
Approximating Gaussian Processes
with H2-matrices

Steffen Börm1 and Jochen Garcke2

1 Max Planck Institute for Mathematics in the Sciences
Inselstraße 22–26, 04103 Leipzig, Germany, sbo@mis.mpg.de

2 Technische Universität Berlin, Institut für Mathematik, MA 3-3
Straße des 17. Juni 136, 10623 Berlin, garcke@math.tu-berlin.de

Abstract. To compute the exact solution of Gaussian process regression
one needs O(N3) computations for direct and O(N2) for iterative meth-
ods since it involves a densely populated kernel matrix of size N×N , here
N denotes the number of data. This makes large scale learning problems
intractable by standard techniques.
We propose to use an alternative approach: the kernel matrix is replaced
by a data-sparse approximation, called an H2-matrix. This matrix can
be represented by only O(Nm) units of storage, where m is a parameter
controlling the accuracy of the approximation, while the computation of
the H2-matrix scales with O(Nm log N).
Practical experiments demonstrate that our scheme leads to significant
reductions in storage requirements and computing times for large data
sets in lower dimensional spaces.

1 Introduction

In this paper we consider the regression problem arising in machine learning.
A set of data points xi in a d-dimensional feature space is given, together with
an associated value yi. We assume that a function f∗ describes the relation
between the predictor variables x and the (noisy) response variable y and want
to (approximately) reconstruct the function f∗ from the given data. This allows
us to predict the function value for any newly given data point.

We apply Gaussian Process regression (GP) [1] for this task. In the direct
application this method gives rise to a computational complexity of O(N3);
for iterative methods one has O(N2) in each iteration. This makes large scale
learning problems intractable for exact approaches.

One approximation approach for large problems is to use only a subset of the
data for the iterative solver, i.e., to compute the inverse of a smaller matrix and
extend that result in a suitable way to the whole data set, see [1] for an overview
and further references. In [2] probabilistic sparse approximations are presented
under a unified concept as “exact interference with an approximated prior”.

One can interpret the above approaches also as “approximated interference
with the exact prior”, this view especially holds for recent approaches using
Krylov subspace iteration methods with an approximation of the matrix-vector

product in the case of Gaussian kernels. In [3] this product is approximated
using tree-type multiresolution data structures like kd-trees. [4, 5] compare sev-
eral multipole approaches, these can show speedups of an order of magnitude or
more, but the results heavily depend on the parameters of the problem.

In this paper we use hierarchical matrices (H-matrices) [6] to derive a data-
sparse approximation of the full kernel matrix. H-matrices are closely related to
panel-clustering and multipole techniques for the treatment of integral operators
in two or three spatial dimensions. They reduce the storage requirements for N -
by-N matrices to O(Nm log N) by applying local rank-m-approximations and
allow us to evaluate matrix-vector products in O(Nm log N) operations. Other
operations like multiplication or inversion can also be accomplished in almost
linear complexity [6, 7].

For very large N it is a good idea to look for even more efficient techniques:
H2-matrices [8] reduce the storage requirements to O(Nm), and using the re-
compression algorithm described in [9], the conversion of the original H-matrix
representation into the more efficient H2-matrix format can be accomplished
with only a minor increase in run-time.

2 Gaussian process regression

Let us consider a given set of data (the training set) S = {(xi, yi) ∈ Rd×R}N
i=1,

with xi representing data points in the feature space and yi their associated
response variable. Assume for now that these data have been obtained by sam-
pling an unknown function f with additional independent Gaussian noise ei of
variance σ2, i.e., yi = f(xi) + ei. The aim is now to recover the function f from
the given data as well as possible. Following the Bayesian paradigm, we place
a prior distribution on the function f(·) and use the posterior distribution to
predict on new data points x. In particular we assume a Gaussian process prior
on the function f(x), meaning that values f(x) on points {xi}N

i=1 are jointly
Gaussian distributed with zero mean and covariance matrix K. The kernel (or
covariance) function k(·, ·) defines K via Ki,j = k(xi, xj).

