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We introduce the combination technique for the numerical solution of d-

dimensional eigenproblems on sparse grids. Here, O(d·(logN)d−1) different

problems, each of size O(N), have to be solved independently. This is in

contrast to the one problem of size O(Nd) for a conventional finite element

discretization, where N denotes the number of grid points in one coordinate

direction. Therefore, also higher dimensional eigenvalue problems can be

treated by our sparse grid combination approach.

We apply this method to solve the three-dimensional Schrödinger equa-

tion for hydrogen (one electron problem) and the six-dimensional Schrö-

dinger equation for helium (two electron problem) in strong magnetic and

electric fields.
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1. INTRODUCTION

In the late sixties evidence for the existence of strong magnetic fields in the

vicinity of white dwarf stars (102 − 105 Tesla) and neutron stars (107 − 109 Tesla)

was found. These strong to very strong magnetic fields induce drastic changes in the

atomic structure of the influenced matter. Therefore atomic properties like energy-

levels and wavelengths need to be reconsidered for matter under these conditions.

For the hydrogen atom in magnetic fields, numerical calculations for a wide range

of states and field strengths were done and the corresponding eigenvalues and eigen-

functions are known precisely, see [32, 39, 41] and the references cited therein. These

results were compared to observational data and thus delivered evidence for the ex-

istence of hydrogen in the atmosphere of white dwarves and neutron stars with

corresponding magnetic field strengths. The case of hydrogen in magnetic fields is

considered solved.
1
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The situation is different for the helium atom in strong magnetic fields. First

calculations for some atomic properties with the needed precision were performed

only recently, see [7] or [8] and the references cited therein. There, either a two-

particle basis composed of one-particle states of a special Gaussian basis set is used

[7] or a combination of the hyperspherical close coupling approach and a finite

element method of quintic order [8] is employed. In any case the six dimensions

of the original Schrödinger equation for two electrons are brought down to three

dimensions using symmetry arguments. However these techniques can no longer be

applied in cases where both a magnetic and an electric field are present.

In this paper, we propose to directly deal with the six-dimensional eigenvalue

problem resulting from the Born-Oppenheimer approximation of the helium atom.

Here, a finite element discretization with for example piecewise six-linear test and

trial functions would lead to a discrete eigenvalue problem to be solved. If (after

restricting the problem to a sufficiently large finite domain) we assume a spatial

resolution by N grid points in each direction, then the size of the corresponding

discrete eigenvalue problem would be proportional to N 6. We encounter the so-

called curse of dimensionality. This renders the direct finite element discretization

obsolete: For a reasonable value of N , the resulting problem can not be stored and

solved on any existing parallel computer due to its mere size.

However, there is a special discretization technique using so-called sparse grids

which allows to cope with the complexity of the problem, at least to some extent.

This method has been originally developed for the solution of partial differential

equations [5, 9, 24, 48] and is now used successfully also for integral equations [16,

23], interpolation and approximation [6, 22, 31, 43, 45], and integration problems

[18]. In the information based complexity community it is also known as ’hyperbolic

cross points’ and the idea can even be traced back to [44]. For a d-dimensional

problem, the sparse grid approach employs only O(N(logN)d−1) grid points in

the discretization. It can be shown that an accuracy of O(N 2 log(N)d−1) can be

achieved pointwise or with respect to the L2- or L∞-norm provided that the solution

is sufficiently smooth. Thus, in comparison to conventional full grid methods,

which need O(Nd) points for an accuracy of O(N−2), the sparse grid method can

be employed also for higher-dimensional problems. The curse of dimensionality of

full grid methods affects sparse grids much less. Note that there exist different

variants of solvers working on sparse grids, each one with its distinctive advantage

and drawback. One variant is based on finite difference discretization [20, 40], an

other approach uses Galerkin finite element discretization [9, 5, 37] and the so-called

combination technique [24] makes use of multivariate extrapolation [13].

In the following, we apply the sparse grid combination technique to the eigen-

problem of hydrogen and helium in strong magnetic and electric fields. To this end

we have to modify the original approach somewhat and have to adapt it to the solu-

tion of eigenproblems. It turns out that this new method for the numerical solution

of the Schrödinger equation allows to directly deal with the six-dimensional Helium

problem on available parallel computers. Furthermore, the results for hydrogen

with and without strong magnetic and electric fields as well as helium with and

without strong magnetic fields match the values from the recent literature quite

well. Since the sparse grid combination technique employs a conventional grid size

parameter, the results obtained on different refinement levels can be postprocessed
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in a classical extrapolation step which further improves on the results. This is usu-

ally not possible for the other techniques. Furthermore, the combination method

can be parallelized in a straightforward way, see [19, 21]. In contrast to the above-

mentioned approaches, we do not make use of inherent symmetries of the system

to reduce the number of dimensions of the problem nor do we employ specially

developed basis sets. This allows our method to be used straightforwardly also in

the case of helium in general magnetic and electric fields.

The remainder of this paper is organized as follows: In Section 2 we discuss

our numerical approach for the numerical solution of the Schrödinger equation.

We present the basic idea of the combination technique, show how it must be

modified for the treatment of eigenvalue problems as they arise with hydrogen

and helium under strong magnetic and electric fields and give some remarks on

the computational aspects of the implementation. In Section 3 we present the

results of our numerical computations and compare it to that of other approaches.

We first consider the hydrogen problem, impose a strong magnetic field on it and

treat also the case of magnetic and electric fields. Then we turn to the helium

problem, consider it under a strong magnetic field and show finally the result for a

computation for helium with both, magnetic and electric fields. Some concluding

remarks close the paper.

2. NUMERICAL APPROACH

In this section we introduce the problem to be considered, present the main prin-

ciples of the combination technique for sparse grids, discuss necessary modifications

for it and give some remarks on computational aspects of the implementation.

2.1. The eigenvalue problem

If we use the Born-Oppenheimer approximation and neglect the finite mass of

the nucleus, the Hamiltonian for hydrogen in a strong magnetic field Bz along the

z-axis and in a general electric field F reads

H = −∆−
2

|x|
− 2iβ





y

−x

0



 · ∇+ 4βS + β2(x2 + y2) + F · x (1)

where x = (x, y, z) ∈ R3. Here, −∆ denotes the kinetic energy of the electron,

the term −2/|x| gives its Coulomb potential energy in the field of the nucleus,

−2iβ ·
(

y −x 0
)T
· ∇ denotes its Zeeman term, 4βS gives its spin energy and

β2(x2+y2) gives its diamagnetic term. F ·x denotes the influence of the electric field

F . The length is measured in units of the Bohr-radius aBohr and energy is measured

in Rydberg. The magnetic field strength is measured in BZ = 4.70107 · 105 Tesla,

β is the strength of the magnetic field which points in the z-direction and the

electric field strength is measured in FZ = 5.14 · 1011V/m. This is a Hamiltonian

living in three dimensions. Note that for F = ~0 and β = 0 we regain the classical

