
Multiresolution Visualization and

Compression of Global Topographic

Data

Thomas Gerstner
Department for Applied Mathematics,

University of Bonn, Germany
e-mail: gerstner@iam.uni-bonn.de

Abstract

We present a multiresolution model for surfaces which is able to handle
large–scale global topographic data. It is based on a hierarchical decom-
position of the sphere by a recursive bisection triangulation in geographic
coordinates. Error indicators allow the representation of the data at vari-
ous levels of detail and enable data compression by local omission of data
values. The resulting hierarchical triangulation is stored using a bit code
of the underlying binary tree and, additionally, relative pointers which
allow an adaptive tree traversal. This way, it is possible to work directly
on the compressed data. We show that significant compression rates can
be obtained already for small threshold values. In a visualization appli-
cation, adaptive triangulations which consist of hundreds of thousands of
shaded triangles are extracted and drawn at interactive rates.

Classification: 65D05, 65N50, 65Y25, 68U05
Keywords: multiscale modeling, recursive bisection triangulation, error

indicators, space filling curves

1 Introduction

The handling of large–scale topographic data is a challenging task. The amount
of data e.g. available from satellite measurements can easily require gigabytes
of memory. The user usually faces the serious problem how to store and process
the data in a reasonable way. To this end, several strategies have been derived
to handle such vast amounts of data. Hierarchical structuring allows fast data
access and search operations. Adaptive methods enable concentration on the
interesting parts of the data. Finally, data compression allows the efficient
storage of the data on background media or in memory.

Our goal is to show that these approaches can be combined to enable the
interactive processing of global topographic data. Typically, the amount of data
which can be processed interactively is much smaller than the data which can be
stored in main memory. Memory size in turn might be too small for all the data
available. Therefore, our strategy will be to compress the complete data set to

1



make it fit into memory or simply to make it more manageable. This is done in
such a way that interactive processing of the compressed data is possible.

The main ingredients of our approach are multiresolution digital elevation
models (DEMs) based on a recursive bisection triangulation of the unit sphere
in geographic coordinates (i.e. longitude and latitude). An error indicator value
is assigned to each triangle in the hierarchical triangulation. Then, by choosing
a threshold value ε and selecting all triangles whose indicator value is larger
than ε, it is possible to construct different approximations of the topographic
data at varying levels of detail.

In order to achieve compression, we select a threshold ε0 and construct a
fine resolution adaptive hierarchical triangulation from a given input DEM.
The threshold ε0 can be related to the data error of the input or it might
simply be chosen to meet the user’s memory requirements. If the resulting
approximation error is smaller than the input error, the compression can be
considered lossless; larger ε0 will result in a lossy compression of the data. The
hierarchical triangulation is stored using a bit code of the underlying binary tree
and relative branch pointers for an adaptive tree traversal. Numerical results for
a 30 arc second global topographic data set show that significant compression
rates can be achieved already for small ε0.

Our main application is the visualization of the data using color shaded
triangles. A second threshold ε1 ≥ ε0 controls the visual approximation of
the compressed data. We show that hundreds of thousands of triangles can
be extracted from the multiresolution model and drawn interactively on mod-
ern graphics workstations. Hereby, the hierarchical structure allows arbitrary
moving and zooming through the data set at consistent frame rates.

Furthermore, the hierarchical nature of the multiresolution model allows a
very simple addition of local data sets to the global model. We show this with
the help of two additional nested local data sets, one covering the lower Rhine
valley and another one covering the city of Bonn. For the additional data sets
separate hierarchical triangulations are built similar to the construction for the
global data set. The new data sets fit smoothly into the global model by a
simple merging procedure of the corresponding binary trees.

The remainder of this paper is organized as follows. In Section 2 different
types of multiresolution DEMs are compared with respect to their storage re-
quirements. From the great variety of models we select a well known adaptive
hierarchical triangulation scheme whose construction is explained in more detail
in Section 3. Some basic properties of these triangulations and their relation to
space–filling curves are then explained in Section 4. In Section 5, these proper-
ties are used to define a compact storage scheme for adaptive triangulations and
to construct corresponding algorithms working on the compressed data. In Sec-
tion 6 it is then shown how these techniques can be applied to the visualization
of global topographic data. Numerical results concerning compression and visu-
alization of several data sets are presented in Section 7. The paper concludes in
Section 8 with some remarks about further extensions and applications of the
introduced methods.

2



a)

b)

c)

d)
�

e)

f)
�

g)

h)

Figure 1: Examples for spatial decompositions used in DEMs.

2 Related Work

There are many ways to construct a multiresolution hierarchy on a DEM. Since
one of our primary concerns is data compression, we will distinguish between
them with respect to their storage requirements.

A DEM is defined as a set of points (xi, yi, h(xi, yi)), 1 ≤ i ≤ N , and inter-
polation rules to derive height values in between. An interpolation rule usually
incorporates information on how (e.g. a polynomial degree) and from where
(e.g. a local mesh topology) data is interpolated. The height values h(xi, yi) are
always fixed given data and have to be stored for every DEM. In this context,
DEMs can roughly be classified according to how much additional storage is
required for the coordinates of the points (xi, yi) and for the interpolation rules.
If the additional storage requirement is of order O(N), the respective set of data
is called explicit. If the order is lower, it is called implicit since the additional
memory has no practical influence on the total size. This leads us to the follow-
ing four classes of DEMs with increasing generality, storage requirements and
approximation quality:

• coordinates and interpolation implicit: regular grids (Figure 1a), graded
meshes (Figure 1b),

• coordinates implicit, interpolation explicit: quadtrees (Figure 1c), adap-
tive tensor product grids (Figure 1d),

• coordinates explicit, interpolation implicit: TINs, Delaunay triangulations
(Figure 1e), relocated regular grids (Figure 1f),

• coordinates and interpolation explicit: data–dependent triangulations (Fig-
ure 1g), general tesselations (Figure 1h).

