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Abstract

The solution of partial differential equations on a parallel computer is usually done
by a domain decomposition approach. The mesh is split into several partitions mapped
onto the processors. However, partitioning of unstructured meshes and adaptive refined
meshes in general is an N P-hard problem and heuristics are used. In this paper space-
filling curve based partition methods are analysed and bounds for the quality of the
partitions are given. Furthermore estimates for parallel numerical algorithms such as
multigrid and wavelet methods on these partitions are derived.

AMS/MSCI1 classification: 65Y20, 68Q22, 65N50

1 The partition problem

Finite-Element, Finite-Volume and Finite-Difference methods for the solution of partial dif-
ferential equations are based on meshes. The solution is represented by degrees of freedoms
attached to certain locations on the mesh. Numerical algorithms operate on these degrees
of freedom during steps like the assembly of a linear equation system or the solution of an
equation system. A natural way of porting algorithms to a parallel computer is the data dis-
tribution approach. The mesh with attached degrees of freedom is decomposed into several
partitions and mapped to the processors of the parallel computer. Accordingly also the op-
erations on the data are partitioned. Goals of a partitioning scheme are load-balancing and
little communication between the processors. Sometimes also singly-connected partitions are
required. If the partitions are determined during run-time, furthermore a fast partitioning
scheme itself is sought. This is e.g. the case within adaptive mesh refinement of a PDE
solver.

The partitioning problem in general is N P-hard [18]. There are many heuristics based on
graph connectivity or geometric properties to address this problem [2,6,12,13,19]. In practice
fast heuristics are known. However, there is not much known about general quality of these
methods. In contrary there exist examples, where single heuristics give really bad results.

In this paper we analyse a specific geometry based heuristic based on space-filling curves.
It is cheap and helps to simplify the implementation of parallel algorithms [9,15,16,17,20,23].
We are interested in bounds for the quality of the partitions. This will lead us to general
estimates on the parallel performance of advanced numerical algorithms on these partitions.
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2 Space-filling curves

First we have to define curves. The term curve shall denote the image of a continuous
mapping of the unit interval to the IR¢. Mathematically, a curve is space-filling if and only
if the image of the mapping does have a classical positive d-dimensional measure. The curve
fills up a whole domain. For reasons of simplicity we restrict our attention to simple domains.
We are interested in a mapping

f:[0,1]=1 —QcRY f continuous and surjective (1)

There are classical curves like the Hilbert-, the Peano- and the Lebesgue-curve, see [21].
However, we will also construct special space-filling curves on an unstructured mesh.

The space-filling curve can also be used for the inverse mapping f from a domain 2 C
IR¢ to the unit interval I. This means that we can map geometric entities in IR¢ to the
one dimensional interval such as elements or nodes. Entities, which are neighbours on the
interval, are also neighbours in the volume IR?. Unfortunately the reverse cannot be true
and neighbours in the volume may be separated through the mapping.

However, we can solve the resulting one-dimensional partition problem: We cut the
interval I into disjoint sub-intervals I; of equal workload with ; I; = I. This gives perfect
load-balance and small separators between the partitions. The partition f(I;) of the domain
Q induced by the space-filling curve with (J; f(I;) D 2 also gives perfect load-balance.
However, the separators 0f(1;) \ 092 are larger than the optimal separators in general as we
will see.

3 Quality of a partition

We use a basic performance model for a distributed memory computer. The execution time
of a program consists of computing time, which is proportional to the number of operations
on a processor, and of communication time. Communication between the processors is done
with message passing through some network and requires time linear in the size of data
= tstartup =+ 7 * thandwidth-

We consider O(n) algorithms linear in the size of data n, e.g. FEM matrix assembly for
n finite elements, sparse matrix multiply or components of a multigrid algorithm such as a
grid transfer or smoother, see [2,10]. The parallel computing time is C; - n/p for a partition
of n data onto p processors. We call v := n/p the volume. The runtime depends on the

communication time. The data to be transferred is proportional to the separator or surface
s; of the partition s; := 0 f(Z;) \ 0€2.

n
t= 015 + 02 (tstartup + 5% tbandwidth) (2)

This model suggest that we have to minimise the surface to volume ratio s/v of the partition
for a high parallel efficiency of

S

Cy,1
_2(_tsta,rtup + 5 * tbandwidth)) . (3)

ffici =1/(1+
efficiency = 1/( A



While the lowest continuous surface to volume ratio is obtained for the sphere by s =

¢/ 2dd-1 r’{;;z) v(@1/4 we usually deal with partitions aligned with the mesh. Hence the cube

with s = 2dv(¢-1/4 ig of interest. In general we regard estimates of type
S S Cpart . /U(dfl)/d (4)

with low constants Cp,r as optimal.