Hamiltonian of a one particle system with no outer fields, i.e. a one electron system

with fixed nucleus.
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For the helium atom in a strong magnetic field Bz along the z-axis and in a

general electric field F , the Hamiltonian reads

H =

2
∑

j=1



−∆j −
2

|xj |
− 2iβ





yj
−xj
0



 · ∇+ 4βSj + β2(x2
j + y2

j ) + F · xj



+
1

|x1 − x2|

where x = (x1,x2) ∈ R6. This sum includes for both electrons their respective

energies from equation (1) and the expression 1
|x1−x2|

corresponds to the electron-

electron repulsion energy. We use charge-Z-scaled atomic units, i.e. Z2 Rydberg as

energy unit and we measure length in aBohr/Z, where for the helium atom Z equals

2. The magnetic field strength is measured in BZ = Z2 · 4.70107 · 105 Tesla, β is

the strength of the magnetic field which points in the z-direction. The electric field

strength is now measured in FZ = Z ·5.14·1011V/m. Since relativistic effects on the

energies of helium are smaller than the required level of accuracy for astrophysical

applications we neglect spin-orbit coupling. This Hamiltonian now lives in six

dimensions. Again note that for β = 0 and F = 0 we obtain the Hamiltonian of

a two particle system with no outer fields, i.e. a two electron system with fixed

nucleus.

In both cases we have to solve the associated stationary Schrödinger equation

Hu = Eu (2)

which is an eigenproblem in either three- or six-dimensional space. The function u

denotes the wavefunction and E denotes the eigenvalue to be found. The boundary

condition is

u(x)→ 0 for |x| → ∞.

A conventional finite element discretization would now employ an equidistant

grid Ωn,...,n with mesh size hn = 2−n for each coordinate direction. To make things

feasible, we have to restrict the continuous problem on Rd to a problem on a finite

domain. To this end we choose a sufficiently large box Ω̄ = [−a, a]d and restrict the

eigenproblem to it. This approximation is justified since the eigenfunctions u decay

rapidly away from the origin and approach zero in the limit |x| → ∞. Therefore, as

usual in many physics applications, we cut off the eigenfunctions on the boundary

of Ω and set their values equal to zero there. It remains to find a proper value for

a.

A finite element method with piecewise d-linear test and trial functions on grid

Ωn,...,n now would result in the discrete eigensystem

Hn,...,nun,...,n = λn,...,nMn,...,nun,...,n (3)

with mass matrix Mn,...,n, discrete Hamiltonian Hn,...,n and discrete eigenvalues

λn,...,n.

This problem might in principle be treated by an appropriate eigensolver like the

Lanzcos method, the (Jacobi-)Davidson method or some other suitable iterative

method. For a sufficiently smooth continuous solution u we then would obtain

an error en,...,n = u − un,...,n whose size in Lp-norms is of the order O(h2
n), p =
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1, 2,∞. The number of grid points would be of the order O(h−dn ) and, in the best

case, if the most effective techniques like multi-grid methods are used, the number

of operations is of the same order. However, this direct application of a finite

element discretization and an eigensolver for the arising discrete system is clearly

not possible for a six-dimensional problem. The arising system can not be stored

and solved on even the largest parallel computers today.

2.2. The sparse grid combination technique

Therefore we proceed as follows: We discretize and solve the problem on a certain

sequence of grids Ωi1,...,id with uniform mesh sizes hj = 2a · 2−ij in the j-th coordi-

nate direction. These grids may possess different mesh sizes for different coordinate

directions. To this end, we consider all grids Ωi1,...,id with

i1 + ...+ id = n+ (d− 1)− l, l = 0, .., d− 1, ij > 0.

The finite element discretization of (2) with piecewise d-linear test and trial func-

tions then results in the discrete eigensystems

Hi1,...,idui1,...,id = λi1,...,idMi1,...,idui1,...,id (4)

with mass matricesMi1,...,id , discrete HamiltoniansHi1,...,id and eigenvalues λi1,...,id .

We then solve these problems by a feasible method. The discrete eigenfunctions

ui1,...,id are contained in the space Si1,...,id of homogeneous piecewise d-linear func-

tions on grid Ωi1,...,id .

Note that all these problems are substantially reduced in size in comparison to

(3). Instead of one problem with size dim(Sn,...,n) = O(h−dn ) = O(2nd), we now

have to deal with O(d · nd−1) problems of size dim(Si1,...,id) = O(h−1
n ) = O(2n).

For any reasonable n, each problem fits nicely into the main memory of a modern

workstation. Moreover, all these problems can be solved independently which allows

for a straightforward parallelization on a coarse grain level, see [19]. Also there is

a simple but effective static load balancing strategy available [21].

Finally we linearly combine the results ui1,...,id ∈ Si1,...,id from the different grids

Ωi1,...,id as follows:

ucn =

d−1
∑

l=0

(−1)l
(

d− 1

l

)

∑

i1+...+id=n+(d−1)−l

ui1,...,id , (5)

The resulting function ucn lives in a so-called sparse grid space

Scn :=
⋃

i1 + ...+ id = n+ (d− 1)− l

l = 0, ..., d− 1

Si1,...,id .

This sparse grid space has dim(Scn) = O(h−1
n (log(h−1

n ))d−1). It is spanned by a

piecewise d-linear hierarchical tensor product basis, see [9]. Note that the summa-

tion of the discrete functions from different spaces Si1,...,id in (5) involves d-linear

interpolation which resembles just the transformation to a representation in this

hierarchical product basis. For details see [20, 25].
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FIG. 1. Combination technique on level 4, d = 2, l = 4

For the two-dimensional case, we display the grids needed in the combination

formula of level 4 in Figure 1 and give the resulting sparse grid.

The corresponding eigenvalues are combined in the same manner:

λcn :=
d−1
∑

l=0

(−1)l
(

d− 1

l

)

∑

i1+...+id=n+(d−1)−l

λi1,...,id . (6)

This is possible due to their representation with the Rayleigh quotient.

For second order elliptic PDE model problems, it was proven that the combi-

nation solution ucn is almost as accurate as the full grid solution un,...,n, i.e. the

discretization error satisfies

||ecn,...,n||Lp
:= ||u− ucn||Lp

= O(h2
n log(h

−1
n )d−1)

provided that a slightly stronger smoothness requirement on u than for the full grid

approach holds. We need the seminorm

|u|∞ :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2du
∏d
j=1 ∂x

2
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

(7)

to be bounded. Furthermore, a series expansion of the error is necessary for the

combination technique. Its existence was shown for PDE model problems in [12].

