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Abstract

In this thesis a numerical approach for the simulation of three-dimensional
incompressible two-phase flows is presented. It is based on a level set method
for capturing the interface. The mathematical model consists of the incom-
pressible Navier-Stokes equations and an advection equation for the level set
function. The effect of surface tension is modeled by a singular force term
located at the interface.

For the spatial discretization we use finite elements on a nested hierarchy of
tetrahedral grids. An adaptive multilevel refinement algorithm allows for lo-
cal refinement and coarsening of the grid hierarchy. By partial integration
of the Laplace-Beltrami operator the weak formulation of the surface tension
force term can be stated in such a way that second derivatives induced by the
curvature can be avoided. It is shown that a standard Laplace-Beltrami dis-
cretization on a piecewise planar approximation of the interface only yields an
order of 1/2 w.r.t. the H! norm, and on the other hand that by a slight mod-
ification this order can be increased up to a value of at least 1. The pressure
distribution is continuous in both phases, respectively, but has a jump across
the interface due to surface tension. The approximation of such functions in
standard finite element spaces yields poor results with an order of 1/2 w.r.t.
the Ly norm. The introduction of an extended finite element (XFEM) space
provides second order approximations. For this purpose a standard finite ele-
ment space is augmented by additional basis functions incorporating a jump
at the interface.

For the time discretization a one-step theta-scheme is applied which leads to a
coupled system of level set and Navier-Stokes equations. The coupling can be
treated by a Picard iteration. By applying a linearized variant of the theta-
scheme the equations can be decoupled. The nonlinearity of the Navier-Stokes
equations is handled by a fixed point approach. The arising Oseen problems
are solved by an inexact Uzawa method or by Krylov subspace methods, where
problem-adapted preconditioners are applied which account for the jump of
the material properties between both phases. For the reparametrization of
the level set function a Fast Marching method is used.

The methods have been implemented in the software package DROPS. The
structure of the code and basic design concepts are briefly discussed. We also
consider parallelization aspects, as the consumption of memory resources and
computational time are typically huge for complex problems such as two-phase
flows.
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The correct implementation and the accuracy of several numerical components
is analyzed by means of some test cases. Finally, examples originating from
droplet and falling film applications are considered. These two-phase systems
play an important role in chemical engineering processes and are some of
the major research topics in the collaborative research center SFB 540 at the
RWTH Aachen University. Some numerical results for simulations of levitated
droplets, rising bubbles and a falling film are presented.



Zusammenfassung

In der vorliegenden Arbeit wird ein Ansatz zur numerischen Behandlung
von inkompressiblem dreidimensionalen Zweiphasenstromungen vorgestellt,
der auf einer Levelset-Methode zur Verfolgung der Phasengrenze basiert. Die
Modellgleichungen bestehen aus den inkompressiblen Navier-Stokes-Gleichun-
gen sowie einer Advektionsgleichung fiir die Levelset-Funktion. Die Ober-
flichenspannung wird durch einen singuldren Kraftterm modelliert, der auf
der Phasengrenze lokalisiert ist.

Zur ortlichen Diskretisierung werden Finite Elemente auf einer geschachtel-
ten Hierarchie von Tetraedergittern eingesetzt. Ein adaptiver Multilevel-
Verfeinerungsalgorithmus ermdglicht die lokale Ver- und Entfeinerung der
Gitterhierarchie. Der Oberflichenspannungsterm wird in der schwachen For-
mulierung durch partielle Integration des Laplace-Beltrami-Operators in eine
Form iiberfiihrt, in der zweite Ableitungen vermieden werden, die durch die
Kriimmung hervorgerufen werden. Es wird gezeigt, dass mit einer Standard-
Laplace-Beltrami-Diskretisierung auf einer stiickweise planaren Approxima-
tion der Phasengrenze nur eine Anniherung der Ordnung 1/2 bzgl. der H!-
Norm erreicht werden kann, durch eine leichte Modifikation die Ordnung
dagegen auf mindestens 1 erhdht werden kann. Der Druck ist in beiden
Phasen jeweils stetig, besitzt aber aufgrund der Oberflichenspannung einen
Sprung an der Phasengrenze. Die Approximation solcher Funktionen ist in
Standard-Finite-Elemente-Rdumen nur mit Ordnung 1/2 bzgl. der Lo-Norm
moglich. Die Einfiihrung eines erweiterten Finite-Elemente-Raumes (XFEM)
ermoglicht eine Approximation zweiter Ordnung. Hierbeil werden zusétzliche
Basisfunktionen hinzugefiigt, die einen Sprung an der Phasengrenze aufweisen.

Zur Zeitdiskretisierung kommt ein Theta-Schema zu FEinsatz, das auf ein
gekoppeltes System von Levelset- und Navier-Stokes-Gleichungen fiihrt. Dies
kann mit einer Picard-Iteration gelost werden. Durch eine linearisierte Vari-
ante des Theta-Schemas kann eine Entkopplung der Gleichungen erreicht wer-
den. Die Nichtlinearitdt der Navier-Stokes-Gleichungen wird durch einen Fix-
punktansatz behandelt. Die auftretenden Oseen-Probleme werden durch eine
inexakte Uzawa-Methode oder durch Krylov-Teilraumverfahren gel6st, wobei
problemangepasste Vorkonditionierungstechniken zum Einsatz kommen, die
den Sprung der Stoffdaten von der einen Phase in die andere beriicksichti-
gen. Zur Reparametrisierung der Levelset-Funktion wird eine Fast-Marching-
Methode verwendet.

Die Methoden wurden in dem Software-Werkzeug DROPS implementiert, des-
sen Struktur und zugrundeliegendes Design kurz dargestellt werden. Dabei
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wird auch auf Parallelisierungsaspekte eingegangen, da die Speicher- und Re-
chenzeitanforderungen fiir solch komplexe Probleme wie Zweiphasenstromun-
gen enorm grofs sein kénnen.

An einigen Testbeispielen wird die korrekte Implementierung und Genauigkeit
einiger numerischer Komponenten tiberpriift. Schlieflich werden Anwendungs-
beispiele aus dem Bereich von Tropfen- und Filmsystemen behandelt, die
Gegenstand der Forschung in dem verfahrenstechnisch ausgerichteten Sonder-
forschungsbereich SFB 540 der RWTH Aachen University sind. Dabei wer-
den numerische Ergebnisse von Simulationen levitierter Tropfen, aufsteigender
Tropfen sowie eines Fallfilmes présentiert.
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1. Introduction

Due to the advances in computer technology and improvements of numerical
methods in the last decades, the simulation of one-phase flows in liquid or
gaseous media has become state of the art and is applied as a standard tool in
industry and research. However, a closer look at the simulation of two-phase
flow problems, such as rising air or oil droplets in water, clearly reveals a dif-
ferent picture. One major problem is the occurrence of numerically induced
oscillations of the velocity field in the vicinity of the interface, so-called spu-
rious currents [WKP99, FCDT06]. We mention some other challenges in the
context of two-phase flow problems:

e the different material properties of the two phases inducing a jump in
the coefficients of the partial differential equations,

e the singular surface tension force term which is only defined at the in-
terface,

e topological changes of the interface like the break-up or merging of bub-
bles.

As the numerical methods for two-phase problems are not yet mature in
many respects, for example w.r.t. accuracy, there is an active field of cur-
rent research on the improvement of existing methods or the design of new
approaches.

In this thesis we describe a numerical strategy for the simulation of three-
dimensional incompressible two-phase flow problems. It is based on a level
set method for capturing the interface and a finite element discretization on
adaptive multilevel tetrahedral grids. The main achievements of this thesis
are the development and analysis of two novel methods for the numerical
treatment of surface tension which feature a higher accuracy compared to
standard methods in this field:

e a modified Laplace-Beltrami discretization of the singular surface tension
force term which is localized at the interface,
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e an extended finite element (XFEM) space for the pressure to represent
the jump across the interface which is present due to surface tension.

1.1. Two-phase systems in chemical engineering
applications

In this section we give a few examples of two-phase flow systems which are of
interest in the area of chemical engineering and are a topic of current research
in the Collaborative Research Center SFB 540 [SFB| at the RWTH Aachen
University. In the SFB 540 several groups from different scientific disciplines
such as chemical engineering, chemistry, physics, scientific computing and
mathematics collaborate to gain more insight into kinetic phenomena arising
in multi-phase systems. Among them some groups are working on numerical
simulation (which is also the focus of our group), while others are conducting
experiments to collect measurement data or developing adequate models for
the description of the observed phenomena.

The goal of the SFB 540 is to enhance the modeling of momentum, heat and
mass transport in multiphase systems, in which interfacial phenomena often
play a dominant role. This is accomplished by the formulation and solution
of inverse problems, which aim to match the measurement data with the
simulation results as good as possible. In the most simple case this means the
fitting of a few model parameters, in more elaborate cases the inverse problem
consists in estimating an unknown function [GSM™05, KGM*08|. Questions
of model structure and model identification or optimal experimental design
(i.e., roughly speaking, which experiment gives most information), which are
arising in this context, are also considered on the basis of inverse problems.
This integrated modeling process is called ‘model-based experimental analysis’
[Mar05], or MEXA for short, which explains the title of the SFB 540: ‘Model-
based experimental analysis of kinetic phenomena in fluid multi-phase reactive
systems’.

The main contribution from our research group is the development of the soft-
ware package DROPS for the simulation of three-dimensional incompressible
two-phase flow problems. Many of the numerical methods implemented in
DROPS are described in Part [T of this thesis. The software code is writ-
ten in C+-+ and developed by a couple of people at the Chair of Numerical
Mathematics and the Chair of Scientific Computing at the RWTH Aachen
University. We refer to Chapter [9 for a compact overview of the design and
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Figure 1.1.: Photo of a lev-  Figure 1.2.: Photo showing the surface of a falling
itated droplet in a measure- film. The measurement device at the top is used
ment device. The photo was for measuring the local film thickness. Provided
taken applying an exposure by Georg Dietze, project C2, SFB 540.

time of 3 seconds to show the

stability of the droplet. Pro-

vided by project B3, SFB 540.

structure of the DROPS code.

We are interested in the following two-phase systems, which are of interest in
the chemical engineering community: The first one is a bubble in a surrounding
fluid. This is related to bubble column reactors, where mass transport takes
place across the phase interface of bubble swarms. For investigation purposes
a single bubble is considered, the chosen substances are silicon oil, n-butanol
or toluene in water. In a special measurement device, where the bubble can
be held in a stable fixed position, NMR measurements of momentum (and
mass) transfer are operated by our project partners [AGHK*05]. A photo
of the levitated bubble in the device is shown in Figure[1.1. The goal is to
improve the interface model by precise measurement in the vicinity of the
interface and accurate numerical simulation of the system. The latter is our
task. Some numerical results of the hydrodynamics of bubbles are presented

in the Sections and

The second system we are interested in is the flow of thin liquid films, which
are occurring in falling film apparatuses. In applications these are mainly
used for heating, cooling and evaporation processes. The liquid film is flowing
down an inclined wall and develops a wavy structure at the interface to the
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gaseous phase, even without external excitation, see Figure [1.2. This wavi-
ness enhances heat and mass transport and is therefore an interesting field of
investigation. Our project partners are measuring important parameters such
as film thickness, velocity information at certain points or planar sections, sur-
face temperature and temperature and concentration distribution inside the
film by means of several measurement techniques [LASLRO05, SMDKO06]. The
liquid phase in our examples is chosen as water or silicon oil, the gaseous phase
consists of air or nitrogen. Since the material properties of this liquid-gas sys-
tem differ by a factor of roughly 102 and the interface is very large compared
to the bubble experiment, the numerical simulation is very challenging in this
case. Some first results of numerical simulations are given in Section[11.3.

1.2. Numerical approach

The complexity of the aforementioned application examples defines the chal-
lenges one is facing when treating such phenomena numerically. This will give
us a guideline for the development process of our numerical method, i.e., in
the choice and combination of adequate numerical tools. Some of the key
issues are listed below:

The transport phenomena are essentially 3D, hence we cannot restrict to
2D or 3D rotationally symmetric models. We therefore need the ability
to handle three-dimensional incompressible flows. The high complexity
of 3D problems demands the usage of parallel computers, otherwise a
sufficient grid resolution can often not be achieved on a single processor
due to memory limitations and/or huge computational times.

Many important transport phenomena occur at the interface demanding a
high resolution in the interfacial region. Otherwise the development of
reliable interface models is not possible. Hence we have to apply adap-
tivity locally at the interface, combined with load distribution in the case
of parallelization.

The interface is moving in time, therefore we have to deal with a non-sta-
tionary problem and need some interface localization technique. Also
the grid has to be adapted from time to time if the interface tends to
move out of the refinement zone.

Surface forces are dominant. In the case of the levitated droplet, surface ten-
sion is high as the curvature is large due to the small bubble diameter.
In the case of the falling film capillary forces are dominant because of
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the large extent of the interface. Hence we need a special numerical
treatment of surface tension to avoid spurious currents at the interface
or keep them as small as possible.

Discontinuous pressure. In the presence of surface tension there is a pressure

jump at the interface due to the Laplace-Young law. For the approxi-
mation of discontinuous functions we introduce extended finite element
ansatz functions which are discontinuous across the interface.

Large jumps in coefficients of the PDE have to be handled, at least for the

falling film problem. This demands special quadrature techniques for in-
tegrals with discontinuous integrands in the discretization process. Spe-
cial preconditioning techniques for the Schur complement matrix have
to be applied for the solution of the discrete problem to account for the
jumping coefficients.

Based on these requirements and properties of two-phase flow problems, we
have chosen several numerical methods which are in our opinion appropriate
for this task. In the following we list the main ingredients of our numerical
strategy:

The level set method is applied for capturing the interface between the
two phases. This method is also capable of describing topology changes
of the interface.

The spatial discretization is based on a hierarchy of three-dimensional
tetrahedral grids which are constructed in such a way that they are con-
sistent (i.e., no hanging nodes) and that the hierarchy of triangulations
is stable. Local refinement and coarsening are easy to realize.

For the discretization of level set and Navier-Stokes equations we use
conforming P, finite elements for the velocity u and level set function
¢ as well as extended finite elements (XFEM) for the pressure p. The
evaluation of integrals with discontinuous integrands arising during the
assembly of the system matrices are calculated by special quadrature
techniques which account for the position of the interface.

We use a Laplace-Beltrami technique for the discretization of the sur-
face tension force term, which avoids second derivatives induced by the
interfacial curvature. By a slight modification the accuracy of the dis-
cretization can be significantly increased compared to standard Laplace-
Beltrami approaches on piecewise planar interface approximations.

The one-step theta-scheme or a linearized variant of it is applied for time
integration.
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e In each time step the nonlinearity of the discrete Navier-Stokes problem
is treated by a fixed point defect correction. The Oseen problems are
solved by an inexact Uzawa method or Krylov subspace methods, where
we use special Schur complement preconditioning techniques accounting
for the piecewise constant material properties p and p.

e The Fast Marching method is used for reparametrization of the level set
function ¢.

e Most of the numerical components have been parallelized to enable the
simulation of complex two-phase flow problems with sufficient resolution
in affordable computational time.

1.3. Outline of the thesis

The thesis is structured in three parts describing the mathematical model, the
numerical methods applied (constituting the largest part) and some numerical
results.

In Part I/the governing equations of motion for one-phase and two-phase flow
are defined, cf. Chapter[2. In Section [2.2 we briefly discuss different methods
to describe the unknown interface. We use the level set method, where the
interface is described as the zero-level of a scalar function, the so-called level
set function, cf. Section [2.2.1]

In Part[IT all numerical components are presented which are part of the over-
all numerical strategy. A short outline of the applied numerical methods is
given at the beginning of Part We use a hierarchy of nested tetrahedral
grids, a so-called multilevel triangulation, and a multilevel refinement algo-
rithm for locally refining and coarsening the grid, cf. Chapter 3l The finite
element discretization of the level set and Navier-Stokes equations is described
in Chapter[4. Due to surface tension forces for the discretization of two-phase
flow problems, some special aspects have to be taken into account, which are
highlighted in Chapter[5. In Section[5.3 the discretization of the singular sur-
face tension force term by a Laplace-Beltrami technique is analyzed. For the
discretization of the discontinuous pressure an extended finite element space
(XFEM) is applied, which is described in Section[5.4. Topics of Chapter 6lare
the time discretization and coupling of level set and Navier-Stokes equations.
The iterative solution of the discrete problems and corresponding precondi-
tioning aspects are addressed in Chapter [7l Chapter [8/is concerned with the
reparametrization of the level-set function and a simple volume correction



1.3. Outline of the thesis 7

strategy to enforce conservation of mass. The structure of the software code
DROPS as well as certain implementational aspects including the paralleliza-
tion of some components are described in Chapter [9.

Finally, in Part [IIT we present some results obtained by the simulation tool
DROPS. In Chapter [10] the performance of several numerical components is
investigated by means of specific test cases. Numerical results of 3D incom-
pressible two-phase flow problems for real two-phase systems originating from
droplet and falling film applications are given in Chapter

In Chapter [12] we summarize the results of this thesis, draw some conclusions
and formulate several research topics relevant for future work.






Part |.

Mathematical model






2. Governing equations

2.1. A continuous model for two-phase flow

Let © be a polyhedral domain in R? and [to,t;] a time interval. In the fol-
lowing we derive the Navier-Stokes equations for unsteady laminar flow of
two immiscible fluids. We assume the fluids to be incompressible, viscous,
Newtonian and pure (i.e., no mixture of different components). Moreover we
assume isothermal conditions for both fluids and therefore neglect variations
of density p and dynamic viscosity i due to temperature changes. Hence, u
and, due to incompressibility, also p are constant (and positive) in each phase.

2.1.1. One-phase flow

We first consider the Navier-Stokes equations for unsteady laminar flow of one
phase. Let u = u(x,t) € R? and p = p(x,t) € R denote velocity and pressure,
respectively. We introduce a function

X:Qx[t07tf]—>Q

with the following meaning. For a particle with the initial spatial position
xo € Q at the initial time ¢, X(xo,t) describes the spatial position of the
particle at the time ¢. This is the Eulerian description of motion in spatially
fixed coordinates. By definition, X (xq,ty) = xq for all x¢9 €  and

X(xo,t) := %X(xo,t) = u(X(xg,1),t)

as the particles are moving with velocity u. Let Wy C  be an arbitrary,
bounded subset and

W(t) = {X(Xo,t) P Xg € Wo}

W (t) describes the position of the particles for time ¢, which were located
in Wy at initial time tq. Then for a C! function f = f(x,t) the following

11
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transport theorem holds: For all ¢ € [to, tf],
d
— fx,t)dx = fi(x,t) + div(fu)(x,t) dx. (2.1)
dt Jw ) W(t)

Considering conservation of mass we choose f = p and obtain

d

0=—
dat Jw

pdx = / pt + div(pu) dx.
®) w(t)

Since W (¢) is arbitrary, this is equivalent to
pt + div(pu) =0
for all (x,t) € 2 x [to, tf]. Due to our assumption p = const this simplifies to
divu = 0. (2.2)
is also called continuity equation.

We now consider conservation of momentum. The momentum of mass con-
tained in W(¢) is given by

M(t) = / pudx.
W(t)

Due to Newton’s law the change of momentum M (t) is equal to the force
F(t) acting on W (t). This force is decomposed in a volume force Fj(t) and
a boundary force Fy(t). The external volume force Fj(t) is given by the

gravitational force,
= [ pgix,
W (t)

where g € R? is the vector of gravitational acceleration. The boundary force
F5(t) is modeled by the surface integral

Fy(t) = / onds,
oW (b)

where o = o (x,t) € R3*3 is the stress tensor and n = n(x,t) € R? the outer
normal on W (t). Summarizing, Newton’s law yields
d

ZM(t) = Fi(t) + Fa(t) (2:3)

= / pg + div o dx,
W (t)
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where we applied Stokes’ theorem for F5(t). Using the transport theorem
in the left-hand side of (2.3) with f = pu;, i = 1,2, 3, we obtain

/ (pu;)e + div(pu;u) dx=/ pg+divo;dx, 1=1,2,3,
W(t) W(t)

with o; the i-th row of o. In vector notation,
/ (pu)t—i—div(pu@u)dx:/ pg+ diveo dx.
W (t) w(t)

Since W (t) is arbitrary, this is equivalent to

(pu); +div(pu®u) =pg+dive
for all (x,t) € Q x [to,tf]. Note that div(pu®@u) = (pu- V)u+ (pu)(divu)
and due to the continuity equation (2.2)), the last summand vanishes, yielding
the so-called momentum equation

(pu); + (pu-Viu=pg+dive. (2.4)
For viscous Newtonian fluids the stress tensor o is modeled as

o =—pl+ uD(u)

where D(u) = Vu + (Vu)? is the deformation tensor. Summarizing the
equations from above, we end up with the well-known Navier-Stokes equations
for incompressible flow:

Ou .
p(5; + (- V)u) —div(uD(u)) + Vp = pg, (2.5)
divu =0 in Q x [to,ty]. (2.6)
Remark 2.1

If 1 is constant (which is the case for isothermal one-phase flows of a pure
substance) then the term div (uD(u)) simplifies to

div (uD(u)) = pdiv (D(u)) = p(Au+ V(divu)) = pAu

taking into account that diva = 0. o
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Qo

Figure 2.1.: 2D illustration of the computational domain {2 consisting of two phases
Q1 and Q2 and interface I'.

2.1.2. Two-phase flow

We now consider two-phase flows, i.e., Q contains two different immiscible
incompressible phases (fluid-fluid or fluid-gas) which are moving in time and
have different material properties p; and p;, i = 1,2. Therefore we assume
that for each point in time, ¢ € [to,tf], Q is partitioned into two subdomains
Q1 (t) and Qa(t), Q@ = Q1 (1) UQa(t), Q1 (t)NQa(t) = 0, each of them containing
one of the phases, respectively. Both phases are separated from each other
by the interface T'(t) = Qi (t) N Qa(t), cf. Figure[2.1. As mentioned before,
we assume isothermal conditions and that both phases are pure substances.
Moreover, we do not consider reaction, mass transfer or phase transition.

In each of the phases conservation of mass and momentum has to hold, yielding
separate Navier-Stokes equations on the two domains €2;,7 = 1, 2. Additionally
we have to consider transition conditions at the interface. As the phases are
viscous and no phase transition is taking place, the velocity can be assumed
to be continuous at the interface:

[ulr =0. (2.7)
Here for x € I" and a function f defined on €2 we use the notation

Irx) i= fi(x0) = fal0), £ i= lim F(€) in i = 1,2,

For the interface force we choose a standard model incorporating surface ten-
sion, i.e., we assume that the jump of the normal stress along the interface
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I' is proportional to the local curvature k = k(x),x € T, cf., for example,
[BKZ92, Scr60]:
[on]r = Tkn. (2.8)

This is a free boundary condition at the interface. Here n denotes the outer
normal on I' pointing from 7 to 5. The curvature is defined by

k(x) = —divn(x), xel,

thus for a convex interior of I' we have the convention that x is negative. T
is called the surface tension coefficient, which is a material property of the
two-phase system. In combination with conservation of mass and momentum
in each phase this yields the following standard model for two-phase flows:

Ou
i =7 . =p;ig +divo; . )
il Ha-Vw) =pgtdiver o, =12 (29)
divu=0
lon]r = 7rn, [u]r =0, (2.10)

initial condition u|;—, = ug in €,

suitable boundary conditions at 0f).

The density and viscosity, p; and p;,7 = 1,2, are assumed to be constant in
each phase.

Instead of two separate Navier-Stokes equations on the computational domains
Q;, 1 = 1,2, and additional interface conditions it would be advantageous to
consider an equivalent system of PDEs on the whole domain 2. In fact, the
so-called continuum surface force (CSF) model (cf. [BKZ92, CHMOY6]) is
such a model. It consists of the Navier-Stokes equation on 2 with jumping
coefficients p, u,

p2  in Qo po in Q.

p1 in €, p1 o in Qg
p—{ u—{ (2.11)

The free boundary condition (2.8) is expressed in terms of a localized force
term fr, which appears on the right-hand side of the momentum equation.
The CSF term fr is given by

fr :THCSFIIF, (212)
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Figure 2.2.: 2D illustration of a neighborhood W = W1 UW3 for an interface point
xel.

where Jr is a Dirac d-distribution defined by

[ seixiot) ix = [ o(s)ds
Q r
for a smooth function ¢.

Summarizing, the CSF model is as follows:

9]
p(—u +(u-V)u) =pg+dive + fr

ot in Q x [to, ty], (2.13)
diva=0

initial condition u|t—¢, = ug in €,

suitable boundary conditions at 0.

Under reasonable smoothness assumptions one can show that (2.13) is in fact
equivalent to (2.9)—(2.10). In the following lemma we show that the CSF
model can be derived from conservation of momentum and mass in the whole
domain .

Lemma 2.2

Let u,p be a solution of (2.9)—(2.10) such that o(u) is differentiable. Then

we have
/ u-Vgdx =0 for all ¢ € C3°(Q), (2.14)
Q

i.e., the conservation equation for mass, divu = 0, holds in Q (in the sense
of distributions). Furthermore, conservation of momentum in an arbitrary
subdomain W C ( yields

/W p(us+ (u-V)u) dx = /W(Pg +dive) dx + /er Tk ds. (2.15)
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Proof. We first consider . Usingdivu =0in Q;,7 = 1,2, and [u-n|p =0,
for ¢ € C§°(2) we obtain

2
/u~qux:Z/ u- Vgdx
Q =17

2
:Z(/ qu-nds—/ qdivudx)
— \Joq, Q

:/q[u-n]pdszo.
r

Now we consider (2.15). For W NT = ( we have the situation W C Q;
with ¢ = 1 or ¢ = 2. The derivation of conservation of momentum for one-
phase flows was already discussed in Section yielding (2.15), where the
boundary integral is missing due to W NT = (). Thus we only have to consider
the case v := WNT # (. Then W is subdivided by I' into two subdomains
W, :=WnNQ;, 1 =1,2, cf. Figure/2.2. Repeating the steps from Section [2.1.1]
but without integrating by parts, we end up with

/W p(u+ (u-Vu) dx = /W pgdx + /aw onds. (2.16)

Note that applying Stokes’ theorem to the boundary integral on the right-hand
side of yields

/8W i (i /3W,; Unds) +/7[UH]F ds

2
= <Z/ divadx) —l—/Tﬁnds
i=1 7 Wi ¥
:/ diVO’dX—i—/TIil’ldS.
w vy

Combined with this proves the result. O

One important issue is hidden in the formulation of problem (2.13), namely
that the location of the interface I'(¢) has to be known for each time instant
t € [to, ty]. This topic is discussed in Section 2.2.

Note that the classical strong formulation in (2.13) has to be treated with
care as the coefficients p, p are discontinuous across I' and thus, e.g., dive

is not defined. It should rather be interpreted in a weak sense. The weak
formulation of (2.13) is given below in Section 2.1.4.
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2.1.3. Boundary conditions

In the two-phase flow models (2.9)—(2.10) and (2.13) suitable boundary condi-
tions on OS2 have to be added. We distinguish between essential and natural
boundary condition. Let the boundary ¥ = 0 be partitioned in a part
¥ n C ¥ where natural boundary conditions are imposed and a remaining
part Xp = ¥\ ¥y with essential boundary conditions.

The essential boundary conditions are of Dirichlet type and are used for model-
ing inflow (inflow boundary condition) and walls (no-slip boundary condition).
The inflow boundary condition prescribes the velocity at the inflow boundary
Ein C ED;
u(x,t) = uin(xvt)a (th) € Ein X [thtf]v

with u;, such that u;, -n <0 on ¥;, holds. The no-slip boundary condition
prescribes the velocity on ¥4 C Xp to be equal to the tangential velocity
Uyq Of the related wall,

u(x7t) = uwall(x7t); (X7t) E Zwall X [tO) tf]7

with wyq -n =0 on X,4y- For a fixed wall we have u,q; = 0, thus homoge-
neous Dirichlet boundary conditions on X,,,;. In the following we represent
inflow and no-slip boundary conditions in a combined way by

u(x,t) = uD(x,t), (X,t) €Xp X [to,tf]. (2.17)
Natural boundary conditions are usually applied to model outflow (outflow
boundary condition):
on = —pe,n on Ly X [to,tf].

Here pey: is a given external pressure. One usually chooses pe,+ = 0, thus we
get a homogeneous natural boundary condition on . In the following we
assume

on=0 on Xy X [to,tf]. (2.18)

A discussion on alternative outflow boundary conditions can be found in
[Tur99].

2.1.4. Weak formulation

We first collect some useful results on partial integration. We assume that
p:Q —Rand u,v:Q — R3 are sufficiently smooth functions. Then

/Vp-udx:—/pdivudx—i—/ pu-nds.
Q Q a9
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A simple calculation shows

i —1 r u v))dx — u)n) -vds
- [ (divD@) - vax = [ 6 (D@DE) ix- [ (D) vis

[219)

where tr denotes the trace operator for matrices, i.e., tr M = Ef\; M;; for
M e RNXN,

For the weak formulation of (2.13) we introduce the spaces

V= (H'(2))?%
Vo:={veV:v=0onXp},
Vp:={veV:v=uponp},

Q = LQ’O(Q) = {q S LQ(Q) : / qu = 0}
Q
We define the bilinear forms
m:VxV-oR: m(u,v) ::/puvdx,
Q

a:VxV-R: a(u,v) := %/Qu tr (D(u)D(v)) dx,

Q 1,7=1
b:VxQ—R: b(v,q)::—/qdivvdx,
Q

and the trilinear form
n:VxVxV-oR: n(u;v,w)::/Qp(ILVv)wdx.
For the weak formulation of the CSF term we introduce the linear form
fr:V—-R: fr(v) = /FTIQI'I -vds. (2.19)

The L scalar product in Ly(2) is denoted by

(g,h)o ::/g-hdx.
Q
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Note that for u,v € V,p € Q we get by partial integration

—/ div(e)vdx = a(u,v) + b(v,p) — / onvds. (2.20)
Q o

Assuming homogeneous natural boundary conditions on X, i.e., on|s, =0,
all boundary integrals caused by partial integration vanish for v € V. Then
the weak formulation of (2.13) is as follows:

Find (u,p) € Vp x @ such that for all ¢ € [to, /]
(P 3) (s, v)
+a(u,v) +b(v,p) = (pg,v)o + fr(v) for all v e Vo, (2.21)
b(u,q) =0 forall g € Q, (2.22)
initial condition uli—t, = up in Q.

2.2. Locating the interface

The CSF model (2.13) has to be supplemented by some interface localization
technique, because the surface force fr and the coefficients p, ;1 are depending
on I'. Several interface localization techniques can be found in the literature.
Most of these methods are either of front-tracking or of front-capturing type.
We refer to [Smo01] for a survey on this topic. Most of these methods are
strongly connected to discretization concepts and often they cannot be for-
mulated in a continuous manner. Therefore discretization notions are used in
the discussion of these methods below.

The front-tracking methods are based on an explicit representation of the
interface as a discretized manifold, which is evolved in time. Either the grid
is fitted to the interface and deformed according to the flow field (Lagrangian
approach), or a separate representation is used for the interface, e.g., some
interface mesh, while the grid discretizing the computational domain is kept
fixed (Eulerian approach).

The Lagrangian front-tracking approach is mostly used for simulations of free-
surface flows (cf. [Bdn01, Beh02]), where the computational domain covers
only one phase and the moving interface is part of the domain’s boundary.
There are only few applications of this method to two-phase flows (e.g.,
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[JT94, TBM92, Tez07]). The main difficulty of this method is to prevent
grid deterioration over time. Non-local updating strategies ranging from sim-
ple projecting methods to complete remeshing are used to keep the quality of
the elements.

In Eulerian front-tracking methods (e. g., [UT92, TBET01, GGL*98, MCNO03,
DFG106, Mao07|) the interface is represented by a separate data structure
storing the position and connectivity of marker points on the interface. These
marker points are individually advected by the local velocity field. During the
evolution of the interface, points have to be inserted or removed to provide
an accurate representation of the interface. If the topology of the interface
changes (e.g., when bubbles merge or break up), a proper update of the
interface representation is hard to realize, in particular for the 3D case, which
is a major drawback of this method. However, in [ZALCO05| such a method is
applied to three-dimensional droplet break up yielding satisfactory results.

The most popular front-capturing methods are the Volume of Fluids (VOF)
method and the level set method. In both cases the interface is defined im-
plicitly by some indicator function, the so-called VOF or level set function,
respectively.

The VOF method (see e.g., [HN81, GW01, BKWO04]) is a volume-tracking ap-
proach which uses a cell-wise constant function to indicate the volume fraction
of a certain phase for each cell. If combined with conservative finite volume
schemes, one benefit of the method is its conservation of mass property. A
major disadvantage is the non-uniqueness of the interface location. For the ad-
vection of the VOF function and the computation of normals and curvature a
sharp interface has to be reconstructed locally from the volume fraction infor-
mation in each time step. If one tries to keep the interface relatively smooth,
this task is not straight-forward. Therefore, several interface reconstruction
algorithms have been developed and improved over the years. A comparison
of some VOF methods is given in [Rud97].

For the level set method (cf. [CHMO96, OF01, OS88, [Sus03]) the interface
is given by the zero-level set of a continuous function, which is positive in
the one phase and negative in the other. Thus the position of the interface is
uniquely described and can be reconstructed from its implicit representation (if
needed). Moreover, topology changes can be handled without further effort.
A drawback of this method is that conservation of mass is not inherently
incorporated in it.

The level set technique has been successfully used in many two-phase in-
compressible flow simulations. By far most of these simulations use finite
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difference or finite volume discretization methods (cf. [OF01, Set99] and the
references therein and [Sus03]). There are relatively few publications in which
the level set method is combined with finite element discretization techniques.
Such a combination for a 2D simulation is presented in [Tor00, TE00| and
[Smo01, Smo05]. Other references are [PS01, Hys06]. In [MR06, CMROS|
the level set equation is discretized by a discontinuous Galerkin method. In
Section [2.2.1 a more detailed description of the level set method is given.

2.2.1. The level set method

The level set method was introduced by SETHIAN and OSHER [OS88]. An
overview of the method and its applications is given in [Set99, OF01].

The basic idea of the level set method is to represent the interface I' implicitly
by the zero level set of some continuous, scalar function ¢ : Q X [to,t7] — R,
i.e.,

T(t)={x€Q: p(x,t) =0}, € l[to.ts].

Moreover, the sign of ¢(x, t) indicates in which phase x is located, i. e., whether
x € Q1(t) or x € Qy(t). As a convention, we assume ¢(+,t) < 0 in € (¢) and
©(+,t) > 0 in Q3(¢t). There are many possible choices of such functions ¢.
From the computational point of view the most convenient one is the signed
distance function, i.e.,

[p(x, D] = dist(x, ().

For this choice we have ||V¢|| = 1. In practice, we will use an approximative
signed distance function for . A 2D example of a level set function for the
setting shown in Figure(2.1 is given in Figure

We assume that the initial location I'|;—¢, of the interface is known, given
by an initial value for the level set function ¢(x,t9) = @o(x). The evolution
of the interface is determined by the local flow field u|r as the interface is
transported by the moving fluid. Formulated in a Lagrangian manner of a
moving coordinate system, if x(t) € Q is the position of a particle moving
with the fluid and

if x(tg) € I'(to), then x(t) € T'(t) for all t € [to, t]. (2.23)

Rewriting (2.23) in terms of the level set function ¢, for each x(tg) € I'(to)
we obtain

w(x(t),t) = p(x(to),to) =0 for all ¢ € [to,tf].
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Figure 2.3.: 2D level set function ¢ for two-phase example from Figure[2.1.

Extending this to the whole domain €, for each x(ty) € Q
o(x(t),t) = p(x(to), to) = const  for all t € [to, ty].

Hence,

0= 2 o))

= ox(x,8)%(t) + @i(x,t)  for all (x(t),t) € Q x [to, ts]. (2.24)

Note that x(t) = u(x(t), t), as u denotes the velocity of particles. Substituting
this in (2.24) we obtain the following evolution equation for the level set
function ¢,

pr+u-Vo=0 in Q x [to,ty]. (2.25)

(2.25) is called the level set equation. Note that (2.25) is a pure hyperbolic
problem. We introduce the Sobolev space V := H'(Q2). Then a weak formu-
lation of (2.25) is given by

Find ¢ € V such that for all ¢ € [to, t/]

(pt,0)o+ (u-Vp,v)g =0 for all v e V. (2.26)
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Other weak formulations for hyperbolic problems can be found in [QV94].