It turns out that the solution f(x) takes on the form of a weighted combina-
tion of kernel functions on training points xi [1]

f(x) =
N∑

i=1

αik(xi, x), (1)

where the coefficient vector α is the solution of the linear equation system

(K + σ2I)α = y, (2)

here I denotes the unit matrix. The variance σ2 is in practice estimated via the
marginal likelihood criterion, cross-validation, or similar techniques [1].

Directly solving this equation by inverting K+σ2I involves in general O(N3)
operations. Furthermore, the storage requirement of the covariance matrix K

exceeds the memory of current workstations even for the moderate dimension
N ≥ 15000. A common approach is to use a smaller subset of the data and the
associated kernel functions to represent the solution f [1, 2]. That way one can
in principle achieve methods of order O(M2 · N + M3) instead of O(N3), but
one loses the exact theoretical properties of the approach. Furthermore, these
approximate methods are known to fail for some data sets or have costly subset
selection strategies for competitive results, see [10] for results in the related case
of regularised least squares classification. Note that these methods still scale with
the square of M and therefore show a quadratic complexity in N if M ≥

√
N .

2.1 Iterative solution with Krylov subspace methods

The use of conjugate gradients (CG) for the solution of the linear equation
system (2) is for example described in [1]. In Krylov subspace iteration methods
the k-th approximate solution xk of Ax = b is searched in the Krylov space
span{b, Ab, . . . , Ak−1b}, i.e., the history of the already computed approximation
is used, see, e.g., [11]. For symmetric positive definite matrices, the CG algorithm
ensures that xk minimises the A-norm of the error, i.e., 〈Aek, ek〉1/2 with ek :=
x − xk. In the case of general matrices, the GMRES algorithm minimises the
Euclidean norm of the residual, i.e., ‖b−Axk‖. Note that in both cases only the
action of the matrix A on a vector is needed in the actual computation. As long
as the number of iterations is bounded by a constant independent of the matrix
size and the problem parameters under consideration, these iterative approaches
result in a computational complexity that is proportional to the complexity of
one matrix-vector multiplication, i.e., O(N2) operations are required for the
solution of (2) in the standard case.

Since O(N2) is still too costly for large problems, approaches using Krylov
subspace iteration methods with a more efficient approximation of the matrix-
vector product in the case of Gaussian kernels have been studied recently. In [3]
the matrix-vector product is approximated using tree-type multiresolution data
structures like kd-trees. [4, 5] compare the fast Gauss transform, the improved
fast Gauss transform (IFGT) and dual-tree approaches for fast Gauss transforms,
see [3–5] for references with regard to the algorithms. In these articles empirical
speedups of an order of magnitude or slightly more, in comparison with on-the-
fly computation of the kernel matrix, are shown. The results heavily depend
on the parameters, e.g., the number of dimensions, the width of the Gaussian
kernel, the regularisation parameter, and the data distribution, see [5]. This is
not always taken into proper account in experimental studies.

2.2 H- and H2-Matrices

We propose to use a Krylov-based approach and rely on H- (cf. [6, 7]) and H2-
matrices (cf. [8, 9]) to speed up the computation of the matrix-vector multipli-
cation by the full matrix K. In order to reach this goal, we replace the matrix
by a data-sparse approximation K̃ that allows us to perform matrix-vector mul-
tiplications (and other arithmetic operations) very efficiently.

H- and H2-matrices have originally been developed for the approximation
of matrices arising when treating elliptic partial differential equations. They
require only O(Nm log N) and O(Nm) units of storage, respectively, where m
determines the accuracy. The matrix-vector multiplication is of the same order,
since it requires not more than two operations per unit of storage.

In the following we will present the core ideas behind these matrix approx-
imations and their computation. For more details we refer to the references, in
particular the lecture notes [6].