3



Note that global transformations and block–structuring usually do not change
the class. Clearly, more explicit schemes allow a greater flexibility than less ex-
plicit ones. But typically also the complexity of corresponding algorithms and
supporting data structures grow. Therefore, it is not clear which model is most
advantageous with respect to the ratio of overall cost to flexibility.

The first step in order to build a multiresolution DEM is to construct a
series of approximations of a given input DEM. There is a great variety of
methods which achieve this, usually classified as top–down (refinement) and
bottom–up (decimation) methods [13, 21]. In the first approach starting with
a coarse approximate DEM, single elements (such as points, edges or triangles)
are inserted until the input DEM is reached. The second approach starts with
the input DEM and removes elements successively. In some cases, the resulting
meshes are optimized.

There exist three basic types (see [1]) of multiresolution DEMs, namely
pyramidal (layered), incremental (evolutionary, historical) and tree–structured
models. Pyramidal models consist of a small number of approximate DEMs
with different resolutions. The memory overhead is limited by a constant factor
if the number of points in the different approximate DEMs form a geometric se-
ries. Incremental models code the single insertion steps of a refinement method
or the inverted removal steps of a decimation method. Thereby, a much larger
number of possible approximations of the input DEM can be obtained. An
incremental model can be turned into a tree–structured model by the identifi-
cation of hierarchical independencies in the single incremental steps. While the
first two methods allow only global representations, tree–structured models also
enable local refinement.

Tree-structured models are best suited for our visualization application since
often only a small subset of the whole data set can be processed and displayed
interactively. Also, these models allow the definition of areas of greater interest,
using e.g. magnifying glasses [10] or level of detail depending on the viewer’s
position and viewing direction [2, 15, 19].

3 Hierarchical Triangulation

In the following, we will consider DEMs based on a particular kind of adaptive
hierarchical triangulations. In light of the previous section, they belong to the
class of DEMs with implicit coordinates and explicit interpolation. As we will
see, these DEMs allow very efficient algorithms and have a good ratio of storage
requirement to accuracy. In this section we describe the construction of adaptive
triangulations with the help of error indicators.

3.1 Recursive Bisection

We consider an approach here which is usually called longest edge bisection or
split newest vertex triangulation and which is used by many authors for adaptive
grid refinement in the numerical solution of partial differential equations [16,

4



v1

2
v

v
3

T

eref refvv1

2
v

v
3

T T1 2

Figure 2: Triangle T is bisected into two subtriangles T1 and T2.

17, 23]. Basically the same method has been successfully applied also for the
representation of terrain data [2, 4, 5, 6, 15, 20, 22]. It is closely related to
restricted quadtrees [19, 25]. But triangulations generated by recursive bisection
are more flexible than those generated by a triangulation of the leaves of a
quadtree.

The main idea is to start with a coarse triangulation T 0 and to recursively
construct finer triangulations T l+1 by splitting each triangle T ∈ T l in two.
Here, we use isosceles triangles T = (v1v2v3) with a right angle at v2. By the
selection of the midpoint of the longest edge eref (T ) = (v1v3) as the refinement
vertex vref (T ), two new triangles T1 = (v2vrefv1) and T2 = (v3vrefv2) are
generated (Figure 2).

Let us now consider a square regular gridded DEM with 2k+1 height values
h(xi, yi) in every direction. If the initial triangulation consists of two triangles
covering the square, all refinement vertices up to the finest resolution fall onto
grid points of the DEM (Figure 3). This way, a piecewise linear surface over
the triangulation can be defined. Of course, this construction can be adapted
to more general settings. But a restriction to square dyadic grids simplifies
subsequent algorithms greatly, since no mapping from the grid points to the
vertices of the hierarchical triangulation is necessary.

Clearly, by this refinement procedure a binary tree hierarchy is inferred on
the triangles. However, all refinement vertices are shared by two triangles except
on the boundary. For example, the common refinement vertex of the two initial
triangles is the center of the square (see also Figure 3). Therefore, no tree
structure is induced on the set of vertices. Vertices on the boundary have one
direct ancestor while vertices in the interior of the domain have two.

3.2 Error Indicators

Now, an adaptive triangulation can simply be defined through selection of a
subtree of the triangle binary tree. However, such triangulations can contain
hanging nodes which occur if two triangles sharing a refinement vertex are not
refined conformingly. Hanging nodes are undesirable because they will lead to
cracks in the DEM since the surface defined by the triangulation is no longer
continuous. There are several ways to avoid this problem whereby the most
commonly used ones are remeshing, filling and projection [16, 17, 18].

We want to solve the problem with the help of error indicators. To this
end, a suited error indicator value η(vref ) is assigned to every refinement vertex

5



Figure 3: Triangle hierarchy generated by recursive bisection. Refinement ver-
tices are marked by a circle.

vref . Now, if the error indicator values are saturated, a valid triangulation
can be generated in a top–down traversal of the binary tree of triangles. The
saturation condition [18] simply states that the indicator value of every triangle
is larger than or equal to the indicator values of all its subtriangles, i.e.

η(vref (T )) ≥ η(vref (Tj)), j = 1, 2, for all T ∈ T l, l < lmax.

Then, all triangles T are selected whose refinement vertex vref (T ) has an error
indicator value η(vref (T )) larger than a user–prescribed threshold ε. The union
of all triangles on the locally finest levels form a valid triangular mesh. No
hanging nodes can occur since, once a given triangle is refined, the triangle
sharing the refinement vertex will automatically be refined as well.