This approach should carry over to the eigenvalue problem without problems. Note
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FIG. 2. The ordering of the eigenvalues for the combined grid needs not to correspond to
the ordering on the grids used in the combination technique (λi ≤ λi+1)

that the combination technique can be interpreted as a certain multivariate extrap-

olation method which works on a sparse grid, for details see [38, 24, 13]. This

gives later also the possibility to further improve on the results of the combination

method by extrapolating the achieved results. The previously mentioned other

approaches [7, 8] do not allow for this.

The combination technique is only one of various methods to solve problems on

sparse grids. There exist also finite difference [20, 40] and Galerkin finite element

approaches [5, 9, 11] which work directly in the hierarchical product basis on the

sparse grid. These methods allow for adaptive local refinement of the sparse grid

in a natural way. This can not be achieved for the combination technique. But

the combination technique is conceptually much simpler and easier to implement.

Moreover it allows to reuse standard solvers for its different subproblems and is

straightforwardly parallelizable.

2.3. Identification of eigenvalues

Now the discrete eigenvalues and eigenfunctions have to be computed for every

grid arising in the combination technique. For reasons of efficiency and complexity

we do not aim at the whole spectrum but merely settle for a sufficient amount

eigenvalues and their associated eigenfunctions at the lower end of the spectrum.

We employ a preconditioned version of the SIRQIT-CG [35] algorithm where we

use a Jacobi-preconditioner on the search directions of each eigenvalue.

Note that the combination formula (6) for the eigenvalues is not as straightfor-

ward as it seems. We encounter the following identification problem: The eigen-

solver computes on each grid the eigenfunctions in the ordering of the size of the

eigenvalues. However it may happen that the ordering of the discrete eigenvalues

is different on the various grids of the combination technique. It is a-priori not

obvious which eigenvalue on one grid corresponds to which eigenvalue on an other

grid, see Fig. 2 for a two-dimensional example. Therefore a procedure has to be

developed to identify the respective eigenvalue on the different grids of the com-

bination technique, before its values can be entered in the combination formula

(6) to obtain the sparse grid approximation to the k-th smallest eigenvalue of the

continuous problem.

To this end, we proceed as follows: We define two grids to be ’neighboring’ if

either their indices differ only in one coordinate direction by ±1 or their indices

differ in two coordinate directions one by −1 and the other by +1. In other words
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we have either

Ωi1,...,ik−1,ik±1,ik+1,...,id

for some k ∈ {1, ..., d} or

Ωi1,...,ip−1,ip+1,ip+1,...,iq−1,iq−1,iq+1,,...,id (8)

for some p, q ∈ {1, ..., d}, p 6= q, as the neighboring grids of Ωi1,...,id .

Furthermore we define an ordering of all the grids Ωi1,...,id and their associated

indices (i1, ..., id) arising in the combination technique by the following enumeration

procedure:

l = 0 to d− 1

i1 = 1 to n− l

i2 = 1 to n− l − (i1 − 1)

i3 = 1 to n− l − (i1 − 1)− (i2 − 1)

.....

id−1 = 1 to n− l − (i1 − 1)− ...− (id−2 − 1)

id = n− l − (i1 − 1)− (i2 − 1)− ...− (id−2 − 1)− (id−1 − 1).

Now, we traverse the set of grids according to this ordering. For each grid we

pick that neighboring grid which was encountered most recently in the traversal.

This gives us a unique sequence of pairs of neighboring grids.

We match the eigenfunctions (and thus their corresponding eigenvalues) of each

pair of grids as follows: We interpolate the eigenfunctions (or alternatively their

Fourier transforms) from the two respective grids to the finer grid which contains

both grids (i.e. Ωi1,...,ip−1,ip+1,ip+1,...,id in (8)) and we search there for the pairs

of functions with the smallest distance measured in the Euclidean norm. This

identifies their associated eigenvalues. This process starts with the grid Ω1,1,..,n

and the desired eigenvalue there and traverses through the sequence of pairs of

grids. Altogether this gives us the discrete eigenvalues needed for (6).

It is not clear to us if our approach always works. For example, for higher eigen-

values the shape of the eigenfunctions belonging to the same continuous eigenvalue

might vary quite a lot from grid to grid especially on strong anisotropic grids. This

would result in intertwined eigenvalues.

A certain problem is the case of multiple eigenvalues. The eigenfunctions in the

associated eigenspace are not unique and an identification is not possible. However

by imposing small perturbations to the problem we can cope with this effect, i.e.

the multiple eigenvalues get numerically distinct and the eigenfunctions get unique.

Of course, one has to take care that the introduced error stays smaller than the

discretization error. To this end we slightly change the size of Ω with respect to the

different coordinate directions. In all our numerical experiments, the introduced

error was below the accuracy of the approximation but allowed to distinguish mul-

tiple eigenvalues properly. Note furthermore that we did not use all grids of the

combination technique in the case of multiple eigenvalues, since grids with a mesh

size of hj = 2a ·1/2 only in at least one coordinate direction do not allow for enough

freedom to resolve multiple eigenvalues properly. Thus, we have to omit these grids

from the combination process. The modified formula for the combination technique
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is then

ucn =

d−1
∑

l=0

(−1)l
(

d− 1

l

)

∑

i1+...+id=n+(d−1)−l

ij≥ml+1

ui1,...,id with ui1,...,id ∈ Si1,...,id ,

with ml (= minimal level) being a parameter for the minimal number of points

in one dimension on the subgrids. With ml > 0 the combination technique now

involves fewer grids and the resulting sparse grid has therefore less points. Note

that a similar modification of the combination technique was already used in the

treatment of turbulent fluid flow problems, see [29].

Another difficulty is the following: In the presence of a magnetic field, i.e. if

β 6= 0, the eigenfunctions ui1,..,id and consequently ucn are complex-valued. We

avoid a complex-valued implementation of our sparse grid combination technique

and handle their real and their imaginary part separately. We use the fact that the

matrices are Hermitian and consequently the eigenvalues are real numbers. Thus

we still can use our SIRQIT-CG eigensolver with only minimal modifications for

handling the complex eigenfunctions. To this end we use the fact that an eigenvalue

problem

Âx̂ =

[

Are −Aim

Aim Are

] [

xre
xim

]

= λ

[

Mxre
Mxim

]

(9)

has with eigenvector
[

xre

xim

]

also
[

−xim

xre

]

as eigenvector for the double eigenvalue λ.

The composed matrix Â is real and selfadjoint and possesses the eigenvalues of the

original A just twice, see also [47], page 174. So we call our eigensolver basically

for a matrix with twice the size (real plus imaginary part) and can proceed as

before. The previously described identification process of discrete eigenvalues by

means of matching their eigenfunctions has to be modified accordingly. We now

take the squares of the complex eigensolutions and compare them on neighboring

grids in the identification routine. The squares of the eigenfunctions are the relevant

informations for a physical interpretation anyway. Note that the identification of

the eigenfunctions gets more difficult the bigger the magnetic field gets. Then the

orderings of the eigenvalues on the various grids of the combination technique get

more and more intertwined. For example, in the case of hydrogen with magnetic

field stronger than β = 0.1, we identified the first five eigenvalues. To achieve this

it was necessary to compute up to fourteen eigenvalues on the different grids of the

combination technique.