The basic idea of H- and H2-matrix techniques is to exploit the smoothness
of the kernel function k: if k is sufficiently smooth in the first variable, it can be
replaced by an interpolant

k̃(x, z) :=
m∑

ν=1

Lν(x)k(ξ
ν
, z),

where (ξ
ν
)m
ν=1 are interpolation points and (Lν)m

ν=1 are corresponding Lagrange
polynomials. Replacing k by k̃ in the matrix K yields an approximation

K̃ij := k̃(xi, xj) =
m∑

ν=1

Lν(xi)k(ξ
ν
, xj) = (AB>)ij (3)

with matrices A,B ∈ RN×m defined by Aiν := Lν(xi) and Bjν := k(ξ
ν
, xj).

While the standard representation of K requires N2 units of storage, only 2Nm
units are sufficient for the factorised representation (3). If k is sufficiently smooth,
m can be quite small, and the new representation will be far more efficient than
the standard one.

Computing the factorised representation K̃ = AB> by interpolation will
be relatively inefficient if the function k has special properties: if, e.g., k is a
quadratic polynomial, interpolating it by seventh-order polynomials will lead
to an unnecessary increase in computational complexity. In order to avoid this
effect, we replace the interpolation by the heuristic adaptive cross approximation
(ACA) algorithm [12]:

1: set K̂ := K and K̃ := 0
2: estimate ε0 := ‖K̂‖
3: set m := 0
4: while εm > ε0εACA do
5: set m := m + 1
6: pick pivot indices im, jm ∈ {1, . . . , N}
7: compute am

i := K̂ijm for i = 1, . . . , N

8: compute bm
j := K̂imj/am

im for j = 1, . . . , N

9: set K̃ := K̃ + am(bm)> and K̂ := K̂ − am(bm)>

10: estimate εm := ‖K̂‖
11: end while
There are different strategies for picking the pivot indices in step 6 of the algo-
rithm. A simple approach is to assume that jm is given, compute am, pick im

such that |am
im | is maximised, compute bm, pick jm+1 such that |bm

jm | is max-
imised, and repeat the procedure for m+1. In our experiments, we use the more
refined strategies of the HLib package [13].

Since am(bm)> is a rough approximation of K̂, a reasonable strategy for
estimating the remaining error in steps 2 and 10 of the algorithm is to use ‖K̂‖2 ≈
‖am(bm)>‖2 = ‖am‖2‖bm‖2. Of course, problem-dependent norms can be used
instead of the spectral norm, provided that they can be estimated efficiently.

The entries K̂ijm and K̂imj used in steps 7 and 8 should not be computed ex-
plicitly, since this would require computing the entire matrix K. A more elegant
approach is to use the definition of K̂: due to

K̂ij = (K − K̃)ij = Kij −

(
m−1∑
`=1

a`(b`)>
)

ij

= Kij −
m−1∑
`=1

a`
ib

`
j ,

we can avoid storing K̂ explicitly and reconstruct its entries as necessary.
At the end of each iteration of the inner loop, we have K̂ + K̃ = K, i.e.,

‖K − K̃‖ = ‖K̂‖, so the stopping criterion allows us to control the relative
approximation error if the estimates for the norms of K̂ are sufficiently accurate.
The vectors (aν)m

ν=1 and (bν)m
ν=1 yield the desired representation K̃ = AB>.

In many applications, e.g., if the function k is not globally smooth, the repre-
sentation (3) will not be efficient for the global matrix K. Typical functions k are
locally smooth or decay rapidly, and the factorised representation can be applied
for submatrices K|t×s = (Kij)i∈t,j∈s with suitable subsets t, s ⊆ {1, . . . , N}.

The analysis in [14] shows that the approximation error will even decrease
exponentially depending on m if k is locally analytic and if

diam(Bt) ≤ η dist(Bt, Bs) (4)

holds for a parameter η ∈ R>0 and two axis-parallel boxes Bt and Bs satisfying
xi ∈ Bt for all i ∈ t and xj ∈ Bs for all j ∈ s. Here the Euclidean diameter and
distance are used, which can be computed easily for axis-parallel boxes.

