ P0 for all T ∈ Th } (pie
ewise 
onstants),

Q1,disc
h := { p : Ω→ R : p|T ∈ P1 for all T ∈ Th } (pie
ewise linears,dis
ontinuous),
Q1

h := { p ∈ C(Ω) : p|T ∈ P1 for all T ∈ Th } (pie
ewise linears,
ontinuous).Note that
Qj

h ⊂ Q
1,disc
h for j = 0, 1. (5.50)We take p∗ as follows: p∗(x, y) = cp > 0 for all (x, y) ∈ Ω1, p(x, y) = 0 for all

(x, y) ∈ Ω2. We study infqh∈Qh
‖qh − p∗‖L2 for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}. For
Qh = Q1,disc

h the identity
inf

qh∈Q1,disc

h

‖qh − p∗‖2L2 =
∑

T∈T Γ
h

min
q∈P1

‖q − p∗‖2L2(T )holds. Take T ∈ T Γ
h . Using a quadrature rule on triangles that is exa
t for all
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f. Figure 5.6,
min
q∈P1

‖q − p∗‖2L2(T ) = min
q∈P1

(∫

TL

(q − cp)2 dx dy +

∫

TU

q2 dx dy
)

=
h2

12
min
q∈P1

(
(q(m3)− cp)2 + (q(m4)− cp)2 + (q(m) − cp)2

+ q(m1)
2 + q(m2)

2 + q(m)2
)

≥ h2

12
min
q∈P1

(
(q(m)− cp)2 + q(m)2

)
=

1

24
c2ph

2.Thus we have
inf

qh∈Q1,disc

h

‖qh − p∗‖L2 ≥
( ∑

T∈T Γ
h

1

24
c2ph

2
) 1

2

=
( 2

h

1

24
c2ph

2
) 1

2 =
1

2
√

3
cp
√
h.Due to (5.50) this yields

inf
qh∈Qh

‖qh − p∗‖L2 ≥ 1

2
√

3
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}. (5.51)To derive an upper bound for the approximation error we 
hoose a suitable
qh ∈ Qh. First 
onsider Qh = Q0

h and take q0h ∈ Q0
h as follows: (q0h)|T = cpfor all T with meas1(T ∩Ω1) > 0, q0h = 0 otherwise. With this 
hoi
e we get

‖q0h−p∗‖L2 =
( ∑

T∈T Γ
h

‖q0h−p∗‖2L2(T )

) 1
2

=
( ∑

T∈T Γ
h

c2p
1

4
h2
) 1

2 =
1√
2
cp
√
h. (5.52)For Qh = Q1

h we take q1h := Ih(p∗), where Ih is the nodal interpolationoperator (note: p∗ = cp on Γ). Elementary 
omputations yield
‖q1h − p∗‖L2 =

( 1

12
c2ph
) 1

2 =
1

2
√

3
cp
√
h. (5.53)Combination of (5.50), (5.51), (5.52) and (5.53) yields

1

2
√

3
cp
√
h ≤ inf

qh∈Qh

‖qh − p∗‖L2 ≤ 1√
2
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}.(5.54)Note that this approximation error result does not 
hange if we apply onlylo
al re�nement 
lose to the interfa
e and then repla
e h by hΓ, where thelatter denotes the mesh size of the triangles in T Γ
h .
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e tensionIf instead of pie
ewise 
onstants or pie
ewise linears we 
onsider polynomialsof higher degree, the approximation error still behaves like √h.Similar examples, whi
h have a √h approximation error behavior, 
an be
onstru
ted using these �nite element spa
es on tetrahedral triangulations in3D.5.4.2. Extended �nite element spa
eThe analysis in the previous Se
tion 5.2, whi
h is 
on�rmed by numeri
alexperiments in Se
tion 10.4, leads to the 
on
lusion that there is a need foran improved �nite element spa
e for the pressure. In this se
tion we presentsu
h a spa
e whi
h is based on an idea presented in [MDB99, BMUP01℄. Inthat paper a so-
alled extended �nite element spa
e (XFEM) is introdu
edin the 
ontext of 
ra
k formations in stru
ture me
hani
s whi
h has goodapproximation properties for interfa
e type of problems.Here we apply the XFEM method to two-phase �ow problems by 
onstru
tingan extended pressure �nite element spa
e QΓ
h. In this se
tion we explain themethod and dis
uss some implementation issues. In Se
tion 10.4 results ofnumeri
al experiments with this method are presented.For k ≥ 1 �xed we introdu
e the standard �nite element spa
e

Qh = Qk
h = { q ∈ C(Ω) ∩ L2

0(Ω) : q|T ∈ Pk for all T ∈ T }.For k = 1, for example, this is the standard �nite element spa
e of 
ontinuouspie
ewise linear fun
tions. We de�ne the index set J = {1, . . . , n}, where
n = dimQh is the number of degrees of freedom. Let B := {qj}j∈J be thenodal basis of Qh, i. e. qj(xi) = δi,j for i, j ∈ J where xi ∈ R

3 denotes thespatial 
oordinate of the i-th degree of freedom.The idea of the XFEM method is to enri
h the original �nite element spa
e
Qh by additional basis fun
tions qX

j for j ∈ J ′ where J ′ ⊂ J is a given indexset. An additional basis fun
tion qX
j is 
onstru
ted by multiplying the originalnodal basis fun
tion qj by a so 
alled enri
hment fun
tion Φj :

qX
j (x) := qj(x)Φj(x). (5.55)This enri
hment yields the extended �nite element spa
e

QX
h := span

(
B ∪ {qX

j }j∈J ′

)
.
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Γ

Figure 5.7.: Enri
hment by additional basis fun
tions for P1 �nite elements in a2D example. Dots represent degrees of freedom of original basis fun
tions, 
ir
lesindi
ate where additional basis fun
tions are added in the vi
inity of the interfa
e
Γ.This idea was introdu
ed in [MDB99℄ and further developed in [BMUP01℄for di�erent kinds of dis
ontinuities (kinks, jumps), whi
h may also interse
tor bran
h. The 
hoi
e of the enri
hment fun
tion depends on the type ofdis
ontinuity. For representing jumps the Heaviside fun
tion is proposed to
onstru
t appropriate enri
hment fun
tions. Basis fun
tions with kinks 
anbe obtained by using the distan
e fun
tion as enri
hment fun
tion [MCCR03℄.In our 
ase the �nite element spa
e Q1

h is enri
hed by dis
ontinuous basisfun
tions qX
j for j ∈ J ′ = JΓ := { j ∈ J : meas2(Γ ∩ supp qj) > 0 }, asdis
ontinuities only o

ur at the interfa
e. This situation is illustrated inFigure 5.7 for a 2D example.Let d : Ω → R be the signed distan
e fun
tion (or an approximation to it)with d negative in Ω1 and positive in Ω2. For example the level set fun
tion

ϕ 
ould be used for d. Then by means of the Heaviside fun
tion H we de�ne
HΓ(x) := H(d(x)) =

{

0 x ∈ Ω1,

1 x ∈ Ω2.As we are interested in fun
tions with a jump a
ross the interfa
e we de�nethe enri
hment fun
tion
ΦH

j (x) := HΓ(x)−HΓ(xj) (5.56)and a 
orresponding fun
tion qX
j := qj · ΦH

j , j ∈ J ′. The se
ond term in thede�nition of ΦH
j is 
onstant and may be omitted (as it doesn't introdu
e new
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Γ

Ω2 Ω1

01 xi xj

qi qj

qΓj

qΓiFigure 5.8.: Extended �nite element basis fun
tions qi, q
Γ

i (dashed) and qj , q
Γ

j(solid) for 1D 
ase.fun
tions in the fun
tion spa
e), but ensures the ni
e property qX
j (xi) = 0 forall i, i. e., qX

j vanishes in all degrees of freedom. As a 
onsequen
e, we have
supp qX

j ⊂
(
supp qj ∩ ΩΓ

)
, (5.57)where

ΩΓ :=
⋃

T∈T Γ
h

T (5.58)is the union of all tetrahedra interse
ted by Γ,
T Γ

h := {T ∈ Th : meas2(T ∩ Γ) > 0 }. (5.59)Thus qX
j ≡ 0 in all T with T /∈ T Γ

h .In the following we will use the notation qΓj := qj ΦH
j and

BΓ := B ∪ { qΓj : j ∈ JΓ }, (5.60)
QΓ

h := span
(
BΓ
) (5.61)to emphasize that the extended �nite element spa
e QΓ

h depends on the lo
a-tion of the interfa
e Γ. In parti
ular the dimension of QΓ
h may 
hange if theinterfa
e is moved. The shape of the extended basis fun
tions for the 1D 
aseis sket
hed in Figure 5.8.Remark 5.25Note that QΓ

h 
an also be 
hara
terized by the following property: q ∈ QΓ
h ifand only if there exist fun
tions q1, q2 ∈ Qh su
h that q|Ωi = qi|Ωi , i = 1, 2. ⋄



5.4. Finite element spa
e for the dis
ontinuous pressure 85The following result from [Reu08℄ shows that the extended �nite element spa
e
QΓ

h o�ers the following optimal approximation property.Theorem 5.26For an integer k ≥ 0 we de�ne the spa
e
Hk(Ω1 ∪ Ω2) := { p ∈ L2(Ω) : p|Ωi

∈ Hk(Ωi), i = 1, 2 }with the norm ‖p‖2k,Ω1∪Ω2
:= ‖p‖2k,Ω1

+ ‖p‖2k,Ω2
. Then for integer l, m with

0 ≤ l < m ≤ 2 the following holds:
inf

q∈QΓ
h

‖p− q‖l,Ω1∪Ω2
≤ c hm−l‖p‖m,Ω1∪Ω2

(5.62)for all p ∈ Hm(Ω1 ∪ Ω2).Proof. Given in [Reu08℄.Hen
e, for pressure solutions p with p|Ωi
∈ H1(Ωi), i = 1, 2, (
f. Remark 5.1)we have

inf
qh∈QΓ

h

‖qh − p‖L2 ≤ ch.This yields the desired O(h) bound, 
f. Se
tion 5.2.In [BMUP01℄ the XFEM is applied to a few problems from linear elasti
itydemonstrating the ability of the method to 
apture jumps and kinks. Thesedis
ontinuities also bran
h or interse
t in some of the examples, in this 
asemore elaborate 
onstru
tions of the enri
hment fun
tions are used.In [CB03℄ the XFEM is also applied to a two-phase �ow problem. In thatpaper dis
ontinuous material properties ρ and µ, but no surfa
e tension for
eswere taken into a

ount. Thus there is no jump in pressure, but the solutionexhibits kinks at the interfa
e. For the pressure and the level set fun
tionstandard �nite element spa
es are used. The velo
ity �eld is dis
retized withan extended �nite element spa
e enri
hed by vX
j (x) = vj(x) |d(x)| to 
apturethe kinks at the interfa
e. The lo
ation of the interfa
e is 
aptured by a levelset approa
h. The 
onstru
tion of the enri
hment fun
tion is thus based onthe level set fun
tion ϕ.A similar idea of basis enri
hment in the 
ontext of two-phase �ow simulationsis also suggested in [MCN03℄. The pressure spa
e is augmented by additionaldis
ontinuous basis fun
tions q̃Γj (x) = qj(x) Φ̃H(x), j ∈ JΓ, where the enri
h-ment fun
tion Φ̃H is given by

Φ̃H |ΩΓ∩Ω1
≡ 1, Φ̃H |ΩΓ∩Ω2

≡ −1, Φ̃H |Ω\ΩΓ ≡ 0.
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al treatment of surfa
e tensionFor the velo
ity spa
e additional basis fun
tions vT (x) = v̂T (x) |d(x)| for all
T ∈ T Γ

h are added where v̂T is the bubble fun
tion on T .Remark 5.27We 
omment on two related approa
hes that are known in the literature. Inthe papers [HH02, HH04, HLPS05℄ of Hansbo a dis
ontinuous �nite elementspa
e Qdisc
h is introdu
ed and applied to a s
alar ellipti
 interfa
e problem.Boundary 
onditions at the interior interfa
e are imposed in a weak sense byusing a penalty method.For the 
onstru
tion of Qdisc

h the standard �nite element spa
e Q1
h is modi�edby repla
ing ea
h of the basis fun
tions qj , j ∈ JΓ, by the two fun
tions

qΓ,i
j (x) =

{

qj(x) x ∈ Ωi,

0 x /∈ Ωi,
i = 1, 2.This yields the same �nite element spa
e as the XFEM approa
h applied tothe 
ase of a jump at the interfa
e, i. e., Qdisc

h = QΓ
h, 
f. Remark 5.25. Forother kinds of dis
ontinuities the approa
hes are essentially di�erent, e. g.,when the solution has a kink at the interfa
e. While in the XFEM approa
ha di�erent extended �nite element spa
e Q̃Γ

h is 
onstru
ted by adding spe
ialbasis fun
tions suited to represent su
h a kink at the interfa
e, in the approa
hof Hansbo the same �nite element spa
e Qdisc
h as given above is used, butthe penalty term is 
hanged to enfor
e 
ontinuity (in a weak sense) of thesolution at the interfa
e. In [HLPS05℄ an error analysis is given for solutionswith kinks, where se
ond order 
onvergen
e in L2 is shown for the modi�ed P1elements on a non-degenerate triangulation. An a-posteriori error estimatorfor this type of �nite elements is derived, too.Another approa
h 
an be found in [MM00℄. Here the standard �nite elementspa
e Q1

h is extended by dis
ontinuous basis fun
tions qΓT for T ∈ T Γ
h , whi
hare de�ned by

qΓT (x) :=

{

HΓ(x)−∑j HΓ(xj) · qj(x) for x ∈ T,
0 otherwise.This introdu
es |T Γ

h | new degrees of freedom, whi
h in�uen
e the height ofthe jump in the 
orresponding elements. qΓT is not only dis
ontinuous a
ross
Γ but also a
ross element boundaries (edges in 2D, fa
es in 3D) that interse
t
Γ where p∗ is known to be 
ontinuous. Due to this disadvantage we did not
onsider this method for the approximation of dis
ontinuous pressure in two-phase �ows. ⋄



5.4. Finite element spa
e for the dis
ontinuous pressure 875.4.3. Challenges related to XFEMThe results for the Stokes test 
ases presented in Se
tion 10.4 are quite satis-fa
tory. Nevertheless, in the appli
ation of the XFEM method to two-phase�ow problems there are some hidden pitfalls. We mention a few 
hallengesrelated to stability issues and to the appli
ation of XFEM to non-stationaryNavier-Stokes two-phase �ow problems.As QΓ
h depends on the lo
ation of the interfa
e Γ the spa
e QΓ

h 
hanges if theinterfa
e is moved. Thus the dis
retization of b(·, ·) has to be updated ea
htime when the level set fun
tion (or VOF indi
ator fun
tion) has 
hanged.In a Navier-Stokes 
ode solving non-stationary two-phase �ow problems thisis nothing spe
ial sin
e mass and sti�ness matri
es 
ontaining dis
ontinuousmaterial properties like density and vis
osity have to be updated as well, 
f.Se
tion 6.2. What is spe
ial about the extended pressure �nite element spa
eis the fa
t that the dimension of QΓ
h may vary, i. e., some extended pressureunknowns may appear or disappear when the interfa
e is moving. This has tobe taken into a

ount by a suitable interpolation pro
edure for the extendedpressure unknowns.Regarding stability, one has to treat 
arefully the situation where some ex-tended basis fun
tions qΓj have only a �small� support, be
ause then the result-ing system matri
es are ill-
onditioned. As a 
onsequen
e, the 
onvergen
erate of the iterative solvers 
an de
rease signi�
antly or solvers may even breakdown. One obvious possibility to deal with this stability problem is to skipthe extended basis fun
tions with relatively �small� 
ontributions. What ismeant by �small� will be spe
i�ed in the following paragraphs.A suitable strategy on how to de
ide whi
h extended basis fun
tions are tobe skipped should ful�ll the following two properties. On the one hand onewants to obtain a (more) stable basis of the extended pressure �nite elementspa
e, on the other hand it should maintain the desired O(h) dis
retizationerror behavior. Su
h a strategy is des
ribed in [Reu08℄. Let c̃ > 0, α > 0be given parameters. For j ∈ JΓ we 
onsider the following 
ondition for the
orresponding extended basis fun
tion qΓj :

‖qΓj ‖l,T ≤ c̃hα
T ‖qj‖l,T for all T ∈ T . (5.63)Here l ∈ {0, 1} is the degree of the Sobolev norm used for measuring theapproximation error, 
f. Theorem 5.26. We introdu
e the redu
ed index set

J̃Γ ⊂ JΓ by
J̃Γ := { j ∈ JΓ : (5.63) does not hold for qΓj }
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al treatment of surfa
e tensionand the redu
ed basis B̃Γ and redu
ed extended �nite element spa
e Q̃Γ
h,

B̃Γ := B ∪ { qΓj : j ∈ J̃Γ }, (5.64)
Q̃Γ

h := span
(

B̃Γ
)

. (5.65)In other words, all extended basis fun
tions qΓj are skipped, for whi
h (5.63)holds. Then the optimal approximation property (5.62) given in Theorem 5.26also holds for the redu
ed spa
e Q̃Γ
h when 
hoosing α = m, 
f. [Reu08℄.Another important issue from the pra
ti
al point of view is the design ofe�
ient and robust solvers for the resulting dis
rete problems whi
h have tobe adapted to the extended pressure �nite element spa
e. These are topi
s of
urrent resear
h. Some 
omments on pre
onditioning the S
hur 
omplementin the 
ontext of XFEM are given in Remark 7.7. The idea is based on thefa
t, that the spe
tral 
ondition number of D−1

M M is bounded uniformly w.r.t.
hΓ, 
f. [Reu08℄. HereM is the mass matrix 
orresponding to the basis BΓ and
DM is its diagonal. Hen
e, the L2-stability of BΓ 
an be a
hieved by a simplediagonal s
aling. The same holds for the redu
ed basis B̃Γ.Theoreti
al issues like LBB-stability of the Vh − QΓ

h �nite element pair areleft for future resear
h.5.4.4. Implementation issuesLet Γh be a pie
ewise planar approximation of the interfa
e Γ as des
ribed inSe
tion 5.1. For pra
ti
al reasons we do not 
onsider QΓ
h but the spa
e QΓh

hwhi
h is mu
h easier to 
onstru
t. Here QΓh

h is the extended pressure �niteelement spa
e des
ribed above but with Γ repla
ed by its approximation Γh.We thus 
onsider the �nite element dis
retization (5.11) for the 
hoi
e Qh =
QΓh

h . As the velo
ity spa
e Vh is un
hanged most of the terms are dis
retizedas before. Only the evaluation of b(·, ·) requires further explanation.For a basis fun
tion vi ∈ Vh and j ∈ JΓ the evaluation of
b(vi, q

Γh
j ) = −

∑

T ′∈T ′
h

∫

T ′

qΓh
j div vi dxrequires the 
omputation of integrals with dis
ontinuous integrands, as theextended pressure basis fun
tion qΓh

j has a jump a
ross the interfa
e. Wesum over T ′ ∈ T ′
h (and not T ∈ Th) be
ause Γh is de�ned as in (5.9). Let
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Figure 5.9.: Left: Parts of tetrahedron T ′ are non-tetrahedral, i� 
utting fa
e T ′ ∩
Γh is a quadrilateral. Right: Triangulation of the lower part into three tetrahedra.
T ∈ Th be a tetrahedron with T ∩ supp qΓh

j 6= ∅ and T ′ ∈ T ′
h with T ′ ⊂ T a
hild tetrahedron 
reated by regular re�nement of T . Due to (5.57) we have

T ∈ T Γ
h , and de�ne

Ti := T ∩ Ωi,h, T ′
i := T ′ ∩ Ωi,h, i = 1, 2.Using the de�nition of qΓh

j , 
f. (5.55), (5.56), we get
∫

T ′

qΓh
j div vi dx =

∫

T ′
2

qj div vi dx−HΓ(xj)

∫

T ′

qj div vi dx
=

{∫

T ′
2

qj div vi dx if xj ∈ Ω1,

−
∫

T ′
1

qj div vi dx if xj ∈ Ω2.
(5.66)The integrands in the right hand side of (5.66) are 
ontinuous and the sub-domains T ′

1, T
′
2 are polyhedral sin
e by 
onstru
tion Γh 
onsists of pie
ewiseplanar segments (
f. Se
tion 5.1). For the 
omputation of the integral over

T ′
i we distinguish two 
ases. The fa
e T ′ ∩ Γh is either a triangle or a quadri-lateral. In the �rst 
ase one of the sets T ′

1, T
′
2 is tetrahedral, without loss ofgenerality let T ′

1 be tetrahedral. Then integration over T ′
2 
an be 
omputedby ∫

T ′
2

G(x) dx =

∫

T ′

G(x) dx− ∫
T ′
1

G(x) dx.In the se
ond 
ase both T ′
1, T

′
2 are non-tetrahedral, but 
an ea
h be subdividedinto three sub-tetrahedra, 
f. Figure 5.9. In all 
ases the integration over T ′

i
an be redu
ed to integration on tetrahedra, for whi
h standard quadraturerules 
an be applied.
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6. Time dis
retization and
ouplingIn Se
tion 6.1 we dis
uss several time dis
retization s
hemes for the non-stationary Navier-Stokes equations. The time dis
retization of the s
alar levelset equation is 
arried out in a similar way. After the time dis
retization a
oupled system of quasi-stationary level set and Navier-Stokes equations isobtained. The treatment of the 
oupling is explained in Se
tion 6.2.6.1. Time dis
retizationIn the following we 
onsider the 
ase that the time dis
retization is appliedafter the spatial dis
retization. This approa
h is 
alled the `Method of Lines'as opposed to the `Rothe Method', where the time dis
retization is followedby a spatial dis
retization.After the �nite element dis
retization des
ribed in Chapter 4 we obtain thedi�erential-algebrai
 equation (DAE)
(
M(t)u′(t)

0

)

+

(
T (u(t), t) BT

B 0

)(u(t)
p(t)

)

=

(b(t)
c(t)

)

, t ∈ [t0, tf ], (6.1)initial 
ondition u(t0) = u0, (6.2)with T (u(t), t) = A(t) +N(u(t), t), 
f. (4.13).Remark 6.1The DAE (6.1) 
an also be seen as an ordinary di�erential equation (ODE) forfun
tions u(t) : [t0, tf ] → R
NVh whi
h satisfy the dis
rete in
ompressibility
onstraint

B u(t) = c(t) for all t ∈ [t0, tf ]. (6.3)91



92 6. Time dis
retization and 
ouplingNote that (6.3) means that JVD
h

(u(t), t) ∈ Vdiv
h (
f. (4.8)) for all t ∈ [t0, tf ],whereVdiv

h := {uh ∈ VD
h : b(uh, qh) = (divuh, qh)0 = 0 for all qh ∈ Qh }.Hen
e, the DAE (6.1) is equivalent to the ODEFind uh(t) : [t0, tf ]→ Vdiv

h su
h that for (almost every) t ∈ [t0, tf ]

m(u′
h(t),vh) + n(uh(t);uh(t),vh) + a(uh(t),vh) = f(vh)holds for all vh ∈ Vdiv

h and uh(t0) = u0 ∈ Vdiv
h .

(6.4)In this sense the pressure p ∈ R
NQh in (6.1) 
an be interpreted as the Lagrangemultiplier asso
iated to the in
ompressibility 
onstraint B u = c. ⋄We now turn to the time dis
retization. Let

t0 < t1 < . . . < tnt = tfbe a dis
retization of the time interval [t0, tf ]. For 0 ≤ i < nt the size of the
i-th time step is given by ki = ti+1 − ti. The approximation of u(ti), p(ti) isdenoted by ui, pi, respe
tively, in the following.6.1.1. Time dis
retization for 1D model problemBefore dis
ussing time dis
retization s
hemes for the DAE (6.1) arising fromthe 3D Navier-Stokes problem we �rst 
onsider a simple 1D di�usion problemwith time dependent 
oe�
ients.Example 6.2For t ∈ [0, 1], x ∈ [0, 1] we de�ne the pie
ewise 
onstant fun
tion

d(x, t) =

{

dL if x ≤ γ(t),
dR if x > γ(t),for γ(t) = 1

2 + 1
4 t, dL = 1, dR = 3, and state the following non-stationary 1Ddi�usion problem: Find u = u(x, t) su
h that

d(x, t)ut(x, t) = ε uxx(x, t) for x ∈ [0, 1], t ∈ [0, 1],

u|x=0 = u|x=1 = 0,

u|t=0 = u0(x)

(6.5)
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retization 93with ε > 0. The 
ontinuous initial value u0 is given by
u0(x) =

{

x for x ≤ 1
2 ,

(x− 1)(−8x+ 3) for x > 1
2 .For the spatial dis
retization the interval [0, 1] is subdivided into n+1 equidis-tant intervals with length h = (n + 1)−1 and end points xi = ih, i =

0, 1, . . . , n+1. For t ∈ [0, 1] we 
olle
t the unknown values u(xi, t), i = 1, . . . , nin the ve
tor u(t) ∈ R
n. If we use a �nite di�eren
e dis
retization we end upwith the ODE system
M̂(t)u′(t) = Au(t), t ∈ [0, 1], (6.6)where M̂(t) is a diagonal matrix with M̂ii(t) = d(xi, t) and the sti�ness matrix
A =

ε

h2









−2 1

1
. . . . . .. . . . . . 1

1 −2









.A �nite element dis
retization with P1 FE and nodal basis fun
tions {vi(x)}ni=1yields the ODE system
M(t)u′(t) = Au(t), t ∈ [0, 1], (6.7)where M(t) is the mass matrix with entries
Mij(t) = h−1

∫ 1

0

d(x, t)vi(x)vj(x) dxand A the sti�ness matrix given above.Note that (6.6), (6.7) 
an be written in the general form
u′(t) = R(t)u(t), t ∈ [0, 1], (6.8)with R(t) = M̂(t)−1A for the �nite di�eren
e 
ase (6.6) and R(t) = M(t)−1Afor the �nite element 
ase (6.7). ⋄Remark 6.3 (Smoothness of M̂(t) and M(t))A simple 
omputation shows that

M ′
ij(t) =

dL − dR

h
vi(γ(t)) vj(γ(t)) γ

′(t).



