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Abstract

We propose a monotone multigrid method based on a B–spline basis of arbitrary smooth-
ness for the efficient numerical solution of elliptic variational inequalities on closed convex sets.
In order to maintain monotonicity (upper bound) and quasi–optimality (lower bound) of the
coarse grid corrections, we propose coarse grid approximations of the obstacle function which
are based on B–spline expansion coefficients. To illustrate the potential of the scheme, the
method is applied to the pricing of American options in the Black–Scholes framework.

Keywords: Monotone multigrid method, variational inequalities, American option, Greek letters,
finite elements, B–splines.
AMS-Classification: 65M55, 35J85, 65N30, 65D07.

1 Introduction

For the efficient numerical solution of elliptic variational inequalities on closed convex sets, multi-
grid methods have been investigated over the past decades with great success, e.g., [BC, HM, Ho,
M, K]. However, not all of them have assured consequently that the obstacle criterion is met. As
a consequence often no convergence theory is available. This disadvantage could be resolved by
the work of Ralf Kornhuber [K] with the introduction of monotone multigrid methods (MMG).
Essential for the success of these methods is the appropriate approximation of the obstacle func-
tion on coarser grids. Such approximations satisfy the (upper) bound imposed by the obstacle
(monotonicity) as well as a lower bound which corresponds to a condition of quasi–optimality. The
construction is derived in [K] for piecewise linear finite element functions. On the other hand,
there are a number of problems which would profit from higher order approximations. Among
these are the problem of prizing American options which is formulated as a parabolic boundary
value problem involving Black–Scholes’ equation with a free boundary, the optimal exercise prize
of the option. Here, of particular importance are accurate approximations to the derivatives of
the solution, the so–called Greek letters. In [CP, O, RW] multigrid techniques have been already
successfully used for the solution of the linear complementary problem which arises from a finite
difference discretization of the problem to price American options with stochastic volatility.
In this paper, we first recall the main results from [HK, Hz2] where the monotone multigrid method
from [K] is generalized to discretizations in terms of B–splines of arbitrary order and applied to the
problem to prize American options. Then we provide details about the construction of truncated
B–spline based monotone multigrid methods developed in [Hz1] which are known to converge faster
than the standard version.
Using arguments from [K], global convergence and optimal complexity of the B–spline based mono-
tone multigrid method can be proved. Monotone and quasi–optimal coarse grid approximations
to the obstacle function are constructed for B–spline basis functions of arbitrary degree in optimal
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complexity of the number of unknowns. By construction, one can expect special robustness of the
scheme and full multigrid efficiency in the asymptotic range. Moreover, due to the higher order
discretization, the derivatives of the solution can be stably and accurately determined via direct
differentiation of the basis functions. This is confirmed by computations for an American option
pricing problem, where we additionally compare our results to the ones obtained in [LR].

2 B–Spline Based Finite Element Methods

In this section we introduce B–splines as finite element ansatz functions for the solution of varia-
tional inequalities. An introduction into finite element methods which are based on B–splines for
the solution of variational equalities can be found in [Hg].

2.1 Elliptic Variational Inequalities

Let Ω be a domain in R
d and J (v) := 1

2a(v, v)−f(v) a quadratic functional induced by a continuous,
symmetric and H1

0– elliptic bilinear form a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R and a linear functional
f : H1

0 (Ω) → R. As usual, H1
0 (Ω) is the subspace of functions belonging to the Sobolev space

H1(Ω) with zero trace on the boundary. We consider the constrained minimization problem

(1) find u ∈ K : J (u) ≤ J (v) for all v ∈ K

on the closed and convex set

K := {v ∈ H1
0 (Ω) : v(x) ≤ g(x) for all x ∈ Ω} ⊂ H1

0 (Ω).