We are faced with the task of splitting K (up to a sparse remainder) into a
collection of submatrices which satisfy a condition of the type (4), i.e., can be
approximated in the form (3). Since the data points (xi)

N
i=1 are embedded in

Rd, a hierarchy of clusters of indices assigned to boxes Bt can be constructed by
binary space partitioning. If a cluster t is “too large”, its box Bt is split in two
equal parts along its longest edge, and this induces a splitting of the cluster t.
Starting with t = {1, . . . , N} in the whole domain and applying the procedure
recursively yields a cluster tree.

The corresponding hierarchical matrix structure is also constructed by re-
cursion: if a block t × s is admissible, it is represented by a low-rank matrix.
If t or s are leaves, the block is considered “small” and stored in the standard
format. Otherwise, the sons of t and s are tested until no untested blocks remain.
This procedure requires O(N log N) operations [7], but the complexity will grow
exponentially in d: each cluster t can be expected to “touch” at least 3d − 1

other blocks s, these blocks will not satisfy the admissibility condition (4) and
have to be examined by recursion. Therefore the current implementation of the
H-matrix approach is attractive for up to four spatial dimensions, but will suffer
from the “curse of dimensionality” if d becomes larger due to the use of binary
space partitioning.

The H-matrix approximation based on ACA or interpolation will have an
algorithmic complexity of O(Nm log N) [6]. If N is very large, the logarithmic
factor can have a significant impact regarding the total storage requirements, and
some problems may even become intractable given a fixed amount of storage.

The situation is different for the H2-matrix representation [8, 9], which relies
on the same basic ideas as the H-matrix approach: the matrix is split into blocks,
and each block is approximated by a low-rank matrix. The main difference be-
tween the two methods is the choice of this low-rank matrix: for the H-matrix,
it is motivated by the interpolation in the x variable, for the H2-matrix, we
interpolate in both variables and get

k̃(x, z) :=
m∑

ν=1

m∑
µ=1

Lν(x)k(ξ
ν
, ζ

µ
)Lµ(z),

which leads to the factorisation K|t×s ≈ V SW> for a small coupling matrix
S ∈ IRm×m and cluster bases V,W ∈ IRN×m. If this approximation scheme is
applied to submatrices of K, the special structure of V and W , i.e., the fact that
they are discretised Lagrange polynomials, can be used in order to reach a total
complexity of O(Nm).

Using the quasi-optimal algorithm presented in [9], an H-matrix can be con-
verted into a more compact H2-matrix with only a minor run-time overhead
while keeping the approximation error under close control.

2.3 Coarsening

The H- and H2-matrix structures created by this procedure will suffer from the
“curse of dimensionality”, i.e., their complexity will grow exponentially in the
spatial dimension d. In order to reduce this effect, the coarsening techniques de-
scribed in [15] are employed to construct a far more efficient H-matrix structure:
even if t and s do not satisfy the admissibility condition, the block K|t×s may
have an efficient low-rank approximation. Using the singular value decomposi-
tion of K̃|t×s, we can determine the optimal low-rank approximation for a given
precision εHC and use it instead of the original one if it is more efficient.
1: repeat
2: pick t and s in such a way that K̃t′×s′ is represented by a low-rank matrix

for all subblocks t′ × s′ of t× s.
3: compute a low-rank approximation of K̃t×s up to an error of εHC

4: if the new approximation is more efficient than the original ones then
5: replace the original low-rank representations by the new one
6: end if

7: until all pairs t and s have been checked
In most practical situations, the algorithm is relatively inexpensive compared to
the initial approximation and yields a very significant compression.

See Figure 1 for an example of the resulting structure and the local ranks of
an H2-matrix for a typical data set (using a suitable permutation of the data).

The full algorithm to compute the H2-matrix approximation consists of the
following steps:
1: build hierarchy of clusters t by binary space partitioning
2: build blocks t× s using the admissibility criterion (4)
3: for all admissible blocks t× s do
4: use ACA to compute a low-rank approximation K̃|t×s = AB>

5: end for
6: for all remaining blocks t× s do
7: compute standard representation K̃|t×s = K|t×s

8: end for
9: coarsen the block structure adaptively

10: convert the H-matrix into an H2-matrix
Note that the blockwise errors introduced by ACA can be estimated by a

simple heuristic approach. A rigorous error estimate can be provided if the ap-
proximation is based on interpolation and the growth rate of the derivatives of
the kernel function can be bounded [14]. The blockwise errors introduced by
the coarsening algorithm can be computed and controlled directly based on the
singular value decomposition [15]. Given a bound for the condition number of
K, error estimates for the solution vector are possible [16, Theorem 2.7.2].