94 6. Time dis
retization and 
ouplingHen
e, the matrix entries of M(t) are C1 w.r.t. time t. Furthermore, for a
t with γ(t) 6= xi, i = 1, . . . , n, the matrix entries of M(t) are of the sameregularity as γ(t) (C∞ for Example 6.2). We emphasize that in 
ontrast tothat the diagonal entries of M̂(t) are dis
ontinuous w.r.t. time t. To be morepre
ise, M̂ii(t) is pie
ewise 
onstant w.r.t. t with a jump at t = tdisc where
γ(tdisc) = xi, i = 1, . . . , n. This will in�uen
e the 
onvergen
e order of thetime dis
retization s
heme, see below. ⋄For Example 6.2 we study the following two time dis
retization s
hemes. Here
k := tn+1−tn denotes the length of the time step and the parameter θ 
ontrolsthe impli
itness of the s
heme. For a shorter notation we introdu
e θ′ = 1−θ.

un+1 − un

k
= θ R(tn+1)u

n+1 + θ′R(tn)un (6.9)is the well-known theta-s
heme. Spe
ial 
ases are θ = 0 (the expli
it Eulers
heme), θ = 1 (the impli
it Euler s
heme) and θ = 1/2 (the Crank-Ni
holsons
heme). The impli
it Euler s
heme is strongly A-stable, but only of �rst or-der. On the other hand the Crank-Ni
holson s
heme has se
ond order a

ura
yfor smooth u(t), but is not strongly A-stable, whi
h may lead to instabilitiesin 
ertain situations, 
f. [Ran04℄.
un+1 − un

k
= θ R(tn)un+1 + θ′R(tn)un (6.10)is a variant of the former s
heme, where we applied one step of the theta-s
heme to the linearized ODE problem u′(t) = R(tn)u(t). We will refer tothat s
heme as the linearized theta-s
heme. The following lemma shows thatthis s
heme is 
onvergent.Lemma 6.4Let y(t), ỹ(t) be solutions of the ODE's

y′(t) = f(t, y(t)), ỹ′(t) = f̃(t, ỹ(t))with y(tn) = ỹ(tn). If f(tn, y(tn)) = f̃(tn, y(tn)) and f, f̃ are C1 fun
tionsw.r.t. t and y, then
y(tn+1)− ỹ(tn+1) = O(k2).Proof. By Taylor expansion there exists τ ∈ (tn, tn+1) with

y(tn+1) = y(tn) + ky′(tn) +
k2

2
y′′(τ)

= y(tn) + kf(tn, y(tn)) +
k2

2
(ft + fyf)(τ)
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retization 95and τ̃ ∈ (tn, tn+1) with
ỹ(tn+1) = ỹ(tn) + kỹ′(tn) +

k2

2
ỹ′′(τ̃)

= y(tn) + kf(tn, y(tn)) +
k2

2
(f̃t + f̃y f̃)(τ̃ ).As a 
onsequen
e, the linearized theta-s
heme is 
onvergent of order one forall θ ∈ [0, 1].Remark 6.5 (Warning)Starting with the formulation (6.6) or (6.7), one might think that

M(tn+1)u
n+1 −M(tn)un

k
= θ Aun+1 + θ′Aunalso seems to be a reasonable time dis
retization s
heme. But one 
an easilyshow that in 
ase of a time-dependent matrixM(t) this s
heme does in generalnot 
onverge to the right solution and should therefore not be used. ⋄Using a �xed spatial dis
retization with �nite di�eren
es for n = 30 unknownsand the 
hoi
e ε = 10−3 we implemented both time dis
retization s
hemes(6.9) and (6.10) in MATLAB [Mat℄. Applying the theta-s
heme with θ = 1

2for a small time step size of k = 10−4 we 
omputed a referen
e solution
u∗1 := u104 approximating the solution u(t) of the ODE system (6.8) for the�nal time t = 1. For di�erent numbers of time steps nt ≤ 1000 with step size
k = n−1

t , we 
omputed the approximations u1(k) := unt of the solution u(1)and 
ompared them with the referen
e solution,
e(k) = |u1(k)− u∗1|.The error e(k) as a fun
tion of the step length k for θ = 1/2 is shown inFigure 6.1 on the left.We repeated this pro
edure for the �nite element dis
retization on the samespatial grid. The error behavior is shown in Figure 6.1 on the right. Notethat the referen
e solutions u∗1 for the �nite di�eren
e and �nite element 
ase(slightly) di�er from ea
h other as the ODE systems (6.6) and (6.7) are dif-ferent as well.Se
ond order 
onvergen
e 
an only be observed for the Crank-Ni
holson timedis
retization s
heme (theta-s
heme with θ = 1/2) 
ombined with the �nite el-ement dis
retization. In all other 
ases only �rst order 
onvergen
e is a
hieved.
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Figure 6.1.: Time dis
retization error e(k) as fun
tion of step size k for theta-s
heme and linearized theta-s
heme, θ = 1/2. Fixed spatial dis
retization with�nite di�eren
es (on the left) or �nite elements (on the right).We emphasize that the Crank-Ni
holson s
heme yields only �rst order 
on-vergen
e when 
ombined with the �nite di�eren
e dis
retization. Obviously,this is due to the di�erent regularities of M̂(t) and M(t) as fun
tions of t, 
f.Remark 6.3. We will analyze this in the following paragraphs.For that we further simplify (6.8) and study the following s
alar ODE
u′(t) = r(t)u(t) for t ∈ [t0, tf ], (6.11)
u(t0) = u0,with time-dependent 
oe�
ient r(t) > 0. The solution of the ODE is given by

u(t) = C + e
t

R

t
t0

r(τ)dτwhere C = u0 − 1.We assume that there is a tΓ ∈ [t0, tf ] su
h that r(t) 
an be written as
r(t) =

{

fL(t) if t ∈ [t0, tΓ],

fR(t) if t ∈ (tΓ, tf ],with C2 fun
tions fL : [t0, tΓ]→ R, fR : [tΓ, tf ]→ R.Lemma 6.6Let tn → tn+1 be the time step with tΓ ∈ [tn, tn+1]. Starting from un = u(tn)one time step of the theta-s
heme and the linearized theta-s
heme is appliedyielding un+1
i , i = 1, 2, respe
tively. Then for the lo
al trun
ation errors

τi(θ) := u(tn+1)− un+1
i the following holds.



6.1. Time dis
retization 97
• For general fL, fR we have

τi(θ) = O(k), i = 1, 2.

• If fL(tΓ) = fR(tΓ), i. e., r(t) is 
ontinuous on [t0, tf ], then
τi(θ) = O(k2), i = 1, 2.

• If fL(tΓ) = fR(tΓ) and f ′
L(tΓ) = f ′

R(tΓ), i. e., r(t) is a C1 fun
tion on
[t0, tf ], then

τ1(θ) = C

(

θ − 1

2

)

k2 +O(k3) and τ2(θ) = O(k2).Proof. Without loss of generality we take tΓ = 0, tn = −λk, tn+1 = (1 − λ)kwith 0 ≤ λ ≤ 1. A Taylor expansion of τi around t = tΓ then yields theresults.6.1.2. One-step theta-s
hemeIn the following we will derive the theta-s
heme and linearized theta-s
hemefor the non-stationary Navier-Stokes equations. Based on these s
hemes thefra
tional-step s
heme 
an easily be 
onstru
ted, 
f. Se
tion 6.1.3. For easeof presentation we assume homogeneous Diri
hlet boundary 
onditions, i. e.,
c(t) = 0, and that the operator B(t) does not depend on t. In the general 
asethe time dis
retization is slightly 
hanged, see Remarks 6.9 and 6.10 below.The DAE system (6.1) is rewritten in the formu′(t) +M(t)−1BT p(t) = M(t)−1 g(u(t), t),

B u(t) = 0,
(6.12)where

g(u(t), t) := b(t)− T (u(t), t)u(t).Similarly to Remark 6.1 we �rst eliminate the in
ompressibility 
onstraint
Bu(t) = 0 and the 
orresponding Lagrange multiplier p(t) to repla
e theDAE system by an equivalent ODE system. This 
an be a
hieved by applyingthe M(t)-orthogonal proje
tion P (t) on kerB, i. e., P (t) is orthogonal w.r.t.the s
alar produ
t 〈· , ·〉M(t) := 〈M(t) · , ·〉,

P (t) = I −M(t)−1BT (BM(t)−1BT )−1B.
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retization and 
ouplingNote that P (t) v = v for all v ∈ kerB and P (t)M(t)−1BT = 0. Thus thesolution u(t) ∈ kerB of (6.12) satis�esu′(t) = P (t)M(t)−1 g(u(t), t) =: f(t,u(t)). (6.13)For a given velo
ity u(t) the 
orresponding pressure p(t) is de�ned by theequation
BM(t)−1BT p(t) = BM(t)−1 g(u(t), t). (6.14)Theta-s
hemeWe �rst derive the theta-s
heme for the non-stationary Navier-Stokes equa-tions. Applying the theta-s
heme to the ODE system (6.13) yieldsun+1 − un

k
= θ Pn+1M

−1
n+1 g(un+1, tn+1) + θ′ PnM

−1
n g(un, tn). (6.15)Due to Pn+1Pn = Pn, the sequen
e {un}n≥0 is also a solution ofun+1 − un

k
+M−1

n+1B
T p̃ = θM−1

n+1 g(un+1, tn+1) + θ′ PnM
−1
n g(un, tn),(6.16)

B un+1 = 0, (6.17)whi
h 
an be seen by applying Pn+1 to (6.16). Using (6.14) a simple 
al
ula-tion shows
PnM

−1
n g(un, tn) = M−1

n g(un, tn)−M−1
n BT pn.Substituting this expression in (6.16) and multiplying by B from the left weobtain

BM−1
n+1B

T p̃ = θ BM−1
n+1 g(un+1, tn+1)

+ θ′BM−1
n

(
g(un, tn)−BT pn

)

= θ BM−1
n+1B

T pn+1.This gives rise to the 
hoi
e p̃ = θ pn+1. Summarizing, the theta-s
heme forthe Navier-Stokes equations is given by
[k−1Mn+1 + θ Tn+1(un+1)]un+1 + θ BT pn+1 (6.18)

= θ bn+1 +Mn+1

(
1

k
un + θ′M−1

n

(
g(un, tn)−BT pn

)
)

,

B un+1 = 0. (6.19)
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retization 99Ea
h time step of the (linearized) one-step theta-s
heme requires the solutionof a generalized Navier-Stokes problem. We should mention that whenever
θ 6= 1 we need an initial value p0 for the pressure whi
h is obtained from theequation

BM(t0)
−1BT p0 = BM(t0)

−1 g(u0, t0).The solution of a linear system with Mn on the right-hand side of (6.18) inea
h time step 
an be avoided by introdu
ing an additional variablezn := M−1
n

(
g(un, tn)− BT pn

)
∈ kerB.After an initial 
omputation of z0 by solving the linear system M0 z0 =

g(u0, t0)−BT p0, the variable 
an be updated in ea
h time step by the simplere
urren
e formula
θ zn+1 =

un+1 − un

k
− θ′ zn.This leads to the following s
heme,

[k−1Mn+1 + θ Tn+1(un+1)]un+1 + θ BT pn+1 (6.20)
= θ bn+1 +Mn+1

(
1

k
un + θ′ zn

)

,

B un+1 = 0, (6.21)zn+1 =
un+1 − un

θk
− θ′

θ
zn. (6.22)Linearized theta-s
hemeWe now derive the linearized theta-s
heme for the Navier-Stokes equations.The ODE system (6.13) is modi�ed in the following way.u′(t) = P (tn)M(tn)−1 [b(t)− T (u(t), tn)u(t)] =: fn(t,u(t)). (6.23)We emphasize that the 
ompatibility 
ondition fn(tn,u(tn)) = f(tn,u(tn))holds and thus Lemma 6.4 
an be applied. Note that also other 
hoi
es forsu
h 
ompatible fn(t,u(t)) are possible. Appli
ation of the theta-s
heme to(6.23) yieldsun+1 − un

k
= PnM

−1
n

(bn+1
θ − θ Tn(un+1)un+1 − θ′ Tn(un)un

)
, (6.24)



100 6. Time dis
retization and 
ouplingwhere we used the notation Cn := C(tn) for a time dependent operator C =
C(t) and the notation cn+1

θ := θ cn+1+θ′ cn for ve
tors cn, cn+1. The sequen
e
{un}n≥0 is also a solution of

Mn
un+1 − un

k
+ θ Tn(un+1)un+1 + θ′ Tn(un)un +BT p̃ = bn+1

θ , (6.25)
B un+1 = 0. (6.26)Note that multiplying (6.25) with BM−1

n from the left yields
BM−1

n BT p̃ = BM−1
n

(bn+1
θ − θ Tn(un+1)un+1 − θ′ Tn(un)un

)
.Hen
e, for the 
hoi
e p̃ = pn+1

θ
the pressure variable satis�es the pressureequation BM−1

n BT p(t) = BM−1
n g(u(t), tn) whi
h is (6.14) linearized at t =

tn.Summarizing, the linearized theta-s
heme is as follows:
[k−1Mn + θ Tn(un+1)]un+1 + θ BT pn+1 (6.27)

=
1

k
Mn un + θ bn+1 + θ′

(bn − Tn(un)un −BT pn
)
,

B un+1 = 0. (6.28)Remark 6.7An alternative linearized s
heme is the following, 
f. [QV94℄,
Mn

un+1
θ − un

θk
+ Tn(un+1

θ )un+1
θ +BT pn+1

θ
= bn+1

θ ,

B un+1
θ =

{

θ′Bu0 n = 0,

0 n ≥ 1,whi
h is solved for the unknown quantities un+1
θ , pn+1

θ . After that we setun+1 = θ−1(un+1 − θ′ un), pn+1 = θ−1(pn+1 − θ′ pn). ⋄
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retization 101Some RemarksRemark 6.8 (Order of 
onvergen
e for two-phase Stokes �ow)Numeri
al experiments of a two-phase Stokes �ow problem (rising bubbleproblem, 
f. also Se
tion 11.2) have been 
ondu
ted in [Ess08℄ to examinethe 
onvergen
e order of the theta-s
heme and the linearized theta-s
heme forthe parameter 
hoi
es θ = 0.5 (Crank-Ni
holson s
heme) and θ = 1 (impli
itEuler s
heme), respe
tively. Similar to the 1D experiments presented in Se
-tion 6.1.1, a referen
e solution u∗(t), t ∈ [t0, tf ], was 
omputed applying avery small time step size kref . For these time dis
retization s
hemes solutionsuk(t), t ∈ [t0, tf ], were 
omputed for di�erent time step sizes k > kref andafterwards the 
orresponding errors
e(k) := ‖uk(tf )− u∗(tf )‖L2(Ω)were 
al
ulated. The numeri
al results show se
ond order 
onvergen
e forthe theta-s
heme with θ = 0.5 and �rst order 
onvergen
e in the remainingthree 
ases. Thus the expe
ted theoreti
al 
onvergen
e order was 
on�rmedby these experiments. ⋄Up to now we assumed that the in
ompressibility 
onstraint has the form

B u(t) = 0. In the following we treat the more general 
ase B(t)u(t) = c(t).Remark 6.9 (Extension to non-homogeneous right-hand side)A non-homogeneous right-hand side c(t) 6= 0 is 
aused by non-homogeneousDiri
hlet boundary 
onditions u|ΣD = uD for the velo
ity in the �nite ele-ment dis
retization of the in
ompressibility 
onstraint divu = 0. In order toexplain the time dis
retization in this 
ase, for a moment we introdu
e addi-tional unknowns for the degrees of freedom lo
ated at the Diri
hlet boundary
ΣD and 
olle
t these in the ve
tor uD. Doing so we obtain a �nite elementdis
retization

(

M̃(t) ũ′(t)
0

)

+

(
T̃ (ũ(t), t) B̃T

B̃ 0

)(ũ(t)
p(t)

)

=

(b̃(t)
0

)

, t ∈ [t0, tf ],with an augmented ve
tor ũ(t) =

( u(t)uD(t)

)and augmented matri
es M̃, T̃ , B̃. This system has the form of (6.1), but with
c(t) = 0. Thus the derivation of the (linearized) one-step theta-s
heme 
anbe 
arried out as presented in this se
tion. A subsequent elimination of the
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ouplingunknowns uD (whi
h 
an be substituted dire
tly due to the known Diri
hletboundary 
ondition) leads to the s
hemes (6.27) and (6.20) with modi�edright-hand sides bn, bn+1 and (6.28), (6.21) repla
ed by
B un+1 = cn+1. ⋄Remark 6.10 (Extension to time dependent operator B(t))We now assume that the operator B(t) is time dependent, whi
h is in generalthe 
ase for an extended �nite element dis
retization of the pressure due tothe dynami
s of the interfa
e Γ, 
f. Se
tion 5.4. In the derivation of the one-step theta-s
heme we used that Pn+1Pn = Pn, whi
h is no longer true for atime dependent operator B(t). Hen
e, a di�erent approa
h has to be 
hosenwhi
h will not be explained here, but 
an be found in [RFG+℄. The same timestepping theme as in (6.20)�(6.22) is obtained, but with a di�erent initialpressure p0 given by

B0M
−1
0 BT

0 p
0 = B0M

−1
0 g(u0, t0) +

dB

dt
(t0)u0. (6.29)Note that the derivation of the linearized one-step theta-s
heme remains un-
hanged for B depending on t, sin
e here the proje
tion P (t) is applied onlyfor a �xed time t = tn, 
f. (6.23). The initial pressure p0 should also be
omputed a

ording to (6.29). ⋄Time dis
retization of the level set equationWe now dis
uss the time dis
retization of the level set equation. After the�nite element dis
retization of the level set equation we obtain the followingsystem of ordinary di�erential equations,

E(u(t))ϕ′(t) +H(u(t))ϕ(t) = 0, (6.30)
ϕ(t0) = ϕ0. (6.31)The appli
ation of the one-step theta-s
heme to (6.30) yields

[
1

k
E(un+1) + θH(un+1)

]

ϕn+1 = E(un+1)

[
1

k
ϕn − θ′ E(un)−1H(un)ϕn

]

.Together with the one-step theta-s
heme for the Navier-Stokes problem (6.20)�(6.22) this leads to a 
oupled system whi
h has to be solved for the unknown
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retization 103quantities (un+1, pn+1, ϕn+1) in ea
h time step. This issue is further dis
ussedin Se
tion 6.2.The appli
ation of the linearized theta-s
heme to (6.30) leads to
[

1

k
E(un) + θH(un)

]

ϕn+1 =

[
1

k
E(un)− θ′H(un)

]

ϕn.Note that here only un (and not un+1) has to be known to obtain the level setapproximation ϕn+1 at the new time t = tn+1. The impli
ations for the overalltime stepping s
heme (level set and Navier-Stokes equations) are des
ribed inSe
tion 6.2.6.1.3. Fra
tional-step s
hemeFor the fra
tional-step s
heme the time step tn → tn+1 with time step size
k = tn+1 − tn is subdivided into three ma
ro time steps

tn → tn+Θ → tn+Θ̂ → tn+1,where
tn+Θ = tn + Θk, tn+Θ̂ = tn+1 −Θk,with ma
ro time step sizes Θk, (1−2Θ)k, Θk, respe
tively. Here 0 < Θ < 1/2de�nes the portion of the �rst and third ma
ro step in relation to the timestep size k. The portion of the se
ond ma
ro step is denoted by Θ′ := 1− 2Θ.The fra
tional-step s
heme is based on a splitting T = T(1) + T(2) of theoperator T in (6.1), where in the �rst and third ma
ro step the operator

T(1) is treated impli
itly while T(2) is treated expli
itly, and vi
e-versa for these
ond ma
ro step. A popular variant is based on the splitting
T(1) = αT, T(2) = (1− α)Twith 0 < α < 1, 
f. [Tur99, Ran04℄. This means that in ea
h ma
ro timestep the theta-s
heme is applied, where θ = α is 
hosen for the �rst andthird ma
ro time step and θ = 1 − α for the se
ond ma
ro time step. Hen
e,the appli
ation of the fra
tional-step s
heme requires the solution of threegeneralized Navier-Stokes problems per time step. The level set is updated byapplying the 
orresponding theta-s
heme in ea
h ma
ro time step.In the 
ase of one-phase �ow, for Θ = 1 −

√
2/2 = 0.292893 . . . and 1/2 <

α ≤ 1 this s
heme has se
ond order a

ura
y and is strongly A-stable, 
f.
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retization and 
oupling[BGP87℄. Due to this fa
t we 
hoose Θ = 1−
√

2/2 and dis
uss the 
hoi
e ofthe parameter α in the following.For a shorter notation we introdu
e α′ = 1 − α. One often 
hooses α =
1−2θ
1−θ = 0.585786 . . . as the operators in all three ma
ro steps then have thesame stru
ture (up to a 
onstant fa
tor) due to αθ = α′θ′. This 
an beexploited in the 
onstru
tion of the system matri
es, if M and A are timeindependent (whi
h is usually the 
ase for one-phase �ow problems). Fortwo phase problem this is no longer the 
ase be
ause of the non-stationaryinterfa
e Γ = Γ(t) and thus these matri
es have to be rebuild in ea
h ma
rostep, anyway. However, there are still some advantages as for this 
hoi
e of αthe stru
ture of the S
hur 
omplement pre
onditioners stays the same in ea
hma
ro step, 
f. Se
tion 7.2.3. Thus we 
hose α as indi
ated above.A linearized variant of the fra
tional step s
heme 
an similarly be derived byapplying the linearized theta-s
heme in ea
h ma
ro time step. However, forthis linearized variant we 
annot expe
t better than �rst order 
onvergen
e.6.1.4. Fra
tional-step s
heme with operator splittingThe fra
tional-step s
heme was �rst proposed by Glowinski et al. [BGP87℄in form of an operator splitting approa
h, where the two main 
hallenges ofthe Navier-Stokes equations, in
ompressibility and nonlinearity, are de
oupledfrom ea
h other. It is based on the splitting T(1) = αA and T(2) = (1−α)A+Nwhere the in
ompressibility 
onstraint is omitted in the se
ond ma
ro step.The linearized fra
tional-step operator splitting s
heme is as follows:






[
1

Θk
M + αA

]

n

un+Θ + BT pn+Θ =

[
1

Θk
M − α′A−N

]

n

un + bn

B un+Θ = cn

[
1

Θk
E + αH

]

n

ϕn+Θ =

[
1

Θk
E − α′H

]

n

ϕn

(6.32)
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





[
1

Θ′k
M + α′A+N

]

n+Θ

un+Θ̂ =

[
1

Θ′k
M − αA

]

n+Θ

un+Θ

−BT pn+Θ + bn+Θ̂

[
1

Θ′k
E + α′H

]

n+Θ

ϕn+Θ̂ =

[
1

Θ′k
E − αH

]

n+Θ

ϕn+Θ

(6.33)






[
1

Θk
M + αA

]

n+Θ̂

un+1 +BT pn+1 =

[
1

Θk
M − α′A−N

]

n+Θ̂

un+Θ̂

+ bn+Θ̂

B un+1 = cn+1

[
1

Θk
E + αH

]

n+Θ̂

ϕn+1 =

[
1

Θk
E − α′H

]

n+Θ̂

ϕn+Θ̂ (6.34)This s
heme will be referred to as FS-OS s
heme in the remainder of the text.Performing one time step of the FS-OS s
heme requires the solution of anOseen problem in the �rst and third ma
ro step respe
tively, and one nonlinearBurgers-type problem in the se
ond ma
ro step. This has the advantage thatthe nonlinearity and the in
ompressibility 
onstraint 
an be treated separately.Thus one 
an reuse solution te
hniques developed for linear Stokes problems.The level set variable ϕ is updated by applying the 
orresponding linearizedtheta-s
heme in ea
h ma
ro time step.At least for one-phase �ow problems the FS-OS s
heme is strongly A-stable,but has only �rst order a

ura
y. For further analysis of the s
heme we referto [KR94℄. In [Bän98℄ the 
ombination of the linearized FS-OS s
heme withthe impli
it treatment of the surfa
e for
e fΓ is des
ribed and analyzed. Thistopi
 is dis
ussed in Se
tion 6.1.5 below.
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retization and 
oupling6.1.5. Impli
it treatment of the CSF termThe time dis
retization of the surfa
e tension for
e term fΓ deserves spe
ialattention, as its expli
it treatment will lead to a 
apillary time step restri
tion
∆t <

√

(ρ1 + ρ2)h3
Γ

4πτ
∼ h3/2 τ−1/2.A derivation of this bound 
an be found in [BKZ92℄. To over
ome this problema semi-impli
it treatment of fΓ is suggested in [Bän98℄ whi
h will be brie�ydes
ribed in the following. Re
all from Se
tion 5.3 that fΓ 
an be expressedby means of the Lapla
e-Beltrami operator ∆Γ,

fΓ(v) = τ

∫

Γ

(∆Γ idΓ) · v ds = −τ
∫

Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vh.The new interfa
e position Γn+1 for t = tn+1 
an be expressed in terms of theold interfa
e position Γn by means of the identity operator idΓ,
idΓn+1 = idΓn +kn+1 un+1 +O(k2

n+1), (6.35)where kn+1 = tn+1 − tn denotes the 
orresponding time step size. This givesrise to the formulation
fΓn+1(v) = −τ

∫

Γn+1

∇Γ idΓn+1 ·∇Γv ds v ∈ Vh.

≈ −τ
∫

Γn

∇Γ idΓn ·∇Γv ds− kn+1 τ

∫

Γn

∇Γun+1 · ∇Γv ds, (6.36)whi
h is a semi-impli
it dis
retization as the integration is performed on Γninstead of Γn+1. It is impli
it in the sense that the se
ond integral in (6.36)de�nes a bilinear form cΓ(·, ·)n on V×V,
cΓ(u,v)n := τ

∫

Γn

∇Γu · ∇Γv ds, u,v ∈ V,whi
h 
ontributes to the velo
ity operator on the left-hand side of the mo-mentum equation (2.21). This interfa
e di�usion term cΓ(·, ·)n is an ellipti
operator and thus has a stabilizing e�e
t. For the �nite element dis
retizationwe 
onsider the bilinear form
cΓh

(uh,vh)n := τ

∫

Γn
h

∇Γh
uh · ∇Γh

vh ds, for all uh,vh ∈ Vh.



6.1. Time dis
retization 107The 
orresponding matrix CΓh
n ∈ R

NVh
×NVh is de�ned by

〈CΓh
n u, v〉 := cΓh

(
JVh

(u), JVh
(v)
)

nfor all u,v ∈ R
NVh .Applying this te
hnique exemplarily to the linearized one-step theta-s
hemeresults in the following s
heme,

[k−1Mn + θ Tn(un+1) + k CΓh
n ]un+1 + θ BT pn+1 (6.37)

=
1

k
Mn un + bn

Γh
+ θ b̂n+1

+ θ′
(b̂n − Tn(un)un −BT pn

)

,

B un+1 = 0. (6.38)Here bΓh
denotes the ve
tor representation of the surfa
e for
e term, i. e.,bΓh

|i = fΓh
(vi), i = 1, . . . , NVh

, and b̂ = b − bΓh
the remaining part of theright-hand side.In [Hys06℄ the expli
it and semi-impli
it treatment of the surfa
e tension termare 
ompared to ea
h other in numeri
al experiments 
onsidering an os
illatingand a rising bubble example. It 
an be seen that the expli
it treatment leadsto numeri
al os
illations when the time step size ex
eeds a 
ertain bound.On the other hand the semi-impli
it treatment yields more stable results andallows for larger time step sizes.Remark 6.11Applying the improved Lapla
e-Beltrami dis
retization f̃Γh

of the surfa
e for
eterm des
ribed in Se
tion 5.3.4 requires a slight modi�
ation of (6.37). In this
ase bΓh
and CΓh

n have to be repla
ed by their modi�ed 
ounterparts b̃Γh
and

C̃Γh
n de�ned by b̃Γh

|i = f̃Γh
(vi), i = 1, . . . , NVh

, and
〈C̃Γh

n u, v〉 := c̃Γh

(
JVh

(u), JVh
(v)
)

nfor all u,v ∈ R
NVh , where

c̃Γh
(uh,vh)n := τ

∫

Γn
h

P̃h(x)∇uh · ∇Γh
vh ds, for all uh,vh ∈ Vh.