One advantage of the level set approach is the fact that geometric properties
of the interface I" such as normals and curvature can be easily computed:

Vo
n=——, 2.27
Vel (2.27)
. . Vo
k=—divn = —div——. 2.28
Vel (2.28)

Remark 2.3

The computation of curvature is needed for the evaluation of the surface force
term fr, cf. (2.19). Instead of formula (2.28), which requires the computation
of second order derivatives of ¢, we use a Laplace-Beltrami technique described
in Section [5.3 which only needs first order derivatives of p. As we assume
© € HY(Q), clearly the latter approach is more suitable. o

The jumps in the coefficients p and p can also be described by using the level
set function . Introducing the Heaviside function H : R — R,

0 x <0,
H(z)=<05 z=0,
1 x>0,

we define
p(e) == p1+ (p2 — p1)H(p), p(p) = p1 + (p2 — 1) H(p).  (2.29)

Even though the level set method is a very elegant method from the mathe-
matical point of view, it also suffers from some nasty features. Firstly, during
the evolution of the level set function, the signed distance property is lost and
has to be reestablished from time to time. This reparametrization has to be
handled with care as the zero level set should be kept fixed or moved by only
a ‘small’ amount. Secondly, the discretization of the Navier-Stokes equations
induces loss or gain of mass as the method is not inherently mass-conserving
for a discrete divergence-free velocity field uy,. This has to be corrected by
some suitable strategy. These issues are discussed in Chapter [8.
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Numerical methods
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Overview

In the following the main features of the numerical methods are presented,
which are used for solving the two-phase flow problem discussed in the previ-
ous chapter. The description is rather short and intends to give a schematic
overview of the overall structure of the solution strategy, see also Figure[2.4/for
a sketch of the outline. A more detailed description of the several components
is given in the Chapters[3H9.

To be able to discretize the phase interface with a high resolution, an adaptive
refinement algorithm based on multilevel tetrahedral grids is applied. This
allows for a highly refined mesh close to the interface and a relatively coarse
mesh in other regions of the domain. If the interface is moving (like in the
example of the rising bubble), the mesh can easily be adapted to follow the
interface by appropriate refinement and coarsening of the tetrahedral elements
from time to time. The refinement algorithm is described in Chapter [3.

Both Navier-Stokes and level set equations are discretized in space by finite el-
ements. We use P, finite elements for the level set function which are stabilized
by streamline diffusion (SDFEM). For the discretization of the Navier-Stokes
equations P»-FE for the velocity and P;-FE or extended P} -FE for the pres-
sure are used. The Taylor-Hood (P»-P;) finite element pair is known to be
LBB stable. For the P, — Pl finite element pair this is an open question. In
our simulations we did not experience any stability problems. The jumping
coefficients are treated by means of a special quadrature strategy. More details
can be found in Chapter [4]

The numerical treatment of surface tension raises (at least) two challenging
issues which are addressed in Chapter

e For the weak formulation of the CSF term a Laplace-Beltrami technique
is used avoiding the calculation of second derivatives when computing
the curvature. The CSF term is discretized as a surface integral, so there
is no need for numerically approximating the Dirac delta distribution in
the volume integral formulation. In Section [5.3| we treat this issue.

e Due to the discontinuous pressure jump across the interface in pres-

27
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ence of surface tension forces, known as the Laplace-Young law, it is
advantageous to switch to another FE space for the pressure variable
(PL-FE instead of P;-FE). The construction of appropriate FE spaces
is discussed in Section[5.4!

For the time discretization implicit schemes like the one-step theta scheme or
the Fractional Step scheme are applied. For the Fractional Step scheme two
different, variants — one with operator splitting and one without — are pre-
sented. Especially the time discretization of the CSF term has to be handled
with care, as it leads to restrictive time step sizes if it is treated explicitly. In
each (macro) time step a coupled Navier-Stokes and level set problem has to be
solved. Here the problem is decoupled by introducing a fixed point approach,
which can be seen as some kind of Picard iteration. Time discretization and
coupling strategy are discussed in Chapter 6]

The solution of the discrete problems is topic of Chapter The nonlinear-
ity of the Navier-Stokes problem is treated by a defect correction approach.
Krylov subspace methods are used as iterative solvers for the linear problems.
For the saddle point problems an inexact Uzawa method (Schur complement
approach) is applied. Preconditioning of the Schur complement operator has
to take into account the jumping coefficients caused by different material prop-
erties in the two phases.

Even though the level set approach is very attractive for interface capturing,
there are some disadvantages that have to be overcome. During the advection
process, the signed distance function property gets lost and has to be reestab-
lished by a certain reparametrization. A variant of the fast marching method
has turned out to be a favorable choice for this task. As conservation of mass
is not inherently incorporated into the method, it is enforced artificially by
a simple correction of the level set function. These topics are addressed in
Chapter 8.

Finally, Chapter 9] describes the structure and design of the software package
DROPS [DRO], where all the aforementioned methods have been implemented.
DROPS is written in C++ and developed by a couple of people at the IGPM,
RWTH Aachen University, Germany. The software is applied to simulate the
hydrodynamics and heat and mass transfer in two-phase flow problems arising
in the Collaborative Research Center SFB 540 [SFB.

Remark 2.4
In the following we briefly motivate the choice of the numerical methods.

Due to the nested multilevel hierarchy of tetrahedral meshes which allows sim-
ple refinement and also coarsening routines we can realize a high resolution
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/Discretization \ ‘

Geometrical aspects Ch.[3

e grids: multilevel tetrahedral grid hierarchy
e adaptivity: local refinement at the interface

s 2
Spatial discretization by FEM Ch.[4

e P»-P;-FE for velocity, pressure
e stabilized FEM for level set equation

Treatment of surface tension Ch. 5

e modified pressure space (XFEM)
e improved Laplace-Beltrami discretization of fr

N

N

Time discretization Ch. |6

e one-step f-scheme
e fractional step scheme
e coupling of level set and Navier-Stokes

NG J

Iterative Solvers Ch. |7

N\

e Navier-Stokes: linearization + defect correction
e Oseen: Uzawa-type methods + general Krylov-type methods
e preconditioning

Reparametrization Ch.[8

e redistancing of level set function

Implementation Ch.[9

e data structures + algorithms
e parallelization aspects

Figure 2.4.: Overview of numerical methods and outline of Part[IT| of the thesis.
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close to the interface I'. For the local refinement in that area we need a suitable
marking strategy. For this the level set function is very well suited, because
it yields a good approximation of the distance to the interface. Another im-
portant reason why we use the level set technique is the fact that topological
changes of the interface (e.g., occurring during droplet-droplet interaction)
can be handled without further effort. For interface tracking approaches this
is a more delicate task, as the interface mesh has to be completely restruc-
tured. Also the VOF method suffers from a bad interface reconstruction in
this case.

The finite element method is a flexible discretization method, which can deal
with complex geometries. Due to the use of finite element discretizations
on a nested multilevel grid hierarchy, multigrid solution techniques can be
applied. A further nice property of the finite element approach is that we can
apply partial integration to the Laplace-Beltrami operator and thus eliminate
the second order derivatives that occur in the curvature k. A disadvantage
compared to finite volume methods is the fact that the discretization has to
be stabilized for convection-dominated problems and that the finite element
method is not conservative.

We use implicit time integration schemes to avoid the time step restrictions
of explicit methods for small grid sizes h.



3. Adaptive multilevel
refinement

3.1. Multilevel grid hierarchy

We first introduce some notions for the geometric entities by the following
definitions.

Definition 3.1 (Triangulation)

A finite collection 7 of tetrahedra T' C Q is called a triangulation of Q (or Q)
if the following holds:

1. meas3(T) >0 forall T € T,

2. Uper T =9,
3. int(S)Nint(T) =0 forall S, T €T with S #T.
Here int(U) means the interior of the set U C Q. S

Definition 3.2 (Counsistency)
A triangulation 7 is called consistent if the intersection of any two tetrahedra
in 7 is either empty, a common face, a common edge or a common vertex. ¢

Definition 3.3 (Stability)
A sequence of triangulations (7,77, 72, . ..) is called stable if all angles of all
tetrahedra in this sequence are uniformly bounded away from zero. o

It is known that for finite element discretizations in many cases the weaker
(maximal angle) condition “all angles of all tetrahedra are uniformly bounded
away from 7 would be sufficient. However, using the latter condition, stronger
requirements on the robustness of iterative solvers are needed, which can be
avoided when using the minimal angle condition in Definition [3.3.

Definition 3.4 (Refinement)
For a given tetrahedron T a triangulation IC(T") of T is called a refinement
of T if |KK(T)| > 2 and any vertex of any tetrahedron 7" € K(T') is either a

31
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vertex or an edge midpoint of T'. In this case T" is called a child of T and T
is called the parent of T'.

A refinement K(T) of T is called regular if |KC(T)| = 8, otherwise it is called
irreqular.

A triangulation 741 is called refinement of a triangulation 7y # 741 if for
every T € T, either T' € Tj,41 or K(T) C 741 for some refinement K(T') of

T. o
Definition 3.5 (Multilevel triangulation)
A sequence of consistent triangulations M = (7o, ..., 7;) is called a multilevel

triangulation of Q) if the following holds:
1. For 0 < k < J: Ti41 is a refinement of 7.
2. For0<k< J:if T €T NTgy1, then T € 7.

The tetrahedra T € 7; are called the leaves of M. Note that T is a leaf iff T'
has no children in M.

A tetrahedron T' € M is called regular if T' € 7y or T resulted from a regular
refinement of its parent. Otherwise T is called irregular.

A multilevel triangulation M is called regular if all irregular T' € M are leaves
(i.e., have no children in M).

Ty is called the coarsest or initial triangulation, 7 is called the finest trian-
gulation. o

Remark 3.6

Let M be a multilevel triangulation and Vi (0 < k < J) be the corresponding
finite element spaces of continuous functions p € C(£2) such that pir € Py
for all T € 7}, (¢ > 1). The refinement property 1 in Definition implies
nestedness of these finite element spaces: Vi C Viy1. o

Definition 3.7 (Hierarchical decomposition of M)
Let M = (7o, ..., 7;) be amultilevel triangulation of Q2. For every tetrahedron
T € M a unique level number ¢(T") is defined by

UT):=min{k: T € T; }.

The set G C T,
G ={TeT: UT)=k}

is called the hierarchical surplus on level k, £k =0,1,...,J. Note that

g():’]?), gk:,Tk\ITk,1 fOI‘k:].,...,J.
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The sequence H = (Go, ..., Gy) is called the hierarchical decomposition of M.
Note that the multilevel triangulation M can be uniquely reconstructed from
its hierarchical decomposition due to refinement property 2 in Definition[3.5.¢

Remark 3.8

The hierarchical decomposition induces simple data structures in a canonical
way. The tetrahedra of each hierarchical surplus G are stored in a separate
list. Thus every tetrahedron T' € M is stored exactly once since T has a
unique level number ¢(T"). By introducing unique level numbers also for ver-
tices, edges and faces, these sub-simplices can be stored in the same manner:
For a sub-simplex S the level number £(S) is defined as the level of its first
appearance. Additionally, the objects are linked to certain corresponding ob-
jects by pointers (e.g., a tetrahedron is linked to its vertices, edges, faces,
children and parent). o

3.2. Adaptive refinement

In this section we describe a refinement algorithm which is, apart from some
minor modifications, the algorithm presented in [Bey95, Bey98|. This method
is based on similar ideas as the refinement algorithms in [BSW83, BBJ197].
We restrict ourselves to tetrahedral meshes. However, the method can easily
be modified such that it is applicable to other element types such as, for
example, hexahedra and pyramids.

The refinement strategy is based on a set of regular and irregular refinement
rules (also called red and green rules, due to [BSW83]), which are described
in the following two sections. The regular and irregular rules are local in the
sense that they are applied to a single tetrahedron. These rules are applied
in a (global) refinement algorithm that describes how the local rules can be
combined to ensure consistency and stability, cf. Definitions[3.2] and [3.3.

3.2.1. The regular refinement rule

Let T be a given tetrahedron. For the construction of a regular refinement
of T it is natural to connect midpoints of the edges of T' by subdividing each
of the faces into four congruent triangles. This yields four sub-tetrahedra at
the corners of 7' (all similar to T) and an octahedron in the middle. This
octahedron is further subdivided into four sub-tetrahedra with equal volume
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'
oo,

Figure 3.1.: Regular refinement.

(cf. Figure[3.1). A stable tetrahedral regular refinement strategy, based on an
idea from [Fre42|, is presented in [Bey95, Bey00]. We recall this method.

Let T = [z, () 23) ()] be a tetrahedron with ordered vertices 21, 2(?),
z®, 2® and
2l = %(x(i) +20), 1<i<j<y,

the midpoint of the edge between z(Y and z(). The regular refinement
K(T) :={T1,...,Ts} of T is constructed by the (red) rule

Ty = o), 202 £(13) G107 Ty = [2(12), 5(13) (1) 40
Ty = 2019, 22) 229 (9] Ty = 2019, 203) 229 4 24)] :

Ty = [x(13)’x(23) 23, 269 | Ty = [209), p(10) (20 (30)] (3.1)
Ty o= [0 229 x(34) PO Ty := [203), 223), x(24) 23] .

Ty,...,T4 are the sub-tetrahedra at the corners of T, and T, ..., Ts form the
octahedron in the middle of T. In [Bey00] it is shown that for any T the
repeated application of this rule produces a sequence of consistent triangula-
tions of T which is stable. For a given T all tetrahedra that are generated in
such a recursive refinement process form at most three similarity classes.

3.2.2. Irregular refinement rules

Let 7 be a given consistent triangulation. We select a subset S of tetrahedra
from 7 and assume that the regular refinement rule is applied to each of the
tetrahedra from S. In general the resulting triangulation 7’ will not be con-
sistent. The irregular (or green) rules are used to make this new triangulation
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consistent. For this we introduce the notion of an edge refinement pattern.
Let Ey,..., Fg be the ordered edges of T' € 7. We define the 6-tuple

R(T) = (Tla s 7T6) € {07 1}6
by:

e r;, = 1if F; is an edge of a tetrahedron S € S (i.e., edge E; is refined
and has two sub-edges in 7’) and

e r; = 0 otherwise (i.e., edge E; is not refined) .

For T € S we have R(T) = (1,...,1). For T € T\S the case R(T) = (0,...,0)
corresponds to the situation that the tetrahedron T does not contain any
vertices from 7’ at the midpoints of its edges. For each of the 26 — 1 possible
patterns R # (0, ...,0) there exists a corresponding refinement K(7) of T' (in
the fashion of (3.1)) for which the vertices of the children coincide with vertices
of T or with the vertices at the midpoints on the edges F; with r; = 1. This
refinement, however, is not always unique. This is illustrated in Figure

Figure 3.2.: Non-unique face refinement.

To obtain a consistent triangulation in which the subdivision of adjacent faces
of neighboring tetrahedra matches special care is needed. One way to ensure
consistency is by introducing a so-called consistent vertex numbering:

Definition 3.9 (Consistent vertex numbering)
Let T7 and T3 be two adjacent tetrahedra with a common face F' = Ty N1,
and local vertex ordering

T, = [xl(l),xl(2),xl(3),xl(4)], [=1,2.

The pair (T1,T2) has a consistent vertex numbering, if the ordering of the
vertices of F induced by the vertex ordering of T; coincides with the one
induced by the vertex ordering of T,. A consistent triangulation 7 has a
consistent vertex numbering if every two neighboring tetrahedra have this
property. <&
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Remark 3.10

We note that a consistent vertex numbering can be constructed in a rather
simple way. Consider an (initial) triangulation 7 with an arbitrary numbering
of its vertices. This global numbering induces a canonical local vertex ordering
which is a consistent vertex numbering of 7. Furthermore, each refinement
rule can be defined such that the consistent vertex numbering property of the
parent is inherited by its children by prescribing suitable local vertex orderings
of the children. (3.1) is an example of such a rule. Using such a strategy a
consistent triangulation 7”7 that is obtained by refinement of 7 according to
these rules also has a consistent vertex numbering. o

Assume that the given triangulation 7 has a consistent vertex numbering. For
a face with a pattern as in Figure/3.2/one can then define a unique face refine-
ment by connecting the vertex with the smallest number with the midpoint
of the opposite edge. For each edge refinement pattern R € {0,1}% we then
have a unique rule. We emphasize that if for a given tetrahedron 7" the edge
refinement pattern R(T) is known, then for the application of the regular or
irreqular rules to this tetrahedron no information from neighboring tetrahedra
is needed. Clearly, for parallelization this is a very nice property.

3.2.3. Multilevel refinement algorithm

Up to now we discussed how the consistency of a triangulation can be achieved
by the choice of suitable irregular refinement rules based on the consistent
vertex numbering property. We will now explain how the regular and irregular
rules can be combined in a repeated refinement procedure to obtain a stable
sequence of consistent triangulations. The crucial point is to allow only the
refinement of reqular tetrahedra, i. e., children of irregularly refined tetrahedra,
also called green children, are never refined. If such a green child T is marked
for refinement, instead of refining 7" the irregular refinement of the parent will
be replaced by a regular one. As the application of the regular rule (3.1) creates
tetrahedra of at most 3 similarity classes (cf. [Fre42, Bey00]), the tetrahedra
created by a refinement procedure according to this strategy belong to an a-
priori bounded number of similarity classes. Hence the obtained sequence of
triangulations is stable.

The idea of the so called red-green refinement strategy can be best explained
by a simple 2D example: for ease of presentation we use triangles instead of
tetrahedra and show the action of a one-level refinement method. Consider
the following multilevel triangulation M = (7p,77) as depicted in Figure
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To T

Figure 3.3.: Initial multilevel triangulation with some leaf tetrahedra marked for
refinement (indicated by shading).

In 77 two triangles are marked (by shading) for refinement. A one-level re-
finement algorithm (like the one described in [BSW83]) only uses the finest
triangulation 77 as input. It first applies the regular refinement rule (the so
called “red refinement”) to marked regular triangles and to the parents of green
children, which are either marked or neighbors of marked triangles — green
children are never refined because of stability reasons. This red refinement
of course yields an inconsistent triangulation (cf. Figure 3.4 in the middle).
Thus in the next step appropriate irregular refinement rules are applied to
avoid hanging nodes (“green closure”). The output of the one-level refinement
algorithm is the new triangulation 75 (cf. Figure on the right).

red W\ green 7

T

Figure 3.4.: One-level red/green refinement.

The new triangulation 75 is consistent, but not a refinement of 77 in the sense
of Definition[3.4. Related to this, the corresponding FE spaces are not nested,
which is not favorable if one wants to use multigrid solvers for the solution of
the linear systems. Another important disadvantage is the fact that it is not
obvious how to treat coarsening of the grid, which is also an important task,
if the refinement zones are moving in time. This, for example, occurs in the
rising bubble problem, where tetrahedra in the lower part of the grid have to
be unrefined, when the interface has moved further upwards.

In multilevel refinement algorithms both input and output are multilevel tri-
angulations (cf. Definition[3.5). That means that in general the algorithm not
only affects the finest triangulation like in the case of the one-level method, but
the whole multilevel triangulation, which can be seen in the next example. The
multilevel method is more complicated than the one-level algorithm, but offers
important advantages: Property 1 of Definition [3.5 assures the nestedness of
the belonging FE spaces, cf. Remark[3.6. The multilevel structure also allows
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to treat local refinement and coarsening in a similar way. In view of these
advantages we implemented a multilevel refinement algorithm in DROPS.

For the description of the multilevel refinement algorithm we introduce the
notions of status and mark of a tetrahedron. Let M = (7y,...,7;) be a
multilevel triangulation that has been constructed by applying the regular
and irregular refinement rules and let H = (Go, ..., Gs) be the corresponding
hierarchical decomposition. Every tetrahedron T" € H is either a leaf of M
(i.e., T € Tj) or it has been refined. The label status is used to describe this
property of T":

NoRef  if T is a leaf of M,
For T € H: status(T) = { RegRef if T is regularly refined in M,
IrregRef if T is irregularly refined in M.

The label IrregRef also contains the number of the irregular refinement rule
(one out of 63) that has been used to refine T', i.e., the binary representation
of status(T") coincides with the edge refinement pattern R(T") of T

In adaptive refinement an error estimator (or indicator) is used to mark certain
elements of 7 for further refinement or for deletion. For this the label mark
is used:

Ref if T' € 75 is marked for refinement,
For T eH: mark(T) =< Del if T € T is marked for deletion,
status(7') otherwise.

We describe a multilevel refinement algorithm known in the literature. The
basic form of this method was introduced by BASTIAN [Bas96| and developed
further in the UG-group [BBJT97, BBJ1T99, UG|. We use the presentation as
in [Bey95, Bey98|, which is shown in Algorithm
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Algorithm 3.11 (Multilevel refinement)

Algorithm SerRefinement(Gy, . ..,GJ)

for k=J,...,0 do // phase I
DetermineMarks(Gy); (1)
MarksForClosure(Gy); (2)

for k=0,...,J do if Gy # 0 then // phase 11

if k>0 then MarksForClosure(Gy); (

if k< J then Unrefine(Gy); (4

Refine(Gy); (5
if G;=0 then J:=J-1; (6
else if Gyi1 #0 then J:=J+1; (7

The input of SerRefinement consists of a hierarchical decomposition
H = (Go,---,G)

in which all refined tetrahedra T are labeled by mark(T") = status(T") according
to their status and the unrefined T' € 7; have mark(T") € {NoRef, Ref, Del}.
The output is again a hierarchical decomposition, where all tetrahedra are
marked according to their status.

The main idea underlying the algorithm SerRefinement is illustrated using the
multilevel triangulation (7y,77) from above. The hierarchical decomposition
‘H and the corresponding marks are shown in Figure (3.5

A mark(T') = NoRef
S mark(T') = RegRef
mark(T') = IrregRef

A

g1

mark(T') = Ref

Figure 3.5.: Input hierarchical decomposition.

Note that for the two shaded triangles in G; we have status(T") # mark(T).
For all other triangles status(T') = mark(T") holds. In phase I of the algo-
rithm (top—down: (1),(2)) only marks are changed. In DetermineMarks some
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LR

gélew

A
O

Figure 3.6.: After phase I. Figure 3.7.: Output hierarchical de-
composition.

tetrahedra are labeled with new marks, which are of the type RegRef (for
red refinement) or NoRef (for coarsening). The green closure marks are set
in MarksForClosure, where appropriate irregular refinement marks are deter-
mined from the edge refinement patterns to avoid hanging nodes.

Once phase I has been completed the marks have been changed such that
mark(T) € {NoRef, RegRef, IrregRef} holds for all T € H, cf. Figure[3.6 We
emphasize that all green children in G; have mark(T) = NoRef, as they are
not refined because of stability reasons. Instead the corresponding irregular
refined parents in Gy are labeled by mark(T) = RegRef.

In the second phase (bottom—up: (3)-(5)) the actual refinement (coarsening
is not needed in our example) is constructed: A call of Unrefine(Gy) deletes
all tetrahedra, faces, edges and vertices on level k£ + 1, which are not needed
anymore due to changed marks. In the subroutine Refine(Gy) all T € Gy
with mark(7T") # status(T") are refined according to mark(7") and new objects
(tetrahedra, faces, edges, vertices) on level k + 1 are created. A subsequent
call to MarksForClosure in (3) computes the appropriate refinement marks
for the new created tetrahedra in the next sweep of the for-loop.

In the output hierarchical decomposition

new new new

HneW:(go agl ag2 )
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we have mark(T") = status(T") for all T' € H"*V, cf. Figure[3.7. The output mul-
tilevel triangulation MV = (7, , 7, , 7, ) is regular (cf. Definition
and is given by

new ne

T, =G, , T, =G, T, =G, U{TeG, : mark(T)= NoRef}.
Note that 7, =75, 7, # 7; (!) and that the new finest triangulation 7,
is the same as the triangulation 75 in Figure (3.4 resulting from the one-level
algorithm.

A more detailed discussion of the subroutines in algorithm SerRefinement (cf.
Algorithm [3.11) is given in [Bey95, Bey98, (Gro02].

Remark 3.12

A parallelized version of the algorithm, called ParRefinement, has been devel-
oped and is described in [Gro02,|GRO05]. It is based on a formal description
of the distributed geometric data which is very suitable for parallelization.
This formal description was introduced in [Gro02] and is called an admis-
sible hierarchical decomposition, cf. Definition [9.2] It was proved that the
application of the multilevel refinement algorithm ParRefinement to an input
admissible hierarchical decomposition again yields an admissible hierarchical
decomposition. The same holds for a suitable load balancing strategy de-
scribed in [Gro02]. Both parallel refinement algorithm and load balancing
strategy have been implemented and were successfully applied up to a num-
ber of 64 processors. This implementation has served as a starting point for a
further parallelization of DROPS [For07] which is currently conducted by our
partners at the Chair of Scientific Computing, RWTH Aachen University. ©
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4. Spatial discretization by
Finite Elements

Let 7 be a consistent triangulation of €2, e.g., 7 = 7 the finest triangulation
introduced in the previous chapter. For k£ > 1 we introduce the spaces of
piecewise polynomial continuous functions,

XFi={v, €e H(Q): vp|lr €Pr VT €T}, (4.1)
X} =X"NHjy, (Q) (4.2)

with Hj s, (€2) the space of all functions in H'(Q) vanishing on the Dirichlet
boundary X p (in the sense of traces). For the discretization of the Navier-
Stokes and level set equations we will consider the spaces for 1 < k < 2, so
called P; (piecewise linear) and P, (piecewise quadratic) finite elements.

4.1. Discretization of the Navier-Stokes
equations

For the finite element discretization of the Navier-Stokes equations we choose
finite dimensional subspaces V;, C Vg and Qp C Q for velocity and pressure,
respectively. Here we choose the Hood-Taylor finite element pair

Vi X Qh = (XQD)?) X Xl,
which fulfills the inf-sup condition (also known as LBB stability)

inf  sup _bvh. an) >03>0 (4.3)

@ €Qn vy.evy, [[Vallillgnllo

with 6 > 0 independent of h.

43
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Remark 4.1

In Section [5.4 we will introduce an alternative finite element space @} for
the pressure which allows for discontinuities at the interface I' and is thus
more appropriate to approximate pressure jumps induced by surface tension.
Certain theoretical questions like the LBB stability of the pair V; x Q}: are
still unanswered and topics of current research. o

We consider the continuous problem in weak formulation, cf. (2.21)—(2.22).
For the time being we address the simple case of homogeneous boundary condi-
tions, i.e., up(x,t) = 0 for all (x,t) € X¥p X [to,ts] and on = 0 on X x [to, tf],
cf. Section[2.1.3. The treatment of non-homogeneous boundary conditions will
be discussed in Section[4.1.1. The associated Galerkin discretization is given
as follows:

Find u,(¢) € V), and pi(t) € Qp, such that for (almost every) t € [to, ¢ ]

m(uy,(t), va) + n(un(t); un(t),va)
+a(un(t), vi) + b(va,pr(t)) = (pg, va)o + fr(vy) for all vy, € Vi,
(4.4)

b(un(t),qn) =0 for all g5, € Qhp,
(4.5)

initial condition Upli=t, = ug in Q.

Here we use the notation from Section for the bilinear forms mf(,-),
a(-,-), b(+,-), the trilinear form n(-;-,-) and the linear form fr(-).

Let Ny, := dimV, and Ng, := dimQ, be the dimensions of the finite
element spaces. For tetrahedral meshes the nodes of the P; finite element
are located at the vertices of the triangulation, cf. Figure Let %, € R3
denote the spatial coordinate of the i-th P, node, ¢ =1,..., Ng,. For the P,
finite element the nodes are located at the vertices and the midpoint of the
edges of the triangulation, its spatial coordinates are denoted by x1,...,Xny, -
Note that, due to v,|s, = 0 for all v, € V},, nodes on Dirichlet boundaries
are not, taken into account for the construction of V. We introduce nodal
bases {vi}izl,___,th and {qi}izl,___7NQh of Vj, and @y, respectively. Then by
construction, v;(x;) = 0 and ¢;(%x;) =0 for i # j and v,(x;) =1, ¢;(%;) = 1.

By means of the nodal bases, the Galerkin problem (4.4)—(4.5) can be equiva-
lently written in matrix-vector notation. For this we define the isomorphisms
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Figure 4.1.: P; (4 nodes, on the left) and P» finite element (10 nodes, on the right).

Jv, : RMWir — Vy, and Jg, : RNer — @y, by

th

JV}L (K) = Z Xi V’i7
i=1

Nay,

Jou (W) == > ¥, 4
i=1

for all vectors x € RNVa, y € RN@n. These isomorphisms represent the link
between coefficient vectors and associated finite element functions. Based on
that, the matrices A, M, N(w) € R™n*NVi and B € RYew XMy are defined
by

) i=m(Jv, ), Jv,(v)) (mass matrix),

) (Jv, (), Jv,(¥)) (discrete diffusion),
(N(w)u, v) :=n(Jy,(w); Jv,w), Jv,(v)) (discrete convection),

)

(Bv, q) =b(Jv, ), Jo,(9)) (discrete divergence)

for all u,v,w € R™ and q€ RNan, Here (-,-) denotes the Euclidean inner
product of two vectors.

We rewrite the Galerkin problem (4.4)—(4.5) in matrix-vector notation:
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Find u,(t) € R™Vn, p,(t) € RNen such that for (almost every) ¢ € [to,t]

(Mg(;h(t)) . ([N(uh%))+A] Eff) (;:((f))) _ (%) (4.7)

initial condition  w|i=¢, = Uy,

where the upper right-hand side b is given by
b; :== (pg,Vvi)o + fr(vi), i=1,...,Ny,

and for the initial condition u, the property Jv, (uy) = ug holds.

4.1.1. Non-homogeneous boundary conditions

In the previous section we only considered the discretization for homogeneous
boundary conditions. We now discuss the case with general Dirichlet boundary
conditions

u=1up on ZDX[tQ,tf]

and general natural boundary conditions

on=gy on Xp X [to,ty].

Define the finite element space VhD := (X2)3 D V,, which also has nodes on
the Dirichlet boundary ¥ p. Let Ny, := dim Vf — dim V, be the number
of nodes on ¥ p and {viD}i=17___7NED the corresponding nodal basis functions.
Note that V5 = V;,@span(vP, ... , Vs, )- We denote by x{ the spatial coor-

D

dinate of the location of the i-th node on Xp, i.e., x;° is either the coordinate

of a vertex on X p or the midpoint of an edge on % p.

For t € [to, ] let

ul(t) = Z a;vP
i=1
such that u?(t)(xP) = up(xP,t) for all i = 1,..., Nx,,. By construction,

up(t)(x;) = 0 for all i = 1,..., Ny, and t € [to,ts]. We introduce Jyp :
RMVu x [tg, t7] — VI with

Jyp(x,1) = Jv, (x) +ug (t) (4.8)
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The Galerkin problem with non-homogeneous boundary conditions is as fol-
lows:

Find wy(t) € V}) with u,(t)|s, = uP(t) and py(t) € Q such that for
(almost every) t € [to, tf]

m(uy,(t), va) + n(un(t);un(t), va) + a(ua(t), vi) + b(v, pr(t))
= (pg, vi)o + fr(va) + /EN gyvnds  forall v, € V),
(4.9)
b(up(t),qn) =0  for all g € Qn, (4.10)

initial condition upli=t, = ug in Q.

Note that the surface integral over Xy in the right-hand side of (4.9) arises
from partial integration and substitution of the natural boundary condition, cf.
(2.20). In practice, we do not use this formulation, but the following equivalent
one. Let “2 =up — uf € V;, be the homogeneous part of the finite element
solution uy. Replacing uy(t) by u (¢) in (4.9)—(4.10), we obtain

Find uf (t) € Vj, and py(t) € Qp such that for (almost every) ¢ € [to, tf]
m((ap)' (), va) + n(an(t); up (1), vi) + n(uy (t);ug) (1), va)
+ a(u} (1), vi) + b(vh, pa(t))
= (pg, vin)o + fr(va) +/ gnVhds

P
—m((uP) (), vn) —n(u (t);ul (t),vi) — a(uf (t),vy) for all vj, € Vy,
(4.11)
b(ul(t), qn) = —b(uP (t),qn) for all g, € Qp,
(4.12)
initial condition u|i—s, = up —uf (to) in .

Then the seeked finite element solution is given by
u, = u% + uhD .

Note that the right-hand side of contains additional terms accounting
for the non-homogeneous Dirichlet boundary values. On the left-hand side
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there are two occurrences of the trilinear form n(-;-,-), hence, the matrix N
has to be replaced by N € RV¥Va*Nvy, where

(N(w(t)u(t), ¥(t)) = n(Jyo(w(t),t); Jv, @), Jv,x()))
+n(Jy, (@) ug (1), v, (¥(1)
for all u(t), v(t), w(t) € RMVn, t € [to,tf].
Writing (4.11)—(4.12) in equivalent matrix-vector notation we obtain

Find u (t) € R"Va, p (t) € RN@x such that for (almost every) ¢ € [to, ty]

(M<g§>'<t>)+(m<uh%))+m EéT) @38)‘ <h) -

initial condition ulli—o = uy,
with
u, = uj +uy,
E =b+ XN - XDa
Xiv :/ gnVids, i=1,...,Nv,,
P
VP = (D) (6),vi) + n(uP (0 uP(0),vi) + oP (), vi), i=1,..., Ny,

é]:_b(uhD7qj)) j:17""NQ}L'

Thus, the discretization is very similar to (4.7), but with a different right-hand
side and a slightly changed discrete convection matrix N.

4.1.2. Treatment of jumping coefficients

The material coefficients p and p have to be handled with care as they are
discontinuous across I'. They occur in integrals of the form

I:/QozG(x)dx7

where a € {p, u} is piecewise constant and G is a continuous smooth func-
tion on each element T' € 7. There are two possible ways to deal with the
computation of such integrals with discontinuous integrands:
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(A) Integration on parts. Split the integral into two integrals on the subdo-

mains,
/ aGx)dx = G(x)dx + a2 G(x) dx.
Q Q1 Q2

The integrands on the right-hand side are continuous and smooth on
each tetrahedron and thus standard quadrature rules can be used. How-
ever, technical difficulties arise for tetrahedra T' € 7 which are inter-
sected by I', as we have to integrate over its two parts ; N T, 7= 1,2
which are not tetrahedral in general, cf. Figure[5.9] This issue is further
discussed in Section [5.4.4]

(B) Integration of regularized integrands. Replace the discontinuous a by a
continuous smoothed a.. This can be achieved by replacing the Heavi-
side function H in (2.29)) by a smoothed Heaviside function H. : R — R,

0 r < —¢,
He(z) = qv(%) xz€(—¢,¢),
1 T >E.
with
v() = % + 3—12(45§ — 5063 4 21¢°), (4.14)

cf. [Tor00]. Also other choices of smooth transition functions v(£) can

be found in the literature, e.g., v(§) = H_%(g%) [SSO94]. For the
approximation of I, we apply quadrature to the integral

1. ::/Qozs(ga(x))G(x)dx.

For the first approach we have the following error bound.

Remark 4.2 (Discretization error for approach A)
Assume that I' is approximated by a piecewise planar interface approximation
I'y, with the property

|d(x)| < ch? for all x € I'y,

where d(x) := dist(x,I") is the distance function for I". For the construction
of such an interface approximation I';, we refer to Section where more
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details are given. I'j, subdivides {2 into two subdomains €;, ¢ = 1,2. The
integral I is approximated by integrating on both subdomains,

Iy =y G(x)dx + az G(x) dx.
Qi.n Q2.p

Usually the integration is performed tetrahedron by tetrahedron. If a tetra-
hedron T is cut by the planar interface approximation I'y, the domains of
integration 7'M Q; p, ¢ = 1,2, are not necessarily tetrahedral. For more de-
tails on how to integrate over the two parts of a cut tetrahedron we refer to

Section [5.4.4.

In the following the error |I — I, is analyzed in terms of h. We introduce the
sets D;ir =W\ Qp, Dy = Qi \Q and Dy, = D;ir U D, . Note that Dy
contains all points between I' and I'j, and that measg(D},) < ch?. Then for
G € Loo(Dp,) we have

|l —In| <|oq — ol [|GllL,(py) < a1 — a2l |Gl L (D,) meas3(Dp)

4.15
< ch?. ( )

<

We now turn to the second approach. Clearly, the second method is much
easier to implement than the first one, but introduces a new parameter ¢.
For the choice of v(£) as in (4.14), an extensive analysis and comparison with
the first approach is given in [Tor00, Tor02| for the 2D case. Based on these
investigations the second approach is used in [TE00]. We give here the main
discretization error results from [Tor02]. Before that we have to introduce
some notions for polynomial transition functions.

Definition 4.3
Let v : [-1,1] — R be a polynomial with v(—1) =0 and v(1) = 1. Then v is
called a transition polynomial. v has m > 0 vanishing moments, if

1
1
o = f Na=0,1,... .
/_lu@)g d=—s foralla=01,...m

v has an transition smoothness of order k > 0, if
vB(+1)=0 forall g =1,... k. o
Theorem 4.4 (Discretization error for approach B, 2D case)

We consider the 2D case Q C R%. Let Qr be a quadrature formula for a
triangle T' such that Qpf = fT f(x) dx for all polynomials f up to the order
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n. We introduce the regularization error

E. = /Q(H— H.)(p(x)) G(x)dx

and the quadrature error

Euad = / H.(p(x)) Gx)dx — 3 Qr(H.G).