3 Experimental results

We employ the Gaussian RBF kernel e−‖x−y‖2/w in the following experiments.
The hyperparameters w and σ were found using a 2:1 split of the training data for
each data set size. Note that many GP users prefer to use marginal likelihood as
a criterion. Since we concentrate for now on the approximation properties of our
approach we have not investigated in much detail how to (more) efficiently find
good hyperparameters. Since one H2-matrix approximation can be used during
the computation for several σ, this property, which allows the cheap solution for
several σ, should be exploited, which we can by using the 2:1 split.

For the following experiments, we set both the tolerance for the cross ap-
proximation εACA and the tolerance for the coarsening to εHC to 10−7. The
admissibility parameter in (4) is chosen as η = 0.1. In general these parameters
should depend on the type of kernel function and its parameters. We choose
these fixed values in this study to have a good approximation of the kernel ma-
trix in all cases, they could be larger if chosen depending on the actual kernel
and therefore result in less computation time. We aim to have a difference of
less than 1% for the error on the test data from the 2:1 split of the training data
due to the employed approximation.

58 19

20 71 20

19
80 22

20 50
23

23

122 21

21

54 19

19

69 19

20 83
18

19
52 16

16 1272

2 2

23

23

90 27

27

105 28

29 107 22

20 119 32

32

72 29

30

86 25

25 76 21

19 94 24

23

29 20

19

64 20

20 92 19

18 67

29

30

7 7

7

89 21

22

72 19

19 79 18

18 75 21

21 105
11

11 11

23

20 20

26
25 25
20 20

23

34 33

46 46

23 46
19 23

19
24 22

24 22
31

23 31
46

17 15

14

63 20

20

110 22

22 55
8

8 8

30

28

40 22

21 106 23

22

82 20

21

60 25

25 77
30

29 54
28

28
88 22

21

58 26

26 102 23

23 32

51

47

58 38

38

108 30

28 76 23

24 30
31

30
45 26

26 97 40

38 76

56

58
92 34

34

12420

20 23
32

32 74
33

32 75

23 23

34

25 25

21 21 28

19 19
2 2

19
23

46

29 29

27

22 22

33 34
33

36 36

30 30
46

23 23

46 39

42
50

30 30

42 36 29

50 29

50 39
23 31

23

26 21

26 21

18 2

18 2

26 18

42 29

28 27

28
20 32

20 34 32
32 32 29

23 46
42

23 46

23 37

49 49

28 43

28 36 50
28 28

37

92 50

48

105 39

38
57 32

33 72 48

47 91
64

62 118
46

46
126 39

37

97 36

36

55 33

32 92 29

28 58

Fig. 1. Structure and rank of the H2-matrix approximation for the mote22 data set
using 5000 data. On the right hand side error of the approximation, the darker the larger
the error. The difference between the full matrix and the H2-matrix approximation is
3.79 · 10−8 in the spectral norm for this example.

The computations are carried out with the HLib package [13] on an AMD
Opteron 275 with about 4 GB of available memory. To solve the linear system
(2) for the H-matrix we use GMRES, since the use of the adaptive cross ap-
proximation algorithm disturbs the symmetry of the matrix K̃ slightly and gives
somewhat unstable results with conjugate gradients. Note that we currently can
not exploit the symmetry of the kernel matrix by only using the upper or lower
half of the matrix due to limitations in the HLib, but the extension for this
situation is in development. We also limit the number of iterations by 3000.