The function g ∈ H1
0 (Ω) represents an upper obstacle for the solution u ∈ H1

0 (Ω). Lower obstacles
can be treated analogously. If g satisfies g(x) ≥ 0 for all x ∈ ∂Ω, problem (1) admits a unique
solution u ∈ K by the Lax–Milgram theorem. It can also be written as an elliptic variational
inequality or as a linear complementary problem.
Discretizing in a finite dimensional spline space Sh of piecewise polynomials on a grid with uniform
spacing h leads to the discrete formulation of (1),

(2) find uh ∈ Kh : J (uh) ≤ J (vh) for all vh ∈ Kh

on the closed and convex set

Kh := {vh ∈ Sh : vh(x) ≤ gh(x) for all x ∈ Ω} ⊂ Sh.

In [BHR] regularity u ∈ H5/2−ε(Ω) of the solution to (1) is shown for arbitrary ε > 0. Moreover,
error estimates ‖u − uh‖H1(Ω) = O(h) and ‖u − uh‖H1(Ω) = O(h3/2−ε) are proved in the case
of piecewise linear, respectively piecewise quadratic, functions, provided the functions f, g are
sufficiently regular.

2.2 B–Splines

In the following we use a B–spline basis Σh := {N1,k,h, . . . , Nn,k,h} of order k to span the discrete
space Sh. Let θ1 = . . . = θk = a < θk+1 < . . . < θn < b = θn+1 = . . . = θn+k be an expanded knot
sequence with uniform grid spacing h in the interior of the interval I := [a, b]. Then the B–spline
basis functions Ni,k,h of order k are recursively defined by

(3)

Ni,1,h(x) =

{

1, if x ∈ [θi, θi+1)
0, else

,

Ni,k,h(x) =
x − θi

(k − 1)h
Ni,k−1,h(x) +

θi+k − x

(k − 1)h
Ni+1,k−1,h(x)
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for x ∈ I . In the case k = 2, Ni,k,h equals the usual piecewise linear hat function which is one at
θi+1 and zero at all other grid points. In the following we will exploit that B–spline basis functions
satisfy suppNi,k,h ⊆ [θi, θi+k] (local support), Ni,k,h(x) ≥ 0 for all x ∈ I (nonnegativity) and
Ni,k,h ∈ Ck−2(I) (differentiability). Furthermore, we use the two–scale refinement relation

(4) Ni,k,2h =

k
∑

j=0

aj N2i−k+j,k,h

with the subdivision coefficients

(5) aj := 21−k

(

k

j

)

for j = 0, . . . , k

as a natural prolongation operator.
In the multivariate case Ω :=

∏d
`=1[a`, b`] ⊂ R

d, the i-th d-dimensional tensor product B–spline of
order k is defined on a tensorized grid by

(6) N
(d)
i,k,h(x) :=

d
∏

`=1

Ni`,k,h(x`), x ∈ Ω,

where i := (i1, . . . , id) now denotes a multi-index. The same properties hold as in the univariate
case. The multivariate variant of the refinement relation (4) is given by

(7) N
(d)
i,k,2h =

∑

j∈J

a
(d)
j N

(d)
2i−k+j,k,h

with the index set J := {j ∈ N
d : 0 ≤ ji ≤ k for all i = 1, . . . , d} and the subdivision coefficients

(8) a
(d)
j := 2(1−k)d

d
∏

ν=1

(

k

jν

)

for j ∈ J.

3 B–Spline Based Projected Gauss–Seidel Relaxation

In this section we propose a projected Gauss–Seidel scheme based on B–spline basis functions
for the numerical solution of (2). In Section 4 the method is then incorporated as smoothing
component into a multigrid cycle. The crucial point is the definition of a projection operator
P : Sh → Kh in the case of higher–order basis functions.
In the case k = 2 Sh consists of hat functions so that the projection into the convex set Kh can be
defined for given grid points {θi}i as

(9) P vh(θi) := min{vh(θi), gh(θi)}.