⋄



108 6. Time dis
retization and 
oupling6.2. Coupling of level set and Navier-StokesequationsWe 
onsider the spatially dis
retized 
oupled system of level set and Navier-Stokes equations:
E(u(t))ϕ′(t) +H(u(t))ϕ(t) = 0, (6.39)

M(ϕ(t))u′(t) + T (u(t), ϕ(t))u(t) +BT p(t) = b(ϕ(t)), (6.40)
B u(t) = c. (6.41)Let the quantities uold, pold, ϕold from the old time step told be given. We arelooking for the quantities u = unew, p = pnew, ϕ = ϕnew whi
h approximatethe solutions at tnew. The time step size is denoted by k = tnew − told.The appli
ation of the linearized variant of the one-step theta-s
heme to the
oupled system (6.39)�(6.41) yields

[
1

k
E(uold) + θH(uold)

]

ϕ =

[
1

k
E(uold)− θ′H(uold)

]

ϕold (6.42)
[
1

k
M(ϕold) + θ T (u, ϕold)

] u+ θ BT p =

[
1

k
M(ϕold)− θ′ T (uold, ϕold)

] uold(6.43)
− θ′BT pold + θ b(ϕ) + θ′ b(ϕold)

Bu = c. (6.44)Here θ ∈ [0, 1] and θ + θ′ = 1. In a �rst step the level set equation (6.42)
an be solved for ϕ and in a se
ond step the Navier-Stokes equations (6.43)�(6.44) 
an be solved for u, p. Thus a de
oupling of level set and Navier-Stokesequations is a
hieved. This is a very ni
e property in terms of 
omputationale�
ien
y, but 
omes for the pri
e of being only �rst order a

urate in time.Hen
e, a linearized time dis
retization is the method of 
hoi
e, when thespatial dis
retization error dominates the temporal dis
retization error.In 
ontrast to that, when applying a non-linearized time dis
retization s
hemeto (6.39)�(6.41) we may gain se
ond order 
onvergen
e, but will end up witha fully 
oupled system. The strategy used for the 
oupling of the level set and



6.2. Coupling of level set and Navier-Stokes equations 109Navier-Stokes equations will be explained exemplary for the one-step theta-s
heme, 
f. Se
tion 6.1.2. It 
an be applied to other time dis
retization s
hemesin a similar manner.Applying the one-step theta-s
heme to the level set equation (6.39) yields
0 =

[
1

k
E(u) + θH(u)

]

ϕ− E(u)

[
1

k
ϕold − θ′ E(uold)−1H(uold)ϕold

]

=: LS(ϕ;u). (6.45)For the Navier-Stokes equations (6.40)�(6.41) we obtain
0 =

[
1

k
M(ϕ) + θ T (ũ, ϕ)

] u+ θ BT p− θ b(ϕ) (6.46)
−M(ϕ)

[
1

k
uold + θ′M(ϕold)−1

[b(ϕold)− T (uold, ϕold)uold −BT pold
]
]

=: NS1(u, p; ũ, ϕ),

0 = B u− c (6.47)
=: NS2(u).Here we introdu
ed the quantity ũ for a more �exible notation. In the 
on-vergen
e history of the 
oupling strategy this quantity will tend to u in orderto ful�ll the Navier-Stokes equations.The time dis
retization of the 
oupled system then reads as follows: Givenuold, pold, ϕold from the old time step told, �nd unew, pnew, ϕnew for the newtime step tnew = told + k su
h that

LS(ϕnew;unew) = 0, (6.48)
NS1(unew, pnew;unew, ϕnew) = 0, (6.49)

NS2(unew) = 0. (6.50)This 
oupled system is solved by a �xed point approa
h in the following way.Algorithm 6.12 (Coupling)Set u0 := uold, ϕ0 := ϕold. For m = 0, 1, 2, . . . pro
eed1. Solve the level set equation
LS(ϕm+1;um) = 0



110 6. Time dis
retization and 
ouplingfor ϕm+1.2. Solve the Navier-Stokes equations
NS1(um+1, pm+1;um+1, ϕm+1) = 0, NS2(um+1) = 0for um+1, pm+1.3. Set m← m+ 1 and return to step 1.For the solution of the sub problems in steps 1 and 2 iterative solvers are used,where the quantities ϕm resp. um, pm from the last �xed point step are usedas initial values for the solvers. If both solvers perform zero iterations, i. e.,the stopping 
riteria of both solvers are already satis�ed for the initial valuesand hen
e ϕm+1 = ϕm, um+1 = um, pm+1 = pm, then the �xed point loop isstopped. We then set ϕnew := ϕm+1, unew := um+1 and pnew := pm+1.Remark 6.13Assume that the stopping 
riteria of the iterative solvers for the level set andNavier-Stokes equations are 
hosen su
h that

‖LS(ϕm+1)‖ ≤ εLS, ‖NS1(um+1, pm+1)‖ ≤ εNS1
, ‖NS2(um+1)‖ ≤ εNS2

.Then after 
onvergen
e of the 
oupling loop we have
‖LS(ϕnew)‖ ≤ εLS , ‖NS1(unew, pnew)‖ ≤ εNS1

, ‖NS2(unew)‖ ≤ εNS2
.Hen
e, the quantities (ϕnew,unew, pnew) ful�ll equations (6.48)�(6.50) up tothe toleran
e used by the iterative solvers.However, the 
hoi
e of suitable toleran
es εLS, εNS1

, εNS2
for the iterativesolvers is a deli
ate task. If the toleran
es are 
hosen too restri
tive, the 
ou-pling loop may not 
onverge. On the other hand, 
hoosing the toleran
es tooloose will lead to an ina

urate solution (ϕnew,unew, pnew). Another possi-bility is to 
hoose di�erent toleran
e parameters εm in ea
h iteration of the
oupling loop, for example ε0LS = δ ‖LS(ϕm)‖ and

εm
LS = max(δ εm−1

LS ,
εLS

2
) for m = 1, 2, . . .,with 0 < δ < 1, for instan
e δ = 0.1. A systemati
 approa
h for takingappropriate toleran
e parameters ε is not available, yet, and is left as a topi
for future resear
h. ⋄



6.2. Coupling of level set and Navier-Stokes equations 111One 
an think of other variants for the �xed point strategy. For example, we
an repla
e the solution of the Navier-Stokes system in step 2 by the Oseenproblem
NS1(um+1, pm+1;um, ϕm+1) = 0, NS2(um+1) = 0,whi
h is solved for um+1, pm+1. This will in general require more �xed pointsteps than the �rst variant, but less solution e�ort in ea
h step.Another possibility is to inter
hange the order of solution of the sub problems,i. e., �rst solve the Navier-Stokes problem and after that the level set problem:Algorithm 6.14 (Coupling � reverse order)Set u0 := uold, ϕ0 := ϕold. For m = 0, 1, 2, . . . pro
eed1. Solve the Navier-Stokes equations

NS1(um+1, pm+1;um+1, ϕm = 0), NS2(um+1) = 0for um+1, pm+1.2. Solve the level set equation
LS(ϕm+1;um+1) = 0for ϕm+1.3. Set m← m+ 1 and return to step 1.For our experien
e this solution order is more expensive in terms of 
omputa-tional time. As the solution of the Navier-Stokes problem is mu
h harder thanthe solution of the level set problem, one should solve the level set equationin advan
e to get a better initial approximation of the interfa
e Γnew for thetime-
onsuming solution of the Navier-Stokes problem.
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7. Iterative solversIn the following we des
ribe how the dis
rete problems arising in ea
h iter-ation of the 
oupling loop are solved, 
f. Algorithm 6.12. For the level setequation we use a Krylov subspa
e method for non-symmetri
 systems (dueto the 
onve
tion term u ·∇ϕ), e. g., GMRES or BiCGStab [Saa03℄, whi
h arepre
onditioned by SSOR. The solution of the dis
rete Navier-Stokes system ismore involved and will be explained further in the next se
tions. For ease ofnotation we write u, p, ϕ instead of u, p, ϕ, dropping the ` ', in the remainderof the 
hapter.7.1. Navier-Stokes solversWe 
onsider the dis
rete Navier-Stokes problem
K(u)

(u
p

)

=

(b
c

)

, (7.1)where
K(u) :=

(
T (u) BT

B 0

)

.Note that this notation 
an be used both for stationary and non-stationaryproblems. In the 
ase of a stationary problem we have T (u) = A + N(u).For the non-stationary 
ase, after applying some time dis
retization s
hemefrom Chapter 6, T (u) is a linear 
ombination of the mass matrix M and the
onve
tive-di�usive part A + N(u) and b, c denote the 
orresponding right-hand sides.The nonlinearity T (u) is treated by a �xed point approa
h employing defe
t
orre
tion in ea
h iteration 
y
le:Algorithm 7.1 (Fixed point defe
t 
orre
tion)Let initial values u0, p0 be given. For m = 0, 1, 2, . . . repeat 113



114 7. Iterative solvers1. Compute the residual ve
tor
(rm

sm

)

= K(um)

(um

pm

)

−
(b
c

)

.2. Solve the linear Stokes or Oseen problem
K(um)

(
∆um

∆pm

)

=

(rm

sm

)

. (7.2)yielding the update (∆um,∆pm)T .3. Defe
t 
orre
tion: Obtain the new iterates
(um+1

pm+1

)

=

(um

pm

)

− ωm

(
∆um

∆pm

) (7.3)with some step length ωm.Note that by far most of the 
omputational work is done in the se
ond step(7.2).The step length ωm in (7.3) 
an either be taken �xed as ωm ≡ 1 or ωm ≡ 0.9(applying some damping) for all m, or may be adjusted by some step length
ontrol in ea
h �xed point iteration. One strategy for step length 
ontrol isdis
ussed in the following.The optimal step length ωopt is given by the one dimensional optimizationproblem
ωopt = arg min

ω

∥
∥
∥
∥
K(um − ω∆um)

(um − ω∆um

pm − ω∆pm

)

−
(b
c

)∥
∥
∥
∥
. (7.4)Here ‖ · ‖ denotes the Eu
lidean norm. This formula is also known as linesear
h in the optimization 
ommunity, 
f. [NW99℄. However, this approa
h isnot feasible as the optimization problem in (7.4) is nonlinear in ω and wouldrequire, if solved iteratively, the repeated dis
retization of the nonlinear part

N in ea
h optimization step, whi
h is expensive in terms of 
omputationaltime. Therefore we modify the problem in (7.4) slightly to obtain a simplerone:
ω̃opt = arg min

ω

∥
∥
∥
∥
K̃

(um − ω∆um

pm − ω∆pm

)

−
(b
c

)∥
∥
∥
∥

(7.5)



7.2. Oseen solvers 115with K̃ := K(um−ωm−1∆um) using the step length ωm−1 from the last iter-ation (and ω−1 := 1 at the beginning). Note that this optimization problemis linear in ω. Applying the ne
essary optimality 
ondition, the solution of(7.5) is given by
ω̃opt =

〈

K̃

(
∆um

∆pm

)

, K̃

(um

pm

)

−
(b
c

)〉

∥
∥
∥
∥
K̃

(
∆um

∆pm

)∥
∥
∥
∥

2 , (7.6)where 〈·, ·〉 denotes the Eu
lidean s
alar produ
t. Note that the evaluationof (7.6) only requires the one-time 
onstru
tion of K̃ = K(um − ωm−1∆um)and the 
omputation of some matrix-ve
tor multipli
ations and s
alar prod-u
ts. This is only little e�ort 
ompared to the most time 
onsuming part ofAlgorithm 7.1, the solution of the Stokes/Oseen problem (7.2) in the se
ondstep. Algorithm 7.1 with the 
hoi
e ωm = ω̃opt from (7.6) is 
alled adaptive�xed point defe
t 
orre
tion method in [Tur99℄.We experien
ed that the step length 
ontrol given by (7.6) is more robust thanusing a �xed step length ωm. In most of the iterations, ωm given by (7.6) isalmost 1, indi
ating that the linear part of K(u) is dominant in those 
ases.7.2. Oseen solversIn this se
tion the iterative solution of the dis
rete Stokes or Oseen problem
K̂

(u
p

)

=

(b
c

) (7.7)is 
onsidered. Here
K̂ =

(

T̂ BT

B 0

)is a blo
k matrix with saddle point stru
ture for some (
onstant) regular ma-trix T̂ , hen
e (7.7) 
onstitutes a linear problem. E.g., for T̂ = A we have thestationary Stokes problem and for T̂ = M + γ(A+N(û)) an Oseen problem.The latter kind of problems arises, e. g., within the �xed point defe
t 
orre
-tion, 
f. Equation (7.2) in Algorithm 7.1, where K̂ = K(û) for some �xedû.For ease of notation we drop the ` ˆ ' in the notation, i. e., we simply write
K, T instead of K̂, T̂ in the remainder of this se
tion.



116 7. Iterative solversIn [PRR05℄ three iterative solvers for the solution of dis
rete Stokes problemsare investigated, namely pre
onditioned CG, MINRES and an inexa
t Uzawamethod. Two of them (CG and MINRES) exploit the symmetry of the Stokesequations. As we are interested in the appli
ation to Navier-Stokes problemswhi
h are non-symmetri
 due to the 
onve
tion term u · ∇u, we 
on
entrateon iterative solvers for non-symmetri
 Oseen problems.Iterative Oseen solvers 
onsidered in this thesis for the solution of (7.7) 
anbe divided into two 
lasses.
• The �rst 
lass, so 
alled Uzawa methods, exploit the saddle point stru
-ture of K and are based on its S
hur 
omplement fa
torization, 
f. Sub-se
tion 7.2.1.
• The se
ond 
lass 
onsists of iterative solvers for general non-symmetri
systems, e. g., GMRES or GCR, whi
h are dire
tly applied to the blo
kmatrix K without exploiting the saddle point stru
ture of the problem.In the following we 
all them general Krylov subspa
e methods.7.2.1. Uzawa type methodsUzawa methods are related to the S
hur 
omplement fa
torization of K,

K =

(
T 0
B −I

)

·
(
I T−1BT

0 S

) (7.8)with the S
hur 
omplement matrix
S := B T−1BT .Throughout this se
tion we assume that T is symmetri
 positive de�nite.Remark 7.2 (Uzawa methods for Oseen problems)The 
onstru
tion of Uzawa methods and theoreti
al results in that 
ontextalways assume that T is symmetri
 positive de�nite (i. e., the Stokes 
ase),yielding a symmetri
 positive semi-de�nite S
hur 
omplement S. For smallReynolds numbers, however, the methods 
an also be applied to Oseen prob-lems and turned out to be su

essful solution methods in pra
ti
e, even though

T is not s.p.d. anymore. ⋄The S
hur 
omplement fa
torization (7.8) 
an also be regarded as blo
k LUfa
torization of K. The 
orresponding blo
k forward-ba
kward substitutionslead to the following algorithm:



7.2. Oseen solvers 117Algorithm 7.3 (S
hur 
omplement method)1. Solve T v = b.2. Solve S p = B v− c.3. Solve T u = b−BT p.In the �rst and third step linear systems for the matrix T have to be solved.Depending on the properties of T , suitable (pre
onditioned) Krylov subspa
emethods or multigrid methods 
an be applied. The solution of the pressuresystem in the se
ond step deserves further explanation. We use an iterativeKrylov subspa
e method, where in ea
h iteration matrix-ve
tor multipli
ations
s = Sq have to be 
omputed. Be
ause the de�nition of S involves T−1,the 
omputation of s requires the solution of a linear system for T : solve
T r = BT q, then s = B r. The solution r has to be determined iterativelywith high a

ura
y, otherwise the outer Krylov solver for the pressure systemwill diverge. Typi
ally the solution of the inner T -system demands threeorders of magnitude higher a

ura
y than of the outer pressure iteration. Thishigh 
omputational 
osts make the S
hur 
omplement method unattra
tive inpra
ti
e.We therefore use a variant of this approa
h, in whi
h the linear systems for
T (and S) have to be solved with less a

ura
y, whi
h explains the nameinexa
t Uzawa method. Here T−1 is repla
ed by the appli
ation of a symmet-ri
 positive de�nite pre
onditioner Q−1

T for T , leading to the inexa
t S
hur
omplement Ŝ := BQ−1
T BT .Instead of solving the pressure system Ŝ q = w with high a

ura
y, an approx-imate inverse of Ŝ is applied, namely q̃ = Ψ(w) ≈ Ŝ−1w with the property
‖Ψ(w)− q̃‖Ŝ ≤ δ ‖q̃‖Ŝ for all w ∈ Qfor some δ < 1. For the realization of Ψ we use a suitable Krylov subspa
emethod with initial ve
tor equal to zero, e. g., CG in 
ase of Stokes or GM-RES in 
ase of Oseen problems. The Krylov subspa
e method is pre
ondi-tioned with an pre
onditioner QS for the S
hur 
omplement. The design ofpre
onditioners QT and QS is dis
ussed in Se
tion 7.2.3.The inexa
t Uzawa method is based on iterative defe
t 
orre
tion of the Oseenequation (7.7):

(um+1

pm+1

)

=

(um

pm

)

+

(dm
1

dm
2

)



118 7. Iterative solverswhere the defe
t (dm
1 , d

m
2 )T is given by the solution of
K

(dm
1

dm
2

)

=

(b
c

)

−K
(um

pm

) (7.9)
=:

(rm
1

rm
2

)

.Applying forward-ba
kward substitution (i. e., Algorithm 7.3) to (7.9) the de-fe
t 
an be 
omputed by �rst solving vm = T−1rm
1 and then

dm
2 = S−1(B vm − rm

2 ),dm
1 = vm − T−1BT dm

2 .
(7.10)For the inexa
t Uzawa method we now repla
e T−1 by Q−1

T and S−1 by theappli
ation of Ψ as explained above. Introdu
ingwm := um+vm the followingalgorithm is obtained:Algorithm 7.4 (Inexa
t Uzawa method)Let u0, p0 be given. Compute the residual r01 = b− Tu0 −BT p0.For m = 0, 1, 2, . . . iterate:1. Compute auxiliary ve
torwm := um +Q−1
T rm

1 ,2. Pressure defe
t:
dm
2 := Ψ(Bwm − c),3. Pressure update:
pm+1 := pm + dm

2 ,4. Velo
ity update: um+1 := wm −Q−1
T BTdm

2 ,5. Residual update:rm+1
1 := rm − T (um+1 − um)−BTdm

2 .For the 
ase of T being a symmetri
 positive de�nite matrix (i. e., we 
onsidera generalized Stokes problem), in [PRR05℄ a more detailed inspe
tion and arigorous analysis of the inexa
t Uzawa method is given. It is shown, that the
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Figure 7.1.: Number of Q−1

T evaluations for the inexa
t Uzawa algorithm as afun
tion of δ.error redu
tion of one iteration of Algorithm 7.4 in a suitable norm 
an bebounded by
2µT + δ (1 + µT ) := g(µT , δ),where µT := ‖I−Q− 1

2

T T Q
− 1

2

T ‖ is the 
ontra
tion number of the pre
onditioner
QT . Hen
e, for an e�
ient solution the parameter δ (i. e., the a

ura
y of Ψ)should be 
hosen dependent on the quality of the pre
onditioner QT .Remark 7.5 (Choi
e of δ)We 
onsider the Stokes 
ase, i. e., T is symmetri
 positive de�nite. If one usesone multigrid V-
y
le as pre
onditioner Q−1

T , then the 
ontra
tion number istypi
ally about µT = 0.1. For this 
ase it su�
es to 
hoose δ < 0.8
1.1 = 0.72to get a 
onvergent method be
ause then g(0.1, δ) < 1. That means that thepressure system has to be solved only with low a

ura
y. But what is theoptimal 
hoi
e of δ in terms of 
omputational e�ort? The arithmeti
 
osts aredominated by the appli
ation of Q−1

T , hen
e δ should be 
hosen su
h that thenumber NQT of evaluations of Q−1
T is small. The plot in Figure 7.1 shows atypi
al behavior of NQT as a fun
tion of δ for the example µT = 0.1. It turnsout that low arithmeti
 
osts 
an be a
hieved for a rather broad range of δ(roughly δ ∈ [0.1, 0.4]) and that δ is not very sensitive to this quantity NQTwithin this range. Choosing δ very small is ine�
ient, as this would requiremany matrix-multipli
ation with Ŝ involving the evaluation of Q−1

T . The sameholds for δ 
lose to 0.7 where slow 
onvergen
e is observed in pra
ti
e, sin
ethe method diverges for δ ≥ 0.72. ⋄



120 7. Iterative solvers7.2.2. General Krylov type methodsAnother approa
h to solve the Oseen equation (7.7) is to apply a suitableiterative solver dire
tly to the matrix K, disregarding the property that Kis a blo
k matrix with saddle point stru
ture. If T is symmetri
 (i. e., theStokes 
ase), then K is also symmetri
 and thus the pre
onditioned MINRESalgorithm is a suitable Krylov solver for this 
ase. For the general Oseen 
ase,
T and K are non-symmetri
, thus pre
onditioned GMRES, BiCGSTAB orGCR (
f. [Saa03℄) are methods of 
hoi
e. In all 
ases K is pre
onditioned bythe diagonal blo
k pre
onditioner

Q−1
K =

(
Q−1

T 0
0 Q−1

S

)

, (7.11)where Q−1
T , Q−1

S are pre
onditioners for the upper left blo
k T and the S
hur
omplement S, respe
tively. The design of Q−1
T and Q−1

S is dis
ussed in Se
-tion 7.2.3. Note that the S
hur 
omplement matrix of K̃ := Q−1
K K is givenby

S̃ = (Q−1
S B)(Q−1

T T )−1(Q−1
T BT ) = Q−1

S S.Most of the standard Krylov subspa
e methods assume that the pre
ondi-tioner Q−1
K is linear and 
onstant in ea
h step. But if one uses for Q−1

T , e. g.,the appli
ation of some GMRES iterations, both aforementioned assumptionson Q−1
K are not ful�lled anymore. In this 
ase one should use so 
alled �exibleKrylov methods, whi
h do not have these restri
tions 
on
erning the pre
on-ditioner. Examples of su
h methods are GCR or �exible GMRES.7.2.3. Pre
onditioningIn this se
tion we des
ribe the design of pre
onditioners for the upper leftblo
k T of K and the S
hur 
omplement S.Pre
onditioning of TConsider the linear system of equations T x = b and denote byy = Q−1

T bthe appli
ation of the 
orresponding pre
onditioner. If T is the dis
retizationof a di�usion-dominated di�erential operator, then performing one step of a



7.2. Oseen solvers 121standard multigrid solver (V-
y
le with Ja
obi or Gauss-Seidel smoother) isan e�
ient pre
onditioner Q−1
T . Here the hierar
hi
al stru
ture of the trian-gulations 
an be exploited, 
f. De�nition 3.5.For small time steps, due to the time dis
retization the matrix T is dominatedby 1

kM . Sin
e systems involving the mass matrix are relatively easy to solvedue to its bounded 
ondition number, applying a multigrid method is oftennot worth the e�ort. In this 
ase, for the pre
onditioner Q−1
T we usually applyone step of a damped Ja
obi iterationx(m+1) = x(m) + ω[diag(T )]−1(b− T x(m))or one symmetri
 su

essive over-relaxation (SSOR) step. With the 
hoi
ex(0) = 0 as initial guess the damped Ja
obi pre
onditioner simpli�es toy

i
=

ω

Tii
bi, i = 1, . . . , NVh

(7.12)and the SSOR pre
onditioner is given by the following algorithm.Algorithm 7.6 (SSOR pre
onditioner)1. Compute auxiliary ve
torw by damped Gauss-Seidel iteration for initialguess x(0) = 0,wi =
ω

Tii



bi −
i−1∑

j=1

Tij wj



 , i = 1, . . . , NVh
.2. Compute y by damped ba
kwards Gauss-Seidel iterationy

i
= (2− ω)wi −

ω

Tii

NVh∑

j=i+1

Tij yj
, i = NVh

, NVh
− 1, . . . , 1.Pre
onditioning of the S
hur 
omplement SIn the following we restri
t ourselves to the Stokes 
ase, i. e., T is symmetri
positive de�nite and hen
e the S
hur 
omplement S is symmetri
 positivesemi-de�nite. For a dis
ussion of pre
onditioners for the more general Oseen
ase we refer to Remark 7.8.Sin
e S is not expli
itly available as NQh

×NQh
matrix, only by its (usuallyapproximative) appli
ation to some ve
tor, the design of pre
onditioners for
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hur 
omplement is di�erent from the te
hniques for the design of Q−1
Tpresented in the foregoing se
tion. For example, we 
annot apply SSOR to S,as this would require matrix entries of S whi
h are not available.Therefore we seek for matri
es G ∈ R

NQh
×NQh whi
h are spe
trally equivalentto S, i. e.,

γS 〈Gq, q〉 ≤ 〈S q, q〉 ≤ ΓS 〈Gq, q〉 for all q ∈ R
NQh / kerS (7.13)with 
onstants ΓS , γS > 0. These 
onstants should be independent of the gridsize h, time step size k = ∆t and the ratios µ1

µ2
, ρ1

ρ2
of dynami
 vis
osity anddensity of the two phases, respe
tively.We �rst 
onsider the stationary Stokes 
ase, i. e., T = A. Let Mµ ∈ R

NQh bede�ned by
〈Mµ p, q〉 := (p, q)µ := (µ−1 JQh

p, JQh
q)0 (7.14)for p, q ∈ R

NQh and (·, ·)0 the usual L2 s
alar produ
t. In other words, Mµ isthe pressure mass matrix with respe
t to the s
aled L2 s
alar produ
t (·, ·)µ.In [OR06℄ it is shown that G = Mµ ful�lls (7.13) with 
onstants independentof h and µ.For the non-stationary Stokes problem we assume T = ξM + A with ξ >
0, whi
h is the out
ome of some time dis
retization s
heme as des
ribed inChapter 6. We de�ne the s
aled pressure sti�ness matrix Aρ ∈ R

NQh
×NQh by

〈Aρ p, q〉 := (ρ−1∇JQh
p, ∇JQh

q)0. (7.15)Then we take
G̃−1 = M−1

µ + ξA−1
ρ (7.16)as S
hur 
omplement pre
onditioner for the non-stationary Stokes problem.In [OPR06℄ it is shown that this pre
onditioner G̃ ful�lls the property

〈S q, q〉 ≤ C 〈G̃ q, q〉 for all q ∈ R
NQh / kerSwith a 
onstant C independent of ξ, µ and ρ. The other bound c 〈G̃ q, q〉 ≤

〈S q, q〉 has not been proved yet. This is be
ause of missing regularity resultsfor the generalized Stokes interfa
e problem.However, numeri
al results obtained by the appli
ation of the Uzawa method(
f. Algorithm 7.3) in [OPR06℄ indi
ate, that the number of PCG iterationswith the S
hur 
omplement S and pre
onditioner G̃ are almost 
onstant with
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t to h, k, and moderate ratios µ1

µ2
and ρ1

ρ2
. Thus the pre
onditioner G̃turns out to be robust for the generalized Stokes interfa
e problem within 
er-tain parameter ranges, even though a theoreti
al robustness result is missing.Remark 7.7 (Pre
onditioning for extended pressure spa
e)If extended �nite elements are used for the pressure spa
e (
f. Se
tion 5.4),some modi�
ations have to be 
onsidered for the pre
onditioning of the S
hur
omplement operator.