There are many ways to define such error indicators, depending on the type
of application in mind [8, 15]. Let hT l(x, y) be the continuous elevation surface
spanned by the vertices of the triangulation T l. We will here choose the L1–
norm of the one–level look–ahead difference DEM

‖h|T l+1 − h|T l‖1 :=
∫ ∫

|h|T l+1(x, y)− h|T l(x, y)| dxdy

as a graphical error indicator since it represents the net change of pixel intensities
when a given pair of triangles is refined when viewed from above. The error
indicator η(vref (T )) can easily be computed locally using the height values on
the refinement edge of T by the formula

η(vref (T )) := 2−l ·
∣∣∣∣−1

2
h(v1) + h(vref )− 1

2
h(v3)

∣∣∣∣ .
The first factor in this formula is just the volume of the pyramidal hierarchical
basis function centered at the grid point vref (T ), up to a constant (see [6]).
This constant can be neglected since we are just interested in the ordering of
the nodes in the tree. The second factor of the above formula is often called
wavelet coefficient or hierarchical surplus and corresponds to the second local
variation of h.

Note that the error indicator η does not necessarily fulfil the saturation
condition. However, a minimal saturated error indicator η̄ can be constructed
in a level–wise bottom–up traversal of the binary tree by the recursive formula

η̄(vref (T )) := max { η(vref (T )), η̄(vref (T1)), η̄(vref (T2)) } ,

6



2
�

1

30
�

31
�

3
�

4
�

5
�

6
�

7
�

8
�

9
�

10

11

12

13

14
15

1617
18
1920

�
21

�
22

�
23

�

24
�

25
�

26
�

27
�

28
�

29
�

Figure 4: Triangle numbering and corresponding Sierpiński curve.

with η̄(vref (T )) = η(vref (T )) on the finest level l = lmax. Note that a depth–
first tree traversal would not be sufficient. This indicator can be efficiently
computed and performs very well in practice. Alternatively, it is possible to
construct a saturated error indicator η+ by the recursive formula

η+(vref (T )) := η(vref (T )) + max
{
η+(vref (T1)), η+(vref (T2))

}
.

This representation allows the computation of robust bounds of the norm used
for the computation of η. For example, data bounds for hierarchical isoline
extraction or multilevel backface culling can be derived from error indicators of
this type [7]. For our numerical computations, however, we will use the minimal
saturated error indicator η̄.

If we would not be concerned with data compression the whole approach
would require no special data structures except two arrays, one for the height
values and one for the error indicators. The tree traversal could be done by
simple index arithmetic. However, in order to employ efficient data compression,
we have to take a closer look at the structure of the binary tree. This is subject
of the next section.

4 Tree Structure and Space Filling Curves

In the following section, we restrict ourselves to one single triangle with vertices
v1 = (0, 0), v2 = (0, 1) and v3 = (1, 1). We define a useful enumeration procedure
for the triangles which is closely related to space–filling curves (see [11, 12]).
We indicate some basic properties of binary trees which correspond to adaptive
triangulations and show how to code the tree structure efficiently.

4.1 Numbering

During the refinement procedure, each triangle T is split into a left and a right
subtriangle relative to its refinement vertex vref (T ). The triangles can be num-
bered recursively: given a number n for a parent triangle, its left subtriangle is
assigned number 2n and its right subtriangle gets number 2n+ 1 if the level of

7



the parent triangle is odd and vice versa if the level is even (see Figure 4). The
recursive traversal of the tree of triangles starting with l = 0 and n = 1 can be
sketched in pseudo–code as follows:

recursive_descent(Coord v1, v2, v3; Level l, Number n) {
Coord vref=(v1+v3)/2;
if (est[vref] < eps) extract_triangle(v1, v2, v3);
else if (level & 1) {

recursive_descent(v2, vref, v1, l+1, 2*n);
recursive_descent(v3, vref, v2, l+1, 2*n+1);

} else {
recursive_descent(v3, vref, v2, l+1, 2*n);
recursive_descent(v2, vref, v1, l+1, 2*n+1);

}
}

Thereby n is the number of the current triangle. Note that this numbering
corresponds to the path of the Sierpiński space–filling curve [24, 26] (compare
also Figure 4). Following the path of the curve, all triangles on a given level
are traversed while any two consecutive triangles share a common edge. This
property remains also true for adaptive triangulations over different levels and
can e.g. speed up the visualization of triangle meshes since common vertices
need not be multiply processed by the graphics engine.

4.2 Boundary triangles

First, we want to identify triangles whose refinement vertex is located on the
boundary of the initial triangle. Identification of these triangles is necessary
to avoid duplicate storage of vertices lying on the boundaries of the initial
triangulation. Boundary vertices fall in two classes. On even levels, they are
located on the long diagonal edge (hypotenuse) of the initial triangle, on odd
levels on the short horizontal and vertical edges (see Figure 5, left). The bit
codes of boundary triangles starts with a 1 (even levels) or with 10 or 11 (odd
levels) followed by pairs of 0’s or 1’s.

This two–level pattern is characteristic for recursive bisection triangulations.
In the following proofs, we will always skip one level during induction and step
either through the even levels or through the odd ones. Thereby, we have to
look at two cases. Let x be the bit code of a triangle. In the first case, if the
triangle is located on the boundary, then two of the four child triangles of two
levels lower are also located on the boundary. Since the four child triangles
form a fan around the refinement vertex of the parent, the bit codes of these
triangles are x00 and x11. In the other case, if the triangle is not located on
the boundary, the child triangles won’t be located on the boundary as well (see
Figure 5, right). The induction starts with the triangles of level 0 and 1 for the
even and odd induction, respectively.

8



Figure 5: Boundary triangles in even (upper row, left) and odd (lower row, left)
levels and respective identification rules (right).

101 100

110

111

1000010001

10010

1001110100

10101

1011010111

11000

11001

11010 11011

1110011101

11110

11111

Figure 6: Numbering scheme and triangle fans for the identification of common
refinement vertices.

Figure 7: Up–Triangles in even (upper row, left) and odd (lower row, left) levels
and respective identification rules (right).

9



1

2
�

30
�

31
�

3
�

4
�

5
�

6
�

7
�

8
�

9
�

10 11 12 13 14 15

16 17 18 19 20
�

21
�

22
�

23
�

24
�

25
�

26
�

27
�

28
�

29
�

Figure 8: Triangle binary tree with identical refinement vertices tagged.