For higher–order functions vh, the difficulty arises that the function vh may violate the obstacle
gh even though vh(θi) ≤ gh(θi) holds on all grid points. Thus, controlling function values on grid
points is not a sufficient criterion in this case. We propose here instead a construction using higher
order B–splines, which compares B–spline expansion coefficients instead of function values. It is
based on the following lemma which follows from the nonnegativity of B–splines.

Lemma 3.1 If the B–spline coefficients of vh, gh ∈ Sh satisfy vi ≤ gi for all i = 1, . . . , n, then
vh(x) ≤ gh(x) holds for all x ∈ I.

In view of Lemma 3.1 the projection can now be defined for B–spline functions of general order k
similar to (9), but now involving expansion coefficients, by setting

(10) P vi := min{vi, gi}.
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Using (10) we can define a projected Gauss–Seidel scheme for the solution of (2) with B–spline
basis functions of arbitrary order. For a given iterate uν

h ∈ Sh a standard Gauss–Seidel sweep S is
supplemented by the projection P into the convex set Kh, i.e.,

(11) uν+1
h = P ◦ S (uν

h).

Since the discrete solution set {v ∈ IRn : vi ≤ gi for i = 1, . . . , n} describes a cuboid in IRn

the same arguments as in [C] can be used to prove the convergence of the resulting projected
Gauss–Seidel scheme for symmetric and positive definite problems.
Employing the tensor-product approach from Section 2.2, the corresponding extensions of Lemma
3.1, the definition of the projection operator and of the projected Gauss–Seidel scheme immediately
carry over to the d–dimensional setting.

4 B–Spline Based Monotone Multigrid Methods

The asymptotic convergence rate of the projected Gauss–Seidel relaxation is of order 1−O(h2) as
it is well–known for the Gauss–Seidel scheme in the unconstrained case. Consequently, this implies
unsatisfactorily slow convergence for small grid spacings h. This disadvantage can be overcome by
multigrid techniques. A by now popular method for the solution of the variational inequality (2) is
the monotone multigrid method from [K]. If we introduce a nested sequence of finite–dimensional
spaces

S1 ⊂ S2 ⊂, . . . ,⊂ SL ⊂ H1
0 (Ω),

the monotone multigrid method can be implemented as a variant of a standard multigrid scheme
by adding a projection step as in (9) or (10) and employing special restriction operators r̃ for the
inter–grid transfer of the obstacle function. We choose the different components as follows: The
spaces S`, ` = 1, . . . , L, are defined as the spaces of B–splines of order k with equidistant grid
spacings h` := h`−1/2. The a–priori and the a–posteriori–smoothing steps P ◦ S are realized by
the projective Gauss–Seidel scheme (11). The prolongation operator p is defined by the B–spline
refinement relations (4) or (7). Following [H], we choose the restriction operator r which is used for
the transport of defect and stiffness matrix to coarser grids as the adjoint of the prolongation p. In
order to obtain suitable coarse grid approximations to the obstacle function, a special restriction
operator r̃ should be used which provides monotone approximations of the obstacle. This ensures
that coarse grid corrections do not violate the fine grid obstacle function which is one of the key
ideas of monotone multigrid methods and which leads to special robustness of the scheme. Such
operators are constructed in [K] for piecewise linear functions. In the next section the construction
is generalised to B–spline functions of higher order. Using arguments of [K], global convergence
and optimal complexity of the B–spline based monotone multigrid method can then be proved.

4.1 Construction of Monotone and Quasi–optimal Obstacle Approxima-

tions

In this section we provide the construction of monotone and quasi–optimal coarse grid approxima-
tions of the obstacle function which lead to suitable restriction operators r̃. For more transparency,
we consider here only two grids, as the generalization to several grids is obvious.
In the following we denote the obstacle function by S̃ and its approximation by S. The approxi-
mation is defined on a coarse grid T := {θi}i=1,...,n+k ⊂ I with equidistant grid spacing 2h.