• Extended basis fun
tions with very small support may o

ur whi
h willblow up the 
ondition number of the pressure mass matrix Mµ. We ex-perien
ed that a simple diagonal s
aling does a good job. The 
onditionnumber of D−1Mµ with D = diag(Mµ) is bounded independently of h(
f. [Reu08℄) and is rather low.
• The de�nition of Aρ makes no sense for extended basis fun
tions asfun
tions with jumps are not weakly di�erentiable. Thus Aρ is repla
edby the operator

Ãρ := BQ−1
M BT ,where Q−1

M is a pre
onditioner for M , for example the inverse of thediagonal ofM . In pra
ti
e we useD−1Ãρ with D = diag(Mµ) to a

ountfor the di�erent s
aling of the extended basis fun
tions. ⋄Remark 7.8 (Pre
onditioners for Oseen 
ase)Unfortunately, the pre
onditioners for the generalized Stokes interfa
e problempresented in this se
tion turned out to be unsatisfa
tory when applied to theOseen problem in some 
ases, even for relatively small Reynolds numbers. Forsome Oseen test 
ases we experien
ed that it was even better to use no S
hur
omplement pre
onditioning at all. Hen
e, an extension of the pre
onditioningte
hniques to the Oseen 
ase, whi
h 
ompared to the Stokes 
ase involves anadditional 
onve
tive term w · ∇u, is of great interest.There are some ideas in the literature whi
h are based on the following ob-servation: If there was a matrix Tp ∈ R
NQh

×NQh with the 
ommutationproperty BTT−1
p = T−1BT , then the S
hur 
omplement would be given by

S = BT−1BT = BBTT−1
p and thus

S−1 = Tp(BB
T )−1.In general it is not possible to �nd su
h a matrix Tp, but there are ways to
onstru
t matri
es T̂p ∈ R

NQh
×NQh for whi
h
Q−1

S = T̂p(BB
T )−1 (7.17)



124 7. Iterative solversturns out to be a reasonable approximation of the inverse S
hur 
omplement.In [KLW02℄ T̂p is obtained by the dis
retization of a pressure 
onve
tion-di�usion operator. This is motivated by the fa
t that the 
ommutator
(

1

k
ρI − µ∆ + ρ(w · ∇)

)V∇−∇( 1

k
ρI − µ∆ + ρ(w · ∇)

)

Qis zero inside Ω for w 
onstant and expe
ted to be small for smooth w.A more algebrai
 approa
h is taken in [EHS+06℄ where the dis
rete 
ommu-tator
C := TBT −BT T̂pis 
onsidered. Note that

BT T̂−1
p − T−1BT = T−1CT̂−1

p =: C̃ (7.18)is the 
ommutator used in the derivation of (7.17). The idea is to 
onstru
t
T̂p in su
h a way that it ful�lls the minimal 
ommutator property

‖C‖F → min . (7.19)Here ‖ · ‖F is the Frobenius norm. Note that due to (7.18) this is equivalentto the minimization problem ‖C̃‖F̃ → min in the norm ‖ · ‖F̃ de�ned by
‖X‖F̃ := ‖TXT̂p‖F for all X ∈ R

NVh
×NQh . An equivalent formulation of(7.19) are the normal equations

(BBT )[T̂p]j = B [TBT ]j for all 1 ≤ j ≤ NQh
.The solution is given by T̂p = (BBT )−1BTBT and due to (7.17) the S
hur
omplement pre
onditioner has the form

Q−1
S = (BBT )−1BTBT (BBT )−1. (7.20)A 
omparison and 
riti
al review of the two pre
onditioners from [KLW02,EHS+06℄ 
an be found in [OV07℄ where both are applied to a few numeri
al2D and 3D test 
ases. For the 
ase of a 
ir
ulating �ow �eld w and a smallkinemati
 vis
osity 
oe�
ient ν = µ

ρ none of the presented pre
onditionersprovides satisfa
tory 
onvergen
e results. The design of more appropriatepre
onditioners for the Oseen 
ase is 
urrently a �eld of a
tive resear
h. ⋄



7.3. Some pra
ti
al remarks 1257.3. Some pra
ti
al remarksIn our software toolbox DROPS we implemented a set of di�erent iterativesolvers to be able to 
ompare them with regard to their e�
ien
y for thesolution of two-phase �ow problems. For an overview of solvers and pre
on-ditioners available in DROPS we refer to Se
tion 9.1.7. The ones that aremostly used are the following:
• For the solution of the level set equation we use a GMRES solver whi
his pre
onditioned by SSOR (Algorithm 7.6).
• For the linearization of the Navier-Stokes problem the �xed point defe
t
orre
tion (Algorithm 7.1) is used.
• For the solution of Stokes or Oseen problems we mostly use the inexa
tUzawa method (Algorithm 7.4) or the GCR method. As S
hur 
omple-ment pre
onditioner we often use the method given in (7.16) (and thevariant des
ribed in Remark 7.7 for the XFEM 
ase, respe
tively) or theminimal 
ommutator pre
onditioner, 
f. Remark 7.8.
• For the solution of systems with the matrix T we usually use appropriateKrylov subspa
e methods pre
onditioned by SSOR or Ja
obi. In the
ase that T is symmetri
 positive de�nite we use the CG method. Fornon-symmetri
 T we use the GMRES or BiCGSTAB method.The solvers are nested on a hierar
hy of levels, 
f. Figure 7.2, for examplethe Navier-Stokes �xed point loop requires the Oseen solver whi
h requires aKrylov subspa
e method for systems with the matrix T involving an SSORpre
onditioner. In our implementation we used a template me
hanism toenable the plug-in of di�erent solvers in an easy way, 
f. Se
tion 9.1.7 formore details.Ea
h level of the solver hierar
hy introdu
es new parameters whi
h have tobe set. This huge set of parameters δ1, . . . , δm gives rise to the problem ofhow to 
hoose them appropriately to get a 
onvergent and e�
ient overallmethod. Up to now this 
hoi
e depends more or less on the experien
e of theuser. This undesirable pro
edure should be improved in future by studyingdependen
ies between di�erent parameters. This should lead to a strategywith a redu
ed number m′ < m of user-
hosen parameters δ1, . . . , δm′ , whi
hthen automati
ally indu
e the values of the remaining parameters.
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time loop
oupling (u, p) + ϕNavier-Stokes solverOseen solver
dr solver
Figure 7.2.: The nestedness of time loop, 
oupling loop and iterative solvers showsthe 
omplexity of two-phase �ow simulations.



8. Maintenan
e of the level setfun
tion8.1. ReparametrizationDuring the evolution of the level set fun
tion ϕ, whi
h is driven by the ve-lo
ity �eld u, the property of ϕ being 
lose to a (signed) distan
e fun
tion islost. This a�e
ts the re�nement of the interfa
ial region and the treatmentof the dis
ontinuous material properties if represented by a smoothed jump(
f. Se
tion 4.1.2). Moreover, the adve
tion of ϕ be
omes less a

urate inregions where ϕ is very steep and the problem of �nding the zero level setof ϕ be
omes ill-
onditioned in regions where ϕ is very �at. Therefore, areparametrization te
hnique is used to reestablish the signed distan
e fun
-tion property. Important issues related to this reparametrization of ϕ are thefollowing:1. The zero level of ϕ should be preserved.2. The norm of the gradient of ϕ should be 
lose to one: ‖∇ϕ‖ ≈ 1.3. The reparametrization 
an be used to smooth ϕ (
lose to the interfa
e)and thus stabilize the evolution of the level set fun
tion.Di�erent reparametrization te
hniques are known in the literature, 
f. [Set96b,Set99, HT05℄. The most often used method is based on a pseudo time steppings
heme for the Eikonal equation
‖∇ψ‖ = 1.Let ϕh be a given approximation of the level set fun
tion, and 
onsider thefollowing �rst order partial di�erential equation for ψ = ψ(x, τ):

∂ψ

∂τ
= Sα(ϕh)(1− ‖∇ψ‖), τ ≥ 0, x ∈ Ω (8.1)

ψ(x, 0) = ϕh, 127
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e of the level set fun
tionwith
Sα(ζ) =

ζ
√

ζ2 + α2
, ζ ∈ R,where α is a regularization parameter (0 < α ≪ 1). The fun
tion Sα is asmoothed sign fun
tion. It keeps the zero level invariant (due to Sα(0) = 0)and guarantees that the solution 
onverges for τ → ∞ to a solution of theEikonal equation. Thus, for su�
iently large τf > 0 one 
an use the fun
tion

ψ(·, τf ) as a reparametrization of ϕh.The equation (8.1) 
an be reformulated in the more 
onvenient form
∂ψ

∂τ
+w(ψ) · ∇ψ = Sα(ϕh) with w(ψ) := Sα(ϕh)

∇ψ
‖∇ψ‖ . (8.2)The equation (8.2) 
an be solved numeri
ally and then yields a reparametriza-tion of ϕh. To stabilize the evolution a di�usion term 
an be added to theequation. For a further dis
ussion of this reparametrization method we referto the literature [SSO94, SF99, TE00℄. We implemented su
h a method, buten
ountered the following two di�
ulties with this approa
h. Firstly, the algo-rithm is di�
ult to 
ontrol be
ause several parameters have to be 
hosen: theregularization parameter α, the di�usion parameter, the size of the 
onsideredtime interval τf , the time step in the evolution. Se
ondly, and more impor-tant, in our simulations the zero level was 
hanged too mu
h. This is due tothe fa
t that the invarian
e of the zero level only applies to the 
ontinuous
ase, but does not hold true for the dis
rete solution ψh.We then 
onsidered alternative reparametrization methods. A simple variantof the Fast Mar
hing method (
f. [KS98, Set96a℄) turned out to perform mu
hbetter in our numeri
al simulations. In [HT05℄ a survey and 
omparison ofdi�erent reparametrization methods is given, where also the Fast Mar
hingmethod is deemed the most a

urate and e�
ient one. The algorithm isdes
ribed in the following.Let there be given a 
ontinuous pie
ewise quadrati
 fun
tion ϕh ∈ Vh 
orre-sponding to the triangulation Th. We introdu
e some notation. The regularre�nement of Th is denoted by T ′

h := {T ′ ∈ K(T ) : T ∈ Th }. The 
olle
tionof all verti
es in T ′
h is denoted by V . Note that ϕh is uniquely determinedby its values on V . For T ∈ T ′

h, V(T ) is the set of the four verti
es of T .Furthermore, for v ∈ V , T (v) is the set of all tetrahedra whi
h have v as avertex:
T (v) = {T ∈ T ′

h : v ∈ V(T ) }.



8.1. Reparametrization 129Finally, for v ∈ V , N (v) is the 
olle
tion of all neighboring verti
es of v (i. e.,for ea
h w ∈ N (v) there is an edge in T ′
h 
onne
ting v and w):

N (v) :=




⋃

T∈T (v)

V(T )



 \ {v}.We de�ne
TΓ := {T ∈ T ′

h : meas2(T ∩ Γ) > 0 }the 
olle
tion of tetrahedra whi
h interse
t the interfa
e. Let Γh be the dis-
rete approximation of the interfa
e as de�ned in (5.9). Remind that theinterfa
e approximation Γh 
onsists of planar segments ΓT ,
{

ΓT := Γh ∩ T is a planar segment, for all T ∈ TΓ,and Γh =
⋃

T∈TΓ
ΓT .

(8.3)Remember that the planar segment ΓT in (8.3) is either a triangle or a quadri-lateral.The algorithm splits up into two phases: The initialization phase, where onlythe values on verti
es 
lose to the interfa
e are 
hanged, and the extensionphase, where the information is propagated from the interfa
e to the verti
esin the far �eld.We �rst explain the initialization phase of the reparametrization algorithm.We de�ne the set of verti
es 
orresponding to TΓ:
VΓ := { v ∈ V(T ) : T ∈ TΓ }. (8.4)For ea
h v ∈ VΓ we de�ne a dis
rete (approximate) distan
e fun
tion d(v) asfollows. For v ∈ VΓ and T ∈ T (v) ∩ TΓ let ΓT be the plane segment as in(8.3), with verti
es denoted by Q1, . . . , Qm, where m = 3 or 4. Let W be theplane in R

3 whi
h 
ontains the planar segment ΓT and PW : R
3 → W theorthogonal proje
tion on W . For v ∈ VΓ and T ∈ T (v) ∩ TΓ we de�ne

dT (v) :=

{

‖v − PW v‖ if PW v ∈ T,
min1≤j≤m ‖v −Qj‖ otherwise,
f. Figure 8.1 as an illustration. The quantity dT (v) is a measure for thedistan
e between v and ΓT . Note that if PW v ∈ T holds, then dT (v) is
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W

ΓT

v1

PW v1

v2

PW v2

Q

Figure 8.1.: Evaluation of dT in the initialization phase for two verti
es v1, v2 byorthogonal proje
tion on W : here dT (v1) = ‖v1 − PW v1‖ and dT (v2) = ‖v2 − Q‖.pre
isely this distan
e. Sin
e Γh 
onsists of pie
ewise planar segments ΓT for
T ∈ TΓ we de�ne d(v) as an approximate distan
e between v and Γh by

d(v) := min
T∈T (v)∩TΓ

dT (v) for v ∈ VΓ. (8.5)After this initialization phase the grid fun
tion { (v, d(v)) : v ∈ VΓ } is anapproximate distan
e fun
tion from the interfa
e Γh for the verti
es v ∈ VΓ.The se
ond phase of the reparametrization algorithm 
onsists of a loop inwhi
h the approximate distan
e fun
tion d is extended to neighbor verti
es of
VΓ and then to neighbors of neighbors, et
. To explain this more pre
isely weintrodu
e two sets of verti
es.The �rst set V̂ ⊂ V 
omprises the verti
es where the values of the distan
efun
tion d : V → R have already been 
omputed. Right after the initializationphase we thus have V̂ = VΓ. We 
all V̂ the �nalized set.The se
ond one is the set of so-
alled a
tive verti
es A ⊂ V \V̂ , whi
h 
onsistsof verti
es v /∈ V̂ that have a neighboring vertex in V̂ :

A := { v ∈ V \ V̂ : N (v) ∩ V̂ 6= ∅ }. (8.6)
A is 
alled a
tive set. So after the initialization phase, the initial a
tive set
A0 is given by

A0 := { v ∈ V \ VΓ : N (v) ∩ VΓ 6= ∅ }. (8.7)For v ∈ A we de�ne an approximate distan
e fun
tion in a similar way asin the initialization phase. Sin
e its values may 
hange if the �nalized anda
tive set are updated, we denote it by d̃ : A → R to emphasize its tentative
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hara
ter in 
ontrast to d, whi
h will be the �nal out
ome of the algorithm.The 
onstru
tion of d̃ is des
ribed in the following.Take v ∈ A and T ∈ T (v) with V(T ) ∩ V̂ 6= ∅. Note that su
h a T exists if Ais nonempty. There are three possible 
ases, namely |V(T ) ∩ V̂| ∈ {1, 2, 3}.
• If |V(T ) ∩ V̂| = 1, say V(T ) ∩ V̂ = {w}, we de�ne

dT (v) := d(w) + ‖v − w‖.

• For the other two 
ases, i. e., V(T ) ∩ V̂ = {wi}1≤i≤m with m = 2 or
m = 3, we use an orthogonal proje
tion as in the initialization phase.Let W be the line (plane) in R

3 through the points w1, w2 (, w3) and
PW : R

3 →W the orthogonal proje
tion on W . We de�ne
dT (v) :=







d(PW v) + ‖v − PW v‖ if PW v ∈ T,

min1≤j≤m

[

d(wj) + ‖v − wj‖
] otherwise. (8.8)The value d(PW v) in (8.8) is determined by linear interpolation of theknown values d(wj), 1 ≤ j ≤ m. This is well-de�ned as wj ∈ V̂ for

1 ≤ j ≤ m and d is already de�ned on V̂. Note that PW v ∈ T issatis�ed if all fa
es of T are a
ute triangles.The tentative approximate distan
e fun
tion d̃ : A → R at a
tive verti
es
v ∈ A is de�ned by

d̃(v) := min{ dT (v) : T ∈ T (v) with V(T ) ∩ V̂ 6= ∅ } (8.9)The 
omplete reparametrization method is as follows:Algorithm 8.1 (Fast Mar
hing method)1. Initialization: 
onstru
t VΓ and 
ompute d(VΓ) as in (8.4), (8.5).2. Constru
t initial a
tive set A0 and 
ompute d̃(A0) as in (8.7), (8.9).3. Initialize �nalized set V̂ := VΓ and a
tive set A := A0.4. While A 6= ∅, repeat the following steps:a) Determine vmin ∈ A su
h that d̃(vmin) = minv∈A d̃(v).b) Update �nalized set V̂ := V̂ ∪{vmin} and de�ne d(vmin) := d̃(vmin).
) Update a
tive set A := (A∪ Ñ ) \ {vmin} where Ñ := N (vmin) \ V̂ .
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e of the level set fun
tiond) (Re)
ompute d̃(v) for v ∈ Ñ .5. For all v ∈ V , set d(v) := sign(ϕh(v)) · d(v).After this reparametrization we have V̂ = V and a grid fun
tion d(v), v ∈ V ,whi
h uniquely determines a 
ontinuous pie
ewise quadrati
 fun
tion ϕ̃h ∈ Vhon the triangulation Th. This ϕ̃h is the reparametrization of ϕh. For ϕ̃h one
an 
onstru
t an approximate zero level set Γ̃h as des
ribed in Se
tion 5.1.The reparametrization pro
edure guarantees Γ̃h ⊂
⋃

T∈TΓ
T . However, ingeneral we have Γ̃h 6= Γh, i. e., the dis
rete zero level set may be slightly
hanged. Sin
e ϕ̃h is 
lose to a signed distan
e fun
tion, the variations in

∇ϕ̃h are usually smaller than the variations in ∇ϕh. Due to this property,the reparametrization method has a stabilizing e�e
t.Remark 8.2 (Complexity)The number of arithmeti
 operations for the initialization phase (steps 1�3 inAlgorithm 8.1) is O(|VΓ|+ |A0|). For the extension phase (steps 4�5 in Algo-rithm 8.1) the 
omplexity is governed by step 4.a). The sear
h for vmin ∈ Ahas linear 
omplexity in our implementation, but 
ould be implemented moree�
iently to gain O(log |A|) 
omplexity whi
h is the optimal one. As thesteps in 4.a)�4.b) are repeated NV := |V \VΓ| times, the overall 
omplexity ofthe extension phase is O(N2
V ) in our implementation and 
ould be improvedto be O(NV logNV). Although this bound O(N2

V ) indi
ates suboptimal 
om-plexity (
ompared to O(NV logNV)), in our simulations the time needed forthe reparametrization is negligible 
ompared to the 
omputing times for dis-
retization and iterative solution of the Navier-Stokes equations. ⋄8.2. Conservation of massThe temporal and spatial dis
retization of the level set equation does not
onserve mass. The same holds for the reparametrization of the level setfun
tion, 
f. [Hup06℄ where this topi
 is investigated further. This loss ofmass is redu
ed if the grid is re�ned. Su
h �ner grids, however, result in higher
omputational 
osts. Therefore we introdu
e another strategy to 
ompensatefor the mass loss.After ea
h time step, we shift the interfa
e in normal dire
tion su
h that thevolume of Ω1 at 
urrent time is the same as at time t = t0. To realize thiswe exploit the fa
t that the level set fun
tion is 
lose to a signed distan
efun
tion. In order to shift the interfa
e over a distan
e δ in outward normaldire
tion, we only have to subtra
t δ from the level set fun
tion.



8.2. Conservation of mass 133Let V (ϕ) := meas3{x ∈ Ω : ϕ(x) < 0 } denote the volume of Ω1 
orrespondingto a level set fun
tion ϕ and let ϕh be the dis
rete level set fun
tion at a giventime. We have to �nd d ∈ R su
h that
V (ϕh − δ)−meas3(Ω1(0)) = 0holds. In order to keep the number of evaluations of V low, we use a methodwith a high rate of 
onvergen
e, namely the Anderson-Björ
k method [AB73℄,to solve this equation. We then set ϕnew

h := ϕh − δ and dis
ard ϕh.Note that this strategy only works if Ω1 
onsists of a single 
omponent. Ifthere are multiple 
omponents, mass must be preserved for ea
h of them. Inthis 
ase the algorithm 
an be modi�ed to shift ϕh only lo
ally. Dis
ontinu-ities that may o

ur in the level set fun
tion 
an be removed by a subsequentreparametrization step. In the 
ase of topology 
hanges more elaborate te
h-niques have to be applied whi
h are based on lo
al mass 
onservation. Anexample is the paper [PSVW05℄, where the level set method is 
ombined withVOF te
hniques to improve lo
al mass 
onservation.Finally note that the shifting of the level set fun
tion to obtain a better mass
onservation introdu
es a new sour
e of dis
retization errors.
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9. Software pa
kage DROPSThe software pa
kage DROPS is developed within the framework of the Col-laborative Resear
h Center SFB 540 [SFB℄ where the goal of the involvedmathemati
al proje
ts (B4 and C7) is two-fold: on the one hand we want todevelop and improve numeri
al methods for the simulation of two-phase �owproblems and on the other hand the aim is to simulate realisti
 two-phasesystems whi
h are of interest for the proje
t partners from the engineeringdepartment.The development of DROPS is mainly 
ondu
ted by the Chair of Numeri
alMathemati
s, RWTH Aa
hen University, Germany. Due to the 
omplexity oftwo-phase �ow problems we need the ability to perform parallel 
omputations.In a tight 
ooperation the parallelization of DROPS is realized at the Chair ofS
ienti�
 Computing, RWTH Aa
hen University. The 
ode is developed by a
ouple of people, where the 
urrent 
ore development team 
onsists of threepersons, Jörg Grande, Oliver Fortmeier and the author of this thesis.The DROPS 
ode is written in C++. Espe
ially the implementation of theiterative solvers heavily uses the obje
t-oriented and template programmingfeatures of C++1. Some further information in
luding a gallery of simulationexamples 
an be found on the DROPS website [DRO℄.Se
tion 9.1 des
ribes some fundamental 
on
epts and the most important
lasses of DROPS. In Se
tion 9.2 we give a brief introdu
tion to the parallelversion.9.1. Fundamental 
on
epts and data stru
turesIn this se
tion important data stru
tures and algorithms implemented inDROPS are presented. Figure 9.1 gives an overview of the main 
omponents1Thus our 
ode is also used by some 
ompiler manufa
turers as a ben
hmark test for theirC++ 
ompilers (e. g., SUN, Mi
rosoft). 135
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Figure 9.1.: Overview of modules and stru
ture of DROPS.



9.1. Fundamental 
on
epts and data stru
tures 137of the software. The di�erent modules are arranged in the diagram su
h thatthey obey two levels of stru
turing, namely in verti
al and horizontal dire
tion.The verti
al stru
ture of the �gure distinguishes between input and outputroutines, data stru
tures and algorithms. While the di�erent methods to bringinput in and get output from the DROPS kernel are des
ribed in Se
tion 9.1.8,we de
ided to present algorithms in 
onjun
tion with related data stru
tures.This 
orresponds to the obje
t-oriented perspe
tive of C++ 
lasses, wheredata stru
tures (as data members) and fun
tionality (as member fun
tions)are 
ombined with ea
h other.In a horizontal stru
ture Figure 9.1 
lassi�es the di�erent modules into the
ategories `geometry'and `numeri
s', emphasizing the fa
t that we tried tode
ouple geometri
al data su
h as the grid from numeri
al data su
h as ve
torsand matri
es. Some tasks, however, require geometri
al as well as numeri
alinformation and are therefore lo
ated in the middle 
olumn. One example arethe dis
retization routines for setting up sti�ness matri
es, where in a loopover all tetrahedra the 
orresponding matrix entries are a

umulated. Thegeometri
al and numeri
al data stru
tures are des
ribed in Se
tions 9.1.1 and9.1.2, respe
tively.9.1.1. Geometri
al obje
ts: multilevel triangulation andsimpli
esIn this se
tion we dis
uss the data stru
tures that represent geometri
al ob-je
ts su
h as verti
es, edges, fa
es, tetrahedra, the boundary and the multi-level grid. The 
orresponding data stru
tures are 
alled VertexCL, EdgeCL,Fa
eCL, TetraCL, BoundaryCL and MultiGridCL, respe
tively. Note that allC++ 
lasses in DROPS have a su�x CL to distinguish data type identi�ersfrom obje
t identi�ers.Boundary and boundary segmentsWe assume that the boundaryΣ = ∂Ω is partitioned into elementary boundarysegments Σj , j = 0, . . . , NΣ − 1. Note that here we used a C style number-ing starting with zero. To give an example, if Ω is a 
ube, then Σ 
an bepartitioned into NΣ = 6 boundary segments Σ0, . . . ,Σ5, 
f. Figure 9.2. Ea
hboundary segment is represented by a BndSegCL obje
t. Up to now DROPS
an only handle boundary segments whi
h are pie
ewise planar. The 
lassBoundaryCL 
ontains an array of all BndSegCL obje
ts.
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Figure 9.2.: A 
ube and its 6 boundary segments Σ0, . . . , Σ5.Simpli
esIn the following we des
ribe the representation of the simpli
es.VertexCL. Ea
h vertex V stores its 
oordinates xV ∈ R
3 as a Point3DCLobje
t. If V is lo
ated on the boundary Σ, it stores a list of BndPointCLobje
ts, ea
h 
ontaining the index j of the boundary segment Σj withxV ∈ Σj and the 2D 
oordinate in the lo
al referen
e frame. Note that

V may be lo
ated on multiple boundary segments. For the example inFigure 9.2 a vertex may be lo
ated on up to 3 boundary segments.EdgeCL. Ea
h edge E is linked to the two verti
es V1, V2 whi
h are 
onne
tedby E. If the edge is further re�ned into two sub-edges E1, E2, then thereis also a link to the midpoint vertex Vm. Note that E1 = V1Vm and
E2 = VmV2. If E is lo
ated on the boundary, then it stores the indi
es jof the boundary segments with {xV1

,xV2
} ⊂ Σj . Note that an edge 
anbe lo
ated on at most 2 boundary segments.Fa
eCL. Ea
h fa
e F is linked to its neighboring tetrahedra. For a boundaryfa
e the index j of the 
orresponding unique boundary segment Σj isstored. Note that a fa
e F may possess up to 4 neighboring tetrahedra.This is the 
ase if F is an inner fa
e 
onne
ting two tetrahedra T1 and

T2 whi
h are irregularly re�ned su
h that F is not subdivided by the
orresponding green re�nement rule. Then there are two green 
hildren
T ′