2.4. Graded grids

If the smoothness requirement (7) on the solution is not fulfilled then the order

O(h2
n(log h

−1
n )d−1) of the error of the sparse grid approximation can in general not

be observed. Actually the order deteriorates to O(hrn(log h
−1
n )d−1) where r resem-

bles the corresponding smoothness of u. Note that for a finite element discretization

on a full grid Ωn,...,n an analogous deterioration can be observed if its smoothness

requirement, namely ||∂2u/∂x2
1+ ...+∂2u/∂xdu||Lp

≤ c <∞ or its equivalent weak

form is not fulfilled. Then we only obtain an O(hrn) order for the corresponding

error.
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In any case, for non-smooth solutions, an adaptive refinement strategy can be

employed to remedy the situation. The classical finite element method allows for

adaptive grid refinement in its h-version [3]. This technique has been successfully

applied for the solution of the one-, two- and three-dimensional Schrödinger equa-

tion for hydrogen and related one particle systems, see [1, 2, 14]. Instead of finite

elements also wavelets might be used [34]. For a multigrid solver see [26]. Note

however that due to the curse of dimensionality there is no hope for these methods

to be ever applied to a six-dimensional problem. Adaptivity helps to cope with the

non-smooth behavior of the solution but can not circumvent the intrinsic O(N 6)

complexity for the smooth parts of the solution. Besides, it is extremely difficult

to define, to refine and to code the necessary higher-dimensional adaptive data

structures at all.

The sparse grid Galerkin method as well as the sparse grid finite difference

method can be generalized to incorporate adaptive refinement strategies [5, 9, 11,

20, 40, 48, 49]. So far, the adaptive sparse grid Galerkin method has been applied

successfully to the solution of the two- and three-dimensional Schrödinger equation

for hydrogen and related ionized one particle systems, see [27, 28]. But due to the

extreme difficulty of coding more involved differential operators than the Lapla-

cian and the more complicated potentials needed in the helium case, there exist no

implementations for higher-dimensional problems yet.

The generalization of the combination technique towards adaptive local refine-

ment is very difficult or even impossible. An easy way to obtain at least some

a-priori adaptive effect for the combination technique is the usage of graded in-

stead of uniform grids, see also [25]. A grading function

g(x) 7→ y, x, y ∈ [a; b]

describes a certain change in the positions of the grid points. To this end, each

point of the equidistant grid is mapped onto a point of the graded grid. Such a

function can be applied for each coordinate direction independently, such that the

resulting grid is still rectangular. Note that we roughly know a-priori where more

grid points are needed for the considered eigenproblems for hydrogen and helium.

For the example of the Coulomb potential the area around the associated singularity

is surely the region where a higher grid point density is appropriate.

Altogether, we allow to prescribe a grading function for each coordinate direc-

tion. These functions map all the different grids arising in the combination formula

accordingly and the combination technique then works on a graded sparse grid. An

example for the grading induced by the Coulomb potential is given in Figure 3.

Of course, the formerly linear basis functions are transformed analogously and the

linear interpolation between different grid spaces must be changed accordingly. For

details see [25].

Surely, this approach is not optimal and merely a heuristic one. But in practice

it results in good improvements on the accuracy of the computed eigenfunctions

and eigenvalues without much additional cost.

2.5. Some computational aspects of the implementation

Let us now comment on the assembly of the stiffness matrices Hi1,..,id on the

various grids Ωi1,...,id arising in the combination formula (5). To this end, each
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FIG. 3. Combination technique for a two-dimensional graded grid of level 4, the grading
function is g(x) = sign(x)x2/a for every coordinate direction.

row of these matrices has about 3d entries (except near boundaries). This is due

to the d-linear test and trial functions we use in the finite element discretization

process. While the component of the entries belonging to the kinetic energy, i.e.

the Laplacian, can be given directly, the remaining parts of the Hamiltonian involve

x-dependent coefficient functions and need to be evaluated numerically. Here,

especially the computation of the six-dimensional expression resulting from the

electron-electron repulsion energy 1
|x1−x2|

for helium is a tough numerical integra-

tion problem. We have

∫ ∫ ∫ ∫ ∫ ∫

φi(x)φj(x)

|x1 − x2|
dx (10)

where φi(x), φj(x) denote six-linear test and trial functions. Not only does it

involve an integration formula in six dimensions, but the integrand also exhibits

a three-dimensional area singularity. A straightforward numerical integration with

quadrature formulas is not possible in the parts of the integration domain where

the pairs x1i
and x2i

overlap, i = 1, 2, 3.

Based on the work in [36] we developed recursion formulas for integrals of the

type
∫∫∫∫∫∫

xkylzmurvswt

|(x, y, z)− (u, v, w)|
dxdydzdudvdw

which make it possible to calculate the above integrals (10) accurately. For details

see [17]. But also the computations for the remaining parts of the integration
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domain are quite costly due to the high dimensionality of the problem. Altogether,

the integration of the entries of the stiffness matrices are a substantial factor in the

total run time and further savings are desirable. It must be further investigated

if advanced quadrature techiques like quasi Monte Carlo or sparse grid integration

[18] might help in this respect.

To reduce the computational work we can take advantage from the symmetry

of the underlying potentials. This symmetry can be used in the integration of the

stiffness matrix entries. Here integration results for some parts of the domain are

just equal to that of certain other parts due to mirror symmetry. This substantially

cuts down the cost for the assembly of the system matrices which are needed in the

combination technique.

3. NUMERICAL RESULTS

In this section we use the following notation: λn is a numerical eigenvalue at

refinement level n, en := |λ−λn|
|λ| is the relative eigenvalue error at level n in com-

parison to known exact solutions or results from other works taken as reference

values, δλn := |λn − λn−1| is the difference between the corresponding numerical

eigenvalues from level n and level n− 1.

3.1. The hydrogen atom

First we consider the Schrödinger equation for the hydrogen atom with no outer

fields. Due to symmetry, the equation can be reduced to a one-dimensional problem

for which an analytical solution is known. Nevertheless, the three-dimensional

hydrogen equation is numerically demanding and therefore serves as a standard

test problem for any numerical eigenvalue calculation of the Schrödinger equation.

In the Born-Oppenheimer approximation we get the equation

−∆u(x)−
2

|x|
u(x) = Eu(x). (11)

Here length is measured in units of the Bohr-radius aBohr and energy is measured

in Rydberg.