TeT,

Then the total error Eio = [, H(p(x)) G(x) dx — Y 1cq Qr(H:G) is the
sum of regularization and quadrature error,

Eiot = Ee + Equad- (4.16)

Assuming that € - maxyer |£(z)| < 1, where & is the local curvature of T', and
that v(§) has m vanishing moments, for the regularization error we have

mt IJ . (4.17)

E. ~eft2 with =2 {T

If G € C*, H. € C* and n > k, where n is the order of the quadrature rule
QT, then

hk+2

T (4.18)

Equad ~

Proof. Given in [Tor02]. O

Remark 4.5

For the transition function v(§) mentioned above in (4.14) we have m = 2
vanishing moments and a transition smoothness of order £k = 1. Thus we have
to apply a quadrature rule which is exact up to the order of at least n = 2,

yielding
h3
Etot ~ 64 + 5

3

When the grid size h changes due to refinement the regularization parameter
e should be scaled with h such that e ~ h'/2, In that case we have

Eiot ~ h2-

This is the same order of convergence as for the first approach, cf. (4.15) in
Remark o
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Even though the second approach seems to be quite convenient, we experi-
enced some critical problems. When discretizing the mass matrix M,

My = / pe(ox)vividx,  1<i,j < Ny,
Q

using a quadrature rule of order 2 or even of order 5 yields a matrix which is
not always positive definite. This undesired effect was also observed for other
matrices involving discontinuous coefficients and has of course a significant
impact on the convergence behavior of the iterative solvers. We therefore
favor the first approach, although its implementation is more tedious, as it
avoids the additional smoothing parameter € and guarantees a positive definite
discretization of elliptic operators.

4.2. Discretization of the level set equation

The level set equation (2.26) is also discretized by finite elements. For this
purpose we use P finite elements and introduce the finite-dimensional space
Vi, := X2 C H'(Q). Note that there are no boundary conditions stated for the
level set function ¢, hence Ny, := dim V}, is equal to the number of vertices
and edges of the corresponding triangulation 7. Let {vi}i:Lm,th be the

nodal basis of V}, and Jy, : RN — Vj, the isomorphism defined by

Jv, (z) = Z z; v (4.19)

i=1,...,Nv,

for all vectors z € R™Mva.

As the level set equation is purely hyperbolic, the standard Galerkin discretiza-
tion should not be used and requires some stabilization. We apply a streamline
diffusion stabilization which can be seen as a Petrov-Galerkin method with
trial space V}, and special test functions ¢;. For each tetrahedron T € 7}, a
stabilization parameter 07 = dr(hp,up|r) is chosen, where hp denotes the
maximal diameter of T'. The test functions are then defined as

@h|T = vp + oruy, - Vup, T €Ty,

which induces additional diffusion in streamline direction explaining the name
of the method. For an analysis of the streamline diffusion method and rea-
sonable choices of the stabilization parameter ér we refer to [RST96]. We use
dr = chp with a suitable constant ¢ > 0. If the velocity field u;, shows strong
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local fluctuations, the choice 7 = ¢ ”u}hlﬁ is suggested in [Pri06]. As this is
not well-defined for u;, = 0 and tends to infinity for u — 0 we recommend to

use
hr

C
max {eo/hr, [[uploo,7}

or =

instead for some small g > 0.

The streamline diffusion finite element discretization of the level set equation
is given by

Z ((p’h (t) “+ up, (t) . V(ph (t), vy + Oruy, (t) . Vvh)O,T =0 for all vy, € Vh,
TeT,
(4.20)

where t € [to,t7]. Introducing the matrices E = E(uj,) € RN and
H = H(up,) € RV XNV given by

E;; = Z (vj, v; + oruy, - Vvi)o T (stabilized mass matrix),
TeT),

H;j Z (uh -Vvj, v; + éruy, - Vvi)o o (stabilized discrete convection),

TeT,

where 1 <, j < Ny, , we rewrite (4.20) in matrix-vector notation:

Find ¢(t) € RNVa such that for (almost every) ¢ € [to, ty]

E¢'(t)+ Hp(t) = 0. (4.21)
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5. Numerical treatment of
surface tension

Due to the Laplace-Young law, typically the pressure has a jump across the
interface, when surface tension forces are present (7 # 0), cf. Remark
below. In numerical simulations, this discontinuity and inadequate approx-
imation of the localized surface force term often lead to strong unphysical
oscillations of the velocity uy, at the interface, so called spurious velocities or
spurious currents, cf. | e. g., [LNST94, FCD'06]. In this chapter we present an
alternative finite element discretization approach which significantly reduces
the size of these spurious velocities compared to known methods. For the
motivation and analysis of our approach we further simplify (2.21)—(2.22) and
consider a stationary Stokes problem with a constant viscosity (@1 = p2 = p
in Q). We emphasize, however, that the methods that we present are not
restricted to this simplified problem but apply to the general Navier-Stokes
model (2.21)-(2.22) as well. We introduce the following Stokes problem: find
(u,p) € Vi x @ such that

a(u, v) +b(v,p)
b(u, q)

(pg,v) + fr(v) for all v € Vy,

5.1
0 for all ¢ € Q, (5-1)

where

a(u,v) ::/QuVqudx, b(v,q) :—/quivvdx,

with a viscosity g > 0 that is constant in 2. The unique solution of this
problem is denoted by (u*,p*) € Vi x Q.

Remark 5.1

The problem (5.1) has a smooth velocity solution u* € Vg N (HQ(Q))3 and a
piecewise smooth pressure solution p with pjq, € HY(Q;), i = 1,2, which has
a jump across I'. These smoothness properties can be derived as follows. The
curvature « is a smooth function (on I'). Thus there exist p; € H'(Q;) such
that (p1);r = & (in the sense of traces). Define p € L*(2) by p = py in Oy,

35
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p =0 on s. Note that for all v € Vy,

fp(v):T/nnp~vds:7'/ﬁ1np'vds
r r

:T/ ﬁ1diVde+T/ Vﬁ1~vdx:T/ﬁdivvdx+T/g~vdx,
Q1 Q1 Q Q

with g € L?(Q)3 given by g = Vp1 in Q1, g = 0 on Qy. Thus (u*,p* + 7p)
satisfies the standard Stokes equations

a(u*,v) +b(v,p" +7p) = (pg + 78,v) forall v € Vo,
b(u*,q) =0 for all g € Q.

From regularity results on Stokes equations and the fact that 2 is convex we
conclude that u* € H2(Q)N H(Q) and p* +7p € HY(Q). Thus [p* +7p]r =0
(a.e. on I') holds, which implies

[p*r = —7[plr = -7k,
i.e., p* has a jump across I' of the size 7x. o

Example 5.2 (Static Bubble)

A simple example that is used in the numerical experiments in Section is
the following. Let Q := (—1,1)% and Q; a sphere with center at the origin and
radius 7 < 1. We take g = 0. In this case the curvature is constant, k = —%,

and the solution of the Stokes problem (5.1) is given by u* =0, p* = T% + co
on 1, p* = ¢o on Qy with a constant ¢y such that [, p* dx = 0. o

The outline of this chapter is as follows. In Section [5.1]we introduce an inter-
face approximation I';, of the interface I' and formulate some abstract proper-
ties of the interface approximation our analysis is based on. Furthermore, we
describe how the interface approximation is implemented in our code such that
the desired properties are fulfilled. In Section (5.2 the spurious velocities are
traced back to two major error sources, the discretization error of the surface
tension force and the approximation error of the discontinuous pressure. Both
are analyzed in the subsequent sections. Section [5.3 describes the discretiza-
tion of the surface tension force fr based on a Laplace-Beltrami technique.
For this approach a discretization error of O(\/E) is proved and some slight
modification with an improved O(h) behavior is introduced. In Section [5.4
it is shown that standard finite element spaces are not very suitable for the
approximation of functions with a jump across I' due to an approximation
error of size O(vh). We introduce a new finite element space which is more
suitable for this task, based on the extended finite element method (XFEM)
by BELYTSCHKO [MDB99, BMUPO1].
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5.1. Interface approximation

Recalling the definition of fr,

fr(v) = T/ KOrvndx = T/ kvnds for all v € Vy,
Q r

we see, that this term can either be discretized by computing a volume integral
where the integrand contains a (regularized) delta function dr or by computing
a surface integral over an approximation of the interface I'. Both approaches
can be found in the literature, see for instance [TE00, Hys06, PS01, MGCRO7]
for the volume integral approach and [MCNO03, GRR06,/Smo05] for the surface
integral approach. We favor the surface integral approach as it seems to be
more natural and avoids the difficulties arising from the numerical treatment
of the delta function. For evaluating the surface integral we need to know
the location of the interface I', which is only implicitly given by the level set
function. Hence, a local interface reconstruction method has to be applied
which provides an approximative interface I',.

Before describing how an approximation I';, of the interface I' can be con-
structed in practice, we first give some abstract conditions which the interface
approximation ', should fulfill (cf. Section[5.1.1). Our theoretical analysis of
the discretization of the surface tension force fr in Section [5.3] will be based
on these abstract conditions. We note that due to this fact the analysis is not
only restricted to our concrete interface reconstruction method described in
Section [5.1.2 but applies to any interface reconstruction method that meets
the requirements formulated in the conditions (5.5)—(5.7) below.

5.1.1. Assumptions on [},

For the formulation of assumptions on the approximate interface I';, it is con-
venient to introduce the signed distance function

d:U — R, |d(x)] := dist(x,T") for all x € U.

Thus T is the zero level set of d. We assume d < 0 on the interior of I (that
is, in 1) and d > 0 on the exterior. Note that np = Vd on I'. We define
n(x) := Vd(x) forall x € U. Thusn =nr onI" and |n(x)|| =1forallx € U.
Here and in the remainder of the section || - || denotes the Euclidean norm.

Remark 5.3
In our approach we use the discrete level set function j, as approximation for
the distance function d, which is not available. o
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The Hessian of d is denoted by H:
H(x) = D%d(x) € R**® forall x € U. (5.2)

The eigenvalues of —H(x) are denoted by x1(x), k2(x) and 0. For x € I" the
eigenvalues k;(x), i = 1,2, are the principal curvatures, and k(x) = k1(x) +
ka(x) is the mean curvature.

We will need the orthogonal projection P onto the tangential space of T,

P(x) =I-n(x)n(x)" forxcU. (5.3)

Using the distance function d we introduce assumptions on the approximate
interface I',. In Section [5.1.2 below we indicate how in practice an approxi-
mate interface I'j, can be constructed which satisfies these assumptions. Let
{Th}nr>0 be a family of polygonal approximations of I'. Each I'j, is contained
in U and consists of a set Fj, of triangular faces:

= J F (5.4)

FeFy

For Fy, Fy € Fy with I} # F, we assume that Fy N Fy is either empty or a
common edge or a common vertex. The parameter hr denotes the maximal
diameter of the triangles in Fp,:

hr = max diam(F).

By nj,(x) we denote the outward pointing unit normal on I';,. This normal is
piecewise constant with possible discontinuities at the edges of the triangles
in fh.

The approximation I'j, is assumed to be close to I' in the following sense:
|d(x)| < ch} for all x € T,

ess infyer, n(x) ny(x) > ¢ >0, (5.6)

ess supyer, ||P(x)n,(x)|| < chr. 5.7)

Here ¢ denotes a generic constant independent of hp.

Remark 5.4
The conditions (5.6), (5.7) are satisfied if

essSupyer, [n(x) — np,(x)|| <min{co, chr}, with ¢ < V2, (5.8)
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T
,,,,, T
Figure 5.1.: Construction of approximate interface for 2D case.
holds. This easily follows from
In(x) = np,(x)[* = 2(1 — n(x) 4 (x)),
and
[P ) (x)]| = [P (x) (n(x) — n4(x))]| < [In(x) —nu(x)]. o

5.1.2. Implementation

We briefly explain the approach that is used in our implementation DROPS
(cf. [DRO]) for computing T';,. Let S be the (locally refined) triangulation
of Q, consisting of tetrahedra, that is used for the discretization of the flow
variables with finite elements, cf. (2.21)—(2.22). The level set equation for d
is discretized with continuous piecewise quadratic finite elements on a trian-
gulation 7', cf. Section 4.2l This triangulation is either equal to S or obtained
from one or a few refinements of S, i.e., 7 = 7; is the finest and S = 7,
0 < k < J is a possibly coarser triangulation of the multilevel triangulation
M, cf. Chapter (3] The piecewise quadratic finite element approximation of d
on 7 is denoted by dj,.

We now introduce one further regular refinement of 7 (subdivision of each
tetrahedron in 8 child tetrahedra), resulting in 7”. Let I(dj) be the continuous
piecewise linear function on 7’ which interpolates d; at all vertices of all
tetrahedra in 7’. Note that the degrees of freedom of the P, FE on 7’
(located at the vertices) coincide with the degrees of freedom of the P> FE on
T (located at the vertices and midpoints of edges).

The approximation I'j, of the interface I' is defined by

Thi={xeQ: I(dy)(x) =0} (5.9)
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+/ + +/ +

Figure 5.2.: Sign pattern of d;, on T' € 7' and corresponding interface segment
Iy =T NT (in gray): either a triangle or a quadrilateral.

which consists of piecewise planar segments F' = I'p C I'y,, where
T'r:=TnNTy, (5.10)

forT € T'.

The interface mesh size parameter hr is the maximal diameter of these seg-
ments. This (maximal) diameter is approximately the (maximal) diameter
of the tetrahedra in 7’ that contain the discrete interface, i.e., hr is approx-
imately the maximal diameter of the tetrahedra in 7’ that are close to the
interface. In Figure[5.1lwe illustrate this construction for the two-dimensional
case. Note that in general the segments of '}, are not aligned with the faces
of the tetrahedral triangulation 7.

Each of the planar segments of I'y, is either a triangle or a quadrilateral, de-
pending on the sign pattern of dj, on the corresponding T' € 77, cf. Figure
By construction the vertices of a planar segment I are located on those edges
of T along which dj, changes its sign. If there are two positive and two negative
values of dj, on the vertices of T', then the corresponding interface segment,
I'r is a quadrilateral. In all other cases I'r is a triangle. The quadrilaterals
can (formally) be divided into two triangles. Thus I'y, consists of a set Fp, of
triangular faces.

Special cases may occur if some of the values of dj, on the vertices of T are
equal to zero. Let 0 < ng < 4 be the number of these zero values. In the
following we discuss the shape of I'y in all the cases ng = 0,1, 2,3, 4.

e ng = 0 is not a special case, the situation is as depicted in Figure [5.2
which was discussed in the foregoing paragraph.

e For ng = 1,2 we distinguish two cases: If the other 4 — ng non-zero
values have the same sign, then I'y is a point (ng = 1) or a line segment
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Figure 5.3.: 2D examples for interface degeneration, where the proposed interface

reconstruction fails. Left: curvature k too large for grid resolution (|x| > %) Right:

distance d between interfaces too small for grid resolution (d < hr).

(np = 2) and can be ignored as meass I'r = 0. Otherwise the non-zero
values are of different sign yielding 3 — ny edges with a change of sign,
as a simple case differentiation shows. Thus I'r has 3 vertices, hence I'p
is a triangle.

e In the case ng = 3 the interface segment I'r is equal to a face of 7. Then
one has to take care that this face is not counted twice (additionally by
the neighboring tetrahedron in 7’ which also has 't as one of its faces)
when computing a surface integral on I'y,.

o If ng = 4 then the interface segment is not 2D but 3D (I'r = T') which,
of course, makes not much sense. If such a situation occurs, the corre-
sponding segment is ignored and a warning is given. This is typically an
indication that the grid is too coarse to represent the interface properly,
cf. Figure[5.3|

For the example[5.2] in which T" is a sphere, the resulting polygonal approx-
imations T, for h = % and h = % resp. are shown in Figure[5.4l Here the

5
radius is chosen as r = %, see also the numerical experiment presented in

Section [10.3.
Remark 5.5
Related to the assumptions (5.5)-(5.7) we note the following. If we assume

[1(dn)(x) — d(x)| < chi
for all x in a neighborhood of I', which is reasonable for a smooth d and

piecewise quadratic dj, then for x € I';, we have |d(x)| = |d(x) — I(dp)(x)| <
ch? and thus is satisfied. Instead of (5.6)), (5.7) we consider the sufficient
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Figure 5.4.: Approximate interface I'j, for the example from Section [10.3 on a

coarse grid (left) and after one refinement (right).

condition (5.8). We assume

IVI(dn)(x) = Vd(x)|| < chr

Due to ||Vd|| = 1 we then also

have ||VI(dy)(x)|| = 1+ O(h), in a neighborhood of I'. For x € I';, (not on

for all x in a neighborhood of I' (x not on an edge), which again is reasonable
an edge) we obtain

for a smooth d and piecewise quadratic dj,.

I — Vd(x)

VI(dn)(x)
IVI(dn)(x)

[na(x) - n(x)|| = H

M 1‘ NVI(dn) ()| + [VI(dn)(x) — Vd(x)|

1
IVI(dn)(x

<ch

<

T,

and thus (5.8) is satisfied (for hr sufficiently small).

5.2. Consequences of Strang’s Lemma

The induced polyhedral approximations

(

We assume that a piecewise planar surface I'y, is known, which is close to the

interface I' in the sense of (5.5)—(5.7).

of the subdomains are 2y p,

region in the interior of I'y) and Qg 5, =

= int(I‘h)
O\ Qg 5. Furthermore, we define the piecewise constant approximation of the
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density pp, by pn, = p; on Q; . We assume that for v;, € V}, the integrals in

(Pngvn) = pl/

g-vhdx—i—pg/ g vpdx
Qin

Qa.n
can be computed with high accuracy. This can be realized efficiently in our
implementation because if one applies the standard finite element assembling
strategy by using a loop over all tetrahedra T' € 7, then TN §2; j, is either
empty or T or a relatively simple polygonal subdomain (due to the construc-
tion of I'p). For more details we refer to Section [5.4.4!

The discretization of is as follows: determine (up,pn) € Vi X Qp such
that

a(up,vp) +0(vh,pr) = (png, Vi) + fr,, (Vi) for all v, € Vp,

5.11
b(up,qn) =0 for all g, € Qp. (5.11)

The approximation fr, (vy) of fr(vy) is discussed in Section [5.3.1] below.
Using standard finite element error analysis (Strang lemma) we get a dis-
cretization error bound. In our applications we are particularly interested in
problems with p < 1. Therefore, in the next theorem we give a discretization
error bound that shows the dependence on p.

Theorem 5.6
Let (u*,p*), (up,pn) be the solution of (5.1) and (5.11), respectively. Then
the error bound

g * ¥ < ( . f g ¥ . f ok
pllup, — a1 + |lprn — pll2 < ¢ p nf [vh —u ”1+thth llan — ™| L2

(rg, Vi) — (P8, Vi)l

+ sup (5.12)
vLEVY thHl

T IVAES AT
vRLEV, th”l

holds with a constant ¢ independent of h, u and p.

Proof. The result follows from a scaling argument. For f € Vy, f, € V), let
(4, p), (4n,Pr) be the solutions of the p-independent Stokes problems

VaVvdx +b(v,p) = f(v) forall v e Vy,
/ (v.5) = J(v) : -

b(t,q) =0 forall ¢ € Q,

/ Vi, Vv dx + b(Vh,ﬁh) = fh(Vh) for all v, € V,
Q (5.14)

b(flh,qh) =0 forall g, € Qp.
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Standard error analysis for Stokes equations, using the Strang lemma, yields

u, — 1 Dy, — P <c< inf |lvy, —1 inf —D
lan —all1 + [|pn — pllz2 < ,nf v H1+qhth llan — Dl| L2

B (5.15)
+ sup |f(vh) fh(Vh)|)7
VLEV), Va1

with a constant c mdependent of f frn and h. Now note that (u*, p*) satisfies
(5.13) with & = u*, p = ©p = - ((rg,v) + fr(v)) and (un,pp) satisfies
with 4y = uy, pp = ﬁph, fh(vh) %((phg,vh) + fr,, (Vh)). The result
in (5.15) then yields (5.12). O
Remark 5.7

We assume () to be convex and thus the problem (5.13) is H?-regular. Using
a standard duality argument it follows that

[0 — |z, <ch([[a—apl+I[p—PnllL.)-
Due to 1 = u*, iy, = up, p = ip*, D = %ph, (cf. proof of Theorem [5.6) we
get
* * 1 *
=l < et (0" = s+ 3l )

with a constant ¢ independent of u and h. o

Corollary 5.8
Let (u*,p*), (up,pn) be as in Theorem[5.6 and define

e LBV = (v () = ()]
wev, Il weve vl

The following holds:

IN

lup — u*|y c( inf ||vp, —u* Hl—i—— 1nf llgn, — p* ||L2+;Th> (5.16)

vpEV) M €EQn

IN

N 1
lan = wllz, < eh(_inf fva - u” i+~ inf [lg—p* ||L2—|—;7“h)

VhEV) M an€QR
(5.17)

Ipn = p*llee < ep inf fvn—u'lh+ il flgn = p*leetra). (5.18)
with constants ¢ independent of h, p and p. We observe that if y < 1 then
in the velocity error we have an error amplification effect proportional to %
This effect does not occur in the discretization error of the pressure.
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Remark 5.9

For small p values the discretization can be improved by adding a grad-div
stabilization term to the Stokes equations. In [OR04] it is shown that with
this term the velocity errors (in || - ||;) are proportional to px~'/2 (instead of
p~ 1) and that for small p values the discretization errors for the velocity are
significantly smaller than without this grad-div term. o

We comment on the terms occurring in the bound in . As explained
above (Remark[5.1), the solution u* of (5.1) is smooth and thus with standard
finite element spaces V, for the velocity (e.g., P; or P») we obtain

inf ||vy —u*||; < ch.
viLEV), ” & ”1 -

Due to (5.5) we get | meass(£2;) — meas3(2; )| < ch?, i = 1,2, and using this

we obtain
/ g-vhdx—/ g vpdx
Q Q

i ih

2
|(pg, vi) — (ong, Vi) <Y pi
i=1

< clpr+ p2) hrl[val,
and thus an O(hr) bound for the third term in (5.12).

The remaining two terms in (5.12) are less easy to handle. In Section
we treat the fourth term. It is shown that a (not so obvious) approximation
method based on a Laplace-Beltrami representation results in a O(hr) bound
for this term whereas a naive Laplace-Beltrami approximation, which is used
in the literature, only yields O(y/hr) if it is applied to a piecewise planar
interface approximation.

The second term in (5.12) is discussed in Section [5.4.1. It is shown that
standard finite element spaces (e.g., Py or P1) lead to an error infy, cq, |/gn —
p*||z2 ~ v/hr. This motivates the use of another pressure finite element space,
as explained in Section which has much better approximation properties
for functions that are piecewise smooth but discontinuous across I'j,.

Remark 5.10
Consider the problem as in Example[5.2] Then u* = 0, g = 0 and the bound
in (5.12)) simplifies to

pllaplls + llpn — | 22

3 * A" — . v
< o inf llgn—p*ez+ sup [ fo(va) = fr,.(va)]
GhEQHR vLEV), thHI

). (5.19)
<&
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5.3. Discretization of the surface tension force

In this section we discuss the discretization of the surface tension force fr by a
Laplace-Beltrami technique and analyze the discretization error || fr — fr, [[v; -
Based on this analysis we introduce an improved discretization fr, which has
a higher order of convergence. The results are also presented in [GRO7b].

5.3.1. Laplace-Beltrami discretization

In this section we explain how the localized surface tension force term fr(vy,)
in (2.21) is approximated. We use the technique presented in [B&n01, Dzi91,
GRRO6|. For this we first need some notions from differential geometry.

Let U be an open subset in R? and I a connected C? compact hypersurface
contained in U. For a sufficiently smooth function g : U — R the tangential
derivative (along I') is defined by projecting the derivative on the tangent
space of T, i.e.

Vr‘g = Vg — (Vg . Ilp) nr. (520)

Note that the tangential derivative can be written as Vrg = PVg with P
defined as in (5.3).

The Laplace-Beltrami operator of g on I is defined by
Arg :=Vr - Vrg.

It can be shown that Vrg and Arg depend only on values of g on I'. For
vector valued functions f, g : I' — R3 we define

3
Arf = (Arfi, Arfa, Arf3)7, Vrf-Vrg:= Z Vrfi- Vrgi.

i=1
We recall the following basic result from differential geometry.

Theorem 5.11

Let idr : ' — R3 be the identity on I and & = k1 + k2 the sum of the principal
curvatures. For all sufficiently smooth vector functions v on I' the following
holds:

/ knr-vds = /(Ap idp)-vds = — / Vridr -Vrvds. (5.21)
r r r
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In a finite element setting (which is based on a weak formulation) it is natural
to use the expression on the right-hand side in (5.21) as a starting point for
the discretization. This idea is used in, for example, [Dzi91, Ban01, GT05,
GRR06, Hys06, MCNO3]. In this discretization we use the approximation I'j,
of I'.

Given an approximate interface I'j, the localized force term fr(vy) is approx-
imated by

fro, (Vh) =T Vr, idr, -V, vi ds, v € Vp. (5.22)
Iy

Under the assumptions (5.5)-(5.7) on the family {T's}n.>0 we will derive, in
Section [5.3.3} a bound for the approximation error

sup Jfr(vn) = fr,(va)
VREV) thHl

,  with fr, (vp) asin (5.22). (5.23)

Remark 5.12
From Theorem the fact that fr(v) =7 [ xv-nds is a bounded linear
functional on V and a density argument it follows that the linear functional

fp PV — —T / Vridr -Vrvds , vV E (CSO(Q))J, (524)
r

has a unique bounded extension to V. Therefore, for fr : Vg — R we can
use both the representation in and the one in (these are the same
on a dense subset). This, however, is not the case for fr,. Because I';, is not
sufficiently smooth, a partial integration result as in Theorem [5.11 does not
hold. The linear functional

vV — =T Vr, idr, -Vr,vds
'n

is mot necessarily bounded on V. For this reason the restriction to vy from
the finite element space Vj, in and (5.23) is essential. o

Remark 5.13

At many places in this section, for example in (5.21), (5.2) and (implicitly) in
(5.5), and also in the analysis presented in the next section the assumption
that T' is a C? smooth interface plays a crucial role. We do not know any
literature in which for a Navier-Stokes incompressible two-phase flow prob-
lem with surface tension smoothness properties of the interface are analyzed.
In [AMYO00] and [AMSO01] a two-phase Stokes flow problem without surface
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tension in which the evolution is driven by the gravity force is analyzed. In
[AMYO00] it is proved that if the initial configuration has a C? smooth interface
I' = T'(0) then for arbitrary finite time ¢ > 0 the interface I'(¢) is a surface
of class C?~¢ for arbitrary e € (0,2]. In [AMSO01] it is shown that if I'(0) is
a C*** smooth surface, with £ > 0, then I'(t) is of class C?***, too, for all
t € [0,7] and T > 0 sufficiently small. o

5.3.2. Extensions and projections

In this section we collect some results that will be used in the analysis in
Section [5.3.3. The techniques that we use come from the paper [DDO7]. For
proofs of certain results we will refer to that paper.

We introduce a locally (in a neighborhood of T") orthogonal coordinate system
by using the projection p: U — I':

p(x) =x —d(x)n(x) forallxeU.
We assume that the decomposition x = p(x) + d(x)n(x) is unique for all

x € U. Note that
n(x) = n(p(x)) forall x € U.

We use an extension operator defined as follows. For a (scalar) function v
defined on I' we define

vp(x) == v(x —d(x)n(x)) = v(p(x)) for all x € U,

i.e., vis extended along normals on I'. We will also need extensions of functions
defined on T, to U. This is done again by extending along normals n(x). For
v defined on I'y, we define, for x € T',

vp, (X +an(x)) :=v(x) foralla € R with z +an(x) € U. (5.25)
The projection p and the extensions vf, v, are illustrated in Figure[5.5!
We define a discrete analogon of the orthogonal projection P:
P (x) :=1—np,(x)n,(x)" for x € T4, x not on an edge.

The tangential derivative along I'j, can be written as Vr, g = P, Vg. In the
analysis a further technical assumption is used, namely that the neighborhood
U of T is sufficiently small in the following sense. We assume that U is a strip
of width § > 0 with

57 > mae 1 (30) | o< ). (5.26)
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Figure 5.5.: Example for projection p and construction of extension operators. n;
and ng are straight lines perpendicular to I'. For v defined on I we have v = v(x1)
on n1. For v, defined on T', we have vp, = vi(%X2) on na.

Assumption 5.14
In the remainder of the section we assume that (5.5), (5.6), (5.7)and (5.26)
hold. o

We present two lemmas from [DDO07]. Proofs are elementary and can be found
in [DDO7].
Lemma 5.15
For the projection operator P and the Hessian H the relation
Px)H(x) =H(x)P(x) =H(x) forallxeU

holds. For v defined on I' and sufficiently smooth the following holds:

Vr, v (x) = Pp(x) (I — d(x)H(x))P(x)Vro(p(x)) ae.only.  (5.27)
Proof. Given in Section 2.3 in [DDO7]. O

In (5.27) (and also below) we have results “a.e. on I'y,” because quantities
(derivatives, Py, etc.) are not well-defined on the edges of the triangulation
Iy,.

Lemma 5.16
For x € T}, (not on an edge) define

(%) = [T, (1 — d(x)ms (x))] n(x) "p (x), (5.28)
A(x) = ﬁx)mx) [1— dx)HX)|PAx)[1- dHK)|P(x).  (5.29)



70 5. Numerical treatment of surface tension

Let Af, be the extension of A as in (5.25). The following identity holds for
functions v and 1 that are defined on I'j, and sufficiently smooth:

/ Vi, vV, ¥ds = / A§ Yok, - Vrgg ds. (5.30)
Ty T

Proof. Given in Section 2.3 in [DDOT]. O

Due to the assumptions in (5.6) and (5.26) we have essinfxer, u(x) > 0 and
thus A(x) is well-defined.

5.3.3. Discretization error analysis
We are interested in the difference between the terms

’7'/ Vridr -Vrvpds and 7 Vph idph ~VFth ds for vy, € Vy,.
r Ty

Since Vridr -Vrvy, = Z?zl Vr(idr); - Vr(vh); we consider only one term in
this sum, say the i-th. We write idp and v for the scalar functions (idr); and
(vh)i, respectively. We write idp, for (idr, );. Note that

Vr idr* = PVidr = Pei, Vrh idrh = PhVidr,L = Phei,

with e; the i-th basis vector in R3. We introduce scalar versions of the func-
tionals fr and fr, defined in (5.24) and (5.22) (without loss of generality we
can take 7 :=1):

g(v) == / Vridr -Vrvds, gn(v) == Vr, idr, -Vr,vds.
r Tn

As noted in Remark [5.12, g is a bounded linear functional on H'(U). To
guarantee that g, and the extension operator in (5.25) are well-defined we
assume v € HY(T',) N C(T,). Therefore, in the analysis in this section we

use the subspace W of H'(U) consisting of functions whose restriction to T'j,
belongs to H(T',) N C(T4).

Remark 5.17

If we use a Hood-Taylor pair Vj, X @, in the discretization of the Navier-Stokes
equations, then the i-th component v € V}, of v, € V), = (Vh)3 is continuous
and piecewise polynomial (on the tetrahedral triangulation S). Thus v € W
holds. o
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In this section we first derive, for v € W, a bound for |g(v) — gn(v)| in terms of
llvll1,0 := [[v||g1 vy and ||V, v||L2(r,). This bound is given in Corollary(5.18.
Using this bound we then derive a bound for

up 200 = 910

VeV, vl ’

cf. Theorem [5.22] This immediately implies a bound for the approximation
error as in (5.23), cf. Corollary[5.23.

The analysis is based on the following splitting:
9(v) = gn(v)
= / VF idp ~VFU ds — / Vrh ld% ~Vrh’l) ds
T Ty

+ Vrh (id% - idrh) . Vr‘h’u ds
T'n

= / Vridr -Vrvds — / A?th idr -vafh ds (ct. (5.30))
T T

+ Vrh (id% - idrh) . Vr‘h’u ds

IS
= / Vridr 'VF(U — ’Uf‘h) ds + /(I — A%h)VF idp 'VFUIE;, ds
T T
+ / Vrh (ld; — ith) . Vphv ds. (53]_)
IS

In the corollary below we derive bounds for the three terms in (5.31). Note
that the first two terms do not involve idr,, .

Corollary 5.18
The three terms in (5.31) can be bounded by

/ Vridr -Vr‘(v — 'Ulg‘h) ds| < chr ||UH1,U; (5.32)
I
/(I — AL, )Vridr -Vrof, ds| < chi ||V, vll 2, (5.33)
T
Vr, (id? — idrh) -Vr,vds| <chr ||VF;LU||L2(F;,); (5.34)
'y

and thus

l9(v) = gn(v)| < chr |vllvu + chp Ve, vl L2, + chr |V, vl L2,
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holds for all v € W.

Proof. - are proved in Lemma 4.1-4.3 in [GRO7b]. These bounds
together with the splitting (5.31) yield the result. O

In view of Corollary5.18  and the error measure in (5.23) we want to derive a
bound for ||Vr,v|/z2(r,) in terms of ||v[|; for v from the scalar finite element
space V3. An obvious approach is to apply an inverse inequality combined
with a trace theorem, resulting in:

HVF;LU

This, however, is too crude (cf. the bound in Corollary [5.18). In order to
be able to derive a better bound than the one in (5.35) we have to introduce
some further assumptions related to the family of triangulations {I's}n>0.
We assume that to each triangulation I'y, = Uper, I there can be associated
a set of tetrahedra S} with the following properties:

lL2(r,) < Ch;lilnH’UHLZ(Fh) < ch;liln||v||1 for all v € V},. (5.35)

For each F € F, there is a corresponding S € S} with F C Sp.  (5.36)
For Fy, Fy € F, with Fy # F» we have meass(Sp, NSE,) = 0. (5.37)
The family {S} }5,.>0 is shape-regular. (5.38)

cohr < diam(Sp) < chr for all F € Fy,

5.39
with ¢op > 0 (quasi-uniformity). (5.39)

For each Sp € S} there is a tetrahedron S € S such that Sp C S.  (5.40)

Recall that S is the (fixed) tetrahedral triangulation that is used in the finite
element discretization of the Navier-Stokes problem in (2.2I)-(2.22). Note
that the set of tetrahedra S}: has to be defined only close to the approximate
interface ', and that this set not necessarily forms a regular tetrahedral tri-
angulation of 2. Furthermore, it is not assumed that the family {T's}n.>0 is
shape-regular or quasi-uniform.

Remark 5.19

Consider the construction of {T'y}n.>0 as in Section[5.1.2. The approximate
interface T'y, is the zero level of the function I(dp,), which is continuous piece-
wise linear on the tetrahedral triangulation 77:

=JF
FeF

where each F'is a triangle or a quadrilateral. To each F' there can be associated
a tetrahedron Sg € 7’ such that F' C Sp. Recalling the definition (5.10) of
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an interface segment, we note that in fact F =T for T=Sp e 7'. If Fisa
quadrilateral then we can subdivide F' and S in two disjoint triangles Fy, Fb
and two disjoint tetrahedra Sp,, Sr,, respectively, such that F; C Sp, C Sp
for i = 1,2. One can check that this construction results in a family {SF }4,.>0
that satisfies the conditions (5.36)-(5.40). o

In the following lemma we consider a standard affine mapping between a
tetrahedron Sr € S} and the reference unit tetrahedron and apply it to the
triangle F' C Sp.

Lemma 5.20
Assume that the family {T', } >0 is such that for the associated family of sets

of tetrahedra {S}, } 1. >0 the conditions (5.36)-(5.40) are satisfied. Take F' € F,
and the corresponding Sp € S}. Let S be the reference unit tetrahedron
and ®(x ) = Jx + b be an affine mapping such that ®(S) = Sp. Define
F := & 1(F). The following holds:

a2 meass(S) o (5.41)

meass(Sr)

3! o measy (F)

|B)

IN

= c, 5.42
measy (F) ( )

with constants ¢ independent of F' and hr.

Proof. Let p(Sk) be the diameter of the maximal ball contained in Sy and
similarly for p(S). From standard finite element theory we have

diam(SF)
p(S)

Using (5.38) and (5.39) we then get

1]} <

SRS

p(Sk

e meass(S) < Cdiam(Sp)2

<cdi 1 <cpat
meas3(Sr) ~ meas3(SF) — ¢ diam(Sp)™" < chr,

and thus the result in holds.