4.3 Common refinement vertices

Remember that every refinement vertex (except on the boundary) is shared by
two triangles and therefore two numbers are assigned to it. Given a number n,
the respective other number can be computed by looking at the bit code of n.
The transformation can be defined by adding the symbol $ to the end of the bit
code and by an iterative application of the following ordered set of replacement
rules:

{ 00$→ $11, 11$→ $00, 01$→ 10, 10$→ 01, $→ . }.

This way, starting from the two least significant bits, all bits are inverted in
pairs until a 01 or 10 occurs. For example, the opposite triangle (with respect
to the refinement edge) of 13 (1101) is 14 (1110) and the opposite triangle of
27 (11011) is 20 (10100) (see Figure 8). No corresponding neighbour is found,
i.e. the triangle is located on the boundary, if the last rule is applied or if the
fourth rule is applied to the leftmost two bits of the code.

Again, this property can be proved by induction. In Figure 6 (left) we see
that in a fan of four triangles the second and third triangle have a common
refinement vertex. The other two triangles have their refinement vertex located
on the boundary. The necessary transformation would be either to add 1 to
the x01 triangle or to subtract 1 from the x10 triangle. Equivalently, the last
two bits just need to be inverted. After two steps of refinement, the fan is split
into four fans (Figure 6, right). Here, in addition to the refinement vertices
inside each of the four fans, two refinement vertices between fan two and three
are common. The first triangle of the second fan (x0100) is adjacent to the last
triangle of the third fan (x1011) and the last triangle of the second fan (x0111) is
adjacent to the first triangle of the third fan (x1000). Again the transformation
is to invert bits starting from the least significant bits. The inversion stops when
a 01 or 10 occurs.

This transformation could be used for the hash storage (see [9]) of adaptive
triangulations. The hash function just has to map identical refinement vertices
to the same address, e.g. by using the smaller of the two numbers. Assuming an
equal distribution of numbers, the average complexity of this transformation,
i.e. the average number of bits to be inverted, is independent of the depth of
the tree. The number of bits which are inverted is 2 with probability 1

2 , 4 with
probability 1

4 , 6 with probability 1
8 , and so on, resulting in a total number of

10



4
�

5
�

6
�

7
�

10 11 12 13 14 15

26
�

27
�
28

�

29
�

2
�

3
�

1

4
�

10

1112

26
�

27
�

29
�

15
57

�
56

�

56
�

57
�

Figure 9: Adaptive triangulation and corresponding binary tree.

∑lmax
l=1 2l · 2−l < 4. Hashing allows efficient random access to the data, but also

requires the storage of hash keys which can require more space than the data
itself for large triangulations. For our application, we do not need random access
and can therefore apply more efficient schemes, see Section 5.

4.4 Up- and down–triangles

A subtree of the triangle binary tree is defined by a proper subset S of the set
of valid triangle numbers {1, 2, . . . , 2lmax}. Therefore, an adaptive triangulation
can be defined by the set F ⊂ S of all leaves of the subtree. The set F is called
the front of the subtree (see Figure 9). If the adaptive triangulation contains
no hanging nodes, the underlying binary tree has the following properties:

1. Completeness:
∀ n ∈ S, n > 1 also bn/2c ∈ S

2. Twins:

∀ even n ∈ S also n+ 1 ∈ S and ∀ odd n ∈ S also n− 1 ∈ S

3. Balancing:

∀ n ∈ F either n+ 1 ∈ F or
{

(n+ 1)/2 ∈ F, n ∈ (0|1)∗01(11)∗

(n+ 1) · 2 ∈ F, n 6∈ (0|1)∗01(11)∗

While the first two properties are quite intuitive, the third one needs closer
attention. It states that we can traverse the front of the tree from left to right
staying on the same level or going one level either up or down. In fact, only two
of the three possible cases apply to any given triangle. For one class of triangles
(up–triangles) we either stay on the same level or go up one level. Equivalently,
the triangle following an up–triangle along the space–filling curve may either
be larger than the up–triangle or be of the same size. Consequently, in up–
triangles the space–filling curve leaves through the hypotenuse of the triangle.
Up–triangles can again be identified by looking at the bit code of their number:
their bit code ends with 01 or contains 01 followed by an even number of 1s.

11



1

0
�

0
�

1

0
�

1

1

0
�

Figure 10: Automaton recognizing up triangles.

The other class of triangles where we either stay on the same level or go down
one level (down–triangles) are identified by the respective complement.

Let us now prove this property. In Figure 7 (left) all up–triangles are grey–
shaded. Not surprisingly, the pattern can again be defined recursively. In the
first case, the second triangle in a triangle fan is always an up–triangle. In the
second case, up–triangles also occur as the fourth triangle of a fan, but only if
the parent triangle is also an up–triangle. Figure 7 summarizes these two cases
by definition of the respective creation rules. Induction again runs over the even
and odd levels, respectively. These creation rules can easily be converted into
bit codes. This way, up–triangles occur if their bit code ends with 01 (case 1)
or ends with 11 (case 2) preceded by 01. In summary, this corresponds to the
language (0|1)∗01(11)∗.

Note that only approximately 1/3 of all triangles are up–triangles. It is
possible to recognize up- or down–triangles during the tree traversal by the
four–state automaton of Figure 10. The automaton is initialized to the leftmost
state for the inital triangle and is advanced one state for each refinement step (0
for the first and 1 for the second child). If the automaton is in the double–circled
state, the current triangle is an up–triangle, otherwise it is a down–triangle.

4.5 Tree and Tree–Front Coding

Now, due to properties 1 and 3 it is possible to code an adaptive hierarchical
triangulation using one bit per triangle in the tree front. We code a stay on
the same level by 0 and a change of level by 1. In order to start correctly,
it is also necessary to store the level of the leftmost triangle. This way, the
numbers of the triangles in the tree front F can be computed successively using
the number of the current triangle and the next bit in the code. This is done in
a single preorder traversal of the tree. For example, the tree–front code for the
triangulation in Figure 9 is

2 100101011.