Now we apply our sparse grid combination technique and compare its results

to the known analytic values. To this end, we restrict the problem to the finite

domain [−a; a]3 and use homogeneous Dirichlet conditions on the boundary. To

grade the sparse grid towards the origin we use the function g(x) = sign(x)x2

a
for

every coordinate direction, compare also Figure 3. The Coulomb potential depends

on the distance to the origin and, surely, the best would be a properly graded and

rotationally symmetric grid around the origin. Such a configuration however can

not be achieved by the sparse grid combination technique. The grading of the grid

is merely a heuristic which is not optimal but at least improves on the accuracy.

Figure 4 shows the xy-slice (z = 0) of the error function of the ground state

for the resulting solutions at levels 8 and 11. Here, for display purposes, we used

a = 7.5. For the computations reported in the following tables we used the value

a = 15.

It can be clearly seen that the error is largest at the origin where the nucleus is

situated. Here the solution develops a singularity. This singularity gets quite well

isolated by the graded sparse grid especially at the higher level. At the boundary
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FIG. 4. Plot of the error function for the spatial probability distribution of the electron in
the xy-plane for the ground state of the hydrogen atom at level 8 and 11.

of the computational domain we obtain an error by using homogeneous Dirichlet

conditions there. This error is moderate but it gets more important on finer levels.

Another source for error is the perturbation we impose in our identification pro-

cess to distinguish the multiple eigenvalues when we calculate higher states (2s,

2p). Here we change the domain to [−a; a]× [−a+ ε; a− ε]× [−a− ε; a+ ε], with

very small ε. Note that the induced error is significantly smaller than the accuracy

of the approximation in all our experiments.

Table 1 shows the results for the calculation of the three smallest eigenvalues of

the hydrogen problem. Note that the values for the three states 2p0, 2p−1 and 2p+1

are the same due to symmetry reasons. We denote their common value by 2p. We

see that mostly an error quotient of 2 or slightly better is achieved. This suggests a

convergence rate of O(hrn log(h
−1
n )2) with a value of r slightly larger than one which

is satisfactory for linear basis functions and a severely non-smooth eigensolution.

We give the following remarks: First, the error introduced by the homogeneous

Dirichlet boundary conditions on the boundary of [−a, a]3 for a = 15 seems to

influence the convergence rates starting with level 10. This is most obvious for

the smooth 2p-eigenfunction and the associated eigenvalue from column 6 of the

Table. In further experiments with larger values for a the onset of this effect was

observed on higher levels. Then, note the different convergence rates for the two

types of second eigenvalues and their associated eigenfunctions. This is due to the

different structure of the eigenfunctions. In Fig. 5 we show a cut through the two

eigenfunctions for the second eigenvalue. Their different structure and smoothness

properties can clearly be seen. This suggests that it would be appropriate to use for

each eigenfunction its specially fitted grading function. Note that we use only one

grading function for all eigenvalue problems. The grading function sign(x)x2/a is

tailored to the Coulomb potential and the ground state. Therefore we loose out on

the convergence rate of the much smoother 2p-eigenfunction. Here a compromise
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TABLE 1

The first three eigenvalues of the hydrogen atom. Graded grid,
���

= 1, � = 15.

n points type λn en
en−1

en
δλn

δλn−1

δλn

4 27 1s -0.7537644 2.4624·10−1 - - -

2s -0.1983182 2.0673·10−1 - - -

2p -0.1736482 3.0541·10−1 - - -

5 135 1s -0.7711986 2.2880·10−1 1.0762 1.7434·10−2 -

2s -0.2025577 1.8977·10−1 1.0894 4.2395·10−3 -

2p -0.2095986 1.6161·10−1 1.8898 3.5950·10−2 -

6 495 1s -0.8893831 1.1106·10−1 2.0684 1.1818·10−1 0.1475

2s -0.2244258 1.0230·10−1 1.8598 2.2187·10−2 0.1939

2p -0.2325699 6.9720·10−2 2.3179 2.2971·10−2 1.5650

7 1567 1s -0.9293292 7.0670·10−2 1.5652 3.9946·10−2 2.9586

2s -0.2357696 5.6921·10−2 1.7972 1.1344·10−2 1.9278

2p -0.2435165 2.5934·10−2 2.6884 1.0947·10−2 2.0985

8 4543 1s -0.9659534 3.4047·10−2 2.0757 3.6624·10−2 1.0907

2s -0.2428197 2.8721·10−2 1.9819 7.0501·10−3 1.6090

2p -0.2475368 9.8530·10−3 2.6321 4.0202·10−3 2.7229

9 12415 1s -0.9837864 1.6214·10−2 2.0998 1.7833·10−2 2.0537

2s -0.2465080 1.3968·10−2 2.0562 3.6883·10−3 1.9115

2p -0.2490494 3.8023·10−3 2.5913 1.5126·10−3 2.6577

10 32511 1s -0.9932130 6.7870·10−3 2.3889 9.4266·10−3 1.8918

2s -0.2484163 6.3350·10−3 2.2049 1.9082·10−3 1.9329

2p -0.2495858 1.6570·10−3 2.2948 5.3635·10−4 2.8203

11 82431 1s -0.9974147 2.5853·10−3 2.6253 4.2017·10−3 2.2435

2s -0.2492320 3.0719·10−3 2.0622 8.1577·10−4 2.3391

2p -0.2497760 8.9596·10−4 1.8496 1.9028·10−4 2.8187

12 203775 1s -0.9987955 1.2045·10−3 2.1464 1.3808·10−3 3.0430

2s -0.2495160 1.9360·10−3 1.5868 2.8403·10−4 2.8722

2p -0.2498424 6.3040·10−4 1.4218 6.6420·10−5 2.8648

1s -0.999759 2.4062·10−4 - - -

extrapolated 2s -0.249829 6.8321·10−4 - - -

2p -0.250007 2.9601·10−5 - - -

1s -1.00 - - - -

exact 2s -0.25 - - - -

2p -0.25 - - - -
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FIG. 5. Plot of the spatial probability distribution of the electron in the xy-plane for the
second eigenfunctions, i.e. the states 2s and 2p0 of the hydrogen atom

has been made between the adaption of the grid to one eigenfunction and the overall

convergence rate for the other eigenfunctions.

Furthermore, we see from Table 1 that the combination method is able to produce

results on level 12 with a relative error of 10−3 to 10−4, respectively. Here, with

ml = 1, 109 different small eigenproblems had been solved with a size of only 14.415

interior points for the largest of them.

Since we employ a grid-based method and compute the results on different levels

anyway, it makes sense to improve on the results by a further classical extrapolation

step. To this end, we take the results on levels 9 to 12 into account, interpolate

by means of a cubic polynomial and evaluate this polynomial at the origin. The

results are given in Table 1 (2nd row from below). Note that we gain more than one

digit. This approach is legitimate since we employ a grid-based solution technique

(h-version). It is not possible for the other approaches [7, 8].