The vertices of ' = &~ L(F) are denoted by VH 1 =1,2,3. Let ViVs be a
longest edge of F and M the point on this edge such that M V3 is perpendicular
to V1 V. Define V; := ®(V;), i = 1,2,3, and M := ®(M). Then V;, i = 1,2, 3,
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are the vertices of F' and M lies on the edge V1 V5. We then have
. 1 . . . N 1. _
measy(F) = 5[IVi = Va[l[[Vs = M| = 5|13 Vi = V)37 (Vs — M|
1, p(9)?
> = 2 — A PP G
> ST IVE = Vall Vs = M| 2 ¢ sy mensa(F),

with a constant ¢ > 0. Thus we obtain

”J_1”2meaSQ(F) . diam(S)? diam(Sr)? <.
measy(F) —  p(SF)? p(8)2 T
which completes the proof. O

Theorem 5.21
Assume that the family {I', } >0 is such that for the associated family of sets
of tetrahedra {S} }n.>0 the conditions (5.36)-(5.40) are satisfied. Then the
following holds:

1
IV, vll2,) < chp?||vfly forall v e V.

Proof. Note that

IVrolliem,y = Y, IVEUlTar)
FeFy

Take F' € Fj and let Sp be the associated tetrahedron as explained above.
Let S be the reference unit tetrahedron and ® : S — St as in Lemma [5.20
Define v := v o ®. Using standard transformation rules and Lemma we
get

||VFU||2L2(F) = ||PhV’U||%2(F) < HVUH%Z(F) = Z ||aa”||%2(p)

la|=1
<cllITHE D [0%0) 0 @7 [Fa gy
la|=1
meass (F) o o
<ela- ”27@) S 0%l < Z 10°812, 5,

| =1

< 00(x)|” < 0% (x)|?
chax ()|_cha§<‘ vx)|7

laj=1 *€F laj=1*

with a constant ¢ independent of F. From (5.40) it follows that © is a poly-
nomial on S of maximal degree k, where k depends only on the choice of the
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finite element space V5. On P} := {p € Pr : p(0) = 0} we have, due to
equivalence of norms:

Z max |0“d(x <e Z ||8(’1§||2LQ(§) for all v € P;.

al=1 X€5 lal=1

Because, for ¢ € Py and |a] = 1, 00 is independent of ©(0), the same in-
equality holds for all o € Pi. Thus we get

I9r0lam < ¢ 3 100026, < clTI2 3 10%0) 0 B[, 4,

la]=1 |a|=1

c|J] Z ||aa’UHL2(sF) <Chr ||VU||L2(SF)7
la|=1

o meas (S
meass(SF)

with a constant ¢ independent of F' and h. Using (5.37) we finally obtain
Ve oll7z,) < chpt D 1Voll7zgs,
FeFp

<chit [ (VoPax <l ol
Q

which proves the result. O

We now present the main result of this section.

Theorem 5.22
Let the assumptions be as in Theorem The following holds:

sup l9(v) = gn(®)] _ "
VeV, vl

Proof. Combine the result in Corollary[5.18 with the one in Theorem |

As a direct consequence we obtain:

Corollary 5.23
Let the assumptions be as in Theorem [5.21] For fr and fr, as defined in
Section the following holds:

|fr(va) = fr, (va)|

sup < T1c+/ hr.
vev), Vil
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Proof. Note that
Jr(vi) = fr,(vh)

3
= _T; (/Fvl“(idl“)i -Vr(vy)ids — . Vr, (idrh)i -Vr, (Vh)i ds)7

and use the result in Theorem [5.22| O

An upper bound O(v/Ar) as in Corollary[5.23 for the error in the approxima-
tion of the localized force term may seem rather pessimistic, because I'j, is an
O(h%) accurate approximation of I'. Numerical experiments in Section [10.3
and results in [GMTO07], however, indicate that the bound is sharp.

5.3.4. Improved Laplace-Beltrami discretization

In this section we show how the approximation of the localized force term can
be improved, resulting in an improved error bound of the form O(hr) (instead

of O(v/hr) in Corrolary[5.23).

From Corollary|5.18/and Theorem [5.21/we see that the v/hr behavior is caused
by the estimate in (5.34):

Vrh (id% — idrh) . Vr‘h’u ds
Ty

< chr|Vr,v

‘Lz(ph). (5.43)

The term Vp, idr, that is used in g5 (v) occurs in (5.43) but not in the other
two terms of the splitting, cf. (5.32), (5.33). We consider

gn(v) = mp - Vr,vds
Tn

and try to find a function mj; = my(x) such that g(v) remains easily com-
putable and the bound in (5.43) is improved if we use my, instead of Vr, idr,,.
The latter condition is trivially satisfied for m;, = Vp, idf (leading to a bound
0 in (5.43)). This choice, however, does not satisfy the first condition, because

T" is not known. We now discuss another possibility, that is used in the exper-
iments in Section [10.3.

Due to |d(x)| < ch? we get from Lemma 5.15, for x € T'y:

Vr, id&(x) = Py (x)P(x)Vridr(p(x)) + O(hE) = P (x)P(x)e; + O(h}).
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In the construction of the interface I'},, cf. Section 5.1.2, we have a piecewise
quadratic function dj =~ d available. Define

Vdi(x) = T (O (T x
IVdn(x)|’ Pp(x) :=I-np(x)nn(x)", x €l

flh (X) =
Thus an obvious modification is based on the choice my,(x) = Pp,(x)Py(x)e;,
i.e.,

gn(v) == / P, (x)Pp(x)e; - Vr,vds = / P, (x)e; - Vi, vds. (5.44)
Ty Tn
In this approach the approximate interface I'j, is not changed (piecewise pla-
nar). For piecewise quadratics dj, and v, the function Vr,v = P, Vv is piece-
wise linear and Pe; is piecewise (very) smooth on the segments of I';,. Hence,
the functional in (5.44) can be evaluated easily.

Under reasonable assumptions the modified functional indeed yields a better
error bound:

Lemma 5.24

Assume that there exists p > 0 such that

Vdn(x) — Vd(x)|| < ch¥, for x €T} (5.45)
Then for all v € W the following holds:

|L2(Fh)-

/ (Vr‘h idle—\ —th’hei) -Vr,vds| < Ch;nin{p’Q} HVF;L'U
I'n

Proof. From Lemma[5.15 we get for x € ', (not on an edge),
Vr, idp(x) = Py (x) (I — d(x)H(x)) P(x) Vr idr (p(x))
=P (x)(I - d(x)H(x))P(x)e;.
We also have Vr, idr, = P, Vidr, = Ppe;. Hence,

Vph (1(‘116—\ — idph) . Vrh’l) ds (546)
Iy
= / (Ph(I - dH)Pez - Phei) . Vrh’l) ds
T'n
< ¢ esssupyer, [|Pr(x) (I - (x))P(x) I Ve, vl L2,
< ¢ esssupyer, ([Pr(X)P(x) — Py (x)Py(x)| (5.47)

+1d@)] [IPa(x)HE)P)[) [[Vr,vll2wy,)- (5.48)
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We first derive a bound for (5.47). Using ||Vd|| = 1 it follows that ||Vd}| =
1 + O(hL) holds. We drop x in the notation and using the assumption (5.45)
we obtain

|PyP — PPy = |[Pr(P — Pp)|| < |nn” — &, 0] |

< [ —ap)n™ || + |8, (0 - 12,)" || = 2[ln — 0
Vdy ’
=2|vd - 2
H V||

< 2|1 = ||Vdn|| Y| [ Vdnll + 2(|Vd = Vdy| < ch?.

We now turn to (5.48). Note that due to (5.5) |d(x)| < chd for x € T'y,, and
ess supyer, [[Pr(x) H(x)P(x)|| < esssup,cr, [[H(x)| < ¢,

hence yielding a bound |d(x)|[|P5 (x)H(x)P (x)[| < c h? for the term in (5.48).

Combined with the inequality |P,P — PP < ch{ for the term in (5.47)
this proves the result. O

If we assume that the condition in (5.45) is satisfied for p = 2, which is rea-
sonable for a piecewise quadratic approximation dy of d, we get the following
improvement due to the modified functional gy, cf. Corollary[5.18:

lg(v) = Gn(v)| < chr ||v]l1,0 + cht |V, vl r2r,) forallve W.

Combining this with the result in Theorem yields (under the assumption
as in Theorem [5.21):

lg(v) — gn(v)| < chr||v|l1,v + ch§/2 [[v]]x  for all v € V.

Hence, using this modified functional g, we have a O(hr) error bound. We
therefore define the improved Laplace-Beltrami discretization by

3
th, (V) = —’7’/ phVidph ~VFthS = - ngh,i(vi) (549)
I'n i=1

for all v € Vy,.

This significant improvement (O(hr) compared to the O(v/hr) error bound for
the functional fr,) is confirmed by the numerical experiments in Section
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5.4. Finite element space for the discontinuous
pressure

After the analysis and improvement of the discretization of the localized sur-
face force term fr given in the previous section, we now turn to the approxi-
mation of the pressure which is discontinuous across the interface I' if surface
tension forces are present. We show that standard finite element spaces have
only poor approximation properties for such functions with a jump across I'
and introduce a new extended finite element space which is more appropriate
for this task. Most of the results presented in this section are from [GRO7al.

5.4.1. Approximation error for standard FE spaces
In this section we consider the approximation error

. *
thggh ”qh b HL2
for a few standard finite element spaces @);, and explain why in general for a
function p* that is discontinuous across I'j, one can expect no better bound
for this approximation error than ¢v/h. This serves as a motivation for an
improved pressure finite element space as presented in Section [5.4.2. To ex-
plain the effect underlying the v/A behavior of the error bound we analyze
a concrete two-dimensional example as illustrated in Figure [5.6. We take
Q= (0,1)2 C R? and define

O ={(x,y) eQ:z<1—-y}, Qo =0\ Q.
The interface I' separating both subdomains from each other is given by
F={(z,y) eQ:y=1—-2z}.

A family of triangulations {7 }r.>0 is constructed as follows. The start-
ing triangulation Ty consists of two triangles, namely the ones with vertices
{(0,0),(0,1),(1,1)} and {(0,0),(1,0),(1,1)}. Then a global regular refine-
ment strategy (connecting the midpoints of edges) is applied repeatedly. This
results in a nested sequence of triangulations T}, , k = 1,2,. .., with mesh size
hi = 27%. In Figure[5.6 the triangulation 7j,, is shown. The set of triangles
that contains the interface is given by (with h := hy)

TY .= {T €T, : meas;(TNT)>0}.
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Figure 5.6.: Triangulation T3, and a triangle T € ThI;

In Figure the elements in 7, are colored gray.

For h = hj, we consider the finite element spaces

Q) ={p:Q—=R:preP, forallT €T} (piecewise constants),

}L,disc ={p:Q—>R:preP; foralTeT} (piecewise linears,

discontinuous),
Qr={peCQ):preP foralTeT,} (piecewise linears,
continuous).
Note that
QL c Q™ for j=0,1. (5.50)

We take p* as follows: p*(z,y) = ¢, > 0 for all (z,y) € Q1, p(x,y) =0 for all

(2,y) € Q2. We study infg,cq, lgn — p*llz2 for Qn € {Q9,Q,°, QLY. For
Qn = }L’dlsc the identity

inf —p*2. = Z min [|g — p*||?
qheQi,diSCth pllze 2 i, lg = p*lIZ21)
h

holds. Take T € Thr. Using a quadrature rule on triangles that is exact for all
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polynomials of degree two we get, cf. Figure 5.6,

. 2 2
mnin g —p 12y ) = Inin (/TL(q cp) dxdy+/TUq dmdy)
= 1% nin ((qlms) = ¢)? + (g(ma) — cp)? + (q(m) — cp)?
12 gePr 3% v P
+q(m1)? + g(m2)* + q(m)?)
h? 1
> 75 min ((a(m) — ¢;)* +a(m)*) = oeph?

Thus we have

. « L 5.5\2 21 5914
inf th—p”LzZ(Z —ch) :(E_Cph) -

,di
thQ}IL' e TETF

Due to this yields
. * 1 disc
Jnf g = ez > \fcp\/_ for Qn € {@Q), QL) (5.51)

To derive an upper bound for the approximation error we choose a suitable
qn € Qp. First consider Q5 = QY and take ¢) € QY as follows: (q2)|T =c¢
for all T with meas; (T N Q) > 0, ¢) = 0 otherwise. With this choice we get

2 Lot 1
llgn—p" Il 2 =( > IIQQ—p*IquT)) = (Y &-r)7 = —c,Vh. (5.52)

TeTF TeTr \/5
For Qn, = Q) we take ¢i := I5(p*), where I is the nodal interpolation
operator (note: p* = ¢, on I'). Elementary computations yield

1
2V/3

Combination of (5.50), (5.51), (5.52) and (5.53) yields

lap —p*llz2 = (12 2h)? = —=c,Vh. (5.53)

—=e,Vh < inf gu —p12 < e,V for Qu € {Q0, QL QLY.

2f V2
(5.54)

Note that this approximation error result does not change if we apply only
local refinement close to the interface and then replace h by hr, where the
latter denotes the mesh size of the triangles in ;1.
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If instead of piecewise constants or piecewise linears we consider polynomials
of higher degree, the approximation error still behaves like Vh.

Similar examples, which have a v/h approximation error behavior, can be
constructed using these finite element spaces on tetrahedral triangulations in
3D.

5.4.2. Extended finite element space

The analysis in the previous Section [5.2] which is confirmed by numerical
experiments in Section leads to the conclusion that there is a need for
an improved finite element space for the pressure. In this section we present
such a space which is based on an idea presented in [MDB99, BMUPO01]. In
that paper a so-called extended finite element space (XFEM) is introduced
in the context of crack formations in structure mechanics which has good
approximation properties for interface type of problems.

Here we apply the XFEM method to two-phase flow problems by constructing
an extended pressure finite element space Qg In this section we explain the
method and discuss some implementation issues. In Section [10.4 results of
numerical experiments with this method are presented.

For k > 1 fixed we introduce the standard finite element space
Qrn=QF={qeCQ)NLAQ): qlr €P, forall TeT}.

For k = 1, for example, this is the standard finite element space of continuous
piecewise linear functions. We define the index set J = {1,...,n}, where
n = dim @, is the number of degrees of freedom. Let B := {g;};cs be the
nodal basis of Qp, i.e. ¢j(x;) = &;; for i,j € J where x; € R? denotes the
spatial coordinate of the i-th degree of freedom.

The idea of the XFEM method is to enrich the original finite element space
@}, by additional basis functions qu for j € J’ where J' C J is a given index
set. An additional basis function qJX is constructed by multiplying the original
nodal basis function g; by a so called enrichment function ®;:

qu(x) = g;(x) ®;(x). (5.55)
This enrichment yields the extended finite element space

QhX = span(B U {q;(}jej').
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Figure 5.7.: Enrichment by additional basis functions for P; finite elements in a
2D example. Dots represent degrees of freedom of original basis functions, circles
indicate where additional basis functions are added in the vicinity of the interface
T.

This idea was introduced in [MDB99| and further developed in [BMUPO1]
for different kinds of discontinuities (kinks, jumps), which may also intersect
or branch. The choice of the enrichment function depends on the type of
discontinuity. For representing jumps the Heaviside function is proposed to
construct appropriate enrichment functions. Basis functions with kinks can
be obtained by using the distance function as enrichment function [MCCRO3].

In our case the finite element space @} is enriched by discontinuous basis
functions qu for j € J' = Jr :={j € J : measy(I' Nsuppg;) > 0}, as
discontinuities only occur at the interface. This situation is illustrated in
Figure[5.7 for a 2D example.

Let d : Q — R be the signed distance function (or an approximation to it)
with d negative in €2y and positive in 25. For example the level set function
@ could be used for d. Then by means of the Heaviside function H we define

0 xe€Qy,
1 xe .

Hr(x) := H(d(x)) = {

As we are interested in functions with a jump across the interface we define
the enrichment function

& (x) := Hr(x) — Hr(x;) (5.56)

and a corresponding function qu =gqj - <I>§{, j € J’'. The second term in the
definition of <I>§{ is constant and may be omitted (as it doesn’t introduce new
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Figure 5.8.: Extended finite element basis functions g;,q; (dashed) and g;,q;
(solid) for 1D case.

functions in the function space), but ensures the nice property qJX (x;) =0 for
all 4, i.e., qJX vanishes in all degrees of freedom. As a consequence, we have

supp ¢;* C (suppg; NQY), (5.57)
where
o= (5.58)
reTy

is the union of all tetrahedra intersected by T,
TF = {T €T, : measy(TNT)>0}. (5.59)
Thus ¢ =0 in all T with T ¢ 7,
In the following we will use the notation q; =g <I>§{ and
Bt ::BU{qujejr}, (5.60)
Q}, := span (B") (5.61)

to emphasize that the extended finite element space Ql}: depends on the loca-
tion of the interface I'. In particular the dimension of Ql}: may change if the
interface is moved. The shape of the extended basis functions for the 1D case
is sketched in Figure5.8.

Remark 5.25
Note that Q) can also be characterized by the following property: ¢ € @} if
and only if there exist functions ¢1,¢2 € @, such that g|lo, = ¢ilq,, 1 =1,2. ¢
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The following result from [Reu08] shows that the extended finite element space
Q! offers the following optimal approximation property.

Theorem 5.26
For an integer £ > 0 we define the space

Hk(Ql U Qg) = {p S LQ(Q) LD S Hk(Qi), 1= 1,2}

with the norm ||p||i7§21UQ2 = ||p||%Ql + ||p||iQ2 Then for integer I, m with
0 <1 < m < 2 the following holds:

inf Hp - Q||I,Q1U92 < Chmil”p”m,QlUﬂz (562)
qeQ),

for all pE Hm(Ql U Qg)
Proof. Given in [Reu08]. O

Hence, for pressure solutions p with pjo, € H*(;), i = 1,2, (cf. Remark
we have
inf |lgn — |2 < ch.
areQ

This yields the desired O(h) bound, cf. Section

In [BMUPO1| the XFEM is applied to a few problems from linear elasticity
demonstrating the ability of the method to capture jumps and kinks. These
discontinuities also branch or intersect in some of the examples, in this case
more elaborate constructions of the enrichment functions are used.

In [CB03] the XFEM is also applied to a two-phase flow problem. In that
paper discontinuous material properties p and p, but no surface tension forces
were taken into account. Thus there is no jump in pressure, but the solution
exhibits kinks at the interface. For the pressure and the level set function
standard finite element spaces are used. The velocity field is discretized with
an extended finite element space enriched by VJX (x) = v;(x) |d(x)] to capture
the kinks at the interface. The location of the interface is captured by a level
set approach. The construction of the enrichment function is thus based on
the level set function .

A similar idea of basis enrichment in the context of two-phase flow simulations
is also suggested in [MCNO3|. The pressure space is augmented by additional
discontinuous basis functions ¢} (x) = ¢;(x) " (x), j € Jr, where the enrich-

ment function ® is given by

| grag, =1, o |grng, = —1, M|\ or = 0.
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For the velocity space additional basis functions vy (x) = v (x) |d(x)]| for all
Te ’ThF are added where v is the bubble function on 7.

Remark 5.27

We comment on two related approaches that are known in the literature. In
the papers [HH02, HH04, HLPS05] of HANSBO a discontinuous finite element
space Q(ﬂlisc is introduced and applied to a scalar elliptic interface problem.
Boundary conditions at the interior interface are imposed in a weak sense by
using a penalty method.

For the construction of Q¢ the standard finite element space @}, is modified
by replacing each of the basis functions g;,j € Jr, by the two functions

; qi(x) x €y, )
q§”<x>={of“ e s

This yields the same finite element space as the XFEM approach applied to
the case of a jump at the interface, i.e., Q¥ = Q. cf. Remark [5.25. For
other kinds of discontinuities the approaches are essentially different, e.g.,
when the solution has a kink at the interface. While in the XFEM approach
a different extended finite element space QZ is constructed by adding special
basis functions suited to represent such a kink at the interface, in the approach
of HANSBO the same finite element space Q{*° as given above is used, but
the penalty term is changed to enforce continuity (in a weak sense) of the
solution at the interface. In [HLPS05| an error analysis is given for solutions
with kinks, where second order convergence in L? is shown for the modified P;
elements on a non-degenerate triangulation. An a-posteriori error estimator
for this type of finite elements is derived, too.

Another approach can be found in [MMO00]. Here the standard finite element
space Q} is extended by discontinuous basis functions ¢k for T' € T,I', which
are defined by

r ) = {Hp(x) — 3, Hr(x;) - q;(x) forx €T,

0 otherwise.
This introduces |7;'| new degrees of freedom, which influence the height of
the jump in the corresponding elements. ¢} is not only discontinuous across
T but also across element boundaries (edges in 2D, faces in 3D) that intersect
I" where p* is known to be continuous. Due to this disadvantage we did not
consider this method for the approximation of discontinuous pressure in two-
phase flows. o
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5.4.3. Challenges related to XFEM

The results for the Stokes test cases presented in Section[10.4 are quite satis-
factory. Nevertheless, in the application of the XFEM method to two-phase
flow problems there are some hidden pitfalls. We mention a few challenges
related to stability issues and to the application of XFEM to non-stationary
Navier-Stokes two-phase flow problems.

As Q}: depends on the location of the interface I' the space QE changes if the
interface is moved. Thus the discretization of b(-,-) has to be updated each
time when the level set function (or VOF indicator function) has changed.
In a Navier-Stokes code solving non-stationary two-phase flow problems this
is nothing special since mass and stiffness matrices containing discontinuous
material properties like density and viscosity have to be updated as well, cf.
Section 6.2l What is special about the extended pressure finite element space
is the fact that the dimension of Q}: may vary, i.e., some extended pressure
unknowns may appear or disappear when the interface is moving. This has to
be taken into account by a suitable interpolation procedure for the extended
pressure unknowns.

Regarding stability, one has to treat carefully the situation where some ex-
tended basis functions qf have only a “small” support, because then the result-
ing system matrices are ill-conditioned. As a consequence, the convergence
rate of the iterative solvers can decrease significantly or solvers may even break
down. One obvious possibility to deal with this stability problem is to skip
the extended basis functions with relatively “small” contributions. What is
meant, by “small” will be specified in the following paragraphs.

A suitable strategy on how to decide which extended basis functions are to
be skipped should fulfill the following two properties. On the one hand one
wants to obtain a (more) stable basis of the extended pressure finite element
space, on the other hand it should maintain the desired O(h) discretization
error behavior. Such a strategy is described in [Reu08]. Let ¢ > 0,a > 0
be given parameters. For j € Jr we consider the following condition for the
corresponding extended basis function qu:

g lor < ehllgillr  forall T €T. (5.63)

Here [ € {0,1} is the degree of the Sobolev norm used for measuring the
approximation error, cf. Theorem We introduce the reduced index set
Jr C Jr by

JIr = {jeIr: does not hold for qu}
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and the reduced basis BY and reduced extended finite element space Ql}:,
Bt ::BU{qg: jedrt, (5.64)
Q} := span (BF) . (5.65)

In other words, all extended basis functions q? are skipped, for which (5.63)
holds. Then the optimal approximation property (5.62) given in Theorem|5.26
also holds for the reduced space Q) when choosing oo = m, cf. [Reu08§].

Another important issue from the practical point of view is the design of
efficient and robust solvers for the resulting discrete problems which have to
be adapted to the extended pressure finite element space. These are topics of
current research. Some comments on preconditioning the Schur complement
in the context of XFEM are given in Remark The idea is based on the
fact, that the spectral condition number of D]T/}M is bounded uniformly w.r.t.
hr, cf. [Reu08|. Here M is the mass matrix corresponding to the basis B! and
D)y is its diagonal. Hence, the Lo-stability of B' can be achieved by a simple
diagonal scaling. The same holds for the reduced basis B

Theoretical issues like LBB-stability of the V), — Q) finite element pair are
left for future research.

5.4.4. Implementation issues

Let 'y, be a piecewise planar approximation of the interface I' as described in
Section For practical reasons we do not consider Q) but the space QE’L
which is much easier to construct. Here Ql}:“ is the extended pressure finite
element space described above but with I'" replaced by its approximation I'j.
We thus consider the finite element discretization (5.11) for the choice Qp =

gh. As the velocity space V, is unchanged most of the terms are discretized

as before. Only the evaluation of b(-,-) requires further explanation.
For a basis function v; € V, and j € Jr the evaluation of
b(Vz',q;h’) = — Z // quh divv; dx
et T

requires the computation of integrals with discontinuous integrands, as the
extended pressure basis function quh has a jump across the interface. We
sum over 7" € 7; (and not T" € 7) because I';, is defined as in . Let
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Figure 5.9.: Left: Parts of tetrahedron 7" are non-tetrahedral, iff cutting face 7' N
I'y, is a quadrilateral. Right: Triangulation of the lower part into three tetrahedra.

T € Tp, be a tetrahedron with T' N supp q?h #0and T € T with T' C T a
child tetrahedron created by regular refinement of 7. Due to (5.57) we have
T € T,F, and define

T; = TﬂQLh, Ti’ = T/in’h, i =1,2.

Using the definition of q;“, cf. , (5.56), we get

/ q;h div v; dx:/ q; div v; dx—Hp(xj)/ g div v; dx
T T T

_ fTQ, q; div .vi dx ?f X;j € Q, (5.66)
- le, g;divv;dx if x; € Q.
The integrands in the right hand side of are continuous and the sub-
domains Ty, Ty are polyhedral since by construction I'j, consists of piecewise
planar segments (cf. Section [5.1). For the computation of the integral over
T! we distinguish two cases. The face 7' N T, is either a triangle or a quadri-
lateral. In the first case one of the sets Ty, T, is tetrahedral, without loss of
generality let 7] be tetrahedral. Then integration over T4 can be computed

by
Gx)dx= | Gx)dx— | G(x)dx.

T} T/ T

In the second case both Ty, T} are non-tetrahedral, but can each be subdivided
into three sub-tetrahedra, cf. Figure[5.9. In all cases the integration over 7}
can be reduced to integration on tetrahedra, for which standard quadrature
rules can be applied.
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6. Time discretization and
coupling

In Section 6.1l we discuss several time discretization schemes for the non-
stationary Navier-Stokes equations. The time discretization of the scalar level
set equation is carried out in a similar way. After the time discretization a
coupled system of quasi-stationary level set and Navier-Stokes equations is
obtained. The treatment of the coupling is explained in Section 6.2

6.1. Time discretization

In the following we consider the case that the time discretization is applied
after the spatial discretization. This approach is called the ‘Method of Lines’
as opposed to the ‘Rothe Method’, where the time discretization is followed
by a spatial discretization.

After the finite element discretization described in Chapter [4] we obtain the
differential-algebraic equation (DAE)

() () B (). b

initial condition u(tp) = u’, (6.2)

with T(u(t),t) = A(t) + N(u(t),t), cf. (4.13).

Remark 6.1
The DAE (6.1) can also be seen as an ordinary differential equation (ODE) for

functions u(t) : [to,t;] — RNVr which satisfy the discrete incompressibility
constraint

Bu(t) = ¢(t) for all ¢ € [to, tf]. (6.3)

91
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Note that means that Jyo (u(t),t) € VIV (cf. (4.8)) for all ¢ € [to, t/],
where

VfLiV ={u, € VhD : b(up, qn) = (divup,qn)o =0 for all ¢, € Qp }.
Hence, the DAE (6.1) is equivalent to the ODE

Find up(t) : [to, t7] — V3" such that for (almost every) t € [to, ]

m(uy,(t), va) +n(un(t); un(t), vi) + a(un(t), vi) = f(va) (6.4)
holds for all v, € V%iv and uy(to) = u’ e VfLiV.

In this sense the pressure p € RMan in can be interpreted as the Lagrange
multiplier associated to the incompressibility constraint Bu = c. o

We now turn to the time discretization. Let
to<t1<..<tn =ty

be a discretization of the time interval [to,tf]. For 0 <1 < n; the size of the
i-th time step is given by k; = ;11 — t;. The approximation of u(t;), p(t;) is
denoted by u’, p’, respectively, in the following.

6.1.1. Time discretization for 1D model problem

Before discussing time discretization schemes for the DAE (6.1) arising from
the 3D Navier-Stokes problem we first consider a simple 1D diffusion problem
with time dependent coefficients.

Example 6.2
For ¢ € [0,1], z € [0, 1] we define the piecewise constant function

" ldr if x> (1),

for y(t) = 1 + 1t, dp = 1, dg = 3, and state the following non-stationary 1D
diffusion problem: Find u = u(x,t) such that

d(z,t)ue(z,t) = € upg (2, 1) for x € [0,1],¢ € [0, 1],

U|x:0 = u|x=1 = 0, (65)

ulio = u°(a)



6.1. Time discretization 93

with € > 0. The continuous initial value u is given by
1
uo(x): {x for z < ?,
(x —1)(=8x+3) forxz> 3.

For the spatial discretization the interval [0, 1] is subdivided into n+ 1 equidis-
tant intervals with length o = (n + 1)~! and end points z; = ih, i =
0,1,...,n+1. Fort € [0, 1] we collect the unknown values u(z;,t), i =1,...,n
in the vector u(t) € R™. If we use a finite difference discretization we end up
with the ODE system

M)/ (H) = Au(t),  te0,1], (6.6
where M (t) is a diagonal matrix with M;;(t) = d(x;,t) and the stiffness matrix

-2 1

|

1 -2

A finite element discretization with P; FE and nodal basis functions {v;(z)}7~,
yields the ODE system

M@t)u'(t) = Au(t),  te[0,1], (6.7)

where M (t) is the mass matrix with entries

1
M;;(t) = hil/ d(z, t)v;(z)v;(x) de
0
and A the stiffness matrix given above.
Note that (6.6), (6.7) can be written in the general form
w'(t)=R(t)ut), tel01], (6.8)

with R(t) = M (t)~' A for the finite difference case and R(t) = M(t)"1A
for the finite element case (6.7). o

Remark 6.3 (Smoothness of M (t) and M(t))
A simple computation shows that

M3 (0) = P (1) s (100) 4 ()
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Hence, the matrix entries of M(t) are C! w.r.t. time ¢. Furthermore, for a
t with v(t) # x;, i« = 1,...,n, the matrix entries of M (t) are of the same
regularity as y(t) (C* for Example [6.2). We emphasize that in contrast to
that the diagonal entries of M (t) are discontinuous w.r.t. time ¢. To be more
precise, Mii(t) is piecewise constant w.r.t. ¢ with a jump at ¢t = tq;sc Where
Y(tagisc) = ®i, @ = 1,...,n. This will influence the convergence order of the
time discretization scheme, see below. o

For Example we study the following two time discretization schemes. Here
k = tn4+1—t, denotes the length of the time step and the parameter 6 controls
the implicitness of the scheme. For a shorter notation we introduce #’ = 1 —6.

un+1 —un
k

is the well-known theta-scheme. Special cases are § = 0 (the explicit Euler
scheme), # = 1 (the implicit Euler scheme) and § = 1/2 (the Crank-Nicholson
scheme). The implicit Euler scheme is strongly A-stable, but only of first or-
der. On the other hand the Crank-Nicholson scheme has second order accuracy
for smooth wu(t), but is not strongly A-stable, which may lead to instabilities
in certain situations, cf. [Ran04].

=0R(tpr1)u™ ™ + 60 R(t,)u" (6.9)

un+1 —un

k
is a variant of the former scheme, where we applied one step of the theta-
scheme to the linearized ODE problem u'(t) = R(t,)u(t). We will refer to

that scheme as the linearized theta-scheme. The following lemma shows that
this scheme is convergent.

=0 R(t,)u™ T +0' R(t,) u" (6.10)

Lemma 6.4

Let y(t), §(t) be solutions of the ODE’s

y'() = fty®), 7)) = f(t§(1)

with y(t,) = G(tn). I f(tn,y(tn)) = f(tn,y(tn)) and f, f are C! functions
w.r.t. t and y, then

y(thrl) - g(thrl) = O(k2)~
Proof. By Taylor expansion there exists 7 € (¢, t,+1) with

k?2
Y(tn+1) = y(tn) + ky,(tn) 2 ( )

= y(tn) + kf (tn, y(tn)) + = (fe + £y ))(7)

L2
7
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and 7 € (tn, tp+1) with

Bt 1) = 9(ta) + ki (00) + 5" (7)

= y(tn) + R F (b, (00) + 5o+ Fu ). =

As a consequence, the linearized theta-scheme is convergent of order one for
all 9 € [0, 1].

Remark 6.5 (Warning)
Starting with the formulation or (6.7), one might think that

M (tpq1) u™ — M(t,) u™

3 =g AuT 40 Au”

also seems to be a reasonable time discretization scheme. But one can easily
show that in case of a time-dependent matrix M (t) this scheme does in general
not converge to the right solution and should therefore not be used. o

Using a fized spatial discretization with finite differences for n = 30 unknowns
and the choice ¢ = 1073 we implemented both time discretization schemes
(6.9) and in MATLAB [Mat|. Applying the theta-scheme with 6 = 3
for a small time step size of & = 10™% we computed a reference solution
ul := u!®" approximating the solution u(t) of the ODE system (6.8) for the
final time ¢t = 1. For different numbers of time steps n; < 1000 with step size
k = n; ', we computed the approximations u, (k) := u™ of the solution u(1)
and compared them with the reference solution,

e(k) = |ua (k) —ui].

The error e(k) as a function of the step length k for § = 1/2 is shown in
Figure[6.1 on the left.

We repeated this procedure for the finite element discretization on the same
spatial grid. The error behavior is shown in Figure [6.1 on the right. Note
that the reference solutions uj for the finite difference and finite element case
(slightly) differ from each other as the ODE systems and (6.7) are dif-
ferent as well.

Second order convergence can only be observed for the Crank-Nicholson time
discretization scheme (theta-scheme with 6 = 1/2) combined with the finite el-
ement discretization. In all other cases only first order convergence is achieved.
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Time discretization error Time discretization error
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Figure 6.1.: Time discretization error e(k) as function of step size k for theta-
scheme and linearized theta-scheme, 6§ = 1/2. Fixed spatial discretization with
finite differences (on the left) or finite elements (on the right).

We emphasize that the Crank-Nicholson scheme yields only first order con-
vergence when combined with the finite difference discretization. Obviously,
this is due to the different regularities of M(t) and M(t) as functions of ¢, cf.
Remark[6.3. We will analyze this in the following paragraphs.

For that we further simplify (6.8) and study the following scalar ODE
u'(t) = r(t) u(t) for t € [to, tf], (6.11)
’U,(to) = U,
with time-dependent coefficient 7(t) > 0. The solution of the ODE is given by
u(t)=C +¢' Jog r(rydr
where C' = ug — 1.
We assume that there is a tr € [to, tf] such that r(¢) can be written as
t) ift e [to,t
r(t) = fr(t) 1 € [to, tr],
fr(t) ifte (tr,ty],

with C? functions fr, : [to,tr] = R, fr : [tr,tf] — R.

Lemma 6.6

Let t, — t,41 be the time step with tr € [t,, tn+1]- Starting from u™ = u(t,,)
one time step of the theta-scheme and the linearized theta-scheme is applied
yielding u?“, 1 = 1,2, respectively. Then for the local truncation errors
7:(0) := u(tn41) — ul ™! the following holds.
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e For general fr, fr we have

o If fr(tr) = fr(tr), i.e., r(t) is continuous on [ty,ty], then

(0) = O0(k?), i=1,2.

o If fr(tr) = fr(tr) and f(tr) = fr(tr), i.e., r(t) is a C' function on
[to,tf], then

n() =C (9 - %) 400 and  m(0) = O?).

Proof. Without loss of generality we take tr = 0, ¢, = —Ak, toq1 = (1 — Nk
with 0 < A < 1. A Taylor expansion of 7; around ¢ = t¢r then yields the
results. O

6.1.2. One-step theta-scheme

In the following we will derive the theta-scheme and linearized theta-scheme
for the non-stationary Navier-Stokes equations. Based on these schemes the
fractional-step scheme can easily be constructed, cf. Section [6.1.3. For ease
of presentation we assume homogeneous Dirichlet boundary conditions, i.e.,
c(t) = 0, and that the operator B(t) does not depend on t. In the general case
the time discretization is slightly changed, see Remarks 6.9 and below.