Two regression data sets are used, in the first one the data originates from
a network of simple sensor motes3 and the task is to predict the temperature
at a mote from the measurements of neighbouring ones [17]. Mote22 consists of
30000 training / 2500 test data from two other motes and mote47 has 27000
training / 2000 test data from three nearby motes. The second data is from a
helicopter flight project [18] and the task is to use the current state to predict
subdynamics of the helicopter for one timestep later, in particular its yaw rate,
forward velocity, and lateral velocity. We have 40000 training / 4000 test data
in three dimensions in the case of the yaw rate, both velocities depend on two
other measurements. For all these data sets we linearly transform the domain of
the predictor variable x to [0, 1]d, d = 2, 3.

In Table 1 we present results of our experiments on these data sets, we use the
mean absolute error (MAE) on the test set as the quality criterion. We give in
each case results for 20000 data, here the matrix (K+σ2I) can still be stored in
the available memory of 4 GB, and for the full data set. The times (in seconds)
presented here and in the following are for the computation using the given
hyperparameters, i.e., solution of the equation system (2) and the evaluation
on the data. In the case of the H2-matrix this includes the computation of the

3 Intel Lab Data http://berkeley.intel-research.net/labdata/

Table 1. MAE and runtime (in seconds) for different data sets using the matrix in
memory (stored), computing the matrix action in every iteration (on-the-fly) and using
the H2-matrix approximation. Also given are the w and σ used.

stored on-the-fly (for both) H2-matrix
data set #data w/σ time time error time error KB/N

mote 22 20000 2−9/2−5 2183 21050 0.278530 230 0.278655 2.0
mote 22 30000 2−11/2−5 n/a 88033 0.257725 494 0.257682 3.7
mote 47 20000 2−9/2−5 3800 36674 0.132593 1022 0.132553 16.4
mote 47 27000 2−9/2−6 n/a 73000 0.128862 1625 0.128913 17.2
heliX 20000 2−8/2−6 4084 37439 0.015860 603 0.015860 2.9
heliX 40000 2−10/2−10 n/a > 50h n/a 1975 0.014748 9.5
heliY 20000 2−7/2−10 4053 37546 0.020373 724 0.020372 3.2
heliY 40000 2−10/2−10 n/a > 50h n/a 2303 0.018542 15.1
heliYaw 20000 2−5/2−6 1091 10781 0.009147 676 0.009154 2.3
heliYaw 40000 2−7/2−6 n/a 162789 0.008261 3454 0.008263 6.6

Table 2. Runtimes in seconds and MAE results for the mote22 data set for different
data set sizes using ‘optimal’ parameters w / σ.

N=#data w / σ stored on-the-fly error H2-matrix error size KB/N

1000 2−3/2−6 0.3 1.1 0.34979 1.56 0.34987 0.8
5000 2−7/2−7 30 296 0.31834 22.8 0.31938 1.1

10000 2−7/2−8 811 8502 0.30380 76.2 0.30743 1.1
20000 2−9/2−5 2183 19525 0.27853 230.1 0.27865 2.0
30000 2−11/2−5 n/a 88033 0.25772 494.8 0.25768 3.7

approximation matrix, the largest part of the total time for this approach. We
observe a speedup between 1.6 and 9.5 against the stored matrix and between 16
and 91 measured against on-the-fly computation of the matrix-vector-product.

On the full version of the data set the matrix cannot be stored anymore
and we can only compare against the on-the-fly computation, the speedup here
is between 44 and 178, going from hours to minutes. Note that the additional
data always results in an improvement on the test data, the mean absolute
error is reduced by 3% to 11%. One also observes that the bigger data sets use
different parameters w and σ, using the ones obtained on a smaller version of the
data set often results in no improvement at all. The amount of memory needed,
measured in KB per data points, can be reduced for the large helicopter data set
from 156.25 down to 6.6, or in total from about 6 GB to about 250 MB. Note
that [3] observe for these data sets speedups of 3.3 to 88.2 against on-the-fly
computation of the matrix-vector-product using an approach based on kd-trees,
although no mention of the employed parameters w and σ is made, which heavily
influences the runtime as we will see in the following.

In Table 2 we show the results for the mote22 data set using different training
set sizes, but the same test data. One can observe the different ‘optimal’ w /

Table 3. Runtimes in seconds, number of iterations and time per iteration for the
mote22 data set using w = 2−9 and σ = 2−5 for different data set sizes.