The obstacle function is defined on the fine grid ∆ := {θ̃i}i=1,...,ñ+k. The fine grid is defined

with a grid spacing h such that θi = θ̃2i−k for i = k, . . . , n + 1 and 1
2 (θi−1 + θi) = θ̃2i−k−1 for

i = k + 1, . . . , n+ 1. By construction, it follows that T ⊂ ∆ and ñ = 2n +1− k. Then the obstacle
function and the approximation have the representations

(12) S̃ =

ñ
∑

i=1

c̃i Ni,k,h =: c̃T Nk,h, S =

n
∑

i=1

ci Ni,k,2h =: cT Nk,2h
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in the B–spline basis with coefficient vectors c̃ ∈ IRñ and c ∈ IRn.
Given an obstacle function S̃ which is defined on the fine grid ∆, we present a construction which
provides an coarse grid approximation S which satisfies

L(x) ≤ S(x) ≤ S̃(x) for all x ∈ I

in the optimal complexity of O(n) arithmetic operations of the coarse grid. The lower barrier L(x)
is provided below in (15). If the upper inequality is satisfied, we call S a monotone lower coarse
grid approximation to the obstacle S̃. This condition leads to special robustness of the multigrid
scheme. The lower inequality corresponds to the condition of quasi–optimality in [K] and ensures
an asymptotic reduction of the method to a linear relaxation.
For hat functions such approximations are constructed in [M, K]. A corresponding construction
for higher–order functions has to our knowledge not been provided previous to [HK]. In view
of Lemma 3.1, our method controls B–spline expansion coefficients. In the following, we use the
notation that all terms which involve ci or qi with i < 1 or i > n or c̃i with i < 1 or i > ñ have to
be omitted.

Theorem 4.1 (Monotone Coarse Grid Approximation) The spline S = cT Nk,2h satisfies

S(x) ≤ S̃(x) for all x ∈ I

if the expansion coefficients of S and S̃ satisfy the linear inequality system

(13) Ak c ≤ c̃

where the matrix Ak ∈ R
ñ×n is defined by (Ak)ij := ai+k−2j with the subdivision coefficients aj

from (5) and the additional convention that aj := 0 if j < 0 or j > k.

Proof: Substituting (4) into (12) and sorting according to the basis functions Ni,k,h leads to

(14) S̃(x) − S(x) =
ñ

∑

i=1

[c̃ − (Ak c)]i Ni,k,h(x).

By Lemma 3.1 we obtain S̃(x)−S(x) ≥ 0 for all x ∈ I if [c̃ − (Ak c)]i ≥ 0 holds for all i = 1, . . . , ñ.
2

In the multivariate case d > 1, Theorem 4.1 holds if the matrix Ak is replaced by the tensor

product matrix A
(d)
k := Ak ⊗ . . . ⊗ Ak ∈ R

(ñ×n)d

.
As all row sums of Ak are equal to one, the vector q := (q1, . . . , qn)T defined below in (15) satisfies
the inequality system Ak q ≤ c̃. By Theorem 4.1, we have thus derived a monotone lower coarse
grid approximation to S̃.

Proposition 4.2 The spline L := qT Nk,2h with coefficients

(15) qi := min {c̃2i−k, . . . , c̃2i} for i = 1, . . . , n

satisfies
L(x) ≤ S̃(x) for all x ∈ I.

In the multivariate case d > 1 the definition (15) is replaced by

qi := min{c̃j : 2im − k ≤ jm ≤ 2im, m = 1, . . . , d} for i ∈ IIc

with indices from IIc := {i ∈ N
d : 1 ≤ im ≤ n, m = 1, . . . , d}.