3.2. Hydrogen in magnetic fields

We now consider hydrogen in a strong magnetic field. The equation to be solved

is



−∆−
2

|x|
− 2iβ





y

−x

0



 · ∇+ 4βS + β2(x2 + y2)



u = Eu, x ∈ [−a; a]3.

(12)

We use the same finite domain size and grading function as in the previous sub-

section. The magnetic field strength is measured in BZ = 4.70107 · 105 Tesla, β is

the strength of the magnetic field which points in the z-direction and S is the spin.

Now, due to the magnetic field, this equation can be reduced by symmetry only to a

two-dimensional problem eigenvalue for which an analytical solution is not known



16 J. GARCKE AND M. GRIEBEL

TABLE 2

First eigenvalue of the hydrogen atom under the influence of a

magnetic field of strength � = 0 � 5. Graded grid,
���

= 1.

n λn en
en−1

en
δλn

δλn−1

δλn

4 -1.0451447 3.7128·10−1 - - -

5 -1.1005116 3.3797·10−1 1.0985 5.5367·10−2 -

6 -1.4457099 1.3032·10−1 2.5935 3.4520·10−1 0.1604

7 -1.5923373 4.2110·10−2 3.0947 1.4663·10−1 2.3543

8 -1.6293423 1.9849·10−2 2.1215 3.7001·10−2 3.9624

9 -1.6467572 9.3728·10−3 2.1177 1.7415·10−2 2.1249

10 -1.6555076 4.1089·10−3 2.2811 8.7504·10−3 1.9902

11 -1.6596830 1.5971·10−3 2.5727 4.1754·10−3 2.0957

12 -1.6609649 8.2601·10−4 1.9336 1.2819·10−3 3.2572

extrapolated -1.661035 7.8384·10−4 - - -

corrected with Tab. 1 -1.662170 1.0142·10−4 - - -

reference value -1.662338 [39]

any more. Numerically very precise results for the eigenvalues of the hydrogen

atom in strong magnetic fields were presented in [32, 39] for a wide range of field

strengths. We consider in the following the original three-dimensional equation (12)

to test our sparse grid combination method. The results for the first eigenvalue of

hydrogen under the influence of a magnetic field of strength β = 0.5 are given in

Table 2. Table 3 shows the results for three eigenvalues for the case β = 0.01.

We obtained about the same convergence behavior as for the case without mag-

netic field. On level 12 we achieve a relative error in the range of 10−3 to 10−4 and

classical extrapolation improves on the result. Since the convergence rates for the

computations with and without magnetic field are very similar, we think that it is

justified to use the error of the case without magnetic field in a further correction

step to the case with magnetic field. To this end, we take the error on level 12 of

Table 1 and add it onto the result for the case with magnetic field. This approach

resulted in a substantial improvement, see 2nd row from below in the Tables 2 and

3 which justifies our correction procedure a-posteriori. The resulting eigenvalues

are quite close to those presented in [39].

In Figure 6 we give an example for the influence of a magnetic field on the

form of two eigenfunctions (2p−1 and 2p0). We show the isosurfaces of the spatial

probability distribution (ucn)
2/||ucn||

2 of the electron for the values 0.2, 0.4, 0.6 and

0.8 under a magnetic field with strength β = 0.0, 0.01 and 0.3. Here, the direction

of the magnetic field is parallel to the y-axis, we cut the isosurfaces open along the

xz-plane.

3.3. Hydrogen in magnetic and electric fields

We now consider the case of a magnetic and an electric field which both influence

the electron of the hydrogen atom. To this end the potential term φ = F · x for

the electric field F has to be added to (12). Note that our sparse grid combination
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TABLE 3

Three eigenvalues of the hydrogen atom under the influence of a

magnetic field with strength � = 0 � 01. Graded grid,
���

= 1

n type λn en
en−1

en
δλn

δλn−1

δλn

4 1s -0.7734026 2.4161·10−1 - - -

2s -0.2132771 2.0195·10−1 - - -

2p0 -0.1897908 2.9397·10−1 - - -

5 1s -0.7908242 2.2453·10−1 1.0761 1.7422·10−2 -

2s -0.2185629 1.8217·10−1 1.1086 5.2857·10−3 -

2p0 -0.2282972 1.5072·10−1 1.9504 3.8506·10−2 -

6 1s -0.9091316 1.0852·10−1 2.0690 1.1831·10−1 0.1473

2s -0.2409273 9.8489·10−2 1.8497 2.2364·10−2 0.2363

2p0 -0.2515068 6.4380·10−2 2.3411 2.3210·10−2 1.6501

7 1s -0.9491121 6.9315·10−2 1.5656 3.9980·10−2 2.9591

2s -0.2528442 5.3898·10−2 1.8273 1.1917·10−2 1.8767

2p0 -0.2624168 2.3794·10−2 2.7057 1.0910·10−2 2.1274

8 1s -0.9857477 3.3391·10−2 2.0759 3.6636·10−2 1.0913

2s -0.2600765 2.6836·10−2 2.0084 7.2323·10−3 1.6477

2p0 -0.2663834 9.0378·10−3 2.6327 3.9667·10−3 2.7504

9 1s -1.0035850 1.5900·10−2 2.1001 1.7837·10−2 2.0539

2s -0.2638049 1.2885·10−2 2.0827 3.7284·10−3 1.9398

2p0 -0.2678801 3.3702·10−3 2.6044 1.4966·10−3 2.6504

10 1s -1.0130126 6.6556·10−3 2.3890 9.4276·10−3 1.8920

2s -0.2657138 5.7423·10−3 2.2439 1.9089·10−3 1.9532

2p0 -0.2684110 1.4951·10−3 2.3210 5.3092·10−4 2.8189

11 1s -1.0172147 2.5351·10−3 2.6254 4.2021·10−3 2.2435

2s -0.2665285 2.6937·10−3 2.1318 8.1473·10−4 2.3430

2p0 -0.2685996 7.9345·10−4 1.8844 1.8862·10−4 2.8147

12 1s -1.0185952 1.1814·10−3 2.1459 1.3805·10−3 3.0439

2s -0.2668115 1.6332·10−3 1.6485 2.8304·10−4 2.8784

2p0 -0.2686653 5.4945·10−4 1.4448 6.5712·10−5 2.8701

1s -1.019558 2.3730·10−4 - - -

extrapolated 2s -0.267125 4.6025·10−4 - - -

2p0 -0.268828 5.5801·10−5 - - -

corrected 1s -1.0197997 2.9418·10−7 - - -

with Tab. 1 2s -0.267296 1.7961·10−4 - - -

2p0 -0.268823 3.7201·10−5 - - -

numerically 1s -1.019800 - - - -

precise [39] 2s -0.267248 - - - -

2p0 -0.268813 - - - -
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2p−1 2p0

without magnetic field

with magnetic field of strength β = 0.01

with magnetic field of strength β = 0.3

FIG. 6. Two second eigenfunctions of the hydrogen atom for different magnetic field
strengths. Presented are the isosurfaces of the spatial probability distribution of the electron for
the values 0.2, 0.4, 0.6 and 0.8 (from inside to outside). The direction of the magnetic field is
parallel to the y-axis, the isosurfaces are cut open along the xz-plane.
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approach can be directly applied without further modifications. This is not the

case for most other methods for the calculation of energy values of the hydrogen

atom in magnetic fields. Their adaption to the case of a general additional electric

field is not that easily, if at all possible. The usually used reduction of the number

of dimensions of the equation can not be directly applied in the presence of both

magnetic and electric fields. Here, the angle between these two fields is of relevance.