Since the number of triangles in an adaptive triangulation is about twice the
number of grid points, approximately two bits per grid point are needed to store
the tree.

Alternatively, we can use properties 1 and 2 to code the local tree topology
using the lookup table of Figure 11. For a preorder traversal of the binary tree,
the tree code for the triangulation in Figure 9 is

11 01 00 11 01 00 10 10 00.

12



00
�

01
�

10 11

Local Tree Structure

Tree Code
�

Figure 11: Lookup table for the tree code.

Note that in this way approximately four bits per grid point are needed for the
storage of the triangulation.

In either case much less memory is used for the storage of a given trian-
gulation in comparison to more explicit schemes, e.g. Delaunay triangulations.
These models need the storage of coordinates which usually require several bytes
per grid point. The tree–front code can be used for the storage of DEMs on
background media or for applications, such as image compression, which only
require the processing of the whole DEM. For the visualization application we
need to use the tree code since in an adaptive tree traversal only a very small
subset of the whole data is processed for each image.

5 Compression

We will now construct a fine resolution triangulation by choice of a threshold
value ε0 and selection of all triangles T with error indicator η̄(vref (T )) > ε0.
The remaining triangles, respectively the height values at their refinement ver-
tices, are not stored since the height values can be exactly or nearly (up to ε0)
interpolated from their hierarchical neighbours. If ε0 is set to 0, the compres-
sion is lossless, i.e. the original DEM can be reconstructed without error. If
ε0 is chosen such that the error of the resulting approximation is smaller than
the data error of the input, the compression is usually also considered lossless.
Larger ε0, however, will result in a lossy compression.

In this section we demonstrate how a multiresolution DEM defined over
such a triangulation can be efficiently stored and how the compressed data can
be processed. This allows the efficient handling of very large data sets without
partial uncompression of the data from disk or other background storage media.
To be able to work on compressed data is an important prerequisite for real–
time applications. The concepts are similar to pointer–less (e.g. so–called linear)
quadtrees [14], but for triangulations the relation triangles – vertices (see Section
3.1) requires special care.

5.1 Node Stack

Let us first be concerned with the storage and the processing of the single DEM
defined over an adaptive (fine resolution) triangulation. As seen before, it is
possible to store the DEM using two one–dimensional arrays, one consisting of
the height values in the order they appear in the tree traversal and one consisting
of a code of the underlying tree. The size of these arrays is determined by the

13



number of vertices in the triangulation. The location of each array element in
the binary tree can be computed based on the code of the tree during the tree
traversal. However, since all interior vertices appear twice during the traversal,
special care has to be taken to avoid double storage of height values. This can
be done in several ways:

Clearly, vertices have to be stored only at their first occurrence. One possi-
bility to achieve this would be to simply mark already processed vertices which
requires, however, additional memory. Another solution would be to apply the
replacement rules of Section 4.3 and to store only nodes whose number is smaller
than the number of the opposite triangle. Alternatively, vertices at their second
occurrence are identified by the language (0|1)∗10(00|11)∗ and can be recog-
nized by the automaton parsing this language. The construction and proof can
be conducted in complete analogy to Section 4.4.

When working with the compressed data, it is possible to recognize vertices
which have been stored earlier during the traversal, however, their location in
memory is not known. One idea how to solve this problem is to put vertices
which will be processed again later onto a stack and to remove them after their
second usage. It turns out that this is indeed possible (compare [11]), but several
stacks are needed, one for each level. The triangle binary tree can be traversed
with the following actions being taken for a given triangle n of level l:

n ∈

 (0|1)∗01(00|11)∗ : read vertex and push onto stack l,
(0|1)∗10(00|11)∗ : pop vertex from stack l,
otherwise : read vertex (located on boundary).

Of course, the three different cases can also be identified using the transforma-
tion of Section 4.3.

An upper bound for the size of a stack for level l is 2bl/2c which is attained
for regular triangulations. Therefore the overall memory overhead is at most
of order O(

√
N). Note that the size actually needed for the stacks for a given

triangulation can be much smaller, up to O(1) for highly adaptive triangulations.
A simple pyramidal multiresolution DEM could consist of several DEMs

corresponding to threshold values ε0, 2ε0, 4ε0, . . ., up to a maximum threshold.
The multiresolution DEM could be stored using the tree–front codes for all the
different thresholds and the height values only for ε0. However, for our visual-
ization application we need a tree–structured model. The necessary additional
information is determined in the next section.

5.2 Branch Pointers

Now, we know how to code and compress an adaptive triangulation and how to
traverse the complete (fine resolution) triangulation. In many applications such
as visualization, it is necessary to be able to traverse it selectively, i.e. to extract
a subtree of the adaptive binary tree. Since the vertices are arranged in one
large array, we would have to know the number of vertices which are skipped if
the traversal is stopped locally.

14



F E T
�

S
�

J
�

J
�

Error Indicator
(variable sized) (variable sized)

T
�

S
�

Size
�

Tree
�

Code
�

Height Value

1 2
�

1 1 2
�

2
�

Branch Branch Pointer 1 Branch Pointer 2

Figure 12: Data type used for adaptive hierarchical triangulations.

One idea to solve this problem is by the additional storage of relative branch
pointers. For each node in the tree this pointer is exactly the number of nodes
in the subtree below. Thereby the expensive storage of absolute pointers is
avoided, which would usually require more memory than the data itself. Some
of the relative pointers can get quite large, i.e. the topmost node will contain
number N − 1. But, on most of the nodes the numbers are small, i.e. on the
locally finest levels of the adaptive triangulation they are 0 and on the second
finest levels they are at most 2.