4 Estimates for space-filling curves

The estimate for the locality of a discrete space-filling curve F we will use with F': [1,... , k] —
[1,..., k] is of type

|1F(z) = F(y)ll < C¥V]z -yl . (5)

Gotsman and Lindenbaum [8] give an upper bound C' = (d + 3)#/22¢ for the Hilbert curve
and tighter bounds for C' = 6% for d = 2 and C = 23 for d = 3, which has been improved by
[1]. Analogous estimates have been derived for the Hilbert curve [22] and the Peano curve
[7]. It turns out that a similar curve, called H-index gives even better constants, see [5,14].

Lemma 1. Given a connected discrete space-filling curve F on a domain
[1,...,k]¢ and a partition F([j,...,5 +v —1]) of v nodes, the surface s of the partition
is bounded by eqn. 4. The constant Cpay depends on the curve.

Proof. is based on eqn. 5 and the connectedness of the partition. It is sufficient
to consider s of the bounding box.

This lemma does not hold for curves of Lebesgue also called bit-interleaving [3], because
the discrete partitions tend to be disconnected. However, we generalise the situation to
unstructured and adaptively refined meshes by the following construction: We create an
enumeration of a mesh by some heuristic in order to obtain a ‘local’ discrete space-filling
curve. Then we do mesh refinement by some geometric refinement rules, see [2,4]. Each
coarse element F; is substituted by several smaller £ ; elements. The enumeration is changed
such that it cycles through these new elements Ej; right after the elements F;_; or E;_; .
This leads in the limit to a continuous space-filling curve, see [11,15,20]. Alternatively a
standard, continuous space-filling curve can be super-imposed onto the grid, see [9,17].

Corollary 2. FEstimate 4 also holds for a space-filling curve partitioning of a
(quasi-) uniform mesh by superposition of f or mesh dependent construction of f.
Estimate 3 combined with corollary 2 gives a speedup for large problems of

Ccartanwi
2C partUbandwidth p) (6)

efficiency = 1/(1 + C. 1

This implies optimal parallel efficiency for very large problems, n — oco. Estimate 6 holds
for a code for the solution of partial differential equations in the steps of setting up an
equation system, a single matrix multiply, a fixed number of Krylov iterations. Furthermore,
using the same space-filling curve an all grid levels, this also holds for an additive multigrid
implementation and for standard multigrid if we neglect terms log n - tstartup Proportional to
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the number of grid levels. For the scalability of a gobal PDE solver an O(n) multigrid solver
is essential. Solvers with higher than linear complexity may scale in p like eqn. 6 but scale
completely different in n.
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Figure 1: Locality of partitions defined by a space-filling curve. Hilbert curve on an uniform
mesh (left) and an unstructured mesh with adaptive mesh refinement (right).

5 Numerical experiments

The proof of lemma 1 only gives a crude estimate on the constant in eqn. 4. Hence we look at
two examples for two-dimensional partitions. In figure 1 the maximum surfaces s to different
volumes v are given. We consider a uniform square [0, 2¥]? (counting the complete boundary)
and a triangulation (counting the interior boundary only). The triangulation starts with a
hexagon and angles of 7/3 and is refined adaptively. The triangulation is shown in figure
2 left. The different graphs in figure 1 show the ratios for different grid levels. The surface
of small partitions comes close to the expected /n behaviour while larger partitions have a
limited boundary. 0f2 is a natural limit.

Lemma 1 did not deal with adaptive mesh refinement. Although, moderate refinement
seems to give similar estimates. However, very strong refinement with an arithmetic pro-
gression of nodes during refinement shows a different picture. In this example, figure 2 right,
s is proportional to v. This behaviour limits the usefulness of the partition method. This
‘counter’ example is related to examples where other heuristics like spectral bisection [19]
also fail to perform well.

6 Sparse grids

Space-filling curve partitions can also be used for the parallelisation of adaptive sparse
grid implementations, see [25]. A certain choice of tensor products of (pre-) wavelet ba-
sis functions can give approximations with a low number of degrees freedom of the order



Figure 2: Adaptive mesh refinement. Partitions defined by a space-filling curve (left) and a
counter example for a non-local partition (right).

v = O(nlog?' n) for a spatial resolution of 1/n, see [24]. The discretization of PDEs on
such sparse grids links geometrical nodes on different scales and at different distances. The
surface of a rectangular shaped partition is of order s = O(nlog* ?n) which is rather large
compared to v. Experimentally space-filling curves and other graph partitions heuristics give
partition surfaces of similar size.

v
< Cpart 7—— ith v = log"™!
s <G, Togn with v = O(nlog® " n) (7)
efficiency = 1/(1 + C—lozg)n) (8)

We obtain scalability of wavelet algorithms on sparse grids. However, the parallel efficiency
grows far slower in the problem size as for standard discretizations which scale excellently,
compare eqns. 6 and 8.
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