The approximations from Proposition 4.2 correspond to the quasi–optimality condition in [K]. It
can be proved that multigrid methods with such obstacle approximations asymptotically reduce
to a linear relaxation.
As it is illustrated in Figure 1 for the cases d = 1, k = 2 and d = 2, k = 3, the approximation L
can be further improved in many cases. Such approximations are obtained next by the following
Theorem. Within a monotone multigrid scheme, we expect that better approximations of the
obstacle function on coarse grids lead to more efficient coarse grid corrections and, thus, to faster
convergence.
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Theorem 4.3 Let S̃ = c̃T Nk,h be a given obstacle and let L = qT Nk,2h be defined as in (15).
Let further the vector c be recursively defined by

(16) ci = min{2 c̃2i−2 − ci−1, c̃2i−1, 2 c̃2i − qi+1}

in the case k = 2,

(17) ci = min
{

4 c̃2i−3 − 3 ci−1,
4
3 c̃2i−2 −

1
3ci−1,

4
3 c̃2i−1 −

1
3qi+1, 4 c̃2i − 3 qi+1

}

in the case k = 3 and

ci := min
{

8c̃2i−4 − ci−2 − 6ci−1, 2c̃2i−3 − ci−1,
4
3 c̃2i−2 −

1
6 (ci−1 + qi+1),

2c̃2i−1 − qi+1, 8c̃2i − 6qi+1 − qi+2}(18)

in the case k = 4. Then it holds

L(x) ≤ S(x) ≤ S̃(x) for all x ∈ I

and the construction requires only optimal O(n) arithmetic operations.

The proof of Theorem 4.3 which exploits the special structure of the matrices Ak, the (involved)
formula for a general order k ∈ N and an extension to dimension d > 1 can be found in [HK].

The approximations from Theorem 4.3, which we will refer to as OCGC (optimized coarse grid
correction) approximations, are visualised in Figure 1 for the cases d = 1, k = 2 and d = 2, k = 3.
Additionally, we display the quasi–optimal coarse grid approximations L according to Proposition
4.2.
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Figure 1: Left: Univariate continuous piecewise linear upper obstacle function on the fine grid
[0, 4] ∩ Z/2 and coarse grid approximations from Proposition 4.2 and Theorem 4.3, respectively,
on the coarse grid [0, 4] ∩ Z. Right: Two–dimensional C1–smooth, quadratic, upper obstacle
function defined on fine grid [0, 6]2 ∩ (Z/2)2 and coarse grid approximations from Proposition 4.2
and Theorem 4.3, respectively, on the coarse grid [0, 6]2 ∩ Z

2.

The improvement of the OCGC approximation over the quasi–optimal approximation L is clearly
visible. In the special case k = 2 the quasi–optimal coarse grid approximations from Proposition 4.2
coincide with the restrictions from [M] whereas the OCGC approximations recover the restriction
operator from [K].
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4.2 Truncated B–Spline Based Monotone Multigrid Methods

Within a time discretization, when solving instationary problems, we can expect that the asymp-
totic phase dominates the convergence behavior of the multigrid scheme since the solutions from
the previous time steps can be used as good initial guesses.
However, standard monotone multigrid methods often suffer from unsatisfying convergence rates
in their asymptotic convergence range. This is due to the fact that the demand for monotonicity
excludes the use of many coarse grid functions near the free boundary in the correction step of the
multigrid scheme which leads to a less efficient coarse grid transport.
As shown in [K], similar convergence rates as the unconstrained case can be achieved if the coarse
grid basis functions are adapted in each iteration step to the actual position of the free boundary
by a suitable truncation operator. This leads to the truncated version (TrMMG) of the monotone
multigrid method. As described next, the B–spline based method can be modified in a similar way
to obtain a truncated variant.
We denote by ui, i = 1, . . . , ñ, the B–spline coefficients of the smoothed approximation ūν

h in the
ν–th iteration step of the monotone multigrid scheme and define the contact set of ūν

h by

K•(ūν
h) := {i ∈ {1, . . . , ñ} : ui = gi}

where gi, i = 1, . . . , ñ, denote the B–spline coefficients of the obstacle function gh.
Truncated coarse grid B–spline basis functions can now be obtained by a recursive application of
the following two steps. First, coarse grid basis functions are transferred to the next finer grid via
(4). Then all B–spline coefficients of the transferred function with index i ∈ K•(ūν