The DAE system (6.1) is rewritten in the form

w'(t) + M)~ B p(t) = M(t) g(u(t), 1),

But) =0, (6.12)

where

g(u(t),t) :=b(t) — T'(u(t), t) u(t).
Similarly to Remark /6.1 we first eliminate the incompressibility constraint
Bu(t) = 0 and the corresponding Lagrange multiplier p(t) to replace the
DAE system by an equivalent ODE system. This can be achieved by applying
the M (t)-orthogonal projection P(t) on ker B, i.e., P(t) is orthogonal w.r.t.
the scalar product (-, )z := (M (L) -, ),

Pt)=1-M@) " 'BY(BMt)'BT)'B.
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Note that P(t)v = v for all v € ker B and P(t)M(t)"*BT = 0. Thus the
solution u(t) € ker B of satisfies

u'(t) = P(OM() " g(u(t),t) = f(t,ult)). (6.13)

For a given velocity u(t) the corresponding pressure p(t) is defined by the
equation

BM(t)"'BTp(t) = BM(t)"" g(u(t),t). (6.14)
Theta-scheme

We first derive the theta-scheme for the non-stationary Navier-Stokes equa-
tions. Applying the theta-scheme to the ODE system (6.13) yields

u"t! —u" +1 / -1 n
. =0 Poa M} g tgn) + 6/ PuMy g(u”t,). (6.15)
Due to P,41P, = P,, the sequence {u"},> is also a solution of
unJrl un T ~ n+1 / —1 n
A + M BT =0M, ! g™t b)) + 0 PuM, g(a” ),
(6.16)
Bu"! =0, (6.17)

which can be seen by applying P,41 to (6.16). Using (6.14) a simple calcula-
tion shows

P, M,  g(u™,t,) = M, g(u”, t,) — M;lBT}_a".

Substituting this expression in (6.16) and multiplying by B from the left we
obtain

BMn+1BT2_5 =0BM, +1 g™ )
+6¢' BM,, ! (g(u",t,) — B"p")
=0BM, B p"t!.

This gives rise to the choice p = 0 p"*'. Summarizing, the theta-scheme for
the Navier-Stokes equations is given by

k™" M1 + 0T (@™ )] u" ™ + 6 BTpnt! (6.18)

1
=0b" + M, (Eg" +6 M, (g(u”,tn) — BTB")) ,

Bu"t' =o0. (6.19)
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Each time step of the (linearized) one-step theta-scheme requires the solution
of a generalized Navier-Stokes problem. We should mention that whenever
6 # 1 we need an initial value p° for the pressure which is obtained from the
equation h

BM (to) ' B"p? = BM (to) " g(u°, to).

The solution of a linear system with M,, on the right-hand side of (6.18) in
each time step can be avoided by introducing an additional variable

z" == M, " (g(u",t,) — B"p") € ker B.

After an initial computation of z° by solving the linear system Mz’ =

g(u® to) — BT}_ao, the variable can be updated in each time step by the simple

recurrence formula -
n n
gzt — a ~—u — 9z

k

This leads to the following scheme,

k™" Myg1 4+ 0 Ty (w" )] u" ' 4 6 B pt? (6.20)
1
=0b"" + M, (Eg” +0 Z") ,
Bu"t' =0, (6.21)

N ae (6.22)

Linearized theta-scheme

We now derive the linearized theta-scheme for the Navier-Stokes equations.
The ODE system (6.13) is modified in the following way.

u'(t) = P(ta)M(t,)"" [b(t) — T(u(t), ) u(t)] =: fu(t,n(t).  (6.23)

We emphasize that the compatibility condition f,(tn,u(tn)) = f(tn,u(ts))
holds and thus Lemma [6.4 can be applied. Note that also other choices for
such compatible f, (¢, u(t)) are possible. Application of the theta-scheme to
(6.23) yields
unJrl _ un

? = P,LMT:1 (thrl — 0T (" Hut —0' T, (u"™) gn) ,  (6.24)
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where we used the notation C,, := C(t,) for a time dependent operator C' =
C(t) and the notation Q3+1 = 0" 46 ¢ for vectors ¢, ™!, The sequence
{u"}n>0 is also a solution of

+ ng(unJrl) n+1 _’_91 ( )11 -l-BTp bn+1 (625)
Bu"™ =0. (6.26)

Note that multiplying with BM, ! from the left yields

BM;IBT@ — BM;I (hg-i-l . QTn(EnJrl) 0/ (H )Hn) .
Hence, for the choice p = Q "+1 the pressure variable satisfies the pressure
equation BM, *BTp(t) = Lg(u(t),t,) which is (6.14) linearized at t =
tn-

Summarizing, the linearized theta-scheme is as follows:

(k™' M, + 0T, (u" ") u" " 4 6 BTp"*! (6.27)

1
— EMnEn + 0hn+1 + 0’ (hn _ Tn(gn)gn _ BTBn) ,

Bu"™ =0. (6.28)

Remark 6.7
An alternative linearized scheme is the following, cf. [QV94],

n+1 n
“aJr —u n+ly . nt+l T n+1 n+1
0k + Tn(ﬂe ) + B ha )

Burt! — 0 BHO n =0,
=0 0 n>1,

My,

which is solved for the unknown quantities "H, ng After that we set

gn—i—l _ 0_1(En+1 _ 9/ En), Bn—i—l =6~ ( n+1 9/ n)
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Some Remarks

Remark 6.8 (Order of convergence for two-phase Stokes flow)
Numerical experiments of a two-phase Stokes flow problem (rising bubble
problem, cf. also Section have been conducted in [Ess08| to examine
the convergence order of the theta-scheme and the linearized theta-scheme for
the parameter choices §# = 0.5 (Crank-Nicholson scheme) and § = 1 (implicit
Euler scheme), respectively. Similar to the 1D experiments presented in Sec-
tion [6.1.1} a reference solution u*(t), t € [to,tf], was computed applying a
very small time step size k.or. For these time discretization schemes solutions
ui(t), t € [to,ty], were computed for different time step sizes k > kyer and
afterwards the corresponding errors

e(k) = [lug(ty) —w(tf)ll Lo (o)

were calculated. The numerical results show second order convergence for
the theta-scheme with 8 = 0.5 and first order convergence in the remaining
three cases. Thus the expected theoretical convergence order was confirmed
by these experiments. o

Up to now we assumed that the incompressibility constraint has the form
Bu(t) = 0. In the following we treat the more general case B(t)u(t) = c(t).

Remark 6.9 (Extension to non-homogeneous right-hand side)

A non-homogeneous right-hand side ¢(t) # 0 is caused by non-homogeneous
Dirichlet boundary conditions u|s,, = up for the velocity in the finite ele-
ment discretization of the incompressibility constraint divu = 0. In order to
explain the time discretization in this case, for a moment we introduce addi-
tional unknowns for the degrees of freedom located at the Dirichlet boundary
¥ p and collect these in the vector up. Doing so we obtain a finite element
discretization

(M(t)()ﬁ(t)) N (T@g),t) %T) (z((g) _ (Eét))’ I
with an augmented vector
0= (HHD%)

and augmented matrices M, T, B. This system has the form of (6.1), but with
¢(t) = 0. Thus the derivation of the (linearized) one-step theta-scheme can
be carried out as presented in this section. A subsequent elimination of the

[
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unknowns up, (which can be substituted directly due to the known Dirichlet
boundary condition) leads to the schemes (6.27) and (6.20) with modified
right-hand sides b", b and , (6.21) replaced by

B un+1 _ CnJrl

Remark 6.10 (Extension to time dependent operator B(t))

We now assume that the operator B(t) is time dependent, which is in general
the case for an extended finite element discretization of the pressure due to
the dynamics of the interface T', cf. Section [5.4] In the derivation of the one-
step theta-scheme we used that P, P, = P,, which is no longer true for a
time dependent operator B(t). Hence, a different approach has to be chosen
which will not be explained here, but can be found in [RFG™]. The same time
stepping theme as in (6.20)—(6.22) is obtained, but with a different initial
pressure p° given by

N _ dB
BoMy ' By p = BoMj ' g(u’,to) + E(to)go. (6.29)

Note that the derivation of the linearized one-step theta-scheme remains un-
changed for B depending on ¢, since here the projection P(t) is applied only
for a fixed time t = t,, cf. (6.23). The initial pressure p° should also be
computed according to (6.29). B o

Time discretization of the level set equation

We now discuss the time discretization of the level set equation. After the
finite element discretization of the level set equation we obtain the following
system of ordinary differential equations,

E(u(t)) ¢'(t) + H(u(t)) ¢(t)
»(to)

0, (6.30)
0. (6.31)

The application of the one-step theta-scheme to (6.30) yields

S 40 H )| " = B 1ot - ¢ B H ") "

Together with the one-step theta-scheme for the Navier-Stokes problem (6.20)—
this leads to a coupled system which has to be solved for the unknown
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quantities (u" 1, p"*1, ©"*1) in each time step. This issue is further discussed

in Section
The application of the linearized theta-scheme to (6.30) leads to

%E(u”) + 9H(u")] "t = [%E(u”) —0'H(u")| ¢".

Note that here only u” (and not u™*!) has to be known to obtain the level set
approximation f"“ at the new time t = t,,+1. The implications for the overall
time stepping scheme (level set and Navier-Stokes equations) are described in

Section

6.1.3. Fractional-step scheme

For the fractional-step scheme the time step ¢, — t,41 with time step size
k = tn41 — t, is subdivided into three macro time steps

tn — thr@ - tn-i—@ - tn+17

where
thto =1tn + @k7 thré) =tnt1 — @kv

with macro time step sizes Ok, (1—20)k, Ok, respectively. Here 0 < © < 1/2
defines the portion of the first and third macro step in relation to the time
step size k. The portion of the second macro step is denoted by ©’ := 1 —206.

The fractional-step scheme is based on a splitting T = Ty + T{2) of the
operator 7" in (6.1), where in the first and third macro step the operator
T(1) is treated implicitly while T{y) is treated explicitly, and vice-versa for the
second macro step. A popular variant is based on the splitting

T(l) = aT, T(Q) = (1 - a)T

with 0 < a < 1, cf. [Tur99, Ran04]. This means that in each macro time
step the theta-scheme is applied, where § = « is chosen for the first and
third macro time step and § = 1 — « for the second macro time step. Hence,
the application of the fractional-step scheme requires the solution of three
generalized Navier-Stokes problems per time step. The level set is updated by
applying the corresponding theta-scheme in each macro time step.

In the case of one-phase flow, for © = 1 — /2/2 = 0.292893... and 1/2 <
a < 1 this scheme has second order accuracy and is strongly A-stable, cf.
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[BGP87]. Due to this fact we choose © = 1 —1/2/2 and discuss the choice of
the parameter « in the following.

For a shorter notation we introduce o’ = 1 — «. One often chooses a =
% = 0.585786... as the operators in all three macro steps then have the
same structure (up to a constant factor) due to af = «’6’. This can be
exploited in the construction of the system matrices, if M and A are time
independent (which is usually the case for one-phase flow problems). For
two phase problem this is no longer the case because of the non-stationary
interface I' = I'(¢) and thus these matrices have to be rebuild in each macro
step, anyway. However, there are still some advantages as for this choice of «
the structure of the Schur complement preconditioners stays the same in each

macro step, cf. Section Thus we chose « as indicated above.

A linearized variant of the fractional step scheme can similarly be derived by
applying the linearized theta-scheme in each macro time step. However, for
this linearized variant we cannot expect better than first order convergence.

6.1.4. Fractional-step scheme with operator splitting

The fractional-step scheme was first proposed by Glowinski et al. [BGP87]
in form of an operator splitting approach, where the two main challenges of
the Navier-Stokes equations, incompressibility and nonlinearity, are decoupled
from each other. It is based on the splitting 71y = oA and T(p) = (1—a)A+N
where the incompressibility constraint is omitted in the second macro step.
The linearized fractional-step operator splitting scheme is as follows:

1 nte  gronte _ | Lo iy n 4B
{G)k;M—'—aALLH +B'p = G)k:M a'A Nnu +b
Bu"t® =c" (6.32)
LE +aH| o"® = LE' —d'H| "
Ok - Ok -
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1
o'k

1 N
{ M+0/A+N] E"+9:{

M — oA n+0
o'k n+0 ¢ :| "

n+0

o BT Bn+@ + hn+@ (633)

n+0

[ : E—i—O/H] ¢n+@_{ =

n+0
6,kE—ozH} "t

1 1 5
{—M + ozA} u"t 4+ BT pntt = {—M —adA—- N} u"t®
Ok nt® - Ok n+6
4 bn+®
BunJrl _ QnJrl
{LE + aH] i = [LE — O/H] nt+6
ok & Ok nt

(6.34)

This scheme will be referred to as FS-OS scheme in the remainder of the text.
Performing one time step of the FS-OS scheme requires the solution of an
Oseen problem in the first and third macro step respectively, and one nonlinear
Burgers-type problem in the second macro step. This has the advantage that
the nonlinearity and the incompressibility constraint can be treated separately.
Thus one can reuse solution techniques developed for linear Stokes problems.
The level set variable ¢ is updated by applying the corresponding linearized
theta-scheme in each macro time step.

At least for one-phase flow problems the FS-OS scheme is strongly A-stable,
but has only first order accuracy. For further analysis of the scheme we refer
to [KR94]. In [B&n98| the combination of the linearized FS-OS scheme with
the implicit treatment of the surface force fr is described and analyzed. This
topic is discussed in Section[6.1.5 below.
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6.1.5. Implicit treatment of the CSF term

The time discretization of the surface tension force term fr deserves special
attention, as its explicit treatment will lead to a capillary time step restriction

(p1 + p2)hi ~  B3/2.-1/2

At <
drr

A derivation of this bound can be found in [BKZ92|. To overcome this problem
a semi-implicit treatment of fr is suggested in [Ban98] which will be briefly
described in the following. Recall from Section that fr can be expressed
by means of the Laplace-Beltrami operator Ar,

j}(v) :iTu/m@ﬁFidp)'\’dsf: —7:/p‘7ridr"7p\’d8, v € Vy.
r r

The new interface position ' for ¢ = t,,,1 can be expressed in terms of the
old interface position I'” by means of the identity operator idr,

idpa+t = idpa +kper u" T+ O(K2, ), (6.35)

where k,11 = t,4+1 — t,, denotes the corresponding time step size. This gives
rise to the formulation

frne(v) =—71 Vridpes -Vrvds v € V.
rn+l

-7 Vridrs -Vrvds — k1 7 Vru"t . Vivds, (6.36)
In rn

Q

which is a semi-implicit discretization as the integration is performed on I'”
instead of T™*!. It is implicit in the sense that the second integral in (6.36)
defines a bilinear form cp(-,-), on V x V|

cr(u,v)p =71 Vru-Vrvds, uvev,
F’IL
which contributes to the velocity operator on the left-hand side of the mo-
mentum equation (2.21). This interface diffusion term cp(-,-), is an elliptic
operator and thus has a stabilizing effect. For the finite element discretization
we consider the bilinear form

cr, (Wp, Vi)p i=T Vr,up -V, vy ds, for all uy, vy, € Vy,.
i
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The corresponding matrix CL» € RNVi XNV, is defined by

<C£” u, X> =y, (']Vh (H)a ']Vh (X))

n
for all u,v € RVVa.

Applying this technique exemplarily to the linearized one-step theta-scheme
results in the following scheme,

k™M, +0T,(u"™) + kCr*Ju™ + 6 B p"t! (6.37)
1

~n+1 ~ T
Myu”+bi, +6b" 40 (B - Tuw)u" - BTy

Bu"t! =0. (6.38)

Here by, denotes the vector representation of the surface force term, i.e.,
br i = fr,(vi),i=1,...,Ny,, and b=b- br, the remaining part of the
right-hand side.

In [Hys06] the explicit and semi-implicit treatment of the surface tension term
are compared to each other in numerical experiments considering an oscillating
and a rising bubble example. It can be seen that the explicit treatment leads
to numerical oscillations when the time step size exceeds a certain bound.
On the other hand the semi-implicit treatment yields more stable results and
allows for larger time step sizes.

Remark 6.11

Applying the improved Laplace-Beltrami discretization fr , of the surface force
term described in Section [5.3.4 requires a slight modification of (6.37). In this
case by and CL" have to be replaced by their modified counterparts Em and

CIr defined by by, |; = fr, (vi), i =1,...,Ny,, and
<é£h u, X) = 6Fh (JVh, (H)a JVh (X))n

for all u,v € RV where

ér, (up, vp)p = T/ f’h(x)Vuh -V, vh ds, for all uy,, vy, € Vy,.
e o
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6.2. Coupling of level set and Navier-Stokes
equations

We consider the spatially discretized coupled system of level set and Navier-
Stokes equations:

E(u(t) ¢'(t) + H(u(t)) (t) = 0, (6.39)

M(p(t)) u'(t) + T(u(t), o(t) u(t) + B" p(t) = b(p(t)), (6.40)

Bu(t) =c (6.41)

Let the quantities u®'d, p°4, °!9 from the old time step t°'4 be given. We are

new new new

looking for the quantities u = u"®", p=p"", =9 which approximate
the solutions at t*°%. The time step size is denoted by k = t"*V — ¢°ld,

The application of the linearized variant of the one-step theta-scheme to the
coupled system (6.39)—(6.41) yields

{%E(Hold) + HH(QOM)] o= _%E(gold) _ QIH(QOId)] (pold
] (6.42)

1 (1
|:EM(9001d) + HT(H7 fOId):| u+ HBT]_) _ EM(QOOld) _ H/T(201d7£01d):| HOld
] (6.43)
_ 9/ BTBOId + f)h(f) +9/h(f01d)

Bu=c. (6.44)

Here § € [0,1] and 6 + ¢’ = 1. In a first step the level set equation (6.42)
can be solved for ¢ and in a second step the Navier-Stokes equations (6.43)—
(6.44) can be solved for u, p. Thus a decoupling of level set and Navier-Stokes
equations is achieved. This is a very nice property in terms of computational
efficiency, but comes for the price of being only first order accurate in time.
Hence, a linearized time discretization is the method of choice, when the
spatial discretization error dominates the temporal discretization error.

In contrast to that, when applying a non-linearized time discretization scheme
to - we may gain second order convergence, but will end up with
a fully coupled system. The strategy used for the coupling of the level set and
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Navier-Stokes equations will be explained exemplary for the one-step theta-
scheme, cf. Section[6.1.2. It can be applied to other time discretization schemes
in a similar manner.

Applying the one-step theta-scheme to the level set equation (6.39) yields

0= {%E(H) + eH(H)] Y — E(E) |:%£01d —0 E(EOld)_lH(HOId) s001(1

=: LS(p;1). (6.45)
For the Navier-Stokes equations (6.40)—(6.41) we obtain

0= [—M( )+ 60T (1, g)] u+6BTp—6b(yp) (6.46)

IS

1 (0] O - (o) (o) (o) (0] O
— M(f) |:%H 1d + G/M(f ld) 1 [b(f ld) _ T(H ld7£ ld)u Id BTB ld]
u

0=Bu-c (6.47)

Here we introduced the quantity u for a more flexible notation. In the con-
vergence history of the coupling strategy this quantity will tend to u in order
to fulfill the Navier-Stokes equations.

The time discretization of the coupled system then reads as follows: Given
g"ld,}_a"ld, g"ld from the old time step t°'9, find u™°", prev, oY for the new

time step t"°% = t°!4 4 [ such that

Ls(gnew;gnew) — 0’ (648)
NSl (Enew,gnew; Enew, £new) — 0, (649)
NSyu"") = 0. (6.50)

This coupled system is solved by a fixed point approach in the following way.

Algorithm 6.12 (Coupling)
Set u’ := u°, £0 = f"ld. For m =0,1,2,... proceed

1. Solve the level set equation

LS(¢™u™) =0
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for gm“.

2. Solve the Navier-Stokes equations

NSl(Herl,perl' uerl7 (,Oerl) _ 0, NSQ(ngrl) =0

p—

m—+1 m—+1

for u P

3. Set m «— m + 1 and return to step 1.

For the solution of the sub problems in steps 1 and 2 iterative solvers are used,
where the quantities ¢ resp. u”, p"™ from the last fixed point step are used
as initial values for the solvers. If both solvers perform zero iterations, i.e.,
the stopping criteria of both solvers are already satisfied for the initial values
and hence ™ = @™, u™tt = u™, p™ ! = p™, then the fixed point loop is
stopped. We then set ¢"°V := <pm+1 u m+l mtl

new = u and pne p

Remark 6.13
Assume that the stopping criteria of the iterative solvers for the level set and
Navier-Stokes equations are chosen such that

HLS(fm—H)H <eLs; ||N51(Em+172_)m+1)” < ENS:S HN‘S’Q(HM—H)H < ENS,-
Then after convergence of the coupling loop we have
ILS(™ ) <ers, [INSi(@"™™, p"™)| <ens,,  [NS2u™V)| <ens,-

Hence, the quantities ("°V,u"*", p**¥) fulfill equations (6.48)—(6.50) up to

the tolerance used by the iterative solvers.

However, the choice of suitable tolerances ers,ens,,Ens, for the iterative
solvers is a delicate task. If the tolerances are chosen too restrictive, the cou-
pling loop may not converge. On the other hand, choosing the tolerances too
loose will lead to an inaccurate solution (¢"°%,u"*"™, p"°¥). Another possi-
bility is to choose different tolerance parameters €™ in each iteration of the
coupling loop, for example €% ¢ = § ||LS(¢™)|| and

el = max(J e}y ELTS)

form=1,2,...,

with 0 < § < 1, for instance § = 0.1. A systematic approach for taking
appropriate tolerance parameters ¢ is not available, yet, and is left as a topic
for future research. o
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One can think of other variants for the fixed point strategy. For example, we
can replace the solution of the Navier-Stokes system in step 2 by the Oseen
problem

NS (™, pmthu™, " ) =0,  NSu™*') =0,

m+1 ,m+1

which is solved for u D . This will in general require more fixed point
steps than the first variant, but less solution effort in each step.

Another possibility is to interchange the order of solution of the sub problems,
i.e., first solve the Navier-Stokes problem and after that the level set problem:

Algorithm 6.14 (Coupling — reverse order)
Set u’ := u°, £0 = f‘)ld. For m =0,1,2,... proceed

1. Solve the Navier-Stokes equations
NS1 (Herl pm+1 £ 0) NSQ(Hm+1) =0

m—+1 ,m+1

for u P

2. Solve the level set equation

LS(e"™ 5 u™ ) =0

for ™1,

3. Set m «— m + 1 and return to step 1.

For our experience this solution order is more expensive in terms of computa-
tional time. As the solution of the Navier-Stokes problem is much harder than
the solution of the level set problem, one should solve the level set equation
in advance to get a better initial approximation of the interface '™V for the
time-consuming solution of the Navier-Stokes problem.
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7. lterative solvers

In the following we describe how the discrete problems arising in each iter-
ation of the coupling loop are solved, cf. Algorithm [6.12 For the level set
equation we use a Krylov subspace method for non-symmetric systems (due
to the convection term u- Vo), e. g., GMRES or BiCGStab [Saa03], which are
preconditioned by SSOR. The solution of the discrete Navier-Stokes system is
more involved and will be explained further in the next sections. For ease of
notation we write u, p, ¢ instead of u, p, ¢, dropping the ‘ ’, in the remainder
of the chapter. S

7.1. Navier-Stokes solvers

We consider the discrete Navier-Stokes problem

K (u) (;) - (b> , 1)

K(u) := (Tgl) BOT> .

Note that this notation can be used both for stationary and non-stationary
problems. In the case of a stationary problem we have T'(u) = A + N(u).
For the non-stationary case, after applying some time discretization scheme
from Chapter[6] T'(u) is a linear combination of the mass matrix M and the
convective-diffusive part A + N(u) and b, ¢ denote the corresponding right-
hand sides.

where

The nonlinearity T'(u) is treated by a fixed point approach employing defect
correction in each iteration cycle:

Algorithm 7.1 (Fixed point defect correction)
Let initial values u®, p° be given. For m = 0, 1,2, ... repeat
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1. Compute the residual vector

(i) = (52) - (2)

2. Solve the linear Stokes or Oseen problem

K (3o ) = (5n)- (7.2)

yielding the update (Au™, Ap™)T.

3. Defect correction: Obtain the new iterates

umt! u™ Au™
(pm+1) = <pm> — W <Apm> (7.3)
with some step length w,,.

Note that by far most of the computational work is done in the second step

(72).

The step length w,, in can either be taken fixed as w,, =1 or w,, = 0.9
(applying some damping) for all m, or may be adjusted by some step length
control in each fixed point iteration. One strategy for step length control is
discussed in the following.

The optimal step length w,p: is given by the one dimensional optimization
problem

K s (79 - (O)) @

Here || - || denotes the Euclidean norm. This formula is also known as line
search in the optimization community, cf. [NW99]. However, this approach is
not feasible as the optimization problem in (7.4) is nonlinear in w and would
require, if solved iteratively, the repeated discretization of the nonlinear part
N in each optimization step, which is expensive in terms of computational
time. Therefore we modify the problem in (7.4) slightly to obtain a simpler

one:
~ (u™ — wAu™ b
a (Pm - wﬂpm) - (C) H (75)

Wept = argmin
w

Wopt = arg rri)in
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with K = K(u™ — w,,—1Au™) using the step length w,,_1 from the last iter-
ation (and w_7 := 1 at the beginning). Note that this optimization problem
is linear in w. Applying the necessary optimality condition, the solution of

(7.5) is given by
~ m - m
(8) < () - ()
8 Ap P ¢
wopt = 3 s (76)
K Au™
Ap™
where (-,-) denotes the Euclidean scalar product. Note that the evaluation
of only requires the one-time construction of K = K(u™ — wy,—1Au™)
and the computation of some matrix-vector multiplications and scalar prod-
ucts. This is only little effort compared to the most time consuming part of
Algorithm [7.1, the solution of the Stokes/Oseen problem (7.2) in the second

step. Algorithm [7.1] with the choice wy, = @ope from (7.6) is called adaptive
fized point defect correction method in [Tur99|.

We experienced that the step length control given by is more robust than
using a fixed step length w,,. In most of the iterations, w,, given by (7.6) is
almost 1, indicating that the linear part of K (u) is dominant in those cases.

7.2. Oseen solvers

In this section the iterative solution of the discrete Stokes or Oseen problem

) ()

. (T BT
(5 %)

is a block matrix with saddle point structure for some (constant) regular ma-
trix 7', hence (7.7 (7.7) constitutes a linear problem. E.g., for T = A we have the
stationary Stokes problem and for 7' = M + ~(A + N(i1)) an Oseen problem.
The latter kind of problems arises, e.g., within the fixed point defect correc-
tion, cf. Equation (7.2) in Algorithm (7.1, where K = K (1) for some fixed
a.

is considered. Here

[Sanwl

For ease of notation we drop the in the notation, i.e., we simply write
K, T instead of K, T in the remainder of this section.
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In [PRRO5] three iterative solvers for the solution of discrete Stokes problems
are investigated, namely preconditioned CG, MINRES and an inexact Uzawa
method. Two of them (CG and MINRES) exploit the symmetry of the Stokes
equations. As we are interested in the application to Navier-Stokes problems
which are non-symmetric due to the convection term u - Vu, we concentrate
on iterative solvers for non-symmetric Oseen problems.

Iterative Oseen solvers considered in this thesis for the solution of (7.7) can
be divided into two classes.

e The first class, so called Uzawa methods, exploit the saddle point struc-
ture of K and are based on its Schur complement factorization, cf. Sub-
section |7.2.1.

e The second class consists of iterative solvers for general non-symmetric
systems, e.g., GMRES or GCR, which are directly applied to the block
matrix K without exploiting the saddle point structure of the problem.
In the following we call them general Krylov subspace methods.

7.2.1. Uzawa type methods

Uzawa methods are related to the Schur complement factorization of K,

K= (g _OI) . (é T;BT) (7.8)

with the Schur complement matrix
S: =BT 'BT.

Throughout this section we assume that 7' is symmetric positive definite.

Remark 7.2 (Uzawa methods for Oseen problems)

The construction of Uzawa methods and theoretical results in that context
always assume that T is symmetric positive definite (i.e., the Stokes case),
yielding a symmetric positive semi-definite Schur complement S. For small
Reynolds numbers, however, the methods can also be applied to Oseen prob-
lems and turned out to be successful solution methods in practice, even though
T is not s.p.d. anymore. o

The Schur complement factorization (7.8) can also be regarded as block LU
factorization of K. The corresponding block forward-backward substitutions
lead to the following algorithm:
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Algorithm 7.3 (Schur complement method)
1. Solve T'v =b.

2. Solve Sp=Bv —c.

3. Solve Tu=b — B7p.

In the first and third step linear systems for the matrix 7" have to be solved.
Depending on the properties of T, suitable (preconditioned) Krylov subspace
methods or multigrid methods can be applied. The solution of the pressure
system in the second step deserves further explanation. We use an iterative
Krylov subspace method, where in each iteration matrix-vector multiplications
s = Sq have to be computed. Because the definition of S involves 7!,
the computation of s requires the solution of a linear system for 7T: solve
Tr = B7q, then s = Br. The solution r has to be determined iteratively
with high accuracy, otherwise the outer Krylov solver for the pressure system
will diverge. Typically the solution of the inner T-system demands three
orders of magnitude higher accuracy than of the outer pressure iteration. This
high computational costs make the Schur complement method unattractive in
practice.

We therefore use a variant of this approach, in which the linear systems for
T (and S) have to be solved with less accuracy, which explains the name
inezact Uzawa method. Here T—! is replaced by the application of a symmet-
ric positive definite preconditioner Q;l for T, leading to the inexact Schur

complement S := B Q}lBT.

Instead of solving the pressure system S q = w with high accuracy, an approx-

imate inverse of S is applied, namely ¢ = ¥(w) ~ S~!w with the property

1@ (w) —gllg < lq]

g forallwe@

for some § < 1. For the realization of ¥ we use a suitable Krylov subspace
method with initial vector equal to zero, e.g., CG in case of Stokes or GM-
RES in case of Oseen problems. The Krylov subspace method is precondi-
tioned with an preconditioner Qg for the Schur complement. The design of
preconditioners Q1 and Qg is discussed in Section[7.2.3]

The inexact Uzawa method is based on iterative defect correction of the Oseen

equation (7.7):
umt! u™ dar
) T\ ) T
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where the defect (d}*,d3*)T is given by the solution of
dy b u™
# () = () - () -9
("
=\ )

Applying forward-backward substitution (i.e., Algorithm [7.3) to (7.9) the de-
fect can be computed by first solving v® = T~ 'r]" and then

m o __ S*l Bv™ — ,

PR (710
1 == - T B d2 .

For the inexact Uzawa method we now replace T~! by Q;l and S~! by the
application of ¥ as explained above. Introducing w"™ := u”"+v"" the following
algorithm is obtained:

Algorithm 7.4 (Inexact Uzawa method)
Let u, p° be given. Compute the residual r = b — Tu® — BTp°.

For m =0,1,2,... iterate:

1. Compute auxiliary vector
wi=u" + Q;lrgn,
2. Pressure defect:

a3t =¥ (Bw™ —¢),

3. Pressure update:
pm = p™ - dy

4. Velocity update:
um+1 = W — Q;IBTdSn,
5. Residual update:
=™ - T (u ! —u™) - BTdy.
For the case of T being a symmetric positive definite matrix (i. e., we consider

a generalized Stokes problem), in [PRR05| a more detailed inspection and a
rigorous analysis of the inexact Uzawa method is given. It is shown, that the
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Figure 7.1.: Number of Q7' evaluations for the inexact Uzawa algorithm as a
function of §.

error reduction of one iteration of Algorithm [7.4/in a suitable norm can be
bounded by

2ur + 6 (1 + pr) := g(pr, 0),

1 1
where pp 1= |[I-Q2> T Q2| is the contraction number of the preconditioner
Q7. Hence, for an efficient solution the parameter ¢ (i.e., the accuracy of ¥)
should be chosen dependent on the quality of the preconditioner Q.

Remark 7.5 (Choice of §)

We consider the Stokes case, i.e., T is symmetric positive definite. If one uses
one multigrid V-cycle as preconditioner Q;l, then the contraction number is
typically about ur = 0.1. For this case it suffices to choose § < % = 0.72
to get a convergent method because then ¢(0.1,0) < 1. That means that the
pressure system has to be solved only with low accuracy. But what is the
optimal choice of  in terms of computational effort? The arithmetic costs are
dominated by the application of Q;l, hence ¢ should be chosen such that the
number Ng, of evaluations of Q;l is small. The plot in Figure shows a
typical behavior of Ng,. as a function of  for the example pug = 0.1. It turns
out that low arithmetic costs can be achieved for a rather broad range of §
(roughly § € [0.1,0.4]) and that J is not very sensitive to this quantity Ng,
within this range. Choosing § very small is inefficient, as this would require
many matrix-multiplication with S involving the evaluation of Q}l. The same
holds for § close to 0.7 where slow convergence is observed in practice, since
the method diverges for § > 0.72. o
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7.2.2. General Krylov type methods

Another approach to solve the Oseen equation (7.7) is to apply a suitable
iterative solver directly to the matrix K, disregarding the property that K
is a block matrix with saddle point structure. If T is symmetric (i.e., the
Stokes case), then K is also symmetric and thus the preconditioned MINRES
algorithm is a suitable Krylov solver for this case. For the general Oseen case,
T and K are non-symmetric, thus preconditioned GMRES, BiCGSTAB or
GCR (cf. [Saa03]) are methods of choice. In all cases K is preconditioned by
the diagonal block preconditioner

1 (QY 0
QKl_( g le), (7.11)

where Q;l, Q;l are preconditioners for the upper left block 7" and the Schur
complement S, respectively. The design of Q;l and Q;l is discussed in Sec-
tion Note that the Schur complement matrix of K := Ql}lK is given
by

§=(Qs'B)Qr'T)™ Q7' B) =Q4'S.

Most of the standard Krylov subspace methods assume that the precondi-
tioner Q;(l is linear and constant in each step. But if one uses for Q;l, e.g.,
the application of some GMRES iterations, both aforementioned assumptions
on Ql}l are not fulfilled anymore. In this case one should use so called flexible
Krylov methods, which do not have these restrictions concerning the precon-
ditioner. Examples of such methods are GCR. or flexible GMRES.

7.2.3. Preconditioning

In this section we describe the design of preconditioners for the upper left
block T of K and the Schur complement S.

Preconditioning of T’

Consider the linear system of equations T'x = b and denote by

y=Q:'b

the application of the corresponding preconditioner. If T" is the discretization
of a diffusion-dominated differential operator, then performing one step of a
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standard multigrid solver (V-cycle with Jacobi or Gauss-Seidel smoother) is
an efficient preconditioner Q;l. Here the hierarchical structure of the trian-
gulations can be exploited, cf. Definition 3.5.

For small time steps, due to the time discretization the matrix 7" is dominated
by %M . Since systems involving the mass matrix are relatively easy to solve
due to its bounded condition number, applying a multigrid method is often
not worth the effort. In this case, for the preconditioner Q;l we usually apply
one step of a damped Jacobi iteration

x(m+D) = x(m) 4 yldiag(T)] (b — T x(™)

or one symmetric successive over-relaxation (SSOR) step. With the choice
x(9 =0 as initial guess the damped Jacobi preconditioner simplifies to

y,=~b

= be i=Loo Ny

(7.12)

h

and the SSOR preconditioner is given by the following algorithm.
Algorithm 7.6 (SSOR preconditioner)
1. Compute auxiliary vector w by damped Gauss-Seidel iteration for initial
guess x(9) =0,
w i—1
L= — b,L— Ti' . 5 ':17...,N .
w, Ti ]z::l i W v Vi

2. Compute y by damped backwards Gauss-Seidel iteration

Preconditioning of the Schur complement S

In the following we restrict ourselves to the Stokes case, i.e., T is symmetric
positive definite and hence the Schur complement S is symmetric positive
semi-definite. For a discussion of preconditioners for the more general Oseen
case we refer to Remark [7.8.

Since S is not explicitly available as Ng, x Ng, matrix, only by its (usually
approximative) application to some vector, the design of preconditioners for
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the Schur complement is different from the techniques for the design of Q;l
presented in the foregoing section. For example, we cannot apply SSOR to S,
as this would require matrix entries of .S which are not available.

Therefore we seek for matrices G € RNen*Ney,

to S, i.e.,

which are spectrally equivalent

v5(Gq. q) <(Sq, q) <Ts(Gq, q)  forallgeRY% /kerS  (7.13)

with constants I'g, v > 0. These constants should be independent of the grid
size h, time step size k = At and the ratios %, % of dynamic viscosity and
density of the two phases, respectively.

We first consider the stationary Stokes case, i.e., T'= A. Let M, € RYen be
defined by

(Mup, q) ==, Qp =@ " Jg.p, Jg.0)0 (7.14)

for p,q € RNeu and (-,-)o the usual Lo scalar product. In other words, M, is
the pressure mass matrix with respect to the scaled Ly scalar product (-,-),.
In [ORO6] it is shown that G = M, fulfills with constants independent
of h and p.