1 ∈ K(T1) and T ′
2 ∈ K(T2) also sharing F as a 
ommon fa
e.TetraCL. Ea
h tetrahedron T is linked to its 4 verti
es, 6 edges and 4 fa
es.If ℓ(T ) > 0, i. e., T is not stored in the initial triangulation T0, then

T is linked to its parent tetrahedron. If T is re�ned, then it is also



9.1. Fundamental 
on
epts and data stru
tures 139linked to its 
hildren T ′ ∈ K(T ). T stores the integer values mark(T )(the re�nement mark) and status(T ) (the a
tual re�nement rule), 
f.Se
tion 3.2.3.Furthermore, ea
h simplex 
lass 
ontains an UnknownHandleCL obje
t whi
hstores the indi
es of unknowns belonging to this simplex, 
f. Se
tion 9.1.3.Multilevel triangulationThe 
lass MultiGridCL represents a multilevel triangulationM = (T0, . . . , TJ ),
f. De�nition 3.5. The data stru
ture is based on the 
orresponding hierar
hi-
al de
omposition H = (G0, . . . ,GJ ), 
f. De�nition 3.7. That means that thetetrahedra are stored in J + 1 lists, ea
h one for the hierar
hi
al surplus Gj ofa di�erent level. The verti
es, edges and fa
es are stored in a similar manner,where the level of su
h a sub-simplex S is de�ned as
ℓ(S) := min{ ℓ(T ) : T ∈ H 
ontains S as sub-simplex }.Furthermore, MultiGridCL 
ontains a BoundaryCL obje
t storing all boundarysegments.The MultiGridCL 
onstru
tor takes a MGBuilderCL obje
t as input argumentwhi
h 
reates the initial triangulation T0. MGBuilderCL serves as an abstra
tbase 
lass from whi
h spe
i�
 
lasses 
an be derived. For instan
e, the derived
lass Bri
kBuilderCL 
an be used to generate an initial triangulation of a
uboid-shaped domain.The member fun
tion Refine() 
alls the re�nement algorithm (
f. Algo-rithm 3.11) des
ribed in Se
tion 3.2.3. It expe
ts that the tetrahedra T ∈ TJin the input multilevel triangulation are marked for re�nement or for 
oarsen-ing. This 
an be a
hieved by 
alling the member fun
tions SetRegRefMark()or SetRemoveMark() of the 
orresponding TetraCL obje
ts.There are di�erent kinds of iterators to a

ess the simpli
es in the multileveltriangulation. The MultiGridCLmember fun
tions GetTriangTetraBegin(L)and GetTriangTetraEnd(L) return iterators to 
y
le through all tetrahedra

T ∈ TLof a 
ertain triangulation. Similarly the member fun
tions GetAllTetra-Begin(L) and GetAllTetraEnd(L) 
an be used to iterate over all
T ∈

L⋃

j=0

Gj ,
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kage DROPSwhere the level ℓ(T ) of the iterated tetrahedra T is in
reasing from 0 to L.Similar iterators exist for verti
es, edges and fa
es as well.The iterators are implemented su
h that a 
orresponding for loop 
an beexe
uted by multiple OpenMP threads in parallel [Ope℄. This allows for faster
omputations on shared memory ma
hines. As the importan
e and availabilityof multi-
ore ar
hite
tures is growing nowadays and will grow further in thefuture, this is a relevant advantage regarding 
omputational e�
ien
y.9.1.2. Numeri
al obje
ts: ve
tors and sparse matri
esVe
torsIn DROPS there are two di�erent type of ve
tors: SVe
torCL for short ve
torswith a handful of entries and Ve
torCL for ve
tors with a large number ofentries. Throughout this 
hapter we assume that indi
es always start withthe number zero (C style numbering).SVe
torCL<RowsN> is a template 
lass with template parameter RowsN forve
tors x ∈ R
RowsN with a �xed dimension RowsN. It is mostly used for storing
oordinates. For this purpose we de�ned the typedefs Point2DCL, Point3DCLand BaryCoordCL whi
h are identi
al to SVe
torCL<2>, SVe
torCL<3> andSVe
torCL<4>, respe
tively.The data type Ve
torCL is used for storing ve
tors x ∈ R

N where N is largeand may di�er from obje
t to obje
t. The type is de�ned as a typedef forVe
torBaseCL<double>. Ve
torBaseCL<RealT> is a template 
lass for ve
-tors with entry type RealT and is an an
estor of std::valarray<RealT>.Thus Ve
torCL derives the bene�ts of the e�
ient expression template me
h-anisms available for arithmeti
al operations involving valarray obje
ts. Bysetting a debug �ag DebugNumeri
C range 
he
king and other debug features
an be enabled whi
h are swit
hed o� by default due to performan
e reasons.Matri
esThere are two di�erent types of matri
es in DROPS, SMatrixCL for smallmatri
es and MatrixCL for large sparse matri
es.The template 
lass SMatrixCL<RowsN,ColsN> is used for small matri
es M ∈
R
RowsN×ColsN with �xed dimensions.



9.1. Fundamental 
on
epts and data stru
tures 141Sparse matri
es are stored in obje
ts of the type SparseMatBaseCL<RealT>where RealT indi
ates the type of the entries. For 
onvenien
e, we introdu
eda typedef MatrixCL for SparseMatBaseCL<double>.We use the 
ompressed row storage format (CSR) whi
h is des
ribed in the fol-lowing. For a sparse matrix with m rows and N non-zero entries, SparseMat-BaseCL 
ontains a ve
tor RowBegin with m + 1 integer entries, a ve
torColIndex with N integer entries and a ve
tor Val with N entries of typeRealT. For a row i the indi
es from RowBegin[i-1℄ to RowBegin[i℄-1 indi-
ate the range in Val where the values of the non-zero entries are stored. The
olumn indi
es of the 
orresponding values are stored in ColIndex.As it is a tedious task to 
ompute the sparsity pattern stored in RowBegin andColIndex, we use an intermediate storage format 
alled SparseMatBuilder-CL<RealT>when setting up a new sparse matrixM . The SparseMatBuilderCL�rst 
olle
ts and a

umulates all entries in a std::map based data stru
ture.After that a 
all of the member fun
tion Build() automati
ally 
reates the
orresponding SparseMatBaseCL obje
t M and deletes the maps afterwards.As maps are often too memory 
onsuming we use them only for initializing
M . When updating M in subsequent steps the sparsity pattern is reusedby default, i. e., a

ess to SparseMatBuilderCL entries dire
tly returns the
orresponding SparseMatBaseCL entries in Val. If the sparsity pattern shouldnot be reused (for example when the extended pressure spa
e QΓ

h 
hangedbe
ause the interfa
e Γ has moved) all matrix entries should be deleted by a
all to the member fun
tion 
lear() to for
e a 
omplete initialization of thematrix.9.1.3. The link between grid and unknowns: indi
esAs mentioned before we de
ided to de
ouple the geometri
al data (grid) fromthe numeri
al data (matri
es, ve
tors). This is advantageous, be
ause thenthe iterative solvers only have to deal with matri
es and ve
tors but not withthe grid. As a matrix-ve
tor multipli
ation does not require a loop over all gridentities this substantially saves 
omputational time. But for the interpretationof a solution ve
tor u it is ne
essary to know whi
h ve
tor entries are asso
iatedwith a 
ertain vertex V , for example. Here the 
on
ept of indi
es 
omes intoplay.
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kage DROPSIndex des
riptions and numberingsFor ea
h �nite element type used in a solution strategy there exists an asso
i-ated index. An index J is des
ribed by an IdxDes
CL obje
t. It 
ontains thenumber of degrees of freedom (DoF) for ea
h simplex type, nV , nE , nF , nT ,and the overall number of unknowns, NJ . To give an example, a P1-index has
nV = 1 DoF per vertex (and nE = nF = nT = 0), an index for ve
tor-valued
P2-FE has nV = nE = 3 DoFs for ea
h vertex and edge (and nF = nT = 0).As a next step we have to 
reate a numbering of all degrees of freedom whi
hbelong to the index J , where degrees of freedom on Diri
hlet boundaries areomitted. This is done by a fun
tion CreateNumbering(...), whi
h is usuallya member fun
tion of the applied problem 
lass (
f. Se
tion 9.1.4). By this wealso obtain the overall number of unknowns, NJ , whi
h is equal to the dimen-sion of the ve
tors asso
iated with J . Thus at the end CreateNumbering(...)sets the value NJ in the 
orresponding IdxDes
CL obje
t.The numbering is stored by UnknownHandleCL obje
ts 
ontained in the 
or-responding VertexCL, EdgeCL, Fa
eCL and TetraCL obje
ts. Note that for asingle simplex maybe multiple su
h numbers have to be stored, namely onefor ea
h index or, in other words, one for ea
h �nite element type.For an extended �nite element spa
e a 
all to UpdateXNumbering(...) aug-ments the usual numbering, also 
alled base numbering, by a numberingfor the extended degrees of freedom. These numbers are not stored in theUnknownHandleCL obje
ts, but in a separate ExtendedIdxCL obje
t. It 
on-tains a ve
tor xidx ∈ N

NJ where the entry xidx[j℄ either stores the numberof the extended DoF belonging to the base DoF j or it 
ontains a �ag that theDoF j is not extended. Note that UpdateXNumbering(...) has to be 
alledea
h time the interfa
e has moved to a

ount for the 
hanged extended DoFs.Ve
tor and matrix des
riptionsA Ve
Des
CL obje
t 
ontains a ve
tor Data of type Ve
torCL and a pointerRowIdx to the asso
iated index of type IdxDes
CL. Calling the member fun
-tion SetIdx(idx) sets the pointer and resizes the ve
tor to the right dimen-sion. Similarly, a MatDes
CL obje
t 
ontains a sparse matrix Data and point-ers RowIdx and ColIdx to the asso
iated row and 
olumn indi
es, respe
-tively. A 
all of the member fun
tion SetIdx(ridx,
idx) sets the pointersand deletes all matrix entries. The right dimension of the matrix are set laterby SparseMatBuilderCL, 
f. Se
tion 9.1.2.
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on
epts and data stru
tures 1439.1.4. Problem 
lassesThere are several problem 
lasses in DROPS representing di�erent types ofpartial di�erential equations. So far we have problem 
lasses for the Poisson,Stokes and Navier-Stokes problem (one-phase), the level-set equation and thetwo-phase Stokes and Navier-Stokes problem. For example the 
lass for thetwo-phase Stokes problem is 
alled InstatStokes2PhaseP2P1CL. All problem
lasses are derived from a 
ommon base 
lass ProblemCL whi
h 
ontains threeobje
ts 
onstituting a problem:
• the domain Ω, given by a multilevel triangulation (MultiGridCL),
• the boundary 
onditions and boundary values, given by a BndDataTobje
t,
• the 
oe�
ients and right hand-side of the partial di�erential equation,given by a CoeffT obje
t.BndDataT and CoeffT are template parameters of the template 
lass ProblemCLas their spe
i�
 stru
ture may vary among di�erent problem types. Theirmeaning is dis
ussed in the subsequent se
tions.A spe
i�
 problem 
lass usually 
ontains the index des
riptions of the applied�nite element types and several matrix and ve
tor des
riptions. Among themember fun
tions there are CreateNumbering(...) pro
edures for the in-di
es (
f. Se
tion 9.1.3) and di�erent Setup...(...) routines to 
omputethe matri
es and the right-hand side ve
tors 
onstituting the �nite elementdis
retization.Boundary dataThe boundary data are des
ribed by a BndDataCL<BndValT> obje
t. It 
on-tains an array of BndSegDataCL<BndValT> obje
ts, one for ea
h boundarysegment Σj , 
f. Se
tion 9.1.1. Ea
h BndSegDataCL obje
t stores the boundary
ondition and a fun
tion pointer for evaluating the 
orresponding boundaryvalues of type BndValT. The 
hoi
e of the template parameter BndValT de-pends on whether the boundary 
ondition applies to a s
alar (double) orve
tor-valued (Point3DCL) quantity. The pres
ribed boundary 
ondition oftype BndCondT 
an be one of
• DirBC, Dir0BC for non-homogeneous and homogeneous Diri
hlet bound-ary 
onditions, respe
tively,
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• NatBC, Nat0BC for non-homogeneous and homogeneous natural bound-ary 
onditions, respe
tively,
• Per1BC, Per2BC for periodi
 boundary 
onditions denoting 
orrespond-ing boundaries.WallBC and OutflowBC are alias names for Dir0BC and Nat0BC, respe
tively.Coe�
ientsAs an example to des
ribe the 
lasses representing the 
oe�
ients of a spe
i�
partial di�erential equation we 
onsider a s
alar 
onve
tion-di�usion problemfor the unknown fun
tion u = u(x, t),

ut + v(x, t) · ∇u− div(a(x, t)∇u) = f(x, t) in Ω× [t0, tf ].This type of problem is represented by the problem 
lass InstatPoissonP1CL.The 
orresponding PoissonCoeffCL 
ontains the fun
tions v(x, t), a(x, t) and
f(x, t) as stati
 member fun
tions whi
h have to be implemented by the user.For the two-phase �ow problem (2.13) the 
orresponding 
oe�
ient 
lass storesquantities su
h as densities ρi and dynami
 vis
osities µi of the phases Ωi,
i = 1, 2, the surfa
e tension 
oe�
ient τ and the ve
tor of gravitational a

el-eration g.9.1.5. Useful tools for dis
retizationIn the dis
retization pro
edures Setup...(...) of the problem 
lasses severalsparse matri
es representing the dis
rete di�erential operators and ve
tors forthe right-hand side have to be 
onstru
ted. This is done by iterating overall tetrahedra T ∈ Th, where for a single tetrahedron T 
ontributions to thematrix and ve
tor entries are 
omputed. These 
ontributions are integralsover T and the integrands are fun
tions whi
h 
an be de�ned lo
ally on T ,e. g., basis fun
tions or gradients of basis fun
tions.Grid fun
tionsFor representing the integrands and 
omputing the integrals over T we useLo
alP1CL and Lo
alP2CL obje
ts (for linear and quadrati
 fun
tions, re-spe
tively) and quadrature rules Quad2CL, Quad5CL (exa
t for polynomials up
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epts and data stru
tures 145to degree 2 or 5, respe
tively). All these 
lasses have a template parame-ter ValT for the fun
tion values and are derived from a 
ommon base 
lassGridFun
tionCL<ValT,PointsN>. This 
lass stores PointsN values of typeValT whi
h are asso
iated to distin
t nodes in a tetrahedron des
ribed bybary
entri
 
oordinates (BaryCoordCL, 
f. Se
tion 9.1.2). For a Lo
alP1CLobje
t these nodes are the 4 verti
es of the tetrahedron, for a Lo
alP2CL ob-je
t the 6 midpoints of the edges are added, 
f. Figure 4.1. For the Quad...CLobje
ts the nodes are de�ned by the quadrature points of the 
orrespondingquadrature ruleArithmeti
 operations su
h as +, -, *, / for GridFun
tionCL obje
ts are de-�ned pointwise. In the same way fun
tions 
an be applied to GridFun
tionCLobje
ts using the member fun
tion apply(...). Due to inheritan
e all thisfun
tionality is also provided for the derived Lo
alP...CL and Quad...CL
lasses. This is very useful when 
reating 
omplex integrands like (u ·∇vj) vi.Several variants of assign(...) member fun
tions enable the initialization ofthe Lo
alP...CL and Quad...CL obje
ts. Additionally, Lo
alP...CL obje
ts
an be evaluated in an arbitrary point x ∈ T given by its bary
entri
 
oor-dinates. The Quad...CL obje
ts have a member fun
tion quad(...) whi
happlies the quadrature rule and returns the result of the numeri
al integration.Lo
al numberingsA Lo
alNumbCL obje
t is initialized with an index des
ription of index J ,the 
orresponding boundary data obje
t and a tetrahedron T . It 
olle
ts thenumbering of the lo
al degrees of freedom of T a

ording to the index J ,
f. Se
tion 9.1.3. If a degree of freedom is on a boundary it also providesthe asso
iated boundary 
ondition and the number j of the 
orrespondingboundary segment Σj . Up to now Lo
alNumbCL 
an only be used for P2 �niteelements.Integration over interfa
e pat
hes or parts of a tetrahedronAn Interfa
ePat
hCL obje
t is initialized by a tetrahedron T and the level setfun
tion ϕh given by an P2-FE Ve
Des
CL obje
t. It extra
ts the Lo
alP2CLobje
t 
orresponding to ϕh, de
ides whether Γh∩T 6= and provides informationabout the sign (∈ {+,−, 0}) of ea
h degree of freedom.The member fun
tion ComputeForChild(i) 
omputes the planar interfa
epat
h ΓT ′ = Γh ∩ T ′ for the ith regular 
hild T ′ ∈ K(T ), i = 0, . . . , 7. ΓT ′
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kage DROPSis represented by the 
oordinates of its verti
es, whi
h are given in terms ofbary
entri
 
oordinates with respe
t to the parent T . Note that for the 
om-putation of the pat
hes the regular re�nement of T is not really 
onstru
tedin the sense that geometri
al data stru
tures are 
hanged.After 
alling ComputeCutForChild(i) the member fun
tion quad(...) 
anbe used to 
ompute the integral over the 
ut part T ′∩Ω1 or T ′∩Ω2, where theintegrand is an arbitrary quadrati
 fun
tion f given by a Lo
alP2CL obje
t.The additional member fun
tion quadBothParts(...) provides the integralsover both 
ut parts T ′ ∩ Ωi, i = 1, 2.9.1.6. Time dis
retization and 
ouplingFor the one-phase Stokes and Navier-Stokes problem the one-step theta-s
heme(
f. Se
tion 6.1) is represented by the 
lasses InstatStokesThetaS
hemeCLand InstatNavStokesThetaS
hemeCL, respe
tively. Both 
lasses have a tem-plate parameter SolverT for the type of the solver used in ea
h time step.The 
omputation of one time step is performed by the member fun
tionDoStep(...).For the two-phase Stokes and Navier-Stokes problem we have to 
onsider a
oupled system for velo
ity u, pressure p and level set fun
tion ϕ, 
f. Se
-tion 6.2. During the implementation it turned out that the 
oupling and timedis
retization should be 
ombined in one 
lass and 
annot be de
oupled inseparate 
lasses as they are 
losely 
onne
ted to ea
h other. However, the dif-ferent 
oupling 
lasses all have a similar stru
ture, thus we de
ided to derivethem from a base 
lass TimeDis
2PhaseCL whi
h stores 
ommon data mem-bers and de�nes a 
ommon abstra
t interfa
e by means of virtual memberfun
tions su
h as DoStep(...).For the time dis
retization of the two-phase Navier-Stokes problem we imple-mented the following 
lasses:
• ThetaS
heme2PhaseCL: 
oupled one-step theta-s
heme as given in Algo-rithm 6.12,
• LinThetaS
heme2PhaseCL: linearized one-step theta-s
heme, 
f. (6.42)�(6.44),
• Fra
Step2PhaseCL: 
oupled fra
tional-step s
heme, applies the Theta-S
heme2PhaseCL for ea
h ma
ro time step, 
f. Se
tion 6.1.3,
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• OpSplitting2PhaseCL: 
oupled fra
tional-step s
heme with operatorsplitting, 
f. Se
tion 6.1.4.All these 
oupling 
lasses have a template parameter SolverT 
ontrolling thetype of the iterative solver used in ea
h time step. For the time dis
retizationof two-phase Stokes problems we de
ided to apply the 
orresponding 
lassesfor the two-phase Navier-Stokes problems rather than 
reate Stokes spe
i�
time dis
retization 
lasses. This avoids 
ode dupli
ation and enhan
es 
odemaintainability.9.1.7. Iterative solvers and pre
onditionersFor the implementation of iterative solvers we tried to use a software designthat a

ounts for the nested hierar
hy of the solution methods, 
f. Figure 7.2.For example, the Navier-Stokes �xed point loop requires an Oseen solver whi
happlies a Krylov subspa
e method involving some pre
onditioner. Bearing thisin mind we use a template me
hanism to spe
ify the inner solution 
ompo-nents as template parameters. On the one hand this enables an easy plug-inof di�erent solution 
omponents to test and 
ompare reasonable 
ombinationsof solvers available from the DROPS solver toolbox. On the other hand thiste
hnique assures e�
ient 
ode sin
e the 
ompiler 
an perform full 
ode op-timization for the template spe
ialization whi
h is known at the moment of
ompilation.Example 9.1As an illustrative example for the template plug-in me
hanism we give a pie
eof 
ode for the de�nition of a Stokes solver:// pre
onditioner for upper left blo
k pre
onditionertypedef SSORP
CL ULP
P
T;ULP
P
T ULP
P
(...);// pre
onditioner for upper left blo
ktypedef PCGSolverCL<ULP
P
T> ULSolverT;ULSolverT ULsolver( ULP
P
, ...);typedef SolverAsPreCL<ULSolverT> ULP
T;ULP
T ULP
( ULsolver);// S
hur 
omplement pre
onditionertypedef ISPreCL S
hurP
T;S
hurP
T S
hurP
( ...);// Stokes solver
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kage DROPStypedef Inexa
tUzawaCL<ULP
T, S
hurP
T> StokesSolverT;StokesSolverT StokesSolver( ULP
, S
hurP
, ...);Hen
e, the obje
t StokesSolver represents an inexa
t Uzawa method. For
QT we 
hose some iterations of an SSOR-pre
onditioned CG method (ULP
)applied to the upper left blo
k of the saddle point matrix. The S
hur 
omple-ment pre
onditioner QS is given by S
hurP
. ⋄We emphasize that there is a 
on
eptual di�eren
e between solver obje
ts andpre
onditioner obje
ts. Solver 
lasses are derived from a 
ommon base 
lassSolverBaseCL storing the toleran
e and the maximum number of iterations,i. e., the stopping 
riterion, as well as the norm of the residual and numberof iterations used after the last exe
ution of the solver. Ea
h solver 
lass
omprises a member fun
tion Solve(...) 
alling the routine of the iterativesolver for a given initial guess. In 
ontrast, ea
h pre
onditioner 
lass 
ontainsthe analogon Apply(...) 
alling the pre
onditioner for the initial guess 0.In the following we list most of the solvers and pre
onditioners available fromthe DROPS solver toolbox.SolversNavier-Stokes solvers, 
f. Se
tion 7.1.
• FixedPtDefe
tCorrCL: Algorithm 7.1 with step length ωm = 1,
• AdaptFixedPtDefe
tCorrCL: Algorithm 7.1 with step length ωm as in(7.6).Both are template 
lasses where the template parameter SolverT determinesthe type of the Oseen solver. The latter is applied to solve the linearizedproblems inside the �xed point loop.Oseen solvers, 
f. Se
tion 7.2.
• S
hurSolverCL: Algorithm 7.3,
• PS
hurSolverCL: Algorithm 7.3 with S
hur 
omplement pre
ondition-ing,
• UzawaCL: a variant of the Uzawa algorithm des
ribed in [BPV97℄,
• Inexa
tUzawaCL: Algorithm 7.4,
• PMResSPCL: pre
onditioned MINRES solver for the Stokes problem.
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lasses provide template parameters ULP
T, S
hurP
T to deter-mine the type of the pre
onditioners QT , QS , for the upper left blo
k T of Kand the S
hur 
omplement S, respe
tively.For the appli
ation of a general Krylov subspa
e method to the saddle pointmatrix K one 
an use the 
lass Blo
kMatrixSolverCL<SolverT> where thetemplate parameter SolverT spe
i�es the type of the Krylov solver.Krylov subspa
e methods
• CGSolverCL, PCGSolverCL: CG method and pre
onditioned variant,
• MResSolverCL, PMResSolverCL: MINRES method and pre
onditionedvariant,
• GMResSolverCL, GMResRSolverCL: GMRES method and GMRES-Re-
ursive method with left or right pre
onditioning,
• BiCGStabSolverCL: pre
onditioned BiCGSTAB method,
• GCRSolverCL: pre
onditioned GCR method.The 
lasses representing pre
onditioned Krylov subspa
e methods have a tem-plate parameter P
T designating the type of the pre
onditioner.Multigrid methodThe MGSolverBaseCL represents a multigrid solver (V-
y
le) with a �xed num-ber of smoothing steps. There are two template parameters SmootherT andSolverT whi
h 
ontrol the type of the smoother and the 
oarse grid solver,respe
tively. The multigrid method is spe
ial in the sense that it requires ahierar
hy of linear systems

Aℓxℓ = bℓ, ℓ = 0, 1, . . . , Land prolongations
Pℓ : Vℓ−1

h → Vℓ
h, ℓ = 1, . . . , L,to interpolate from level ℓ−1 to the �ner level ℓ. Due to the nestedness of themultilevel triangulation M the hierar
hy of �nite element spa
es is nested,i. e., Vℓ−1

h ⊂ Vℓ
h, hen
e the prolongations are de�ned in the 
anoni
al way.For ea
h level the 
orresponding sti�ness and prolongation matri
es Aℓ, Pℓand right-hand side ve
tor bℓ are stored in a MGLevelDataCL obje
t. The
orresponding restri
tion matri
es are given by Rℓ := PT

ℓ and don't have tobe stored separately. The hierar
hy of matri
es and ve
tors is represented bythe data stru
ture MGDataCL whi
h is simply a list of MGLevelDataCL obje
ts.
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kage DROPSPre
onditionersThe DROPS solver toolbox 
omprises the pre
onditioner 
lasses given in thefollowing lists. For a dis
ussion of the pre
onditioners we refer to Se
tion 7.2.3.Matrix-based pre
onditioners
• JACP
CL: one step of the Ja
obi pre
onditioner,
• GSP
CL, SGSP
CL: one step of the Gauss-Seidel or symmetri
 Gauss-Seidel pre
onditioner,
• SSORP
CL, MultiSSORP
CL: one or multiple steps of the SSOR pre
on-ditioner,
• DummyP
CL: no pre
onditioningFor most of these pre
onditioners there exists a variant whi
h 
an be used assmoother for the multigrid solver.The wrapper 
lass SolverAsPreCL enables the use of a solver obje
t as apre
onditioner. That means that the Apply(...) member fun
tion of thewrapper 
lass 
alls the Solve(...) member fun
tion of the solver 
lass withinitial guess zero. This me
hanism is used in Example 9.1 in the de�nitionof the pre
onditioner for the upper left blo
k, ULP
, whi
h wraps the solverobje
t ULsolver.S
hur 
omplement pre
onditioners QS

• ISPreCL: the S
hur 
omplement pre
onditioner (7.16) where M−1
µ and

A−1
ρ are repla
ed by one step of the SSOR pre
onditioner applied to the
orresponding pressure matri
es,

• ISNonlinearPreCL: the same S
hur 
omplement pre
onditioner, butwith M−1
µ and A−1