Therefore we allocate variable sized memory for the pointers and use a bit
code for the allocated size. Here we will use 2 bits for the size, i.e. 00 for 1
byte, 01 for 2 bytes, 10 for 4 bytes and 11 for 8 bytes. Note that for a tree code
00 the branch pointer is also 0 and therefore does not need to be stored. Of
course, since we use variable sizes, the branch pointer is now not the number
of triangles in the subtree, but the number of bytes allocated for all the nodes
in the subtree. It can be computed in a bottom–up traversal of the tree. This
way, the average storage requirement for a branch pointer is less than one byte
independent of the depth of the binary tree.

Since each node has two subtrees (remember the duality triangles – vertices)
we are led to the data type of Figure 12. The data values T1, S1 and J1 cor-
respond to the first occurrence of the vertex in the space–filling curve and the
data with subscript 2 correspond to the second. For boundary vertices, the
latter entries are empty. Remember that the tree code and the branch pointer
size require each 2 bits for their storage. Therefore, T1, T2, S1 and S2 together
require exactly one byte. This way, on average only approximately 3 bytes per
vertex are needed for the coding of the complete tree structure.

This scheme allows a very fast and efficient adaptive tree traversal since only
a few bit operations are necessary to find subsequent data values.

6 Visualization of Global Data

Now, our main application will be the interactive visualization of DEMs using
color shaded triangles. However, the amount of data to be visualized can easily
exceed the amount of triangles that can be drawn interactively by several orders
of magnitude. This problem can be resolved by multiresolution models making
two observations. First, areas that are not visible, i.e. outside the viewing
window or smaller than a screen pixel, should not be processed. Second, less
interesting (e.g. flat) areas may be approximated by larger triangles. This way,
the overall number of triangles to be drawn can be reduced greatly thus allowing

15



Figure 13: Compensation of pole singularities by the error indicator.

real–time visualization.

6.1 Spherical Mapping

In order to construct a hierarchical triangulation for global topographic data it
is necessary to cover the unit sphere with triangles. Here we use the well–known
transformation from geographic coordinates (φ, ψ) ∈ Ω = [0, 2π] × [−π/2, π/2]
(with longitude φ and latitude ψ) into spherical coordinates (u, v, w) ∈ IR3 by
the formula  u

v
w

 = (1 + h(φ, ψ)) ·

 cosφ · cosψ
− sinφ · cosψ

sinψ

 ,

where h(φ, ψ) is the normalized height value at the given coordinate (see Figure
13, left). The rectangle Ω is split into two squares with side length π. This way,
the coarsest triangulation consists of four triangles each covering a vertical 90
degree slice on the sphere. Note that for the computation of the error indicator
values at φ = 0 and 2π have to be updated consistently due to periodicity.

We chose geographic coordinates despite the occurrence of singularities at
the poles due to several reasons: First, they allow very intuitive handling of data
sets, since the user is accustomed to the coordinate system. Second, coordinate
conversion is very fast, especially if the occurring sine and cosine values are
precomputed. Third, the singularities at the poles can be compensated for if
the error indicator values are multiplicated (prior to saturation) with cosψ. This
scaling factor relates the area of the planar triangle to the area of the spherical
triangle varying with ψ. The latter will rapidly become smaller towards the
poles. Figure 13 (right) shows this compensation effect.

Of course, it also possible to construct hierarchical triangulations for other
sphere approximations, e.g. based on one of the five Platonic solids or the soccer
ball tesselation [3]. The only requirements are a valid initial triangulation and
the matching of refinement edges of adjacent triangles.

16



6.2 Visualization

The main ingredient of the drawing algorithm is a top–down traversal of the
binary tree of triangles. The traversal is stopped locally if one of the following
conditions holds: if the current triangle T is completely outside the viewing
window, nothing is drawn. Otherwise, if the error indicator value of the current
triangle η̄(vref (T )) is below a drawing threshold ε1 ≥ ε0, the triangle is drawn.
Since we are mainly interested in a top view of the DEM, the first check can be
easily done by coordinate clipping.

The drawing threshold ε1 could be selected by the user. However, if the user
zooms into or out of the data set, the drawing threshold should change in order
to maintain the current frame rate and the image quality. In order to avoid a
continuous readjustment of the threshold by the user, the drawing threshold has
to be related to the current zoom factor appropriately. Let us therefore define
the zoom factor z as the ratio of the current scale to the global scale. As can
easily be seen, the correct way to relate the drawing threshold ε1 to the zoom
factor is given by the formula ε1 = εr · z−5/4. Here, εr is a global reference
threshold. By adjusting εr instead of ε1, the user is able to control the overall
image quality and the amount of triangles being drawn can be held constant
independent of the current zoom factor z.

The error indicator concept can also be used by applications requiring view–
dependent level–of–detail. Thereby, areas which are far away from the current
viewpoint are considered less important than those close by. View–dependent
LOD can be achieved by an appropriate choice of a continuous distance function
χ(η̄, ε1) as a stopping criterion. The technique is illustrated in detail in [18].

7 Numerical Results

We will now show performance results of our algorithm concerning compression
and visualization of the gtopo30 1 dataset. The computations were done on
an SGI Onyx2 R10000 (195 MHz). The data set was interpolated onto two
8193 × 8193 grids resulting in over 134 Mio. elevation values. Each elevation
value represents the height value in meters above sea level and is stored using
2 bytes as a signed integer (remember that some areas on earth are several
hundred meters below sea level). Ocean areas are marked by nodata values.

For the computation of the error indicator at coastlines we set ocean height
values artificially to -1000 meters. This way, coastlines are given a higher im-
portance than inland areas which greatly improves the overall visual impression
since the eye is particularly sensitive to edges. We also use 2 bytes for the error
indicator η̄ which enables us to extract up to 65536 approximations with dif-
ferent resolutions. The indicator values are scaled such that the lowest possible
resolution contains about 500 triangles.