For the non-stationary Stokes problem we assume 7" = (M + A with £ >
0, which is the outcome of some time discretization scheme as described in
Chapter[6. We define the scaled pressure stiffness matrix A, € RNanxNay, by

(App, @) = (p" VIq,p, VJg,qo- (7.15)

Then we take
I | —1
G =M, +£Ap (7.16)

as Schur complement preconditioner for the non-stationary Stokes problem.
In [OPRO6] it is shown that this preconditioner G fulfills the property

<S q, q> S C <éq7 q> for all S RNQ}L/kerS

with a constant C' independent of &, u and p. The other bound ¢ <é q, q) <
(S q, ¢) has not been proved yet. This is because of missing regularity results
for the generalized Stokes interface problem.

However, numerical results obtained by the application of the Uzawa method
(cf. Algorithm in [OPRO6| indicate, that the number of PCG iterations
with the Schur complement S and preconditioner GG are almost constant with
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respect to h, k, and moderate ratios ‘j—l and p—;. Thus the preconditioner G
turns out to be robust for the generalized Stokes interface problem within cer-

tain parameter ranges, even though a theoretical robustness result is missing.

Remark 7.7 (Preconditioning for extended pressure space)

If extended finite elements are used for the pressure space (cf. Section [5.4),
some modifications have to be considered for the preconditioning of the Schur
complement operator.

e Extended basis functions with very small support may occur which will
blow up the condition number of the pressure mass matrix M,,. We ex-
perienced that a simple diagonal scaling does a good job. The condition
number of D~'M,, with D = diag(M,,) is bounded independently of h
(cf. [Reu08]) and is rather low.

o The definition of A, makes no sense for extended basis functions as
functions with jumps are not weakly differentiable. Thus A, is replaced
by the operator

A, := BQ;/ BT,
where QX; is a preconditioner for M, for example the inverse of the
diagonal of M. In practice we use D*IAP with D = diag(M,,) to account
for the different scaling of the extended basis functions. o

Remark 7.8 (Preconditioners for Oseen case)

Unfortunately, the preconditioners for the generalized Stokes interface problem
presented in this section turned out to be unsatisfactory when applied to the
Oseen problem in some cases, even for relatively small Reynolds numbers. For
some Oseen test cases we experienced that it was even better to use no Schur
complement preconditioning at all. Hence, an extension of the preconditioning
techniques to the Oseen case, which compared to the Stokes case involves an
additional convective term w - Vu, is of great interest.

There are some ideas in the literature which are based on the following ob-
servation: If there was a matrix 7, € RN@.*Nen with the commutation
property BTT -1 = T~'B” | then the Schur complement would be given by
S = BT BT = BBTT;! and thus

St =1,(BBT)".

In general it is not possible to find such a matrix 7},, but there are ways to
construct matrices 7}, € RVen*Naw for which

Qs' =T,(BB")™ (7.17)
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turns out to be a reasonable approximation of the inverse Schur complement.
In [KLWO02] T, is obtained by the discretization of a pressure convection-
diffusion operator. This is motivated by the fact that the commutator

1 1
<—pI—uA+p(w-V)> V—V(—p[—uA—kp(w'V))
k v k 0
is zero inside 2 for w constant and expected to be small for smooth w.

A more algebraic approach is taken in [EHST06] where the discrete commu-
tator

C:=TBT - BT,
is considered. Note that
Tri—1 —1 T —1p—1 . A
BT, -T"B =T CTp =:C (7.18)

is the commutator used in the derivation of (7.17). The idea is to construct
T, in such a way that it fulfills the minimal commutator property

|IC||F — min. (7.19)
Here || - [|F is the Frobenius norm. Note that due to (7.18) this is equivalent
to the minimization problem |C||z — min in the norm || - ||z defined by
Xz = |TXT,|| for all X € R¥i>*Naw  An equivalent formulation of

(7.19) are the normal equations
(BBT)[T,); = B[TBT];  foralll<j< Ng,.

The solution is given by T}, = (BBT)"'BTB” and due to (7.17) the Schur
complement preconditioner has the form

Qs = (BBT)'BTBT(BBT)™". (7.20)

A comparison and critical review of the two preconditioners from [KLWO02,
EHST06] can be found in [OV07] where both are applied to a few numerical
2D and 3D test cases. For the case of a circulating flow field w and a small
kinematic viscosity coefficient v = £ none of the presented preconditioners
provides satisfactory convergence results. The design of more appropriate

preconditioners for the Oseen case is currently a field of active research. ¢
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7.3. Some practical remarks

In our software toolbox DROPS we implemented a set of different iterative
solvers to be able to compare them with regard to their efficiency for the
solution of two-phase flow problems. For an overview of solvers and precon-
ditioners available in DROPS we refer to Section [9.1.7. The ones that are
mostly used are the following;:

e For the solution of the level set equation we use a GMRES solver which
is preconditioned by SSOR (Algorithm [7.6).

e For the linearization of the Navier-Stokes problem the fixed point defect
correction (Algorithm is used.

e For the solution of Stokes or Oseen problems we mostly use the inexact
Uzawa method (Algorithm or the GCR method. As Schur comple-
ment preconditioner we often use the method given in (7.16) (and the
variant described in Remark 7.7/ for the XFEM case, respectively) or the
minimal commutator preconditioner, cf. Remark

e For the solution of systems with the matrix T" we usually use appropriate
Krylov subspace methods preconditioned by SSOR or Jacobi. In the
case that T is symmetric positive definite we use the CG method. For
non-symmetric 7" we use the GMRES or BiCGSTAB method.

The solvers are nested on a hierarchy of levels, cf. Figure [7.2, for example
the Navier-Stokes fixed point loop requires the Oseen solver which requires a
Krylov subspace method for systems with the matrix T involving an SSOR
preconditioner. In our implementation we used a template mechanism to
enable the plug-in of different solvers in an easy way, cf. Section [9.1.7 for
more details.

Each level of the solver hierarchy introduces new parameters which have to
be set. This huge set of parameters d1,...,Jd,, gives rise to the problem of
how to choose them appropriately to get a convergent and efficient overall
method. Up to now this choice depends more or less on the experience of the
user. This undesirable procedure should be improved in future by studying
dependencies between different parameters. This should lead to a strategy
with a reduced number m’ < m of user-chosen parameters 41, ..., d,,/, which
then automatically induce the values of the remaining parameters.
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Figure 7.2.: The nestedness of time loop, coupling loop and iterative solvers shows
the complexity of two-phase flow simulations.



8. Maintenance of the level set
function

8.1. Reparametrization

During the evolution of the level set function ¢, which is driven by the ve-
locity field u, the property of ¢ being close to a (signed) distance function is
lost. This affects the refinement of the interfacial region and the treatment
of the discontinuous material properties if represented by a smoothed jump
(cf. Section [4.1.2). Moreover, the advection of ¢ becomes less accurate in
regions where ¢ is very steep and the problem of finding the zero level set
of ¢ becomes ill-conditioned in regions where ¢ is very flat. Therefore, a
reparametrization technique is used to reestablish the signed distance func-
tion property. Important issues related to this reparametrization of ¢ are the
following:

1. The zero level of ¢ should be preserved.
2. The norm of the gradient of ¢ should be close to one: ||Vy| =~ 1.

3. The reparametrization can be used to smooth ¢ (close to the interface)
and thus stabilize the evolution of the level set function.

Different reparametrization techniques are known in the literature, cf. [Set96b,
Set99, HT05|. The most often used method is based on a pseudo time stepping
scheme for the Eikonal equation

Vo] = 1.

Let ¢y be a given approximation of the level set function, and consider the
following first order partial differential equation for ¢ = ¥(x, 7):

Z—f = Salen)A = [VY[), 720, 2€9Q (8.1)
1/1(5570) =  ©h;

127
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with

5a(()= ————, CeR,

where « is a regularization parameter (0 < o < 1). The function S, is a
smoothed sign function. It keeps the zero level invariant (due to S, (0) = 0)
and guarantees that the solution converges for 7 — oo to a solution of the
Eikonal equation. Thus, for sufficiently large 74 > 0 one can use the function
(-, T¢) as a reparametrization of ¢y,.

The equation (8.1) can be reformulated in the more convenient form

Z_lf +w() - Vi) = Solon)  with w(vp) := Sa(en)

VY
V|l

The equation (8.2) can be solved numerically and then yields a reparametriza-
tion of ¢p. To stabilize the evolution a diffusion term can be added to the
equation. For a further discussion of this reparametrization method we refer
to the literature [SSO94, SF99, TE00|. We implemented such a method, but
encountered the following two difficulties with this approach. Firstly, the algo-
rithm is difficult to control because several parameters have to be chosen: the
regularization parameter «, the diffusion parameter, the size of the considered
time interval 77, the time step in the evolution. Secondly, and more impor-
tant, in our simulations the zero level was changed too much. This is due to
the fact that the invariance of the zero level only applies to the continuous
case, but does not hold true for the discrete solution .

We then considered alternative reparametrization methods. A simple variant
of the Fast Marching method (cf. [KS98| Set96al) turned out to perform much
better in our numerical simulations. In [HT05] a survey and comparison of
different reparametrization methods is given, where also the Fast Marching
method is deemed the most accurate and efficient one. The algorithm is
described in the following.

Let there be given a continuous piecewise quadratic function ¢j € Vj, corre-
sponding to the triangulation 7;,. We introduce some notation. The regular
refinement of 7;, is denoted by 7,/ := {T" € K(T') : T € 75, }. The collection
of all vertices in 7; is denoted by V. Note that ¢, is uniquely determined
by its values on V. For T € 7;, V(T) is the set of the four vertices of T.
Furthermore, for v € V, T (v) is the set of all tetrahedra which have v as a
vertex:

T(w)={T €T :veV(T)}.
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Finally, for v € V, M (v) is the collection of all neighboring vertices of v (i.e.,
for each w € N'(v) there is an edge in 7, connecting v and w):

Nw) = |J v@)|\{}.

TeT (v)

We define
Tr:={T €7, : meas2(TNT) >0}

the collection of tetrahedra which intersect the interface. Let I', be the dis-
crete approximation of the interface as defined in (5.9). Remind that the
interface approximation I'j, consists of planar segments I'p,

{ I'r:=T,NT is a planar segment, for all T' € 7r, (8.3)

and Fh = UTETF FT.

Remember that the planar segment I'r in is either a triangle or a quadri-
lateral.

The algorithm splits up into two phases: The initialization phase, where only
the values on vertices close to the interface are changed, and the extension

phase, where the information is propagated from the interface to the vertices
in the far field.

We first explain the initialization phase of the reparametrization algorithm.
We define the set of vertices corresponding to 7r:

Vr={veV(T): TeTr}. (8.4)

For each v € Vr we define a discrete (approximate) distance function d(v) as
follows. For v € Vr and T € T (v) N 7r let I'y be the plane segment as in
(8.3), with vertices denoted by Q1,...,Qm, where m = 3 or 4. Let W be the
plane in R3 which contains the planar segment 't and Py : R® — W the
orthogonal projection on W. For v € Vr and T € 7 (v) N 7r we define

dr(v) lv = Pwol| if PyveT,
v) =
' mini<j<m ||[v — Qj|| otherwise,

cf. Figure as an illustration. The quantity dr(v) is a measure for the
distance between v and I'p. Note that if Pyov € T holds, then dp(v) is
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Figure 8.1.: Evaluation of dr in the initialization phase for two vertices v1, v by
orthogonal projection on W: here dr(vi) = ||v1 — Pwui|| and dr(v2) = ||v2 — Q|

precisely this distance. Since I'j, consists of piecewise planar segments 'y for
T € Tt we define d(v) as an approximate distance between v and I}, by

d(v) == Te,]I_I(lql}I)lmTF dr(v) forv e Vp. (8.5)

After this initialization phase the grid function { (v, d(v)) : v € Vr} is an
approximate distance function from the interface I'j, for the vertices v € Vr.

The second phase of the reparametrization algorithm consists of a loop in
which the approximate distance function d is extended to neighbor vertices of
Vr and then to neighbors of neighbors, etc. To explain this more precisely we
introduce two sets of vertices.

The first set V C V comprises the vertices where the values of the distance
functiond: V — R have already been computed. Right after the initialization
phase we thus have V = Vp. We call V the finalized set.

The second one is the set of so-called active vertices A C V\ V, which consists
of vertices v ¢ V that have a neighboring vertex in V:

A={veV\V: Nu)nV#0}. (8.6)

A is called active set. So after the initialization phase, the initial active set
Ay is given by
Ag:={veV\Vr: No)nVr £0}. (8.7)

For v € A we define an approximate distance function in a similar way as
in the initialization phase. Since its values may change if the finalized and
active set are updated, we denote it by d : A — R to emphasize its tentative
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character in contrast to d, which will be the final outcome of the algorithm.
The construction of d is described in the following.

Take v € A and T € T (v) with V(T) NV # 0. Note that such a T' exists if A
is nonempty. There are three possible cases, namely [V(T) NV € {1,2,3}.

o If V(T)N V| =1, say V(T) NV = {w}, we define

dp(v) :=d(w) + [|Jv — w]|.

e For the other two cases, i.e., V(T) NV = {w;}1<i<m with m = 2 or
m = 3, we use an orthogonal projection as in the initialization phase.
Let W be the line (plane) in R?® through the points wy,ws (,ws3) and
Py : R3 — W the orthogonal projection on W. We define

d(Pwv) + |lv — Pw| it PwoveT,

dr(v) = (8.8)
ming<j<m |:d('LUj) + ||lv —wj||| otherwise.

The value d(Pwv) in (8.8) is determined by linear interpolation of the
known values d(w;), 1 < j < m. This is well-defined as w; € V for

1 < j < m and d is already defined on V. Note that Pyv € T is
satisfied if all faces of T are acute triangles.

The tentative approximate distance function d : A — R at active vertices
v € A is defined by

d(v) := min{dr(v) : T € T (v) with V(T) NV £ 0} (8.9)

The complete reparametrization method is as follows:

Algorithm 8.1 (Fast Marching method)
1. Initialization: construct Vr and compute d(Vr) as in (8.4), (8.5).

2. Construct initial active set A and compute d(Ap) as in (8.7), (8.9).
3. Initialize finalized set V := Vr and active set A := Ap.

e

. While A # (), repeat the following steps:
a) Determine v € A such that J(vmin) = mingye 4 cZ(v).
b) Update finalized set V:=VYu {Umin } and define d(vmin) = d(vmin).
c) Update active set A := (AUN)\ {vmin} where N := N (vmin) \ V.
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d) (Re)compute d(v) for v € N.
5. For all v € V, set d(v) := sign(pn(v)) - d(v).

After this reparametrization we have ¥ = V and a grid function d(v), v € V,
which uniquely determines a continuous piecewise quadratic function @, € V},
on the triangulation 7;,. This ¢y, is the reparametrization of ¢p. For ¢ one
can construct an approximate zero level set T, as described in Section [5.1|
The reparametrization procedure guarantees I C UTGT]" T. However, in

general we have IV # T'p, i.e., the discrete zero level set may be slightly
changed. Since ¢y, is close to a signed distance function, the variations in
V¢, are usually smaller than the variations in V. Due to this property,
the reparametrization method has a stabilizing effect.

Remark 8.2 (Complexity)

The number of arithmetic operations for the initialization phase (steps 1-3 in
Algorithm [8.1) is O(|Vr| + |Ag|). For the extension phase (steps 4-5 in Algo-
rithm [8.1) the complexity is governed by step 4.a). The search for vy, € A
has linear complexity in our implementation, but could be implemented more
efficiently to gain O(log|.A|) complexity which is the optimal one. As the
steps in 4.a)-4.b) are repeated Ny := |V \ Vr| times, the overall complexity of
the extension phase is O(N%) in our implementation and could be improved
to be O(Ny log Ny,). Although this bound O(N3) indicates suboptimal com-
plexity (compared to O(Ny log Ny)), in our simulations the time needed for
the reparametrization is negligible compared to the computing times for dis-
cretization and iterative solution of the Navier-Stokes equations. o

8.2. Conservation of mass

The temporal and spatial discretization of the level set equation does not
conserve mass. The same holds for the reparametrization of the level set
function, cf. [Hup06] where this topic is investigated further. This loss of
mass is reduced if the grid is refined. Such finer grids, however, result in higher
computational costs. Therefore we introduce another strategy to compensate
for the mass loss.

After each time step, we shift the interface in normal direction such that the
volume of €21 at current time is the same as at time ¢t = ty. To realize this
we exploit the fact that the level set function is close to a signed distance
function. In order to shift the interface over a distance § in outward normal
direction, we only have to subtract ¢ from the level set function.
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Let V(¢) := meass{x € Q: ¢(z) < 0} denote the volume of 2y corresponding
to a level set function ¢ and let ¢, be the discrete level set function at a given
time. We have to find d € R such that

V(g — 6) — meass (€1 (0)) = 0

holds. In order to keep the number of evaluations of V' low, we use a method
with a high rate of convergence, namely the Anderson-Bjorck method [AB73],

new

to solve this equation. We then set ¢}V := ¢}, — ¢ and discard ¢p,.

Note that this strategy only works if {2 consists of a single component. If
there are multiple components, mass must be preserved for each of them. In
this case the algorithm can be modified to shift ¢} only locally. Discontinu-
ities that may occur in the level set function can be removed by a subsequent
reparametrization step. In the case of topology changes more elaborate tech-
niques have to be applied which are based on local mass conservation. An
example is the paper [PSVWO05], where the level set method is combined with
VOF techniques to improve local mass conservation.

Finally note that the shifting of the level set function to obtain a better mass
conservation introduces a new source of discretization errors.
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9. Software package DROPS

The software package DROPS is developed within the framework of the Col-
laborative Research Center SFB 540 [SFB| where the goal of the involved
mathematical projects (B4 and C7) is two-fold: on the one hand we want to
develop and improve numerical methods for the simulation of two-phase flow
problems and on the other hand the aim is to simulate realistic two-phase
systems which are of interest for the project partners from the engineering
department.

The development, of DROPS is mainly conducted by the Chair of Numerical
Mathematics, RWTH Aachen University, Germany. Due to the complexity of
two-phase flow problems we need the ability to perform parallel computations.
In a tight cooperation the parallelization of DROPS is realized at the Chair of
Scientific Computing, RWTH Aachen University. The code is developed by a
couple of people, where the current core development team consists of three
persons, Jorg Grande, Oliver Fortmeier and the author of this thesis.

The DROPS code is written in C++. Especially the implementation of the
iterative solvers heavily uses the object-oriented and template programming
features of C-++1. Some further information including a gallery of simulation
examples can be found on the DROPS website [DRO].

Section 9.1 describes some fundamental concepts and the most important
classes of DROPS. In Section we give a brief introduction to the parallel
version.

9.1. Fundamental concepts and data structures

In this section important data structures and algorithms implemented in
DROPS are presented. Figure[9.1] gives an overview of the main components

I Thus our code is also used by some compiler manufacturers as a benchmark test for their
C++ compilers (e.g., SUN, Microsoft).
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Figure 9.1.: Overview of modules and structure of DROPS.
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of the software. The different modules are arranged in the diagram such that
they obey two levels of structuring, namely in vertical and horizontal direction.

The vertical structure of the figure distinguishes between input and output
routines, data structures and algorithms. While the different methods to bring
input in and get output from the DROPS kernel are described in Section[9.1.8,
we decided to present algorithms in conjunction with related data structures.
This corresponds to the object-oriented perspective of C++ classes, where
data structures (as data members) and functionality (as member functions)
are combined with each other.

In a horizontal structure Figure[9.1 classifies the different modules into the
categories ‘geometry’and ‘numerics’, emphasizing the fact that we tried to
decouple geometrical data such as the grid from numerical data such as vectors
and matrices. Some tasks, however, require geometrical as well as numerical
information and are therefore located in the middle column. One example are
the discretization routines for setting up stiffness matrices, where in a loop
over all tetrahedra the corresponding matrix entries are accumulated. The
geometrical and numerical data structures are described in Sections[9.1.1 and

respectively.

9.1.1. Geometrical objects: multilevel triangulation and
simplices

In this section we discuss the data structures that represent geometrical ob-
jects such as vertices, edges, faces, tetrahedra, the boundary and the multi-
level grid. The corresponding data structures are called VertexCL, EdgeCL,
FaceCL, TetraCL, BoundaryCL and MultiGridCL, respectively. Note that all
C++ classes in DROPS have a suffix CL to distinguish data type identifiers
from object identifiers.

Boundary and boundary segments

We assume that the boundary ¥ = 0€) is partitioned into elementary boundary
segments ¥;, j = 0,..., Ny — 1. Note that here we used a C style number-
ing starting with zero. To give an example, if €2 is a cube, then ¥ can be
partitioned into Ny, = 6 boundary segments X, ..., 35, cf. Figure[9.2l Each
boundary segment is represented by a BndSegCL object. Up to now DROPS
can only handle boundary segments which are piecewise planar. The class
BoundaryCL contains an array of all BndSegCL objects.
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Y
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Figure 9.2.: A cube and its 6 boundary segments 3o, ..., Xs.
Simplices

In the following we describe the representation of the simplices.

VertexCL. Each vertex V stores its coordinates xi € R3 as a Point3DCL

object. If V is located on the boundary ¥, it stores a list of BndPointCL
objects, each containing the index j of the boundary segment ¥; with
xy € X; and the 2D coordinate in the local reference frame. Note that
V may be located on multiple boundary segments. For the example in
Figure a vertex may be located on up to 3 boundary segments.

EdgeCL. Each edge E is linked to the two vertices V;, Vo which are connected

by E. If the edge is further refined into two sub-edges F1, E>, then there
is also a link to the midpoint vertex V,,. Note that F; = V1V, and
Ey =V, V5. If E is located on the boundary, then it stores the indices j
of the boundary segments with {xv,,xv,} C X;. Note that an edge can
be located on at most 2 boundary segments.

FaceCL. Each face F is linked to its neighboring tetrahedra. For a boundary

face the index j of the corresponding unique boundary segment ; is
stored. Note that a face F' may possess up to 4 neighboring tetrahedra.
This is the case if F' is an inner face connecting two tetrahedra 77 and
Ty which are irregularly refined such that F' is not subdivided by the
corresponding green refinement rule. Then there are two green children
T € K(T1) and T4 € K(Tz) also sharing F as a common face.

TetraCL. Each tetrahedron T is linked to its 4 vertices, 6 edges and 4 faces.

If 4(T) > 0, i.e.,, T is not stored in the initial triangulation 7p, then
T is linked to its parent tetrahedron. If T is refined, then it is also
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linked to its children 77 € K(T). T stores the integer values mark(7T)
(the refinement mark) and status(T") (the actual refinement rule), cf.

Section

Furthermore, each simplex class contains an UnknownHandleCL object which
stores the indices of unknowns belonging to this simplex, cf. Section [9.1.3|

Multilevel triangulation

The class MultiGridCL represents a multilevel triangulation M = (7o, ..., 7y),
cf. Definition The data structure is based on the corresponding hierarchi-
cal decomposition H = (Go,...,Gs), cf. Definition [3.7. That means that the
tetrahedra are stored in J + 1 lists, each one for the hierarchical surplus G; of
a different level. The vertices, edges and faces are stored in a similar manner,
where the level of such a sub-simplex S is defined as

£(S) :=min{ ¢(T) : T € H contains S as sub-simplex }.

Furthermore, MultiGridCL contains a BoundaryCL object storing all boundary
segments.

The MultiGridCL constructor takes a MGBuilderCL object as input argument
which creates the initial triangulation 75. MGBuilderCL serves as an abstract
base class from which specific classes can be derived. For instance, the derived
class BrickBuilderCL can be used to generate an initial triangulation of a
cuboid-shaped domain.

The member function Refine() calls the refinement algorithm (cf. Algo-
rithm described in Section It expects that the tetrahedra T € T
in the input multilevel triangulation are marked for refinement or for coarsen-
ing. This can be achieved by calling the member functions SetRegRefMark ()
or SetRemoveMark () of the corresponding TetraCL objects.

There are different kinds of iterators to access the simplices in the multilevel
triangulation. The MultiGridCL member functions GetTriangTetraBegin (L)
and GetTriangTetraEnd (L) return iterators to cycle through all tetrahedra

TeT

of a certain triangulation. Similarly the member functions GetAllTetra-
Begin(L) and GetAllTetraEnd(L) can be used to iterate over all

L
T e U gj,
§=0
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where the level ¢(T') of the iterated tetrahedra T is increasing from 0 to L.
Similar iterators exist for vertices, edges and faces as well.

The iterators are implemented such that a corresponding for loop can be
executed by multiple OpenMP threads in parallel [Ope|. This allows for faster
computations on shared memory machines. As the importance and availability
of multi-core architectures is growing nowadays and will grow further in the
future, this is a relevant advantage regarding computational efficiency.

9.1.2. Numerical objects: vectors and sparse matrices
Vectors

In DROPS there are two different type of vectors: SVectorCL for short vectors
with a handful of entries and VectorCL for vectors with a large number of
entries. Throughout this chapter we assume that indices always start with
the number zero (C style numbering).

SVectorCL<RowsN> is a template class with template parameter RowsN for
vectors x € R*¥Y with a fixed dimension RowsN. It is mostly used for storing
coordinates. For this purpose we defined the typedefs Point2DCL, Point3DCL
and BaryCoordCL which are identical to SVectorCL<2>, SVectorCL<3> and
SVectorCL<4>, respectively.

The data type VectorCL is used for storing vectors z € RY where N is large
and may differ from object to object. The type is defined as a typedef for
VectorBaseCL<double>. VectorBaseCL<RealT> is a template class for vec-
tors with entry type RealT and is an ancestor of std::valarray<RealT>.
Thus VectorCL derives the benefits of the efficient expression template mech-
anisms available for arithmetical operations involving valarray objects. By
setting a debug flag DebugNumericC range checking and other debug features
can be enabled which are switched off by default due to performance reasons.

Matrices
There are two different types of matrices in DROPS, SMatrixCL for small
matrices and MatrixCL for large sparse matrices.

The template class SMatrixCL<RowsN,ColsN> is used for small matrices M €
REowsNxColsl with fixed dimensions.
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Sparse matrices are stored in objects of the type SparseMatBaseCL<RealT>
where RealT indicates the type of the entries. For convenience, we introduced
a typedef MatrixCL for SparseMatBaseCL<double>.

We use the compressed row storage format (CSR) which is described in the fol-
lowing. For a sparse matrix with m rows and N non-zero entries, SparseMat-
BaseCL contains a vector RowBegin with m + 1 integer entries, a vector
ColIndex with N integer entries and a vector Val with N entries of type
RealT. For a row i the indices from RowBegin[i-1] to RowBegin[i]-1 indi-
cate the range in Val where the values of the non-zero entries are stored. The
column indices of the corresponding values are stored in ColIndex.

As it is a tedious task to compute the sparsity pattern stored in RowBegin and
ColIndex, we use an intermediate storage format called SparseMatBuilder-
CL<RealT> when setting up a new sparse matrix M. The SparseMatBuilderCL
first collects and accumulates all entries in a std: :map based data structure.
After that a call of the member function Build() automatically creates the
corresponding SparseMatBaseCL object M and deletes the maps afterwards.

As maps are often too memory consuming we use them only for initializing
M. When updating M in subsequent steps the sparsity pattern is reused
by default, i.e., access to SparseMatBuilderCL entries directly returns the
corresponding SparseMatBaseCL entries in Val. If the sparsity pattern should
not be reused (for example when the extended pressure space Ql}: changed
because the interface I' has moved) all matrix entries should be deleted by a
call to the member function clear () to force a complete initialization of the
matrix.

9.1.3. The link between grid and unknowns: indices

As mentioned before we decided to decouple the geometrical data (grid) from
the numerical data (matrices, vectors). This is advantageous, because then
the iterative solvers only have to deal with matrices and vectors but not with
the grid. As a matrix-vector multiplication does not require a loop over all grid
entities this substantially saves computational time. But for the interpretation
of a solution vector u it is necessary to know which vector entries are associated
with a certain vertex V, for example. Here the concept of indices comes into

play.



142 9. Software package DROPS

Index descriptions and numberings

For each finite element type used in a solution strategy there exists an associ-
ated index. An index 7 is described by an IdxDescCL object. It contains the
number of degrees of freedom (DoF) for each simplex type, ny,ng,ng, nr,
and the overall number of unknowns, N7. To give an example, a P;-index has
ny = 1 DoF per vertex (and ng = np = np = 0), an index for vector-valued
P,-FE has ny = ng = 3 DoFs for each vertex and edge (and ny = nyp = 0).

As a next step we have to create a numbering of all degrees of freedom which
belong to the index J, where degrees of freedom on Dirichlet boundaries are
omitted. This is done by a function CreateNumbering(...), which is usually
a member function of the applied problem class (cf. Section[9.1.4). By this we
also obtain the overall number of unknowns, N7, which is equal to the dimen-
sion of the vectors associated with (7. Thus at the end CreateNumbering(...)
sets the value N7 in the corresponding IdxDescCL object.

The numbering is stored by UnknownHandleCL objects contained in the cor-
responding VertexCL, EdgeCL, FaceCL and TetraCL objects. Note that for a
single simplex maybe multiple such numbers have to be stored, namely one
for each index or, in other words, one for each finite element type.

For an extended finite element space a call to UpdateXNumbering(...) aug-
ments the usual numbering, also called base numbering, by a numbering
for the extended degrees of freedom. These numbers are not stored in the
UnknownHandleCL objects, but in a separate ExtendedIdxCL object. It con-
tains a vector xidx € N7 where the entry xidx[j] either stores the number
of the extended DoF belonging to the base DoF j or it contains a flag that the
DoF j is not extended. Note that UpdateXNumbering(...) has to be called
each time the interface has moved to account for the changed extended DoFs.

Vector and matrix descriptions

A VecDescCL object contains a vector Data of type VectorCL and a pointer
RowIdx to the associated index of type IdxDescCL. Calling the member func-
tion SetIdx(idx) sets the pointer and resizes the vector to the right dimen-
sion. Similarly, a MatDescCL object contains a sparse matrix Data and point-
ers RowIdx and ColIdx to the associated row and column indices, respec-
tively. A call of the member function SetIdx(ridx,cidx) sets the pointers
and deletes all matrix entries. The right dimension of the matrix are set later
by SparseMatBuilderCL, cf. Section[9.1.2!
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9.1.4. Problem classes

There are several problem classes in DROPS representing different types of
partial differential equations. So far we have problem classes for the Poisson,
Stokes and Navier-Stokes problem (one-phase), the level-set equation and the
two-phase Stokes and Navier-Stokes problem. For example the class for the
two-phase Stokes problem is called InstatStokes2PhaseP2P1CL. All problem
classes are derived from a common base class ProblemCL which contains three
objects constituting a problem:

e the domain (2, given by a multilevel triangulation (MultiGridCL),

e the boundary conditions and boundary values, given by a BndDataT
object,

e the coefficients and right hand-side of the partial differential equation,
given by a CoeffT object.

BndDataT and CoeffT are template parameters of the template class ProblemCL
as their specific structure may vary among different problem types. Their
meaning is discussed in the subsequent sections.

A specific problem class usually contains the index descriptions of the applied
finite element types and several matrix and vector descriptions. Among the
member functions there are CreateNumbering(...) procedures for the in-
dices (cf. Section [9.1.3) and different Setup...(...) routines to compute
the matrices and the right-hand side vectors constituting the finite element
discretization.

Boundary data

The boundary data are described by a BndDataCL<BndValT> object. It con-
tains an array of BndSegDataCL<BndValT> objects, one for each boundary
segment 3;, cf. Section[9.1.11 Each BndSegDataCL object stores the boundary
condition and a function pointer for evaluating the corresponding boundary
values of type BndValT. The choice of the template parameter BndValT de-
pends on whether the boundary condition applies to a scalar (double) or
vector-valued (Point3DCL) quantity. The prescribed boundary condition of
type BndCondT can be one of

e DirBC, DirOBC for non-homogeneous and homogeneous Dirichlet bound-
ary conditions, respectively,
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e NatBC, NatOBC for non-homogeneous and homogeneous natural bound-
ary conditions, respectively,

e Per1BC, Per2BC for periodic boundary conditions denoting correspond-
ing boundaries.

WallBC and OutflowBC are alias names for DirOBC and NatOBC, respectively.

Coefficients

As an example to describe the classes representing the coefficients of a specific
partial differential equation we consider a scalar convection-diffusion problem
for the unknown function u = wu(x,t),

ut + v(x,t) - Vu —div(a(x,t)Vu) = f(x,1) in Q x [to,ty].

This type of problem is represented by the problem class InstatPoissonP1CL.
The corresponding PoissonCoeffCL contains the functions v(x,t), a(x,t) and
f(x,t) as static member functions which have to be implemented by the user.

For the two-phase flow problem (2.13) the corresponding coefficient class stores
quantities such as densities p; and dynamic viscosities p; of the phases ;,
i = 1,2, the surface tension coefficient 7 and the vector of gravitational accel-
eration g.

9.1.5. Useful tools for discretization

In the discretization procedures Setup. .. (...) of the problem classes several
sparse matrices representing the discrete differential operators and vectors for
the right-hand side have to be constructed. This is done by iterating over
all tetrahedra T € 7}, where for a single tetrahedron T' contributions to the
matrix and vector entries are computed. These contributions are integrals
over T and the integrands are functions which can be defined locally on T,
e. g., basis functions or gradients of basis functions.

Grid functions

For representing the integrands and computing the integrals over 7" we use
LocalP1CL and LocalP2CL objects (for linear and quadratic functions, re-
spectively) and quadrature rules Quad2CL, Quad5CL (exact for polynomials up
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to degree 2 or 5, respectively). All these classes have a template parame-
ter ValT for the function values and are derived from a common base class
GridFunctionCL<ValT,PointsN>. This class stores PointsN values of type
ValT which are associated to distinct nodes in a tetrahedron described by
barycentric coordinates (BaryCoordCL, cf. Section [9.1.2). For a LocalP1CL
object these nodes are the 4 vertices of the tetrahedron, for a LocalP2CL ob-
ject the 6 midpoints of the edges are added, cf. Figure[4.1. For the Quad...CL
objects the nodes are defined by the quadrature points of the corresponding
quadrature rule

Arithmetic operations such as +, -, *, / for GridFunctionCL objects are de-
fined pointwise. In the same way functions can be applied to GridFunctionCL
objects using the member function apply(...). Due to inheritance all this
functionality is also provided for the derived LocalP...CL and Quad...CL
classes. This is very useful when creating complex integrands like (u- Vv;) v;.

Several variants of assign(...) member functions enable the initialization of
the LocalP...CL and Quad. . .CL objects. Additionally, LocalP...CL objects
can be evaluated in an arbitrary point x € T given by its barycentric coor-
dinates. The Quad...CL objects have a member function quad(...) which
applies the quadrature rule and returns the result of the numerical integration.

Local numberings

A LocalNumbCL object is initialized with an index description of index 7,
the corresponding boundary data object and a tetrahedron T'. It collects the
numbering of the local degrees of freedom of T according to the index 7,
cf. Section If a degree of freedom is on a boundary it also provides
the associated boundary condition and the number j of the corresponding
boundary segment ¥;. Up to now LocalNumbCL can only be used for P, finite
elements.

Integration over interface patches or parts of a tetrahedron

An InterfacePatchCL object is initialized by a tetrahedron 7" and the level set
function ¢y, given by an P»-FE VecDescCL object. It extracts the LocalP2CL
object corresponding to ¢y, decides whether I',NT" # and provides information
about the sign (€ {4+, —,0}) of each degree of freedom.

The member function ComputeForChild(i) computes the planar interface
patch T'rw = T, NT” for the ith regular child 77 € K(T), 1 =0,...,7. T'p
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is represented by the coordinates of its vertices, which are given in terms of
barycentric coordinates with respect to the parent T'. Note that for the com-
putation of the patches the regular refinement of T is not really constructed
in the sense that geometrical data structures are changed.

After calling ComputeCutForChild (i) the member function quad(...) can
be used to compute the integral over the cut part 7/NQy or 7' NQs, where the
integrand is an arbitrary quadratic function f given by a LocalP2CL object.
The additional member function quadBothParts(...) provides the integrals
over both cut parts 7/ NQ,;, 7 =1, 2.

9.1.6. Time discretization and coupling

For the one-phase Stokes and Navier-Stokes problem the one-step theta-scheme
(cf. Section [6.1) is represented by the classes InstatStokesThetaSchemeCL
and InstatNavStokesThetaSchemeCL, respectively. Both classes have a tem-
plate parameter SolverT for the type of the solver used in each time step.
The computation of one time step is performed by the member function
DoStep(...).

For the two-phase Stokes and Navier-Stokes problem we have to consider a
coupled system for velocity u, pressure p and level set function ¢, cf. Sec-
tion[6.2l During the implementation it turned out that the coupling and time
discretization should be combined in one class and cannot be decoupled in
separate classes as they are closely connected to each other. However, the dif-
ferent coupling classes all have a similar structure, thus we decided to derive
them from a base class TimeDisc2PhaseCL which stores common data mem-
bers and defines a common abstract interface by means of virtual member
functions such as DoStep(...).