h) are set to
zero. To achieve such a truncation, the implementation of the monotone multigrid method has to
be modified in the following way:
First, when computing restrictions of the stiffness matrix and of the residual via (4), all entries
in the prolongation and restriction matrix are set to zero which correspond to active components
i ∈ K•(ūν

h). Second, when constructing monotone and quasi–optimal coarse grid approximations
of the obstacle function via Proposition 4.2 or Theorem 4.3, all B–spline coefficients of the obstacle
functions with index i ∈ K•(ūν

h) are set to infinity in order to be less restrictive for the coarse
grid corrections. Third, corrections are only added to components of the smoothed iterate ūν

h with
index i ∈ K•(ūν

h).
According to the results obtained from the numerical experiments in [K, HK], such modifications
lead to the most efficient monotone multigrid variants. They exhibit full multigrid efficiency in the
asymptotic convergence range.
The modification of the obstacle function in the case k = 3 is illustrated in Figure 2. There,
a quadratic upper obstacle function gh ∈ Sh with Sh = spanΣh and Σh = {N1,3,1, . . . , N1,3,26}
defined on the fine grid [0, 13] ∩ Z/2 and the corresponding OCGC approximations are displayed.
The modifications within the truncated version are illustrated in the right figure where the contact
set is set to be K•(ūν

h) = {6, 7, . . . , 10, 23}. One can see that smooth parts of the obstacle are

3
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0 2 4 6 8 10 12

upper fine grid obstacle
OCGC coarse grid approximation
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6

7

8

9

0 2 4 6 8 10 12

modified upper fine grid obstacle
OCGC coarse grid approximation

Figure 2: Left: C1–smooth, quadratic upper obstacle function on the fine grid [0, 13] ∩ Z/2 with
quadratic approximation according to Theorem 4.3 on grid [0, 13] ∩ Z. Right: Modified obstacle
function and approximation where the contact set is set to be K•(ūν

h) = {6, 7, . . . , 10, 23}.
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very well approximated, while variations of the obstacle of higher frequency can only be partly
approximated as it is visible in the interval [9, 13].

5 Numerical Example

To present a numerical example from Mathematical Finance, we choose the domain Ω := R
+ ×

[0, T ), the function H(S) := max{K − S, 0} and consider the free boundary value problem to find
V (S, t) ∈ H1(Ω) and the free boundary S = Sf (t) such that for 0 ≤ t < T ,

(19)

∂

∂t
V (S, t) +

1

2
σ2S2 ∂2

∂S2
V (S, t) + rS

∂

∂S
V (S, t) − rV (S, t) = 0 for S > Sf ,

V (S, t) = H(S) for S ≤ Sf ,

with boundary data V (S, t) = 0 for S → ∞, V (S, t) = H(S) for S → 0, final data V (S, T ) = H(S),
and the conditions that V and ∂V /∂S are continuous on the free boundary Sf .

As it is shown in [WHD], the solution V describes the fair value of an American put option
with strike price K ∈ R

+, maturity T ∈ R
+ and an underlying stock with value S ∈ R

+ and
volatility σ ∈ R

+. The interest rate for risk free investments is denoted by r ∈ R
+. If the obstacle

condition is neglected the solution V describes the fair value of an European put option. In that
case an analytical solution is given by the well-known Black–Scholes formula. Employing a time
discretization, a weak form as in (1) of problem (19) can be derived [WHD, Hz2] which we solve
by the finite element based scheme from Sections 2, 3 and 4.

In the numerical experiments we used the parameters K = 10, T = 1, σ = 0.6 and r = 0.025.
Employing a Crank–Nicholson finite difference scheme for the time discretization and at least
continuous piecewise finite elements for the space discretization, the method is known to converge
quadratically.