ρ repla
ed by some iterations of a Krylov subspa
emethod whi
h 
an be 
hosen by means of a template argument,
• ISBBTPreCL: the variant of the S
hur 
omplement pre
onditioner (7.16)des
ribed in Remark 7.7, usually applied in 
ase of an extended pressurespa
e,
• MinCommPreCL: the minimal 
ommutator pre
onditioner (7.20) for Oseenproblems des
ribed in Remark 7.8.The DiagBlo
kPreCL is used in 
onjun
tion with solvers of type Blo
kMatrix-SolverCL. It 
ombines a pre
onditioner QT for the upper left blo
k with a
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onditioner QS for the S
hur 
omplement yielding the diagonal blo
k pre-
onditioner QK de�ned in (7.11).9.1.8. Input and outputIn this se
tion we des
ribe input and output interfa
es for di�erent types ofdata.Numeri
al dataVe
tors and sparse matri
es 
an be saved to and restored from �les by usingthe input and output stream operators, >> and <<, implemented for Ve
torCLand MatrixCL obje
ts. The matrix format 
an be read by MATLAB [Mat℄whi
h is very useful, e. g., for 
omputing 
ondition numbers or the spe
trumof a matrix.Geometri
al dataThe initial triangulation T0 
an be read from a mesh �le generated withthe mesh generator GAMBIT [Gam℄. To 
onstru
t the 
orresponding mul-tilevel triangulation a ReadMeshBuilderCL obje
t 
ontaining the mesh �lename is passed to the 
onstru
tor of the MultiGridCL obje
t. Here the
on
ept of the MGBuilderCL 
lass is applied, 
f. Se
tion 9.1.1, from whi
hReadMeshBuilderCL is derived. Other input �le formats 
an be implementedby adding further an
estors of MGBuilderCL.For the input and output of a hierar
hy of triangulationsM = (T0, . . . , TJ ) weuse a self-de�ned �le format. For saving a MultiGridCL obje
t representing amultilevel triangulation we use a software te
hnique 
alled serialization. Forthis reason the 
lass representing this task is 
alled MGSerializationCL. Thedeserialization is done by the 
lass FileBuilderCL, whi
h is an an
estor ofMGBuilderCL and is passed to the 
onstru
tor of MultiGridCL. It reads the�les written out before by a MGSerializationCL obje
t and re
reates the
orresponding MultiGridCL obje
t.In this way, a 
an
elled simulation run 
an be restarted from the last timestep where a serialized multilevel triangulation was saved to the �le system.In a �rst step the geometri
al data is deserialized from the �le system usingthe 
lass FileBuilderCL. After that the ve
tors representing the numeri
al
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kage DROPSsolutions are restored by means of the 
lass ReadEnsightP2SolCL, see thesubsequent se
tion.VisualizationFor 3D visualization purposes we mainly use the software pa
kage Ensight[Ens℄. The 
lass EnsightP2SolOutCL writes out the geometri
al information(tetrahedra and 
oordinates of the verti
es) and the numeri
al solutions (uh,
p, ϕ evaluated in all P2 degrees of freedom) using a spe
i�
 Ensight �le format.This format 
an also be read by other visualization pa
kages su
h as ParaView[Para℄.The 
lass ReadEnsightP2SolCL restores the ve
tors u, p and ϕ from the �leswritten out by the 
lass EnsightP2SolOutCL. However, this only works prop-erly if the multilevel triangulations at the time of storing and restoring arethe same.There are interfa
es to some other visualization tools as well.
• GeomMGOutCL, GeomSolOutCL for visualization of geometry and numeri-
al solution with Geomview [Geo℄,
• Te
PlotSolOutCL, Te
Plot2DSolOutCL for visualization of geometryand numeri
al solution (in 3D or on a 2D 
ut plane, respe
tively) withTe
Plot [Te
℄,
• MapleMGOutCL, MapleSolOutCL for visualization of geometry and nu-meri
al solution with Maple [Map℄.9.2. ParallelizationFor the simulation of two-phase �ow problems the 
omputational 
omplexityis very high and thus the use of parallel ma
hines is of great importan
e. Inthis se
tion we will only 
onsider a parallelization for distributed memory ma-
hines by means of a message passing interfa
e (MPI [Mes94, MPI℄). Sharedmemory parallelization by means of OpenMP [Ope℄ has also been applied tosome parts of DROPS, 
f. [TSaM+05℄ for a des
ription of the parallelizedroutines and some ben
hmark 
omputations. Both parallelization 
on
epts
an be 
ombined when using multi-
ore pro
essors whi
h are 
onne
ted bya high-speed network. For the parallelization of DROPS we pursue su
h a
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h due to the growing importan
e of multi-
orear
hite
tures.In Se
tion 9.2.1 we present a data distribution format for the geometri
aldata and, based on this, we also derive a distribution format for the numeri
aldata. In De�nition 9.2 below the geometri
al data distribution format will bemade mathemati
ally pre
ise by a formal spe
i�
ation of a so-
alled admissiblehierar
hi
al de
omposition. This data distribution format is su
h that thefollowing holds:1. Let T ∈ Gk be an element from the hierar
hi
al surplus on level k, 
f.De�nition 3.7. Then T is stored on one pro
essor, say p, as a so-
alledmaster element. In 
ertain 
ases (explained below) a ghost 
opy of T isstored on one other pro
essor, say q.2. The 
hildren of T (if they exist) are all stored as masters either onpro
essor p or, if T has a ghost 
opy, on pro
essor q. For T ∈ Gk, k > 0,the parent of T or a ghost 
opy of it is stored on the same pro
essor pwhere T is stored as master.For the multilevel re�nement algorithm a 
ru
ial point is that for a tetrahedron
T one needs information about all 
hildren of T , 
f. Se
tion 3.2.3. Due toproperty 2 this information is available on the lo
al pro
essor (p or q) without
ommuni
ation. The �rst property shows that in a 
ertain sense the overlapof tetrahedra is small.In a parallel run of a simulation the 
omputational load has to be distributeduniformly among the pro
essors. So in pra
ti
e an adaptive �nite elementsolver has to be 
ombined with dynami
 load balan
ing and data migrationbetween the pro
essors. This is the topi
 of Se
tion 9.2.2.The main results 
on
erning the admissible hierar
hi
al de
omposition, theparallel multilevel re�nement method and the load balan
ing strategy 
an besummarized as follows:
• An admissible hierar
hi
al de
omposition has the desirable properties 1(small storage overhead) and 2 (data lo
ality) from above. This resultis given in Se
tion 9.2.1.
• The appli
ation of the parallel re�nement algorithm to an admissiblehierar
hi
al de
omposition is well-de�ned and results in an admissiblehierar
hi
al de
omposition. This is proved in [GR05℄.
• Given an admissible hierar
hi
al de
omposition one 
an apply a suit-able load balan
ing and data migration algorithm su
h that after data
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kage DROPSmigration one still has an admissible hierar
hi
al de
omposition. We
omment on this in Se
tion 9.2.2.9.2.1. Data distributionDistribution of geometri
al data: admissable hierar
hi
al de
ompositionLet the sequen
e M = (T0, . . . , TJ ) of triangulations be a multilevel trian-gulation and H = (G0, . . . ,GJ ) the 
orresponding hierar
hi
al de
omposition.In this se
tion we introdu
e a parti
ular format for the distribution of thetetrahedra in H among pro
essors on a parallel ma
hine. We assume that thepro
essors are numbered by 1, . . . , P .For the set of elements in the hierar
hi
al surplus on level k that are storedon pro
essor p we introdu
e the notation
Gk(p) := {T ∈ Gk : T is stored on pro
essor p }and we de�ne

H(p) := (G0(p), . . . ,GJ (p)).Note that in general H(p) is not a hierar
hi
al de
omposition (in the sense ofDe�nition 3.7). The sequen
ẽ
H = (H(1), . . . ,H(P )) (9.1)is 
alled a distributed hierar
hi
al de
omposition (
orresponding to H).In general the interse
tion Gk(p) ∩Gk(q), p 6= q, may be nonempty. Note thatsu
h an overlapping distribution of the elements is ne
essary, due to the fa
tthat parents and 
hildren are linked by pointers. Consider, for example, thesituation depi
ted in Figure 9.3 where a parent T and its 
hild T ′ ∈ K(T )are stored on di�erent pro
essors, say 1 and 2. Sin
e pointers from one lo
almemory to another are not allowed in a distributed memory setting, we haveto use a 
opy to realize this pointer. One 
ould store a 
opy of T on pro
essor 2to represent the link between T and T ′ as a pointer on pro
essor q. If one doesnot allow su
h ghost 
opies, all an
estors and des
endants of a tetrahedronmust be on the same pro
essor. This would 
ause very 
oarse data granularity,poor load balan
ing and hen
e low parallel e�
ien
y.For ea
h level k and pro
essor p we introdu
e a set of master elements,

Mak(p) ⊂ Gk(p), and a set of ghost elements, Ghk(p) ⊂ Gk(p). In the for-mulation of the 
onditions below we use the two 
onventions K(T ) := ∅ ifstatus(T ) = NoRef and MaJ+1(p) := ∅.
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P1 migrationto P2

P1 P2

ghost TK(T )

Figure 9.3.: Ghost elements are required to represent links between parents andtheir 
hildren as pointers a
ross memory boundaries are not allowed for distributedmemory ma
hines. In the depi
ted example the parent T is stored on pro
essor P2as a ghost to represent the link to its 
hildren K(T ).We now formalize the 
onditions on data distribution as follows.De�nition 9.2 (Admissible hierar
hi
al de
omposition)The distributed hierar
hi
al de
omposition H̃ is 
alled an admissible hierar
hi-
al de
omposition if for all k = 1, . . . , J the following 
onditions are ful�lled:(A1) Partitioning of Gk(p): The sets of masters and ghosts form a disjointpartitioning of Gk(p):
∀ p Mak(p) ∪ Ghk(p) = Gk(p) and Mak(p) ∩ Ghk(p) = ∅(A2) Existen
e: Every element from Gk is represented as a master elementon level k:

Gk =

P⋃

p=1

Mak(p)(A3) Uniqueness: Every element from Gk is represented by at most onemaster element on level k:
∀ p1, p2 : Mak(p1) ∩Mak(p2) 6= ∅ : p1 = p2(A4) Child�parent lo
ality: A 
hild master element and its parent (asmaster or ghost) are stored on the same pro
essor:

∀ p ∀T ∈ Gk ∀T ′ ∈ K(T ) : T ′ ∈ Mak+1(p) : T ∈ Gk(p)
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kage DROPS(A5) Ghosts are parents: Ghost elements always have 
hildren:
∀ p ∀T ∈ Ghk(p) : K(T ) 6= ∅(A6) Ghost�
hildren lo
ality: A ghost element and its 
hildren are storedon the same pro
essor:

∀ p ∀T ∈ Ghk(p) : K(T ) ⊂ Mak+1(p) ⋄Remark 9.3Consider a 
onsistent initial triangulation T0 = G0 with a non-overlappingdistribution of the tetrahedra: G0(p) ∩ G0(q) = ∅ for all p 6= q. In this 
aseall tetrahedra 
an be stored as masters and there are no ghosts. Then thedistributed hierar
hi
al de
omposition H̃ = ((G0(1)), . . . , (G0(P ))) is obviouslyadmissible. ⋄Two elementary results are given in the following lemma.Lemma 9.4Let H̃ as in (9.1) be a distributed hierar
hi
al de
omposition. The followingholds:1. If the 
onditions (A3), (A5) and (A6) are satis�ed then for any elementfrom Gk there is at most one 
orresponding ghost element:
∀T ∈ Gk ∀ p, q : T ∈ Ghk(p) ∩ Ghk(q) : p = q2. If the 
onditions (A1), (A2), (A3), (A4) and (A6) are satis�ed then all
hildren of a parent are stored as master elements on one pro
essor:

∀T ∈ Gk ∃ p : K(T ) ⊂ Mak+1(p)Proof. Given in [GR05℄.In [GR05℄ a parallel version of Algorithm 3.11 is presented whi
h is basedon an admissible hierar
hi
al de
omposition and is suitable for distributedmemory ma
hines. In our implementation we use the DDD pa
kage [DDD℄for the management of the distributed tetrahedra, fa
es, edges and verti
es.For a given input-multilevel triangulation the parallel method ParRe�nementprodu
es the same output-multilevel triangulation as the serial method Ser-Re�nement. In this sense the �
omputational part� of the algorithm is not
hanged. It is proved that the appli
ation of the parallel re�nement algorithmto an admissible hierar
hi
al de
omposition is well-de�ned and results in anadmissible hierar
hi
al de
omposition.
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ond result inLemma 9.4 and (A4) it follows that either all 
hildren are masters on thesame pro
essor p as T , or they are masters on some other pro
essor q. In thelatter 
ase, the element T has a 
orresponding ghost element on pro
essor q.Due to this property, in the parallel re�nement algorithm we use the strategy:
• If a parent tetrahedron T has a ghost 
opy then operations that involve
hildren of T are performed on the pro
essor on whi
h the ghost andthe 
hildren are stored.From 
ondition (A4) it follows that a 
hild master element has its parent (asghost or as master) on the same pro
essor. Therefore we use the strategy:
• Operations that involve the parent of T are performed on the pro
essoron whi
h the master element of T and its parent are stored.The �rst result in Lemma 9.4 shows that every T ∈ H has at most one ghost
opy. Moreover, due to (A5) all leaves (T ∈ TJ) have no ghost 
opies. In thissense the overlap of tetrahedra between the pro
essors is small. ⋄The main di�eren
es of ParRe�nement 
ompared to the serial version Ser-Re�nement (Algorithm 3.11) are the following:
• After the 
all of DetermineMarks(Gk) in step (1) of phase I the edgere�nement patterns have to be 
ommuni
ated to keep them 
onsistenton all pro
essors.
• If simpli
es are deleted, they have to be logged o� from DDD.
• If new simpli
es are 
reated, they have to be logged in to DDD. Ad-ditionally, simpli
es on pro
essor boundaries have to be identi�ed withea
h other.
• After phase II the maximum number of levels has to be determined and
ommuni
ated among the pro
essors.Distribution of numeri
al dataLet x ∈ R

N a ve
tor and A ∈ R
N×N a (sparse) matrix. The numbering

J = {1, . . . , N} is asso
iated to 
ertain degrees of freedom of the hierar
hi
alde
omposition H. Based on the distributed hierar
hi
al de
omposition H̃ wewill de�ne a 
orresponding distribution of the numeri
al data x and A. Forthis purpose we �rst introdu
e the notion of a domain de
omposition.
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Figure 9.4.: Domain de
omposition for P = 8 pro
essors. Ea
h 
olor represents adi�erent pro
essor.De�nition 9.6 (Domain de
omposition)LetH be a hierar
hi
al de
omposition and H̃ its admissible distribution amongthe pro
essors. Due to the 
onditions (A2) and (A3) every tetrahedron T ∈ H
an be assigned a unique pro
essor on whi
h T is stored as a master element.In other words, we have a well-de�ned fun
tion master : H → {1, . . . , P} thatis given by master(T ) = p ⇔ T ∈ Maℓ(T )(p).Here ℓ(T ) is the level of T , 
f. De�nition 3.7. For 0 ≤ j ≤ J and 1 ≤ p ≤ Pwe de�ne

Tj(p) := {T ∈ Tj : master(T ) = p } and Ωj(p) :=
⋃

T∈Tj(p)

T.Then for ea
h 0 ≤ j ≤ J the sequen
e (Tj(1), . . . , Tj(P )) is a partition of thetriangulation Tj (due to (A2), (A3)) and is 
alled the domain de
ompositionof level j 
orresponding to the admissible hierar
hi
al de
omposition H̃. ⋄Figure 9.2.1 shows a domain de
omposition for P = 8 pro
essors.A domain de
omposition of level j automati
ally indu
es a distribution ofthe numeri
al data on level j. Without loss of generality we assume thatthe (global) numbering J = {1, . . . , N} is asso
iated with the �nest level J .Let J (p) = {1, . . . , Np} be a (lo
al) numbering of the degrees of freedom ofthe lo
al triangulation TJ(p) on pro
essor p, 1 ≤ p ≤ P . Then the relationbetween a lo
al number i ∈ J (p) and its global 
ounterpart j ∈ J is given bythe 
oin
iden
e matrix Ip ∈ R
N×Np ,

(Ip)i,j :=







1 if degree of freedom with global number j ∈ J existson pro
essor p with lo
al number i ∈ J (p),

0 else.Degrees of freedom whi
h are lo
ated on multiple pro
essors form the so 
alledpro
essor boundary.
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umulated and distributed storage)For a (global) ve
tor x ∈ R
N the sequen
e

xA = (I1x, . . . , IPx) ∈ R
N1 × . . .× R

NPis 
alled the 
orresponding a

umulated ve
tor. That means that for unknownson a pro
essor boundary ea
h adja
ent pro
essor stores the same global value.The sequen
e xD = (x1, . . . , xP ) of ve
tors xp ∈ R
Np is 
alled the distributedve
tor 
orresponding to x, if

x =
P∑

p=1

IT
p xp.In this 
ase the global value of an unknown on a pro
essor boundary is thesum of all lo
al values stored on the adja
ent pro
essors. The same holds forentries of a distributed matrix AD = (A1, . . . , AP ) with

A =

P∑

p=1

IT
p ApIp.

⋄Remark 9.8 (Computation of distributed sti�ness matrix)For a sti�ness matrix A ∈ R
N×N the lo
al distributed matrix Ap ∈ R

Np×Np
oin
ides with the sti�ness matrix 
orresponding to the subdomain ΩJ (p) withtriangulation TJ (p). Thus the lo
al matri
es Mp 
an be set up independentlyby the di�erent pro
essors p = 1, . . . P without any 
ommuni
ation. Further-more, the parallelization of the Setup routines (
f. Se
tion 9.1.4) is a trivialtask. ⋄The 
onversion of a distributed into an a

umulated ve
tor is a
hieved bysumming up the ve
tor entries on pro
essor boundaries whi
h requires 
om-muni
ation between adja
ent pro
essors. Obviously, the 
onversion in theother dire
tion is not unique. For 
omputing the matrix-ve
tor multipli
ation
y = Ax we use the a

umulated storage xA as input and obtain the result y

Din a distributed fashion:
Ax =

(
P∑

p=1

IT
p ApIp

)

x =

P∑

p=1

IT
p Ap(Ipx)
︸ ︷︷ ︸

=:y
p

= y.Hen
e, the 
omputation of the matrix-ve
tor multipli
ation does not requireany 
ommuni
ation. The s
alar produ
t of two ve
tors x, y 
an be 
omputed



160 9. Software pa
kage DROPSe�
iently if one of them is stored a

umulated, for example xA, and the otherone distributed, y
D
. Then the 
omputation of

(x, y) = xT
P∑

p=1

IT
p yp

=

P∑

p=1

(Ipx)
T y

p
=

P∑

p=1

(Ipx, yp
)only requires the global summation of P real numbers (obtained by a 
all toMPI::AllRedu
e(...)).9.2.2. Distribution of work loadConsidering the simulation of a rising bubble as an example, during an adap-tive simulation run the multilevel triangulationM will 
hange as the re�ne-ment zone is moving upwards following the bubble geometry. Hen
e, thedistributed hierar
hi
al de
omposition H̃ and the numeri
al data have to beredistributed from time to time to ensure a balan
e of the 
omputational load.Otherwise the situation may o

ur that almost all unknowns are stored on onepro
essor, say p, while the others only have to solve problems of small size. Onthe one hand this leads to an ine�
ient usage of the overall memory. On theother hand runtime s
alability severely de
reases sin
e all pro
essors have towait at syn
hronization points su
h as MPI::AllRedu
e(...) until pro
essor

p has �nished its work.The 
hallenge of the so-
alled load balan
ing is to �nd a mapping
m : T → {1, . . . , P}des
ribing the distribution of the tetrahedra among the pro
essors su
h thata) the 
orresponding pro
essor boundary is as small as possible andb) all pro
essors have almost the same number of tetrahedra.This problem statement is equivalent to a graph partitioning problem whi
hwill be stated in De�nition 9.10. For this reason,m is also 
alled a partitioningof T . We now introdu
e the notion of a weighted dual graph.De�nition 9.9 (Weighted dual graph)For a triangulation T the 
orresponding dual graph G(T ) = (V,E) is givenby the node set V = T and the edge set E ⊂ T × T , where (T1, T2) ∈ E i�the tetrahedra T1, T2 share a 
ommon fa
e.By introdu
ing weight fun
tions α : V → R+ for nodes and β : E → R+for edges of the graph the 
omputational load α(vT ) of the 
orresponding
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Figure 9.5.: Dual graph for 2D triangulation.tetrahedron T and the amount of 
ommuni
ation β(eF ) for the 
orrespondingfa
e F 
an be des
ribed. Gw(T ) = (V,E, α, β) is 
alled a weighted dual graph.⋄Figure 9.5 shows a 2D example for a dual graph. For a subset Ṽ ⊂ V wede�ne α(Ṽ ) :=
∑

v∈Ṽ α(v) 
orresponding to the total load of Ṽ . For a givenpartitioning m the set
Ecut(m) := { (T1, T2) ∈ E : m(T1) 6= m(T2) }
orresponds to the fa
es forming the pro
essor boundary where 
ommuni
ationtakes pla
e.The graph partitioning problem is given by the following de�nition:De�nition 9.10 (Generalized graph partitioning problem)For a 
onstant C > 1 and a given weighted dual graph (V,E, α, β) �nd apartitioning m : V → {1, . . . , P} su
h that
costcomm(m) :=

∑

e∈Ecut(m)

β(e) → minand
α(Vp) ≤ C

α(V )

Pwith Vp := m−1(p). ⋄The graph partitioning problem belongs to the 
lass of NP-hard problems,in this sense an optimal partitioning 
annot be 
omputed e�
iently. Never-theless, there are a 
ouple of heuristi
 approa
hes with polynomial runtimeyielding reasonable results. For a survey on this topi
 we refer to [Cha98℄. We
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kage DROPSuse the pa
kage ParMETIS [Parb℄ whi
h realizes a parallel multilevel graphpartitioning algorithm des
ribed in [KK98℄.Based on a partitioning m 
omputed by a graph partitioning tool the tetra-hedra and numeri
al data are rearranged among the pro
essors. This phase is
alled data migration. To obtain again an admissible hierar
hi
al de
omposi-tion after the migration phase we have to ensure that the properties (A1)�(A5)hold. In parti
ular all 
hildren of a 
ommon parent have to stay together asmasters on a single pro
essor, 
f. Lemma 9.4. Thus in the following we givea de�nition for a redu
ed dual graph, where the 
hildren of a 
ommon parentare represented by a single multi-node. For this purpose we introdu
e a map
P :

J⋃

k=0

Gk →
J−1⋃

k=0

Gkfrom a tetrahedron T ∈ Gk to its parent tetrahedron P (T ) ∈ Gk−1, k =
1, . . . , J , with the 
onvention P (T ) = T for all T ∈ G0. For T ∈ T we de�nethe 
orresponding equivalen
e 
lass

[T ]P := {S ∈ T : P (S) = P (T ) }.De�nition 9.11 (Redu
ed dual graph)For a triangulation T let Gw(T ) = (V,E, α, β) be the 
orresponding weighteddual graph. The redu
ed dual graph G′
w(T ) = (V ′, E′, α′, β′) is given by theredu
ed node set

V ′ := { [T ]P : T ∈ T }indu
ing the redu
ed edge set
E′ := { (v′1, v

′
2) : ∃ v1 ∈ v′1, v2 ∈ v′2 : (v1, v2) ∈ E } \ { (v′, v′) : v′ ∈ V ′ }.The weight fun
tions α′, β′ are given by

α′(v′) :=
∑

v∈v′

α(v),

β′((v′1, v
′
2)) :=

∑

e∈E∩(v′
1
×v′

2
)

β(e). ⋄Figure 9.6 shows the redu
ed dual graph 
orresponding to the dual graphgiven in Figure 9.5. The tetrahedra forming a multi-node are surrounded bya bold frame. Note that the dual graph G(T ) in Figure 9.5 has 20 nodes and24 edges whereas the redu
ed dual graph G′(T ) in Figure 9.6 has only 8 nodesand 9 edges.
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Figure 9.6.: Redu
ed dual graph for 2D triangulation.After 
omputing a load balan
ing partitioning m′ : V ′ → {1, . . . , P} of theredu
ed dual graph G′
w(T ), for the data migration we use an migration al-gorithm des
ribed in [Gro02℄. The migration of the tetrahedra is 
arried outby means of the DDD pa
kage. After the migration for the new distributedhierar
hi
al de
omposition H̃ the propertymaster(T ) = m′([T ]P )holds. In [Gro02℄ it is shown that for an admissible input hierar
hi
al de-
omposition the distributed hierar
hi
al de
omposition after the migration isagain admissible.Remark 9.12 (Migration of numeri
al data)If a tetrahedron T is moved from one pro
essor to another, also 
ertain ve
torentries 
orresponding to the degrees of freedom on T have to be migrated. Thevalid migration of numeri
al data is a deli
ate task and will not be dis
ussedin this thesis. ⋄9.2.3. Current status and outlookThe parallel re�nement algorithm and load balan
ing strategy des
ribed in[Gro02℄ have been implemented in 2002 and were su

essfully applied on aparallel ma
hine with up to 64 pro
essors. This implementation has servedas a starting point for a further parallelization of DROPS whi
h began in2005 and is 
urrently 
ondu
ted by our partners at the Chair of S
ienti�
Computing, RWTH Aa
hen University. Sin
e then, more and more parallelfun
tionality has been added. At the 
urrent stage we are able to performparallel simulations of two-phase �ow problems on adaptive grids whi
h are
hanging in time.
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kage DROPSThe next steps will be the improvement of the e�
ien
y of the iterative solversand the design of e�
ient parallel pre
onditioners. We also need to implementa parallel version of the fast mar
hing algorithm, 
f. Se
tion 8.1, whi
h is stillmissing. The parallelization of the multigrid solver will require a redesign ofthe load balan
ing strategy, sin
e up to now we only 
onsider the migrationof the triangulation on the �nest level J , but not of all triangulation levels.This will also have an impa
t on the de�nition of the weight fun
tions α′ and
β′.
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10. Test 
asesIn this 
hapter we present several test 
ases. Some of them are designed toverify the fun
tionality of several numeri
al 
omponents su
h as the interfa
e
apturing by the level set method (Se
tion 10.1) and the reparametrization ofthe level set fun
tion by the Fast Mar
hing method (Se
tion 10.2). Other test
ases are used to numeri
ally measure the order of 
onvergen
e for di�erentdis
retizations of the surfa
e tension for
e (Se
tion 10.3) and di�erent �niteelement spa
es for the pressure (Se
tion 10.4).10.1. Adve
tion of the interfa
eConsider the unit 
ube Ω = [0, 1]3 and a ball
Ω1 = {x ∈ R : ‖x− xM‖ < 0.2 }inside with 
enter xM = (0.5, 0.25, 0.5). Take the �xed velo
ity �eldû(x) = c(y) · (y2, − y1, 0)where y = x − (0.5, 0.5, 0.5) and c(y) = 4‖y‖(0.5 − ‖y‖). Hen
e, û is a
ir
ular velo
ity �eld whi
h vanishes at the boundary ∂Ω, 
f. Figure 10.1 fora plot of û. We 
onsider the time interval [t0, tf ] = [0, 20] and de�ne thevelo
ity �eld u(x, t) =

{û(x) t ≤ 10,

−û(x) t > 10.I. e., u 
hanges its sign at the time moment t = 10. Note that for an interfa
e
Γ ⊂ Ω moving with velo
ity u(x, t) we have