With our approach calculations for hydrogen in general magnetic fields and electric

fields are straightforward. To be able to compare our results with results from

literature we stick to the simple case of parallel electric and magnetic fields in the

following.

In Table 4 we give the results obtained with the sparse grid combination technique

for the second eigenvalue of the hydrogen atom in a magnetic field of strength

β = 0.01 and a parallel electric field of strength 1.9455252 · 10−4FZ . We observe

about the same convergence behavior as in the previous experiments. On level 12

we obtain a result with a relative error of 2.11 · 10−4 in comparison to a reference

value taken from [15]. After extrapolation we obtain the value −0.269551 and after

correction we get the value −0.269709 respectively. Since the rate δλn−1

δλn
from Table

4 is almost the same as in Tables 1 and 3 for the 2p case we infer an accuracy of

10−5 for the extrapolated eigenvalue. This indicates that the reference value is less

precise than our result.

TABLE 4

Second eigenvalue of the hydrogen atom in a magnetic field of

strength � = 0 � 01 and a parallel electric field of strength

1 � 9455252 � 10
� 4 ���

. Graded grid,
���

= 1

n λn en
en−1

en
δλn

δλn−1

δλn

4 -0.1908852 2.9156·10−1 - - -

5 -0.2292617 1.4914·10−1 1.9550 3.8377·10−2 -

6 -0.2522837 6.3695·10−2 2.3414 2.3022·10−2 1.6670

7 -0.2631517 2.3360·10−2 2.7266 1.0868·10−2 2.1183

8 -0.2671102 8.6689·10−3 2.6947 3.9585·10−3 2.7455

9 -0.2686045 3.1231·10−3 2.7758 1.4943·10−3 2.6490

10 -0.2691349 1.1546·10−3 2.7049 5.3039·10−4 2.8174

11 -0.2693234 4.5501·10−4 2.5375 1.8848·10−4 2.8140

12 -0.2693891 2.1135·10−4 2.1530 6.5661·10−5 2.8705

extrapolated -0.269551 3.8960·10−4 - - -

corrected with Tab. 1 -0.269709 9.7450·10−4 - - -

reference value -0.269446 [15]

3.4. The helium atom

Now we consider the Schrödinger equation for the helium atom with no outer

fields. In the Born-Oppenheimer approximation we have the six-dimensional equa-
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tion





2
∑

j=1

[

−∆j −
2

|xj |

]

+
1

|x1 − x2|



u = Eu, x = (x1,x2) ∈ [−a; a]6,

to which we apply our sparse grid combination technique. In the following, we let

a = 15 and choose the same grading function as previously, i.e. g(x) = sign(x)x2/a

for every coordinate direction. The parameter ml is set to one. Note that the full

combination technique, i.e. ml = 0, resulted in wrong results and we had to use

ml = 1 already for the ground state. It seems that the area singularity has a too

large influence on grids where only one inner point is present in some dimensions.

In contrast to other methods we make no use of symmetries to reduce the number

of dimension but deal with the full six-dimensional equation instead.

The number of points of the grids Ωi1,...,id dealt with in the combination technique

is only of the order O(h−1) and the biggest of these grids on level 12 has only

50.421 inner points. Nevertheless, since we have a six-dimensional problem and use

6-linear test and trial functions, a row of the stiffness matrix has typically 729 non-

zero entries (except near the boundary). On level 12 and with ml = 1 the biggest

matrix has a size of 50.421, possesses 17.332.693 non-zero entries and needs about

350 MB storage. The complete set of grids which make up this sparse grid has

2.534.913 inner points. With this level we reached the limit of the main memory of

our computer. Due to the quite long run time needed for the setup of the matrix

parts of the potential term (see the discussion in section 2.5) at least this matrix

data must be kept in memory and cannot be computed on the fly. These memory

limitations prevented us to obtain results on finer levels so far.

Table 5 gives the values for the first eigenvalue for helium computed with the

combination technique. We see a similar reasonable convergence rate like that in

the experiments for hydrogen. In comparison with a reference value from [4] we

get on level 12 a relative accuracy of 6.58 · 10−3. A classical extrapolation step

involving the results from levels 9 to 12 gives even a slightly better value. But

surely, to improve on the result, computations on higher levels are necessary in the

future. This involves a big parallel supercomputer.

TABLE 5

First eigenvalue of helium, Graded grid,
���

= 1

n λn en
en−1

en
δλn

δλn−1

δλn

7 -1.0811176 2.5536·10−1 - - -

8 -1.1366323 2.1712·10−1 1.1761 5.5515·10−2 -

9 -1.3102990 9.7505·10−2 2.2268 1.7367·10−1 0.3197

10 -1.3696518 5.6624·10−2 1.7220 5.9353·10−2 2.9251

11 -1.4192451 2.2466·10−2 2.5205 4.9593·10−2 1.1968

12 -1.4423054 6.5824·10−3 3.4130 2.3060·10−2 2.1506

extrapolated -1.443886 5.4938·10−3 - - -

reference value -1.4518622 [4]
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3.5. The helium atom in strong magnetic fields

First calculations for helium in strong magnetic fields were performed only re-

cently in the last few years. The most accurate results so far were presented in [7].

There a two-particle basis composed of one-particle states of a special Gaussian

basis set was used. Similar accurate results were reached from a combination of

the hyperspherical close coupling approach and a finite element method of quintic

order [8]. Both methods involve a reduction in the dimension of the problem. In

contrast to that we treat in the following the full 6-dimensional equation for the

helium atom in a strong magnetic field Bz along the z-axis





2
∑

j=1



−∆j −
2

|xj |
− 2iβ





yj
−xj
0



 · ∇+ 4βSj + β2(x2
j + y2

j )



+
1

|x1 − x2|



u = Eu

(13)

x = (x1,x2) ∈ [−a; a]6 with our sparse grid combination technique. Here, a = 15

was chosen. Furthermore the grading function from the previous experiments was

used again.