For the time discretization of the two-phase Navier-Stokes problem we imple-
mented the following classes:

e ThetaScheme2PhaseCL: coupled one-step theta-scheme as given in Algo-

rithm [6.12]

e LinThetaScheme2PhaseCL: linearized one-step theta-scheme, cf. (6.42)—
6.44),

e FracStep2PhaseCL: coupled fractional-step scheme, applies the Theta-
Scheme2PhaseCL for each macro time step, cf. Section
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e OpSplitting2PhaseCL: coupled fractional-step scheme with operator
splitting, cf. Section [6.1.4]

All these coupling classes have a template parameter SolverT controlling the
type of the iterative solver used in each time step. For the time discretization
of two-phase Stokes problems we decided to apply the corresponding classes
for the two-phase Navier-Stokes problems rather than create Stokes specific
time discretization classes. This avoids code duplication and enhances code
maintainability.

9.1.7. Iterative solvers and preconditioners

For the implementation of iterative solvers we tried to use a software design
that accounts for the nested hierarchy of the solution methods, cf. Figure[7.2.
For example, the Navier-Stokes fixed point loop requires an Oseen solver which
applies a Krylov subspace method involving some preconditioner. Bearing this
in mind we use a template mechanism to specify the inner solution compo-
nents as template parameters. On the one hand this enables an easy plug-in
of different solution components to test and compare reasonable combinations
of solvers available from the DROPS solver toolbox. On the other hand this
technique assures efficient code since the compiler can perform full code op-
timization for the template specialization which is known at the moment of
compilation.

Example 9.1
As an illustrative example for the template plug-in mechanism we give a piece
of code for the definition of a Stokes solver:

// preconditioner for upper left block preconditioner
typedef SSORPcCL ULPcPcT;
ULPcPcT ULPcPc(...);

// preconditioner for upper left block
typedef PCGSolverCL<ULPcPcT> ULSolverT;
ULSolverT ULsolver( ULPcPc, ...);
typedef SolverAsPreCL<ULSolverT> ULPcT;
ULPcT ULPc( ULsolver);

// Schur complement preconditioner
typedef ISPreCL SchurPcT;
SchurPcT SchurPc( ...);

// Stokes solver
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typedef InexactUzawaCL<ULPcT, SchurPcT> StokesSolverT;
StokesSolverT StokesSolver( ULPc, SchurPc, ...);

Hence, the object StokesSolver represents an inexact Uzawa method. For
Qr we chose some iterations of an SSOR-preconditioned CG method (ULPc)
applied to the upper left block of the saddle point matrix. The Schur comple-
ment preconditioner Qg is given by SchurPc. o

We emphasize that there is a conceptual difference between solver objects and
preconditioner objects. Solver classes are derived from a common base class
SolverBaseCL storing the tolerance and the maximum number of iterations,
i.e., the stopping criterion, as well as the norm of the residual and number
of iterations used after the last execution of the solver. Each solver class
comprises a member function Solve(...) calling the routine of the iterative
solver for a given initial guess. In contrast, each preconditioner class contains
the analogon Apply(...) calling the preconditioner for the initial guess 0.

In the following we list most of the solvers and preconditioners available from
the DROPS solver toolbox.

Solvers

Navier-Stokes solvers, cf. Section[7.1.
e FixedPtDefectCorrCL: Algorithm 7.1 with step length w,, =1,

e AdaptFixedPtDefectCorrCL: Algorithm with step length w,, as in
.

Both are template classes where the template parameter SolverT determines
the type of the Oseen solver. The latter is applied to solve the linearized
problems inside the fixed point loop.
Oseen solvers, cf. Section[7.2.

e SchurSolverCL: Algorithm [7.3]

e PSchurSolverCL: Algorithm [7.3 with Schur complement precondition-
ing,

e UzawaCL: a variant of the Uzawa algorithm described in [BPV97],

e InexactUzawaCL: Algorithm

e PMResSPCL: preconditioned MINRES solver for the Stokes problem.
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Some of the classes provide template parameters ULPcT, SchurPcT to deter-
mine the type of the preconditioners Qr, Qg, for the upper left block T of K
and the Schur complement S, respectively.

For the application of a general Krylov subspace method to the saddle point
matrix K one can use the class BlockMatrixSolverCL<SolverT> where the
template parameter SolverT specifies the type of the Krylov solver.

Krylov subspace methods
e CGSolverCL, PCGSolverCL: CG method and preconditioned variant,

e MResSolverCL, PMResSolverCL: MINRES method and preconditioned
variant,

e GMResSolverCL, GMResRSolverCL: GMRES method and GMRES-Re-
cursive method with left or right preconditioning,

e BiCGStabSolverCL: preconditioned BiICGSTAB method,
e GCRSolverCL: preconditioned GCR method.

The classes representing preconditioned Krylov subspace methods have a tem-
plate parameter PcT designating the type of the preconditioner.

Multigrid method

The MGSolverBaseCL represents a multigrid solver (V-cycle) with a fixed num-
ber of smoothing steps. There are two template parameters SmootherT and
SolverT which control the type of the smoother and the coarse grid solver,
respectively. The multigrid method is special in the sense that it requires a
hierarchy of linear systems

Az, = by, (=0,1,...,L
and prolongations
PVt VL =1, L,

to interpolate from level £ — 1 to the finer level £. Due to the nestedness of the
multilevel triangulation M the hierarchy of finite element spaces is nested,
i.e., Vfl_l - VfL, hence the prolongations are defined in the canonical way.
For each level the corresponding stiffness and prolongation matrices Ay, Py
and right-hand side vector b, are stored in a MGLevelDataCL object. The
corresponding restriction matrices are given by R, := PJ and don’t have to
be stored separately. The hierarchy of matrices and vectors is represented by
the data structure MGDataCL which is simply a list of MGLevelDataCL objects.
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Preconditioners

The DROPS solver toolbox comprises the preconditioner classes given in the
following lists. For a discussion of the preconditioners we refer to Section[7.2.3]

Matriz-based preconditioners
e JACPcCL: one step of the Jacobi preconditioner,

e GSPcCL, SGSPcCL: one step of the Gauss-Seidel or symmetric Gauss-
Seidel preconditioner,

e SSORPcCL, MultiSSORPcCL: one or multiple steps of the SSOR precon-
ditioner,

e DummyPcCL: no preconditioning

For most of these preconditioners there exists a variant which can be used as
smoother for the multigrid solver.

The wrapper class SolverAsPreCL enables the use of a solver object as a
preconditioner. That means that the Apply(...) member function of the
wrapper class calls the Solve(...) member function of the solver class with
initial guess zero. This mechanism is used in Example[9.1]in the definition
of the preconditioner for the upper left block, ULPc, which wraps the solver
object ULsolver.

Schur complement preconditioners Qg

e ISPreCL: the Schur complement preconditioner (7.16) where Mu_l and
A;l are replaced by one step of the SSOR preconditioner applied to the
corresponding pressure matrices,

e ISNonlinearPreCL: the same Schur complement preconditioner, but
with M ;' and A;' replaced by some iterations of a Krylov subspace
method which can be chosen by means of a template argument,

e ISBBTPreCL: the variant of the Schur complement preconditioner (7.16)
described in Remark[7.7, usually applied in case of an extended pressure
space,

e MinCommPreCL: the minimal commutator preconditioner for Oseen
problems described in Remark [7.8]

The DiagBlockPreCLis used in conjunction with solvers of type BlockMatrix-
SolverCL. It combines a preconditioner Q7 for the upper left block with a
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preconditioner Qg for the Schur complement yielding the diagonal block pre-
conditioner Qg defined in (7.11).

9.1.8. Input and output

In this section we describe input and output interfaces for different types of
data.

Numerical data

Vectors and sparse matrices can be saved to and restored from files by using
the input and output stream operators, >> and <<, implemented for VectorCL
and MatrixCL objects. The matrix format can be read by MATLAB [Mat]
which is very useful, e.g., for computing condition numbers or the spectrum
of a matrix.

Geometrical data

The initial triangulation 7y can be read from a mesh file generated with
the mesh generator GAMBIT [Gam]. To construct the corresponding mul-
tilevel triangulation a ReadMeshBuilderCL object containing the mesh file
name is passed to the constructor of the MultiGridCL object. Here the
concept of the MGBuilderCL class is applied, cf. Section [9.1.1, from which
ReadMeshBuilderCL is derived. Other input file formats can be implemented
by adding further ancestors of MGBuilderCL.

For the input and output of a hierarchy of triangulations M = (Tp,...,7;) we
use a self-defined file format. For saving a MultiGridCL object representing a
multilevel triangulation we use a software technique called serialization. For
this reason the class representing this task is called MGSerializationCL. The
deserialization is done by the class FileBuilderCL, which is an ancestor of
MGBuilderCL and is passed to the constructor of MultiGridCL. It reads the
files written out before by a MGSerializationCL object and recreates the
corresponding MultiGridCL object.

In this way, a cancelled simulation run can be restarted from the last time
step where a serialized multilevel triangulation was saved to the file system.
In a first step the geometrical data is deserialized from the file system using
the class FileBuilderCL. After that the vectors representing the numerical
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solutions are restored by means of the class ReadEnsightP2S0l1CL, see the
subsequent section.

Visualization

For 3D visualization purposes we mainly use the software package Ensight
[Ens]. The class EnsightP2Sol0utCL writes out the geometrical information
(tetrahedra and coordinates of the vertices) and the numerical solutions (uy,
p, ¢ evaluated in all P, degrees of freedom) using a specific Ensight file format.
This format can also be read by other visualization packages such as ParaView
[Para].

The class ReadEnsightP2SolCL restores the vectors u, p and ¢ from the files
written out by the class EnsightP2S010utCL. However, this only works prop-
erly if the multilevel triangulations at the time of storing and restoring are
the same.

There are interfaces to some other visualization tools as well.

e GeomMGOutCL, GeomSolOutCL for visualization of geometry and numeri-
cal solution with Geomview [Geo],

e TecPlotSol0utCL, TecPlot2DSol0utCL for visualization of geometry

and numerical solution (in 3D or on a 2D cut plane, respectively) with
TecPlot [Tec],

e MapleMGOutCL, MapleSol0OutCL for visualization of geometry and nu-
merical solution with Maple [Map].

9.2. Parallelization

For the simulation of two-phase flow problems the computational complexity
is very high and thus the use of parallel machines is of great importance. In
this section we will only consider a parallelization for distributed memory ma-
chines by means of a message passing interface (MPI [Mes94, MPI|). Shared
memory parallelization by means of OpenMP [Ope] has also been applied to
some parts of DROPS, cf. [TSaM™05] for a description of the parallelized
routines and some benchmark computations. Both parallelization concepts
can be combined when using multi-core processors which are connected by
a high-speed network. For the parallelization of DROPS we pursue such a
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hybrid parallelization approach due to the growing importance of multi-core
architectures.

In Section [9.2.1 we present a data distribution format for the geometrical
data and, based on this, we also derive a distribution format for the numerical
data. In Definition[9.2 below the geometrical data distribution format will be
made mathematically precise by a formal specification of a so-called admissible
hierarchical decomposition. This data distribution format is such that the
following holds:

1. Let T' € Gy be an element from the hierarchical surplus on level k, cf.
Definition [3.7. Then T is stored on one processor, say p, as a so-called
master element. In certain cases (explained below) a ghost copy of T is
stored on one other processor, say gq.

2. The children of T' (if they exist) are all stored as masters either on
processor p or, if T has a ghost copy, on processor q. For T' € G, k > 0,
the parent of T" or a ghost copy of it is stored on the same processor p
where T is stored as master.

For the multilevel refinement algorithm a crucial point is that for a tetrahedron
T one needs information about all children of T, cf. Section [3.2.3. Due to
property 2 this information is available on the local processor (p or q) without
communication. The first property shows that in a certain sense the overlap
of tetrahedra is small.

In a parallel run of a simulation the computational load has to be distributed
uniformly among the processors. So in practice an adaptive finite element
solver has to be combined with dynamic load balancing and data migration
between the processors. This is the topic of Section [9.2.2]

The main results concerning the admissible hierarchical decomposition, the
parallel multilevel refinement method and the load balancing strategy can be
summarized as follows:

e An admissible hierarchical decomposition has the desirable properties 1
(small storage overhead) and 2 (data locality) from above. This result
is given in Section[9.2.1.

e The application of the parallel refinement algorithm to an admissible
hierarchical decomposition is well-defined and results in an admissible
hierarchical decomposition. This is proved in [GRO5].

e Given an admissible hierarchical decomposition one can apply a suit-
able load balancing and data migration algorithm such that after data
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migration one still has an admissible hierarchical decomposition. We
comment on this in Section

9.2.1. Data distribution
Distribution of geometrical data: admissable hierarchical decomposition

Let the sequence M = (7y,...,7;) of triangulations be a multilevel trian-
gulation and H = (Go,...,Gs) the corresponding hierarchical decomposition.
In this section we introduce a particular format for the distribution of the
tetrahedra in H among processors on a parallel machine. We assume that the
processors are numbered by 1,..., P.

For the set of elements in the hierarchical surplus on level k£ that are stored
on processor p we introduce the notation

Gr(p) :={T € Gy : T is stored on processor p }

and we define

H(p) :== (Go(P),---,9(p))-
Note that in general H(p) is not a hierarchical decomposition (in the sense of
Definition [3.7). The sequence

H=(HQ),...,H(P)) (9.1)
is called a distributed hierarchical decomposition (corresponding to H).

In general the intersection G (p) N Gi(q), p # ¢, may be nonempty. Note that
such an overlapping distribution of the elements is necessary, due to the fact
that parents and children are linked by pointers. Consider, for example, the
situation depicted in Figure where a parent T and its child 77 € K(T)
are stored on different processors, say 1 and 2. Since pointers from one local
memory to another are not allowed in a distributed memory setting, we have
to use a copy to realize this pointer. One could store a copy of T" on processor 2
to represent the link between T" and T” as a pointer on processor g. If one does
not allow such ghost copies, all ancestors and descendants of a tetrahedron
must be on the same processor. This would cause very coarse data granularity,
poor load balancing and hence low parallel efficiency.

For each level & and processor p we introduce a set of master elements,
Mar(p) C Gi(p), and a set of ghost elements, Ghi(p) C Gi(p). In the for-
mulation of the conditions below we use the two conventions K(T) := § if
status(7) = NoRef and Ma ;1 (p) := 0.
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Figure 9.3.: Ghost elements are required to represent links between parents and
their children as pointers across memory boundaries are not allowed for distributed
memory machines. In the depicted example the parent 7' is stored on processor P»
as a ghost to represent the link to its children K(T).

We now formalize the conditions on data distribution as follows.

Definition 9.2 (Admissible hierarchical decomposition)
The distributed hierarchical decomposition H is called an admzissible hierarchi-
cal decomposition if for all k = 1,..., J the following conditions are fulfilled:

(A1)

(A3)

Partitioning of Gi(p): The sets of masters and ghosts form a disjoint
partitioning of G (p):

Vp Mag(p) UGhg(p) = Ge(p) and Mag(p) N Ghi(p) =0

Existence: Every element from Gy is represented as a master element
on level k:

P
Gr = | Max(p)

p=1

Uniqueness: Every element from Gy is represented by at most one
master element on level k:

Vp1,p2: May(p1) N Mag(p2) # 0 : p1 = po

Child—parent locality: A child master element and its parent (as
master or ghost) are stored on the same processor:

Vp VT €G, VT'e K(T): T" € Mag41(p) : T € Gi(p)
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(A5) Ghosts are parents: Ghost elements always have children:

Vp VT € Ghg(p): K(T)#0

(A6) Ghost—children locality: A ghost element and its children are stored
on the same processor:

Vp VT € th(p) : ’C(T) C Mak;Jrl(p) o

Remark 9.3

Consider a consistent initial triangulation 7o = Gy with a non-overlapping
distribution of the tetrahedra: Go(p) N Go(q) = 0 for all p # ¢. In this case
all tetrahedra can be stored as masters and there are no ghosts. Then the
distributed hierarchical decomposition H = ((Go(1)), ..., (Go(P))) is obviously
admissible. o

Two elementary results are given in the following lemma.

Lemma 9.4
Let H as in (9.1) be a distributed hierarchical decomposition. The following
holds:

1. If the conditions (A3), (A5) and (A6) are satisfied then for any element
from Gy, there is at most one corresponding ghost element:

VT €Gr Vp.q: T € Ghi(p) NGhy(q) : p=g¢

2. If the conditions (A1), (A2), (A3), (A4) and (A6) are satisfied then all
children of a parent are stored as master elements on one processor:

VT e€G, dp: IC(T) C I\/Iak+1(p)
Proof. Given in [GRO5|. O

In [GRO5] a parallel version of Algorithm [3.11]is presented which is based
on an admissible hierarchical decomposition and is suitable for distributed
memory machines. In our implementation we use the DDD package [DDD]
for the management of the distributed tetrahedra, faces, edges and vertices.
For a given input-multilevel triangulation the parallel method ParRefinement
produces the same output-multilevel triangulation as the serial method Ser-
Refinement. In this sense the “computational part” of the algorithm is not
changed. It is proved that the application of the parallel refinement algorithm
to an admissible hierarchical decomposition is well-defined and results in an
admissible hierarchical decomposition.
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Remark 9.5

Let T € Mag(p) be a parent master element. From the second result in
Lemma and (A4) it follows that either all children are masters on the
same processor p as T', or they are masters on some other processor q. In the
latter case, the element T has a corresponding ghost element on processor g.
Due to this property, in the parallel refinement algorithm we use the strategy:

e If a parent tetrahedron T has a ghost copy then operations that involve
children of T are performed on the processor on which the ghost and
the children are stored.

From condition (A4) it follows that a child master element has its parent (as
ghost or as master) on the same processor. Therefore we use the strategy:

e Operations that involve the parent of T" are performed on the processor
on which the master element of T and its parent are stored.

The first result in Lemma[9.4 shows that every T' € H has at most one ghost
copy. Moreover, due to (A5) all leaves (T € 7;) have no ghost copies. In this
sense the overlap of tetrahedra between the processors is small. o

The main differences of ParRefinement compared to the serial version Ser-
Refinement (Algorithm [3.11) are the following;:

o After the call of DetermineMarks(Gy) in step (1) of phase I the edge
refinement patterns have to be communicated to keep them consistent
on all processors.

o If simplices are deleted, they have to be logged off from DDD.

o If new simplices are created, they have to be logged in to DDD. Ad-
ditionally, simplices on processor boundaries have to be identified with
each other.

e After phase IT the maximum number of levels has to be determined and
communicated among the processors.

Distribution of numerical data

Let z € RY a vector and A € RV*N a (sparse) matrix. The numbering
J ={1,..., N} is associated to certain degrees of freedom of the hierarchical
decomposition H. Based on the distributed hierarchical decomposition H we
will define a corresponding distribution of the numerical data x and A. For
this purpose we first introduce the notion of a domain decomposition.
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Figure 9.4.: Domain decomposition for P = 8 processors. Each color represents a
different processor.

Definition 9.6 (Domain decomposition)
Let H be a hierarchical decomposition and H its admissible distribution among
the processors. Due to the conditions (A2) and (A3) every tetrahedron T' € H
can be assigned a unique processor on which T is stored as a master element.
In other words, we have a well-defined function master: H — {1,..., P} that
is given by

master(T') =p < T € Mayr)(p).

Here ¢(T) is the level of T, cf. Definition3.7. For 0 < j < Jand 1 <p <P
we define

Ti(p) ={T €7T;: master(T)=p} and  Q;(p):= U T.
TeT;(p)

Then for each 0 < j < J the sequence (7;(1),...,7;(P)) is a partition of the
triangulation 7; (due to (A2), (A3)) and is called the domain decomposition
of level j corresponding to the admissible hierarchical decomposition H. ¢

Figure[9.2.1 shows a domain decomposition for P = 8 processors.

A domain decomposition of level j automatically induces a distribution of
the numerical data on level j. Without loss of generality we assume that
the (global) numbering J = {1,..., N} is associated with the finest level J.
Let J(p) = {1,...,N,} be a (local) numbering of the degrees of freedom of
the local triangulation 7;(p) on processor p, 1 < p < P. Then the relation
between a local number i € J(p) and its global counterpart j € J is given by
the coincidence matrix I, € RVN*No|

1 if degree of freedom with global number j € J exists
(Ip)ij = on processor p with local number i € J(p),

0 else.

Degrees of freedom which are located on multiple processors form the so called
processor boundary.
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Definition 9.7 (Accumulated and distributed storage)
For a (global) vector z € R the sequence

24 =(Lz,..., Ipz) € RN x ... x RNP

is called the corresponding accumulated vector. That means that for unknowns
on a processor boundary each adjacent processor stores the same global value.

The sequence zp, = (z;,...,2zp) of vectors z, € RV is called the distributed
vector corresponding to x, if

P
o T
T = E I, z,.
p=1

In this case the global value of an unknown on a processor boundary is the
sum of all local values stored on the adjacent processors. The same holds for
entries of a distributed matriz Ap = (41,...,Ap) with

P
A=>"ITA,I,.

p=1 <

Remark 9.8 (Computation of distributed stiffness matrix)

For a stiffness matrix A € RV*Y the local distributed matrix A, € RVr*Ne
coincides with the stiffness matrix corresponding to the subdomain Q ;(p) with
triangulation 7 (p). Thus the local matrices M, can be set up independently
by the different processors p =1, ... P without any communication. Further-
more, the parallelization of the Setup routines (cf. Section [9.1.4) is a trivial
task. o

The conversion of a distributed into an accumulated vector is achieved by
summing up the vector entries on processor boundaries which requires com-
munication between adjacent processors. Obviously, the conversion in the
other direction is not unique. For computing the matrix-vector multiplication
y= Az we use the accumulated storage x 4 as input and obtain the result Yy
in a distributed fashion:

P P
Az = <Z IpTApIp> = ZIPT Ap(Ipz) = y.

p=1 p=1
=y

Hence, the computation of the matrix-vector multiplication does not require
any communication. The scalar product of two vectors x,y can be computed
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efficiently if one of them is stored accumulated, for example z 4, and the other
one distributed, y D Then the computation of

P
P o
p=1

only requires the global summation of P real numbers (obtained by a call to
MPI::AllReduce(...)).

p
ley

p= 1 p=1

Mw

9.2.2. Distribution of work load

Considering the simulation of a rising bubble as an example, during an adap-
tive simulation run the multilevel triangulation M will change as the refine-
ment zone is moving upwards following the bubble geometry. Hence, the
distributed hierarchical decomposition H and the numerical data have to be
redistributed from time to time to ensure a balance of the computational load.
Otherwise the situation may occur that almost all unknowns are stored on one
processor, say p, while the others only have to solve problems of small size. On
the one hand this leads to an inefficient usage of the overall memory. On the
other hand runtime scalability severely decreases since all processors have to
wait at synchronization points such as MPI::Al11Reduce(...) until processor
p has finished its work.

The challenge of the so-called load balancing is to find a mapping
m:7T —{1,...,P}
describing the distribution of the tetrahedra among the processors such that
a) the corresponding processor boundary is as small as possible and
b) all processors have almost the same number of tetrahedra.

This problem statement is equivalent to a graph partitioning problem which
will be stated in Definition[9.10. For this reason, m is also called a partitioning
of 7. We now introduce the notion of a weighted dual graph.

Definition 9.9 (Weighted dual graph)
For a triangulation 7 the corresponding dual graph G(T) = (V, E) is given
by the node set V' = 7 and the edge set E C 7 x 7, where (T1,T3) € E iff
the tetrahedra T, T5 share a common face.

By introducing weight functions o : V. — R,y for nodes and 6 : £ — R
for edges of the graph the computational load «(vr) of the corresponding



9.2. Parallelization 161

Figure 9.5.: Dual graph for 2D triangulation.

tetrahedron T and the amount of communication 3(er) for the corresponding
face F' can be described. G,,(7) = (V, E, «, §) is called a weighted dual graph.c

Figure 9.5 shows a 2D example for a dual graph. For a subset V CV we
define a(V') := ) .y a(v) corresponding to the total load of V. For a given
partitioning m the set

Ecut (m) = {(Tl, TQ) cF: m(Tl) 75 m(Tg)}

corresponds to the faces forming the processor boundary where communication
takes place.

The graph partitioning problem is given by the following definition:

Definition 9.10 (Generalized graph partitioning problem)
For a constant C' > 1 and a given weighted dual graph (V, E,a, ) find a
partitioning m : V — {1,..., P} such that

COSteomm (M) := Z B(e) — min

and

with V, := m~1(p). o

The graph partitioning problem belongs to the class of NP-hard problems,
in this sense an optimal partitioning cannot be computed efficiently. Never-
theless, there are a couple of heuristic approaches with polynomial runtime
yielding reasonable results. For a survey on this topic we refer to [Cha98]. We
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use the package ParMETIS [Parb| which realizes a parallel multilevel graph
partitioning algorithm described in [KK98].

Based on a partitioning m computed by a graph partitioning tool the tetra-
hedra and numerical data are rearranged among the processors. This phase is
called data migration. To obtain again an admissible hierarchical decomposi-
tion after the migration phase we have to ensure that the properties (A1)—(A5)
hold. In particular all children of a common parent have to stay together as
masters on a single processor, cf. Lemma Thus in the following we give
a definition for a reduced dual graph, where the children of a common parent
are represented by a single multi-node. For this purpose we introduce a map

7 J—1
P U Gr — U Gr
k=0 k=0

from a tetrahedron T' € Gj to its parent tetrahedron P(T) € Gi_1, k =
1,...,J, with the convention P(T) =T for all T € Gy. For T € T we define
the corresponding equivalence class

[T]p:={SeT: P(S)=P(T)}.

Definition 9.11 (Reduced dual graph)
For a triangulation 7 let G,,(7) = (V, E, a, §) be the corresponding weighted
dual graph. The reduced dual graph G, (T) = (V',E',o/,3') is given by the
reduced node set
V' i={[T|p: TeT}
inducing the reduced edge set
E':={(v],vh): Fvi €vj,ve €vh: (v1,v2) € E}\{ (W, 0): v eV}

The weight functions o/, 3’ are given by
o (V) = Z a(v),
B eh) = Y Ble). ©

ec EN(v] xv})

Figure [9.6 shows the reduced dual graph corresponding to the dual graph
given in Figure9.5. The tetrahedra forming a multi-node are surrounded by
a bold frame. Note that the dual graph G(7) in Figure[9.5]has 20 nodes and
24 edges whereas the reduced dual graph G'(7) in Figure[9.6 has only 8 nodes
and 9 edges.
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Figure 9.6.: Reduced dual graph for 2D triangulation.

After computing a load balancing partitioning m’ : V! — {1,..., P} of the
reduced dual graph G, (7), for the data migration we use an migration al-
gorithm described in [Gro02|. The migration of the tetrahedra is carried out
by means of the DDD package. After the migration for the new distributed
hierarchical decomposition H the property

master(T) = m/([T]p)

holds. In [Gro02] it is shown that for an admissible input hierarchical de-
composition the distributed hierarchical decomposition after the migration is
again admissible.

Remark 9.12 (Migration of numerical data)

If a tetrahedron 7' is moved from one processor to another, also certain vector
entries corresponding to the degrees of freedom on 7" have to be migrated. The
valid migration of numerical data is a delicate task and will not be discussed
in this thesis. o

9.2.3. Current status and outlook

The parallel refinement algorithm and load balancing strategy described in
[Gro02] have been implemented in 2002 and were successfully applied on a
parallel machine with up to 64 processors. This implementation has served
as a starting point for a further parallelization of DROPS which began in
2005 and is currently conducted by our partners at the Chair of Scientific
Computing, RWTH Aachen University. Since then, more and more parallel
functionality has been added. At the current stage we are able to perform
parallel simulations of two-phase flow problems on adaptive grids which are
changing in time.
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The next steps will be the improvement of the efficiency of the iterative solvers
and the design of efficient parallel preconditioners. We also need to implement
a parallel version of the fast marching algorithm, cf. Section[8.1, which is still
missing. The parallelization of the multigrid solver will require a redesign of
the load balancing strategy, since up to now we only consider the migration
of the triangulation on the finest level .J, but not of all triangulation levels.
This will also have an impact on the definition of the weight functions o’ and

g
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10. Test cases

In this chapter we present several test cases. Some of them are designed to
verify the functionality of several numerical components such as the interface
capturing by the level set method (Section[10.1) and the reparametrization of
the level set function by the Fast Marching method (Section[10.2)). Other test
cases are used to numerically measure the order of convergence for different
discretizations of the surface tension force (Section [10.3) and different finite
element spaces for the pressure (Section [10.4).

10.1. Advection of the interface

Consider the unit cube Q = [0,1]? and a ball
O ={xeR: ||x—xp| <0.2}
inside with center xp; = (0.5, 0.25, 0.5). Take the fixed velocity field

ux) =c(y) (y2, —y1, 0)

where y = x — (0.5, 0.5, 0.5) and ¢(y) = 4]|y]|(0.5 — ||y]|)- Hence, G is a
circular velocity field which vanishes at the boundary 02, cf. Figure [10.1 for
a plot of i. We consider the time interval [to,tf] = [0,20] and define the

velocity field
U <1
u(x,t) = 0 1S 10
—u(x) t>10.

I.e., u changes its sign at the time moment ¢ = 10. Note that for an interface
I' C Q moving with velocity u(x,t) we have

to+ty

D(to+1t) =T(ty —t)  fort € [to, ] = [0, 10]. (10.1)

For the initial value ¢ of the level set function we use the signed distance
function for the sphere I' = 9€Q;. As a test case for the advection of the

167
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Figure 10.1.: Interface for ¢ = 0. Also shown is the velocity field & on the slice
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N\
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Figure 10.3.: Zero level and contour lines on slice z = 0 before (left) and after
reparametrization (right).

interface we perform 200 time steps of size dt = 0.1 of the level set equation
(2.25). The triangulation of §2 consists of 24 x 24 x 24 subcubes each subdivided
into six tetrahedra yielding 117649 unknowns for the level set function ¢. The
results for different time steps are shown in Figure [10.2l As one can see,
the interfaces for ¢ € {0,20} and for t € {5,15} are almost identical, which
is reasonable regarding (10.1). However, we did not exactly measure the
discrepancies.

10.2. Reparametrization

We consider the cubic domain Q = [—1,1] and the scalar function
p(x) = |x (1402 g(x))| — 0.5, x € Q,

where g(x) = cos(10x) cos(10y) cos(10z) for x = (z,y, z) € Q. The zero level
of ¢ and contour lines of ¢ on the slice z = 0 are shown in Figure [10.3 on
the left. Apparently, ¢ is not a distance function as its contour lines are not
equidistant.

For spatial discretization €2 is split into 24 x 24 x 24 subcubes, where each of
them is subdivided into six tetrahedra. The corresponding P» discretization of
@ requires 117649 unknowns. Applying the Fast Marching method described in
Section [8.1]we obtain the reparametrized function @, which is an approximate
distance function, cf. Figure [10.3 on the right. Comparing ¢ and @, the
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Figure 10.4.: Lower half part of the 4 times refined mesh 7;.

zero level is only slightly changed. A quantitative comparison measuring the
difference of the corresponding interfaces has not been performed, yet.

10.3. Approximation order of surface tension
force discretization

In this section we present results of a numerical experiment which indicates
that the O(\/E) bound in Corollary [5.23 is sharp. Furthermore, for the im-
proved approximation described in Section[5.3.4 the O(h) bound will be con-
firmed numerically.

We consider the domain Q := [—1, 1] where the ball Q; := {x € Q: ||x| <
R} is located in the center of the domain. In our experiments we take R = 1.

For the discretization a uniform tetrahedral mesh 7; is used where the ver-
tices form a 6 x 6 x 6 lattice, hence hy = % This coarse mesh 7 is locally
refined in the vicinity of I' = 0y using the adaptive refinement algorithm
presented in Section[3.2.3] This repeated refinement process yields the gradu-
ally refined meshes 77,75, . .. with local (i.e., close to the interface) mesh sizes
hi = £ -27% i =1,2,.... Part of the tetrahedral triangulation 73 is shown
in Figure The corresponding finite element spaces V; := V,, = (Vj,,)3
consist of vector functions where each component is a continuous piecewise
quadratic function on 7;.

The interface I' = 021 is a sphere and thus the curvature k = —% is constant.
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If we discretize the flow problem using V; as discrete velocity space, we have
to approximate the surface tension force
2T

fr(v)=—= / nr-vds = 7'/ Vridr -Vrvds, v eV, (10.2)
R Jr r

To simplify notation, we take a fixed ¢ > 0 and the corresponding local mesh
size parameter is denoted by h = h;. For the approximation of the interface
we use the approach described in Section [5.1.2]

The discrete approximation of the surface tension force is

fr,(v)=71 Vr, idr, -Vr, vds, v eV,

'y
We are interested in, cf. Corollary|(5.23,
r\v) —Jjr,\v
||f1'* _fF}L V: 1= sup M (103)
vev; ||VH1

The evaluation of fr(v), for v € V;, requires the computation of integrals
on curved triangles or quadrilaterals I' N S where S is a tetrahedron from the
mesh 7;. We are not able to compute these exactly. Therefore, we introduce
an artificial force term which, in this model problem with a known constant
curvature, is computable and sufficiently close to fr.

Lemma 10.1
For v e V = (H(2))? define
2T

frh(v) = E .

where ny, is the piecewise constant outward unit normal on I';,. Then the
following inequality holds:

ny - vds,

o = frollve < ch. (10.4)

Proof. Let €1, C Q be the domain enclosed by I'y, i.e., Q1 = I'. We
define D} := Q1 \ Q1 5, D, := Q1 \ Q1 and Dy, := D} U D, . Due to Stokes
theorem, for v € V we have

A 2
|fr(v) = fr, (v)| = il divvdx — divvdx (10.5)
R Q Qin
2T . .
=— divvdx — divvdx (10.6)
R |/} D;
2
<22 [ |divv]dx. (10.7)

R Dy,



172 10. Test cases

Using the Cauchy-Schwarz inequality, we get the estimate

|fr(v) = fr, (V)| < ey/meas3(Dy) ||v]1 for all v e V.
which results in the upper bound

| fr — fr.llvr < ey/meass(Dy). (10.8)

Note that for the piecewise planar approximation I'y, of the interface I' we
have meas3 (D) = O(h?) and thus (10.4) holds. O

From Lemma/[10.1 we obtain || fr — f, ||V; < ch with a constant c independent
of j. Thus we have

HfAFh, - th,HVQ —ch < HfF - fF;,/”V,’L, < HfAFh, - th,HVQ + ch. (109)

The term || fr, — fr,l[v; can be evaluated as follows. Since I'y, is piecewise
planar and v € V; is a piecewise quadratic function, for v € V;, both fph (v)
and fr, (v) can be computed exactly (up to machine accuracy) using suitable
quadrature rules.

For the evaluation of the dual norm || - [y, we proceed as follows. Let

{vj}j=1,..n (n:=dimV;) be the standard nodal basis in V; and Jv, : R" —

V,; the isomorphism Jv,z = 22:1 T V. Let Mj be the mass matrix and Ay,
the stiffness matrix of the Laplacian:

(Mh)ij = / Vi Vj dX,

@ 1<i,j<n.

(Ah)ij = / Vvi . VV]' dx.

Q

Define C}, = Aj, + Mj,. Note that for v = Jy,z € V; we have ||v||? = (Cpz, z).
Take e € V; and define ¢ € R™ by ¢; :=e(v;), j = 1,...,n. Due to

lellvr = sup 120 _ g, iz el
Covevi VI e Gz
we obtain
{z,e) —-1/2 _
Iellv: = 2 W = 11C; el = /(Cy s, (10.10)
ZER™ hZs L.

Thus for the computation of ||e|y: we proceed in the following way:
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i || Nfr, — frollv; | order || || fr, — fr,llv; | order
0 1.79 E-1 — 1.32 E-1 —

1 1.40 E-1 0.35 4.43 E-2 1.57
2 1.03 E-1 0.45 1.46 E-2 1.61
3 7.22 E-2 0.51 5.06 E-3 1.52
4 5.02 E-2 0.53 1.78 E-3 1.51

Table 10.1.: Error norms and numerical order of convergence for different refine-
ment levels.

1. Compute e = (e(vj));l:l.

2. Solve the linear system C}, z = e up to machine accuracy.

3. Compute [le|lv: = +/(z, €).

We applied this strategy to e := fr, — fr, . The results are given in the second
column in Table[10.1. The numerical order of convergence in the third column
of this table clearly indicates an O(v/h) behavior. Due to (10.9) this implies
the same O(v/h) convergence behavior for || fr — fr, [v;. This indicates that

the O(v/h) bound in Corollary[5.23 is sharp.