1Courtesy of US Geological Survey

17



ε0 vertices nodes in tree size (bytes) size (bytes) rel. error
on disk in memory

0 134.250.498 268.435.454 302.055.446 809.697.258 0.0%
2 40.726.357 81.433.161 91.631.895 248.751.126 0.004%
4 30.971.462 61.924.693 69.683.546 190.170.314 0.020%
8 23.299.051 46.580.830 52.420.742 144.005.944 0.064%

16 15.578.706 31.141.001 35.050.073 97.012.493 0.220%
32 8.886.835 17.757.981 19.993.453 55.750.190 0.659%
64 4.468.305 8.921.476 10.051.830 28.175.287 1.513%

128 2.150.101 4.285.449 4.835.918 13.605.848 2.500%
256 1.042.534 2.072.666 2.344.186 6.605.564 3.677%
512 404.078 801.818 908.419 2.561.195 5.153%

1024 156.618 309.955 352.015 992.912 7.023%
2048 61.212 120.714 137.548 388.057 9.500%
4096 23.808 46.984 53.489 148.810 12.968%
8192 9.353 18.209 21.017 59.120 18.315%

16384 3.579 6.887 8.055 22.561 26.649%
32768 1.387 2.613 3.136 8.670 40.761%
65535 502 921 1.154 3.113 60.395%

Table 1: Compression results for the gtopo30 dataset.

7.1 Compression

The compression results are given in Table 1. For different threshold values ε0

we compare the number of stored elevation values, the number of triangles in the
corresponding triangulation, the number of interior vertices in the binary tree,
the relative approximation error ‖h−hε0‖1/‖h‖1, and the memory requirements
using the data types of the previous section. Note that additional temporary
memory is required for the different stacks needed for the tree traversal, but the
amount is negligible.

We see that the number of vertices roughly halves when ε0 is doubled. This
agrees well with asymptotic approximation theory for Lp–type indicators for
smooth functions. The number of nodes in the tree corresponds to the algorith-
mic overhead imposed by the tree traversal. As expected, it is at most twice
the number of vertices independent of the threshold value.

Compression results are shown in column four and five. On–disk compres-
sion was done using the tree–front code of Section 4.5. Thereby besides the
two bytes for the elevation values, approximately two bits per vertex for the
storage of the tree are required. The bitstream could be further compressed in
a postprocessing step using a lossless data compression method such as Lempel–
Ziv or Huffman coding. Experimental results then indicate another gain of a
factor of two in the compression ratio. A replacement of the elevation values
with their respective wavelet coefficients will not increase the compression ratio
significantly here. The in–memory storage requirements using the data type of
Section 5.2 is less than seven times the number of vertices. This means that less

18



than three bytes per node are needed on average for the complete tree structure.
For a threshold of 0, the memory requirements would be larger than for the sim-
ple two–dimensional full array (0.25 GByte). But, already for a threshold of 2
the total memory requirement is less than that required for the original DEM.

The relative approximation error is measured in the L1–norm in correspon-
dence to the type of error indicator. The approximation error does not depend
linearly on ε0. It increases faster than ε0 for small values and slower for large
values. For a relative error of 5% only about 0.3% of the number of vertices are
needed.

7.2 Visualization

Figure 14 shows a subset of the whole data set which is visualized in an inter-
active application. The triangles are color shaded using a simple geographical
colormap. Ocean areas are not drawn, instead a texture containing a sphere is
displayed. All height values are exaggerated by a factor of 10. We achieved a
drawing rate of 500000 triangles per second independent on the current position
and zoom factor. Moderate quality images can be produced at a high frame rate
allowing interactive flyovers while high quality images for closer inspection take
at most a few seconds.

7.3 Zooming through several data sets

Due to the tree structure of the multiresolution model it is possible to add
local data sets at lower scales. This is simply done by the construction of
a multiresolution model for the new data set and by replacing a subtree of
the original one with the new one. In order to conserve a valid triangulation,
possibly some points near the boundary of the new data set, which interpolate
the missing height values, have to be inserted in the tree. The number of
those points is determined by the local smoothness in the transition zone and
the difference in resolution of the data sets. Furthermore, some of the error
indicator values might need adjustment to satisfy the saturation condition.

We added two nested data sets to our global model. The first one covers
the lower Rhine valley and its surroundings2 while the second one covers the
city of Bonn3. Height values are represented in decimeters and centimeters,
respectively. Each data set was interpolated onto a 8193 × 8193 grid covering
the next larger dyadic box in geographic coordinates.

Figure 15 shows that the data sets inserted this way fit smoothly into the
global model. All three data sets were compressed with a relatively small ε0 = 2
resulting in a total memory requirement of less than 0.5 GByte. The global
reference threshold εr was set to 1000. This way, the number of triangles drawn
are 83491, 93967, 49323, and 97353 and therefore differ by at most a factor of
2. Note that different colormaps were used for the images in order to improve
the visual impression.

2Courtesy of SFB 350, University of Bonn
3Courtesy of DLR, Köln–Porz

19



8 Concluding Remarks

In this paper, we have shown that interactive handling of large–scale topographic
data is possible with a system having three interwoven constituents: hierarchi-
cal structuring, adaptive refinement and compression. The system presented
here specifically uses recursive bisection triangulations as the underlying hierar-
chical structure, saturated error indicators for adaptive tree traversal and tree
codes as well as relative branch pointers for efficient in–memory and on–disk
storage. Thereby, we have shown that these compressed adaptive hierarchical
triangulations allow an interactive visualization of very large DEMs.

We have considered lossy as well as lossless compression of adaptive hierarchi-
cal triangulations by local omission and interpolation of insignificant elevation
values. Let us emphasize once more that in our scheme the number of bits per
grid point needed for the storage of an adaptive triangulation is independent of
the total number of triangles or the maximum level of the binary tree. Thereby,
the stored elevation values were represented exactly. Further lossy compression
could be obtained by quantization of the hierarchical offset and error indicator
values.