The results are displayed in Table 6. We obtain reasonable convergence results

similar to the rates achieved before. On level 12 we achieve a relative accuracy of

6.8910−3. A classical extrapolation step gives only a slightly better value. Since the

convergence rates for the computations with and without magnetic field are very

similar, we think again that it is justified to take the error on level 12 of the case

without magnetic field and use it to correct the new data. Similar to the case of

hydrogen, this approach resulted in a substantial improvement, see 2nd row from

below in the Table 6. With this defect correction, we obtain an eigenvalue which

is quite near to the other results published in literature so far.

TABLE 6

First eigenvalue of helium in a magnetic field of strength � =

0 � 05, Graded grid,
���

= 1

n λn en
en−1

en
δλn

δλn−1

δλn

7 -1.0521588 2.6743·10−1 - - -

8 -1.1114353 2.2616·10−1 1.1825 5.9276·10−2 -

9 -1.2937951 9.9186·10−2 2.2801 1.8236·10−1 0.3251

10 -1.3525565 5.8273·10−2 1.7021 5.8761·10−2 3.1034

11 -1.4032721 2.2962·10−2 2.5378 5.0716·10−2 1.1586

12 -1.4263453 6.8970·10−3 3.3293 2.3073·10−2 2.1980

extrapolated -1.427516 6.0790·10−3 - - -

corrected with Tab. 5 -1.435902 2.4292·10−4 - - -

reference value -1.436251 [7] (-1.4363474 in [8])

In a series of experiments we computed the first eigenvalue of helium in a magnetic

field for various values of β. For β = 0.01, 0.025 and 0.05 the results are given in

Table 7.
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TABLE 7

Comparison of energies for He at � = 0 � 01 � 0 � 025 and 0 � 05 obtained

by different methods

β = 0.01 β = 0.025 β = 0.05

this work (level 12) -1.4416437 -1.4382257 -1.4263453

this work extrapolated -1.443205 -1.439708 -1.427516

this work corrected with Tab. 5 -1.451200 -1.4477832 -1.435902

Braun et. al. [8] -1.4512222 -1.4479 -1.4363474

Jones et. al. [30] -1.4302 -1.4155

Becken et. al. [7] -1.4510435 -1.436251

Thurner et. al. [46] -1.450975 -1.4476 -1.4357

Scrinzi et. al. [42] -1.4477

Larsen et. al. [33] -1.4468

For comparison, we listed also the numbers reported in other publications. We

see that these results differ quite a bit. The other approaches surely have their own

distinct sources of error (model approximations, discretization) whose influence on

the final result are not completely understood. We believe that 3 to 4 reliable

digits are state of the art. Our extrapolated and corrected results are therefore

quite accurate and satisfactory.

3.6. The helium atom in strong magnetic and electric fields

Finally, we consider the problem of helium in strong magnetic and electric fields.

To this end the term
∑2

j=1 F · xj must be added to the left-hand side of equation

(13). Here we study the case of an electric field which is perpendicular to the

magnetic field. The results obtained by the sparse grid combination technique are

shown in Table 8. We observe a similar convergence behavior as before.

.
TABLE 8

First eigenvalue of helium in a magnetic field of strength � =

0 � 05 and a perpendicular electric field of strength 0.01,

graded grid,
���

= 1

n λn en
en−1

en
δλn

δλn−1

δλn

7 -1.0748930 - - - -

8 -1.1354310 - - 6.0538·10−2 -

9 -1.3138772 - - 1.7845·10−1 0.3393

10 -1.3719900 - - 5.8113·10−2 3.0707

11 -1.4219477 - - 4.9958·10−2 1.1632

12 -1.4448630 - - 2.2292·10−2 2.1801

extrapolated -1.446180 - - - -

corrected with Tab. 5 -1.454420 - - - -
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In a further experiment we considered the case of helium under magnetic field of

strength β = 0.05 and a parallel electric field of strength 0.01. There we obtained

the value −1.454730 for the first eigenvalue.

4. CONCLUSIONS

We presented the sparse grid combination technique for the calculation of eigen-

values of the Schrödinger equation for the hydrogen atom and the helium atom in

magnetic and electric fields. In comparison to other methods we did not reduce the

dimensions of the problem besides the standard Born-Oppenheimer approximation

but directly treated the three- and the six-dimensional equation, respectively. For

the hydrogen atom we obtained results which were almost equal to that in the lit-

erature which are considered to be numerically exact. Due to computer memory

limitations we could not perform as precise calculations for helium as intended, but

the results were still quite near to the ones published elsewhere. We admit that it is

presently not possible to compute eigenvalues from the higher end of the spectrum.

Also the grading of the grid, the extrapolation of the results and the defect cor-

rection step is somewhat heuristic. But the important advantage of our approach

is its universality. There is almost no difference in treating atoms with and with-

out external fields. Without further modifications it was possible to calculate the

eigenvalue of helium in the presence of magnetic and electric fields.

So far we used only d-linear test and trial functions in the discretization step

of the combination technique. A possibility for further improvement is the use

of higher polynomials. Just d-quadratic test and trial functions should bring a

substantial improvement of the accuracy, see also [10]. On the other hand we have

to work further on the implementation if we ever want to treat higher-dimensional

problems like lithium, beryllium, boron etc. The number of grid points involved in

the combination technique is only of the order O(h−1
n (log(h−1

n ))d−1) and scales very

moderately with d. But note that the order constant is exponentially dependent

on d, at least as long as we use d-linear test and trial functions. Note finally that

the treatment of higher-dimensional problems like lithium, beryllium, boron etc.

with the sparse grid combination technique is a future challenge for a large parallel

supercomputer with many thousand processors since the number of problems to be

solved independently is of the order O(d · (log h−1
n )d−1).
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dünnen Gittern. Dissertation, Institut für Informatik, Technische Universität München, 1994.

6. G. Baszenski. Nth order polynomial spline blending. In K. Zeller W. Schemp, editor, Multi-
variate approximation III. Birkäuser, Basel, 1985.



24 J. GARCKE AND M. GRIEBEL

7. W. Becken, P. Schmelcher, and F.K. Diakonos. The helium atom in a strong magnetic field.
acc. f. publ. in J. Phys. B, 1999.

8. M. Braun, W. Schweizer, and H. Elster. Hyperspherical close coupling calculations for helium
in a strong magnetic field. Phys. Rev. A, 57:3739ff., 1998.

9. H.-J. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidi-
mensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, Technische Universität
München, 1992.

10. H.-J. Bungartz. Finite Elements of Higher Order on Sparse Grids. Habilitation, Institut für
Informatik, Technische Universität München, 1998.

11. H.-J. Bungartz, T. Dornseifer, and C. Zenger. Tensor product approximation spaces for the ef-
ficient numerical solution of partial differential equations. In Proc. Int. Workshop on Scientific
Computations, Konya. Nova Science Publishers, Inc, 1996.

12. H.-J. Bungartz, M. Griebel, D. Röschke, and C. Zenger. Pointwise convergence of the com-
bination technique for the Laplace equation. East-West Journal of Numerical Mathematics,
2:21–45, 1994.
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