1000 5000 10000 20000 30000

H2-matrix time (sec.) 1.43 22.64 75.0 230.0 427.5
its 284 688 1111 1599 2025
time/its 0.00504 0.0329 0.0675 0.144 0.211

stored matrix time (sec.) 1.18 51.15 324.1 2183
its 284 689 1103 1596 n/a
time/its 0.00415 0.0742 0.29383 1.368

on-the-fly time (sec.) 9.13 565.2 3620.2 21050 60990
its 284 689 1103 1596 2005
time/its 0.032 0.82 3.282 13.189 30.42

Table 4. Using the 30000 data of mote22, the shown test results are from the 2:1 split
using w = 2−8 and different σ. Observe how the number of iterations needed by the
GMRES solver depends on σ.

σ 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

MAE 2:1 test 0.26447 0.26311 0.26349 0.26472 0.26818 0.27506 0.28929 0.32003
its 3000 2375 597 179 91 70 55 41

σ found for each data set size, which shows the need for parameter tuning on
the full data instead of employing parameters found on a subset. Note that the
runtime of the H2-matrix starts to make an improvement against the stored
matrix already for 5000 data points.

To study the scaling behaviour with regard to N , the number of data, we
present in Table 3 runtime results for one set of parameters. Since the number of
iterations grows with the data set size we compare the runtime per iteration for
the different values of N . For the on-the-fly computation one observes the ex-
pectedO(N2) scaling behaviour. For the full matrix it actually is even worse than
O(N2) from 10000 to 20000 data, this may be due to changes in the efficiency of
the memory access in the dual core system after certain memory requirements.
In the case of the H2-matrix the scaling is nearly like O(Nm log(N)).

We study in Table 4 how the number of iterations depends on the σ employed,
it grows with smaller σ. This is due to the fact that the smaller σ is, the larger
the condition of the matrix (K+ σ2I) becomes. But the smallest mean absolute
errors are often achieved for small σ and one therefore typically needs quite a
large number of iterations. Note also that with smaller w the number of iterations
usually grows as well.

In Table 1 we also observe that typically with more data the best results are
achieved with both decreasing w and σ, both cases result in more iterations of
the Krylov solver. Therefore efficient computation of the matrix-vector-product
gets even more important for large data sets, not just due to the number of data,
but also because of the growing number of iterations in the solution stage.

Finally we use the H2-matrix with a different kernel, we tried the Matérn
family [1] of kernels which is given by φν(r) = 21−ν

Γ (ν) (cr)
νKν(cr), where Kν is a

modified Bessel function of the second kind of order ν > 0 and c > 0. For ν = 1/2
one obtains the ‘random walk’ Ornstein-Uhlenbeck kernel. We did experiments
with the mote22 dataset for ν = 1/2, 1, 3/2 and 5/2 and achieved the best results
with ν = 1/2. Using all 30000 data the best parameters turn out to be c = 8.0
and σ = 2−4. Computing the matrix-vector-product on-the-fly we need 5265
seconds, the approach with the H2-matrix is finished after 431 seconds using 3.3
KB/N. The result on the test data is 0.2004, a significant improvement over the
use of the Gaussian kernel.

4 Conclusions and Outlook

We introduce the concept of hierarchical matrices for Gaussian Processes. Our
approach scales with O(Nm log(N)), i.e., far less than quadratic in the number
of data, which allows the efficient treatment of large data sets. On large data
sets, where the kernel matrix cannot be stored, we observe speedups of up to
two orders of magnitude compared to the on-the-fly computation of the matrix-
vector-product during the iterative Krylov solution of the linear equation system.

Among the competing methods, in particular the probabilistic sparse ap-
proximations [2] are promising. These techniques have a complexity of O(NM2),
where the hyperparameter M , the number of data chosen for computational core,
controls the accuracy of the approximation. Comparing this estimate to the esti-
mate for our approach suggests that the latter will be preferable if m log N ≤ M2.
To our knowledge, the proper choice of M has not been investigated in detail up
to now. Results in [1] suggest that even a choice of M = 2000 is not sufficient
for a data set of size N = 45000 to achieve good accuracy.