Employing higher–order finite element functions, the derivatives of the solution V which provide
important hedge parameters in the option pricing context can be determined by direct differentia-
tion of the basis functions. To illustrate the difference a variable order k may offer, the pointwise

errors of the second derivative Γ := ∂2V
∂S2 at time t = 0 are shown in Figure 3 for orders k = 2, 3, 4

in the case of 275× 275 unknowns in time and space.

On the right hand side of Figure 3, the pointwise convergence rates to ∂2

∂S2 V (K, 0) are displayed for
our scheme with piecewise linear (k = 2) and piecewise cubic (k = 4) B–spline ansatz functions.
Additionally, the convergence rate of a lattice scheme is plotted which was proposed by Leisen
and Reimer [LR] and which was considered to be the superior method for the approximation of
American option price sensitivities in a comparison of various pricing methods in [WW]. The costs
(plotted on the x–axis) of the Leisen–Reimer scheme with m steps are of order O(m2), whereas the
costs of our B–spline based finite element scheme with M time and N space steps have complexity
O(N M). One can see that the Leisen–Reimer scheme as well as the finite element scheme with
hat functions exhibit a pointwise convergence rate of about ρ = 1/2. In contrast, the finite element
scheme with piecewise cubic functions attains a much better convergence rate of nearly ρ = 1.

In the next experiments only one time step of problem (19) with a random initial guess is considered
to analyze the performance of the multigrid scheme. In Figure 4, the iteration errors of the
projective Gauss–Seidel scheme are displayed for different orders k and M = 256 unknowns in
space. The impact of the order k is clearly visible.

Next we compare for the case of quadratic basis functions (k = 3) the convergence behavior of the
following methods:
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Figure 3: Left: Comparison of pointwise error for Gamma ∂2V/∂S2(S, 0) for orders k = 2, 3, 4 and
275× 275 unknowns in time and space. Right: Pointwise convergence to Gamma ∂2V/∂S2(K, 0).

PSOR projective Gauss–Seidel scheme

MMG monotone multigrid method with OCGC approximation of the ob-
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MMG (q–opt) monotone multigrid method with quasi–optimal approximation of
the obstacle according to Proposition 4.2

TrMMG (q–opt) truncated version of the monotone multigrid method with quasi–
optimal approximation of the obstacle according to Proposition 4.2

MG linear multigrid method applied to the unrestricted problem

In the experiments we used the finest level L = 7 and only one smoothing step on each refinement
level. The convergence behaviour is displayed in Figure 4. One can see that the truncated version
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Figure 4: Iteration history of the projected Gauss–Seidel scheme (left) and of different MMG–
variant based on piecewise quadratic, C1–smooth B–spline basis functions (right).

TrMMG combined with the OCGC approximations is the fastest convergent variant. It exhibits,
apart from a very slight variation in the first iterations which is caused by the search for the
free boundary, almost the same convergence behavior as a linear multigrid method applied to the
unrestricted problem; the lines overlap. For hat functions, this corresponds to the results in [K].
For the higher–order case, this indicates the quality of the obstacle approximations from Section 4.1
together with its enhancement by including truncated basis functions from Section 4.2. Estimated
bounds for the asymptotic convergence rates for the truncated version TrMMG are listed in Table
1 for different numbers of smoothing steps on each refinement level.
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η 1 2 3 4 5 6
ρ∞ 0.27 0.16 0.13 0.1 0.05 0.04

Table 1: Estimated asymptotic convergence rates for different numbers of smoothing steps η on
each refinement level for the truncated version TrMMG with piecewise quadratic basis functions.

In summary, we recover the favorable convergence rates of standard multigrid schemes which are
bounded for the truncated version TrMMG with k = 3 by ρ∞ ≈ 0.27 in the case of only one
smoothing step on each refinement level.
Acknowledgments. We would like to thank Michael Griebel for pointing out the problem of
deriving MMG methods based on higher order basis functions and their possible application to the
computation of American options. We also want to thank Rolf Krause for helpful discussions on
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