Γ(t0 + t) = Γ(tf − t) for t ∈ [t0,
t0 + tf

2
] = [0, 10]. (10.1)For the initial value ϕ0 of the level set fun
tion we use the signed distan
efun
tion for the sphere Γ = ∂Ω1. As a test 
ase for the adve
tion of the167
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Figure 10.1.: Interfa
e for t = 0. Also shown is the velo
ity �eld û on the sli
e
z = 0.

t = 5

t = 15

t = 10

t = 20Figure 10.2.: Interfa
e for di�erent time steps.
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Figure 10.3.: Zero level and 
ontour lines on sli
e z = 0 before (left) and afterreparametrization (right).interfa
e we perform 200 time steps of size dt = 0.1 of the level set equation(2.25). The triangulation of Ω 
onsists of 24×24×24 sub
ubes ea
h subdividedinto six tetrahedra yielding 117649 unknowns for the level set fun
tion ϕ. Theresults for di�erent time steps are shown in Figure 10.2. As one 
an see,the interfa
es for t ∈ {0, 20} and for t ∈ {5, 15} are almost identi
al, whi
his reasonable regarding (10.1). However, we did not exa
tly measure thedis
repan
ies.10.2. ReparametrizationWe 
onsider the 
ubi
 domain Ω = [−1, 1]3 and the s
alar fun
tion
ϕ(x) =

∣
∣x · (1 + 0.2 g(x)

)∣
∣− 0.5, x ∈ Ω,where g(x) = cos(10x) cos(10y) cos(10z) for x = (x, y, z) ∈ Ω. The zero levelof ϕ and 
ontour lines of ϕ on the sli
e z = 0 are shown in Figure 10.3 onthe left. Apparently, ϕ is not a distan
e fun
tion as its 
ontour lines are notequidistant.For spatial dis
retization Ω is split into 24× 24× 24 sub
ubes, where ea
h ofthem is subdivided into six tetrahedra. The 
orresponding P2 dis
retization of

ϕ requires 117649 unknowns. Applying the Fast Mar
hing method des
ribed inSe
tion 8.1 we obtain the reparametrized fun
tion ϕ̃, whi
h is an approximatedistan
e fun
tion, 
f. Figure 10.3 on the right. Comparing ϕ and ϕ̃, the
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Figure 10.4.: Lower half part of the 4 times re�ned mesh T4.zero level is only slightly 
hanged. A quantitative 
omparison measuring thedi�eren
e of the 
orresponding interfa
es has not been performed, yet.10.3. Approximation order of surfa
e tensionfor
e dis
retizationIn this se
tion we present results of a numeri
al experiment whi
h indi
atesthat the O(
√
h) bound in Corollary 5.23 is sharp. Furthermore, for the im-proved approximation des
ribed in Se
tion 5.3.4 the O(h) bound will be 
on-�rmed numeri
ally.We 
onsider the domain Ω := [−1, 1]3 where the ball Ω1 := {x ∈ Ω : ‖x‖ <

R } is lo
ated in the 
enter of the domain. In our experiments we take R = 1
2 .For the dis
retization a uniform tetrahedral mesh T0 is used where the ver-ti
es form a 6 × 6 × 6 latti
e, hen
e h0 = 1

5 . This 
oarse mesh T0 is lo
allyre�ned in the vi
inity of Γ = ∂Ω1 using the adaptive re�nement algorithmpresented in Se
tion 3.2.3. This repeated re�nement pro
ess yields the gradu-ally re�ned meshes T1, T2, . . . with lo
al (i. e., 
lose to the interfa
e) mesh sizes
hi = 1

5 · 2−i, i = 1, 2, . . .. Part of the tetrahedral triangulation T4 is shownin Figure 10.4. The 
orresponding �nite element spa
es Vi := Vhi = (Vhi)
3
onsist of ve
tor fun
tions where ea
h 
omponent is a 
ontinuous pie
ewisequadrati
 fun
tion on Ti.The interfa
e Γ = ∂Ω1 is a sphere and thus the 
urvature κ = − 2

R is 
onstant.
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retization 171If we dis
retize the �ow problem using Vi as dis
rete velo
ity spa
e, we haveto approximate the surfa
e tension for
e
fΓ(v) =

2τ

R

∫

Γ

nΓ · v ds = τ

∫

Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vi. (10.2)To simplify notation, we take a �xed i ≥ 0 and the 
orresponding lo
al meshsize parameter is denoted by h = hi. For the approximation of the interfa
ewe use the approa
h des
ribed in Se
tion 5.1.2.The dis
rete approximation of the surfa
e tension for
e is
fΓh

(v) = τ

∫

Γh

∇Γh
idΓh

·∇Γh
v ds, v ∈ Vi.We are interested in, 
f. Corollary 5.23,

‖fΓ − fΓh
‖V′

i
:= supv∈Vi

fΓ(v)− fΓh
(v)

‖v‖1 . (10.3)The evaluation of fΓ(v), for v ∈ Vi, requires the 
omputation of integralson 
urved triangles or quadrilaterals Γ∩ S where S is a tetrahedron from themesh Ti. We are not able to 
ompute these exa
tly. Therefore, we introdu
ean arti�
ial for
e term whi
h, in this model problem with a known 
onstant
urvature, is 
omputable and su�
iently 
lose to fΓ.Lemma 10.1For v ∈ V = (H1
0 (Ω))3 de�ne

f̂Γh
(v) :=

2τ

R

∫

Γh

nh · v ds,where nh is the pie
ewise 
onstant outward unit normal on Γh. Then thefollowing inequality holds:
‖fΓ − f̂Γh

‖V′ ≤ ch. (10.4)Proof. Let Ω1,h ⊂ Ω be the domain en
losed by Γh, i. e., ∂Ω1,h = Γh. Wede�ne D+
h := Ω1 \Ω1,h, D−

h := Ω1,h \Ω1 and Dh := D+
h ∪D−

h . Due to Stokestheorem, for v ∈ V we have
|fΓ(v)− f̂Γh

(v)| = 2τ

R

∣
∣
∣
∣
∣

∫

Ω1

div v dx− ∫
Ω1,h

divv dx∣∣∣∣
∣

(10.5)
=

2τ

R

∣
∣
∣
∣
∣

∫

D+

h

div v dx− ∫
D−

h

div v dx∣∣∣∣
∣

(10.6)
≤ 2τ

R

∫

Dh

| div v| dx. (10.7)
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asesUsing the Cau
hy-S
hwarz inequality, we get the estimate
|fΓ(v)− f̂Γh

(v)| ≤ c
√

meas3(Dh) ‖v‖1 for all v ∈ V.whi
h results in the upper bound
‖fΓ − f̂Γh

‖V′ ≤ c
√

meas3(Dh). (10.8)Note that for the pie
ewise planar approximation Γh of the interfa
e Γ wehave meas3(Dh) = O(h2) and thus (10.4) holds.From Lemma 10.1 we obtain ‖fΓ−f̂Γh
‖V′

j
≤ c h with a 
onstant c independentof j. Thus we have

‖f̂Γh
− fΓh

‖V′
i
− ch ≤ ‖fΓ − fΓh

‖V′
i
≤ ‖f̂Γh

− fΓh
‖V′

i
+ ch. (10.9)The term ‖f̂Γh

− fΓh
‖V′

i

an be evaluated as follows. Sin
e Γh is pie
ewiseplanar and v ∈ Vi is a pie
ewise quadrati
 fun
tion, for v ∈ Vi, both f̂Γh

(v)and fΓh
(v) 
an be 
omputed exa
tly (up to ma
hine a

ura
y) using suitablequadrature rules.For the evaluation of the dual norm ‖ · ‖V′

i
we pro
eed as follows. Let

{vj}j=1,...,n (n := dimVi) be the standard nodal basis in Vi and JVi
: R

n →Vi the isomorphism JVi
x =

∑n
k=1 xkvk. Let Mh be the mass matrix and Ahthe sti�ness matrix of the Lapla
ian:

(Mh)ij :=

∫

Ω

vi · vj dx,
(Ah)ij :=

∫

Ω

∇vi · ∇vj dx. 1 ≤ i, j ≤ n.De�ne Ch = Ah +Mh. Note that for v = JVi
x ∈ Vi we have ‖v‖21 = 〈Chx, x〉.Take e ∈ V′

i and de�ne e ∈ R
n by ej := e(vj), j = 1, . . . , n. Due to

‖e‖V′
i
= supv∈Vi

|e(v)|
‖v‖1 = sup

x∈Rn

|∑n
j=1 xje(vj)|
√

〈Chx, x〉we obtain
‖e‖V′

i
= sup

x∈Rn

〈x, e〉
√

〈Chx, x〉
= ‖C−1/2

h e‖ =

√

〈C−1
h e, e〉. (10.10)Thus for the 
omputation of ‖e‖V′

i
we pro
eed in the following way:
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i ‖f̂Γh

− fΓh
‖V′

i
order ‖f̂Γh

− f̃Γh
‖V′

i
order0 1.79 E-1 � 1.32 E-1 �1 1.40 E-1 0.35 4.43 E-2 1.572 1.03 E-1 0.45 1.46 E-2 1.613 7.22 E-2 0.51 5.06 E-3 1.524 5.02 E-2 0.53 1.78 E-3 1.51Table 10.1.: Error norms and numeri
al order of 
onvergen
e for di�erent re�ne-ment levels.1. Compute e =

(
e(vj)

)n

j=1
.2. Solve the linear system Ch z = e up to ma
hine a

ura
y.3. Compute ‖e‖V′

i
=
√

〈z, e〉.We applied this strategy to e := f̂Γh
−fΓh

. The results are given in the se
ond
olumn in Table 10.1. The numeri
al order of 
onvergen
e in the third 
olumnof this table 
learly indi
ates an O(
√
h) behavior. Due to (10.9) this impliesthe same O(

√
h) 
onvergen
e behavior for ‖fΓ − fΓh

‖V′
i
. This indi
ates thatthe O(

√
h) bound in Corollary 5.23 is sharp.The same pro
edure 
an be applied with fΓh

repla
ed by the modi�ed (im-proved) approximate surfa
e tension for
e
f̃Γh

(v) = −τ
3∑

i=1

g̃h,i(vi)with g̃h,i as de�ned in (5.44). This yields the results in the fourth 
olumnin Table 10.1. For this modi�
ation the numeri
al order of 
onvergen
e issigni�
antly better, namely at least �rst order in h. From (10.9) it followsthat for ‖fΓ − f̃Γh
‖V′

i
we 
an expe
t O(hp) with p ≥ 1.Summarizing, we 
on
lude that the results of these numeri
al experiments
on�rm the theoreti
al O(

√
h) error bound derived in the analysis in Se
-tion 5.3.3 and show that the modi�ed approximation indeed leads to (mu
h)better results.Results of numeri
al experiments for a Stokes two-phase �ow problem usingboth fΓh

and f̃Γh
are presented in Se
tion 10.4.
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Ω1 Ω2

Γ

Figure 10.5.: 2D illustration of thephase distribution for test 
ase A with
Γ = Γ1.

Ω1

Ω2

ΓFigure 10.6.: 2D illustration of thephase distribution for test 
ase B.10.4. Pressure jump indu
ed by surfa
e tensionIn this se
tion we 
onsider the following Stokes problem on the domain Ω =
(−1, 1)3 using the notation from Chapter 5,

a(u,v) + b(v, p) = fSF(v) for all v ∈ V,
b(u, q) = 0 for all q ∈ Q. (10.11)Here fSF ∈ V′ is a surfa
e for
e term on the interfa
e Γ whi
h will be spe
i�edin the two test 
ases below. For simpli
ity we assume 
onstant vis
osity µ = 1.The �nite element dis
retization of (10.11) is as follows:

a(uh,vh) + b(vh, ph) = fSF,h(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh,
(10.12)where fSF,h ∈ V′

h is an approximation of fSF. We 
hoose a uniform initialtriangulation T0 where the verti
es form a 5×5×5 latti
e and apply an adaptivere�nement algorithm presented in [GR05℄. Lo
al re�nement of the 
oarse mesh
T0 in the vi
inity of Γ yields the gradually re�ned meshes T1, T2, T3, T4 withlo
al mesh sizes hΓ = hi = 2−i−1, i = 0, . . . , 4 at the interfa
e. For thedis
retization of u we 
hoose the standard �nite element spa
e of pie
ewisequadrati
s:Vh := {v ∈ C(Ω)3 : v|T ∈ P2 for all T ∈ Th, v|∂Ω = 0 }.We 
ompute the errors

eu := u∗ − uh and ep := p∗ − ph
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e tension 175interfa
e # ref. dimVh dimQ1
h dimQΓh

h dimQ0
h0 1029 125 150 3841 6801 455 536 1984

Γ = Γ1 2 31197 1657 1946 83843 131433 6235 7324 339844 537717 24093 28318 1363840 1029 125 190 3841 7749 543 768 2304
Γ = Γ2 2 42633 2313 3146 115563 200469 9607 12808 520884 871881 39229 51774 221796Table 10.2.: Dimensions of the �nite element spa
es for test 
ase A.for di�erent 
hoi
es of the pressure �nite element spa
e Qh to 
ompare theapproximation properties of the di�erent spa
es. In our experiments we usedpie
ewise 
onstant or 
ontinuous pie
ewise linear elements, i. e., the spa
es

Q0
h, Q1

h respe
tively, and the extended pressure spa
e QΓh

h introdu
ed in Se
-tion 5.4.2.10.4.1. Test 
ase A: Pressure jump at a planar interfa
eThis simple test 
ase is designed to examine interpolation errors of �nite el-ement spa
es for the approximation of dis
ontinuous jumps of the pressurevariable.For fSF we 
hoose the arti�
ial surfa
e for
e fSF = fASF where
fASF(v) = σ

∫

Γ

v · n ds, v ∈ Vand σ > 0 is a 
onstant. Note that fASF ∈ V′. Then the unique solution of(10.11) is given by
u∗ = 0, p∗ =

{

C in Ω1,

C + σ in Ω2.sin
e b(v, p∗ − C) = −
∫

Ω2
σ div v dx =

∫

Γ σvn ds for arbitrary v ∈ V. Here
C is a 
onstant su
h that ∫Ω p∗ dx = 0. In our 
al
ulations we used σ = 1.
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asesWe 
onsider two di�erent interfa
es Γ1 and Γ2, whi
h are both planes. Γ1 isde�ned by
Γ1 = { (x, y, z) ∈ Ω : z = 0 }.In this 
ase the two subdomains are given by Ω1 := { (x, y, z) ∈ Ω : z < 0 }and Ω2 := Ω \ Ω1, 
f. Figures 10.5 and 10.7. Interfa
e Γ2 is de�ned by

Γ2 = { (x, y, z) ∈ Ω : y + z = 1 }and the 
orresponding subdomains are Ω1 := { (x, y, z) ∈ Ω : y + z < 0 }and Ω2 := Ω \ Ω1, 
f. Figure 10.9. We emphasize that for both interfa
esthe interfa
e approximation Γh is exa
t, i. e., Γh = Γ, allowing for an exa
tdis
retization of the interfa
ial for
e, i. e., fASF,h = fASF.Due to g = 0, u∗ ∈ Vh and the fa
t that ‖fASF,h − fASF‖V′
h

= 0 the errorbound (5.12) simpli�es to
µ‖eu‖1 + ‖ep‖L2 ≤ c inf

qh∈Qh

‖p∗ − qh‖L2 . (10.13)Thus the errors in velo
ity and pressure are solely 
ontrolled by the approxi-mation property of the �nite element spa
e Qh.The number of velo
ity and pressure unknowns for the grids T0, . . . , T4 withdi�erent re�nement levels are shown in Table 10.2. Note that dimQΓh

h >
dimQ1

h due to the extended basis fun
tions and that dimQ0
h is even (mu
h)larger.Remark 10.2Note that for fSF = fΓ the 
orresponding pressure solution would be p∗ = 0as the 
urvature of Γ vanishes. Therefore this would not be an interesting test
ase. ⋄Interfa
e at Γ = Γ1For Γ = Γ1, the interfa
e Γ is lo
ated at the element boundaries of tetrahedrainterse
ted by Γ, i. e., for ea
h tetrahedron T interse
ting Γ we have that Γ∩Tis equal to a fa
e of T .In this spe
ial situation, the dis
ontinuous pressure p∗ 
an be representedexa
tly in the �nite element spa
e Q0

h of pie
ewise 
onstants, thus the �niteelement solution (uh, ph) ∈ Vh×Q0
h is equal to (u∗, p∗). This is 
on�rmed bythe numeri
al results: the exa
t solution (u∗, p∗) ful�lls the dis
rete equations(up to round-o� errors). The same holds for the extended �nite element spa
e

QΓh

h .
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Figure 10.7.: Sli
e of grid T ′

h at x =
0 after 3 re�nements for Γ = Γ1. Figure 10.8.: 1D-pro�le of pressurejump at x = y = 0 for ph ∈ Q1

h. 3re�nements, Γ = Γ1.# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order0 4.26E-02 � 4.26E-01 � 5.32E-01 �1 1.85E-02 1.2 3.41E-01 0.32 3.78E-01 0.492 7.09E-03 1.38 2.55E-01 0.42 2.68E-01 0.53 2.60E-03 1.45 1.85E-01 0.46 1.90E-01 0.54 9.37E-04 1.47 1.33E-01 0.48 1.34E-01 0.5Table 10.3.: Errors and numeri
al order of 
onvergen
e for the P2 − Q1

h �niteelement pair, Γ = Γ1.For the P1 �nite elements we obviously have p∗ /∈ Q1
h. The grid T3 after 3 timesre�nement and the 
orresponding pressure solution are shown in Figures 10.7and 10.8. The error norms for di�erent grid re�nement levels are shown inTable 10.3. The L2-error of the pressure shows a de
ay of O(h1/2). This
on�rms the theoreti
al results for the interpolation errorminq∈Q1

h
‖p∗−qh‖L2 ,
f. Se
tion 5.4.1 and (10.13). The velo
ity error in the H1-norm shows thesameO(h1/2) behavior, whereas in the L2-norm the error behaves likeO(h3/2).Interfa
e at Γ = Γ2We now 
onsider the 
ase Γ = Γ2. This problem 
orresponds to the 2Dproblem dis
ussed in Se
tion 5.4.1, 
f. Figure 5.6. Γ is 
hosen su
h that

Γ ∩ F 6= F for all fa
es of the triangulations T0, T1, T2, T3. As a 
onsequen
e,
p∗ /∈ Q0

h and p∗ /∈ Q1
h, but p∗ ∈ QΓh

h . We 
he
ked that the �nite element
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Figure 10.9.: Sli
e of grid at x = 0after 3 re�nements for Γ = Γ2. Figure 10.10.: 1D-pro�le of pressurejump at x = y = 0 for ph ∈ Q1

h. 3re�nements, Γ = Γ2.# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order0 2.53E-02 � 2.56E-01 � 5.44E-01 �1 1.24E-02 1.02 2.25E-01 0.18 3.99E-01 0.452 5.03E-03 1.31 1.75E-01 0.36 2.88E-01 0.473 1.89E-03 1.41 1.29E-01 0.44 2.06E-01 0.484 6.88E-04 1.46 9.35E-02 0.47 1.46E-01 0.49Table 10.4.: Errors and numeri
al order of 
onvergen
e for the P2 − Q1

h �niteelement pair, Γ = Γ2.solution (uh, ph) ∈ Vh ×QΓh

h is in fa
t equal to (u∗, p∗).Let us �rst dis
uss the results for P1 �nite elements. The grid T3 after 3 timesre�nement and the 
orresponding pressure solution for P1 �nite elements areshown in Figures 10.9 and 10.10 resp. The error norms for di�erent gridre�nement levels are shown in Table 10.4. The same 
onvergen
e orders as forthe 
ase Γ = Γ1 are obtained, 
f. Table 10.3.The results for the P0 �nite elements are shown in Table 10.5. Compared to
P1 �nite elements, the errors are slightly larger but show similar 
onvergen
eorders, i. e., O(h1/2) for the pressure L2-error and velo
ity H1-error as well as
O(h3/2) for the L2 velo
ity error.
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e tension 179# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order0 3.98E-02 � 3.49E-01 � 7.30E-01 �1 1.64E-02 1.28 2.75E-01 0.35 4.89E-01 0.582 6.14E-03 1.41 2.04E-01 0.43 3.35E-01 0.543 2.22E-03 1.47 1.48E-01 0.46 2.34E-01 0.524 7.92E-04 1.49 1.06E-01 0.48 1.65E-01 0.51Table 10.5.: Errors and numeri
al order of 
onvergen
e for the P2 − Q0

h �niteelement pair, Γ = Γ2.10.4.2. Test 
ase B: Stati
 bubbleIn this test 
ase (
f. Example 5.2) we 
onsider a stati
 bubble Ω2 = { x ∈
R

3 : ‖x‖ ≤ r } in the 
ube Ω with r = 2/3 (see Figure 10.6). We assume thatsurfa
e tension is present, i. e., fSF = fΓ with τ = 1. This problem has theunique solution
u∗ = 0, p∗ =

{

C in Ω1,

C + τκ in Ω2.Sin
e κ = −2/r, the pressure jump is equal to [p∗]Γ = 3. A 2D variant of thistest 
ase is presented in [FCD+06, GMT07, Smo01℄.Note that in this test 
ase the errors in velo
ity and pressure are in�uen
edby two error sour
es, namely the approximation error of the dis
ontinuouspressure p∗ in Qh (as in test 
ase A) and errors indu
ed by the dis
retizationof the surfa
e for
e fΓ, 
f. (5.19).The number of velo
ity and pressure unknowns for the grids T0, . . . , T4 withdi�erent re�nement levels are shown in Table 10.6. Note that dimQΓh

h issigni�
antly larger than dimQ1
h, but that dimQΓh

h ≪ dimVh.# test 
ase Bref. dimVh dimQ1
h dimQΓh

h0 1029 125 1761 5523 337 5332 30297 1475 22953 139029 6127 94134 569787 24373 37355Table 10.6.: Dimensions of the �nite element spa
es for test 
ase B.
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asesRemark 10.3As Γ has 
onstant 
urvature, for σ = − 2τ
r the two 
onsidered surfa
e for
es
oin
ide: fΓ = fASF. ⋄We 
onsider test 
ase B for two di�erent approximations of the CSF term fΓ,namely the �naive� Lapla
e-Beltrami dis
retization fΓh

as in (5.22) and themodi�ed Lapla
e-Beltrami dis
retization f̃Γh
as in (5.49). For the pressurespa
e we 
hoose Qh = Q1

h and Qh = QΓh

h . We did not 
onsider the spa
e Q0
has it yields results 
omparable to those for Q1

h. Table 10.7 shows the de
ayof the pressure L2-norm for the four di�erent experiments. We observe poor
O(h1/2) 
onvergen
e in the 
ases where ph ∈ Q1

h or when the surfa
e tensionfor
e fΓ is dis
retized by fΓh
. For the L2 and H1-norm of the velo
ity errorwe observe 
onvergen
e orders of O(h3/2) and O(h1/2), respe
tively, whi
h issimilar to the results in test 
ase A.We emphasize that only for the 
ombination of the extended pressure �niteelement spa
e QΓh

h with the improved approximation f̃Γh
we a
hieve O(hα)
onvergen
e with α ≥ 1 for the pressure L2-error. The velo
ity error in the

H1-norm shows a similar behavior (at least �rst order 
onvergen
e), in the
L2-norm we even have se
ond order 
onvergen
e, 
f. Table 10.8.For the improved Lapla
e-Beltrami dis
retization f̃Γh

the 
orresponding pres-sure solutions ph ∈ Q1
h and ph ∈ QΓh

h are shown in Figure 10.11.# ‖ep‖L2 for ph ∈ Q1

h ‖ep‖L2 for ph ∈ QΓh
href. fΓh order f̃Γh order fΓh order f̃Γh order0 1.60E+0 � 1.60E+0 � 3.12E-1 � 1.64E-1 �1 1.07E+0 0.57 1.07E+0 0.57 1.00E-1 1.64 4.97E-2 1.732 8.23E-1 0.38 8.23E-1 0.38 6.24E-2 0.68 1.66E-2 1.583 5.80E-1 0.51 5.80E-1 0.51 4.28E-2 0.54 7.16E-3 1.224 4.13E-1 0.49 4.13E-1 0.49 2.95E-2 0.54 2.83E-3 1.34Table 10.7.: Pressure errors for the P2 − Q1

h and P2 − QΓ

h �nite element pair anddi�erent dis
retizations of fΓ.
µ-dependen
e of the errorsWe repeated the 
omputations of (uh, ph) ∈ Vh × QΓh

h for the improvedLapla
e-Beltrami dis
retization f̃Γh
on the �xed grid T3 varying the vis
osity

µ. The errors are given in Table 10.9. We 
learly observe that the velo
ity
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Figure 10.11.: Finite element pressure solution ph ∈ Q1

h (on the left) and ph ∈ Q
Γh
h(on the right), visualized on sli
e of T ′

4 at z = 0.# ref. ‖eu‖L2 order ‖eu‖1 order0 7.16E-03 � 1.10E-01 �1 1.57E-03 2.19 4.26E-02 1.372 3.25E-04 2.28 1.70E-02 1.333 8.57E-05 1.92 7.43E-03 1.194 1.75E-05 2.29 2.40E-03 1.63Table 10.8.: Errors and numeri
al order of 
onvergen
e for the P2 − QΓ

h �niteelement pair and improved Lapla
e-Beltrami dis
retization f̃Γh .errors are proportional to µ−1 whereas the pressure error is independent of µ.This 
on�rms the bound in (5.19).
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µ ‖eu‖L2 ‖eu‖1 ‖ep‖L210 8.62E-06 7.51E-04 8.71E-031 8.57E-05 7.43E-03 7.16E-030.1 8.58E-04 7.44E-02 6.87E-030.01 8.57E-03 7.44E-01 6.88E-030.001 8.57E-02 7.43E+00 7.16E-03Table 10.9.: Errors for the P2 − QΓ

h �nite element pair and improved Lapla
e-Beltrami dis
retization f̃Γh on T3 for di�erent vis
osities µ.