The current implementation of the HLib is optimised for two and three spatial
dimensions, the extension to higher dimensions is a topic of ongoing research. The
basic structure of local rank-m- or more general tensor approximations should
be usable in this case as well. In our case ideas like hierarchical clustering are
most promising. It is also worthwhile to investigate if the ideas from probabilistic
sparse approximations can be combined with the hierarchical matrix approach
presented here.

In our experiments we use a simple 2:1 splitting of the training data for
the hyperparameter fitting. For large data sets one advantage of the marginal
likelihood criterion, that all data is employed in learning and fitting, is not as
significant as for small data sets. Nevertheless we intend to adopt this criterion
for hyperparameter fitting in the future. The goal is to use one approximation
of the kernel matrix for several values of σ.

Till now we have not considered preconditioning at all. We could use a larger
error tolerance εHC to compute a second but much coarser and therefore smaller
H2-matrix. We then can cheaply compute its LU or Cholesky decomposition
and use it as a preconditioner for GMRES [6]. In other application areas the

number of iterations typically goes from hundreds or thousands down to ten or
twenty, depending on how coarse the second H2-matrix is.

This is especially worthwhile for the computation of the predictive variance
on the test data. In our case it seems that this would necessitate the solution
of a linear equation system for each test data point [1]. Since the kernel matrix
would be the same in every case, additional computation to obtain a good and
cheap preconditioner is easily compensated, since the solution would then need
only a few matrix-vector-multiplications.

References

1. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

2. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
gaussian process regression. J. of Machine Learning Research 6 (2005) 1935–1959

3. Shen, Y., Ng, A., Seeger, M.: Fast gaussian process regression using kd-trees. In
Weiss, Y., Schölkopf, B., Platt, J., eds.: NIPS 18. MIT Press (2006)

4. Freitas, N.D., Wang, Y., Mahdaviani, M., Lang, D.: Fast krylov methods for n-
body learning. In Weiss, Y., Schölkopf, B., Platt, J., eds.: Advances in Neural
Information Processing Systems 18. MIT Press, Cambridge, MA (2006)

5. Lang, D., Klaas, M., de Freitas, N.: Empirical testing of fast kernel density estima-
tion algorithms. Technical Report TR-2005-03, Department of Computer Science,
University of British Columbia (2005)

6. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical Matrices. Lecture Note 21
of the Max Planck Institute for Mathematics in the Sciences (2003)

7. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Com-
puting 70(4) (2003) 295–334

8. Hackbusch, W., Khoromskij, B., Sauter, S.A.: On H2-matrices. In Bungartz, H.,
Hoppe, R., Zenger, C., eds.: Lect. on Applied Mathematics, Springer (2000) 9–29

9. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive H2-matrices.
Computing 69 (2002) 1–35

10. Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. In Suykens,
J., Horvath, G., Basu, S., Micchelli, C., Vandewalle, J., eds.: Advances in Learning
Theory: Methods, Models and Applications, IOS Press Amsterdam (2003) 131–153

11. Greenbaum, A.: Iterative methods for solving linear systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (1997)

12. Bebendorf, M.: Effiziente numerische Lösung von Randintegralgleichungen unter
Verwendung von Niedrigrang-Matrizen. PhD thesis, Uni. Saarbrücken (2000)

13. Börm, S., Grasedyck, L.: HLib – a library for H- and H2-matrices (1999) Available
at http://www.hlib.org/.

14. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by inter-
polation. Computing 72 (2004) 325–332

15. Grasedyck, L.: Adaptive recompression of H-matrices for BEM. Computing 74(3)
(2004) 205–223

16. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins U. P. (1996)
17. Buonadonna, P., Hellerstein, J., Hong, W., Gay, D., Madden, S.: Task: Sensor

network in a box. In: Proc. of European Workshop on Sensor Networks. (2005)
18. Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., ,

Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In:
International Symposium on Experimental Robotics. (2004)