Furthermore, we have shown that data sets can be quickly added and re-
moved from the model. This is an important prerequisite for interactive global
geographic information systems. The tree structure and space–filling curve
property could be used for parallelization of the program employing dynamic
load balancing (see [7, 9]) which would allow the handling of still larger data
sets.

Note that the proposed compression scheme applies not only to the visual-
ization of large data sets. With appropriate modifications it can be used for
a variety of further applications such as terrain analysis, feature extraction,
the computation of drainage networks or the solution of partial differential and
integral equations.

References

[1] De Floriani, L., Puppo, E., Magillo, P.: Geometric Structures and Algo-
rithms for Geographic Information Systems, in J.R. Sack, J. Urrutia (eds.),
Handbook of Compuatational Geometry, pp. 333-388, 1999.

[2] Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C.,
Mineev–Weinstein, M.B.: ROAMing Terrain: Real–time Optimally Adapt-
ing Meshes, in Proc. Visualization ’97, 1997.

[3] Dutton, G.H.: A Hierarchical Coordinate System for Geoprocessing and
Cartography, Lecture Notes in Earth Sciences 79, Springer, 1999.

[4] Evans, W., Kirkpatrick, D., Townsend, G.: Right Triangular Irregular Net-
works, Technical Report 97–09, University of Arizona, 1997.

20



[5] Gerstner, T.: Ein adaptives hierarchisches Verfahren zur Approximation und
effizienten Visualisierung von Funktionen und seine Anwendung auf digitale
3–D Höhenmodelle, Master’s thesis, Institut für Informatik, TU München,
1995.

[6] Gerstner, T.: Adaptive Hierarchical Methods for Landscape Representation
and Analysis, in Process Modelling and Landform Evolution, S. Hergarten,
H.–J. Neugebauer (eds.), Lecture Notes in Earth Sciences 78, Springer, 1998.

[7] Gerstner, T., Rumpf, M.: Multiresolutional Parallel Isosurface Extraction
based on Tetrahedral Bisection, in Proc. VolVis99, 1999, to appear.

[8] Gerstner, T., Rumpf, M. and Weikard, U.: A Comparison of Error Indicators
on Nested Grids for Multilevel Visualization, in Data Visualization ’99, E.
Gröller, H. Löffelmann, W. Ribarsky (eds.), Springer, 1999.

[9] Griebel, M., Zumbusch. G.: Parallel Multigrid in an Adaptive PDE Solver
based on Hashing and Space-Filling Curves, Parallel Computing 25, pp. 827–
843, 1999.

[10] Gross, M.H., Staadt, O.G. and Gatti, R.: Efficient Triangular Surface Ap-
proximations using Wavelets and Quadtree Data Structures, IEEE Trans. on
Visualization and Computer Graphics 2(2), 1996.

[11] Hebert, D.J.: Cyclic Interlaced Quadtree Algorithms for Quincunx Mul-
tiresolution, J. Algorithms 27:97–129, 1998.

[12] Hebert, D.J., Kim, H.-J.: Image encoding with triangulation wavelets,
in Wavelet Applications in Signal and Image Processing III, A.F. Laine,
M.A. Unser, M.V. Wickerhauser (eds.), pp. 381–392, 1995.

[13] Heckbert, P.S. and Garland, M.: Survey of Surface Approximation Algo-
rithms, Carnegie Mellon University Technical Report CMU–CS–97–, 1997, to
appear.

[14] Lee, M., Samet, H.: Navigating through Triangle Meshes Implemented
as Linear Quadtrees, report CAR–TR–887, Computer Science Department,
University of Maryland, 1998.

[15] Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.F., Faust, N. and
Turner, G.: Real–Time, Continuous Level of Detail Rendering of Height
Fields, Computer Graphics (Proc. SIGGRAPH ’96), 1996.

[16] Maubach, J.: Local bisection refinement for n-simplicial grids generated by
reflection, SIAM J. Sci. Comput. 16, pp. 210–227, 1995.

[17] Mitchell, W.F.: Adaptive refinement for arbitrary finite element spaces
with hierarchical bases, J. Comp. Appl. Math. 36, pp. 65-78, 1991.

21



[18] Ohlberger, M., Rumpf, M.: Adaptive Projection Methods in Multiresolu-
tional Scientific Visualization, IEEE Transactions on Visualization and Com-
puter Graphics 4, 1998.

[19] Pajarola, R.: Large scale Terrain Visualization using the Restricted
Quadtree Triangulation, in Proc. IEEE Visualization ’98, pp. 19–24, IEEE
Computer Society Press, 1998.

[20] Paul, A., Dobler, K.: Adaptive Realtime Terrain Triangulation, in
Proc. WSCG ’97, University of West Bohemia, Plzen, Czech Republic, 1997.

[21] Puppo, E., Scopigno, R.: Simplification, LOD and Multiresolution Princi-
ples and Applications. Eurographics ’97 Tutorial Notes, Eurographics Asso-
ciation, 1997.

[22] Röttger, S., Heidrich, W., Slussallek, P., Seidel, H-P.: Real–Time Genera-
tion of Continuous Levels of Detail for Height Fields, Proc. 6th Int. Conf. in
Central Europe on Computer Graphics and Visualization, pp. 315–322, 1998.

[23] Rivara, M.C.: Algorithms for Refining Triangular Grids Suitable for Adap-
tive and Multigrid Techniques, International Journal for Numerical Methods
in Engineering 20, pp. 745–756, 1984.

[24] Sagan, H.: Space–filling Curves, Springer, 1994.

[25] Samet, H.: Data Structures For Quadtree Approximation And Compres-
sion, Comm. ACM 28, pp. 973-993, 1985.

[26] Sierpiński, W.: Sur une nouvelle courbe continue qui remplit toute une aire
plane, Bull. Acad. Sci. de Cracovie, pp. 462–478, 1912.

22



Figure 14: DEMs corresponding to ε0 values of 16384, 4096, 1024, and 256.

23



Figure 15: DEMs corresponding to zoom factors of 4, 32, 512, and 4096.

24