11. Appli
ation examplesIn the following se
tions we present some simulation results for real two-phase�ow problems originating from droplet and falling �lm appli
ations. Note thatthe results were obtained with the serial version of the DROPS 
ode, as theparallel version does not provide the full fun
tionality, yet. For example, theXFEM dis
retization of the pressure (
f. Se
tion 5.4) is only implemented inthe serial version and still has to be parallelized. Hen
e, the meshes used in thefollowing examples are relatively 
oarse due to memory limitations or to keep
omputational times a�ordable. The parallelization of the whole DROPS 
odeis a 
ru
ial task for the future as it will enable more levels of grid re�nementto a
hieve more a

urate solutions.11.1. Levitated droplet in measuring 
ellThis experiment originates from an interdis
iplinary resear
h proje
t [SFB℄ onthe modeling of �ow and mass transfer phenomena at the interfa
e betweena single droplet and the surrounding �uid. For NMR measurements of thevelo
ity u, 
f. [AGHK+05℄, a drop is levitated in a spe
ial devi
e, whi
h
onsists of a verti
al glass tube with a narrowing in the middle. It is shownin horizontal position in Figure 11.1. A �uid �ows from the top of the tubedownwards. A drop whi
h is lighter than the surrounding �uid is inje
tedat the bottom of the tube and starts to rise upwards. At a 
ertain point itsbuoyan
y for
es are balan
ed by the for
es indu
ed by the 
ounter�ow and thedrop is levitated at a stable position. A photo of a levitated droplet is givenin Figure 1.1. The aim of the following numeri
al simulation is to 
omputethe equilibrium position and drop shape for two di�erent two-phase systems:
• System A: sili
on oil drop in heavy water (D2O).
• System B: n-butanol drop in water.The 
omputational domain Ω and its triangulation are illustrated in Fig-ure 11.1. It is 5 · 10−2m long and has a diameter of 7.2 · 10−3m at inlet183
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5.5mm 7.2mm

8mm 21.5mm

50mm

Figure 11.1.: 2D sket
h (top) and 3D triangulation (bottom) of measuring 
ell.and outlet and a diameter of 5.5 ·10−3m at the narrowest part of the tube, 
f.the 2D sket
h of the rotationally symmetri
 domain at the top of Figure 11.1.As an initial 
ondition the drop is assumed to be spheri
al with a radius of rdand is lo
ated 7 · 10−3m below the narrowest part. The initial triangulation
T0 
onsisting of 4635 tetrahedra is su

essively re�ned in the vi
inity of thedrop. The �nest triangulation T2 
onsists of 19254 tetrahedra for system Aand 11712 tetrahedra for system B, hen
e, for system A roughly 75% and forsystem B roughly 60% of the tetrahedra are lo
ated in the re�nement region.The boundary 
onditions are 
hosen as follows:
• a pres
ribed paraboli
 in�ow pro�le at the top of the tube (non-homo-geneous Diri
hlet boundary 
ondition for u) with maximum in�ow ve-lo
ity uin in the middle of the inlet,
• an out�ow boundary 
ondition at the bottom of the tube (homogene-neous natural boundary 
ondition) and
• no-slip boundary 
onditions at the remaining walls of the tube (homo-geneous Diri
hlet boundary 
ondition for u).For the initial 
onditions we set ϕ0 the signed distan
e fun
tion for the initialspheri
al drop and u0 the solution of the following stationary Stokes problem,

− div(µ(ϕ0)D(u)) +∇p = ρ(ϕ0)g,
divu = 0,

in Ω. (11.1)
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ell 185quantity System A System B(unit) sili
on oil heavy water n-butanol water
ρ (kg/m3) 955 1107 845.4 986.5

µ (kg/ms) 2.6 · 10−3 1.2 · 10−3 3.281 · 10−3 1.388 · 10−3

τ (N/m) 2 · 10−3 1.63 · 10−3

rd (m) 1.75 · 10−3 1 · 10−3uin (m/s) 25 · 10−3 35 · 10−3Table 11.1.: Material properties of di�erent liquids and experimental parametersused in the levitated bubble simulations.System ρ2/ρ1 µ2/µ1 Re EoA 1.16 0.46 598 66.5B 1.17 0.42 70.4 23.7Table 11.2.: Chara
teristi
 dimensionless numbers of the drop problem for systemA and B.The material properties ρ, µ, τ together with the experimental parameters rd(initial radius of droplet) and uin (maximum in�ow velo
ity) are given inTable 11.1. There are four dimensionless numbers 
hara
terizing the dropproblem, namely the density ratio ρ2/ρ1 (index 1 denotes the droplet phase,index 2 the 
ontinuous phase), the vis
osity ratio µ2/µ1, the Reynolds number
Re and the Eötvös number Eo,

Re = (2rd)
3/2√g ρ2

µ2
, Eo = 4ρ2 g

r2d
τ
,with g = 9.81m/s2 denoting the gravitational a

eleration. They are given inTable 11.2 for system A and B, respe
tively. Sometimes the Morton number

M = Eo3/Re4 is used instead of the Reynolds number.The droplet shape at its equilibrium position and the 
orresponding stationaryvelo
ity �eld are shown in Figure 11.2 for system A and in Figure 11.4 forsystem B. For visualization purposes the velo
ity �eld is plotted on a 2D
artesian grid interse
ting the unstru
tured tetrahedral grid. In Figure 11.3the n-butanol droplet (system B) is shown at an intermediate stage where itis still rising upwards. Here a part of the unstru
tered grid is visualized whi
h
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Figure 11.2.: Equilibrium position of sili
on oil drop, visualized on sli
e. Velo
ity�eld (left) and shape of droplet (right).is re�ned in the vi
inity of the interfa
e. Note that the grid resolution was
hosen relatively 
oarse due to the non-parallel run of the simulation, as theXFEM dis
retization of the pressure is not available for the parallel versionof the DROPS 
ode, yet.11.2. Rising bubbleIn this numeri
al experiment we 
onsider a single n-butanol droplet inside a
uboid tank Ω = [0, 20 · 10−3] × [0, 30 · 10−3] × [0, 20 · 10−3]m3 �lled withwater, 
f. Figure 11.5. The material properties of this two-pase system 
an befound in Table 11.1. Initially at rest (u0 = 0m/s) the bubble starts to rise in
y-dire
tion due to buoyan
y e�e
ts.For the initial triangulation T0 the domain Ω is subdivided into 4 × 10 × 4sub-
ubes ea
h 
onsisting of 6 tetrahedra. After that the grid is re�ned fourtimes in the vi
inity of the interfa
e Γ. As time evolves the grid is adapted tothe moving interfa
e. Figure 11.6 shows the drop and a part of the adaptivemesh for two di�erent time steps.For a butanol droplet with radius 1mm, in Figure 11.7 the y-
oordinate ofthe droplet's bary
enter xd is shown as a fun
tion of time, wherexd(t) = meas3(Ω1(t))

−1

∫

Ω1(t)

x dx.
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Figure 11.3.: Butanol drop rising in water.

Figure 11.4.: Equilibrium position of n-butanol drop, visualized on sli
e. Velo
ity�eld (left) and shape of droplet (right).
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Ω2

Ω1Figure 11.5.: 2D setupof the rising bubble ex-ample. Figure 11.6.: Interfa
e and part of grid for a ris-ing bubble with radius rd = 1 mm at the times
t = 0.2 s (left) and t = 0.4 s (right).The average velo
ity ud(t) of the drop is given byud(t) = meas3(Ω1(t))

−1

∫

Ω1(t)

u(x, t) dx.Note that x′
d(t) = ud(t). Figure 11.8 shows the velo
ity in y-dire
tion of abutanol droplet with radius 1mm as a fun
tion of time. After a 
ertain timethe bubble rea
hes a terminal rise velo
ity ur = maxt∈[t0,tf ] ‖u(t)‖. For theradius rd = 10−3m we obtain ur = 53 · 10−3m/s.We 
omputed the terminal rise velo
ities ur of rising butanol droplets for dif-ferent drop radii rd, 
f. Table 11.2. Note that for the larger droplets with

rd ≥ 1.5 · 10−3m a 
oarser mesh was used (3 times lo
al re�nement instead of4 times as for the smaller droplets) be
ause of memory limitations. The val-ues are 
ompared to model predi
tions where we applied an algebrai
 modelof Hens
hke [Hen03℄ des
ribed in Remark 11.1 below. In Figure 11.9 theterminal rise velo
ity ur is plotted versus the bubble radius rd giving a 
om-parison of model and simulation results. Note that the results agree very wellfor smaller droplets with radii rd ≤ 1mm. For the larger bubbles the relativedeviations |uDROPSr −umodel
r |

|umodel
r | are up to 5%. We believe that the deviations for the



11.2. Rising bubble 189
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.1  0.2  0.3  0.4  0.5

y 
(m

)

t (s)

droplet position
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enterof a rising butanol droplet with radius
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Figure 11.8.: Rise velo
ity u of a bu-tanol droplet with radius 1 mm as afun
tion of time t.
rd (mm) 0.5 0.75 1 1.25 1.5 1.75 2

uDROPSr (mm/s) 25.7 40.8 53.0 57.1 56.7 55.2 53.9
umodel

r (mm/s) 25.5 40.3 53.7 60.0 57.5 55.6 55.8Table 11.3.: Terminal rise velo
ity for di�erent droplet radii rd, obtained by DROPSsimulation and predi
ted by algebrai
 model, 
f. Remark 11.1.larger bubbles are 
aused by the 
oarse grid resolution and that the results
an be improved on a �ner mesh as soon as the parallel version of DROPS isavailable.Remark 11.1 (Algebrai
 model for terminal rise velo
ity)In [Hen03℄ a model is derived for the terminal rise velo
ity ur as a fun
tion of
rd. Using the notation

‖(x, y)‖α := (xα + yα)1/αfor x, y ∈ R, α ≥ 1, the model is as follows,
umodel

r =
uballuo,c

‖(uball, uo,c)‖α1

, (11.2)where
uo,c :=

∥
∥
∥
∥
∥

(
√
α2τ

ρ2rd
,

√

|ρ2 − ρ1|g rd
ρ2

)∥
∥
∥
∥
∥

8



190 11. Appli
ation examples

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

radius (mm)

ris
e 

ve
lo

ci
ty

 (
m

m
/s

)

Figure 11.9.: Terminal rise velo
ities ur for di�erent droplet radii rd. Algebrai
model, 
f. Remark 11.1, (solid line) vs. DROPS simulation results (
ir
les).is the terminal rise velo
ity of os
illating or 
ap-shaped droplets and α1, α2are model parameters.
uball =

Reball µ2

2ρ2rddenotes the terminal rise velo
ity of ball-shaped droplets. Here Reball is givenby
Reball = f Recirc + (1− f)Rerigid,

Recirc =
Ar

12(0.065Ar+ 1)1/6
,

Rerigid =

√
√
√
√

4
3Ar

432Ar−1 + 20Ar−1/3 + 0.51 Ar1/3

Ar1/3+140

,where Ar = g |ρ2−ρ1| ρ2(2rd)3

µ2
2

is the Ar
himedes number and f = 2µ2λ
2µ2λ+3µ1

with
0 < λ = 1− 1

1+(rd/rtr)10
< 1. The parameter rtr des
ribes the transition regimefrom rigid to 
ir
ulating droplets. The three model parameters α1, α2, rtrhave been �tted to measurement data, yielding α1 = 6.57, α2 = 2.89 and

rtr = 1.365 · 10−3m for the two-phase system n-butanol/water. ⋄
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rd = 0.5mm rd = 1mm

rd = 1.5mm rd = 2mm

Figure 11.10.: Shape of n-butanol droplets for di�erent radii rd and velo
ity �eldu− ud visualized on sli
e.
The droplet shapes of rising butanol droplets for di�erent radii rd are shownin Figure 11.10. The droplet shape is almost spheri
al for rd = 0.5mm andbe
omes more and more �attened for larger radii. The 
orresponding velo
ity�eld u − ud (whi
h is the velo
ity with respe
t to a referen
e frame movingwith droplet speed ud) is visualized on a sli
e in the middle of the domain.Toroidal vorti
es 
an be found inside the droplets. For rd = 2mm we alsoobserved a small vortex stru
ture in the wake of the bubble.
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xFigure 11.11.: 2D sket
h of falling �lm.11.3. Falling �lmIn this se
tion we 
onsider a falling �lm �ow whi
h is an example for a �uid/gastwo-phase �ow problem. Falling �lm �ows are one of the resear
h topi
s in the
ollaborative resear
h 
enter [SFB℄. Due to their large interfa
ial area falling�lms are used in many 
hemi
al engineering appli
ations, e. g., for heatingand 
ooling devi
es, evaporation pro
esses and as rea
tors for phase interfa
erea
tions.The sket
h of a falling �lm experiment is shown in Figure 11.11. It 
onsists ofan in
lined plate with a re
tangular inlet 
hannel at the top. The �uid exitsthe inlet and develops a thin liquid �lm whi
h is running down the plate. Theinterfa
e between liquid and gaseous phase develops a wavy stru
ture (evenwithout external ex
itation) whi
h enhan
es the heat and mass transport inthe �lm. For falling �lm problems usually the 
oordinate system is 
hosensu
h that x is in �ow dire
tion, y is in normal dire
tion to the plate and zdenotes the transversal dire
tion, 
f. Figure 11.11.For the numeri
al experiment we will not 
onsider the whole range of the�lm experiment but only a wave in the region where the �lm pro�le be
omesperiodi
. Hen
e, in the domain Ω = [0, Lx]×[0, Ly]×[0, Lz] we 
hoose periodi
boundary 
onditions in x and z dire
tion and homogeneous Diri
hlet boundary
onditions for y = 0 and y = Ly. Let Ω1(t) denote the liquid phase and Ω2(t)the ambient gas phase. The initial 
onditions are 
hosen as follows. The initiallo
al �lm thi
kness δ(x, z) is given by
δ(x, z) = δ0

(

1 + ω sin

(

2π
x

Lx

)

cos

(

2π
z

Lz

))with the average �lm thi
kness δ0 > 0 and the amplitude 0 < ω < 1. In ourexperiments we used δ0 = 6.35 · 10−4m and ω = 0.5. The initial value for the



11.3. Falling �lm 193quantity (unit) DMS-T05 air
ρ (kg/m3) 909.3 1.2

µ (kg/ms) 5.183 · 10−3 1.71 · 10−5

τ (N/m) 2 · 10−3Table 11.4.: Material properties used for the falling �lm problem.level set fun
tion is given by ϕ0(x, y, z) = y− δ(x, z). u0 is the solution of thestationary Stokes problem (11.1).The size of the domain 
hosen in the numeri
al experiment is Lx = 20.9 ·
10−3m and Ly = Lz = 4 · 10−3m. The plate is in
lined by the angle α = 0 tothe graviational a

eleration ve
tor, hen
e, the plate is assumed to be verti
al.The material properties are given in Table 11.4.For the initial triangulation T0 the domain is subdivided in 10× 6× 2 
uboidsea
h 
onsisting of 6 tetrahedra. To re�ne the part of the domain where the�uid �lm is lo
ated we use the following strategy. For a tetrahedron T letxT = (xT , yT , zT ) ∈ R

3 denote its bary
enter. We mark all tetrahedra T with
yT < 1.5 ·10−3m for re�nement and apply the multilevel re�nement algorithmto obtain T1. Repeating this one more time yields the triangulation T2 whi
hthen 
onsists of 20 080 tetrahedra. We will use this stati
 triangulation T2 forall time steps. An adaptive re�nement in the vi
inity of the interfa
e Γ asfor the rising bubble example was not possible due to the periodi
 boundary
onditions. Up to now the re�nement algorithm does not garantuee identi
alsurfa
e triangulations of 
orresponding periodi
 boundaries. This feature willbe added in a future version of DROPS.We emphasize that the falling �lm problem is very 
hallenging from the nu-meri
al point of view due to the large jumps of the material properties in theliquid and gaseous phase as well as the large extent of the interfa
e. Here weonly give the results for the nonstationary Stokes �lm �ow, i. e., we negle
tedthe 
onve
tive term u · ∇u in the Navier-Stokes equations (2.14)�(2.15). This
an be justi�ed by a small Reynolds number Re = 25.8, where the Reynoldsnumber for the �lm problem is de�ned by

Re =
UNu δ0 µ1

ρ1
=
δ30 ρ

2
1 cos(α)g

3µ2
1
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Figure 11.12.: Stokes �ow of falling �lm for sili
on oil DMS-T05 and air, in
lineangle 0◦.with the average Nusselt velo
ity UNu,
UNu =

cos(α)g ρ1 δ0
2µ1

.Figure 11.12 shows the falling �lm for the time t = 0.2 s. The shape of thewaves qualitatively looks similar to those depi
ted in Figure 1.2. A quanti-tative 
omparison with measurement data [LASLR05, SMDK06℄ or 2D �lmsimulations [DLK07℄ from our proje
t partners has to be a

omplished in thefuture.
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12. Summary and OutlookWe presented a numeri
al approa
h for solving three-dimensional in
ompress-ible two-phase �ow problems. The governing equations are given by the 
ontin-uum surfa
e for
e (CSF) model, where the interfa
e 
onditions are expressedby a lo
alized surfa
e for
e term. The interfa
e is 
aptured by a level sette
hnique. For the spatial dis
retization a �nite element method based on atetrahedral multilevel triangulation is used. A multilevel re�nement algorithmallows for lo
al grid adaption. Applying a one-step theta-s
heme for time dis-
retization leads to a 
oupled system of level set and Navier-Stokes equationswhi
h is solved by a �xed point approa
h. This 
oupling 
an be avoided whenapplying a linearized variant of the one-step theta s
heme. The nonlinearityof the Navier-Stokes problem is treated by a defe
t 
orre
tion method. Theresulting linear Oseen systems are solved by Uzawa-type methods or generalKrylov methods whi
h are applied to the blo
k matrix, using spe
ial problem-adapted pre
onditioners for the S
hur 
omplement. From time to time thelevel set fun
tion has to be reparametrized by a fast mar
hing method. Sev-eral numeri
al results demonstrate the 
apability of our approa
h to solve 3Din
ompressible two-phase �ow problems for real two-phase systems originatingfrom droplet and falling �lm appli
ations.On the basis of our experien
e in this �eld we 
ome to the 
on
lusion thatnumeri
al methods originally designed for the simulation of in
ompressibleone-phase �ows are often not appropriate tools to solve in
ompressible two-phase �ow problems. In this 
ontext we mention numeri
al os
illations of thevelo
ity at the interfa
e, so-
alled spurious 
urrents, whi
h are reported bymany other authors, e. g., [LNS+94, WKP99, FCD+06℄. Hen
e, new methodsand 
on
epts have to be developed whi
h address the spe
ial properties oftwo-phase systems su
h as dis
ontinuous material properties, dis
ontinuouspressure jump a
ross the interfa
e or the lo
alized surfa
e tension for
e term,just to mention a few. This thesis 
ontributes to these topi
s by introdu
ingand analyzing the following two new numeri
al methods:
• We developed an improved Lapla
e-Beltrami dis
retization f̃Γh

of thelo
alized surfa
e tension for
e term fΓ, 
f. Se
tion 5.3, whi
h is superior
ompared to a standard Lapla
e-Beltrami dis
retization on a pie
ewise197



198 12. Summary and Outlookplanar interfa
e approximation Γh. The improved dis
retization f̃Γh
isof �rst order w. r. t. h in the dual norm ‖·‖V′

h
, whereas the standard dis-
retization fΓh

is only of order 1
2 . This has been shown by the theoreti
alanalysis in Se
tion 5.3.3 and was also observed in numeri
al experimentspresented in Se
tion 10.3.

• We introdu
ed an extended �nite-element spa
e QΓ
h for the pressure, 
f.Se
tion 5.4, whi
h is suitable for the approximation of fun
tions whi
hare smooth on Ω1 ∪ Ω2 but dis
ontinuous a
ross Γ. For su
h fun
tionsthe approximation error in ‖ · ‖L2(Ω) is O(

√
h) for standard �nite ele-ment spa
es (
onforming and non-
onforming as well), 
f. Se
tion 5.4.1,whereas we a
hieve O(h2) for the XFEM spa
e QΓ

h, 
f. Theorem 5.26.Combining pressure XFEM with the improved Lapla
e-Beltrami dis-
retization for the surfa
e tension for
e, numeri
al results for the stan-dard test 
ase of a stati
 bubble show a substantial redu
tion of spurious
urrents 
ompared to standard approa
hes, 
f. Se
tion 10.4.In addition to these two methods, the main 
hara
teristi
s of our numeri
alstrategy are the following:
• The level set method is applied for 
apturing the interfa
e between thetwo phases, 
f. Se
tion 2.2.1.
• The spatial dis
retization is based on a hierar
hy of grids whi
h are
onstru
ted in su
h a way that they are 
onsistent (i. e., no hangingnodes) and that the hierar
hy of triangulations is stable, 
f. Chapter 3.Lo
al re�nement and 
oarsening are easy to realize.
• For the dis
retization of level set and Navier-Stokes equations we use
onforming P2 �nite elements for the velo
ity u and level set fun
tion
ϕ, 
f. Chapter 4, as well as extended �nite elements for the pressure p,
f. Se
tion 5.4.
• The one-step theta-s
heme or a linearized variant of it is applied for timeintegration, 
f. Se
tion 6.1.2.
• In ea
h time step the nonlinearity of the dis
rete Navier-Stokes problemis treated by a �xed point defe
t 
orre
tion. The Oseen problems aresolved by an inexa
t Uzawa method or Krylov subspa
e methods, wherethe S
hur 
omplement is pre
onditioned by spe
ial pre
onditioning te
h-niques a

ounting for the pie
ewise 
onstant material properties ρ and
µ. All these issues are dis
ussed in Chapter 7.
• The Fast Mar
hing method is used for reparametrization of the level set



199fun
tion ϕ, 
f. Se
tion 8.1.
• Most of the numeri
al 
omponents have been parallelized to enable thesimulation of 
omplex two-phase �ow problems with su�
ient resolu-tion in a�ordable 
omputational time, 
f. Se
tion 9.2. However, someimportant issues su
h as the XFEM dis
retization of the pressure arestill missing in the parallel version of DROPS.We emphasize that the 
ombination of the level set method, �nite elementdis
retization, extended pressure �nite element spa
e, Lapla
e-Beltrami par-tial integration and multilevel lo
al re�nement is unique among all numeri
alstrategies known to the author for the simulation of two-phase �ow problems.There are still many open questions and unresolved 
hallenges left whi
hshould be addressed in the future. As an outlook we mention some of thetopi
s, whi
h are, in the opinion of the author of the thesis, among the mostimportant to be 
onsidered.New fun
tionality
• Consider a variable surfa
e tension 
oe�
ient τ = τ(x, t). In this 
asethe surfa
e tension for
e term in weak formulation reads as follows,

fvar
Γ (v) =

∫

Γ

κn · (τv)−∇Γ τ · v ds for all v ∈ V.As we saw in Se
tion 5.3 an a

urate dis
retization fvar
Γh
∈ V′

h of fvar
Γis a deli
ate task. We should guarantee at least �rst order 
onvergen
ew. r. t. the grid size hΓ at the interfa
e, i. e.,

‖fvar
Γh
− fvar

Γ ‖V′
h

= O(hp
Γ)with p ≥ 1. A method for the dis
retization of fvar

Γh
, whi
h extendsthe ideas used for a 
onstant surfa
e tension 
oe�
ient τ , has beenimplemented in DROPS. A systemati
 analysis of the quality of thisapproa
h has not been performed, yet.

• In
lude heat and mass transport in both phases. The additional par-tial di�erential equations are transient rea
tion-di�usion equations withpie
ewise 
onstant 
oe�
ients due to the di�erent material properties ofthe two phases. In the 
ase of mass transport the 
on
entration c hasa jump at the interfa
e. As was shown in Se
tion 5.4.1, standard FEMte
hniques will not lead to satisfa
tory results. Here an XFEM approa
h
ombined with a Nits
he te
hnique as des
ribed in [HH04℄ has an opti-mal approximation property. An alternative XFEM approa
h without



200 12. Summary and Outlookthe need for a penalty term also shows this optimal order of 
onver-gen
e in numeri
al experiments, 
f. [MCCR03℄. We mention that weimplemented a standard FEM dis
retization of a two-phase 
onve
tion-di�usion equation in DROPS, but did not systemati
ally analyze its a
-
ura
y, yet.
• Study Marangoni e�e
ts indu
ed by a temperature-dependent or 
on-
entration-dependent surfa
e tension 
oe�
ient τ .
• In
lude mass transport on the interfa
e to model the 
ontamination ofthe interfa
e with surfa
tants. The higher the interfa
e 
on
entration ofsurfa
tants, the lower the surfa
e tension. By this me
hanism these im-purities are made responsible for the so 
alled stagnant 
ap of a droplet,i. e., a region where the interfa
e gets rigid and inner 
ir
ulations aredramati
ally slowed down 
ompared to 
lean systems.For the dis
retization of the 
onve
tion-di�usion equation on Γ an Eule-rian �nite element method des
ribed in [ORG08℄ will be applied. Herewe got �rst preliminary results for a rea
tion-di�usion equation on astati
 sphere.Improvement of numeri
al methods
• The design of better S
hur 
omplement pre
onditioners for the Oseenproblem, espe
ially for 
onve
tion-dominated problems, is of great in-terest.
• Alternative iterative solvers su
h as multigrid methods applied to theOseen problem [LR08℄ or the appli
ation of proje
tion methods su
has Chorin or SIMPLE [Ran04℄ should be 
ompared to the methods de-s
ribed in Se
tion 7.2 with respe
t to their e�
ien
y.
• Other 
oupling strategies besides the one des
ribed in Algorithm 6.12should be 
onsidered, for example, methods based on defe
t 
orre
tionor Newton-type methods. A 
omparison with linearized time dis
retiza-tion s
hemes whi
h avoid su
h a 
oupling will show the bene�ts anddisadvantages of the di�erent approa
hes.
• A suitable adaptive 
ontrol of the time step size should be 
onsidered inthe future.
• The stabilization of the �nite element dis
retization of the Navier-Stokesequations by SDFEM [RST96, GLOS05℄ would enable the simulation of�ow problems with higher Reynolds numbers.
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• Up to now the level set fun
tion is used as an indi
ator for grid re�nementwhi
h has proved to be satisfa
tory for the two-phase �ow problems
onsidered in this thesis. In the 
ase of 
oupled two-phase momentum,heat and mass transport a more sophisti
ated 
ontrol of grid adaptionis demanded. Then error estimation te
hniques, e. g., in the spirit of[Ver96℄, have to be 
ombined with appropriate strategies to de
ide whi
helements should be marked for re�nement or 
oarsening.Questions related to XFEM
• Is the �nite element pair Vh ×QΓ

h LBB stable? If this is not the 
ase,how 
an it be stabilized, e. g., by adding appropriate stabilization termsto the dis
retization?
• A good understanding of the time dis
retization in the 
ase of a timedependent dis
rete divergen
e operator B = B(t) is still la
king.
• The velo
ity u ∈ V has a kink at the interfa
e whi
h is not optimallyresolved by the standard pie
ewise quadrati
 �nite elements 
urrentlyapplied for the dis
retization uh ∈ Vh. Here an XFEM approa
h 
om-bined with a Nits
he te
hnique as des
ribed in [HH04℄ or a modi�edXFEM abs-enri
hment [MCCR03℄ would lead to an optimal approxi-mation property. However, the te
hni
al di�
ulties arising from thismethod seem to overbalan
e its bene�ts.Many of these issues are topi
s of 
urrent resear
h and some of them willbe implemented in the DROPS pa
kage in the near future. Our goal is toprovide DROPS as an e�
ient and a

urate 3D simulation tool for �ow andtransport pro
esses in two-phase systems. The future perspe
tives are two-fold in the following sense. From the mathemati
al point of view DROPSwill serve as a framework to improve existing and develop new numeri
almethods for two-phase �ow problems. From the appli
ation point of viewDROPS will help users from the engineering 
ommunity to solve their distin
treal-life two-phase problems. Here both dis
iplines, numeri
al mathemati
sas well as engineering s
ien
e, will bene�t from ea
h other. On the one handthe engineers will gain more insight from improved simulations, and on theother hand the mathemati
ians 
an learn from appli
ation examples, whi
hnumeri
al 
omponents should be further improved.
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