The same procedure can be applied with fr, replaced by the modified (im-
proved) approximate surface tension force

3
fra(v) ==7> Gna(vi)
i=1

with §p; as defined in (5.44). This yields the results in the fourth column
in Table [10.1. For this modification the numerical order of convergence is
significantly better, namely at least first order in h. From (10.9) it follows
that for || fr — fr‘h”\/; we can expect O(hP) with p > 1.

Summarizing, we conclude that the results of these numerical experiments
confirm the theoretical O(v/h) error bound derived in the analysis in Sec-
tion [5.3.3]and show that the modified approximation indeed leads to (much)
better results.

Results of numerical experiments for a Stokes two-phase flow problem using
both fr, and fr, are presented in Section
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Figure 10.5.: 2D illustration of the Figure 10.6.: 2D illustration of the
phase distribution for test case A with phase distribution for test case B.

I'="T4.
10.4. Pressure jump induced by surface tension

In this section we consider the following Stokes problem on the domain 2 =
(—1,1)3 using the notation from Chapter|5,

a(u,v) +b(v,p) = ferp(v) forallveV,

10.11
b(u,q) =0 forall g€ Q. ( )

Here fsp € V' is a surface force term on the interface I' which will be specified
in the two test cases below. For simplicity we assume constant viscosity p = 1.

The finite element discretization of (10.11) is as follows:

a(up,vp) +b(vi,pn) = fern(vy) for all vy, € Vi,

10.12
b(un, qn) =0 for all g5 € Qn, ( )

where fspp € V), is an approximation of fsp. We choose a uniform initial
triangulation 75 where the vertices form a 5x5x5 lattice and apply an adaptive
refinement algorithm presented in [GR05]. Local refinement of the coarse mesh
7o in the vicinity of T' yields the gradually refined meshes 77,73, 73, 74 with
local mesh sizes hr = h; = 2771 i = 0,...,4 at the interface. For the
discretization of u we choose the standard finite element space of piecewise
quadratics:

V= {V S C(Q)g : V|T € Py for all T € Ty, Viga = 0}.
We compute the errors

ew:=u"—u, and ep,:=p" —py
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interface | # ref. | dimV, dim@} dim Q}:’L dim Q9
0 1029 125 150 384

1 6801 455 536 1984

=1y 2 31197 1657 1946 8384
3 131433 6235 7324 33984

4 537717 24093 28318 136384

0 1029 125 190 384

1 7749 543 768 2304

="y 2 42633 2313 3146 11556
3 200469 9607 12808 52088

4 871881 39229 51774 221796

Table 10.2.: Dimensions of the finite element spaces for test case A.

for different choices of the pressure finite element space (J, to compare the
approximation properties of the different spaces. In our experiments we used
piecewise constant or continuous piecewise linear elements, i.e., the spaces

9. Q1 respectively, and the extended pressure space Ql}:“ introduced in Sec-

tion

10.4.1. Test case A: Pressure jump at a planar interface

This simple test case is designed to examine interpolation errors of finite el-
ement spaces for the approximation of discontinuous jumps of the pressure
variable.

For fsr we choose the artificial surface force fsp = fasrp where
fASF(V):U/V~nds, veV
r

and ¢ > 0 is a constant. Note that fasp € V’'. Then the unique solution of

10.11) is given by

* 0 * C in Ql,
u* =0, = .
P C+o in Q.

since b(v,p* — C) = — [, odivvdx = [ ovnds for arbitrary v € V. Here
C'is a constant such that fQ p*dx = 0. In our calculations we used o = 1.
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We consider two different interfaces I'y and I's, which are both planes. T’y is
defined by
' ={(z,y,2) € Q: 2=0}.

In this case the two subdomains are given by Q; := {(z,y,2) € Q: 2 <0}
and Qg := Q\ Q4, cf. Figures and [10.7. Interface I's is defined by

o ={(r,y,2)€Q:y+2z=1}

and the corresponding subdomains are Q; = {(z,y,2) € Q: y+ 2 <0}
and Qo = Q\ Qi, cf. Figure [10.9. We emphasize that for both interfaces
the interface approximation I'y, is exact, i.e., [', = T', allowing for an exact
discretization of the interfacial force, i.e., fasr,n = fasr.

Due to g = 0, u* € V}, and the fact that || fasr,n — fASF”V;L = 0 the error
bound (5.12)) simplifies to

pllealls + llepllzs < ¢ inf 15" — anla (10.13)
ar€QR

Thus the errors in velocity and pressure are solely controlled by the approxi-
mation property of the finite element space Q.

The number of velocity and pressure unknowns for the grids 7y, ..., 74 with
different refinement levels are shown in Table Note that dim Qg" >
dim @}, due to the extended basis functions and that dim Q9 is even (much)
larger.

Remark 10.2

Note that for fsgp = fr the corresponding pressure solution would be p* = 0
as the curvature of I' vanishes. Therefore this would not be an interesting test
case. o

Interface at I' =T';

For I' = T'y, the interface I' is located at the element boundaries of tetrahedra
intersected by I, i. e., for each tetrahedron T intersecting I" we have that I'NT
is equal to a face of T'.

In this special situation, the discontinuous pressure p* can be represented
exactly in the finite element space Q?L of piecewise constants, thus the finite
element solution (up,pn) € Vi x QY is equal to (u*, p*). This is confirmed by
the numerical results: the exact solution (u*, p*) fulfills the discrete equations

(up to round-off errors). The same holds for the extended finite element space
Iy
P
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Figure 10.8.: 1D-profile of pressure
jump at z = y = 0 for pp, € Q}. 3
refinements, I' = I'y.

Figure 10.7.: Slice of grid 7,, at = =
0 after 3 refinements for I' =I";.

# ref. || |leullrz | order lleullr | order || |lepllrz | order
0 4.26E-02 - 4.26E-01 - 5.32E-01 -
1 1.85E-02 1.2 3.41E-01 | 0.32 3.78E-01 | 0.49
2 7.09E-03 | 1.38 2.55E-01 | 0.42 2.68E-01 0.5
3 2.60E-03 | 1.45 1.85E-01 | 0.46 1.90E-01 0.5
4 9.37E-04 | 1.47 || 1.33E-01 | 0.48 || 1.34E-01 0.5

Table 10.3.: Errors and numerical order of convergence for the P, — Q7 finite
element pair, I' = I'y.

For the P; finite elements we obviously have p* ¢ @},. The grid 73 after 3 times
refinement and the corresponding pressure solution are shown in Figures[10.7]
and The error norms for different grid refinement levels are shown in
Table [10.3. The L2-error of the pressure shows a decay of O(h'/?). This
confirms the theoretical results for the interpolation error min ¢ QL lp*—anl L2,
cf. Section [5.4.1] and (10.13). The velocity error in the H'-norm shows the
same O(h'/?) behavior, whereas in the L?-norm the error behaves like O(h3/2).

Interface at ' =T,

We now consider the case I' = I'ys. This problem corresponds to the 2D
problem discussed in Section cf. Figure I' is chosen such that
' F # F for all faces of the triangulations 7y, 77,72, 73. As a consequence,
p* ¢ Q) and p* ¢ Q}, but p* € Ql}:h. We checked that the finite element
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Figure 10.10.: 1D-profile of pressure
jump at © = y = 0 for pr, € Qi. 3
refinements, I' = I's.

Figure 10.9.: Slice of grid at z = 0
after 3 refinements for I' = I's.

# ref. lleullrz | order lleullx order || |lepllr2 | order
0 2.53E-02 - 2.56E-01 - 5.44E-01 -
1 1.24E-02 | 1.02 || 2.25E-01 | 0.18 | 3.99E-01 | 0.45
2 5.03E-03 | 1.31 | 1.75E-01 | 0.36 || 2.88E-01 | 0.47
3 1.89E-03 | 1.41 1.29E-01 | 0.44 | 2.06E-01 | 0.48
4 6.88E-04 | 1.46 9.35E-02 | 047 1.46E-01 | 0.49

Table 10.4.: Errors and numerical order of convergence for the P> — Q7 finite
element pair, I' = I'.

solution (up,pr) € Vi, X Ql};h is in fact equal to (u*, p*).

Let us first discuss the results for P; finite elements. The grid 73 after 3 times
refinement and the corresponding pressure solution for P; finite elements are
shown in Figures [10.9 and [10.10] resp. The error norms for different grid
refinement levels are shown in Table[10.4. The same convergence orders as for
the case I' = I'y are obtained, cf. Table

The results for the Py finite elements are shown in Table [10.5. Compared to
P, finite elements, the errors are slightly larger but show similar convergence

orders, i.e., O(h1/2) for the pressure L2-error and velocity H'-error as well as
O(h3/?) for the L? velocity error.
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# ref. || |leullrz | order lleullr | order || |lepllrz | order
0 3.98E-02 - 3.49E-01 - 7.30E-01 -
1 1.64E-02 | 1.28 || 2.75E-01 | 0.35 || 4.89E-01 | 0.58
2 6.14E-03 | 1.41 2.04E-01 | 043 || 3.35E-01 | 0.54
3 2.22E-03 | 1.47 || 1.48E-01 | 0.46 | 2.34E-01 | 0.52
4 7.92E-04 | 1.49 || 1.06E-01 | 0.48 | 1.65E-01 | 0.51

Table 10.5.: Errors and numerical order of convergence for the P — Q9 finite
element pair, I' = I's.

10.4.2. Test case B: Static bubble

In this test case (cf. Example 5.2) we consider a static bubble Q3 = {z €
R3: ||z|| <7} in the cube Q with r = 2/3 (see Figure[10.6). We assume that
surface tension is present, i.e., fsp = fr with 7 = 1. This problem has the
unique solution

« % C in Ql,
u =0, p = .
C+ 71k in Q.
Since k = —2/r, the pressure jump is equal to [p*]r = 3. A 2D variant of this

test case is presented in [FCD'06, GMTO07, Smo01].

Note that in this test case the errors in velocity and pressure are influenced
by two error sources, namely the approximation error of the discontinuous
pressure p* in @y, (as in test case A) and errors induced by the discretization
of the surface force fr, cf. (5.19).

The number of velocity and pressure unknowns for the grids 7, ..., 74 with
different refinement levels are shown in Table [10.6. Note that dim Q}" is
significantly larger than dim @}, but that dim Qgh < dim Vy,.

# test case B

ref. | dimV;, dimQ}; dimQ}”
0 1029 125 176
1 5523 337 533
2 30297 1475 2295
3 139029 6127 9413
4 569787 24373 37355

Table 10.6.: Dimensions of the finite element spaces for test case B.



180 10. Test cases

Remark 10.3
As T" has constant curvature, for o = —277 the two considered surface forces
coincide: fr = fasr. o

We consider test case B for two different approximations of the CSF term fr,
namely the “naive” Laplace-Beltrami discretization fr, as in (5.22) and the
modified Laplace-Beltrami discretization fr, as in (5.49). For the pressure
space we choose Q5 = Q) and Q;, = Q}". We did not consider the space QY
as it yields results comparable to those for @Q}. Table [10.7 shows the decay
of the pressure L2-norm for the four different experiments. We observe poor
O(h'/?) convergence in the cases where p, € Q}, or when the surface tension
force fr is discretized by fr,. For the L? and H'-norm of the velocity error
we observe convergence orders of O(h%/2) and O(h'/?), respectively, which is
similar to the results in test case A.

We emphasize that only for the combination of the extended pressure finite
element space Q)" with the improved approximation fr, we achieve O(h®)
convergence with o > 1 for the pressure L2?-error. The velocity error in the
H'-norm shows a similar behavior (at least first order convergence), in the

L?-norm we even have second order convergence, cf. Table 10.8.

For the improved Laplace-Beltrami discretization fph the corresponding pres-
sure solutions pj, € Q}, and pj, € Ql}:h are shown in Figure|10.11

# lepllz> for pr € Q) lesllzz for pn € Q4"

ref. fr,, order fr, order fro, order fr,, order
0 1.60E+0 - 1.60E+0 - 3.12E-1 - 1.64E-1 -
1 1.07E+0 0.57 1.07TE+0 0.57 1.00E-1 1.64 4.97E-2 1.73
2 8.23E-1 0.38 8.23E-1 0.38 6.24E-2 0.68 1.66E-2 1.58
3 5.80E-1 0.51 5.80E-1 0.51 4.28E-2 0.54 7.16E-3 1.22
4 4.13E-1 0.49 4.13E-1 0.49 2.95E-2 0.54 2.83E-3 1.34

Table 10.7.: Pressure errors for the P — Qf and P> — Q) finite element pair and
different discretizations of fr.

u-dependence of the errors
We repeated the computations of (up,pp) € Vi X Ql};h for the improved

Laplace-Beltrami discretization fph on the fixed grid 735 varying the viscosity
. The errors are given in Table [10.9. We clearly observe that the velocity
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Figure 10.11.: Finite element pressure solution p;, € Q}, (on the left) and p;, € QE“

(on the right), visualized on slice of 7 at z = 0.

# ref. lleullzz | order lewll1 order
0 7.16E-03 - 1.10E-01 -
1 1.57E-03 | 2.19 || 4.26E-02 | 1.37
2 3.25E-04 | 2.28 1.70E-02 | 1.33
3 8.57E-05 | 1.92 || 7.43E-03 | 1.19
4 1.75E-05 | 2.29 || 2.40E-03 | 1.63

Table 10.8.: Errors and numerical order of convergence for the P> — Q' finite

element pair and improved Laplace-Beltrami discretization fr, .

errors are proportional to u~! whereas the pressure error is independent of .

This confirms the bound in (5.19).
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10. Test cases

p l[€ul| > leulls lepll 2
10 | 8.62E-06 | 7.51E-04 | 8.71E-03
1 | 8.57E-05 | 7T.43E-03 | 7.16E-03
0.1 || 8.58E-04 | 7.44E-02 | 6.87E-03
0.01 || 8.57E-03 | 7.44E-01 | 6.88E-03
0.001 || 8.57E-02 | 7.43E+00 | 7.16E-03

Table 10.9.: Errors for the P> — Q" finite element pair and
Beltrami discretization fr, on 73 for different viscosities f.

improved Laplace-



11. Application examples

In the following sections we present some simulation results for real two-phase
flow problems originating from droplet and falling film applications. Note that
the results were obtained with the serial version of the DROPS code, as the
parallel version does not provide the full functionality, yet. For example, the
XFEM discretization of the pressure (cf. Section[5.4) is only implemented in
the serial version and still has to be parallelized. Hence, the meshes used in the
following examples are relatively coarse due to memory limitations or to keep
computational times affordable. The parallelization of the whole DROPS code
is a crucial task for the future as it will enable more levels of grid refinement,
to achieve more accurate solutions.

11.1. Levitated droplet in measuring cell

This experiment originates from an interdisciplinary research project [SFB] on
the modeling of flow and mass transfer phenomena at the interface between
a single droplet and the surrounding fluid. For NMR measurements of the
velocity u, cf. [AGHK™05|, a drop is levitated in a special device, which
consists of a vertical glass tube with a narrowing in the middle. It is shown
in horizontal position in Figure A fluid flows from the top of the tube
downwards. A drop which is lighter than the surrounding fluid is injected
at the bottom of the tube and starts to rise upwards. At a certain point its
buoyancy forces are balanced by the forces induced by the counterflow and the
drop is levitated at a stable position. A photo of a levitated droplet is given
in Figure The aim of the following numerical simulation is to compute
the equilibrium position and drop shape for two different two-phase systems:

e System A: silicon oil drop in heavy water (D30).
e System B: n-butanol drop in water.

The computational domain  and its triangulation are illustrated in Fig-
ure [11.1. It is 5-1072m long and has a diameter of 7.2 - 10~2m at inlet

183
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Figure 11.1.: 2D sketch (top) and 3D triangulation (bottom) of measuring cell.

and outlet and a diameter of 5.5-1073m at the narrowest part of the tube, cf.
the 2D sketch of the rotationally symmetric domain at the top of Figure[11.1]
As an initial condition the drop is assumed to be spherical with a radius of 4
and is located 7 - 1072 m below the narrowest part. The initial triangulation
Ty consisting of 4635 tetrahedra is successively refined in the vicinity of the
drop. The finest triangulation 73 consists of 19254 tetrahedra for system A
and 11712 tetrahedra for system B, hence, for system A roughly 75% and for
system B roughly 60% of the tetrahedra are located in the refinement region.

The boundary conditions are chosen as follows:

e a prescribed parabolic inflow profile at the top of the tube (non-homo-
geneous Dirichlet boundary condition for u) with maximum inflow ve-
locity u;, in the middle of the inlet,

e an outflow boundary condition at the bottom of the tube (homogene-
neous natural boundary condition) and

e no-slip boundary conditions at the remaining walls of the tube (homo-
geneous Dirichlet boundary condition for u).

For the initial conditions we set g the signed distance function for the initial
spherical drop and ug the solution of the following stationary Stokes problem,

— div(u(o) D(u)) + Vp = p(go) g,

. in Q. (11.1)
diva =0,
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quantity System A System B
(unit) silicon oil | heavy water | n-butanol | water
p (kg/m?) 955 1107 845.4 986.5

p  (kg/ms) | 26-1073 | 1.2-1073 3.281-1073 | 1.388-103

T (N/m) 21073 1.63-1073
rq (m) 1.75-1073 1-1073
w, (m/s) 25-1073 35-1073

Table 11.1.: Material properties of different liquids and experimental parameters
used in the levitated bubble simulations.

System | pa/p1 | p2/p1 | Re | Eo
A 1.16 0.46 598 | 66.5
B 1.17 0.42 70.4 | 23.7

Table 11.2.: Characteristic dimensionless numbers of the drop problem for system
A and B.

The material properties p, u, 7 together with the experimental parameters r4
(initial radius of droplet) and u;, (maximum inflow velocity) are given in
Table [11.1. There are four dimensionless numbers characterizing the drop
problem, namely the density ratio p2/p; (index 1 denotes the droplet phase,
index 2 the continuous phase), the viscosity ratio ps/p1, the Reynolds number
Re and the E6tvos number Eo,
2
Re:(27"d)3/2\/§&, E0:4p2gr—d,

H2 T
with g = 9.81m/s? denoting the gravitational acceleration. They are given in
Table[11.2 for system A and B, respectively. Sometimes the Morton number
M = Eo®/Re* is used instead of the Reynolds number.

The droplet shape at its equilibrium position and the corresponding stationary
velocity field are shown in Figure [11.2 for system A and in Figure [11.4] for
system B. For visualization purposes the velocity field is plotted on a 2D
cartesian grid intersecting the unstructured tetrahedral grid. In Figure
the n-butanol droplet (system B) is shown at an intermediate stage where it
is still rising upwards. Here a part of the unstructered grid is visualized which
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Figure 11.2.: Equilibrium position of silicon oil drop, visualized on slice. Velocity
field (left) and shape of droplet (right).

is refined in the vicinity of the interface. Note that the grid resolution was
chosen relatively coarse due to the non-parallel run of the simulation, as the
XFEM discretization of the pressure is not available for the parallel version
of the DROPS code, yet.

11.2. Rising bubble

In this numerical experiment we consider a single n-butanol droplet inside a
cuboid tank Q = [0,20 - 1073] x [0,30 - 107%] x [0,20 - 10~3]m? filled with
water, cf. Figure[11.5. The material properties of this two-pase system can be
found in Table[I11.1. Initially at rest (ug = 0m/s) the bubble starts to rise in
y-direction due to buoyancy effects.

For the initial triangulation 7y the domain 2 is subdivided into 4 x 10 x 4
sub-cubes each consisting of 6 tetrahedra. After that the grid is refined four
times in the vicinity of the interface I'. As time evolves the grid is adapted to
the moving interface. Figure shows the drop and a part of the adaptive
mesh for two different time steps.

For a butanol droplet with radius 1 mm, in Figure [11.7/ the y-coordinate of
the droplet’s barycenter X4 is shown as a function of time, where

Xq(t) = mea53(91(t))_1/Q (t)xdx.
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Figure 11.3.: Butanol drop rising in water.

Figure 11.4.: Equilibrium position of n-butanol drop, visualized on slice. Velocity

field (left) and shape of droplet (right).
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Figure 11.5.: 2D setup Figure 11.6.: Interface and part of grid for a ris-
of the rising bubble ex- ing bubble with radius r4 = 1mm at the times
ample. t =0.2s (left) and t = 0.4 s (right).

The average velocity T, (t) of the drop is given by

() = meass (2 (1) /Q JRICUES

Note that X};(t) = u4(t). Figure [11.8 shows the velocity in y-direction of a
butanol droplet with radius 1 mm as a function of time. After a certain time
the bubble reaches a terminal rise velocity u, = max;c, ¢, [[W(t)|. For the
radius r4 = 1073 m we obtain u, = 53- 1073 m/s.

We computed the terminal rise velocities u, of rising butanol droplets for dif-
ferent drop radii rgq, cf. Table[11.2. Note that for the larger droplets with
rq > 1.5-1073m a coarser mesh was used (3 times local refinement instead of
4 times as for the smaller droplets) because of memory limitations. The val-
ues are compared to model predictions where we applied an algebraic model
of HENSCHKE [Hen03] described in Remark [11.1/ below. In Figure 11.9 the
terminal rise velocity w, is plotted versus the bubble radius r4 giving a com-
parison of model and simulation results. Note that the results agree very well

for smaller droplets with radii r4 < 1 mm. For the larger bubbles the relative
|u7I?R0P57 model|

deviations are up to 5%. We believe that the deviations for the

‘u;nudelr‘
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Figure 11.7.: Position y of barycenter
of a rising butanol droplet with radius
1mm as a function of time ¢.
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Figure 11.8.: Rise velocity u of a bu-
tanol droplet with radius 1mm as a
function of time ¢.

Td (mm) | 05 075 1 125 15 175 2
uPROPS  (mm/s) | 25.7 40.8 53.0 57.1 56.7 552 53.9
umedel  (mm/s) | 25.5 403 53.7 60.0 57.5 55.6 55.8

Table 11.3.: Terminal rise velocity for different droplet radii rq, obtained by DROPS
simulation and predicted by algebraic model, cf. Remark

larger bubbles are caused by the coarse grid resolution and that the results
can be improved on a finer mesh as soon as the parallel version of DROPS is
available.

Remark 11.1 (Algebraic model for terminal rise velocity)
In [Hen03| a model is derived for the terminal rise velocity u, as a function of
rq. Using the notation

(@ y)la = (@ +y™)"*
for z,y € R, a > 1, the model is as follows,

UballUo,c
[l (uban, Uo,c) |y ’

[aoT  [|p2 — pilgra
Uo,c ‘= )
p2Td P2 8

model _

U

(11.2)

where
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Figure 11.9.: Terminal rise velocities u, for different droplet radii r4. Algebraic
model, cf. Remark[11.1] (solid line) vs. DROPS simulation results (circles).

is the terminal rise velocity of oscillating or cap-shaped droplets and ag, as
are model parameters.
Repan 2

2pard
denotes the terminal rise velocity of ball-shaped droplets. Here Repy) is given
by

Uball =

Reball - f Recirc + (1 - f) Rerigid7
Ar

Recie = 1500 065 4r 3 1176
Rerigia = sAr ;
432Ar™" +20Ar 1/ 4 0.51 A
where Ar = w is the Archimedes number and f = % with

0< A= 1—W < 1. The parameter r; describes the transition regime
from rigid to circulating droplets. The three model parameters oy, s,y
have been fitted to measurement data, yielding a3 = 6.57, s = 2.89 and

r¢ = 1.365 - 1073 m for the two-phase system n-butanol/water. o
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rq = 0.5mm rq = 1mm

Figure 11.10.: Shape of n-butanol droplets for different radii r4 and velocity field
u — uq visualized on slice.

The droplet shapes of rising butanol droplets for different radii r4 are shown
in Figure[11.10l The droplet shape is almost spherical for r4 = 0.5mm and
becomes more and more flattened for larger radii. The corresponding velocity
field u — uy (which is the velocity with respect to a reference frame moving
with droplet speed ug) is visualized on a slice in the middle of the domain.
Toroidal vortices can be found inside the droplets. For r4 = 2mm we also
observed a small vortex structure in the wake of the bubble.
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Figure 11.11.: 2D sketch of falling film.

11.3. Falling film

In this section we consider a falling film flow which is an example for a fluid /gas
two-phase flow problem. Falling film flows are one of the research topics in the
collaborative research center [SFB]. Due to their large interfacial area falling
films are used in many chemical engineering applications, e.g., for heating
and cooling devices, evaporation processes and as reactors for phase interface
reactions.

The sketch of a falling film experiment is shown in Figure[11.11l It consists of
an inclined plate with a rectangular inlet channel at the top. The fluid exits
the inlet and develops a thin liquid film which is running down the plate. The
interface between liquid and gaseous phase develops a wavy structure (even
without external excitation) which enhances the heat and mass transport in
the film. For falling film problems usually the coordinate system is chosen
such that z is in flow direction, y is in normal direction to the plate and z
denotes the transversal direction, cf. Figure [11.11.

For the numerical experiment we will not consider the whole range of the
film experiment but only a wave in the region where the film profile becomes
periodic. Hence, in the domain 2 = [0, L;] %[0, L,] x [0, L.] we choose periodic
boundary conditions in x and z direction and homogeneous Dirichlet boundary
conditions for y = 0 and y = L,. Let Q4(¢) denote the liquid phase and Q(t)
the ambient gas phase. The initial conditions are chosen as follows. The initial
local film thickness 6(z, z) is given by

. X z
0(x,z) = dg (1 + wsin (ZWL—I> cos (27TL—Z>)

with the average film thickness dp > 0 and the amplitude 0 < w < 1. In our
experiments we used dyp = 6.35-10"%*m and w = 0.5. The initial value for the
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| quantity  (unit) | DMS-T05 | air |
p (kg/m?) 909.3 1.2
" (kg/ms) | 5.183-1072 | 1.71-107°
T (N/m) 2-1073

Table 11.4.: Material properties used for the falling film problem.

level set function is given by ¢o(x,y, z) =y —d(x, z). ug is the solution of the
stationary Stokes problem (11.1).

The size of the domain chosen in the numerical experiment is L, = 20.9 -
1073m and L, = L, = 4-1073 m. The plate is inclined by the angle o = 0 to
the graviational acceleration vector, hence, the plate is assumed to be vertical.
The material properties are given in Table

For the initial triangulation 7y the domain is subdivided in 10 x 6 x 2 cuboids
each consisting of 6 tetrahedra. To refine the part of the domain where the
fluid film is located we use the following strategy. For a tetrahedron T let
x7 = (z1,yr, 27) € R? denote its barycenter. We mark all tetrahedra T with
yr < 1.5-1073 m for refinement and apply the multilevel refinement algorithm
to obtain 77. Repeating this one more time yields the triangulation 73 which
then consists of 20 080 tetrahedra. We will use this static triangulation 75 for
all time steps. An adaptive refinement in the vicinity of the interface I' as
for the rising bubble example was not possible due to the periodic boundary
conditions. Up to now the refinement algorithm does not garantuee identical
surface triangulations of corresponding periodic boundaries. This feature will
be added in a future version of DROPS.

We emphasize that the falling film problem is very challenging from the nu-
merical point of view due to the large jumps of the material properties in the
liquid and gaseous phase as well as the large extent of the interface. Here we
only give the results for the nonstationary Stokes film flow, i.e., we neglected
the convective term u- Vu in the Navier-Stokes equations (2.14)—(2.15). This
can be justified by a small Reynolds number Re = 25.8, where the Reynolds
number for the film problem is defined by

_ Unubom _ 83 pi cos(a)g

Re
p1 3ui




Figure 11.12.: Stokes flow of falling film for silicon oil DMS-T05 and air, incline
angle 0°.

with the average Nusselt velocity Uy,

cos(a)g p1 do
2 '

Figure shows the falling film for the time ¢ = 0.2 s. The shape of the
waves qualitatively looks similar to those depicted in Figure [1.2. A quanti-
tative comparison with measurement data [LASLR05, SMDKO06| or 2D film
simulations [DLKO7] from our project partners has to be accomplished in the
future.

UNu =
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12. Summary and Outlook

We presented a numerical approach for solving three-dimensional incompress-
ible two-phase flow problems. The governing equations are given by the contin-
uum surface force (CSF) model, where the interface conditions are expressed
by a localized surface force term. The interface is captured by a level set
technique. For the spatial discretization a finite element method based on a
tetrahedral multilevel triangulation is used. A multilevel refinement algorithm
allows for local grid adaption. Applying a one-step theta-scheme for time dis-
cretization leads to a coupled system of level set and Navier-Stokes equations
which is solved by a fixed point approach. This coupling can be avoided when
applying a linearized variant of the one-step theta scheme. The nonlinearity
of the Navier-Stokes problem is treated by a defect correction method. The
resulting linear Oseen systems are solved by Uzawa-type methods or general
Krylov methods which are applied to the block matrix, using special problem-
adapted preconditioners for the Schur complement. From time to time the
level set function has to be reparametrized by a fast marching method. Sev-
eral numerical results demonstrate the capability of our approach to solve 3D
incompressible two-phase flow problems for real two-phase systems originating
from droplet and falling film applications.

On the basis of our experience in this field we come to the conclusion that
numerical methods originally designed for the simulation of incompressible
one-phase flows are often not appropriate tools to solve incompressible two-
phase flow problems. In this context we mention numerical oscillations of the
velocity at the interface, so-called spurious currents, which are reported by
many other authors, e.g., [LNST94, WKP99, FCD"06]. Hence, new methods
and concepts have to be developed which address the special properties of
two-phase systems such as discontinuous material properties, discontinuous
pressure jump across the interface or the localized surface tension force term,
just to mention a few. This thesis contributes to these topics by introducing
and analyzing the following two new numerical methods:

o We developed an ¢mproved Laplace-Beltrami discretization frh of the
localized surface tension force term fp, cf. Section which is superior
compared to a standard Laplace-Beltrami discretization on a piecewise
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planar interface approximation I',. The improved discretization frh is
of first order w.r.t. h in the dual norm ||-|[v; , whereas the standard dis-
cretization fr, is only of order 3. This has been shown by the theoretical
analysis in Section[5.3.3land was also observed in numerical experiments
presented in Section

We introduced an extended finite-element space QZ for the pressure, cf.
Section [5.4, which is suitable for the approximation of functions which
are smooth on Q7 U Qs but discontinuous across I'. For such functions
the approximation error in || - |[1,(q) is O(Vh) for standard finite ele-
ment spaces (conforming and non-conforming as well), cf. Section[5.4.1]
whereas we achieve O(h?) for the XFEM space Q% cf. Theorem [5.26]
Combining pressure XFEM with the improved Laplace-Beltrami dis-
cretization for the surface tension force, numerical results for the stan-
dard test case of a static bubble show a substantial reduction of spurious
currents compared to standard approaches, cf. Section[10.4.

In addition to these two methods, the main characteristics of our numerical
strategy are the following;:

The level set method is applied for capturing the interface between the
two phases, cf. Section [2.2.1.

The spatial discretization is based on a hierarchy of grids which are
constructed in such a way that they are consistent (i.e., no hanging
nodes) and that the hierarchy of triangulations is stable, cf. Chapter
Local refinement and coarsening are easy to realize.

For the discretization of level set and Navier-Stokes equations we use
conforming P, finite elements for the velocity u and level set function
o, cf. Chapter [4, as well as extended finite elements for the pressure p,
cf. Section5.4.

The one-step theta-scheme or a linearized variant of it is applied for time
integration, cf. Section [6.1.2.

In each time step the nonlinearity of the discrete Navier-Stokes problem
is treated by a fixed point defect correction. The Oseen problems are
solved by an inexact Uzawa method or Krylov subspace methods, where
the Schur complement is preconditioned by special preconditioning tech-
niques accounting for the piecewise constant material properties p and
. All these issues are discussed in Chapter [7.

The Fast Marching method is used for reparametrization of the level set
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function ¢, cf. Section

e Most of the numerical components have been parallelized to enable the
simulation of complex two-phase flow problems with sufficient resolu-
tion in affordable computational time, cf. Section [9.2. However, some
important issues such as the XFEM discretization of the pressure are
still missing in the parallel version of DROPS.

We emphasize that the combination of the level set method, finite element
discretization, extended pressure finite element space, Laplace-Beltrami par-
tial integration and multilevel local refinement is unique among all numerical
strategies known to the author for the simulation of two-phase flow problems.

There are still many open questions and unresolved challenges left which
should be addressed in the future. As an outlook we mention some of the
topics, which are, in the opinion of the author of the thesis, among the most
important to be considered.

New functionality

e Consider a variable surface tension coefficient 7 = 7(z,t). In this case
the surface tension force term in weak formulation reads as follows,

}’ar(v)://in~(Tv)—VpT~vds forall veV.
r
As we saw in Section [5.3 an accurate discretization fi?* € V), of fra*

is a delicate task. We should guarantee at least first order convergence
w.r.t. the grid size hp at the interface, i.e.,

|55 = fi*llv, = O(hy)

with p > 1. A method for the discretization of f", which extends
the ideas used for a constant surface tension coefficient 7, has been
implemented in DROPS. A systematic analysis of the quality of this
approach has not been performed, yet.

e Include heat and mass transport in both phases. The additional par-
tial differential equations are transient reaction-diffusion equations with
piecewise constant coefficients due to the different material properties of
the two phases. In the case of mass transport the concentration ¢ has
a jump at the interface. As was shown in Section [5.4.1, standard FEM
techniques will not lead to satisfactory results. Here an XFEM approach
combined with a Nitsche technique as described in [HHO04| has an opti-
mal approximation property. An alternative XFEM approach without
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the need for a penalty term also shows this optimal order of conver-
gence in numerical experiments, cf. [MCCRO03]. We mention that we
implemented a standard FEM discretization of a two-phase convection-
diffusion equation in DROPS, but did not systematically analyze its ac-
curacy, yet.

Study Marangoni effects induced by a temperature-dependent or con-
centration-dependent surface tension coefficient 7.

Include mass transport on the interface to model the contamination of
the interface with surfactants. The higher the interface concentration of
surfactants, the lower the surface tension. By this mechanism these im-
purities are made responsible for the so called stagnant cap of a droplet,
i.e., a region where the interface gets rigid and inner circulations are
dramatically slowed down compared to clean systems.

For the discretization of the convection-diffusion equation on I' an Eule-
rian finite element method described in [ORGO8] will be applied. Here
we got first preliminary results for a reaction-diffusion equation on a
static sphere.

Improvement of numerical methods

The design of better Schur complement preconditioners for the Oseen
problem, especially for convection-dominated problems, is of great in-
terest.

Alternative iterative solvers such as multigrid methods applied to the
Oseen problem [LRO8| or the application of projection methods such
as Chorin or SIMPLE [Ran04] should be compared to the methods de-
scribed in Section [7.2 with respect to their efficiency.

Other coupling strategies besides the one described in Algorithm [6.12
should be considered, for example, methods based on defect correction
or Newton-type methods. A comparison with linearized time discretiza-
tion schemes which avoid such a coupling will show the benefits and
disadvantages of the different approaches.

A suitable adaptive control of the time step size should be considered in
the future.

The stabilization of the finite element discretization of the Navier-Stokes
equations by SDFEM [RST96, GLOS05] would enable the simulation of
flow problems with higher Reynolds numbers.
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e Up to now the level set function is used as an indicator for grid refinement
which has proved to be satisfactory for the two-phase flow problems
considered in this thesis. In the case of coupled two-phase momentum,
heat and mass transport a more sophisticated control of grid adaption
is demanded. Then error estimation techniques, e.g., in the spirit of
[Ver96], have to be combined with appropriate strategies to decide which
elements should be marked for refinement or coarsening.

Questions related to XFEM

e Is the finite element pair V), x Q} LBB stable? If this is not the case,
how can it be stabilized, e. g., by adding appropriate stabilization terms
to the discretization?

e A good understanding of the time discretization in the case of a time
dependent discrete divergence operator B = B(t) is still lacking.

e The velocity u € V has a kink at the interface which is not optimally
resolved by the standard piecewise quadratic finite elements currently
applied for the discretization u;, € Vj. Here an XFEM approach com-
bined with a Nitsche technique as described in [HH04| or a modified
XFEM abs-enrichment [MCCRO3] would lead to an optimal approxi-
mation property. However, the technical difficulties arising from this
method seem to overbalance its benefits.

Many of these issues are topics of current research and some of them will
be implemented in the DROPS package in the near future. Our goal is to
provide DROPS as an efficient and accurate 3D simulation tool for flow and
transport processes in two-phase systems. The future perspectives are two-
fold in the following sense. From the mathematical point of view DROPS
will serve as a framework to improve existing and develop new numerical
methods for two-phase flow problems. From the application point of view
DROPS will help users from the engineering community to solve their distinct
real-life two-phase problems. Here both disciplines, numerical mathematics
as well as engineering science, will benefit from each other. On the one hand
the engineers will gain more insight from improved simulations, and on the
other hand the mathematicians can learn from application examples, which
numerical components should be further improved.
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